
Human and Computational
Measurement of

Lexical Semantic Change

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität
Stuttgart zur Erlangung der Würde eines Doktors der Philosophie (Dr. phil.)

genehmigte Abhandlung.

Vorgelegt von

Dominik Schlechtweg
aus Stuttgart, Deutschland

Hauptberichterin: Apl. Prof. Dr. Sabine Schulte im Walde
Mitberichter: Dr. Peter Turney
Mitberichter: Prof. Dr. Jonas Kuhn

Tag der mündlichen Prüfung: 24. März 2022

Institut für Maschinelle Sprachverarbeitung der Universität Stuttgart

2023





Dedicated to those of my family who left us during the creation of this thesis:

Rolf-Dieter Schlechtweg, � February 2, 2018

Theresia Edeltraud Hoffmann, � June 19, 2020

Volker Axel Detlef Hoffmann, � July 9, 2021





v

I hereby declare that I have created this work completely on my own and used
no other sources or tools than the ones listed, and that I have marked any citations
accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und
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Abstract

Human language changes over time. This change occurs on several linguistic levels
such as grammar, sound or meaning. The study of meaning changes on the word
level is often called Lexical Semantic Change (LSC) and is traditionally either ap-
proached from an onomasiological perspective asking by which words a meaning
can be expressed, or a semasiological perspective asking which meanings a word
can express over time. In recent years, the task of automatic detection of semasi-
ological LSC from textual data has been established as a proper field of computa-
tional linguistics under the name of Lexical Semantic Change Detection (LSCD).
Two main factors have contributed to this development: (i) The digital turn in the
humanities has made large amounts of historical texts available in digital form.
(ii) New computational models have been introduced efficiently learning semantic
aspects of words solely from text.

One of the main motivations behind the work on LSCD are their applications in
historical semantics and historical lexicography, where researchers are concerned
with the classification of words into categories of semantic change. Automatic
methods have the advantage to produce semantic change predictions for large
amounts of data in small amounts of time and could thus considerably decrease hu-
man efforts in the mentioned fields while being able to scan more data and thus to
uncover more semantic changes, which are at the same time less biased towards ad
hoc sampling criteria used by researchers. On the other hand, automatic methods
may also be hurtful when their predictions are biased, i.e., they may miss numer-
ous semantic changes or label words as changing which are not. Results produced
in this way may then lead researchers to make empirically inadequate generaliza-
tions on semantic change. Hence, automatic change detection methods should not
be trusted until they have been evaluated thoroughly and their predictions have
been shown to reach an acceptable level of correctness.

Despite the rapid growth of LSCD as a field, a solid evaluation of the wealth
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of proposed models was still missing at the onset of this thesis. The reasons were
multiple, but most importantly there was no annotated benchmark test set avail-
able. This thesis is thus concerned with the process of providing such an evaluation
for LSCD, including

• the definition of the basic concepts and tasks,

• the development and validation of data annotation schemes with humans,

• the annotation of a multilingual benchmark test set,

• the evaluation of computational models on the benchmark, their analysis and
improvement, as well as

• an application of the developed methods to showcase their usefulness in the
targeted fields (historical semantics and lexicography).
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Überblick

Die menschliche Sprache verändert sich im Laufe der Zeit. Dieser Wandel vollzieht
sich auf verschiedenen sprachlichen Ebenen wie Grammatik, Laute oder Bedeu-
tung. Die Untersuchung von Bedeutungsänderungen auf der Wortebene wird oft
als lexikalischer Bedeutungswandel bezeichnet und wird traditionell entweder
aus einer onomasiologischen Perspektive mit der Frage angegangen, durch wel-
che Wörter eine Bedeutung ausgedrückt werden kann, oder aus einer semasiologi-
schen Perspektive mit der Frage, welche Bedeutungen ein Wort im Laufe der Zeit
ausdrücken kann. In den letzten Jahren hat sich die Aufgabe der automatischen Er-
kennung von semasiologischem Bedeutungswandel aus Textdaten als ein eigenes
Gebiet der Computerlinguistik unter dem Namen Bedeutungswandelerkennung
etabliert. Zwei Hauptfaktoren haben zu dieser Entwicklung beigetragen: (i) Der di-
gital turn in den Geisteswissenschaften hat große Mengen historischer Texte in di-
gitaler Form verfügbar gemacht. (ii) Es wurden neue Computermodelle eingeführt,
die semantische Aspekte von Wörtern allein aus Texten effizient erlernen.

Eine der Hauptmotivationen für die Arbeit an der Bedeutungswandelerken-
nung sind ihre Anwendungen in der historischen Semantik und der histori-
schen Lexikographie, wo sich Forscher unter anderem mit der Klassifizierung von
Wörtern in Kategorien des Bedeutungswandels beschäftigen. Automatische Me-
thoden haben den Vorteil, dass sie Bedeutungswandel für große Datenmengen in
kurzer Zeit vorhersagen und so den menschlichen Aufwand in den genannten Be-
reichen erheblich verringern können, während sie in der Lage sind, mehr Daten
zu scannen und somit mehr semantische Veränderungen aufzudecken, die gleich-
zeitig weniger durch die von Forschern verwendeten Ad-hoc-Stichprobenkriterien
beeinflusst werden. Andererseits können automatische Methoden auch schädlich
sein, wenn ihre Vorhersagen fehlerhaft sind, d. h. sie können zahlreiche seman-
tische Veränderungen übersehen oder Bedeutungswandel bei Wörtern erkennen,
die keinen durchlaufen. Die auf diese Weise gewonnenen Ergebnisse könnten dann
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Forscher dazu verleiten, empirisch fehlerhafte Verallgemeinerungen über Bedeu-
tungswandel vorzunehmen. Daher sollte man automatischen Methoden zur Er-
kennung von Bedeutungswandel erst dann vertrauen, wenn sie gründlich evaluiert
wurden und ihre Vorhersagen nachweislich einen akzeptablen Grad an Korrektheit
erreicht haben.

Trotz des rasanten Wachstums der Bedeutungswandelerkennung als Gebiet der
Computerlinguistik fehlte zu Beginn dieser Arbeit noch eine solide Evaluierung
der Fülle der vorgeschlagenen Modelle. Die Gründe dafür waren vielfältig, aber
am wichtigsten war, dass kein annotierter Benchmark-Testdatensatz verfügbar war.
Diese Arbeit befasst sich daher mit dem Prozess der Durchführung einer solchen
Evaluierung für die Bedeutungswandelerkennung, einschließlich

• der Definition der grundlegenden Konzepte und Tasks,

• der Entwicklung und Validierung von Datenannotationsprozessen mit Men-
schen,

• der Annotation eines mehrsprachigen Benchmark-Testdatensatzes,

• der Evaluierung von Computermodellen auf dem Testdatensatz, deren Ana-
lyse und Verbesserung, sowie

• der Anwendung der entwickelten Methoden, um ihre Nützlichkeit in den
Zielbereichen (historische Semantik und Lexikographie) zu zeigen.
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Chapter 1

Introduction

Human language changes over time. This change occurs on several linguistic levels
such as grammar, sound or meaning (Bybee, 2015). The study of meaning changes
on the word level is often called Lexical Semantic Change (LSC) and is tradi-
tionally either approached from an onomasiological perspective asking by which
words a meaning can be expressed, or a semasiological perspective asking which
meanings a word can express over time (Geeraerts, 2020). The latter perspective
is exemplified by considering the German word Presse and the senses it expressed
around 1800 (Paul, 2002). Before ≈1800 Presse was mainly used in the sense of
‘press machine’. After 1800 we still observe this sense, and in addition we find a
new, clearly distinguished sense as ‘news press’: The word gained an additional
sense and thus changed its meaning.

In recent years, the task of automatic detection of semasiological LSC from tex-
tual data has been established as a proper field of computational linguistics under
the name of Lexical Semantic Change Detection (LSCD) with the number of pa-
pers written on this topic exploding since 2016 (Tahmasebi et al., 2021; Schlechtweg
et al., 2020). Two main factors have contributed to this development: (i) The digital
turn in the humanities has made large amounts of historical texts available in digi-
tal form (cf. Geeraerts, 2020, pp. 20–21). (ii) New computational models have been
introduced efficiently learning semantic aspects of words solely from text (Mikolov
et al., 2013a; Peters et al., 2018; Devlin et al., 2019).

One of the main motivations behind the work on LSCD are their applications in
historical semantics and historical lexicography, where researchers are concerned
with the classification of words into categories of semantic change (cf. Paul, 2002;
Blank, 1997). Automatic methods have the advantage to produce semantic change
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predictions for large amounts of data in small amounts of time and could thus con-
siderably decrease human efforts in the mentioned fields while being able to scan
more data and thus to uncover more semantic changes, which are at the same time
less biased towards ad hoc sampling criteria used by researchers. On the other
hand, automatic methods may also be hurtful when their predictions are biased,
i.e., they may miss numerous semantic changes or label words as changing which
are not. Results produced in this way may then lead researchers to make empir-
ically inadequate generalizations on semantic change (Dubossarsky et al., 2017).
Hence, automatic change detection methods should not be trusted until they have
been evaluated thoroughly and their predictions have been shown to reach an ac-
ceptable level of correctness.

Despite the rapid growth of LSCD as a field, a solid evaluation of the wealth of
proposed models was still missing at the onset of this thesis in 2017, as acknowl-
edged by various authors (Lau et al., 2012; Cook et al., 2014; Frermann and Lapata,
2016). The reasons were multiple, but most importantly there was no annotated
benchmark test set available. This thesis is thus concerned with the process of pro-
viding such an evaluation for LSCD, including

• the definition of the basic concepts and tasks,

• the development and validation of data annotation schemes with humans,

• the annotation of a multilingual benchmark test set,

• the evaluation of computational models on the benchmark, their analysis and
improvement, as well as

• an application of the developed methods to showcase their usefulness in the
targeted fields (historical semantics and lexicography).

We put an equal focus on the human as well as the computational part of the eval-
uation procedure: In order to annotate LSC data sets, we define a human measure-
ment process for word senses based on the concept of semantic proximity between
word uses. This concept is deeply rooted in Blank (1997)’s theory of LSC and thus
provides a direct link between our human measurement process and a widely ac-
knowledged theory from historical semantics. The computational measurement
processes that we define then try to model each step of the human process and can
thus be related to historical semantic theory. In this way, we aim to standardize
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the field of LSCD assuring relevance of data sets, tasks and models to historical
semantics.

We make two important restrictions: (i) We define tasks of LSCD only as the
comparison of a word’s meaning between two time periods. While this simplifies
the LSCD problem, it reduces the number of time periods for which data has to
be annotated so that we can annotate larger corpus samples and hence more reli-
ably represent the semantic change of target words. Moreover, it reduces the task
complexity allowing different model architectures to be applied to it. (ii) We focus
on unsupervised LSCD models because they completely remove the bottleneck of
human input and only very small amounts of annotated data were available at the
onset of this thesis.

1.1 Outline

The remainder of this dissertation is organized as follows:

Chapter 2 provides some general background on the research in LSC. We intro-
duce the view on word meaning, senses and change which we will assume in this
thesis. This view will build the basis for human annotation in Chapter 3. Next,
we describe the state of research on LSCD as encountered at the beginning of this
thesis in 2017.

In Chapter 3, we describe the human annotation process for the benchmark data
set and analyze its reliability.

In Chapter 4, we describe the computational model architectures used to detect
LSC. All of these are token- or type-based Distributional Semantic Models exploit-
ing the distributional hypothesis.

In Chapter 5, we define the basic tasks which LSCD models should solve based
on the annotated data from Chapter 3. Next, we describe the results from three
studies evaluating and analyzing token- and type-based model architectures.

In Chapter 6, we apply several high-performing models to discover unknown
semantic changes of words and evaluate our approach with respect to the usability
for historical lexicographers.

Chapter 7 concludes the thesis. We reflect what we learned about LSCD, review
the points left open and discuss implications for other research fields.
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1.2 Publications

This thesis is based on the following publications:

• Schlechtweg, D., Schulte im Walde, S., and Eckmann, S. (2018). Diachronic Us-
age Relatedness (DURel): A framework for the annotation of lexical semantic
change. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages
169–174, New Orleans, Louisiana

Chapter 3 is partly based on this publication, which is a result of joint work
with my supervisor Sabine Schulte im Walde and Stefanie Eckmann. The un-
derlying ideas and the design of the annotation study came from discussions
between Sabine and me. Further, my contribution was the implementation
of the annotation study, the analysis of the data and the writing of the paper.
My co-authors gave feedback on the paper draft. Stefanie helped with the
preparation of the study and with the annotation.

• Hätty, A., Schlechtweg, D., and Schulte im Walde, S. (2019). SURel: A gold
standard for incorporating meaning shifts into term extraction. In Proceedings
of the 8th Joint Conference on Lexical and Computational Semantics, pages 1–8,
Minneapolis, MN, USA

Chapter 3 is partly based on this publication, which is a result of joint work
with Anna Hätty and Sabine Schulte im Walde. The underlying ideas and the
design of the annotation study came from discussions between Anna, Sabine
and me. Further, my contribution was the implementation of parts of the
annotation study and the analysis of the data.

• Schlechtweg, D., Hätty, A., del Tredici, M., and Schulte im Walde, S. (2019a).
A Wind of Change: Detecting and Evaluating Lexical Semantic Change across
Times and Domains. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 732–746, Florence, Italy. Association for
Computational Linguistics

Chapter 4 and Chapter 5 are partly based on this publication resulting from
joint work with Anna Hätty, Marco del Tredici and Sabine Schulte im Walde.
The underlying ideas and the design of the experiments were developed in
discussions between all authors. Anna and I took care of the implementation
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of the models, the experiments, the analysis of the data and the writing of the
paper. Marco and Sabine gave feedback on the paper draft. Marco further
contributed an implementation of the Vector Initialization approach.

• Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., and Tah-
masebi, N. (2020). SemEval-2020 Task 1: Unsupervised Lexical Semantic
Change Detection. In Proceedings of the 14th International Workshop on Semantic
Evaluation, Barcelona, Spain. Association for Computational Linguistics

Schlechtweg, D., Tahmasebi, N., Hengchen, S., Dubossarsky, H., and
McGillivray, B. (2021b). DWUG: A large Resource of Diachronic Word Usage
Graphs in Four Languages. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 7079–7091, Online and Punta
Cana, Dominican Republic. Association for Computational Linguistics

Chapter 3 and Chapter 5 are partly based on these closely related publica-
tions, which are both joint work with Barbara McGillivray, Simon Hengchen,
Haim Dubossarsky and Nina Tahmasebi. The idea to organize a shared task
resonated from discussions between Barbara, Simon and me. The annotation
approach for German, English and Swedish as well as the clustering approach
was based on my ideas and refined in discussions with Nina. I implemented
the annotation study for these languages with input on the selection of tar-
get words by Simon and Haim for English and by Nina for Swedish. The
Swedish annotators were recruited by Nina, who also took care of adminis-
trative issues regarding the Swedish annotators. Barbara organized the Latin
annotation. I took care of the data preparation and publication of the English,
German and Swedish data, helped with the Latin data, set up the codalab
competition and implemented the baselines for the task. The task design was
developed in discussions between all authors. All authors participated in the
analysis of the task results and in the writing of both papers.

• Laicher, S., Kurtyigit, S., Schlechtweg, D., Kuhn, J., and Schulte im Walde, S.
(2021). Explaining and Improving BERT Performance on Lexical Semantic
Change Detection. In Proceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics: Student Research Workshop,
pages 192–202, Online. Association for Computational Linguistics

Parts of the model descriptions in Chapter 4 and some results in Chapter 5
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are based on this publication, which resulted from Severin Laicher’s bache-
lor thesis (Laicher, 2021) supervised by Sabine Schulte im Walde and me. I
contributed the basic idea of the study to analyze BERT clusterings accord-
ing to bias variables. The experimental design was developed in discussions
between Severin, Sabine and me. The experiments were implemented by Sev-
erin and Sinan Kurtyigit, where all results and next steps were discussed with
me. Severin, Sinan and I wrote the paper with feedback from Sabine. Jonas
Kuhn had an advisory role.

• Kurtyigit, S., Park, M., Schlechtweg, D., Kuhn, J., and Schulte im Walde, S.
(2021). Lexical Semantic Change Discovery. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online.
Association for Computational Linguistics

Parts of the model descriptions in Chapter 4 and the entire Chapter 6 are
based on this publication, which resulted from Sinan Kurtyigit’s bachelor the-
sis (Kurtyigit, 2021) supervised by me. All models and experiments were im-
plemented by Sinan. I contributed the basic idea of the study, the design of
the experimental setup, advice on data analysis and participated in the writ-
ing of the paper. All results and next steps were closely discussed between
Sinan and me. Maike Park contributed the lexicographical analysis. The pa-
per was written by Sinan, Maike and me with feedback from Sabine Schulte
im Walde. Jonas Kuhn had an advisory role.

The final form of this dissertation is also a result of other peer-reviewed articles
published in the course of my doctoral studies. Although they are not the core
parts of it, the thesis refers to them when addressing some less essential concepts:

• Alatrash, R., Schlechtweg, D., Kuhn, J., and Schulte im Walde, S. (2020).
CCOHA: Clean Corpus of Historical American English. In Proceedings of the
12th Language Resources and Evaluation Conference, pages 6958–6966, Marseille,
France. European Language Resources Association

In this publication, we describe the creation of a clean version of the Corpus of
Historical American English (Davies, 2012), which we use in Section 3.2.1.1.

• Baldissin, G., Schlechtweg, D., and Schulte im Walde, S. (2022). DiaWUG: A
Dataset for Diatopic Lexical Semantic Variation in Spanish. In Proceedings of
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the 13th Language Resources and Evaluation Conference, Marseille, France. Euro-
pean Language Resources Association

This publication describes the application of the annotation framework we
develop in Section 3.1 to an onomasiological setting, using data from multiple
Spanish varieties.

• Bott, T., Schlechtweg, D., and Schulte im Walde, S. (2021). More than just
Frequency? Demasking Unsupervised Hypernymy Prediction Methods. In
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Findings), Online. Association for Computational Lin-
guistics

We demonstrate that the predictions of several hypernymy detection models,
including a model based on vector entropy (see Section 4.2.3.2), are highly
correlated with frequency-based predictions.

• Dubossarsky, H., Hengchen, S., Tahmasebi, N., and Schlechtweg, D. (2019).
Time-Out: Temporal Referencing for Robust Modeling of Lexical Semantic
Change. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 457–470, Florence, Italy. Association for Computa-
tional Linguistics

We compare OP to WI alignment for type-based embeddings (both described
in Section 4.2.2) and find that the latter introduces a lower level of noise to
word representations.

• Hätty, A., Schlechtweg, D., Dorna, M., and Schulte im Walde, S. (2020). Pre-
dicting Degrees of Technicality in Automatic Terminology Extraction. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, Seattle, Washington. Association for Computational Linguistics

In this publication, we apply LSCD methods to the task of term extraction.

• Hengchen, S., Tahmasebi, N., Schlechtweg, D., and Dubossarsky, H. (2021).
Challenges for Computational Lexical Semantic Change. In Tahmasebi, N.,
Borin, L., Jatowt, A., Xu, Y., and Hengchen, S., editors, Computational Ap-
proaches to Semantic Change, volume Language Variation, chapter 11. Lan-
guage Science Press, Berlin
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In this paper, we describe the most important challenges for LSCD and out-
line future directions of research.

• Kaiser, J., Schlechtweg, D., Papay, S., and Schulte im Walde, S. (2020a). IMS at
SemEval-2020 Task 1: How low can you go? Dimensionality in Lexical Se-
mantic Change Detection. In Proceedings of the 14th International Workshop
on Semantic Evaluation, Barcelona, Spain. Association for Computational Lin-
guistics

We describe the results of our system for the SemEval shared task (see Section
5.2), which applies the SGNS+VI+CD model architecture (see Section 4.2).

• Kaiser, J., Schlechtweg, D., and Schulte im Walde, S. (2020b). OP-IMS @
DIACR-Ita: Back to the Roots: SGNS+OP+CD still rocks Semantic Change
Detection. In Basile, V., Croce, D., Di Maro, M., and Passaro, L. C., editors,
Proceedings of the 7th evaluation campaign of Natural Language Processing and
Speech tools for Italian (EVALITA 2020), Online. CEUR.org

We present the results of our participation in the DIACR-Ita shared task on
Italian data (Basile et al., 2020), using the SGNS+OP+CD model architecture
(see Section 4.2). We win the task with high performance.

• Kaiser, J., Kurtyigit, S., Kotchourko, S., and Schlechtweg, D. (2021). Effects
of pre- and post-processing on type-based embeddings in lexical semantic
change detection. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pages 125–137,
Online. Association for Computational Linguistics

This paper describes experiments with preprocessing and postprocessing
techniques for type-based LSCD models.

• Laicher, S., Baldissin, G., Castaneda, E., Schlechtweg, D., and Schulte im
Walde, S. (2020). CL-IMS @ DIACR-Ita: Volente o Nolente: BERT does not
outperform SGNS on Semantic Change Detection. In Basile, V., Croce, D.,
Di Maro, M., and Passaro, L. C., editors, Proceedings of the 7th evaluation cam-
paign of Natural Language Processing and Speech tools for Italian (EVALITA 2020),
Online. CEUR.org

In this publication, we present the results of our second participation in the
DIACR-Ita shared task, using the BERT+APD model (see Section 4.1).
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• Schlechtweg, D., Eckmann, S., Santus, E., Schulte im Walde, S., and Hole, D.
(2017). German in flux: Detecting metaphoric change via word entropy. In
Proceedings of the 21st Conference on Computational Natural Language Learning,
pages 354–367, Vancouver, Canada

This publication describes how we explore vector entropy to detect
metaphoric change.

• Schlechtweg, D. and Schulte im Walde, S. (2018). Distribution-based
prediction of the degree of grammaticalization for German preposi-
tions. In Cuskley, C., Flaherty, M., Little, H., McCrohon, L., Rav-
ignani, A., and Verhoef, T., editors, The Evolution of Language: Pro-
ceedings of the 12th International Conference (EVOLANGXII). Online at
http://evolang.org/torun/proceedings/papertemplate.html?p=169

We test the hypothesis that the degree of grammaticalization of German
prepositions correlates with their corpus-based contextual dispersion mea-
sured by vector entropy.

• Schlechtweg, D., Oguz, C., and Schulte im Walde, S. (2019b). Second-order
co-occurrence sensitivity of skip-gram with negative sampling. In Proceed-
ings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 24–30, Florence, Italy. Association for Computational
Linguistics

In this paper, we show that the type-based word representation model SGNS
(see Section 4.2) captures second-order co-occurrence relationships between
words.

• Schlechtweg, D. and Schulte im Walde, S. (2020). Simulating Lexical Semantic
Change from Sense-Annotated Data. In Ravignani, A., Barbieri, C., Martins,
M., Flaherty, M., Jadoul, Y., Lattenkamp, E., Little, H., Mudd, K., and Verhoef,
T., editors, The Evolution of Language: Proceedings of the 13th International Con-
ference (EvoLang13)

In this publication, we present a novel procedure to simulate LSC from syn-
chronic sense-annotated data, using the change measures defined in Section
3.1.5, and demonstrate its usefulness for evaluating LSCD models.
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• Schlechtweg, D., Castaneda, E., Kuhn, J., and Schulte im Walde, S. (2021a).
Modeling sense structure in word usage graphs with the weighted stochastic
block model. In Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical
and Computational Semantics, pages 241–251, Online. Association for Compu-
tational Linguistics

We cluster a subset of the WUGs annotated for SemEval (see Section 3.2.1)
with a probabilistic graph clustering technique, enabling us to rigorously
compare models of word senses with respect to their fit to the data.

• Shwartz, V., Santus, E., and Schlechtweg, D. (2017). Hypernyms under siege:
Linguistically-motivated artillery for hypernymy detection. In Proceedings of
the 15th Conference of the European Chapter of the Association for Computational
Linguistics, Valencia, Spain, pages 65–75

We investigate an extensive number of unsupervised Vector Space Models for
hypernymy detection and compare these to state-of-the-art supervised mod-
els. Some of the model components are used in Section 4.2.

• Zamora-Reina, F. D., Bravo-Marquez, F., and Schlechtweg, D. (2022). LSCDis-
covery: A shared task on semantic change discovery and detection in Spanish.
In Proceedings of the 3rd International Workshop on Computational Approaches to
Historical Language Change, Dublin, Ireland. Association for Computational
Linguistics

In this paper, we present the results of the first LSCD shared task on Span-
ish data. The data is annotated using the procedure described in Section 3.1
and the task definitions are based on the ones developed in Chapter 5 and
Chapter 6.
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Chapter 2

Background

In this chapter, we describe the state of the relevant research fields at the onset of
this thesis.1 We start with a historical overview of LSC research pointing out the
central role of the concept of word senses. We then introduce Blank (1997)’s theory
including his definition of LSC based on word senses as it provides the theoretical
backbone of this thesis. We continue by describing the lexicographic measurement
process of word senses and point out how this process relates to Blank’s concept
of semantic proximity. We show how similar concepts to semantic proximity have
been used in practical computational linguistic annotation studies and how such
annotations can be used to derive word senses on a human-annotated graph with
automatic clustering methods. We then give an overview of computational ap-
proaches to measure word meaning and meaning changes and finish the chapter
with an overview and criticism of evaluation practices.

2.1 Lexical Semantic Change

Research on LSC starts with rhetorics in classical antiquity (Ullmann, 1957,
p. 203), where different degrees of habitualization of the literary tropes, includ-
ing metaphor, metonymy and synecdoche, were recognized (Blank, 1997, p. 9).
Cicero realized that rhetorical metaphors are more likely to spread in cases where
there is no word for the expressed meaning (p. 9). These observations laid out
the basis for the subsequent scientific study of LSC which found its zenith in the
19th and 20th century (p. 8). Reisig (1972, p. 21ff.) observes that LSC is not ran-

1Please find an overview of recent developments in LSCD in the major reviews of the field (Kutu-
zov et al., 2018; Tahmasebi et al., 2021; Hengchen et al., 2021).
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dom: he claims that two completely opposite meanings cannot be derived from
each other and concludes that there must be a semantic relation (association) be-
tween old and new meanings (Blank, 1997, p. 10). For Reisig, such relations cover
synecdoche (part-whole relation), metonymy (partly) and metaphor. The great rise
of historical semantics came with Bréal (1899) providing the first large scientific
study on LSC. He aimed to formulate universal laws of semantic change similar
to the Neogrammarian’s laws of sound change (Blank, p. 14). Importantly, he iden-
tifies polysemy (multiple senses of a word) as consequence of LSC and describes
the disambiguation of polysemy within uses of a word (p. 14). Several historical
semanticists distinguish between types of semantic change based the semantic re-
lations or the levels of meaning involved. Paul (1975, p. 94f.) stresses the central
role of metaphor in semantic change while Lehmann (1884) describes changes on
the evaluative meaning level, i.e., amelioration and pejoration (Blank, pp. 11, 13).

With de Saussure’s ideas giving rise to structural linguistics (de Saussure, 1968)
and the influence of Bloomfield (1935)’s “meaning-hostile” linguistic theory (Blank,
p. 8), the study of historical semantics was widely neglected in the middle of the
20th century (Geeraerts, 1992, p. 257f.). Structural linguistics had a focus on syn-
chronic language description and its method of analysis was quite complex, and
Bloomfield regarded the statement of meaning as the “weak point in language
study” (Bloomfield, 1935, p. 140; Blank, p. 24).

A new impulse to historical semantics came from cognitive linguistics in the
1980s (Geeraerts, 1983; cf. Blank, p. 31). In this tradition, researchers try to explain
LSC from general cognitive principles such as analogy, association, categorization,
etc. (Györi, 2002). Most important is Blank’s theory, which has gained wide ac-
ceptance (cf. Grzega, 2002; Geeraerts, 2010), captures the canonical examples of
semantic change discussed in the historical semantics literature and defines crite-
ria to distinguish word use meanings based on the notion of semantic proximity
that can be exploited for human word sense annotation (cf. Soares da Silva, 1992;
Brown, 2008; Erk et al., 2013).

The last major development in LSC research is the application of computational
methods for detection of LSC (Tahmasebi et al., 2021). Around 2010, computational
linguists started using computational models of word meaning to automatically
detect LSC in text corpora (Sagi et al., 2009; Cook and Stevenson, 2010). This has
led to an enormous upsurge in research on LSCD in recent years (Tahmasebi et al.,
2021).
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Figure 2.1: Blank’s levels of meaning (p. 95).

2.2 Blank’s Theory

Blank develops a theory of meaning based on cognitive semantics where polysemy
is the synchronic, observable result of LSC. It integrates both traditional and mod-
ern approaches to historical semantics and is developed along the lines of a variety
of examples of LSC cited in the previous literature (pp. 1, 6).

2.2.1 Levels of Meaning

Blank considers the meaning of a word to be knowledge that humans have about
that word (pp. 54ff., 94–96). He identifies three types of “meaning-like” knowledge
(see Figure 2.1, left): (i) language-specific semantic, (ii) language-specific lexical
and (iii) language-external knowledge. Based on these types, Blank then defines
three more fine-grained levels of meaning (see Figure 2.1, right) as “purely linguis-
tic abstractions” over these levels of knowledge for the sake of analysis (pp. 92, 94).
Meaning level 1 comprises core semantic knowledge needed to distinguish dif-
ferent senses from each other (p. 55). This knowledge corresponds to a set of
minimal language-specific semantic attributes, often called sememe in structural
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semantics. From these follow the hierarchical lexical semantic relations between
words, e.g. synonymy or hypernymy (p. 56). Meaning level 2 comprises (a) knowl-
edge about the word’s rules of use (regional, social, stylistic or diachronic variety),
(b) the word’s role in the lexicon (part-of-speech, word family or knowledge about
polysemy/multiple meanings and semantic relations between meanings) and (c)
syntagmatic knowledge such as selectional restrictions, phraseologisms or colloca-
tions. Meaning level 3 comprises knowledge about (a) connotation and (b) general
knowledge about the world. Here is where Blank locates mental concepts, as we
will see in Section 2.2.1.1.

Blank assumes that the knowledge from these three levels is stored in the mind
of speakers, which can also change historically in these three levels. An example
for change on level 1 is Latin pipio ‘young bird’ > ‘young pigeon’ which gained the
attribute [pigeon-like] (pp. 106–107).2 Further examples are English mouse ‘animal’
> ‘computer mouse’ (p. 150) and German Presse ‘press machine’ > ‘news press’
showing that old and new attributes can be very different (p. 107). Changes on
meaning level 1 are often accompanied by changes on the other meaning levels
(p. 112), as e.g. in the case of mouse, where the new meaning is used in a more
specific technical context (level 2a) and the concept of the referent changes (level
3). It is also possible that changes on level 2 and 3 occur independently from the
other levels. An example for such an independent change on level 2a is gota ‘cheek’,
which changes from being used commonly in Old Italian to being used exclusively
in the literary-poetic register in New Italian (p. 107).

2.2.1.1 Signs & Concepts

Blank combines the levels of meaning from Figure 2.1 with Raible (1983)’s model
of the semiotic process to describe how the levels of meaning are used in language
production (pp. 96–102). This combination is shown in Figure 2.2 (cf. also pp. 99–
101): The process starts from a speaker uttering a word (Konkrete Lautung), which
is the realization of an abstract phonological representation of that word in the
speaker’s mind (Zeichenausdruck). This representation then evokes the correspond-
ing sememe (Zeicheninhalt). The sign (Zeichen) comprises lexical knowledge about
the phonological representation and the sememe. It expresses a particular concept
(Designat), which is used to refer to a concrete referent (pp. 99–100, 148).3 The se-

2We will use the notation sense1 > sense2 to mean that sense2 developed from sense1 (see also
Section 2.2.2.2).

3It is unclear whether Blank assumes a 1-to-1 relationship between signs and concepts (cf .p. 100).
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Figure 2.2: Blank’s model of the semiotic process (p. 102) derived from Raible (1983).

meme corresponds to meaning level 1 while the sign corresponds to meaning levels
1 and 2 and the concept corresponds to meaning level 3 (cf. Figure 2.1).

Each sign expresses a particular concept, which is used to pick out a referent.
The class of referents for which a speaker would use a sign is its extensional cate-
gory (p. 78). The corresponding mental concept is prototypical in that it summa-
rizes salient features of the referents in this category (pp. 54, 79f., 415; cf. Rosch and
Mervis, 1975). These features are in turn used to determine whether a new referent
is assigned to that category, i.e., whether a speaker will use the sign to refer to the
new referent (pp. 59–60). In order to belong to an extensional category of a sign,
a particular referent does not have to correspond completely to the prototypical
concept, but can show different degrees of prototypicality (pp. 81, 415).

A word with multiple senses can be represented in this schema by a sign with
different sememes corresponding to different concepts (p. 164, see also Figure 2.3).4

The sign then expresses multiple concepts through multiple sememes, each corre-
sponding to another extensional category.

Blank follows Aristotle in assuming three principles of psychological associa-
tion between concepts (or signs) based on human perception of the world (p. 144):

4This corresponds to Blank’s wording (p. 164). But, he is inconsistent in his use of Zeichen. He
partially seems to assume that each sense corresponds to a different sign (pp. 110, 98: footnote 131).
This would also be more consistent with his view that the whole sign expresses one particular concept
(pp. 99, 101).
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similarity, contiguity and contrast (Aristoteles, nd).5 We will refer to them as se-
mantic relations. Blank assumes that these relations structure the storage of infor-
mation about language in the human mind (p. 137) and that they drive innovative
LSC (see Section 2.2.2.2). This means that two concepts sharing one of the described
relations are more strongly connected than concepts not sharing such a relation.

A similarity relation holds if the two compared concepts have a “perceptual,
functional or intersubjectively experienced commonness” (p. 160). In some cases,
this commonness can be described as a concrete overlap of features, as in the case
of mouse ‘animal’ and ‘computer mouse’ from above, explained in more detail in
Section 2.2.2.2. This is not easily possible if there are abstract concepts involved,
as in German umwälzen ‘to turn around’ > ‘to change something radically’. The
similarity relation is the basis for the literary trope metaphor.

A contiguity relation holds between two concepts belonging to the same field of
knowledge, which is a grouping of knowledge perceived to belong together in our
cognition (p. 237). Blank equates these fields of knowledge with semantic frames
(Minsky, 1975; Fillmore, 1975). A contiguity relation holds, for example, between
the two concepts ‘press machine’ and ‘news press’ of German Presse. Both concepts
are part of the frame ‘news media’. The contiguity relation is the basis for the
literary trope metonymy.

A contrast relation holds between two opposite concepts (pp. 217f.). It holds,
for example, between the two concepts of Italian famigerato ‘famous’ > ‘infamous’
(p. 220), which have a contrast in connotation. The oppositeness of concepts can
lead to lexical antonomy, but not necessarily (p. 219). The contrast relation is the
basis for the literary trope antiphrasis.

2.2.2 Lexical Semantic Change

2.2.2.1 A Definition

For Blank, only changes on the core meaning level 1 (sememe) are meaning changes
in the narrow sense as they can affect all other levels of meaning (p. 112). Only these
changes in the meaning of a word lead to the emergence or loss of a full-fledged
new sense, i.e., a new sememe. Based on this criterion, meaning changes must be
either of the two main types:

5Besides associations between concepts, Blank sees associations between signs, sememes and
phonological representations to be relevant for semantic change (p. 155).



2.2 Blank’s Theory 17

Figure 2.3: Blank’s example of concept similarity for mouse (p. 151).

• innovative meaning change: emergence of a full-fledged additional sense of
a word; old and new sense are related by polysemy,

• reductive meaning change: loss of a full-fledged sense of a word.

The changes described above for pipio, mouse, Presse and famigerato are all innova-
tive meaning changes. An example of reductive meaning change is the German
word Zufall ‘coincidence’, ‘seizure’ losing the sense ‘seizure’ (Osman, 1971).

2.2.2.2 The Process

Innovative meaning change begins in language discourse by a speaker using a
word to refer to a referent for which the word had not been used before (p. 119f.).
Such a semantic innovation can then either be neglected or adopted by other
speakers. If it is adopted, the innovation can become a discourse rule within a
particular discourse tradition, which can further be adopted by all speakers of a
language or language variety. Blank calls the latter process the lexicalization of a
semantic innovation, which leads to a new meaning in the mind of speakers and
hence to LSC.

As indicated in Section 2.2.1.1, innovations typically occur because of psycho-
logical associations in the mind of the speaker between concepts or signs (p. 138).
If a new referent (thing or circumstance) should be named, the speaker associates
the concept or sign he has gained for this referent with another concept or sign for
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which he already knows a name. Consider Blank’s explanation for the process of
change of mouse from Section 2.2.1 (p. 150), as depicted in Figure 2.3: the inventor
of the computer mouse had a new device in front of him as well as a mental con-
cept for that device including formal properties such as round form, long and thin
(and possibly gray) cable. He then associated this new concept with the concept of
the animal mouse and started using the word for the animal also for the computer
device. We can further speculate that this usage was adopted as discourse rule in
a technical context and later, with increased importance of computers in everyday
life, lexicalized within the English speaker community. The old and new sense of
mouse are exemplified by the uses of the word in (2.1) and (2.2). Before the inven-
tion of the computer mouse in the 1960s, the word was used as in 2.1. From roughly
the 1980s, we then find uses in the computer sense, as displayed in (2.2):

(2.1) [. . . ] thought I heard a mouse or rat stir in a far corner of the room [. . . ] 6

(2.2) [. . . ] does the software require special computer accessories (mouse,
joystick, sound card, colour monitor, printer)? 7

The basis for association in the case of mouse is the similarity relation (see Sec-
tion 2.2.1.1). Blank refers to a change based on this relation as metaphoric change.
Changes based on the contiguity relation are instead referred to as metonymic
change. According to Blank, these are the two most important types of innova-
tive meaning change (cf. pp. 157ff.).

An example of metonymic change is German Presse from Section 2.2.1. Before
roughly 1800, Presse was mainly used in the sense ‘press machine’, as in (2.3). After
1800, it gained the additional sense ‘news press’ as in (2.4):

(2.3) Der zweyte Theil vom Bauernrechte ist schon lange aus der Presse; 8

‘The second part of Farmers’ Rights already left the press;’

(2.4) Alle Freiheiten suspendirt! die persönliche Freiheit wie die der Presse! 9

‘All freedoms suspended! the personal freedom as well as the one of the press!’

The press machine used to produce a newspaper and the collectivity of people
writing and publishing it are part of the same cognitive frame, which means that a
contiguity relation holds between them.

6Styron, W.: Set This House on Fire. 1960.
7Keep on hackin’: kids and computers. Todays Parent. Vol. 10, Iss. 2. 1993.
8Rabener, G. W.: Sammlung satyrischer Schriften. Vol. 3. Leipzig, 1752.
9Neue Rheinische Zeitung. No. 30. Cologne, June 30, 1848.
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Reductive meaning change occurs when a sense of a word becomes unusual
(p. 121f.). The sense can either be lost directly or, as with innovation, remain to
be used within a discourse tradition or language variety. Usually the older senses
of a word are lost (p. 129). As an example, consider the German word Zufall from
Section 2.2.2.1. It had two senses until around 1850, ‘seizure’ and ‘coincidence’, as
in (2.5). From 1850, the word occurs less and less often in the former sense until it
is exclusively used in the sense ‘coincidence’, as in (2.6):

(2.5) [. . . ] daß sie aus Angst Zufälle bekommen und wieder gefährlich krank
werden würde. 10

‘[. . . ] that she would have seizures out of fear and become dangerously ill again.’

(2.6) Es muß verbrannt sein, vielleicht durch Zufall, vielleicht durch
Feindeshand. 11

‘It must have burned, perhaps by coincidence, perhaps by enemy hands.’

2.2.3 Summary

Blank identifies three levels of meaning: Level 1 comprises the core meaning of a
word distinguishing different senses from each other. Level 2 comprises knowl-
edge about the word’s rules of use, its role in the lexicon and syntagmatic knowl-
edge. Level 1 and level 2 form the lexical knowledge of a word. Level 3 comprises
connotational and world knowledge forming the conceptual knowledge about a
word. Concepts are related by psychological associations driving innovative se-
mantic change.

For Blank, only changes on meaning level 1 are actual meaning changes leading
to a new sense or loss of an old sense. Correspondingly, he differentiates between
innovative and reductive meaning change. Both types imply a change in the pol-
ysemy of a word. In order to be regarded as LSC, such changes should be spread
widely within a speaker community.

The aim of this thesis is to define measurement processes for LSC. This implies
that we need to measure changes of human knowledge on meaning level 1 over
time, i.e., we need to measure whether senses were gained or lost. This can be done
by measuring a word’s senses at two time periods and comparing the results. How-
ever, senses (being human knowledge) are not directly observable and thus cannot

10Jung-Stilling, J. H. Lebensgeschichte. Stuttgart, 1835.
11von Vischer, F. T.: Auch Einer. Eine Reisebekanntschaft. Vol. 1. Stuttgart i.a., 1879.
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be measured directly. Instead, speaker behavior in the form of produced language
(the usage of language) is usually analyzed in linguistics as a proxy for speaker
knowledge (Chomsky, 1986). In the next section, we will describe approaches to
measure word senses based on language use. For this, we will also come back to
Blank’s own proposal.

2.3 Human Measurement of Word Senses

2.3.1 The Lexicographic Process

The task of measuring word senses is the main goal of the field of lexicography.
In modern lexicography word senses are measured as abstractions over the pat-
terns of usage of a particular word (Kilgarriff, 2007), where the usage of a word is
commonly measured as a set of occurrences of that word within a sentence in text
form, such as (2.1) or (2.2) from Section 2.2.2.2. Each such occurrence will be called
a word use and a set of uses will be called a corpus. The process of abstracting over
the patterns of usage is generally done by a human lexicographer proceeding in the
following steps (Kilgarriff, 2007):

1. gather a corpus of uses for a target word,

2. divide the uses into clusters; optimally, all the members of each cluster have
more in common with each other than with any member of any other cluster,

3. for each cluster, work out what it is that makes its members belong together
and

4. use these conclusions to create a dictionary definition.

We are only interested in steps 1 and 2 of this process (corpus creation and clus-
tering) as they will provide the information we need to measure LSC, i.e., whether
there is a lost or gained sense (see Sections 2.2.3 and 3.1.4).

Step 1 requires us to gather uses for each target word. In order to reflect the
target word’s usage within a speaker community, these should be gathered from a
wide variety of speakers, discourse types, genres, etc. (see Section 2.2.2.2). For our
purposes, uses should also come from different time periods. We will describe the
creation of our corpora in detail in Chapter 3.

In step 2, the lexicographer gains an interpretation of each word use (use mean-
ing) with his speaker (and possibly further) knowledge and determines how much
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it has in common with the other uses based on his interpretations.12 He then forms
clusters of uses based on his judgments of commonness between uses. Each clus-
ter formed in this way corresponds to one lexicographic word sense and uses from
the same cluster are assumed to express the same sense. We will often refer to step
2 as the lexicographic clustering process.

The lexicographic clustering process poses multiple problems: (i) The criteria
applied for clustering are implicit and may vary between lexicographers (Kilgar-
riff, 1997, 2007). Hence, we do not know how well word senses derived in this
way would reflect speaker knowledge (see Section 2.2). It is thus important to ex-
plicitly specify criteria in advance. These criteria should allow us to argue that the
derived senses reflect the speakers’ (who produced the corpus) knowledge about
word senses. (ii) Scanning and comparing all word uses is time-consuming. With
more efficient processes we may analyze more data in the same time. (iii) Lexicog-
raphers are specialists and thus expensive and rare. Hence, we want the task to be
done by less specialized people.

Approaches from lexical semantics try to solve some of these problems with
more controlled word sense annotation procedures. They usually do not repro-
duce the full lexicographic process, but either (i) exploit predefined dictionary def-
initions, or (ii) try to define and annotate what uses “have in common” (see step 2
above) and to obtain clusters from these annotations. We will now shortly discuss
each of these two approaches.

2.3.2 Sense Definition Annotation

In this approach, human annotators are presented with predefined dictionary sense
definitions and asked to assign either a single best sense per word use (Weaver,
1955; Navigli, 2009) or graded judgments between words uses and sense definitions
(Erk et al., 2009, 2013). This approach requires two steps: (i) the lexicographic pro-
cess to create dictionary definitions, and (ii) an annotation step where annotators
assign uses to the definitions. This annotation can be done by non-lexicographers
and requires each annotator to compare each word use only to a small number of
sense definitions (instead of comparing each word use to each other use). However,
it still relies on a full run through the lexicographic process and often leaves the cri-
teria used to create the sense definitions implicit. There has been extensive work on
sense definition annotation and several large-scale annotation projects have been

12A use meaning best corresponds to sign and concept in Figure 2.2.
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x
Identity
Context Variance
Polysemy
Homonymy

Table 2.1: Blank’s scale of semantic proximity.

carried out, as e.g. SemCor and OntoNotes (Langone et al., 2004; Hovy et al., 2006),
but only a small fraction has a diachronic focus (Bamman and Crane, 2011; Lau
et al., 2012; Cook et al., 2014; Tahmasebi and Risse, 2017; Schlechtweg et al., 2017).

2.3.3 Use Pair Proximity Annotation

In this approach, human annotators are asked to judge word use pairs for their
semantic proximity, sometimes referred to as similarity or relatedness in meaning
(Soares da Silva, 1992; Blank, 1997; Brown, 2008; Erk et al., 2009, 2013). All of these
can be seen as attempts to measure how much uses have in common (see Section
2.3.1) based on some more or less specified criteria. Erk et al. (2013)’s in-depth study
reveals a reasonably high inter-annotator agreement as well as a strong correlation
with sense definition annotation and annotation of multiple lexical paraphrases.
The task is much less complex than the full lexicographic process. Hence, the an-
notation can be done by non-lexicographers (Erk et al., 2013, Blank, 1997, p. 417).
The bottleneck of this approach are the pairwise judgments quadratically increas-
ing the number of annotation instances compared to sense definition judgments.

Rather clearly specified criteria for use pair annotation are given by Blank. His
approach also has the advantage that it is developed within a theory of LSC and
can thus be expected to cover the canonical examples of LSC.

2.3.3.1 Blank’s Concept of Semantic Proximity

Within his theory described in Section 2.2.1, Blank develops a scale of semantic
proximity of word uses with polysemy located between identity, context variance
and homonymy, as depicted in Table 2.1 (pp. 413–418). For each level of the scale,
Blank gives criteria derived from Deane (1988) to decide whether a word use pair
should be located on that level. The pair (2.7,2.8) is classified as identical as the
referents of two uses of the word arm are both prototypical representatives of the
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same extensional category (see Section 2.2.1), corresponding to the concept ‘a hu-
man body part’:

(2.7) [. . . ] and taking a knife from her pocket, she opened a vein in her little arm,
and dipping a feather in the blood, wrote something on a piece of white
cloth, which was spread before her.

(2.8) [. . . ] and though he saw her within reach of his arm, yet the light of her eyes
seemed as far off [. . . ]

The use pair (2.9,2.10) is classified as context variance as both referents still be-
long to the same extensional category, but one is a non-prototypical representative.
Hence, there is some variation in meaning, e.g. the arm of a statue loses the func-
tion of the physical arm to be lifted:

(2.9) [. . . ] and taking a knife from her pocket, she opened a vein in her little arm,
and dipping a feather in the blood, wrote something on a piece of white
cloth, which was spread before her.

(2.10) [. . . ] as in “Planet of the Apes,” when the disembodied arm of the Statue of
Liberty jets spectacularly out of the sandy beach.

The use pair (2.11,2.12) would be classified as polysemy as the two referents of arm
belong to different extensional categories, but the corresponding concepts still hold
a semantic relation (in this case a similarity relation regarding physical form).

(2.11) [. . . ] and taking a knife from her pocket, she opened a vein in her little arm,
and dipping a feather in the blood, wrote something on a piece of white
cloth, which was spread before her.

(2.12) It stood behind a high brick wall, its back windows overlooking an arm of
the sea which, at low tide, was a black and stinking mud-flat [. . . ]

In contrast, the referents of arm in the homonymic pair (2.13,2.14) belong to differ-
ent extensional categories and the corresponding concepts do not hold a semantic
relation:

(2.13) [. . . ] and taking a knife from her pocket, she opened a vein in her little arm,
and dipping a feather in the blood, wrote something on a piece of white
cloth, which was spread before her.
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(2.14) And those who remained at home had been heavily taxed to pay for the
arms, ammunition; fortifications, and all the other endless expenses of a war.

We summarize this as follows: Context variance is different from identity in that
at least one of the referents is non-prototypical. Polysemy is different from context
variance in that the referents do not belong to the same extensional category and
there is a semantic relation between the two concepts. Homonymy is different from
polysemy in that the two concepts do not hold a semantic relation. The semantic
relation can be based on similarity, contiguity or contrast (see Section 2.2.1).13

2.3.3.2 Semantic Proximity Clustering

Use pair proximity judgments can be represented in a densely-connected graph and
senses can be derived by clustering the nodes (McCarthy et al., 2016).14 This avoids
the need for predefined sense definitions and makes the criteria for the clustering
step of the lexicographic process explicit: Use pair proximity judgments measure
how much uses have in common and the clustering algorithm provides a clearly
defined method to aggregate those uses that have more in common with each other
than with uses from other clusters.

Blank’s concept of semantic proximity (see Section 2.3.3.1) is special in that it
provides a concrete cluster criterion, i.e., for whether two word uses have the same
sense: the belonging to different extensional categories in combination with the
existence of a conceptually motivated relation. If the two word uses are located on
level 3 or 4 on the scale in Table 2.1, they should be assigned to the same cluster. If
they are located on level 1 or 2, they should be assigned to different clusters. We will
exploit this criterion for our clustering approach in Section 3.1.4. Blank’s semantic
proximity has the further advantage of being conceptually motivated (see Section
2.2.1.1). This allows for a general argument that annotator and speaker knowledge
have a correspondence because conceptual structures are similar between speakers
of a language (cf. Lakoff and Johnson, 1980).

13Note that the criterion used by Blank to distinguish context variance and polysemy (member-
ship in extensional category) is located on meaning level 3 (see Section 2.2.1). However, he defines
polysemy as a difference on meaning level 1 (two sememes). Hence, he seems to assume that mem-
bership in a different extensional category indicates a different sememe. See also Blank’s discussion
of the role of sememes and concepts in the process of recognizing referents (pp. 59–60) as well as his
discussion of the sememe being part of the concept (p. 100).

14There also exist lexical substitution annotation approaches (McCarthy and Navigli, 2009), equally
allowing for graph clustering (McCarthy et al., 2016).
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However, this approach does not come without its problems: Blank’s concept of
semantic proximity could be hard to grasp for annotators (cf. Blank, 1997, pp. 417–
419). It would then be questionable whether annotator judgments actually reflect
the meaning structure assumed by Blank. Moreover, it is generally a problem to
infer speaker knowledge from annotator knowledge as we have to rely on a range
of assumptions which are very hard to verify. One such assumption is that speaker
and annotator have the same use meaning in mind. Another one is that they have
the same conceptual organization in their brains. In a historical setting, this is even
more of a problem as the conceptual structures in the minds of speakers changes
over time (Thagard, 1990).15 Another, practical, problem is the above-mentioned
quadratically increasing number of annotation instances. We will come back to
these problems in Chapter 3.

2.4 Lexical Semantic Change Detection

Before we look into computational approaches to the detection of LSC, we need to
take a more general look into the computational measurement of word meaning
as LSCD models are most often adjustments of these more general models to a
diachronic corpus setting.

2.4.1 Computational Measurement of Word Meaning

The most popular family of unsupervised and text-based computational models
of word meaning are Distributional Semantic Models (Lenci, 2008; Turney and
Pantel, 2010). These models assume that a word’s meaning can be partly inferred
from the contexts it is used in (Harris, 1954). Crucial for our purposes is the distinc-
tion into (i) models building one meaning representation for each word use (token-
based) and (ii) models building an aggregated meaning representation across a
word’s uses (type-based). Token-based meaning representations provide a model
of use meaning (see Section 2.3.1) and allow us to model semantic proximity (see
Section 2.3.3.1) between pairs of word uses by measuring the similarity between
their meaning representations (cf. Pilehvar and Camacho-Collados, 2019; Armen-
dariz et al., 2020). This allows to derive word senses with a similar procedure to
the one described in Section 2.3.3.2. Hence, based on token-based models we can

15Note that these problems are not specific to this annotation approach, but generally apply to a
number of research fields such as historical linguistics or cognitive science.
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model the clustering step of the lexicographic clustering process described in Sec-
tion 2.3.1. As we will explain further in Section 4.1, this gives us a good argument
why such models should be able to measure LSC while this is not easily possible
with most of the type-based models.16

Most token-based models are Vector Space Models (VSMs), i.e., they represent
meaning as vectors in a vector space (Turney and Pantel, 2010). Early approaches
simply represented each word use as a vector of the frequencies of the co-occurring
words (Schütze, 1998) while modern approaches learn vectors as parameters in a
language model (Peters et al., 2018; Devlin et al., 2019). Such vectors can then be
clustered and clusters can be interpreted as word senses. Such models are com-
monly applied to solve the task of Word Sense Induction (WSI), which can be seen
as a formalization of the lexicographic clustering process (cf. Navigli, 2009).

Type-based models can be distinguished into VSMs, Co-occurrence Graphs
(Mihalcea and Tarau, 2004) and Topic Models (Steyvers and Griffiths, 2007; Blei,
2012). Similar to token-based VSMs, early type-based VSM approaches simply rep-
resented each word as a vector of the frequencies of the co-occurring words in all
contexts (Wilks et al., 1990) or optimizations to these vectors (Landauer and Du-
mais, 1997) while modern approaches learn vectors as parameters in a language
model (Mikolov et al., 2013a; Pennington et al., 2014).

Topic Models infer a probability distribution for each word over different top-
ics (or word senses), which are in turn modeled as a distribution over words. Most
Topic Models are probabilistic generative models in the sense that they model the
distribution of words over documents in a corpus by assuming a latent topic struc-
ture which is inferred from the co-occurrence statistics. In contrast to type-based
VSMs, Topic Models do infer a sense-like word representation structure and thus
allow a more clear argument why they should be able to measure LSC.

Co-occurrence Graphs represent words as nodes in a graph connected by edges
representing their co-occurrence relationships (Mihalcea and Tarau, 2004).17 Nodes
in the graph can be clustered and clusters can be interpreted as word senses. Sim-
ilar to Topic Models, clustered Co-occurrence Graphs infer a sense-like structure
allowing a better argument why they should be able to measure LSC.

16Find more detailed explanations of each model type in Chapter 4.
17If they are fully connected, their adjacency matrix can be regarded as a VSM.
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2.4.2 Computational Measurement of Lexical Semantic Change

Existing approaches for LSCD were nearly exclusively derived from the above-
described model types.18 A standard token-based LSCD approach using clustering
to derive word senses similar to Schütze (1998) was completely missing at the onset
of this thesis. Only Sagi et al. (2009) use a token-based VSM to infer one represen-
tation per word use and then measure changes in dispersion (average distance)
within the set of word vectors over time to detect semantic change.

Most other models are type-based: VSMs represent each word with multiple
vectors reflecting its co-occurrence statistics at different periods of time (Gulordava
and Baroni, 2011; Kim et al., 2014; Basile et al., 2015; Xu and Kemp, 2015; Eger
and Mehler, 2016; Hamilton et al., 2016a,b; Hellrich and Hahn, 2016; Rosenfeld and
Erk, 2018). LSC is typically measured by the cosine distance (or some alternative
similarity metric) between vectors (Salton and McGill, 1983) or by differences in
contextual dispersion between the two vectors (Kisselew et al., 2016; Schlechtweg
et al., 2017). Similarity-based measures can be motivated by the assumption that
sense frequency changes (see Section 3.1.5) correlate with changes in the global co-
occurrence statistics of a word per time period. Dispersion-based measures instead
rely on the more specific assumption that sense frequency changes correlate with
changes in the predictability of the global co-occurrence statistics (see Section 4.2.3).

Diachronic Topic Models either jointly model corpora from different time pe-
riods (Lau et al., 2012; Cook et al., 2014) or explicitly model the change of topics
over time (Wang and McCallum, 2006; Wijaya and Yeniterzi, 2011; Frermann and
Lapata, 2016). LSC of a word is measured by manually comparing topic densities
(Wijaya and Yeniterzi, 2011) or calculating a novelty score for each topic based on
their frequency of use and optionally combining this with a relevance score for each
sense based on keyword probabilities (Lau et al., 2012; Cook et al., 2014; Frermann
and Lapata, 2016). The main aim is to detect words that gained senses.

Mitra et al. (2015) construct a clustered co-occurrence graph for each time pe-
riod, align clusters across periods and then measure change as gain, loss, splitting
or merging of clusters.

Most studies have not been explicit about the underlying concepts which they
try to model and how this relates to theories of LSC in historical linguistics. Many
studies rely on a vague notion of degree of LSC without defining it (Gulordava and
Baroni, 2011; Hamilton et al., 2016b; Dubossarsky et al., 2017; Bamler and Mandt,

18For a comprehensive overview see Tahmasebi et al. (2021).
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2017; Rudolph and Blei, 2018; Rosenfeld and Erk, 2018). This graded notion of
LSC seems to diverge from the definition applied in historical linguistics, where
LSC is typically not assumed to be graded, but binary (see Section 2.2). That is,
either a word gained/lost a sense over time or not while the graded notion seems
to imply that slight changes to the frequencies of word senses are also considered as
instances of LSC. This deviation is striking as the most straightforward application
of LSCD models is their use to aid historical linguists (Hamilton et al., 2016b).

2.4.3 Evaluation

Existing evaluation procedures for LSCD can be distinguished into evaluation on
(i) empirically observed data, and (ii) synthetic data or related tasks.

Category (i) includes case studies of individual words (Sagi et al., 2009; Jatowt
and Duh, 2014; Hamilton et al., 2016a), stand-alone comparison of a few hand-
selected words (Wijaya and Yeniterzi, 2011; Hamilton et al., 2016b; del Tredici and
Fernández, 2017), comparison of hand-selected changing vs. semantically stable
words (Lau et al., 2012; Cook et al., 2014), and post-hoc evaluation of the predictions
of the presented models (Cook and Stevenson, 2010; Kim et al., 2014; Kulkarni et al.,
2015; Basile et al., 2015; del Tredici et al., 2016; Eger and Mehler, 2016; Ferrari et al.,
2017). Moreover, Gulordava and Baroni (2011) describe a human-annotated data
set of 100 English words where annotators were asked to rate the words according
to their degree of change in the last 40 years, but without relating these annotations
to a corpus. Schlechtweg et al. (2017) evaluate on a small human-annotated data
set of metaphoric change in German.

Category (ii) includes studies that simulate LSC (Cook and Stevenson, 2010;
Kulkarni et al., 2015; Rosenfeld and Erk, 2018), evaluate sense assignments in Word-
Net (Mitra et al., 2015; Frermann and Lapata, 2016), identify text creation dates (Mi-
halcea and Nastase, 2012; Frermann and Lapata, 2016), or predict the log-likelihood
of textual data (Frermann and Lapata, 2016).

Overall, the various studies use different evaluation tasks and data, with little
overlap. Most evaluation data has not been annotated by humans or does not re-
flect diachronic corpus data. Models were rarely compared to previously suggested
ones, especially if the models differed in meaning representations. Synthetic data
sets are problematic because they do not reflect actual diachronic changes. Con-
cepts underlying tasks and experiments are often not clearly defined and related
to historical linguistics. Consider the results of two popular LSCD papers in order
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to better understand why this is problematic: Hamilton et al. (2016b) evaluate var-
ious VSM models on 9 English words from previous work and 30 English words
yielded by their models’ predictions (10 per model) manually assigning LSC labels
to words without examining the corpus data directly and based on a vague concept
of “semantic shift”. Frermann and Lapata (2016) evaluate their Topic Model on a set
of tasks of which only two are directly meaning change related: (i) For novel sense
detection they evaluate how well their model detects gained target word senses re-
lying on automatic mappings of topics to WordNet. How reliable these automatic
mappings are, is not evaluated. (ii) They additionally evaluate on Gulordava and
Baroni (2011)’s above-described English data set which does not relate LSC labels
to corpus data. Hamilton et al. as well as Frermann and Lapata report a good
performance of their models. However, for a user it is unclear which of the mod-
els to choose to detect LSC because they have never been directly compared to each
other. We do not know whether Hamilton et al.’s performance on their small evalu-
ation data will persist once the model is applied to different (possibly non-English)
data. Additionally, some of the reported performances may be irrelevant because
the evaluation data on which they were obtained was not validated. It is even un-
clear whether the evaluation data from both studies reflects the same concept of
LSC because they have not defined it or given exact annotation guidelines.

The state of evaluation in the LSCD research field at the onset of this thesis is
summarized on point by Tahmasebi et al. (2021):

When it comes to evaluating methods and systems, there is a general
lack of standardized evaluation practices. Different papers use different
datasets and testset words, making it difficult or impossible to compare
the proposed solutions. Proper evaluation metrics for semantic change
detection and temporal analog detection have not been yet established.
Furthermore, comparing methods proposed by different groups is diffi-
cult due to varying preprocessing details. For example, filtering out in-
frequent words can impact the results considerably and different papers
employ different thresholds for removing rare words (e.g., some filter
out words that appear less than 5 times, others less than 200 times).

Similar criticisms are shared by a number of authors (Lau et al., 2012; Cook et al.,
2014; Frermann and Lapata, 2016). Starting from this observation, this thesis mainly
aims to standardize LSCD evaluation by creating human-annotated, multi-lingual,
diachronic data sets, defining standard tasks and evaluation metrics, and identify-
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ing high-performing baseline models for evaluation.
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Chapter 3

Human Measurement

The question how to detect LSC with computers inevitably presupposes an answer
to the question how humans detect it. This is because a standard assumption in
computational linguistics is that humans are best in judging the properties of lan-
guage and that the performance of a computational model should be measured
against a human gold standard. In this chapter, we motivate, describe and evalu-
ate our annotation methodology to create such a multilingual human gold standard
for LSC. The annotation methodology is based on human semantic proximity judg-
ments of use pairs, which are then represented in a graph and uses are clustered
with a principled graph clustering technique, formalizing the lexicographic clus-
tering process described in Section 2.3.1. LSC is (mainly) measured on the inferred
clusterings which are equated to senses. The resulting data is then used to evaluate
computational models in Chapter 5.

We define two time periods for each data set for which we create two time-
specific subcorpora C1 and C2 from existing larger corpora (see Sections 3.2.1 and
3.2.2). The tasks we define on this data in Chapter 5 are then consequently also
based on the comparison of two time periods. While this simplifies the LSCD prob-
lem, it has two main advantages: (i) It reduces the number of time periods for
which data has to be annotated so that we can annotate larger corpus samples and
hence more reliably represent the sense distributions of target words. (ii) It reduces
the task complexity, allowing different model architectures to be applied to it.
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3.1 Annotation

For each target word, we aim to derive a label measuring the semantic change
between the word’s uses from C1 and C2. For this, we combine human semantic
proximity judgments between use pairs with an automatic clustering procedure
and various semantic change measures (recall Section 2.3.3.2).

3.1.1 Word Uses

We can only feasibly annotate a sample U of a word’s uses from the corpora C1 and
C2. (The procedures to sample U will be described in Sections 3.2.1.4 and 3.2.2.4.)
This sample will only partly reflect the semantic change which we could have mea-
sured if we had annotated all of the word’s uses.1 For instance, we could miss
infrequent senses leading to a wrong classification of the word as changing or non-
changing. Hence, we consider the change labels measured through the annotation
process described in this section as estimates of the actual change labels and will
try to quantify how much error is introduced through this estimation.

3.1.2 Semantic Proximity

We rely on human semantic proximity annotation to create our data because of
the advantages described in Section 2.3, including the direct connection to Blank
(1997)’s theory. This annotation approach has been operationalized in various pre-
vious studies (Soares da Silva, 1992; Brown, 2008; Erk et al., 2013). These studies
do not directly apply Blank’s scale, but use less specified proximity, similarity or
relatedness scales reflecting very similar ideas. As these scales have been used in
previous annotation studies, we can assume that they are implementable and yield
sufficient agreement between annotators. For our study, we decide to adopt a re-
latedness scale similar to Brown’s, shown in Table 3.1. This scale reflects the four
levels of Blank’s scale and the central role of the notion of a semantic relation (see
Section 2.2). In this way, we keep the connection to Blank’s theory of LSC assur-
ing relevance to historical semantics while adopting a practically tested annotation

1Note that also the full corpora only correspond to the limited sample of word uses which was
recorded as text and subsequently digitized. Hence, also the full corpora can only approximate a
word’s usage at a particular point of time. This means that we can never evade the problem of
sampling error (cf. Koplenig, 2019).
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x
Identity
Context Variance
Polysemy
Homonymy

x
4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 3.1: Blank’s scale of semantic proximity (left) and the DURel relatedness scale de-
rived from Blank’s scale (right).

scale. We train annotators with adapted guidelines from Erk et al. (2013).2

For each target word, the sampled uses U are combined into pairs such as
(3.1,3.2) and annotated with their semantic proximity on the DURel scale in Table
3.1:

(3.1) [. . . ] and taking a knife from her pocket, she opened a vein in her little arm,
and dipping a feather in the blood, wrote something on a piece of white
cloth, which was spread before her.

(3.2) It stood behind a high brick wall, its back windows overlooking an arm of
the sea which, at low tide, was a black and stinking mud-flat [. . . ]

Annotators could also choose the annotation label ‘Cannot decide’. We optimize
the annotation process in order to reduce the annotation load, as described in Sec-
tion 3.2.1.5. This has the effect that only a subset of the full set of a word’s use pairs
are annotated.

3.1.3 Graph Representation

We represent annotated data (semantic proximity judgments of use pairs) in the
mathematical structure of a graph which we call Word Usage Graph (WUG) in or-
der to relate our data to graph theory and graph clustering. A WUG G = (U,E,W)
is a standard weighted, undirected graph where nodes u ∈ U represent word uses
and W : E 7→ Z where Z ⊂ R maps each edge to its weight.3 Weights w ∈ W

represent the semantic proximity of a pair of uses (u1, u2) ∈ E (cf. McCarthy et al.,

2The guidelines are available at https://www.ims.uni-stuttgart.de/data/wugs under
DWUG EN/DE/SV and DURel/SURel.

3Z is defined to be a subset of the real numbers because we later take the median of annotator
judgments as edge weight, which is not always a natural number, and also because we shift weights
for clustering having a similar effect.

https://www.ims.uni-stuttgart.de/data/wugs
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2016).4 A WUG G represents the semantic proximity structure underlying a set of
word uses U . In principle, the uses in U can be sampled from only one corpus,
or from different corpora representing different time periods, genres, authors, lan-
guage varieties or even languages. In our case, the uses in U were mostly sampled
from two different time periods t1, t2 corresponding to the subsets U1 ⊂ U and
U2 ⊂ U , and comparisons of semantic patterns are performed according to these
subsets. Correspondingly, we can define two subgraphs G1, G2 containing only
uses from U1 and U2, respectively, and the edges between them. We also define a
subgraph G1,2 = (U,E1,2,W1,2) containing all uses U from both time periods, but
only those edges (u1, u2) and their weights where word uses u1 and u2 are from
different time periods (COMPARE edges): E1,2 = {(u1, u2)|(u1, u2) ∈ U1×U2} and
W1,2 = [W (u1, u2)|(u1, u2) ∈ E1,2].

3.1.4 Clustering

As sketched in Section 2.3.3.2, word senses can be derived on a WUG with a graph
clustering algorithm. In order to see why clusters derived in such a way should
reflect lexicographic sense distinctions, consider once more the lexicographic clus-
tering process from Section 2.3.1: the members of each cluster should have more in
common with other members of that cluster than with members of other clusters.
The semantic proximity between use pairs measures how much meanings of uses
have in common: A high semantic proximity indicates that uses have a lot in com-
mon, a low proximity indicates that they have little in common. Hence, a clustering
procedure assigning uses with high semantic proximity to the same cluster while
assigning uses with low semantic proximity into different clusters will generally
fulfill the commonness criterion for lexicographic word senses given by Kilgarriff
(2007).

The WUGs obtained from the annotation are weighted, undirected, often
sparsely observed and noisy (see Section 3.2.1.5). This poses a very specific prob-
lem that calls for a robust clustering algorithm. We use a variation of correlation
clustering (Bansal et al., 2004) which minimizes the sum of cluster disagreements,
i.e., the sum of low edge weights (semantic proximity) within a cluster plus the
sum of high edge weights across clusters. For this, we have to choose a threshold
h on edge weights deciding which weights will be considered as high and which
ones as low. We set h = 2.5 as this splits Blank’s scale of semantic proximity be-

4We use the short form w ∈W to refer to all weights in the multiset W = [W (u1, u2)|(u1, u2) ∈ E].
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tween context variance and polysemy, which is in line with his view that context
variance is a variation within a sense while polysemy is a relation between senses
(see Section 2.3.3.1). Consequently, the weight W (e) of each edge e ∈ E in a WUG
G = (U,E,W) is shifted to W ′(e) = W (e) − 2.5 (e.g. a weight of 4 becomes 1.5).
Those edges e with a weight W ′(e) ≥ 0 are referred to as positive edges PE while
edges with weights W ′(e) < 0 are called negative edges NE . Let further C : U 7→ L

be some clustering on U , φE,C be the set of positive (high) edges across any of the
clusters in clustering C and ψE,C the set of negative (low) edges within any of the
clusters. We then search for a clustering C that minimizes the sum of weighted
cluster disagreements:

SWD(C) =
∑

e∈φE,C

W ′(e) +
∑

e∈ψE,C

|W ′(e)| .

That is, the sum of positive edge weights between clusters and (absolute) negative
edge weights within clusters is minimized. Minimizing SWD is a discrete opti-
mization problem which is NP-hard (Bansal et al., 2004). As we have a relatively
low number of nodes (≤ 200), we approximate the global optimum with Simulated
Annealing (Pincus, 1970), a standard discrete optimization algorithm.5 In order to
reduce the search space, we iterate over different values for the maximum number
of clusters (≤ 20). We also iterate over randomly as well as heuristically chosen
initial clustering states.6

This way of clustering WUGs has several advantages: (i) It finds the optimal
number of clusters on its own. (ii) It easily handles missing information (non-
observed edges). (iii) It is robust to errors by using the global information on the
graph. That is, one wrong judgment can be outweighed by correct ones. (iv) It
directly optimizes an intuitive quality criterion on WUGs. Many other clustering
algorithms such as Chinese Whispers (Biemann, 2006) make local decisions so that
the final solution is not guaranteed to optimize a global criterion such as SWD. (v)
By weighing each edge with its (shifted) weight, SWD respects the gradedness of
word meaning. That is, edges with |W ′(e)| ≈ 0 have less influence on SWD than
edges with |W ′(e)| ≈ 1.5.7

5This optimization algorithm showed superior performance in the simulation study described in
Appendix D.

6Find our code at https://github.com/Garrafao/WUGs. We use mlrose (Hayes, 2019) to
perform the clustering.

7Note that, in principle, WUGs can be clustered using any graph clustering algorithm including
soft-clustering (e.g. Biemann, 2006; McCarthy et al., 2016; Abbe, 2017).

https://github.com/Garrafao/WUGs
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We finally obtain a clustering C : U 7→ L mapping each use u ∈ U to a cluster
label l ∈ L ⊂ N. From this, we calculate a cluster (sense) frequency distribution D
encoding the size of each cluster as

D = (f(L1), f(L2), ..., f(Li))

where Li < Li+1 and f(Li) is the number of times any use from U was mapped to
the cluster label Li (cf. McCarthy et al., 2004; Lau et al., 2014). Correspondingly, we
obtain two distributions D1, D2 from C for the two time-specific use sets U1, U2. D,
D1 and D2 are ordered and contain the frequencies for the full set of cluster labels
L so that the ith index always corresponds to the same cluster label. (Note that
this means that the time-specific sense frequency distributions are obtained from
clustering the full graph.) We obtain the corresponding cluster (sense) probability
distributions P1, P2 by dividing D1 and D2 by their respective total frequencies.

3.1.5 Change Scores

Assume that G = (U,E,W) is a Word Usage Graph (see Section 3.1.3) of word
w containing w’s uses U from two time periods. D and E are the time-specific
sense frequency distributions (see Section 3.1.4) of length K obtained by clustering
the uses in U based on the edge weights in W , and P and Q the corresponding
sense probability distributions obtained by dividing D and E by their respective
total frequencies. Note that P and Q are probability distributions, i.e., 0 ≤ pi, qi

and
∑K

i pi = 1,
∑K

i qi = 1.8 Further, assume that G1,2 = (U,E1,2,W1,2) is the
subgraph of G containing all uses U from both time periods, but only those edges
(u1, u2) where word uses u1 and u2 are from different time periods (COMPARE
edges, see Section 3.1.3).

3.1.5.1 Binary Change

Analogous to the definition of the annotation scale (see Table 3.1) and the cluster
criteria (see Section 3.1.4), our definition of binary semantic change follows from
Blank’s theory. Recall from Section 2.2.2.1 that he defines two main types of LSC:

• innovative meaning change: emergence of a full-fledged additional sense of
a word; old and new sense are related by polysemy,

8We allow for zero-probability events.
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• reductive meaning change: loss of a full-fledged sense of a word.

These two types can be inferred directly from the final sense frequency distribu-
tions obtained on a target word’s WUG (see Section 3.1.4). We define the binary
change score of the word w as

B(D,E) = B(w) = 1 if for some i, Di ≤ k and Ei ≥ n,

or vice versa.

B(w) = 0 else.

where Di and Ei are the frequencies of sense i in the first and the second time
period, and k, n are lower frequency thresholds aimed to avoid that small random
fluctuations in sense frequencies caused by sampling variability or annotation error
are misclassified as change. According to the definition above, a word is classified
as change if it either gains or loses a sense. It gains a sense if it is attested at most k
times in the annotation sample from C1, but attested at least n times in the sample
from C2. (Similarly for words that lose a sense.) Note that B(w) is symmetric,
i.e., invariant to switching D and E. We make no distinction between words that
gain vs. words that lose senses, both fall into the change class. Equally, we make
no distinction between words that gain/lose one sense vs. words that gain/lose
several senses.

3.1.5.2 Graded Change

The binary notion of LSC closely corresponds to Blank’s definition and is thus well-
motivated. However, it has several disadvantages: (i) It has a comparably high
expected error (see Section 3.3.3.2). In most cases it is not feasible to annotate or
even observe the full use set for a particular word. Consequently, it is possible
that words receive the wrong binary change label because we miss (especially in-
frequent) senses in the annotated sample. Each such wrongly labeled word pro-
duces the highest possible per instance error in a binary classification task. The
same holds for annotation errors: human annotators make occasional mistakes.
Few such mistakes may change the binary change label of a word and thus have
a strong influence on the error.9 Similarly, our clustering operates on sparsely an-
notated graphs which may produce clustering errors having a similar effect. (ii)

9We try to mitigate this with the thresholds mentioned above, but are not able to completely avoid
it.
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The binary change measure does not capture initial stages of changes where senses
decrease or increase in frequency (see Section 2.2.2.2). A measure of such more
frequency-related changes can also be interesting for other fields of research inter-
ested in sense frequency divergences between domains such as terminology extrac-
tion (Hätty et al., 2020). (iii) The binary measure does not capture the graded view
of semantic change underlying previous work on LSCD (Hamilton et al., 2016b;
Dubossarsky et al., 2017; Bamler and Mandt, 2017; Rudolph and Blei, 2018; Rosen-
feld and Erk, 2018).

Hence, we introduce a second, graded measure of LSC. We first normalize the
cluster frequency distributions D and E to probability distributions P and Q. The
graded change score of the word w is then defined as the Jensen-Shannon Distance
(JSD) between the two normalized frequency distributions:

G(P,Q) = G(w) = JSD(P,Q)

where the Jensen-Shannon Distance is the symmetrized square root of the
Kullback-Leibler Divergence (Lin, 1991; Donoso and Sanchez, 2017):

JSD(P,Q) =
√
KLD(P ‖M) +KLD(Q ‖M)

2

where

KLD(P ‖ Q) =
K∑
i

pi log2
(
pi
qi

)
,

M = (P +Q)
2

.

We prefer the Jensen-Shannon Distance over Jensen-Shannon or Kullback-Leibler
Divergence because the former is a true metric in contrast to the latter. This means
that amongst other properties specific to metrics the Jensen-Shannon Distance is
symmetric, i.e., JSD(P,Q) = JSD(Q,P ).

G(w) ranges between 0 and 1 (we use log2) and is high if P and Q assign very
different probabilities to the same senses. Note that B(w) and G(w) do not neces-
sarily correspond to each other: a word w may show no binary change but high
graded change, or vice versa.10 The graded change notion enables us to compare

10Find some formal correspondences between the measures in Appendix B.
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any two words over time and decide which of the words changed more. It provides
an answer to questions like: Did a word that lost a very frequent sense change
more than a word that lost a very infrequent sense? And, did a word that gained
two senses change less than a word that lost three senses? Above that, it solves
many of the problems of the binary change notion: missing infrequent senses or
occasional annotation and clustering errors produce low error on G(w) as cases
in which we wrongly observe Dn = 0, En 6= 0 (or vice versa) do not necessarily
produce the highest possible error of 1.0 (see Section 3.3.3.2). Further, there will
always be graded change if probabilities for some sense are different (see Lemma
10 in Appendix B). Hence, it also captures changes in sense frequencies beyond the
complete loss or gain of senses, which are not captured by the binary notion.

3.1.5.3 Negated COMPARE

Just as the binary notion, the graded notion of change introduced above is defined
on sense probability distributions and hence relies on some clustering of word
uses. The clustering process is complex and may introduce additional errors due
to many reasons such as annotation errors, graph sparsity or non-optimal cluster
loss solutions (see Section 3.3.2.2). It also requires a large number of comparisons
between word use pairs as each use has to be compared to several other uses to
obtain a graph of sufficient density for meaningful clustering. Hence, we intro-
duce a secondary and simple, graded measure Negated COMPARE, which does
not rely on clustering and captures specific cases of G(w) (see Appendix B). For
this, we only consider the edges from the subgraph G1,2 = (U,E1,2,W1,2), i.e.,
we consider only the semantic proximities of uses between (not within) time peri-
ods (COMPARE weights, see Section 3.1.3). The Negated COMPARE score of the
word w is then defined as the negated mean of the COMPARE weights:

C(W1,2) = − 1
|W1,2|

∑
x∈W1,2

x .

C(w) is easy to compute, symmetric and ranges between −4.0 and −1.0. It exploits
the fact that semantic proximity strongly correlates with cluster membership (see
Section 3.1.4). We report the negated COMPARE score as then the global maxi-
mum and minimum will coincide with G(w) for certain cases (see Appendix B).
Although the Negated COMPARE measure is not a perfect approximation of the
graded change score (cf. Arefyev and Bykov, 2021), we assume that they correlate
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G D = (3, 2, 1)

G1, D1 = (2, 0, 1) G2, D2 = (1, 2, 0) G1,2

Figure 3.1: Top: WUG G of arm (left) and clustered WUG (right). D gives cluster frequency
distribution. black/gray lines for high (≥ 2.5)/low (< 2.5) edge weights. Spatial proxim-
ity of nodes loosely corresponds to their semantic proximity annotation. Bottom: Subgraph
for 1st time period G1 and 2nd time period G2. D1 and D2 give corresponding cluster fre-
quency distributions. G1,2 contains only edges between time periods (COMPARE edges).

significantly. We experimentally verify this assumption in Section 3.3.3.2.

3.1.6 Example

Consider the example in Figure 3.1: WUG G represents the semantic proximity
structure underlying the set of word uses U of the English word arm displayed in
Table 3.2.11 The uses U1 = {A,B,C} and U2 = {D,E, F} were sampled from the
two time periods 1820–1860 and 1950–1990 respectively (t1, t2). We derive lexico-
graphic senses on G by building three clusters of uses with high semantic proxim-

11Find the code used for generating WUG visualizations at https://github.com/Garrafao/
WUGs.

https://github.com/Garrafao/WUGs
https://github.com/Garrafao/WUGs
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A 1824 and taking a knife from her pocket, she opened a vein in her little
arm,

B 1842 And those who remained at home had been heavily taxed to pay
for the arms, ammunition;

C 1860 and though he saw her within reach of his arm, yet the light of her
eyes seemed as far off
. . .

D 1953 overlooking an arm of the sea which, at low tide, was a black and
stinking mud-flat

E 1975 twelve miles of coastline lies in the southwest on the Gulf of
Aqaba, an arm of the Red Sea.

F 1985 when the disembodied arm of the Statue of Liberty jets spectacu-
larly out of the

Table 3.2: Sample of diachronic corpus, cf. Deane (1988, p. 347) and Blank (1997, pp. 412–
417).

ity and low semantic proximity to other clusters (see Section 3.1.4): C1 = {A,C, F}
(blue), C2 = {D,E} (orange), C3 = {B} (green). We then build the time-specific
subgraphs G1 and G2 and are now able to compare the clusters between time pe-
riods, where D, D1 and D2 give the cluster frequencies in the full graph and the
two subgraphs respectively. For instance, C3 only exists in the first time period
while C2 only exists in the second time period. Setting thresholds k = 0 and n = 0,
this means that B(arm) = 1. The cluster probability distributions for D1 and D2

are P1 = (0.66, 0.0, 0.33) and P2 = (0.33, 0.66, 0.0), yielding a rather high graded
change score G(arm) = 0.74 as a sense with high probability is gained and the
other senses lose or gain moderately in probability. There are 9 edges between time
periods (G1,2) with corresponding weightsW1,2 = {3, 2, 2, 3, 2, 2, 1, 1, 1}. Hence, we
have C(arm) = −1.89, also a rather high change score.

Let us look more closely at which senses are represented by the clusters we built:
C1 represents arm’s sense ‘human upper limb’, clearly expressed by uses A and C,
having high semantic proximity (4). There is, however, some variation within this
cluster, as F expresses a variant of the core sense expressed by A and C, referring
to the non-human arm of a statue. Yet, F bears enough similarity to A and C such
that they receive a rather high semantic proximity (3). The uses in C1 are all rather
distinct from the uses D and E in C2, representing the sense ‘an inlet of water’.
However, they still bear a distant semantic similarity (in form) to each other and
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hence receive a rather low semantic proximity (2). Note that within C2 we still
have high semantic proximity (4) between D and E as these uses express the same
sense. C3 represents the third sense ‘weapon’. B has a low semantic proximity (1)
to all other uses as there is no semantic relation e.g. between B and D.

3.2 Data

We apply the above-described framework in several studies to obtain annotated
and clustered WUGs and to derive estimated change scores from these. We also
carry out a simplified annotation where clustering is omitted. Both types of studies
are described in this section. We also describe the annotation of a third data set,
using traditional sense definitions, which we create in order to validate the WUG
approach.

3.2.1 SemEval 2020

This study was carried out as part of the shared task on Unsupervised Lexical
Semantic Change Detection at the Workshop on Semantic Evaluation (SemEval)
2020. We describe the annotation procedure for the English (EN), German (DE)
and Swedish (SV) data sets.12

3.2.1.1 Corpora

For English, we use the Clean Corpus of Historical American English (CCOHA,
Alatrash et al., 2020), a cleaned version of COHA (Davies, 2012), which spans 1810–
2010. COHA is balanced by text genre decade by decade. For German, we use the
DTA corpus (Deutsches Textarchiv, 2017) and a combination of the BZ and ND
corpora (Berliner Zeitung, 2018; Neues Deutschland, 2018).13 DTA contains texts
from different genres spanning the 16th–20th centuries. BZ and ND are newspa-
per corpora jointly spanning 1945–1993. For Swedish, we use the Kubhist corpus
(Språkbanken, 2019), a newspaper corpus containing texts from 18th–20th century.
All corpora are lemmatized and POS-tagged. CCOHA and DTA are additionally

12The task also includes evaluation on a Latin data set, which was annotated differently and will
not be described here, but in Appendix C.

13We use the TCF-version of DTA released October 18, 2018: http://www.
deutschestextarchiv.de/download.

http://www.deutschestextarchiv.de/download
http://www.deutschestextarchiv.de/download
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C1 C2
corpus period tokens types TTR corpus period tokens types TTR

English CCOHA 1810–1860 6.5M 87k 13.38 CCOHA 1960–2010 6.7M 150k 22.38
German DTA 1800–1899 70.2M 1.0M 14.25 BZ+ND 1946–1990 72.3M 2.3M 31.81
Swedish Kubhist 1790–1830 71.0M 1.9M 47.88 Kubhist 1895–1903 110.0M 3.4M 17.27

Table 3.3: Statistics of SemEval corpora. TTR = Type-Token ratio (number of types / num-
ber of tokens * 1000).

spelling-normalized. BZ, ND and Kubhist contain frequent OCR errors (Adesam
et al., 2019; Hengchen et al., 2020).

From each corpus, we extract two time-specific subcorpora C1, C2, as defined
in Table 3.3. The division is driven by considerations of data size and availability
of target words (see Section 3.2.1.2). From these two subcorpora, we then sample
the released test corpora in the following way: Sentences with < 10 tokens are
removed. German C2 is downsampled to fit the size of C1 by sampling all sen-
tences containing target lemmas and combining them with a random sample of
sentences not containing target lemmas of suited size. An equal procedure is ap-
plied to downsample English C1 and C2. For Swedish, the full amount of sentences
is used. Finally, all tokens are replaced by their lemma, punctuation is removed
and sentences are randomly shuffled within each of C1, C2. The final corpus files
have one sentence per line.

Sentence shuffling and lemmatization are done for copyright reasons. Some
corpora require special processing steps: Where Kubhist does not provide lemma-
tization (through KORP, Borin et al., 2012), we leave tokens unlemmatized. For
copyright reasons, CCOHA contains frequent replacement tokens (10 x ‘@’). We
split sentences around replacement tokens and remove them as a first step in the
preprocessing pipeline. Further, because English frequently combines various POS
in one lemma and many of our target words underwent POS-specific semantic
changes (see Section 3.2.1.2), we concatenate targets in the English corpus with
their broad POS tag (‘target pos’). Also, the joint size of the CCOHA subcorpora
has to be limited to ∼10M tokens because of copyright issues.

Find a summary of the released (lemmatized) test corpora in Table 3.3. We also
create a tokenized version of the corpora with sentences in the same order as in the
lemmatized version.14

14Find the corpora at https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd.

https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd
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3.2.1.2 Target Words

Target words are either: (i) words that we assume to change their meaning (lost or
gained a sense) between C1 and C2, or (ii) stable words that we assume did not
change their meaning during that time.15 A large list of 100–200 changing words is
selected by scanning etymological and historical dictionaries (Paul, 2002; Svenska
Akademien, 2009; OED, 2009) for changes within the time periods of the respective
corpora. This list is then further reduced by one annotator who checks whether
there are meaning differences in samples of 50 uses fromC1 andC2 per target word.
Stable words are chosen by sampling a control counterpart for each of the chang-
ing words with the same POS and comparable frequency development between
C1 and C2, and manually verifying their diachronic stability, as described above.
Both types of words are annotated, which allows us to verify the a priori choice of
changing and stable words. By balancing the target words for POS and frequency
we aim to minimize the possibility that model biases towards these factors lead to
artificially high performance (Dubossarsky et al., 2017; Schlechtweg and Schulte im
Walde, 2020).

3.2.1.3 Annotators

We start out with four annotators per language. Following high annotation loads
and dropouts, we hire additional annotators, resulting in 9/8/5 annotators in total
for EN/DE/SV, respectively. All annotators are native speakers and current or for-
mer university students. The number of annotators with a background in historical
linguistics is two for DE and one for EN and SV.16 17

3.2.1.4 Use Sampling

For each target word, 100 sentences are randomly sampled from each of the tok-
enized versions of C1 and C2 (see Section 3.2.1.1). Each sentence contains the target
word (possibly in an inflected form) and a minimum of ten tokens, yielding a to-
tal of 200 uses per target word.18 If a target word has less than 100 uses, the full

15A target word is represented by its lemma form.
16In Section 3.3.1, we find that annotators with and without historical background have reasonably

high agreement.
17The guidelines for annotator training are available at https://www.ims.uni-stuttgart.

de/data/wugs under DWUG EN/DE/SV.
18Because English frequently combines various POS in one lemma and many of our target words

underwent POS-specific semantic changes, we sample only uses of English target words with the

https://www.ims.uni-stuttgart.de/data/wugs
https://www.ims.uni-stuttgart.de/data/wugs
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sample is annotated. We then mix the use samples of a target word into a joint set
U and annotate U for semantic proximity between word use pairs, as described in
Section 3.1.2. These are presented to annotators in random order and annotated on
the four-point scale in Table 3.1.

3.2.1.5 Edge Sampling

Annotating the full WUG is not feasible even for a small set of n uses as this implies
annotating n(n−1)

2 edges. Hence, the main challenge with our annotation approach
is to annotate as few edges as possible while keeping the information needed to
infer the same clustering on the graph as on the fully-annotated graph. For this,
we exploit the following observation: Uses from the same cluster (with the same
sense) have similar patterns of semantic proximity, i.e., they have similarly low
semantic proximity values to uses from another cluster and similarly high values
to uses from their own cluster. From this, it follows that it is sufficient to annotate
few edges within and between clusters to approximate the patterns of all uses. For
instance, consider a situation where use u has high semantic proximity with only
one use from some cluster. We can assign use u to that cluster assuming that uses
within the cluster have similar patterns of semantic proximity, i.e., assuming that
all uses within the cluster have high proximity with use u.

In order to reduce annotation of redundant information, we annotate the data
in several rounds. After each round, the WUG of a target word is updated with the
new annotations and a new clustering is obtained.19 Based on this clustering, the
edges for the next round are sampled through heuristics similar to Biemann (2013).
The annotation load is randomly distributed making sure that roughly half of the
use pairs are annotated by more than one annotator.

The first round aims to obtain a small high-quality reference set of clusters. This
is achieved through the sampling of 10% of the uses from U and 30% of the edges
by a random walk through the sample graph (exploration), which guarantees that
all nodes are connected by some path. Hence, the first clustering is obtained on
a small but richly-connected subgraph ensuring that not too many clusters are in-
ferred as this would lead to a strong increase in annotation instances in the sub-
sequent rounds. In the second round, the reference clusters from the first round
serve as a comparison for those uses which were not assigned to a multi-cluster yet

broad POS tag for which a change has been described.
19If an edge was annotated by several annotators, the median was retained as an edge weight.
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round 0 round 1 round 2

round 3 round 4 round 5

Figure 3.2: Simulated example of annotation pipeline.

(combination).20 In all subsequent rounds, both a combination step and an explo-
ration step are employed. The combination step combines each single use u1 that
is not yet member of a multi-cluster with a random use u2 from each of the multi-
clusters to which u1 has not yet been compared. The exploration step consists of
a random walk on 30% of the edges from the non-assignable uses, i.e., uses which
have already been compared to each of the multi-clusters, but were not assigned
to any of these by the clustering algorithm. This procedure slowly populates the
graph while minimizing the annotation of redundant information. We aim to stop
the procedure when each cluster has been compared to each other cluster. The
full procedure, including the sample sizes for the random walk, is validated in the
simulation study described in Appendix D.

We combine the sampling procedure with further heuristics added after round
1 to increase the quality of the annotation: (i) We sample a low number of randomly
chosen edges and edges between already confirmed multi-clusters for further an-
notation to corroborate the inferred structure. (ii) We detect strong disagreements

20We refer to a cluster with ≥ 2 uses as ‘multi-cluster’.
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G G1 G2

Figure 3.3: WUG of Swedish ledning (left), subgraphs for 1st time period G1 (middle) and
2nd time periodG2 (right). D1 = (58, 0, 4, 0),D2 = (52, 14, 5, 1),B(w) = 1 andG(w) = 0.34.

between annotators, i.e., judgments with a difference of ≥ 2 on the scale or edges
with a median ≈ 2.5, and redistribute each such edge to another randomly chosen
annotator from the ones who did not annotate the respective edge yet to resolve
the disagreement. (iii) We detect clustering conflicts, i.e., positive edges between
clusters and negative edges within clusters (see Section 3.1.4) and sample a new
edge for each node connected by a conflicting edge. This adds more information
in regions of the graph where finding a good clustering is hard. Furthermore, after
each round, nodes from the graph whose ‘Cannot decide’ judgments made up at
least half of their total judgments are removed, and in a few cases, whole words are
removed if they have a high number of ‘Cannot decide’ judgments or need a high
number of further edges to be annotated. We stop the annotation after four rounds
for time constraints.

Figure 3.2 shows an example of our annotation pipeline. As the annotation
proceeds through the rounds, the graph becomes more populated and the correct
cluster structure is found. In round 1, one multi-cluster is found. Hence, all re-
maining uses are compared with this cluster in round 2 by the combination step.
In rounds 3 and 4, the exploration step discovers more clusters not found in the
rounds before.

3.2.1.6 Summary

Figure 3.3 and Figure 3.4 show the annotated and clustered WUGG for Swedish led-
ning and German Eintagsfliege (left). Nodes represent uses of the target word. Edges
represent the median of semantic proximity judgments between uses (black/gray
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G G1 G2

Figure 3.4: WUG of German Eintagsfliege (left), subgraphs for 1st time period G1 (middle)
and 2nd time period G2 (right). D1 = (12, 45, 0, 1), D2 = (85, 6, 1, 1), B(w) = 0 and G(w) =
0.66.

lines for positive/negative edges). Spatial proximity between uses in the plot
loosely corresponds to the median of their annotated semantic proximities. Colors
make clusters (senses) inferred on G. After splitting G into the two time-specific
subgraphs for C1, C2, we obtain the two sense frequency distributions D1, D2.
From these, we infer the binary and the graded change score setting the lower fre-
quency thresholds for the binary score to k = 2 and n = 5 (see Section 3.1.5). The
two words represent semantic changes indicative of the difference between the two
scores, respectively: ledning gains a sense with rather low frequency in C2. Hence,
it has binary change, but low graded change. For Eintagsfliege, however, its two
main senses exist in both C1 and C2 while their frequencies change dramatically.
Hence, it has no binary change, but high graded change. Note that the obtained
scores only estimate the binary and graded change scores defined in Section 3.1.5
as the graph clustering is obtained from an incomplete graph.

Find a summary of the annotation outcome in Table 3.4. The final test sets con-
tain between 31 (Swedish) and 48 (German) target words. Throughout the anno-
tation we excluded several targets if they had a high number of ‘Cannot decide’
judgments or needed a high number of further edges to be annotated. Following
Erk et al. (2013), we report the mean of pairwise Spearman correlations (Spear-
man, 1904) between annotator judgments as agreement measure. Erk et al. re-
port agreement scores of 0.55 and 0.62, which is comparable to ours.21 Following

21Note that because we spread disagreements from previous rounds in each round to further an-
notators, uses in later rounds become much harder to judge on average, which has a negative effect
on agreement. Hence, for comparability reasons, we report the agreement in the first round where
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General Binary Graded
n N/V/A SPR KRI |U | LSC FRQd FRQm PLYm LSC FRQd FRQm PLYm

English 37 33/4/0 .69 .61 193 .43 -.18 -.03 .45 .24 -.29 -.05 .72
German 48 32/14/2 .59 .53 175 .35 -.06 -.11 .68 .31 .00 -.02 .73
Swedish 31 23/5/3 .57 .56 187 .26 -.04 -.29 .45 .16 .00 -.13 .75

Table 3.4: Overview SemEval target words. n = number of target words, N/V/A = number
of nouns/verbs/adjectives, SPR = weighted mean of pairwise Spearman in round 1, KRI =
Krippendorff’s alpha in round 1, |U | = avg. no. uses per word (after cleaning), LSC = mean
binary/graded change score, FRQd = Spearman correlation between change scores and
target words’ absolute difference in log-frequency between C1, C2. Similarly for minimum
frequency (FRQm) and minimum number of senses (PLYm) across C1, C2.

Rodina and Kutuzov (2020), we also report Krippendorff’s alpha (Krippendorff,
2018) which is chance-corrected and reach comparable scores to their 0.51 and 0.53.
In the calculation of both agreement measures we omit ‘Cannot decide’ judgments.

The class distribution (column ‘LSC’) for binary change differs per language as
a result of several target words being dropped during the annotation. In Swedish
the majority has no binary change. This is also reflected in the mean scores for
graded LSC. Despite the excluded target words the frequency statistics are roughly
balanced (FRQd, FRQm). However, we did not control the test sets for polysemy
and there are strong correlations for English, German and Swedish between graded
change and polysemy (PLYm). This correlation reduces for binary change, but is
still moderate for English and Swedish and remains high for German.

In total, roughly 86k (37k/29k/20k for EN/DE/SV) judgments are made by an-
notators. ≈ 50% of the sampled use pairs are annotated by more than one annotator.
Find a selection of WUGs from all data sets in Appendix A.22

3.2.2 DURel & SURel

The Diachronic Usage Relatedness (DURel) and the Synchronic Usage Relatedness
(SURel) data set compare the semantic proximity of word uses across a time-specific
corpus pair (DURel) and a domain-related corpus pair (SURel), respectively. Al-
though SURel does not measure diachronic sense changes (LSC), it gives us an op-

no disagreement detection has taken place. The agreement across all rounds, calculated as weighted
mean of agreements, is 0.52/0.60/0.58.

22The data is available at https://www.ims.uni-stuttgart.de/data/wugs under DWUG
EN/DE/SV Version 1.0.0.

https://www.ims.uni-stuttgart.de/data/wugs
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C1 C2
corpus period tokens types TTR corpus period tokens types TTR

DURel DTA 1750–1800 26.7M 252k 9.47 DTA 1850–1900 40.3M 796k 19.75
SURel SdeWaC general 109.7M 2.4M 22.03 COOK domain 1M 49k 46.86

Table 3.5: Statistics of DURel/SURel corpora. TTR = Type-Token ratio (number of types /
number of tokens * 1000)

portunity to evaluate computational models on synchronic word sense divergences
between corpora. We describe the creation process for both data sets in one section
as they are carried out completely in parallel.

3.2.2.1 Corpora

For DURel, we use the DTA corpus (see Section 3.2.1.1).23 For SURel, we compare
a general language corpus to a domain-specific one. For the general corpus, we
subsample SdeWaC (Faaß and Eckart, 2013), a cleaned version of the web-crawled
corpus deWaC (Baroni et al., 2009). We reduce SdeWaC to 1

8 th of its original size
by selecting every 8th sentence for our general-language corpus. As a domain-
specific corpus, we create COOK. For this, we crawl cooking-related texts from
several categories (recipes, ingredients, cookware and cooking techniques) from
the German cooking recipes websites kochwiki.de and Wikibooks Kochbuch24.

From DTA, we extract two time-specific subcorpora C1 and C2 (DTA18 and
DTA19) for the periods 1750–1800 and 1850–1900. For the domain-related corpora,
C1 and C2 are given by SdeWaC and COOK respectively. For all corpora, we cre-
ate preprocessed versions by removing words below a frequency threshold t. For
the smallest corpus COOK, we set t = 2, and set the other thresholds in the same
proportion to the corpus size. This leads to t = 25, 37, 97 for DTA18, DTA19 and
SdeWaC, respectively. We then create two preprocessed versions of the corpora: (i)
a version with minimal preprocessing, i.e., with lemmatization and removed punc-
tuation (LALL), and (ii) a stronger preprocessed version with only content words:
After punctuation removal, lemmatization and POS-tagging, only nouns, verbs
and adjectives are retained in the form lemma:POS (L/P). Table 3.5 shows statis-

23We use the TCF-version of DTA released September 1, 2017: http://www.
deutschestextarchiv.de/download.

24de.wikibooks.org/wiki/Kochbuch

http://www.deutschestextarchiv.de/download
http://www.deutschestextarchiv.de/download
de.wikibooks.org/wiki/Kochbuch
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German Abend, C(w) = −3.9 German Donnerwetter, C(w) = −1.8

Figure 3.5: COMPARE subgraph G1,2 for words from DURel data set.

tics for the LALL corpus versions.25

3.2.2.2 Target Words

For DURel, the target words are selected by manually checking DTA for innova-
tive and reductive meaning changes, based on cases of metaphoric and metonymic
change and narrowing (innovative), as reported by Paul (2002), and cases of reduc-
tion due to homonymy (reductive), as reported by Osman (1971). By focusing on a
late time period (19th century), we try to reduce problems coming with historical
language data as much as possible. We still normalize special characters to modern
orthography.

We include only those words as targets for which we find the change suggested
by the literature reflected in the corpus, either weakly or strongly because an an-
notation relying on a random selection of words suggested to undergo change is
likely to produce a set with very similar and rather low values representing small
effects. We thus guarantee to include both: (i) words for which we expect weak
effects as well as (ii) words for which we expect strong effects. We end up with 22
target words.

For SURel, we select 22 target words which occur in both SdeWaC and COOK,
and which we expect to exhibit different degrees of domain-specific meaning
change.

25Find the LALL corpora at https://www.ims.uni-stuttgart.de/data/wocc.

https://www.ims.uni-stuttgart.de/data/wocc
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German Schnittlauch, C(w) = −4.0 German Hamburger, C(w) = −1.5

Figure 3.6: COMPARE subgraph G1,2 for words from SURel data set.

3.2.2.3 Annotators

For DURel, five native speakers of German are asked to rate use pairs on our 4-
point scale of semantic proximity in Table 3.1. All annotators are students of lin-
guistics. We explicitly choose two annotators with a background in historical lin-
guistics in order to see whether knowledge about historical linguistics has an effect
on the annotation. Annotators are not told that the study is related to semantic
change.

For SURel, four native speakers of German are asked to rate the use pairs. All
annotators are university students.26

3.2.2.4 Use Sampling

For each target word, we sample all sentences from the source corpus of C1 and C2

(see Section 3.2.2.1) searching for the respective lemma and POS and mix them into
a joint set U .

3.2.2.5 Edge Sampling

We define three time-specific subsets (groups) of use pairs: EARLIER, containing
all pairs with both uses from C1, LATER, containing all pairs with both uses from

26The annotator guidelines for DURel and SURel are available at https://www.ims.
uni-stuttgart.de/data/wugs.

https://www.ims.uni-stuttgart.de/data/wugs
https://www.ims.uni-stuttgart.de/data/wugs
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General
n N/V/A SPR KRI |U | LSC

DURel 22 15/1/6 .59 .54 104 -2.7
SURel 22 19/3/0 .84 .83 104 -2.7

Table 3.6: Overview DURel/SURel target words. n = number of target words, N/V/A =
number of nouns/verbs/adjectives, |U | = avg. no. uses per word (after cleaning), SPR =
weighted mean of pairwise Spearman in round 1, KRI = Krippendorff’s alpha in round 1,
LSC = mean Negated COMPARE score.

C2 and COMPARE, containing only pairs with uses from different time periods.
For each target word, we randomly sample 20 use pairs from each of the groups
EARLIER, LATER and COMPARE, yielding 60 use pairs per word and 1,320 use
pairs for 22 target words in total.

The annotators are provided these use pairs. For DURel, they are provided ad-
ditionally with the preceding and the following sentence in the corpus. We double-
check that each use of a word is only sampled once within each group. If the total
number of uses in the group is less than needed, uses are allowed twice across pairs.
Before presenting the pairs to the annotators in a spreadsheet, use sequence within
pairs is randomized and pairs from all groups are mixed and randomly ordered.

3.2.2.6 Summary

The annotated use pairs are represented in a WUG. However, we skip the cluster-
ing step as the graph was not sampled such that nodes are densely connected by
edges. Instead, we directly obtain the subsampled COMPARE subgraph G1,2 and
compute the estimated Negated COMPARE score C(w) for which no clustering
step is needed.27 28 Find some examples from DURel and SURel with low and
high C(w) scores in Figures 3.5 and 3.6. Note that the obtained scores only estimate
the Negated COMPARE score defined in Section 3.1.5 as the COMPARE use pair
samples are only a random sample from the full set of COMPARE weights W1,2.

Find a summary of the annotation outcome in Table 3.6. The final test sets

27For our purposes, we ignore the subgraphs G1 and G2, i.e., the groups EARLIER, LATER. But,
these can in principle be used to calculate further change scores taking the within-period semantic
variation into account (Schlechtweg et al., 2018).

28Note that in this early version of the data set we computed edge weights as the mean instead of
the median of annotator judgments.
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contain 22 target words, each. As in Section 3.2.1.6, we report the mean of pair-
wise Spearman correlations and Krippendorff’s alpha as agreement measures. For
DURel, we reach comparable scores to previous studies and the SemEval data while
for SURel we reach very high agreement above 0.83. Both data sets have a mean
Negated COMPARE score of−2.7, where the scores of the target words are widely
distributed over the range from−4.0 to−1.0. In total, roughly 12k (6.6k for DURel,
5.28k for SURel) judgments were made by annotators. For DURel, all sampled use
pairs were annotated by five annotators while for SURel they were annotated by
four annotators. Find a selection of WUGs from all data sets in Appendix A.29

3.3 Validation

As the WUG annotation framework described in Section 3.1.2 including (i) anno-
tation of semantic proximity, (ii) clustering and (iii) inference of change scores is
rather new, we try to validate each of these levels.

3.3.1 Semantic Proximity

As the clustering operates on semantic proximity annotations, it is important to
know whether these annotations reflect anything meaningful about the semantics
of word uses. To meet this criterion, the proximity judgments should be intersub-
jective, i.e., humans should show considerable agreement on their judgments. If
this is not the case, we have to assume that the concept of semantic proximity be-
tween word uses cannot be grasped by humans or that our particular annotators
did not grasp it.

In Tables 3.4 and 3.6, we see the agreement between annotators for the an-
notation studies from Section 3.2. Overall, the agreement is moderate to high
(SPR>= .57) and clearly above chance (KRI>= .53). For SURel, agreement is ex-
ceptionally high (SPR= .84, KRI> .83).

In Table 3.7, we can now now take a closer look at Spearman correlations be-
tween annotators on the DURel data. The bottom line provides the agreement of
each annotator’s judgments against the average judgment score across the other an-
notators. The range of correlation coefficients is between 0.57 and 0.68, with an av-
erage correlation of 0.66. All the pairs are highly significantly correlated (p < 0.01).

29The data is available at https://www.ims.uni-stuttgart.de/data/wugs under
DURel/SURel V2.0.0.

https://www.ims.uni-stuttgart.de/data/wugs
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1 2 3 4 5
1 0.59 0.63 0.67 0.66
2 0.57 0.64 0.65
3 0.64 0.62
4 0.68

avg 0.71 0.68 0.68 0.75 0.74

Table 3.7: Annotator agreement (Spearman) on DURel; avg refers to agreement of the an-
notator in the respective column against the average of annotations across the other anno-
tators.

The annotators with historical background are annotators 4 and 5, who show
the highest pairwise agreement and also the highest agreement with the average
of the other annotators. This indicates that historical knowledge makes a positive
difference when annotating historical semantic proximity. Yet, the agreements of
the non-expert annotators only deviate slightly.

Overall, our correlations are comparable and even moderately higher than the
ones found in Erk et al. (2013), who report average correlation scores of 0.55 and
0.62. This difference is remarkable given that annotators had to judge historical
data. Note, however, that the studies are not exactly comparable as Erk et al. used
a more fine-grained 5-point scale and we presumably excluded a larger number of
‘Cannot decide’ judgments.

3.3.1.1 Annotator Disagreements

We now manually inspect use pairs where annotators show strong disagreement.
We perform this analysis on the WUGs of abbauen, abgebrüht, Knotenpunkt, Man-
schette and zersetzen from the SemEval DE data set (see Appendix A), which are
chosen to cover different POS and cases with low and high correspondence to the
sense definition annotation described in Section 3.3.2 (see Figure 3.7). For this, we
extract interactive WUGs displaying only edges where at least one annotator pair
diverges by at least two points on the DURel scale in Table 3.1 (e.g. 1/3) and ana-
lyze these.30 We identify 5 main classes of disagreement sources:

30Interactive WUGs are interactive HTML files plotting WUGs in 2D, allowing humans to more
easily analyze the annotated data. Such interactive plots come with each of our data set uploads.
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• ambiguity,
• meaning unfamiliarity,
• misleading context,
• unclear meaning abstraction level and
• different intuitions on semantic proximity.

Most cases of disagreements between annotators can be traced back to ambiguity
or meaning unfamiliarity with one of the involved uses. Consider the following
uses:

(3.3) [. . . ] das war ein finsterer Herr mit dem harten Blick eines abgebrühten
Schellfisches.
‘[. . . ] that was a sinister gentleman with the hard look of a blanched/hard-nosed
haddock’

(3.4) Darum hatte Calloway solche Manschetten, was?
‘That’s why Calloway had fear/cuffs/collars like that, huh?’

(3.5) Vor allem Gregor Strasser war einer der braunen Halbgötter, bis er 1932
kurzerhand von Hitler abgebaut wurde.
‘Above all Gregor Strasser was one of the brown demigods until he was
destroyed?/deprived? by Hitler in 1932.’

(3.3) is a case of ambiguity: abgebrüht modifies an animal which could be ‘blanched’
in the literal sense, but could also mean ‘hard-nosed’ as the animal is further at-
tributed with a “hard glance”. Often ambiguity is also triggered by missing sen-
tence context: (3.4) is a rather short sentence, which gives little clues on the mean-
ing of the target word. Hence, Manschetten is at least ambiguous between a ‘fear’,
a ‘cuffs’ and a ‘collar’ reading. (3.5) is a case of meaning unfamiliarity: abgebaut
occurs in an archaic sense which we only observed once in our data and which is
likely unfamiliar to annotators. The context and the word’s other senses suggest
that abgebaut means something around ‘to destroy, to deprive’, but the exact mean-
ing remains unclear. Further cases include uses with misleading context where a
superficial reading or certain key words suggest a specific reading while a deeper
reading suggests another one and uses where the meaning of the target word could
be described on various abstraction levels. There are also a few cases where the

Find the code for generating the plots at https://github.com/Garrafao/WUGs.

https://github.com/Garrafao/WUGs
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above-mentioned categories do not apply. These may be due to (genuinely) differ-
ent intuitions on semantic proximity.

Our analysis suggests that providing only the sentence containing the target
word to annotators (as for the SemEval data sets and SURel) is often not enough
to disambiguate the meaning of the target word. More context (e.g. one preceding
and one following sentence, as in DURel) and meta-information (such as author
information) should be provided to reduce the problem of use ambiguity.

3.3.2 Clustering

Using clustering on WUGs to infer sense clusterings for model evaluation has not
been done before. Hence, we created validation data for the obtained sense clusters
with an established annotation strategy. Strong divergences from traditional sense
definitions may reveal inferred clusterings which do not reflect intuitive sense dis-
tinctions. However, some degree of divergence is expected, especially in the case
of fine-grained distinctions.

3.3.2.1 Sense Definition Annotation

We choose 24 target words randomly from the SemEval DE data set and extract
sense definitions from two historical dictionaries (DWDS, 2021; Paul, 2002).31 We
then randomly sample 50 uses for each target word (25 per time period) and ask
three annotators to assign each use to the sense definition best describing the mean-
ing of the target word in this use. The annotators have the option to assign the use
to a non-specified sense definition ‘other’ (‘andere’) if none of the definitions fits
or to make no decision. One annotator is a professional computational linguist,
one annotator holds a degree in linguistics and the third annotator is a current uni-
versity student. The annotators had no access to the data before the annotation.
In the first round, only one annotator annotates the data and also provides addi-
tional sense definitions for four words (abdecken, Fuß, Manschette, Schmiere). These
are then added to the previous definitions and presented to the two other annota-
tors.32

31Figurative meanings listed in DWDS (2021) are treated as separate senses.
32The annotated data is available at https://www.ims.uni-stuttgart.de/data/wugs un-

der DWUG DE V2.3.0.

https://www.ims.uni-stuttgart.de/data/wugs
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A B C full
A .84 .89
B .89

full .87

Table 3.8: Agreement (Krippendorff) between annotators on sense definition annotation.

Agreement We present the agreement of the three annotators in Table 3.8, where
134 judgments assigning ‘other’ are ignored. Krippendorff’s alpha is high with .89
on the full data and similar for pairwise agreements. Percentage agreement (ITA)
and pairwise Cohen’s Kappa (Artstein and Poesio, 2008), which we do not report
here, yield similar scores. According to Erk et al. (2013), sense annotation studies
relying on the WordNet sense inventory show percentage agreement from .67 to
.78. We conclude that our data set is sufficiently reliable to serve as a gold standard.
We now use this data set to evaluate the clusterings derived with the clustering
algorithm described in Section 3.1.4 on the human annotation of SemEval DE.

Evaluation We exclude 6 uses that have no annotation, 113 uses with at least one
‘others’ label and 255 uses with at least one disagreement between an annotator
pair, leaving 826 labeled uses. We extract clusters from these labels by assigning
each use to the same cluster label if they were assigned to the same sense definition
by the annotators. Figure 3.7 shows the Adjusted Rand Index (ARI, Hubert and
Arabie, 1985) comparing the SemEval DE clusterings to the sense definition clus-
terings. As we can see, the scores vary considerably between target words. While
there is very high correspondence between the two strategies for some words (1.0),
it is very low for others (≈ .0). The average correspondence score is moderate to
high with ARI=.65.33

We further check whether the correspondence can be improved by reducing the
sparsity of the SemEval DE WUGs: the multi-round annotation process described
in Section 3.2.1 did not converge for a number of words and was stopped for time
constraints after round 4. We continue the annotation process with one more round

33Using opt clusterings from DWUG DE V1.0.0 (new runs of the clustering algorithm with opti-
mized parameters) instead of semeval clusterings yields the same results (less than 0.01 improvement).
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Figure 3.7: Correspondence (ARI) of clusters resulting from sense definitions vs. SemEval
DE clusterings.

and obtain new clusterings on the updated graphs.34 This considerably improves
the average correspondence score to 0.74. Hence, the original SemEval DE WUGs
likely suffer from sparsity (see also Section 3.3.2.2) resulting in noisy clusterings.
They should hence be seen as a silver rather than a gold standard.

3.3.2.2 Manual Analysis

In the following section, we manually analyze what the SemEval DE clusterings
reflect. We again choose abbauen, abgebrüht, Knotenpunkt, Manschette and zersetzen
for the analysis to cover different POS and cases with low and high correspondence
to the sense definition annotation. (Note that for reasons of the process of this
thesis the analysis is done only for sense clusters derived from sense definition
annotations of annotatorA, and not on the full annotated data.) For each target
word, we find the best mapping between the two cluster assignments (WUG vs.

34The additional data is available at https://www.ims.uni-stuttgart.de/data/wugs un-
der DWUG DE V2.0.0.

https://www.ims.uni-stuttgart.de/data/wugs
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definition) with the Hungarian method (Kuhn, 1955). We then plot both clusterings
in interactive WUG form, where corresponding clusters receive the same color (cf.
Figures A.15 and A.16 in Appendix A). We first inspect each plot individually and
judge whether the clusters represent intuitive sense distinctions. Then, we inspect
uses which were assigned to different clusters by the two approaches, judge the
assignments’ intuitive validity and try to identify edges in the annotated WUGs
which may have contributed to the inferred solution by the clustering approach.
We identify five sources of disagreement between clustering approaches:

Ambiguity and unfamiliarity of use Many cases of disagreements between clus-
tering strategies involve ambiguous uses or uses with unfamiliar meanings. Such
cases of disagreement are not related to the annotation strategy; their cluster as-
signment rather depends on the interpretation of individual annotators.

Noise from connected use There is a number of clearly interpretable uses receiv-
ing surprising cluster assignments by the WUG approach. Many of these cases are
connected to ambiguous uses introducing noise into the clustering procedure as
the cluster assignment of a use depends on the assignments of connected uses and
thus on judgments on these connected uses. This is a crucial challenge as it implies
that any type of noise introduced on a particular use (e.g. stemming from ambi-
guity, vagueness or errors) influences the assignment of other uses connected to it.
This can lead to counter-intuitive cluster assignments and in the worst case whole
regions of a graph can be affected.

Sub-optimal clustering loss In some cases, based on the observed judgments, we
note that the inferred WUG clustering is not optimal in terms of clustering loss (see
Section 3.1.4). This is e.g. the case for Knotenpunkt. We re-cluster the WUGs and
observe that often a better solution can be found. For Knotenpunkt, this improves
the loss and the correspondence to the sense definition clustering. It does, how-
ever, not improve the average correspondence across target words. This is likely
due to the fact that for some target words a less optimal solution is found after re-
clustering (higher loss). However, this indicates that with various iterations of the
clustering algorithm better solutions could be found further minimizing the loss,
and possibly increasing correspondence between annotation approaches.
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Sparsity Sparsity affects the clustering subtly in many regions of the graphs. It
has a strong influence when combined with noisy annotation. But, we also iden-
tify cases where sparsity has a concretely observable effect: if not all clusters are
guaranteed to have an edge between them, the clustering may split a cluster only
because it has no information on their relation. We find this to occur with Ohrwurm,
where one disagreement between clustering strategies can be traced back to a small
cluster which was not compared to one of the two major clusters.

Sense definition bias A number of disagreements can be traced back to a ten-
dency of the sense definition annotator to assign uses to the predefined sense def-
initions, as e.g. for zersetzen. The sense definition approach results in two clusters
corresponding roughly to the sense definitions ‘to dissolve’ and ‘to destroy’. The
WUG approach infers two corresponding major clusters, one for the concrete chem-
ical or biological meaning which could be described as ‘to decompose/to dissolve’,
and one for the related abstract metaphorical meaning ‘to destroy’. Disagreements
between the two approaches are exclusively cases of uses from the concrete phys-
ical ‘to decompose/to dissolve’ sense inferred on the WUG annotated with the ‘to
destroy’ sense definition. The annotator reported to perceive ‘to dissolve’ as a sub-
sense of ‘to destroy’ and even annotated both definitions in two cases. While the
annotator was aware of considerable variation between the uses labeled as ‘to de-
stroy’ covering concrete physical and abstract metaphorical meanings, the defini-
tion still seemed adequate and sufficiently general to her to cover these uses. This
example shows how the initial choice, granularity and interpretation of sense defi-
nitions can strongly influence the obtained clustering.

3.3.3 Change Scores

In this section, we point out the estimation character of the change scores derived in
Sections 3.2.1 and 3.2.2 and their resulting limitations, and show connections and
divergences between the change measures. (Find a discussion of formal connec-
tions between the measures in Appendix B.)

3.3.3.1 Robustness after Continued Annotation

We test the robustness of change scores after the additional round of annotation
described in Section 3.3.2. Note that in this comparison at least annotation spar-
sity, annotation and clustering errors, as well as frequency thresholds have an in-
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fluence. The Accuracy (Tharwat, 2020) of binary change labels between original
and updated data with slightly different lower frequency thresholds n and k is
0.86/0.81/0.94 for EN/DE/SV while Spearman correlation between original and
updated graded change scores is 0.89/0.98/0.82. This shows that both change
scores are not completely robust. For binary change scores up to 19% of items
change their labels.

3.3.3.2 Expected Error from Sense Sampling Variability

The derived change scores (see Section 3.1.5) depend on the distribution of the
senses of the word uses sampled from the source corpus. (Remember that we only
annotate a sample of word uses from the source corpus and not the full corpus.)
This means that the final change scores derived on the annotated data are only
estimates of the change scores that we would obtain from the full source corpus.
Hence, there is an expected error stemming from the sampling variability on senses
of word uses.35 In the case where models are evaluated only on the sampled word
uses, this is not a problem for us. However, if models are evaluated on the full cor-
pus (see Chapter 5), we want the annotated estimates to be an accurate reflection of
the change scores underlying the full corpus. We now estimate the expected error
from sampling variability via simulation.

Assume that P and Q are discrete probability distributions giving the true (as
obtained from the full corpus) word sense probability distributions for the use sets
U1 and U2 for a target word w.36 Now, assume that P̂ and Q̂ are estimates of these
distributions obtained by sampling i.i.d. from P and Q.37 For each of our change
score estimators θ̂ of the true change score θ, we would like to measure the mean
squared error:

MSE(θ̂) = Eθ

[
(θ̂ − θ)2

]
.

For G(w), θ̂ = JSD(P̂ , Q̂) estimates the parameter θ = JSD(P,Q). For B(w), we
assume thresholds n = 0, k = 0, in this case B(D,E) = B(P,Q) (see Appendix B).
Then, θ̂ = B(P̂ , Q̂) estimates the parameter θ = B(P,Q).

35Additional error is expected from annotation errors or clustering errors.
36For simplicity, we ignore the problem that the derived cluster structure may depend on the sam-

pled uses.
37For simplicity, we assume i.i.d. sampling from probability distributions instead of random sam-

pling without replacement from word sense clusters.
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Figure 3.8: MSE of change score estimators on simulated distributions.

We now estimate the MSE by simulating realistic word sense distributions P
andQ and sampling P̂ and Q̂ from these. For this, we take all target words from the
SemEval data sets and treat the sense probability distributions which were inferred
from the annotated data as P andQ. This yields realistic and often strongly skewed
word sense distributions (Kilgarriff, 2004) with realistic changes. From these, we
sample P̂ and Q̂ by drawing 100 samples i.i.d., which corresponds to the maximal
sample size per corpus for the SemEval data, and compute the MSE. This process
is repeated 50 times. We plot the distribution of the resulting MSE values in Figure
3.8.

B(w) has higher MSE values than G(w) and can thus be expected to be less
robust to sampling error. Further skewing the distributions by multiplying the
frequencies of the most dominant sense by 2 and 5 respectively increases B(w)’s
median MSE to 0.03 and 0.06 respectively.

For C(w), we assume that edge weights between uses of different senses in
P and Q are constantly 1 while weights between uses of the same sense are con-
stantly 4. This implies that a true probability distribution of COMPARE weights
R can be defined, which is given by R(4) =

∑K
i piqi, R(1) = 1 −

∑K
i piqi, and

that we can calculate C(w) based on P and Q with the help of this distribution as
C(R) = −

(
3 ∗
∑K

i piqi + 1
)

(see Appendix B). We estimate C(R) by C(R̂). We are
interested in how well θ̂ = C(R̂) estimates θ = JSD(P,Q), i.e., how well the es-
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Figure 3.9: Spearman of Negated COMPARE estimator with true graded change score on
simulated distributions, over various sample sizes.

timated Negated COMPARE score estimates the true graded change score. This
time, we do not calculate the MSE, but measure the Spearman correlation between
the two quantities as they cover different value ranges and because for the evalua-
tion with Spearman described in Chapter 5, not absolute values, but the rankings
of target words are important. We again simulate word sense distributions P and
Q as described above, calculate the corresponding R and sample R̂ from this with
sample sizes from 10 to 500, yielding correlations between 0.87 and 0.94, as shown
in Figure 3.9. Increasing sample sizes yield increasingly higher correlation between
the two quantities. With a sample size of 500 per distribution, we reach the true
correlation of 0.94 between C(R) and JSD(P,Q). This is a very interesting result
because it means that we can estimate JSD(P,Q) well with relatively small sample
sizes via C(R̂), for which no clustering is needed.38 This result is further supported
by the observed correlation between the graded change scores and the Negated
COMPARE scores estimated from annotated data: On some data sets we can de-
rive both scores (provided that they are densely enough annotated to be clustered
and edges for annotation were randomly sampled). We do this for DiscoWUG (see
Section 6.3) and compute the correlation between the two quantities, yielding 0.9,
which confirms the result of the simulation.

38Skewing the distributions further, as above, has only a negligible impact on the results.
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3.4 Discussion

In this chapter, we introduced a theoretically well-motivated annotation frame-
work for word senses relying on human semantic proximity judgments with an
additional automatic clustering step. We chose this novel approach because it built
a close connection to Blank’s theory of meaning and meaning change. It further
formalizes the complex lexicographic clustering process and allows to control pa-
rameters on each of the steps in the process, such as granularity of the clustering.
In contrast, these steps are hidden and may vary between lexicographers in the
traditional sense definition annotation approach. Our approach is also simple be-
cause the only human input needed are semantic proximity judgments while for
the traditional approach sense definitions have to be extracted beforehand, requir-
ing additional human efforts. The procedure can be easily extended to obtain data
for more than two time points.

However, the approach also has major challenges: because judgments are done
on pairs of word uses (instead of individual uses), the possible number of annota-
tions increases quadratically. Thus, only a subset of use pairs can be annotated for
each word. This leads to sparse graphs which we identified as a reason for clus-
tering errors. There is above-chance, but mostly moderate agreement on the con-
cept of semantic proximity, ambiguity affects the clustering procedure and there are
valid alternatives to the clustering procedure we chose. The correspondence with
the traditional annotation approach is moderate to high, but could be increased
with an additional round of annotation. We hence consider the clusterings and
change scores rather a silver than a gold standard. Note also that the change scores
resulting from our annotation process by themselves are measurements of word
sense divergences and do not necessarily imply LSC in the sense of being suffi-
ciently widespread amongst speakers of a language (see Section 2.2). Only in con-
nection with an adequate word use sampling procedure guaranteeing to cover a
wide range of speakers, these divergences can be argued to indicate LSC. While
some of the corpora we rely on (DTA, CCOHA) do cover a wide range of writ-
ten language, the representativeness of any text corpus for a particular language is
questionable (Koplenig, 2019). Note, however, that we have sampled many target
words from historical dictionaries resulting from detailed analyses of historical lin-
guists, which is a (more or less) independent confirmation of the annotated changes
for our target words.

The binary change score we defined is prone to sampling error and other
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sources of noise while the graded change score is more robust. After an additional
round of annotation, both scores showed a high robustness (Accuracy and Spear-
man> .94) for some data sets, but considerable variation for others (≈ .8). We have
shown empirically that the Negated COMPARE score can be used as a simple ap-
proximation of the graded change score and shares some formal properties with it
(see Appendix B).

We did not train the annotators with explicit reference to Blank’s scale and his
criteria. Our instructions and guidelines were rather loose adaptions of existing,
similar guidelines. The correspondence between our annotation and Blank’s the-
ory is thus not strictly given. In the future, it would be interesting to see whether
exact implementations of his criteria are possible in practical annotation studies
and whether they yield similar results to our annotation.

A general challenge for annotation of historical data is the question how well
modern annotators can grasp historical meanings. They could be biased towards
their modern interpretations of words and infer the wrong meanings. We tried
to reduce this possibility by choosing rather late time periods for annotation and
mixed in historical annotators. Although these have higher agreement with each
other, non-historical annotators significantly agree with historical annotators.

By inferring hard clusters in Section 3.1.4, we assumed word senses to be dis-
crete. While this is probably a simplification because some uses can be assigned
to more than one sense (Erk et al., 2013), it is necessary to obtain a straightforward
measurement of semantic change that corresponds to Blank’s definition (see Section
3.1.5). It is unclear how to define binary change without relying on discrete sense
assignments. Note, however, that alternative clustering algorithms, e.g. using soft-
clustering (Jurgens and Klapaftis, 2013), and alternative change score definitions
can be applied to our WUGs.

While for the clustering approach described in Section 3.1.4 we did not make
the assumption of true sense clusters, in the simulations from Section 3.3.3.2 and
Appendix D we had to make this assumption. This way to treat word senses is
common in probabilistic modeling of word meaning, where sense clusters can be
treated as a latent variable (e.g. Blei, 2012; Perrone et al., 2019) that can be inferred
from the observed variables, i.e. in our case, from human semantic proximity judg-
ments (Peixoto, 2017). However, aside from simulation purposes, we do not take
this view for two reasons: (i) It makes the strong ontological assumption that a hid-
den distribution of word senses exists. While this may be more in line with Blank’s
view (see Section 2.3.3.1), it conflicts with the view taken by notable lexicographers
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such as Kilgarriff (1997) that word senses are produced rather than found (see Sec-
tion 2.3.1). (ii) Correlation clustering, as defined in Section 3.1.4, does not make
the assumption of latent word senses. It rather optimizes a global heuristic on the
graph. However, one could argue that by estimating the semantic proximity be-
tween use pairs from the median over annotator judgments we implicitly assumed
that there is one true semantic proximity value for each use pair. Consequently, we
have to treat disagreement between annotators as measurement errors (see also Ap-
pendix D). The disagreement on semantic proximity judgments observed in Section
3.3.1 indicates a large measurement error. This raises the question whether annota-
tor disagreements should not rather be seen as different annotator interpretations
of the concept of semantic proximity.

The annotation annotation procedure developed in this chapter was applied in
several further studies on various languages (Giulianelli et al., 2020; Rodina and
Kutuzov, 2020; Kutuzov and Pivovarova, 2021b; Kurtyigit et al., 2021; Zamora-
Reina et al., 2022; Baldissin et al., 2022; Kutuzov et al., 2022; Aksenova et al., 2022).
It was further validated in a simulation study (Kotchourko, 2021) and has been
implemented into an online annotation interface.39 The annotated data was made
part of a LSCD benchmark and has further potential uses, including the fine-tuning
of meaning representations (such as contextualized embeddings) and the use for
modern tasks, e.g. to improve robustness against timeshifts.40

39https://www.ims.uni-stuttgart.de/data/durel-tool
40https://github.com/ChangeIsKey/LSCDBenchmark

https://www.ims.uni-stuttgart.de/data/durel-tool
https://github.com/ChangeIsKey/LSCDBenchmark
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Chapter 4

Computational Measurement

In this chapter, we describe the computational models used to measure LSC. They
can be distinguished into (i) models building one meaning representation for each
word use (token-based) and (ii) models building an aggregated meaning repre-
sentation across a word’s uses (type-based). With the former we can model the
annotation process described in Section 3.1 and can thus give a good argument
why the model should be able to measure LSC while this is not easily possible with
the latter models. All models share that (i) they are based on the distributional hy-
pothesis (Harris, 1954) in the sense that they infer semantic representations from
word co-occurrences. (ii) They are trained in an unsupervised way, i.e., do not rely
on manually labeled input. (iii) They are all (with few exceptions) Vector Space
Models (VSMs) as they represent meaning as vectors in a vector space (Turney and
Pantel, 2010).

4.1 Token-based VSMs

Token-based VSMs (Schütze, 1998) are nowadays more commonly known as con-
textualized embeddings. They represent the meaning of each word use as a vec-
tor in a vector space, allowing to measure distances between vectors. These dis-
tances can be seen as a model of negated semantic proximity as they show sig-
nificant correlation with human semantic proximity judgments (Giulianelli et al.,
2020; Arefyev et al., 2021; Pilehvar and Camacho-Collados, 2019; Armendariz et al.,
2020).1 These vectors can then be clustered and change can be measured on the

1Note that the usual distance measures between vectors give continuous values while the anno-
tated semantic proximity from Section 3.1.2 are discrete values between 1 and 4. In the future, this
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resulting cluster frequency distributions in the same way as on the human annota-
tion, described in Section 3.1.5. Hence, this approach provides a complete model
of the derivation process of lexicographic senses. However, it is also possible to ag-
gregate token-based vectors into a type-level meaning representation or to define
semantic change measures directly on the set of word vectors in order to avoid the
clustering step, which introduces additional difficulties.

Token-based LSCD models are typically composed of

1. a semantic representation mapping each word use to a vector,

2. a clustering method (optional) and

3. a change measure.

Typically, token-based models do not need an alignment step, serving to make vec-
tors trained on different data comparable (see Section 4.2) as vectors for word uses
from different time periods are extracted from the same semantic representation. In
the following section, we describe the model components used in our experiments.

4.1.1 Semantic Representations

A pretrained token-based VSM can be seen as a function mapping a word use to a
vector reflecting its local co-occurrence statistics (within the particular use). We use
token-based VSMs to map a set of word uses U of a target word w to a matrix M ,
where each row Mi∗ corresponds to the token vector of the ith use in U .2 The time-
specific use subsets U1 and U2 then correspond to the time-specific sub-matricesM1

and M2.

4.1.1.1 BERT

We map word uses to the token vector matrix M with Bidirectional Encoder Repre-
sentations from Transformers (BERT, Devlin et al., 2019). BERT is a neural language
model based on stacked encoders from transformers (Vaswani et al., 2017), in-
ferring contextualized meaning representations for word uses from co-occurrence
statistics. It is trained solving two unsupervised tasks simultaneously by minimiz-
ing their combined loss function:

discrepancy could be avoided by training models directly on annotated data (cf. Arefyev et al., 2021).
2For simplicity we assume here that U is ordered.
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1. Masked Language Model: Randomly replace some words in the input use
by a [MASK] token. Predict the masked words based on the context provided
by the other non-masked words.

2. Next Sentence Prediction: Given two sentences A and B, predict whether B
is the sentence that comes after A, or a random sentence from the corpus.

As displayed in Figure 4.1, first the input use is split into (subword) tokens which
are then mapped onto token vectors (embeddings).3 These are then passed to the
first encoder (layer). Each encoder consists of a self-attention layer passing its out-
put to a feed-forward neural network. The ouput of each encoder are contextu-
alized vector representations for each token in the input. These are then used as
input to the next encoder.

The self-attention mechanism is a key component of BERT. It contextualizes
the vectors of the words in the input use by allowing them to interact. Each self-
attention layer has multiple self-attention heads receiving token vectors as input
(see Figure 4.2). For every vector, a key, query and value vector with 64 compo-
nents is created by matrix multiplication with the respective key, query and value
matrices, which are learned during training (Allamar, 2021). Then, the following
major steps are executed for every token:

1. calculate the dot (scalar) products between the token’s query vector and the
key vectors of all tokens,

2. normalize these values using softmax (attention scores),

3. create a new (contextualized) token vector by a linear combination of the
value vectors of all tokens where the attention scores are coefficients.

The transformed token vectors now encode information about their context. This
self-attention mechanism is run simultaneously in multiple heads in the same layer
using different key, query and value matrices. The token vectors from the differ-
ent attention heads are then concatenated and passed to the feed-forward neural
network. We use the bert-base model, which has 12 self-attention-heads per layer,
resulting in contextualized token vectors with 768 components after concatenation.
The model uses 12 layers (see Figure 4.1).

3The BERT tokenizer often maps words to subwords.
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Figure 4.1: The BERT model (Futrzynski, 2021; Kurtyigit, 2021).
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Figure 4.2: BERT’s Self-Attention Head (Futrzynski, 2021; Kurtyigit, 2021).

BERT is pretrained on large amounts of data, in contrast to the type-based pre-
sentations described in Section 4.2. We create the contextualized token vector ma-
trix M from this pretrained model by feeding it with individual word uses, extract-
ing contextualized token vectors for the target word from one of the 12 different
layers or as the average over multiple of those, and storing the resulting vectors in
M .4 In case a target word corresponds to multiple token vectors, we average all
subword tokens to obtain the final target word representation.

4Uses with more than 512 tokens (max. input sequence length for BERT) are truncated to that
length.
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4.1.2 Clustering Methods

Token-vectors in a matrix M can be clustered based on their distances using a
wealth of clustering algorithms (Aggarwal and Reddy, 2013). We experiment with
a very common hierarchical clustering algorithm.

4.1.2.1 Agglomerative Clustering

Agglomerative Clustering (AGL) is a hierarchical clustering algorithm commonly
used for Word Sense Induction (Panchenko et al., 2018; Amrami and Goldberg,
2018). We first length-normalize the vectors in the token matrix M and then clus-
ter them with AGL. The algorithm starts with each vector in an individual cluster
and then repeatedly merges those two clusters which maximize a predefined cri-
terion, based on distances between vectors. For this, we use Ward’s method with
Euclidean distances, minimizing the total within-cluster variance (Ward Jr, 1963).
At each step it finds the pair of clusters that leads to minimum increase in total
within-cluster variance after merging. Within-cluster variance of a cluster c is mea-
sured as the error sum of squared distances:

ESS =
n∑
i=1

d(~xi, ~mc)2

where ~xi is the ith vector in cluster c, ~mc is the centroid of vectors from cluster c and
d(~x, ~y) =

∑n
i=1
√

(~xi − ~yi)2 is the Euclidean distance. Uses with similar vector rep-
resentations (small distances) will tend to be assigned to the same cluster because
merging them does not strongly increase within-cluster variance.

Cluster merging is performed iteratively until a predefined number of clusters
k is obtained. Following Giulianelli et al. (2020) and Martinc et al. (2020a), we
estimate the number of clusters k with the Silhouette Method (Rousseeuw, 1987):
we perform a cluster analysis for each 2 ≤ k ≤ 10 and calculate the silhouette
index for each k. The number of clusters with the largest index is used for the final
clustering.

4.1.3 Change Measures

We define two types of measures on token-vector matrices: (i) Clustering-based
measures exploit the cluster structure (derived as described in Section 4.1.2) as in
the annotation process (described in Section 3.1.5). (ii) Average measures avoid the
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clustering step by averaging over vectors or distances between vectors. A common
feature with the type-based similarity measures described in Section 4.2.3.1 is the
aggregation of similarity information over uses.

4.1.3.1 Clustering-based Measures

From the clustering of matrix M , we obtain an assignment of each word use in
U to a cluster and the corresponding cluster frequency distribution (see Section
3.1.4). By splitting the uses into time-specific subsets U1 and U2, we obtain the
corresponding time-specific cluster frequency distributions D and E as well as the
respective cluster probability distributions P and Q. From these, we can measure
binary and graded semantic change in the same way as defined in Section 3.1.5,
i.e., as B(D,E) and JSD(P,Q). Hence, these measures can be seen as a model of
the binary and graded change scores.

4.1.3.2 Average Measures

Average measures avoid the clustering step by either averaging over distances be-
tween vectors from M1 and M2 (APD) or by averaging over vectors within M1 and
M2 (COS). APD models the Negated COMPARE score and can therefore be mo-
tivated similarly as approximating graded change (see Section 3.1.5). In contrast,
COS can be motivated comparably to similarity measures on type-based embed-
dings, making the assumption that sense frequency changes correlate with changes
in the global co-occurrence statistics for a word between time periods (see Section
4.2.3). We treat both measures as models of graded change.

Average Pairwise Distance (APD) is calculated by averaging over all pairwise
distances between the vectors from the two matrices (cf. Schlechtweg et al., 2018;
Giulianelli et al., 2020):

APD(M1,M2) = 1
|D1,2|

∑
x∈D1,2

x

where D1,2 = [d(~x, ~y)|(~x, ~y) ∈ M1 × M2] (COMPARE distances) and d = CD

(cosine distance, see Section 4.2.3.1). Note that this corresponds to the definition
of Negated COMPARE in Section 3.1.5. We first randomly sample n vectors from
both matrices without replacement, resulting in the sampled matrices M̂1 and M̂2
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Figure 4.3: Visualization of a 2-dimensional token-based VSM. Vectors represent use mean-
ings, distances between vectors represent negated semantic proximity, and colored clusters
represent word senses.

and calculate APD(M̂1, M̂2). We determine n as the minimum size of M1 and M2.

APD-OLD/NEW measure the average of pairwise distances within M1 and
M2, respectively. They are calculated as the average distance of max. 10, 000
unique combinations of vectors from either M1 and M2, i.e., APD(M1,M1) and
APD(M2,M2) when excluding duplicates and ignoring order and reflexive pairs.
APD-OLD/NEW measure the within-period semantic variation of a target word.

COS is calculated as the cosine distance of the respective mean (centroid) vectors
for M1 and M2 (Kutuzov and Giulianelli, 2020):

COS(M1,M2) = CD(µ(M1), µ(M2)) .

Similar to cosine distance on type-based representations, COS can be treated as a
model of the graded change score.

4.1.4 Example

Figure 4.3 shows a simplified example of a typical token-based LSCD model rep-
resenting the uses of the word arm from the corpus shown in Table 3.2 in a two-
dimensional vector space. Each use meaning is represented by a vector, where
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distances between vectors can be interpreted as negated semantic proximity be-
tween the corresponding uses. The vectors can be clustered based on their dis-
tances and clusters can be interpreted as word senses (compare Figure 4.3 to Figure
3.1). Assuming that time periods are 1820–1860 and 1950–1990, time-specific sense
frequency distributions can be extracted from the clustering and LSC can then be
measured with binary and graded change as described in Section 4.1.3.1.5

4.2 Type-based VSMs

Type-based VSMs do not model the annotation process from Section 3.1 as they
only provide one semantic representation per word (type), which can be seen as
an average meaning representation over the uses of the word. It is not possible to
obtain sense clusters from this representation in a straightforward manner.

Type-based LSCD models are typically composed of

1. a semantic representation mapping each word to a vector,

2. an alignment method and

3. a change measure.

Usually, one vector is learned for each time period, representing the word’s mean-
ing aggregated for that period of time. These time-specific representations are then
aligned to achieve comparability and finally comparison is performed using a se-
lected change measure.

4.2.1 Semantic Representations

A type-based VSM representation can be seen as a function mapping each word in
the vocabulary V of a corpus C (e.g. defined as a set of word uses from different
words) to a vector reflecting its global co-occurrence statistics in C (across all its
uses in the corpus, cf. Turney and Pantel, 2010). The vectors of all words can be
represented in a matrix M where each row vector Mi∗ represents the ith word in
the vocabulary V . Target words are usually only a subset of the words in the vo-
cabulary. We construct vector spaces for each time period and compare two state-
of-the-art approaches to learn these vectors from co-occurrence data, (i) counting

5A possible intermediate step in this process, which we omit here, would be to represent negated
pairwise vector distances in a graph in order to apply graph clustering techniques as the one de-
scribed in Section 3.1.4.
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and (ii) predicting. The latter type of vector representations are often called word
embeddings. All representations are bag-of-words-based, i.e., each word represen-
tation reflects a weighted bag of context words. The context words of a target word
w are given by the words surrounding it in an n-sized window within its uses in
C.6

4.2.1.1 Count-based VSMs

In a raw count VSM (CNT), the matrix M is high-dimensional and sparse. The
value of each matrix cell Mi,j represents the number of co-occurrences of the word
wi and the context word cj , #(wi, cj). In line with Hamilton et al. (2016b), we apply
a number of transformations to these raw co-occurrence matrices as previous work
has shown that this improves results on different tasks (Bullinaria and Levy, 2012;
Levy et al., 2015).

Positive Pointwise Mutual Information (PPMI) In PPMI representations the co-
occurrence counts in each matrix cell Mi,j are weighted by the positive mutual
information of target wi and context cj reflecting their degree of association. The
values of the transformed matrix are

MPPMI
i,j = max

{
log
(

#(wi, cj)
∑
c #(c)α

#(wi)#(cj)α

)
− log(k), 0

}
where k > 1 is a prior on the probability of observing an actual occurrence of
(wi, cj) and 0 < α < 1 is a smoothing parameter reducing PPMI’s bias towards rare
words (Levy and Goldberg, 2014; Levy et al., 2015).

Singular Value Decomposition (SVD) Truncated SVD finds the optimal rank d
factorization of matrix M with respect to L2 loss (Eckart and Young, 1936). We use
truncated SVD to obtain low-dimensional approximations of the PPMI representa-
tions by factorizing MPPMI into the product of the three matrices UΣV >. We keep
only the top d elements of Σ and obtain

MSVD = UdΣp
d

where p is an eigenvalue weighting parameter (Levy et al., 2015). The ith row of
MSVD corresponds to wi’s d-dimensional representation.

6Find details on hyperparameter settings in Section 5.4.2.
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Random Indexing (RI) is a dimensionality reduction technique based on the
Johnson-Lindenstrauss lemma according to which points in a vector space can
be mapped into a randomly selected subspace under approximate preservation of
the distances between points if the subspace has a sufficiently high dimensionality
(Johnson and Lindenstrauss, 1984; Sahlgren, 2004). We reduce the dimensionality
of a count-based matrix M by multiplying it with a random matrix R:

MRI = MR|V|×d

where the ith row of MRI corresponds to wi’s d-dimensional semantic representa-
tion. The choice of the random vectors corresponding to the rows in R is important
for RI. We follow previous work (Basile et al., 2015) and use sparse ternary ran-
dom vectors with a small number s of randomly distributed −1s and +1s, all other
elements set to 0, and we apply subsampling with a threshold t.

4.2.1.2 Predictive VSMs

Skip-Gram with Negative Sampling (SGNS) differs from count-based tech-
niques in that it directly represents each word w ∈ V and each context c ∈ V as
a dense d-dimensional vector by implicitly factorizing M = WC> when solving

argmax
θ

∑
(w,c)∈D

log σ(vc · vw) +
∑

(w,c)∈D′

log σ(−vc · vw)

where σ(x) = 1
1+e−x , D is the set of all observed word-context pairs and D′ is the

set of randomly generated negative samples (Mikolov et al., 2013a,b; Goldberg and
Levy, 2014). The optimized parameters θ are vc = Ci∗ and vw = Wi∗ for c, w ∈ V ,
where vc and vw are d-dimensional vector representations for w and c. D′ is ob-
tained by drawing k contexts from the empirical unigram distribution P (c) = #(c)

|D|
for each observation of (w,c) (cf. Levy et al., 2015). SGNS and PPMI representations
are highly related in that the cells of the implicitly factorized matrix M correspond
to PPMI values shifted by the constant k (Levy and Goldberg, 2014). Hence, SGNS
and PPMI share the hyper-parameter k. The final SGNS matrix is given by

MSGNS = W

where the ith row of MSGNS corresponds to wi’s d-dimensional semantic represen-
tation. As in RI we apply subsampling with a threshold t. SGNS with particular
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parameter configurations has shown to outperform transformed count-based tech-
niques on a variety of tasks (Baroni et al., 2014; Levy et al., 2015).

4.2.2 Alignment Methods

In order to make the matricesA andB learned from the corporaC1 andC2 with vo-
cabularies V1 and V2 comparable, they have to be aligned via a common coordinate
axis. Different semantic representations demand different ways of alignment.

Column Intersection (CI) Alignment can be done rather straightforwardly for
CNT and PPMI representations because their columns correspond to context words
which often occur in both A and B (Hamilton et al., 2016b). In this case, the align-
ment for A and B is

ACI
∗i = A∗wi for all wi ∈ V1 ∩ V2

BCI
∗i = B∗wi for all wi ∈ V1 ∩ V2

where A∗i denotes the ith column in A and A∗wi denotes that column in A which
corresponds to wi (similarly for B).

Shared Random Vectors (SRV) RI offers an elegant way to align CNT spaces and
reduce their dimensionality at the same time (Basile et al., 2015). Instead of multi-
plying count matrices A and B each by a separate random matrix RA and RB (cf.
RI from Section 4.2.1), they may be multiplied both by the same random matrix
R representing them in the same low-dimensional random space (SRV). Hence, A
and B are aligned by

ASRV = AR

BSRV = BR .

We follow Basile et al. and adopt a slight variation of this procedure: Instead of
multiplying both matrices by exactly the same random matrix (corresponding to
an intersection of their columns), we first construct a unified random matrix and
then multiply A and B by the respective sub-matrices.

Orthogonal Procrustes (OP) In the low-dimensional vector spaces produced by
SVD, RI and SGNS, the columns may represent different coordinate axes and thus
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they cannot directly be aligned to each other. Following Hamilton et al. (2016b),
we apply OP analysis to solve this problem. Following Artetxe et al. (2017), we
define a dictionary D as a binary matrix so that Di,j = 1 if wi ∈ V2 (the ith word in
the vocabulary of C2) corresponds to wj ∈ V1. The goal is then to find the optimal
mapping matrixW ∗ such that the sum of squared Euclidean distances betweenB’s
mapping Bi∗W and Aj∗ for the dictionary entries Di,j is minimized:

W ∗ = argmin
W

∑
i

∑
j

Di,j‖Bi∗W −Aj∗‖2

where Ai∗ denotes the ith row of A (similarly for B). Following standard practice,
we length-normalize and mean-center A and B in a preprocessing step (Artetxe
et al., 2017) and constrain W to be orthogonal, which preserves distances within
each time period. Under this constraint, minimizing the squared Euclidean dis-
tance becomes equivalent to maximizing the dot product when finding the optimal
rotational alignment (Hamilton et al., 2016b; Artetxe et al., 2017). The optimal so-
lution for this problem is then given by W ∗ = UV >, where B>DA = UΣV > is the
SVD of B>DA (Artetxe et al., 2017). Hence, A and B are aligned by

AOP = A

BOP = BW ∗

where A and B correspond to their preprocessed versions. We also experiment
with two variants: (i) OP− omits mean-centering (Hamilton et al., 2016b), which
is potentially harmful if the spaces are not only rotated but also translated in the
embedding training process. (ii) OP+ corresponds to OP with additional pre- and
postprocessing steps and has been shown to improve performance in research on
bilingual lexicon induction (Artetxe et al., 2018a,b). We apply all OP variants only
to the low-dimensional matrices.

Vector Initialization (VI) In VI, we first learn AVI using standard SGNS and then
initialize the SGNS model for learning BVI on AVI (Kim et al., 2014). The idea is
that if a word is used in similar contexts in C1 and C2, its vector will be updated
only slightly while more different contexts lead to a stronger update.

Word Injection (WI) Finally, we use the WI approach by Ferrari et al. (2017)
where target words are substituted by a placeholder in one corpus before learning
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semantic representations and a single matrix MWI is constructed for both corpora
after mixing their sentences. The advantage of this approach is that all vector learn-
ing methods described above can be directly applied to the mixed corpus and target
vectors are constructed directly in the same space so that no post-hoc alignment is
necessary. A very similar approach is Temporal Referencing (Dubossarsky et al.,
2019), where the substitution is only done for uses where a word is considered the
target and not where it is considered a context word for another target.

4.2.3 Change Measures

From aligned type-based semantic representations, we retain two time-specific vec-
tor representations ~x and ~y learned from the time-specific corpora C1 and C2 for
each target word. Type-based measures predict change scores by comparing ~x and
~y. They either capture the similarity of the vectors or changes in their predictabil-
ity. Similarity-based measures are based on the assumption that sense frequency
changes correlate with changes in the global co-occurrence statistics. Dispersion-
based measures instead rely on the more specific assumption that sense frequency
changes correlate with changes in the predictability of the global co-occurrence
statistics. We will treat all measures described in this section as models of the
graded change score.

4.2.3.1 Similarity Measures

Cosine Distance (CD) is based on cosine similarity, which measures the cosine
of the angle between two non-zero vectors ~x, ~y with equal magnitudes (Salton and
McGill, 1983):

cos(~x, ~y) = ~x · ~y√
~x · ~x
√
~y · ~y

.

The cosine distance is then defined as

CD(~x, ~y) = 1− cos(~x, ~y) .

Local Neighborhood Distance (LND) computes a second-order similarity for
two non-zero vectors ~x, ~y (Hamilton et al., 2016a). It measures the extent to which ~x
and ~y ’s distances to their shared nearest neighbors differ. First, the cosine similar-
ity of ~x and ~y with each vector in the union of the sets of their k nearest neighbors
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Nk(~x) and Nk(~y) is computed and represented as vectors ~sx and ~sy, whose entries
are given by

~sx(i) = cos(~x, ~zi) ∀~zi ∈ Nk(~x) ∪Nk(~y)

~sy(i) = cos(~y, ~zi) ∀~zi ∈ Nk(~x) ∪Nk(~y) .

LND is then computed as cosine distance between the two vectors ~sx and ~sy:

LND(~x, ~y) = CD(~sx, ~sy) .

LND does not require matrix alignment because it measures the distances to the
nearest neighbors in each space separately. It was claimed to capture changes in
paradigmatic rather than syntagmatic relations between words (Hamilton et al.,
2016a).

4.2.3.2 Dispersion Measures

Frequency Difference (FD) The log-transformed relative frequency of a word w

for a corpus C is defined by

F (w,C) = log2
#(w)
|C|

where #(w) is the number of occurrences of w in C and |C| is the total corpus size.
FD for word w in two corpora C1 and C2 is then defined by the absolute difference
in F:

FD(w,C1, C2) = |F (w,C1)− F (w,C2)| .

In Section 5.2.2.1, we also apply this measure without log-transformation.

Type Difference (TD) is similar to FD, but based on vectors. The normalized log-
transformed number of context types of a raw count vector ~x learned from corpus
C is defined by

T (~x,C) = log2
∑

i=1 1 if ~xi 6= 0
|CT |
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Figure 4.4: Visualization of a 2-dimensional type-based VSM. Vectors represent an aggre-
gated time-specific meaning representation for a word.

where |CT | is the number of types in corpus C. The TD of two vectors ~x and ~y

learned from two corpora C1 and C2 is the absolute difference in T:

TD(~x,C1, ~y, C2) = |T (~x,C1)− T (~y, C2)| .

Entropy Difference (HD) relies on vector entropy as suggested by Santus et al.
(2014). The entropy of a non-zero raw count vector ~x is defined by

V H(~x) = −
∑
i=1

~xi∑
j=1 ~xj

log2
~xi∑
j=1 ~xj

.

VH is based on Shannon’s entropy (Shannon, 1948) and measures the unpre-
dictability of w’s co-occurrences (Schlechtweg et al., 2017). HD is defined as

HD(~x, ~y) = |V H(~x)− V H(~y)| .

We also experiment with normalizing H dividing it by its maximum value, which
is the logarithm of the number of context types in ~x.

4.2.4 Example

Figure 4.4 shows a simplified example of a typical type-based LSCD model, rep-
resenting the meaning of the word arm for each time period as a two-dimensional
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“average” vector learned over the uses from that time period. Uses are given by
Table 3.2 and time periods are assumed to be 1820–1860 and 1950–1990. Once the
vectors for t1 and t2 have been aligned, they can be represented in the same vec-
tor space and LSC can be measured with a distance measure such as the cosine
distance.

4.3 Topic Models

We also experiment with one Topic Model. Sense ChANge (SCAN) models LSC via
smooth and gradual changes in associated topics (Frermann and Lapata, 2016). If
topics are assumed to model word senses, Topic Models can model both, the binary
and the graded change score. However, we experiment only with measures for the
graded change score.

4.3.1 Semantic Representations

Assuming two time periods, SCAN can be seen as a function mapping a set of
word uses U of a target word w to two time-specific K-dimensional distributions
{φ1, φ2} over word senses and two time-specific V -dimensional distributions over
the vocabulary {ψk1 , ψk2} for each word sense k, where K is a predefined number of
senses for target word w. Each of the word sense distributions reflects w’s global
co-occurrence statistics across uses from the particular time period. SCAN places
parametrized logistic normal priors on φt and ψkt in order to encourage a smooth
change of parameters, where the extent of change is controlled through the preci-
sion parameter κφ, which is learned during training.

Although ψkt may change over time for word sense k, senses are intended to
remain thematically consistent as controlled by word precision parameter κψ. This
allows comparison of the topic distribution across time periods. For each target
word w, we infer a SCAN model for the two time periods and take the probability
distributions φ1 and φ2 as the respective semantic representations.

4.3.2 Change Measures

We compute the Jensen-Shannon Distance, as defined in Section 3.1.5, between
topic distributions φ1, φ2 to measure graded change. We also experiment with dif-
ferences in entropy between topic distributions, which is similar to HD, defined in
Section 4.2.3.2.
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4.4 Thresholding

In Section 4.2.3, we did not define a method to derive binary change scores from
type-based representations. As these representations typically do not yield word-
sense-like structures, we need to find another way to infer binary change scores if
we want to test whether they have the potential to detect binary change. A straight-
forward way to do this is to choose a threshold on the graded change predictions
above which target words receive label 1 and label 0 below. In an unsupervised set-
ting this can e.g. be done by exploiting the distribution of predicted graded change
scores in the corpus from which the test data was sampled (Kaiser et al., 2020b).
Kaiser et al. infer a global graded change score distribution by predicting graded
change for a large number of words. They then choose the threshold to be at mean
+ one standard deviation of the global distribution. In a supervised setting, on the
other hand, the threshold can be tuned on the development data. We will use this
approach in Chapter 6. Note that thresholding can not only be applied to type-based
measures, but also to graded scores derived from token-based representations, such
as BERT+APD.

The thresholding approach assumes that graded and binary change are corre-
lated, which can in fact be observed on various data sets (e.g. SemEval). However,
this approach also has clear limitations. For instance, it does not capture loss or
gain of senses with low frequency.

4.5 Discussion

In this chapter, we described various models used to automatically detect LSC from
diachronic text corpora. They fall into the three categories: (i) token-based VSMs,
(ii) type-based VSMs and (iii) Topic Models. Token-based VSMs provide a model
for (negated) semantic proximity, which is the fundamental concept used in Chap-
ter 3 to define LSC. Hence, they can be argued to model senses and thus allow us to
apply the exact same change measures used on the annotated data. This provides
a complete model of the binary change score which has a foundation in historical
linguistics (see Section 2.2). Topic Models model senses directly and thus allow for
a similar argument. This is not easily possible for the type-based VSMs, but also
not for the average measures defined on token-based VSMs. While we can spec-
ify some vague assumptions motivating why they should model graded change,
it is unclear to what extent these assumptions hold. For binary change, we need
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to introduce the even stronger assumption that graded change correlates with bi-
nary change. This is done when using thresholding on graded change predictions
to derive binary change predictions. While this correlation is empirically observ-
able for a number of data sets (see Section 4.4), it is not a perfect correlation and
certainly has its limits (Zamora-Reina et al., 2022). We can easily construct coun-
terexamples with e.g. strong graded change but no binary change or vice versa.
Such counterexamples are given by Figure 3.3 and Figure 3.4.

Another major difference between the token- and type-based models described
in this chapter is that the former are pretrained on large amounts of data, which
we cannot control, while the latter are trained directly on the diachronic target cor-
pora. Hence, they may contain more specific historical information. However, the
contextualization of the token-based models (see Section 4.1.1.1) helps to encode
historical context information into the resulting use meaning representations.

Our experiments do not include the use of correlation clustering (see Section
3.1.4). However, in order to precisely model the sense derivation process described
in Section 3.1.4, this would be an important and straightforward experiment that
should be done in the future. The results of Homskiy and Arefyev (2022), reaching
a Spearman correlation of 0.65 on a graded change ranking task by the use of cor-
relation clustering on predicted semantic proximity graphs, indicate that this is a
promising direction.

Although there are some interesting LSCD models which we do not cover (e.g.
Sagi et al., 2009; Rosenfeld and Erk, 2018), the set of models described in this chap-
ter is extensive and covers all model types described in Section 2.4. In Chapter 5,
we will now evaluate the performance of the models introduced in this chapter and
analyze their predictions.
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Chapter 5

Evaluation

In this chapter, we evaluate the models described in Chapter 4 on the data created
in Chapter 3. For this, we define several tasks on the change scores developed in
Section 3.1.5: (i) Binary Change Classification, (ii) Graded Change Ranking and (iii)
Negated COMPARE Ranking. The main evaluation scenario is that models get the
full corpora described in Sections 3.2.1.1 and 3.2.2.1 as input data. This is the most
realistic scenario as models should consider all the data available in order to mea-
sure the semantic change of a word. Otherwise, they could miss e.g. rare senses.
Additionally, we evaluate a token-based model with only the sampled uses as in-
put data in Section 5.3. For these samples, the annotated change scores will more
accurately reflect sense changes (see Section 3.1.1). We assume that detecting these
sample-specific word sense divergences is similar to detecting such divergences in
larger samples (full corpora), which is necessary to detect LSC.

5.1 Evaluation Metrics

We use standard metrics for evaluation of model predictions: Binary classification
is scored with Accuracy (Tharwat, 2020) ranging between 0 (all items incorrectly
classified) and 1 (all items correctly classified). Randomly guessing binary classes
will yield an expected performance of 0.5. Ranking is scored with Spearman’s rank-
order correlation coefficient ρ (Spearman, 1904). Spearman’s ρ only considers the
order of the predictions, the actual predicted change values are not taken into ac-
count. Ties are corrected by assigning the average of the ranks normally assigned
to each of the tied values to all tied values, (e.g. two words sharing rank 1 both get
assigned rank 1.5). Scores are bounded between −1 (completely opposite to true



90 5 Evaluation

ranking) and 1 (exact match). A value of 0 means that there is no correlation, i.e.,
the rankings are independent. Clustering performance is measured with the Ad-
justed Rand Index (ARI, Hubert and Arabie, 1985), which is chance-corrected. The
ARI is equal to 1 only if a clustering completely corresponds to the gold clustering
and close to 0 for a random clustering.

5.2 Token- and Type-based Models on SemEval Data

The SemEval data set (see Section 3.2.1) was used in a shared task on LSCD.1 The
participating teams were asked to predict the binary (Subtask 1) and graded change
(Subtask 2) scores of the target words. They were provided with the lemma ver-
sions of the full corpora described in Section 3.2.1.1. The raw corpora and annotated
samples were only published after the shared task.2 Participants were allowed a to-
tal of 10 submissions, the best of which was kept for the final ranking. Performance
for each subtask was measured as the average performance across languages. Par-
ticipants had to submit predictions for both subtasks and all languages. A submis-
sion’s final score for each subtask was computed as the average performance across
all four languages. During the evaluation phase, the leaderboard was hidden.

5.2.1 Task Definition

Given the two time-specific corpora C1 and C2 described in Section 3.2.1.1, partici-
pants were asked to solve two subtasks:

Subtask 1 Binary classification: For a set of target words, predict the binary
change score, i.e., decide which words lost or gained sense(s) between C1

and C2, and which ones did not.

Subtask 2 Ranking: Rank a set of target words according to their graded change
score between C1 and C2, i.e., predict the JSD of their word sense probability
distributions.

The submitted predictions were evaluated against the hidden change labels via
Accuracy and Spearman.

1The task also included evaluation on a Latin data set, which was annotated differently and is
described in Appendix C.

2Find the post-evaluation data at: https://www.ims.uni-stuttgart.de/data/
sem-eval-ulscd-post.

https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd-post
https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd-post
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5.2.2 Models

5.2.2.1 Baselines

For both subtasks, we have two baselines: (i) FD without log-transformation (Freq.
Baseline) first calculates the frequency for each target word in each of the two cor-
pora, normalizes it by the total corpus frequency and then calculates the absolute
difference between these values as a measure of graded change in Subtask 2 (cf.
Section 4.2.3.2). For Subtask 1, we threshold the graded predictions (see Section
4.4) by choosing some threshold. (ii) CNT+CI+CD (Count Baseline) first learns raw
co-occurrence vector representations for each of the two corpora, then aligns them
by intersecting their columns and measures graded change for Subtask 2 by cosine
distance between the two vectors for a target word (see Section 4.2). For Subtask 1,
we again binarize these predictions by setting some threshold. A third baseline for
Subtask 1, is the majority class prediction (Maj. Baseline), i.e., always predicting
the ‘0’ class (no change).

5.2.2.2 Participants

Thirty-three teams participated in the task, totaling 53 members. The teams sub-
mitted a total of 186 submissions. Although the models used by participants have
a large overlap with the models introduced in Chapter 4, some of them use com-
ponents which we did not introduce. Descriptions of these components can be
found in the respective participant papers, which are referenced in Schlechtweg
et al. (2020).

Participating models mainly fall into the categories of token- and type-based
VSMs and show rather slight variations in the components described in Chapter 4.
Semantic representations are mainly type-based embeddings and token-based em-
beddings. Token-based embeddings include BERT, which we described in Section
4.1.1, as well as ELMo (Peters et al., 2018) and variations of BERT such as XLM-R
(Conneau et al., 2019). Type-based embeddings include SGNS and transformations
of count-based vectors, described in Section 4.2.1, as well as GloVe (Pennington
et al., 2014) and Gaussian embeddings (Vilnis and McCallum, 2015). (Table 5.1
shows the type of system for every team’s best submission for both subtasks.) To-
ken embeddings are often combined with a clustering algorithm such as AGL,
described in Section 4.1.2, as well as k-means, Affinity Propagation, HDBSCAN,
GMM (cf. for an overview Aggarwal and Reddy, 2013). One participating team
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used a graph-based semantic network, one a Topic Model and several teams also
propose ensemble models. Alignment techniques for type-based representations
include OP, VI and versions of WI/TR, described in Section 4.2.2, as well as Canon-
ical Correlation Analysis (CCA, Knapp, 1978). A variety of change measures are
applied: For token-based models, measures include APD, COS, JSD and binary
change on clusterings, which we described in Section 4.1.3, as well as the Kullback-
Leibler Divergence (Kullback and Leibler, 1951) and Jensen-Shannon Divergence
(Lin, 1991). Type-based measures include CD, LND, FD, TD and HD, which we
described in Section 4.2.3, as well as the Euclidean distance.

5.2.3 Results

As illustrated in Table 5.1, UWB (Pražák et al., 2020b) have the best performance
in Subtask 1 for the average over all languages, closely followed by Life-Language
(Asgari et al., 2020), Jiaxin & Jinan (Zhou and Li, 2020) and RPI-Trust (Gruppi
et al., 2020).3 For Subtask 2, UG Student Intern (Pömsl and Lyapin, 2020) perform
best, followed by Jiaxin & Jinan and cs2020 (Arefyev and Zhikov, 2020). Across
all systems, good performance in Subtask 1 does not indicate good performance in
Subtask 2 (correlation between the system ranks is 0.22). However, and with the
exception of Life-Language and cs2020, most top performing systems in Subtask 1
also excel in Subtask 2, albeit with a slight change of ranking.

Remarkably, all the top performing systems use type-based models based on
SGNS. They mainly differ in alignment, change measure and threshold selection
(see Chapter 4): UWB (SGNS+CCA+CD) align SGNS vectors with CCA and mea-
sure graded change with CD. They set the average CD across target words as the
threshold for binary change. Life-Language (SGNS) use an idea very similar to
LND to measure graded change: They measure word meaning with a softmax-
normalized vector of similarities to (supposedly) stable pivot words in an SGNS
vector space and measure graded change as the Kullback-Leibler divergence be-
tween two such vectors obtained from time-specific spaces.4 They do not provide
details on how they select the thresholds for their submissions to Subtask 1. RPI-
Trust (SGNS+OP) calculate CD, and a variation of LND in OP-aligned SGNS spaces
and combine these with a variation of FD into an ensemble score by transforming
each individual score to a probability of change by comparing it to the full cor-

3RPI-Trust submits an ensemble model. As all of the features are derived from the type vectors,
we classify it as ‘type’ in this section.

4The team uses a variation of SGNS trained on subword information (Bojanowski et al., 2017).
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Team
Subtask 1

System
Avg. EN DE LA SV

UWB .687 .622 .750 .700 .677 type
Life-Language .686 .703 .750 .550 .742 type
Jiaxin & Jinan .665 .649 .729 .700 .581 type
RPI-Trust .660 .649 .750 .500 .742 type
UG Student .639 .568 .729 .550 .710 type
DCC .637 .649 .667 .525 .710 type
NLP@IDSIA .637 .622 .625 .625 .677 token
JCT .636 .649 .688 .500 .710 type
Skurt .629 .568 .562 .675 .710 token
Discovery .621 .568 .688 .550 .677 ens.
Count Bas. .613 .595 .688 .525 .645 -
TUE .612 .568 .583 .650 .645 token
Entity .599 .676 .667 .475 .581 type
IMS .598 .541 .688 .550 .613 type
cs2020 .587 .595 .500 .575 .677 token
UiO-UvA .587 .541 .646 .450 .710 token
NLPCR .584 .730 .542 .450 .613 token
Maj. Bas. .576 .568 .646 .350 .742 -
cbk .554 .568 .625 .475 .548 token
Random .554 .486 .479 .475 .774 type
UoB .526 .568 .479 .575 .484 topic
UCD .521 .622 .500 .350 .613 graph
RIJP .511 .541 .500 .550 .452 type
Freq. Bas. .439 .432 .417 .650 .258 -

Team
Subtask 2

System
Avg. EN DE LA SV

UG Student .527 .422 .725 .412 .547 type
Jiaxin & Jinan .518 .325 .717 .440 .588 type
cs2020 .503 .375 .702 .399 .536 type
UWB .481 .367 .697 .254 .604 type
Discovery .442 .361 .603 .460 .343 ens.
RPI-Trust .427 .228 .520 .462 .498 type
Skurt .374 .209 .656 .399 .234 token
IMS .372 .301 .659 .098 .432 type
UiO-UvA .370 .136 .695 .370 .278 token
Entity .352 .250 .499 .303 .357 type
Random .296 .211 .337 .253 .385 type
NLPCR .287 .436 .446 .151 .114 token
JCT .254 .014 .506 .419 .078 type
cbk .234 .059 .400 .341 .136 token
UCD .234 .307 .216 .069 .344 graph
Life-Language .218 .299 .208 -.024 .391 type
NLP@IDSIA .194 .028 .176 .253 .321 token
Count Bas. .144 .022 .216 .359 -.022 -
UoB .100 .105 .220 -.024 .102 topic
RIJP .087 .157 .099 .065 .028 type
TUE .087 -.155 .388 .177 -.062 token
DCC -.083 -.217 .014 .020 -.150 type
Freq. Bas. -.083 -.217 .014 .020 -.150 -
Maj. Bas. - - - - - -

Table 5.1: Summary of the performance of systems for which a system description paper
was submitted as well as their type of semantic representation for that specific submission
in Subtask 1 (left) and Subtask 2 (right). For each team, we report the values of Accuracy
(Subtask 1) and Spearman correlation (Subtask 2) corresponding to their best submission
(highest Avg. per subtask) in the evaluation phase. Avg. = average across languages, EN =
English, DE = German, LA = Latin, and SV = Swedish, type = type-based models, token =
token-based models, topic = topic model, ens. = ensemble, graph = graph, UCD = Univer-
sity College Dublin, UG Student = UG Student Intern, Discovery = Discovery Team.

pus distribution of that score. Graded change is then measured as the average of
these probabilities. The thresholds for binary change are selected manually choos-
ing values above or equal to 0.5. Jiaxin & Jinan (SGNS+WI+CD) use WI to learn
aligned SGNS spaces and measure graded change with CD. They choose the thresh-
old for binary change by fitting a Gamma distribution to the observed distribution
of target word CDs and set the 75% quantile as the threshold. UG Student Intern
(SGNS+OP+ED) measure graded change using Euclidean distance between two
OP-aligned SGNS spaces. Finally, cs2020 (SGNS+OP+CD) measure graded change
using CD between two OP-aligned SGNS spaces.
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Subtask 1
ACC Team System

EN .730 NLPCR/UWB token/type
DE .812 UWB type
LA .700 UWB type
SV .774 Random type

Subtask 2
SPR Team System

EN .440 NLPCR token
DE .735 Jiaxin & Jinan type
LA .513 Discovery token
SV .604 UWB type

Table 5.2: Top per-language performances in SemEval shared task of systems for which a
system description paper was submitted as well as their type of semantic representation
for that specific submission in Subtask 1 (left) and Subtask 2 (right). ACC = Accuracy, SPR
= Spearman.

Table 5.2 shows the top performances per language. Note that some of these
are obtained with a token-based model: NLPCR (Rother et al., 2020) obtain their
high scores for English in both subtasks with a token-based clustering model that
closely models the annotation process (cf. Section 2.3.1): They map word uses to
token-vectors with a multilingual variant of BERT, cluster these with HDBSCAN
(Campello et al., 2013) and measure change with binary and graded change, as
described in Section 4.1.3.1. Discovery (Martinc et al., 2020b) obtain their top per-
formance for Latin in Subtask 2 with an ensemble model combining predictions
from two token-based models: (i) BERT vectors clustered with Affinity Propaga-
tion (Frey and Dueck, 2007) and measuring change with the Jensen-Shannon Diver-
gence. (ii) BERT+COS. Their first approach is very similar to NLPCR’s approach
and another example of modeling the annotation process. UWB obtain their high
score for English, German and Latin in Subtask 1 with SGNS+CCA+CD, as de-
scribed above, and for Swedish in Subtask 2 with SGNS+OP+CD. The threshold for
Subtask 1 is either chosen as the average CD across target words (German, Latin)
or based on the intersection of nearest neighbors of target word vectors in the two
spaces (English). Random (Cassotti et al., 2020) obtain their result for Swedish in
Subtask 1 with PPMI+SRV+CD and a threshold derived by clustering graded pre-
dictions into two clusters. Jiaxin & Jinan use SGNS+WI+CD for their high score
on German in Subtask 2.

An important finding common to most systems is the difference between their
performances across the four languages – systems that excel on one dataset do not
necessarily perform well in another. This discrepancy may be due to a range of
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System
Subtask 1 Subtask 2

Avg. Max. Avg. Max.
type .625 .687 .329 .527
ensemble .621 .621 .442 .442
token .598 .637 .258 .374
topic .526 .526 .100 .100
graph .521 .521 .234 .234

Table 5.3: Average and maximum performance (average across languages) of best submis-
sions per subtask for different system types. Submissions that corresponded exactly to the
baselines or the sample submission were removed.

factors. (i) The differences in corpus size and quality: As can be seen in Table
3.3, the corpora available for training models have a very different sizes between
languages. Type-based models are dependent on large amounts of training data,
which may also have influenced the results. Further, English and Latin corpora
are clean, Swedish and partly German corpora contain OCR errors. (ii) The target
word selection: As can be seen in Table 3.4, the test sets are small and have differ-
ent average levels of change and polysemy. They are likely to differ also in further
properties which we did not measure. (iii) As we saw in Section 3.3, the change
scores used for evaluation are noisy. This could affect languages to different de-
grees. (iv) The availability of tuned hyperparameters might have played a role as
well: For German, some teams report following prior work such as Schlechtweg
et al. (2019a). (v) Some teams focused on some languages, submitting dummy re-
sults for the others.

Type- versus token-based models Tables 5.1 and 5.3 illustrate the gap in perfor-
mance between type-based models and the token-based ones. Out of the best 10
systems in Subtask 1/Subtask 2, 7/7 systems are type-based compared to only 2/2
systems that are token-based. Contrary to the recent success of token-based mod-
els (Peters et al., 2018), they are outperformed by type-based models in our task.
This is most surprising for Subtask 1 because type-based models do not distin-
guish between different senses while token-based models do. Nevertheless, there
are some token-based models showing comparably high performance on individ-
ual languages, see Table 5.2. This means that they have a potential, but are lack-
ing robustness across data sets. We conjecture that this is related to the fact that
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Figure 5.1: Influence of frequency on model predictions in Subtask 2, Swedish. X-axis:
correlations of model predictions with FRQd (left) and FRQm (right), Y-axis: performance
on Subtask 2. Gray line gives frequency correlation in gold data (cf. Table 3.4).

contextualized embeddings are a recent technology and as such lack proper usage
conventions. For example, it is not clear what impact particular preprocessings
(e.g. lemmatization), hyper-parameter choices (e.g. which layers to use) or combi-
nations with clustering methods and change measures can have and whether these
are robust across data sets.

We see a range of further points that could influence the performance of token-
based models: (i) They are pretrained and cannot exclusively be trained on the rel-
evant historical resources (in contrast to type-based models). As such, they carry
additional, and possibly irrelevant, information that may mask true diachronic
changes. (ii) They are also sensitive to data preprocessing: Only restricted context is
available to the models as a result of the sentence shuffling in the SemEval corpora.
Usually, token-based models take more context into account than just the imme-
diate sentence (Martinc et al., 2020b). Also, the corpora were lemmatized while
token-based models usually take the raw sentence as input. In order to make the
input more suitable for token-based models, we also provided the raw corpora af-
ter the evaluation phase and published the annotated uses of the target words with
additional context (see Sections 3.2.1.1 and 3.2.1.6). (iii) The corpora contain many
historical words for which token-embeddings may have seen little or no training
data. The raw corpora additionally contain historical spelling variants which may
lead to an incorrect split into subwords in the preprocessing of e.g. BERT. We fur-
ther investigate some of these questions in Section 5.3.
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The influence of frequency In prior work, the predictions of many systems have
been shown to be inherently biased towards word frequency, either as a conse-
quence of an increasing sampling error with lower frequency (Dubossarsky et al.,
2017) or by directly relying on frequency-related variables (Schlechtweg et al., 2017,
2019a; Bott et al., 2021). We have controlled for frequency when selecting target
words (recall Table 3.4) in order to test model performance when frequency is not
an indicating factor. Despite the controlled test sets we observe strong frequency bi-
ases for the individual models as illustrated for Swedish in Figure 5.1.5 Model pre-
dictions tend to correlate negatively with the minimum frequency of target words
between corpora (FRQm), and positively with the change in their frequency across
corpora (FRQd). This means that models predict higher change for low-frequency
words and for words with strong changes in frequency. Despite their superior
performance, type-based models are more strongly influenced by frequency than
token-based models probably because the latter are not trained on the test corpora
limiting the influence of frequency. Similar tendencies can be seen for the other
languages. For a range of models correlations reach values > 0.8.

The influence of polysemy We did not control the test sets for polysemy. As
shown in Table 3.4, the change scores for both subtasks are moderately to highly
correlated with polysemy (PLYm). Hence, it is expected that model predictions
would be positively correlated with polysemy. However, correlations are in almost
all cases lower than with the change scores and in some cases even negative (Latin
and partly English). We conclude that model predictions are only moderately bi-
ased towards polysemy on our data.

5.3 Analyzing and Improving a Token-based Model on Se-
mEval Data

In this section, we try to understand better why token-based models showed rather
low performance in the SemEval shared task (see Section 5.2). For this, we inves-
tigate the influence of a range of variables on clusterings of BERT vectors on the
SemEval data and show that it suffers from orthographic information on the target
word, which is encoded even in the higher layers of BERT representations. We also

5Find the full set of analysis plots at https://www.ims.uni-stuttgart.de/data/
sem-eval-ulscd-post.

https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd-post
https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd-post
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show that lemmatizing the full input use is often not a good solution. By reducing
the influence of orthography on the target word while keeping the rest of the input
in its natural form, we considerably improve BERT’s performance on clustering-
based and average methods.6 In these experiments, we only use the sampled and
annotated word uses instead of all uses from the full corpora. These are cleaned
by removing uses with many ‘Cannot decide’ judgments, as described in Section
3.2.1.5. The German uses are further cleaned by replacing a small, manually iden-
tified set of historical characters with their modern equivalents.7 We use the tok-
enized (Token) and lemmatized (Lemma) versions of the uses.8

5.3.1 Models & Measures

For every target word, we feed the uses from the SemEval data set into BERT and
use the respective pre-trained cased base model to create token-based models. We
then cluster the vectors with AGL and estimate the number of clusters with the
Silhouette Method, as explained in Section 4.1.2. We convert the resulting time-
specific cluster frequency distributions into probability distribution P and Q and
measure their distance JSD(P,Q) to obtain graded change values. We also mea-
sure change without clustering using APD and COS, as explained in Section 4.1.3.

5.3.1.1 Cluster Bias

We perform a detailed analysis on what the inferred clusters actually reflect. We
test hypotheses on word form, use position, number of proper names and corpus.
The influence strength of each of these variables on the clusters is measured by the
Adjusted Rand Index (ARI) between the inferred cluster labels for each use and a
labeling for each use derived from the respective variable. For the variable word
form, we assign the same label to each use where the target word has the same
orthographic form (same string). If ARI = 1, then the inferred clusters contain only
uses where the target word has the same form. For position, each use receives label
0 if the target word is one of the first three words of the use, label 2 if the target
word is one of the last three words, else 1.9 For proper names, a use receives label

6Find our code at https://github.com/Garrafao/TokenChange.
7This is similar to the preprocessing described in Section 6.2 and can be checked at https://

github.com/seinan9/LSCDiscovery.
8Note that we use an early version of the lemmatization where punctuation is replaced by the

string ‘$’.
9We reckon that especially the beginning and ending of a use have a strong influence.

https://github.com/Garrafao/TokenChange
https://github.com/seinan9/LSCDiscovery
https://github.com/seinan9/LSCDiscovery
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0 if no proper names are in the use, label 1 if one proper name occurs, else 2.10

The hypothesis that proper names may influence the clustering was suggested by
Martinc et al. (2020b). For corpora, a use is labeled 0 if it occurs in the first target
corpus, else 1.

5.3.2 Results

5.3.2.1 Clustering

Because of the high computational load, we apply the clustering only to the EN and
DE parts of the SemEval data set. For this, we use BERT to create token vectors and
cluster them with AGL, as described in Section 5.3.1. We then perform a detailed
analysis of what the clusters reflect.11

We report a subset of the clustering experiment results in Table 5.4, the complete
results are provided in Appendix E. Table 5.4 shows JSD performance on Graded
Change Ranking (see Section 5.2.1) with Spearman correlation (Graded), clustering
performance on the gold clusterings (see Section 3.2.1) measured with ARI (Clus-
ter) as well as the ARI scores for the influence factors introduced above, across
BERT layers. For each influence factor, we add two baselines (see Appendix E): (i)
The random baseline (Random) measures the ARI score of the influence factor us-
ing random cluster labels and (ii) the gold baseline (Gold) measures the ARI score
between the gold cluster labels and the influence factor. In other words, (i) and (ii)
respectively answer the question of how strong the influence factor is by chance
and how strong it is according to the gold annotation. The values of the two base-
lines are crucial: If an influence factor has an ARI score greater than both baselines,
the clustering reflects the influence factor more than expected. Table 5.4 marks in-
fluence scores in boldface if they exceed both baseline scores. If additionally the
influence score exceeds the actual performance score (Cluster), the clustering re-
flects the influence factor more than it reflects the gold clustering.

Word form bias As explained above, the word form influence measures how
strongly the inferred clusterings represent the orthographic forms of the target
word. Table 5.4 shows that for both DE and EN the form bias of the raw (non-

10The influence of proper names is only measured for EN since no POS-tagged data was readily
available for DE.

11We also run most of our experiments with k-means (Forgy, 1965). Both algorithms performed
similarly with a slight advantage for AGL. We therefore only report the results achieved using AGL.
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Layer Token Lemma TokLem

Graded
1 -.141 -.033 .100
12 .205 .154 .168
9-12 .325 .345 .293

Cluster
1 .022 .041 .045
12 .116 .111 .158
9-12 .150 .159 .163

Form
1 .907 .014 .014
12 .389 .018 .077
9-12 .334 .018 .051

Position
1 .001 .026 .024
12 .012 .012 .015
9-12 .002 .007 .003

Corpora
1 .019 .021 .033
12 .078 .056 .082
9-12 .056 .044 .063

Names
1 -.007 .010 .010
12 .025 .027 .033
9-12 .019 .022 .026

Layer Token Lemma TokLem

Graded
1 -.265 -.062 -.170
12 .123 .427 .624
9-12 .122 .420 .533

Cluster
1 .033 .002 .003
12 .119 .159 .161
9-12 .155 .142 .154

Form
1 .706 .024 .004
12 .439 .056 .150
9-12 .420 .047 .094

Position
1 .005 .023 .027
12 -.002 .005 -.002
9-12 .009 .018 .012

Corpora
1 .074 .003 .005
12 .110 .095 .096
9-12 .107 .068 .089

Names
1 - - -
12 - - -
9-12 - - -

Table 5.4: Overview of English clustering scores (left) and German clustering scores (right).
Bold font indicates best scores for performance on Graded Change Ranking (Graded) and
correspondence to gold clusterings (Cluster) (top). For influence variables (bottom), bold
font instead indicates scores above all corresponding baselines. See also Appendix E.

preprocessed) token vectors (column ‘Token’) is extremely high and always yields
the highest influence score for each layer combination of BERT. Additionally, the in-
fluence of the word form is considerably higher when using lower layers of BERT.
This fits well with the observations of Jawahar et al. (2019) that the lower layers
of BERT capture surface features, the middle layers capture syntactic features and
the higher layers capture semantic features of the input. With the first layer of
BERT, the uses are almost exclusively (.9) clustered according to the form of the
target word (e.g. plural/singular division). Even in the higher layers word form
influence is considerable in both languages (layer 12: ≈ .4). This strongly overlays
the semantic information encoded in the vectors, as we can see in the low perfor-
mance scores (Graded, Cluster), which are negatively correlated with word form
influence.

The word form bias seems to be lower in DE than in EN (layer 1: .7 vs. .9).
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However, this is misleading as our approach to measure word form influence does
not capture cases where vectors cluster according to subword forms, as in the case
of German Ackergerät: Its word forms differ as to whether they are written with
an ‘h’ or not, as in Ackergerät vs. Ackergeräth. A manual inspection shows that this
is strongly reflected in the inferred clustering. However, these forms then further
subdivide into inflected forms such as Ackergeräthe and Ackergeräthes, which is re-
flected in our influence variable, but not in the inferred clustering. For these cases,
our approach tends to underestimate the influence of the variable.12

In order to reduce the influence of word form, we experiment with two prepro-
cessing approaches: (i) We feed BERT with lemmatized uses (Lemma) instead of
raw ones. (ii) We only replace the target word in every use with its lemma (Tok-
Lem). TokLem is motivated by the fact that BERT is pre-trained on raw text. Thus,
we assume that BERT is more familiar with non-lemmatized uses and therefore
expect it to work better on raw text. In order to continue working with non-
lemmatized uses, but at the same time removing word form influence, we only
remove the target word form bias by exchanging the target word with its lemma.

As we can see in Table 5.4, lemmatization strongly reduces the influence of word
form, as expected.13 Accordingly, performance (Graded, Cluster) mostly improves.
However, it also leads to deterioration in some cases. TokLem also reduces the in-
fluence of word form and in most cases yields the overall maximum performance.
The Cluster scores for both languages are similar (≈ .160) while the Graded perfor-
mance varies very strongly between languages, achieving a very high score for DE
(.624).

Replacing the target word by its lemma form seems to shift the word form influ-
ence in the different layers: Especially for DE, layers 1 and 1+12 show the highest
influences (.706 and .687) with Token (see also Appendix E). In combination with
TokLem, however, both layers are influenced the least (.004 and .046). For EN we
see the same effect for layer 1.

Other bias factors We can see in Table 5.4 that most influences are above-baseline.
As explained above, the word form bias heavily decreases using higher layers of
BERT. For all other influences the bias increases when using higher layers of BERT.

12We did not examine whether the bias could be explained exclusively by subword splitting errors
because of historical spelling variants. An indication that this is not the case is the high word form
bias on the English data where historical spelling variants are infrequent.

13In some cases it is, however, above the baselines, indicating that word form is correlated with
other use features.
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Layer
APD COS

EN DE SV EN DE SV
1 .297 .205 .228 .246 .246 .089
12 .566 .359 .529 .339 .472 .134
1+12 .455 .316 .280 .365 .373 .077
1-4 .431 .227 .355 .390 .297 .079
9-12 .571 .407 .554 .365 .446 .183

Table 5.5: Performance of average measures for different layer combinations across lan-
guages without preprocessing.

This may be because decreasing the word form influence reveals the existence of
further –less strong but still relevant– influences. The same is observable with the
Lemma and TokLem results since there the form influence is decreased or even
eliminated. While for EN the influence scores mostly increase using Lemma and
TokLem, for DE only the position influence increases while corpora influence de-
creases. This is probably because the corpora influence is to some extent related
to word form, which often reflects time-specific orthography, as in Ackergeräth vs.
Ackergerät, where the spelling with the ‘h’ mostly occurs in the old corpus.

Influence of position and proper names seems to be less important, but the re-
spective scores are still most of the times higher than the baselines. So, overall, the
reflection of the two corpora seems to be the most influential factor apart from word
form. Often the corpus bias is almost as high as the Cluster performance score.

5.3.2.2 Average Measures

For the average measures, we perform experiments for all three languages
(EN/DE/SV).

Layers Because we observe a strong variation of influence scores with layers, as
seen in Section (5.3.2.1), we test different layer combinations for the average mea-
sures. The following are ones considered: 1, 12, 1+12, 1+2+3+4 (1-4), 9+10+11+12
(9-12). As shown in Table 5.5, the choice of layers strongly affects the performance.
We see that for APD the higher layer combinations 12 and 9-12 perform best across
all three languages, where the latter is slightly better (.571, .407 and .554). Inter-
estingly, these two are the only layer combinations that do not include layer 1. All
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Layer Token Lemma TokLem

EN

A
PD

12 .566 .483 .494
1+12 .455 .483 .455
9-12 .571 .493 .547

C
O

S 12 .339 .251 .331
1+12 .365 .239 .193
9-12 .365 .286 .353

D
E

A
PD

12 .359 .303 .456
1+12 .316 .643 .731
9-12 .407 .305 .516

C
O

S 12 .472 .693 .755
1+12 .373 .698 .729
9-12 .446 .689 .726

SV

A
PD

12 .529 .214 .505
1+12 .280 .368 .602
9-12 .554 .218 .531

C
O

S 12 .134 -.019 .285
1+12 .077 .012 .082
9-12 .183 -.002 .284

Table 5.6: Performance of average measures for three layer combinations with preprocess-
ing variants.

three layer combinations that include layer 1 are considerably worse in comparison.
While COS performs best with layer combination 1-4 for EN (.390), for DE and SV
we see a similar trend as with APD. Again, the higher layer combinations perform
better than the other three, which all include layer 1. For DE, layer combination 12
(.472) performs best while 9-12 yields the highest result for SV (.183). Our results
are mostly in line with the findings of Kutuzov and Giulianelli (2020), who observe
that APD works best on EN and SV while COS yields the best scores for DE.

Preprocessing As with the clustering, we try to improve the performance of the
average measures by using the two above-described preprocessing approaches. We
perform experiments only for three layer combinations in order to reduce the com-
plexity: (i) 12 and (ii) 9-12 perform best and are therefore obvious choices. (iii)
From the remaining combinations 1+12 shows the most stable performance across
measures and languages. Table 5.6 shows the performance of the preprocessings
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Layer Token TokLem

EN

A
PD

1+12 .613 -.026
9-12 .068 .090

C
O

S 1+12 .246 -.062
9-12 .020 .004

D
E A

PD
1+12 .554 .271
9-12 .292 .105

C
O

S 1+12 .387 -.017
9-12 .205 -.008

SV

A
PD

1+12 .730 .176
9-12 .237 .048

C
O

S 1+12 .429 -.031
9-12 .277 -.035

Table 5.7: Correlations of word form and predicted change scores.

(Lemma, TokLem) over these three combinations. We can see that both APD and
COS perform slightly worse for EN when paired with a preprocessing (exception
to this is 1+12 Lemma). In contrast, DE profits heavily: While APD with layer com-
binations 12 and 9-12 performs slightly worse with Lemma and slightly better with
TokLem, we observe an enormous performance boost for layer combination 1+12
(.643 Lemma and .731 TokLem). We achieve a similar boost for all three layer com-
binations with COS as a measure. We reach a top performance of .755 for layer 12
with TokLem. SV does not benefit from Lemma. We observe large performance de-
creases, with the exception of combination 1+12 (APD). The APD performance of
layers 12 and 9-12 is slightly worse with TokLem. However, layers 1+12, which per-
formed poorly without preprocessing, reaches peak performance of .602 with Tok-
Lem. All COS performances increase with TokLem, but are still well below the APD
counterparts. The general picture is that DE and SV profit strongly from TokLem.
Lemma yields the best performance for only one case. The top performances we
reach for EN/DE/SV are .566/.755/.602, obtained with Token/TokLem/TokLem
respectively. We see that the performance of preprocessing strongly depends on
preprocessing type, language, layer combination and measure. This confirms our
observation from Section 5.2 that it is hard to choose robust parameter configura-
tions for BERT.
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Word form bias In order to better understand the effects of layer combinations
and preprocessing, we compute correlations between word form and model pre-
dictions. To lessen the complexity, only layer combination 1+12 (which performed
worst overall and includes layer 1), layer combination 9-12 (which performed best
overall) in combination with Token and the superior TokLem are considered. The
results are presented in Table 5.7. We observe similar findings for all three lan-
guages: The correlation between word form and APD predictions is strong (.613,
.554 and .730) for layers 1+12 without preprocessing. The correlation is much
weaker with layers 9-12 (.068, .292 and .237) or TokLem (−.026, .105 and .176).
This is in line with the performance development that also increases using layers
9-12 or TokLem, as can be seen in Table 5.6. Both approaches (different layers, pre-
processing) result in a considerable performance increase, as described previously.
Using layer combination 9-12 with TokLem further decreases the correlation (with
the exception of EN). However, the performance is better when only one of these
approaches is used. The correlation between word form and COS model predic-
tions is weaker overall (.246, .387 and .429). We see a similar correlation develop-
ment as for APD, however this time the performance of EN does not profit from
the lowered bias (see Table 5.6). Both DE and SV see a performance increase when
the word form bias is lowered by either using layers 9-12 or TokLem.

Polysemy bias The SemEval data sets are strongly biased by polysemy, i.e., a
perfect model measuring the gold synchronic target word polysemy in either t1 or
t2 could reach above .7 performance (see Table 3.4). We use APD-OLD and APD-
NEW (see Section 4.1.3) to see whether we can exploit this fact to create a purely
synchronic polysemy model with high performance. We achieve low to moderate
performances for EN and DE (.274/.332 and .321/.450 respectively) and a good
performance for SV (.550/.562). While the performance for EN and DE is clearly
below the high-scores, the performance is high for a measure that lacks any kind of
diachronic information. And in the case of SV, the performance of both APD-OLD
and APD-NEW is just barely below the high-scores (cf. Table 5.6). Note that regular
APD (in contrast to COS) is, by definition, affected by polysemy (Schlechtweg et al.,
2018). It is thus possible that APD’s high performance stems at least partly from this
polysemy bias. This is supported by comparing the SV results of APD and COS in
Table 5.6: COS is weakly influenced by polysemy and performs poorly while APD
has higher performance, but only slightly above the purely synchronic measures
APD-OLD/NEW.
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5.4 Type-based Models on DURel/SURel Data

In this section, we evaluate the type-based models (see Section 4.2) on the
DURel/SURel data (see Section 3.2.2). Note that we exclude three targets from
the DURel dataset (flott, Kinderstube, Steckenpferd) and one target from the SURel
dataset (Messerspitze) because they fall below the frequency threshold used for
cleaning corpora in Section 3.2.2.1. Models are trained on the full corpora from
which the annotated use pairs were sampled.

5.4.1 Task Definition

Given the two time-specific corpora C1 and C2 described in Section 3.2.2.1, we aim
to solve the following task:

Task Ranking: Rank a set of target words according to their Negated COMPARE
score between C1 and C2.

Model predictions are scored against the Negated COMPARE scores with Spear-
man’s rank-order correlation coefficient ρ.

5.4.2 Preprocessing & Hyperparameters

We first motivate our settings for corpus preprocessing described in Section 3.2.2.1
and for model hyperparameters described in Section 4.2.

Preprocessing We experiment with the two preprocessed corpus versions LALL

and L/P. Both versions include different combinations of common preprocessing
steps for VSMs, i.e., lemmatization, removal of low-frequency words/non-content
words/punctuation and concatenation with POS tag. Lemmatization is important
because LSC is measured on the lemma level (see Chapter 3), but also because
German has many inflected word forms which would distribute the vector repre-
sentation for a lemma across many vectors. Words with very low frequency are
often regarded noise in VSMs (Schulte im Walde et al., 2013; Bott and Schulte im
Walde, 2014; Levy et al., 2015) while words with very high frequency, non-content
words or punctuation can be treated in different ways (Schulte im Walde et al.,
2013; Mikolov et al., 2013a; Bott and Schulte im Walde, 2014; Levy et al., 2015). Ad-
ditional syntactic information has shown to improve performance on some tasks
(Padó and Lapata, 2007; Shwartz et al., 2017).
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Representation
Alignment Measure

CI SRV OP VI WI CD LND JSD FD TD HD
CNT x x x x x x
PPMI x x x x
SVD x x x x
RI x x x x x
SGNS x x x x x
SCAN x (x)

Table 5.8: Combinations of semantic representations, alignment types and measures on
DURel/SURel. (FD is computed directly from the corpus.)

Context window For all models we experiment with values n = {2, 5, 10}, as
done in Levy et al. (2015). It is important to note that the extraction of context
words differs between models because of inherent parameter settings of the imple-
mentations. While our implementations of the count-based vectors have a stable
window of size n, the SGNS implementation we use (Řehůřek and Sojka, 2010) has
a dynamic context window with maximal size n (cf. Levy et al., 2015), and SCAN
has a stable window of size n, but ignores all occurrences of a target word where
the number of context words on either side is smaller than n. This may affect the
comparability of the different models as especially the mechanism of SCAN can
lead to very sparse representations on corpora with small sentence sizes, as e.g. the
COOK corpus. Hence, this variable should be controlled in future experiments.

VSMs We follow previous work in setting further hyperparameters (Hamilton
et al., 2016b; Levy et al., 2015). We set the number of dimensions d for SVD, RI and
SGNS to 300. We train all SGNS with 5 epochs. For PPMI, we set α = .75 and
experiment with k = {1, 5} for PPMI and SGNS. For RI and SGNS, we experiment
with t = {none, .001}. For SVD we set p = 0. In line with Basile et al. (2015), we set
s = 2 for RI and SRV. Note though that we have a lower d than Basile et al. who set
d = 500.

SCAN We experiment with K = {4, 8}. For further parameters, we follow the
settings chosen by Frermann and Lapata (2016): κψ = 10 (a high value forcing
senses to remain thematically consistent across time). We set κφ = 4 and the Gamma
parameters a = 7 and b = 3. We use 1, 000 iterations for the Gibbs sampler and set
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Dataset Preproc Win Space Parameters Align Measure Performance m (h, l)

DURel

LALL 10 SGNS k=1,t=None OP CD .866 (.914, .816)

LALL 10 SGNS k=5,t=None OP CD .857 (.891, .830)

LALL 5 SGNS k=5,t=.001 OP CD .835 (.872, .814)

LALL 10 SGNS k=5,t=.001 OP CD .826 (.863, .768)

L/P 2 SGNS k=5,t=None OP CD .825 (.826, .818)

SURel

L/P 2 SGNS k=1,t=.001 OP CD .851 (.851, .851)

L/P 2 SGNS k=5,t=None OP CD .850 (.850, .850)

L/P 2 SGNS k=5,t=.001 OP CD .834 (.838, .828)

L/P 2 SGNS k=5,t=.001 OP− CD .831 (.836, .817)

L/P 2 SGNS k=5,t=.001 OP CD .829 (.832, .823)

Table 5.9: Top performances (Spearman). Win=Window Size, Preproc=Preprocessing,
Align=Alignment, k=negative sampling, t=subsampling, Performance m(h,l): mean, high-
est and lowest Spearman correlation with gold Negated COMPARE rank.

the minimum amount of contexts for a target word per time period min = 0 and
the maximum amount to max = 2000.

Measures For LND, we set k = 25 as recommended by Hamilton et al. (2016a).
The normalization constants for FD, HD and TD are calculated on the full corpus
with the respective preprocessing (but before deleting words below a frequency
threshold).

Find an overview of all tested combinations of semantic representations, align-
ments and measures in Table 5.8.

5.4.3 Results

First of all, we observe that nearly all model predictions have a strong positive
Spearman correlation with the gold Negated COMPARE rank. Table 5.9 presents
the overall best results across models and parameters.14 With .87 for DURel and
.85 for SURel, the models reach comparable and unexpectedly high performances
on the two distinct datasets. The overall best-performing model is SGNS+OP+CD.
The model is robust in that it performs best on both datasets and produces very
similar, sometimes the same results, across different iterations.

14For models with randomness involved, we compute the average over five iterations.
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Dataset Representation best mean

DURel

CNT .639 .395
PPMI .670 .489
SVD .728 .498
RI .601 .374
SGNS .866 .502
SCAN .327 .156

SURel

CNT .599 .120
PPMI .791 .500
SVD .639 .300
RI .622 .299
SGNS .851 .520
SCAN .082 -.244

Table 5.10: Best and mean performances (Spearman) across similarity measures (CD, LND)
on semantic representations.

Preprocessing and parameters Regarding preprocessing, the results vary: LALL

(all lemmas) dominates in the diachronic task while L/P (lemma:pos of content
words) dominates in the synchronic task. In addition, L/P preprocessing, which is
already limited to content words, prefers shorter windows while LALL (preprocess-
ing where the complete sentence structure is maintained) prefers longer windows.
Regarding the preference of L/P for SURel, we blame noise in the COOK corpus,
which contains a lot of recipes listing ingredients and quantities with numerals and
abbreviations, to presumably contribute little information about context words. For
instance, COOK contains 4.6% numerals while DTA only contains 1.2% numerals.

Looking at the influence of subsampling, we find that it does not improve the
mean performance for SGNS (with .506, without .517), but clearly for RI (with .413,
without .285). Levy et al. (2015) found that SGNS prefers numerous negative sam-
ples (k > 1), which is confirmed here: mean performance is .487 with k = 1 and
.535 with k = 5.15 This finding is also indicated in Table 5.9, where k = 5 dominates
the 5 best results on both datasets. Yet, k = 1 provides the overall best result on
both datasets.

15For PPMI, we observe the opposite preference: mean performance is .549 with k = 1 and .439
with k = 5.
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Dataset OP OP− OP+ WI None
DURel .618 .557 .621 .468 .254
SURel .590 .514 .401 .492 .285

Table 5.11: Mean performances (Spearman) for CD per alignment method. Applies only to
RI, SVD and SGNS.

Semantic representations Table 5.10 shows the best and mean results for different
semantic representations. SGNS is clearly the best VSM even though its mean per-
formance does not exceed other representations as clearly as its best performance.
Regarding count-based models, PPMI and SVD show the best results.

SCAN performs poorly, and its mean results indicate that it is rather unstable.
This may be explained by the particular way in which SCAN constructs context
windows (see Section 5.4.2): It ignores asymmetric windows, thus reducing the
number of training instances considerably, in particular for large window sizes.

Alignments The fact that our modification of Hamilton et al. (2016b) (SGNS+OP,
see Section 4.2.2) shows best performance across data sets in Table 5.9 confirms our
assumption that column-mean centering is an important preprocessing step in OP
analysis and should not be omitted. Additionally, the mean performance in Table
5.11 shows that OP is generally more robust than its variants. OP+ has the best
mean performance on DURel, but performs poorly on SURel. Artetxe et al. (2018a)
show that the additional pre- and post-processing steps of OP+ can be harmful in
certain conditions. We tested the influence of the different steps and identified the
non-orthogonal whitening transformation as the main reason for a performance
drop of ≈20%.

In order to see how important the alignment step is for the low-dimensional
embeddings (SVD/RI/SGNS), we also tested the performance without alignment
(‘None’ in Table 5.11). As expected, the mean performance drops considerably.
However, it remains positive, which suggests that the spaces learned by the models
are not random but rather slightly rotated variants.

Especially interesting is the comparison of WI, where one common vector space
is learned, against the OP models, where two separately learned vector spaces
are aligned. Although WI avoids (post-hoc) alignment altogether, it is consis-
tently outperformed by OP, which is shown in Table 5.11 for low-dimensional em-
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beddings.16 We found that OP profits from mean-centering in the preprocessing
step: applying mean-centering to WI matrices improves the performance by 3% on
WI+SGNS+CD. Further studies have varying results regarding the comparison of
OP and WI, showing that their relative performance is also parameter dependent
(Dubossarsky et al., 2019; Kaiser et al., 2020a).

The results for Vector Initialization (VI) are unexpectedly low (on DURel mean
−.017, on SURel mean .082). We later noticed that there was an implementation
error in the code and that SGNS+VI can reach high performance, but is difficult to
tune and strongly influenced by word frequency (Kaiser et al., 2020a, 2021).

Detection measures CD dominates LND on all vector space and alignment types
(e.g., mean on DURel with SGNS+OP is .723 for CD vs. .620 for LND) and hence
should be generally preferred if alignment is possible. Otherwise LND or a variant
of WI+CD should be used, as they show lower but robust results.17 In a scenario
with development data, LND’s k parameter should be tuned first.

Dispersion measures generally exhibit a low performance and previous pos-
itive results for them could not be reproduced (Schlechtweg et al., 2017). It is
striking that, contrary to our expectation, dispersion measures on SURel show a
strong negative correlation (max. −.79). We suggest that this is due to frequency
particularities of the dataset: SURel’s gold LSC rank has a rather strong negative
correlation with the targets’ frequency rank in the COOK corpus described in Sec-
tion 3.2.2.1 (−.51). Moreover, because COOK is magnitudes smaller than SdeWaC,
the normalized values computed in most dispersion measures in COOK are much
higher. This also gives them a much higher weight in the final calculation of the
absolute differences. Hence, the negative correlation in COOK propagates to the
final results. This is supported by the fact that the only measure not normalized
by corpus size (HD) has a positive correlation. As these findings show, the disper-
sion measures are strongly influenced by frequency and very sensitive to different
corpus sizes.

16We see the same tendency for WI against SRV, but instead variable results for CNT and PPMI
alignment (CI).

17JSD was not included here, as it was only applied to SCAN and its performance thus strongly
depends on the underlying meaning representation.
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5.5 Discussion

In this chapter, we evaluated the range of models described in Chapter 4 on
three tasks: (i) Binary Change Classification, (ii) Graded Change Ranking and (iii)
Negated COMPARE Ranking. The task setup (unsupervised, no genuine devel-
opment data, different corpora from different languages with very different sizes,
varying class distributions) provided an opportunity to test models in heteroge-
neous learning scenarios, which was very challenging.

The top average performance across languages for Binary Change Classifica-
tion on the SemEval data was an Accuracy of .69, where the top performance per
language was .73/.81/.77 for EN/DE/SV (see Table 5.1). For Graded Change
Ranking, the top average was a Spearman correlation of .53 and per language
.44/.74/.60. In our experiments with BERT on Graded Change Ranking, we
reached top performances for EN/DE/SV of .57/.76/.60 (see Table 5.6), i.e., slightly
higher than in the SemEval shared task. However, these were obtained under dif-
ferent conditions, i.e., by tuning on the test data and with the word uses sampled
for annotation, which were additionally cleaned. Hence, this only gives a possi-
ble upper bound for performance in a realistic scenario. For Negated COMPARE
Ranking on DURel and SURel, we reach a mean performance of .50 and .52, and a
top performance of .87 and .85 (see Table 5.10). Here again, the top performances
can only give an upper bound. Unfortunately, not all models were applied to all
tasks for reasons of how this thesis progressed, which puts some limits on the com-
parisons we can make.

Most type-based models were tested on all three tasks and all data sets. The Se-
mEval results suggest that SGNS in combination with CCA+CD, OP+CD, OP+ED,
WI+CD or LND and optional thresholding is a good approach for Binary Change
Classification and Graded Change Ranking with high performances on several data
sets and robustness across data sets. The results for Negated COMPARE Ranking
on the DURel/SURel data showed a similar picture with SGNS+OP+CD dominat-
ing on both data sets. We further improved the performance of this approach with
the application of mean-centering as a preprocessing step for OP alignment.

The token-based models were clearly outperformed by the type-based ap-
proaches on Binary Change Classification and Graded Change Ranking on the Se-
mEval data when considering the mean performance across data sets. This was sur-
prising because type-based approaches do not model the annotation process as de-
scribed in Sections 2.3.1 and 4.1.3.1. However, some token-based approaches man-
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aged to reach the top performance on individual languages, suggesting that they
rather lack robustness than ability to measure LSC. Strikingly, these approaches
modeled the annotation process, showing that it is possible to closely model the
measurement process of LSC with computers.

We then wanted to understand what could have affected the performance of
the token-based models on the SemEval data. We tested several hypotheses on po-
tential biases in BERT and found that it is influenced by various factors, but most
strongly by target word form if word uses are not preprocessed. Even in higher
layers this influence persisted. By removing the form bias, we were able to con-
siderably improve the performance for Graded Change Ranking across languages
on the SemEval data. We also found that using the lemmatized word uses (as pro-
vided to SemEval shared task participants in the evaluation phase) often had a neg-
ative impact on performance compared to other preprocessing variants. The final
BERT performances achieved in this way were slightly higher than the top per-
formances per language from the SemEval shared task. Note, however, that they
varied strongly (see Table 5.6), confirming the lack of robustness observed before.
Thus, it is hard to choose the optimal setting in an unsupervised scenario without
development data such as the SemEval shared task.

Although we finally reached a comparably high performance with BERT and
clustering for Graded Change Ranking in German, average measures still per-
formed better than the clustering-based approaches. The reasons for this are still
unclear and should be addressed in future research. The correspondence of in-
ferred clusterings to the gold standard was very low, indicating that the clustering
does not infer word senses but other patterns. Note, however, that the gold cluster-
ings derived on the SemEval data can sometimes be noisy (see Section 3.3.2), which
could also explain this rather low correspondence.18

We found that polysemy is a strong predictor of the SemEval change scores.
It was possible to build a simple, purely synchronic polysemy model with a per-
formance on Graded Change Ranking which was near the best diachronic model
for one language. However, model predictions in the SemEval shared task did not
show polysemy bias above expectation.

Although we compared a large number of models on several multilingual data
sets and tasks, the findings were obtained on rather small data sets affecting their
generalizability (cf. Arefyev and Zhikov, 2020). They are small because the annota-

18Extended and less noisy data is available at https://www.ims.uni-stuttgart.de/data/
wugs.

https://www.ims.uni-stuttgart.de/data/wugs
https://www.ims.uni-stuttgart.de/data/wugs
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tion of one LSC label requires the comparison of a large number of individual word
uses. This is a fundamental problem in LSCD, which we will continue to struggle
with in the future (Hengchen et al., 2021). Also, the gold labels we used for eval-
uation were obtained with a new and imperfect annotation procedure (see Section
3.3). Hence, we need to continue to replicate the results we have obtained here
on further data sets and tasks: The good performance of SGNS+OP+CD has been
demonstrated in previous studies (Hamilton et al., 2016b) and is supported by sev-
eral follow-up studies (Kaiser et al., 2020a, 2021) and a shared task on Italian data
(Basile et al., 2020; Kaiser et al., 2020b; Pražák et al., 2020a). Shoemark et al. (2019)
further show good performance of OP+CD combined with another (but related)
predictive VSM approach. Laicher et al. (2020) confirm that (off-the-shelf) BERT
generalizes poorly and does not transfer well between data sets. The potential of
token-based models, on the other hand, has been shown in two subsequent shared
tasks on Russian and Spanish (Kutuzov and Pivovarova, 2021a; Zamora-Reina
et al., 2022), where especially Word-in-Context models (Pilehvar and Camacho-
Collados, 2019) using BERT (or XLMR) vectors as input features show high per-
formance, dominating type-based models (Arefyev and Bykov, 2021; Arefyev and
Rachinskiy, 2021; Arefyev et al., 2021; Homskiy and Arefyev, 2022). Also, cluster-
ing approaches are amongst the best systems in the Spanish task (Kashleva et al.,
2022; Teodorescu et al., 2022). These developments are crucial because they will
allow modeling the annotation process more closely in the future. They also en-
able working with smaller historic data samples because BERT is pre-trained unlike
SGNS, which needs large corpora to learn vectors.
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Chapter 6

Application

In the previous chapter, we evaluated various token- and type-based VSMs
on different LSCD data sets and tasks. The best-performing models included
SGNS+OP+CD (or slight variations) and BERT + average measures (APD, COS).
We now use these models to discover novel instances of semantic change from
the SemEval DE corpora and to evaluate the usefulness of such discovered sense
changes for external fields. Such discoveries may be useful in a range of fields
(Hengchen et al., 2019; Jatowt et al., 2021), among which historical semantics and
lexicography represent obvious choices (Ljubešić, 2020). We validate the model
predictions post-hoc with the annotation procedure developed in Section 3.1.2. In
this way, we automatically detect previously described semantic changes and dis-
cover novel instances of semantic change, which had not been indexed in standard
historical dictionaries before. We further evaluate the usability of the approach
from a lexicographer’s viewpoint and show how intuitive visualizations of human-
annotated data can benefit dictionary makers.

6.1 Task Definition

The tasks defined in Chapter 5 require to detect semantic change in a small pre-
selected set of target words. Instead, we are interested in the discovery of changing
words from the full vocabulary of the corpus. We define the task of binary lexical
semantic change discovery as follows.

Task Binary classification: Given a diachronic corpus pair C1 and C2, decide for
the intersection of their vocabularies which words lost or gained sense(s) be-
tween C1 and C2, and which ones did not.
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This task can also be seen as a special case of Binary Change Classification (see
Section 5.2), where the target words equal the intersection of the corpus vocabu-
laries. Note, however, that discovery introduces additional difficulties for models
e.g. because a large number of predictions is required and the target words are
not preselected, nor balanced or cleaned. Yet, discovery is an important task with
applications such as lexicography, where dictionary makers aim to cover the full
vocabulary of a language.

6.2 Models

We train SGNS on the lemmatized versions of the SemEval DE corpora. For BERT,
we extract uses for every target word by randomly subsampling up to 100 uses
from both subcorpora C1 and C2.1 These are then fed into BERT to create con-
textualized embeddings resulting in two sets of up to 100 vectors M1 and M2, for
each time period respectively (see Section 4.1.3). We experiment with different pre-
processings for BERT’s input uses, sampling uses from the relevant preprocessed
corpus versions. As in Section 5.3, the tokenized use versions are further cleaned by
replacing a small, manually identified set of historical characters with their modern
equivalents.

We start the discovery process by generating optimized graded change predic-
tions with SGNS+OP+CD, BERT+APD and BERT+COS on the SemEval DE Sub-
task 2 data using high-performing parameter configurations following previous
work and tuning. Then, we infer binary scores with a principled thresholding tech-
nique to obtain binary change predictions. We tune the threshold to find the best-
performing type- and token-based approaches for binary classification. These are
used to generate two sets of predictions for discovery. We evaluate the graded
rankings in Subtask 2 with Spearman’s rank-order correlation coefficient ρ, as in
Chapter 5. For binary classification, we compute precision, recall and F0.5. The
latter puts a stronger focus on quality (precision) than quantity (recall) yielding
smaller sets of positive predictions, which can be more easily evaluated via human
annotation.2

1We subsample as some words have 10,000 or more uses.
2Find the code used for each step of the prediction process at https://github.com/seinan9/

LSCDiscovery.

https://github.com/seinan9/LSCDiscovery
https://github.com/seinan9/LSCDiscovery
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6.2.1 Tuning

Graded change SGNS is commonly used (see Section 5.2) and also highly opti-
mized (Kaiser et al., 2020a,b, 2021), so it is difficult to further increase its perfor-
mance. We thus rely on the work of Kaiser et al. (2020a) and test their parame-
ter configurations on the SemEval DE data set.3 We obtain three slightly differ-
ent parameter configurations (see Table 6.2 for more details), yielding competitive
ρ = .690, ρ = .710 and ρ = .710, respectively (cf. Table 5.1).

In order to improve the performance of BERT, we test different preprocessings,
layer combinations and semantic change measures. With the help of our results
from Section 5.3, we are able to drastically increase the performance of BERT on
SemEval DE. In a preprocessing step, we replace the target word in every use by
its lemma (TokLem). In combination with layer 1+12, both APD and COS perform
competitively well on Subtask 2 (ρ = .690 and ρ = .738).

Binary change Solving Subtask 2 (Graded Change Ranking) is straightforward
since both the type-based and token-based approach output distances between rep-
resentations for C1 and C2 for every target word. Like many approaches presented
in Section 5.2, we use thresholding to binarize these values. The idea is to define a
threshold parameter where all ranked words with a distance greater or equal to this
threshold are labeled as changing words (see Section 4.4). For cases where no tun-
ing data is available, Kaiser et al. (2020b) propose to choose the threshold according
to the population of CDs of all words in the corpus. Kaiser et al. set the threshold
to µ+σ, where µ is the mean and σ is the standard deviation of the population. We
slightly modify this approach by changing the threshold to µ+ t∗σ. In this way, we
introduce an additional parameter t, which we tune on the SemEval DE Subtask
2 test data. We test different values ranging from −2 to 2 in steps of 0.1 obtaining
F0.5-scores for a large range of thresholds. SGNS achieves peak F0.5-scores of .692,
.738 and .685, respectively (see Table 6.2). Interestingly, the optimal threshold is at
t = 1.0 in all three cases. This corresponds to the threshold used in Kaiser et al.
(2020b). While the peak F0.5 of BERT+APD is marginally worse (.598 at t = −0.2),
BERT+COS is able to outperform the best SGNS configuration with a peak of .741
at t = 0.1.

In order to obtain an estimate on the sampling variability that is caused by sam-
pling only up to 100 uses per word for BERT+APD and BERT+COS (see Section

3All configurations use w = 10, d = 300, e = 5 and a minimum frequency count of 39.
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4.1.3), we repeat the whole procedure 9 times and estimate mean and standard
deviation of performance on the tuning data. In the beginning of every run, the
uses are randomly sampled from the corpora. We observe a mean ρ of .657 for
BERT+APD and .743 for BERT+COS with a standard deviation of .015 and .012,
respectively, as well as a mean F0.5 of .576 for BERT+APD and .684 for BERT+COS
with a standard deviation of .013 and .038, respectively. This shows that the vari-
ability caused by subsampling word uses is negligible.

6.2.2 Discovery

Since SGNS generates type-based vectors for every word in the vocabulary, mea-
suring the distances for the full vocabulary comes with low additional computa-
tional effort. Unfortunately, this is much more difficult for BERT: Creating up to
100 vectors for every word in the vocabulary drastically increases the computa-
tional burden. Hence, we choose a population of only 500 words for our work,
allowing us to test multiple parameter configurations.4 We sample words from dif-
ferent frequency areas to have predictions not only for low-frequency words. For
this, we first compute the frequency range (highest frequency – lowest frequency)
of the vocabulary. This range is then split into 5 areas of equal frequency width.
Random samples from these areas are taken based on how many words they con-
tain. For example: if the lowest frequency area contains 50% of all words from the
vocabulary, then 0.5 ∗ 500 = 250 random samples are taken from this area. The Se-
mEval DE target words are excluded from this sampling process. For the resulting
population of words, we create graded and binary predictions.

We use the top-performing configurations (see Table 6.2) to generate two sets of
large-scale predictions for SGNS and BERT by computing graded predictions and
thresholding them using the optimal threshold found in Section 6.2.1. While for
SGNS we use the matrix obtained for tuning from lemmatized corpora, for BERT
we use the raw corpora with lemmatized target words instead. The latter choice is
motivated by the previously described performance increases during tuning.

The binary predictions (words labeled as changing) contain proper names, for-
eign language and lemmatization errors, which we aim to filter out automatically,
as such cases are usually not considered to be semantic changes.5 We only allow

4In a practical setting where predictions have to be generated only once, a much larger
number may be chosen. Also, possibilities to scale up BERT performance can be applied
(Montariol et al., 2021).

5We use spaCy for filtering (Honnibal et al., 2020).
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G G1 G2

Figure 6.1: WUG of German Aufkommen (left), subgraphs for 1st time period G1 (middle)
and for 2nd time period G2 (right).

nouns, verbs and adjectives to pass. Words where over 10% of the uses are either
non-German or contain more than 25% punctuation are filtered out as well.

After the filtering, we obtain 27 and 75 words labeled as changing, respectively.
We further sample 30 targets from the second set (75) of predictions to obtain a fea-
sible number for annotation. We call the first set SGNS targets and the second one
BERT targets, with an overlap of 7 targets. Additionally, we randomly sample 30
words from the population (with an overlap of 5 with the SGNS and BERT targets)
in order to estimate the change distribution underlying the corpora. We call these
baseline (BL) targets. This baseline will help us to put the discovery result into
context and will reveal whether the predictions of the two models improve upon a
random word selection procedure from the corpus. Following the annotation pro-
cess, binary gold data is generated for all three target sets, in order to validate the
quality of the predictions.

6.3 Annotation

The model predictions are evaluated by human annotation. For this, we apply the
annotation procedure developed in Section 3.1.2 to the uses of the discovered target
words from Section 6.2.2. Annotators are asked to judge the semantic relatedness
of use pairs, such as the two uses of Aufkommen in (6.1) and (6.2), on the scale in
Table 3.1.

(6.1) Es ist richtig, dass mit dem Aufkommen der Manufaktur im Unterschied
zum Handwerk sich Spuren der Kinderexploitation zeigen.
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Data set n N/V/A SPR KRI |U| LSCB LSCG

SemEval DE 48 32/14/2 .59 .53 175 .35 .31
Predictions 75 39/16/20 .64 .58 49 .48 .40

Table 6.1: Overview target words. n = no. of target words, N/V/A = no. of
nouns/verbs/adjectives, SPR = weighted mean of pairwise Spearman, KRI = Krippen-
dorff’s α, |U | = avg. no. of uses per word, LSCB/G = mean binary/graded change score.

‘It is true that with the emergence of the manufactory, in contrast to the handicraft,
traces of child labor are showing.’

(6.2) Sie wissen, daß wir für das Vieh mehr Futter aus eigenem Aufkommen
brauchen.
‘They know that we need more feed from our own production for the cattle.’

As described in Section 3.1.3, the annotated data of a word is then represented in
a WUG, where vertices represent word uses, and weights on edges represent the
(median) semantic relatedness judgment of a use pair. The final WUGs are clus-
tered with Correlation Clustering (see Figure 6.1, left) and split into two subgraphs
representing nodes from subcorpora C1 and C2 respectively (middle and right). As
described in Section 3.1.5, clusters are then interpreted as word senses and changes
in clusters over time as LSC.

We use the openly available DURel interface for annotation and visualization.6

This also implies a change in sampling procedure as the system only implements
random sampling of use pairs (without SemEval-style optimization in rounds). For
each target word, we sample |U1| = |U2| = 25 uses per subcorpus (C1, C2) and up-
load these to the DURel system, which presents use pairs to annotators in random-
ized order. We recruit eight German native speakers with university level educa-
tion as annotators. Five have a background in linguistics, two in German studies,
and one has an additional professional background in lexicography. Similar to the
criterion used in Section 3.2.1.5, we ensure the robustness of the obtained cluster-
ings by continuing the annotation of a target word until all multi-clusters (clusters
with more than one use) in its WUG are connected by at least one judgment. We
finally label a target word as changed (binary) if it gained or lost a cluster over time

6https://www.ims.uni-stuttgart.de/data/durel-tool.

https://www.ims.uni-stuttgart.de/data/durel-tool
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parameters t
tuning predictions

ρ F0.5 P R ρ F0.5 P R

SG
N

S k = 1, s = .005 1.0 .690 .692 .750 .529
k = 5, s = .001 1.0 .710 .738 .818 .529 .295 .714 .667 1.0
k = 5, s = None 1.0 .710 .685 .714 .588

B
ER

T APD −0.2 .673 .598 .560 .824
COS 0.1 .738 .741 .706 .788 .482 .620 .567 1.0

B
L random sampling .349 .300 1.0

Table 6.2: Performance (Spearman’s ρ, F0.5-measure, precission P and recall R) of different
approaches on tuning data (SemEval DE targets) and performance of best type- and token-
based approach on respective predictions with optimal tuning threshold t, as well as the
performance of a randomly sampled baseline.

(see Section 3.1.5). For instance, Aufkommen in Figure 6.1 is labeled as change as it
gains the orange cluster from C1 to C2. As defined in Section 3.1.5, we use k and n
as lower frequency thresholds for binary change to avoid that small random fluc-
tuations in sense frequencies caused by sampling variability or annotation error be
misclassified as change. For comparability across sample sizes, we propose to gen-
erally set k = 1 ≤ 0.01∗ |Ui| ≤ 3 and n = 3 ≤ 0.1∗ |Ui| ≤ 5, where |Ui| is the number
of uses from the respective time period (after removing uses with many ‘Cannot
decide’ judgments from the graphs, see Section 3.2.1.5). This results in k = 1 and
n = 3 for all target words.

For an overview over the final set of WUGs, refer to Table 6.1. We reach a
comparable inter-annotator agreement (Spearman’s ρ = .64) to the SemEval and
DURel data sets (cf. Tables 3.4 and 3.6). Find a selection of WUGs from all data sets
in Appendix A.7

6.4 Results

The evaluation of the discovery predictions from Section 6.2.2 on the annotated
data from Section 6.3 is presented in Table 6.2. We achieve a F0.5-score of .714 for
SGNS and .620 for BERT. Out of the 27 words predicted by the SGNS model, 18 (67

7The data is available at https://www.ims.uni-stuttgart.de/data/wugs under Dis-
coWUG V1.0.0.

https://www.ims.uni-stuttgart.de/data/wugs
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Figure 6.2: F0.5 performance on SemEval DE targets (orange) and respective discovery pre-
dictions (green) across different thresholds. Left: SGNS. Right: BERT+COS. Gray vertical
line indicates optimal performance on SemEval targets.

%) were actually labeled as changing words by the human annotators. In compar-
ison, only 17 out of the 30 (57 %) BERT predictions were annotated as such. The
performance of SGNS for discovery (SGNS targets) is even higher than on the tun-
ing data (SemEval targets). In contrast, BERT’s performance for discovery drops
strongly in comparison to the performance on the tuning data (.741 vs. .620). This
replicates our previous results from Chapter 5 that BERT generalizes poorly for
LSCD and does not transfer well between data sets. If we compare these results to
the baseline, we can see that both models perform much better than the random
baseline (F0.5 of .349). Only 10 out of the 30 (30 %) randomly sampled words are
annotated as changing. This indicates, that the performance of SGNS and BERT is
likely not a cause of randomness. Both models considerably increase the chance of
finding changing words compared to a random model.

Figure 6.2 shows the detailed F0.5 developments across different thresholds on
the SemEval targets and the discovered words. Increasing the threshold on the
discovered words improves the F0.5 for both the type-based and token-based ap-
proach. A new high-score of .783 at t = 1.3 is achievable for SGNS. While BERT’s
performance also increases to a peak of .714 at t = 1.0, it is still lower than in the
tuning phase.
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G G1 G2

Figure 6.3: WUG of German Angriffswaffe (left), subgraphs for 1st time period G1 (middle)
and for 2nd time period G2 (right).

6.5 Analysis

For further insights into sources of errors, we take a close look at the false posi-
tives, their WUGs and the underlying uses. Most of the wrong predictions can be
grouped into one out of two error sources (cf. Kutuzov, 2020, pp. 175–182):

Context change The first category includes words where the context in the uses
shifts between time periods while the meaning stays the same. The WUG of An-
griffswaffe (‘offensive weapon’, see Figure 6.3) shows a single major cluster for both
C1 and C2. In the first time period, Angriffswaffe is used to refer to a hand weapon
(such as ‘sword’, ‘spear’). In the second period, however, the context changes to
nuclear weaponry. We can see a clear contextual shift while the meaning did not
change. In this case both models are tricked by the change of context. Further false
positives in this category are the SGNS targets Ächtung (‘ostracism’) and aussterben
(‘to die out’) and the BERT targets Königreich (‘kingdom’) and Waffenruhe (‘cease-
fire’).

Context variety Words that can be used in a large variety of contexts form the
second group of false positives. SGNS falsely predicts neunjährig as a changing
word. When we take a closer look at its WUG (see Figure 6.4), we observe that
there is only one (and the same) cluster in both time periods. The meaning of the
target does not change, even though a large variety of contexts exists in both C1

and C2. For example: ‘which bears oats at nine years fertilization’, ‘courageously, a
nine-year-old Spaniard did something’ and ‘after nine years of work’. Both models
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G G1 G2

Figure 6.4: WUG of German neunjährig (left), subgraphs for 1st time period G1 (middle)
and for 2nd time period G2 (right).

are misguided by this large context variety. Further examples include the SGNS
target vorjährig (‘of the previous year’) and the BERT targets bemerken (‘to notice’)
and durchdenken (‘to think through’).

6.6 Lexicographical Evaluation

We now evaluate the usefulness of the proposed semantic change discovery proce-
dure, including the annotation approach and WUG visualization from a lexicogra-
pher’s viewpoint. The advantage of our approach lies in providing lexicographers
and dictionary makers the choice to take a look into predictions which they con-
sider promising with respect to their research objective (disambiguation of word
senses, detection of novel senses, detection of archaisms, describing senses in re-
gard to specific discourses etc.) and the type of dictionary. Visualized annotations
for target words may be analyzed in regard to single senses, clusters of senses and
the semantic proximity of sense clusters. Random sampling of uses also offers the
opportunity to judge underrepresented senses in a sample that might be infrequent
in a corpus or during a specific period of time (although currently a high number
of overall annotations would be required in order to do so). Most importantly, the
use of a variable number of human annotators has the potential to ensure a more
intersubjective analysis of large amounts of corpus data. In order to evaluate the
potential of the approach for assisting lexicographers with extending dictionaries,
we analyze the annotated data for the two sets of model predictions (SGNS, BERT)
and compare them to existing dictionary contents.
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We consider inter-annotator agreement (Krippendorff’s α >= .5) and anno-
tated binary change label to select 21 target words for lexicographical analysis. In
this way, we exclude unclear cases and non-changing words. The data is analyzed
by inspecting interactive cluster visualizations of WUGs (similar to Figure 6.1, see
also Section 3.3.1.1) and comparing them to entries in general and specialized dic-
tionaries in order to determine

1. whether a sense derived from the annotation is included in any of the ref-
erence dictionaries, indicating the discovery of a previously unknown sense
and

2. whether binary change labels derived from the annotation correspond to
changes in the entries found in the two reference dictionaries that are con-
sulted for C1 and C2.

Three dictionaries are consulted throughout the analysis: (i) the Dictionary of the
German language (DWB, 2021) by Jacob und Wilhelm Grimm (digitized version of
the 1st print published between 1854–1961), (ii) the Dictionary of Contemporary
German (WGD, 2021), published between 1964–1977, now curated and digitized
by the DWDS (2021) and (iii) the Duden online dictionary of German language
(DUDEN, 2021), reflecting usage of Contemporary German up until today.8 Addi-
tionally, lemma entries in the Wiktionary online dictionary (Wiktionary, 2021) are
consulted to verify genuinely novel senses described in Section 6.6.1.

6.6.1 Records of Senses

In the case of 17 target words, all senses identified by the annotation approach are
included in at least one of the three dictionaries consulted for the analysis. In the
four remaining cases, at least one sense of a word is neither paraphrased nor given
as an example of semantically related senses in the dictionaries (see also Figure 6.5):

einbinden Reference to the integration or embedding of details on a topic, event,
person in respect to a chronological order within written text or visual presentation
(e.g. for an exhibition on an author) is identified by the annotation approach as a
gained sense in close semantic proximity to the old sense ‘to bind sth. into sth.’,
e.g. flowers into a bundle of flowers. The word einbinden is also used in technical

8Only the fully-digitized version of the DWB’s first print was consulted for this evaluation since a
revised version has not been completed yet and is only available for lemmas starting with letters a–f.
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contexts, meaning ‘to (physically) implement parts of a construction or machine
into their intended slots’.

niederschlagen In cases where the verb niederschlagen co-occurs with the verb
particle auf and the noun Flügel, the verb refers to a bird’s action of repeatedly
moving its wings up and down in order to fly.

regelrecht Used as an adverb, regelrecht may refer to something being the usual
outcome that ought to be expected due to scientific principles, with an emphasis
on the actual result of an action (such as the dyeing of fiber of a piece of clothing
following the bleaching process) whereas senses included in dictionaries for gen-
eral language emphasize either the intended accordance with a rule or something
usually happening (the latter being colloquial use).

Zehner The sense ‘a winning sequence of numbers in the national lottery’,
annotated to be gained between C1 and C2, is not included in any of the reference
dictionaries.

Additionally, we consult a dictionary for Early New High German (FHDW) in or-
der to check whether discovered senses existed at an earlier stage and thus likely
may be discovered due to low frequency or sampling error. In two cases, discov-
ered senses that are not included in the DWB (for C1) are found to be included
in the FHDW (2021). Interestingly, one sense paraphrased for Ausrufung (‘a loud
wording, a shout’) is neither included in DWB nor in WGD, but in the FHDW (ear-
lier) and DUDEN (as of now). These findings suggest that it might be reasonable
to use more than two reference corpora. This would also alleviate the corpus bias,
stemming from idiosyncratic data sampling procedures.

Note that some of the senses described in this section might still be included
in more specialized dictionaries, which we did not check, e.g. technical usage of
einbinden.

6.6.2 Records of Changes

For 12 target words, the binary semantic change predicted by the models correlates
with the addition or non-inclusion of senses in dictionary entries consulted for the
respective period of time (DWB for C1, WGD for C2). Notably, lemma lists of the
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two dictionaries might be lacking lemmas in the headword list. Moreover, lemma
entries might be lacking paraphrases or examples of senses of the lemma simply
because corpus-based lexicography was not available at the time of their first print
and revisions of the dictionaries are a work in progress.

6.7 Discussion

In this section, we tuned the state-of-the-art approaches to LSCD identified in
Chapter 5 on the SemEval DE data set for Binary Change Classification to auto-
matically discover semantic changes in the SemEval DE diachronic corpus pair.
While the type-based approach showed better performance, both approaches were
able to discover various semantic changes with above-random probability, some of
them previously undescribed in etymological dictionaries.

We validated model predictions by the annotation process developed in Chap-
ter 3, yielding a comparable inter-annotator agreement and providing convenient
ways of visualization. In addition, we evaluated the full discovery process from
a lexicographer’s point of view. The results endorse that our approach might aid
lexicographers in extending and altering dictionary entries. On the other hand,
we identified context change and context variability as weak spots of the applied
models, suggesting ways to further improve the latter. The lexicographical analysis
further showed that it is important to compare more than two reference corpora to
detect LSC.

As we have discussed in Section 3.4, the change scores resulting from our anno-
tation process by themselves are merely measurements of word sense divergences
and as such can indicate LSC in the entire speaker community only in connection
with an adequate word use sampling procedure. Such a procedure should guaran-
tee that it samples widely throughout a speaker population and ideally takes a large
random sample from each time period. It should avoid to sample only from spe-
cific text genres as this would likely bias the sample towards a particular speaker
subpopulation. However, the corpus for the second time period of the SemEval DE
data set is composed of texts from only two East German newspapers (see Section
3.2.1.1). It is thus possible that some observed changes in the annotated data would
not be observed in a more general sample (and vice versa). While the lexicographi-
cal analysis indicates that this is not a frequent problem in our data and newspaper
corpora are frequently used in historical lexicography (Gloning, 2017), future stud-
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ies should aim to alleviate this problem by choosing corpora representing as much
language variety as possible.
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Figure 6.5: WUGs from DiscoWUG with discovered senses. Full graph G (left), subgraphs
for 1st time period G1 (middle) and 2nd time period G2 (right).





131

Chapter 7

Conclusion

This dissertation provides a complete evaluation framework for the task of Lexical
Semantic Change Detection. We started out by extending and optimizing word use
pair proximity annotation to gather large amounts of data. This annotation proce-
dure was chosen because it relies on the simple and intuitive concept of semantic
proximity, which gives an explicit criterion for clustering in the lexicographic pro-
cess deriving word senses and is used in Blank’s widely accepted theory of LSC.
It further avoids the need for word sense definitions, considerably reducing the
efforts needed in the preparation of an annotation study. However, this annota-
tion procedure quadratically increases the annotation load. Hence, we needed to
develop sampling procedures iteratively finding necessary comparisons to infer a
meaningful clustering on the annotated graphs. We defined and motivated a bi-
nary and a graded measure of semantic change based on these clusterings of word
uses. They can be seen as estimates of the change scores underlying the full cor-
pus. While the graded measure can be estimated rather well from feasible sample
sizes, the binary measure is less reliable. We also defined and annotated a third
change measure avoiding clustering and showed that it empirically approximates
the graded measure of semantic change well even with small sample sizes. This is
an important result because it suggests simpler annotation strategies. We further
validated the levels of the annotation process through annotator agreement on the
concept of semantic proximity, correspondence of the clusterings to an indepen-
dent annotation with sense definitions, a manual analysis of annotator disagree-
ments and the inferred clusterings, as well as robustness of change scores after
an additional round of annotation. The overall agreement was reasonably high,
clearly above chance and comparable to previous studies. Similarly for the corre-
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spondence to sense definitions, but an additional round of annotation showed clear
improvements on the correspondence. The manual analysis revealed that ambigu-
ity and sparsity are the major challenges for our annotation approach. Finally, the
change scores showed a high robustness for some data sets, but considerable vari-
ation for others. We concluded that the current change scores should be seen as a
silver rather than a gold standard.

In the next step, we implemented a range of models from the existing literature
including our own extensions. Token-based models infer a meaning representation
on the word use level while type-based models infer a meaning representation on
the word level. The former can be seen as a model of the lexicographic clustering
process, deriving word senses, while the latter in most cases do not allow such an
interpretation straightforwardly. These models were then tested in three studies
on one binary classification and two ranking tasks, requiring models to predict the
change scores derived on the annotated data. We found good performances for
both types of models on individual data sets with an overall advantage for the
type-based approaches, being more robust across data sets and outperforming the
token-based approaches even on the binary change task. However, the tasks still
remain far from being solved. The binary task will be a particular challenge in the
future: Type-based approaches to binary change detection use thresholding and
are thus exploiting empirically observed correlations between graded and binary
change in the existing data sets rather than actually solving the task (Zamora-Reina
et al., 2022).

Skip-Gram with Negative Sampling + Orthogonal Procrustes + Cosine Dis-
tance (including variations in alignment and change measure) turned out to be a
reliable model with high performance on several data sets and high robustness.
We further improved the performance of this approach through mean centering
in the alignment step. We then tested several hypotheses on potential biases in
the commonly applied token-based model BERT and found that it is influenced by
various factors, but most strongly by target word form if word uses are not prepro-
cessed. By removing the form bias, we were able to considerably improve the per-
formance across languages, but still found considerable variation of results across
parameters and data sets. We also found that using the lemmatized word uses (as
provided to SemEval shared task participants in the evaluation phase) often has
a negative impact on performance compared to other preprocessing variants. Al-
though we reached a rather high performance with clustering for Graded Change
Ranking in German, average measures still performed better than clustering-based
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approaches. The reasons for this are unclear and should be addressed in future
research.

In a final step, we tuned the state-of-the-art approaches to LSCD identified in
Chapter 5 for Binary Change Classification to automatically discover semantic
changes in a diachronic corpus pair. While the type-based approach showed better
performance, both approaches were able to discover various semantic changes with
above-random probability, some of them previously undescribed in etymological
dictionaries. We validated model predictions by the annotation process developed
in Chapter 3 and evaluated the full discovery process from a lexicographer’s point
of view. The results of the analyses endorse that our approach might aid lexicogra-
phers with extending and altering existing dictionary entries as well as discovering
new changing words. On the other hand, we identified context change and context
variability as weak spots of the applied models, suggesting ways to improve these.
The lexicographical analysis further showed that it is important to compare more
than two reference corpora to detect LSC.

In summary, we can say that we tried to standardize the field of LSCD, but have
to admit that we are only at the beginning of this process. More work has to be done
on controlling evaluation data quality and understanding model performance. Es-
pecially the binary change score cannot be assumed to generalize well to the full
corpora. Hence, Binary Change Classification should preferably be done only on
the annotated use samples. The data quality should be further improved by (i)
adding more annotations to the existing data sets to reduce sparsity or to increase
the time ranges covered, (ii) annotating the existing data sets with alternative an-
notation strategies such as sense definitions or (iii) cleaning the existing data sets
by removing words with low agreement, high sparsity or high clustering loss.1 Be-
cause of the late availability of data sets or models in the progression of this thesis,
not all models were tested on all data sets and tasks. These missing evaluations
should be done in the future to get a full picture of model performances.

By defining LSCD tasks only for two corpora, we have gained feasibility of an-
notation and simplicity of the tasks, but also limited the potentials of models. The
traditional examples of semantic changes (see Section 2.1) describe developments
over long periods of time. Hence, a comparison of change predictions for mul-
tiple time points may help models to distinguish fluctuations in meaning stem-
ming from sampling variability or bias from true (enduring) semantic changes over

1Some of these proposals are already implemented into the LSCD Benchmark: https://
github.com/ChangeIsKey/LSCDBenchmark.

https://github.com/ChangeIsKey/LSCDBenchmark
https://github.com/ChangeIsKey/LSCDBenchmark
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longer periods of time. Models of such continuous changes have been proposed in
recent years (Frermann and Lapata, 2016; Rosenfeld and Erk, 2018; Tsakalidis and
Liakata, 2020).

Our results with respect to the dominance of type-based models have to be seen
in context of the latest research: In the latest shared tasks on Russian and Spanish
data (Kutuzov and Pivovarova, 2021a; Zamora-Reina et al., 2022), type-based ap-
proaches such as SGNS+OP+CD were clearly outperformed by Word-in-Context
(WiC) models (Pilehvar and Camacho-Collados, 2019) using BERT (or XLMR) vec-
tors as input features (Arefyev and Bykov, 2021; Arefyev and Rachinskiy, 2021;
Arefyev et al., 2021; Homskiy and Arefyev, 2022). These models learn to distin-
guish the meanings of word use pairs from (binary) human semantic proximity
judgments of such pairs and can thus be seen as an optimized model for semantic
proximity. Hence, their good performance can be explained with the theoretical
background given in this thesis and the measurement process of LSC developed
from it, where semantic proximity is the most fundamental concept. A promising
direction of future research will be to exploit the thousands of semantic proxim-
ity judgments which we and follow-up studies annotated for optimization of WiC
models for LSCD (cf. Arefyev et al., 2021).2 A major advantage of this develop-
ment is that while contextualized embeddings are expensive to train from scratch,
we can extract contextualized meaning representations reflecting historical word
meanings once they are trained without needing large amounts of training data.
In contrast, type-based embeddings are usually trained from scratch and need rel-
atively large amounts of training data which is not always available for historical
languages.

The evaluation approaches developed in this thesis have inspired a range of
follow-up studies. Three shared tasks have been organized on Italian (Basile et al.,
2020), Russian (Kutuzov and Pivovarova, 2021a) and Spanish (Zamora-Reina et al.,
2022) data, respectively, adopting (parts of) our evaluation setup. Several studies
have adopted our annotation framework (Giulianelli et al., 2020; Rodina and Ku-
tuzov, 2020; Kutuzov and Pivovarova, 2021a; Kutuzov et al., 2022; Zamora-Reina
et al., 2022; Baldissin et al., 2022; Aksenova et al., 2022). The annotation style us-
ing semantic proximity between word uses and the Negated COMPARE measure
has inspired the transfer of WiC (Pilehvar and Camacho-Collados, 2019) models to
LSCD resulting in the above-described leap of performance for token-based mod-

2These data sets are available at https://www.ims.uni-stuttgart.de/data/wugs.

https://www.ims.uni-stuttgart.de/data/wugs
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els (Arefyev et al., 2021). Furthermore, there has been a range of follow-up research
on the annotation and clustering of WUGs (Schlechtweg et al., 2021a; Kotchourko,
2021; Tunc, 2021).

7.1 Implications for other Research Fields

This thesis contributes to research in different fields on multiple levels. We discuss
the most important implications, which we see for historical and evolutionary lin-
guistics, cognitive semantics and lexical semantics, lexicography, humanities and
social sciences.

We tried to detect where word senses are lost or gained, but not why this hap-
pens. The latter question is a major concern in historical linguistics and evolu-
tionary linguistics. However, an answer to the why presupposes an answer to the
where, i.e., we can only find out why LSC happens if we know where it happens
and can analyze the detected instances. Hence, this thesis provides the tools neces-
sary to investigate the causes of LSC on a larger scale than previously possible (as
done e.g. by Hamilton et al., 2016b). However, it is important to validate models
and to investigate their biases before testing scientific hypotheses about LSC (Du-
bossarsky et al., 2017). Although we have taken a semasiological perspective, the
presented methods described in Chapter 3 and Chapter 4 can be used in an ono-
masiological setting, relating the meanings of uses from different words (Baldissin
et al., 2022). In this way, we can e.g. detect synonyms and their semantic devel-
opments over time, which can contribute to understand the causes of LSC (Turney
and Mohammad, 2019). With more and more historical text resources being digi-
tized, text data becomes an increasingly important source to study such long-term
language developments.

We generated large amounts of data with the annotation process described in
Chapter 3. These human semantic proximity judgements can be used to answer
cognitive questions about word meaning. This can be done, for instance, by for-
mulating precise (e.g. Bayesian) models of word meaning and comparing models
encoding different hypotheses regarding their fit to the data (Schlechtweg et al.,
2021a). This can help to answer questions about the discreteness of word senses
or the universality of semantic proximity (see Section 3.4). Our data is partic-
ularly interesting because word uses were randomly sampled from corpora, thus
representing realistic and rather unbiased language samples in contrast to similar,



136 7 Conclusion

but strongly cleaned datasets (Pilehvar and Camacho-Collados, 2019; Armendariz
et al., 2020). Moreover, the word sense frequency distributions inferred on the an-
notated data are valuable information to understand statistical properties of word
senses in lexical semantics (Kilgarriff, 2004) and, importantly, to connect these to
their changes.

Chapter 3 describes a theoretically-grounded human annotation approach for-
malizing the lexicographic clustering process and applying scientific measurement
techniques common in the behavioral sciences. This can serve as a starting point
to approach lexicography more from an empirical scientific perspective (Margal-
itadze, 2018). The annotation approach has been implemented into an online in-
terface that can be used by lexicographers to measure word meaning and meaning
change.3 The computational models described in Chapter 4, which we used to
automate the measurement of word meaning and meaning change, have a huge
potential to be used for lexicographical analysis, as we demonstrated in Chap-
ter 6. These models will also be subsequently implemented into the online an-
notation interface to make them usable for a wider public. Further, the data we
created or gathered can be useful to both, historical linguistics and lexicography.
This includes larger lists of words and (noisy) change scores assembled in the pre-
annotation phase for SemEval-2020 Task 1 or the annotated model predictions for
changes from Chapter 6.4

Both, the human as well as the computational measurement approach we de-
scribed in Chapter 3 and Chapter 4, are of importance to the humanities and social
sciences, where language use is often seen as an indicator of cultural developments
(Hengchen et al., 2019; Hamilton et al., 2016a; Ferrara et al., 2022), short-term social
or political developments (Kutuzov et al., 2017), or social or political differences
between groups (Ceron et al., 2022; Nanni et al., 2022). The computational methods
can be used to predict large-scale semantic divergences while the human annota-
tion may serve to validate a sample of predictions on the particular data.

3https://www.ims.uni-stuttgart.de/data/durel-tool
4Find the lists at https://www.ims.uni-stuttgart.de/data/wugs under DWUG

DE/EN/SV V1.0.0.

https://www.ims.uni-stuttgart.de/data/durel-tool
https://www.ims.uni-stuttgart.de/data/wugs
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Appendix A

Word Usage Graphs

Selected WUGs from each Data Set

Figures A.1–A.14 show WUGs for selected words from each data set described in
Chapter 3 and Chapter 6, including for each word the full graph G (left), the sub-
graph for 1st time period G1 (middle) and the subgraph for the 2nd time period G2

(right).

Comparison of Clusterings on SemEval DE

Figures A.15 and A.16 show the comparison of clusterings for German abbauen,
abgebrüht, Knotenpunkt, Manschette, zersetzen from SemEval DE, as described in Sec-
tion 3.3.2: sense description clustering (left), corresponding semantic proximity
clustering for same nodes (middle) and full semantic proximity clustering (right).
Node positions for each plot are generated on the full WUG.
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abbauen

abgebrüht

ausspannen

G

Einreichung

G1 G2

Figure A.1: WUGs from SemEval DE. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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Eintagsfliege

Knotenpunkt

Manschette

G

Ohrwurm

G1 G2

Figure A.2: WUGs from SemEval DE. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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Rezeption

Schmiere

Sensation

G

zersetzen

G1 G2

Figure A.3: WUGs from SemEval DE. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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bit

contemplation

donkey

G

fiction

G1 G2

Figure A.4: WUGs from SemEval EN. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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graft

lass

ounce

G

pin

G1 G2

Figure A.5: WUGs from SemEval EN. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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plane

player

record

G

thump

G1 G2

Figure A.6: WUGs from SemEval EN. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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aktiv

annandag

beredning

G

central

G1 G2

Figure A.7: WUGs from SemEval SV. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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färg

konduktör

krita

G

ledning

G1 G2

Figure A.8: WUGs from SemEval SV. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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medium

motiv

notis

G

uppfattning

G1 G2

Figure A.9: WUGs from SemEval SV. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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abspalten

anpflanzen

Aufkommen

G

Kunde

G1 G2

Figure A.10: WUGs from DiscoWUG. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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Losung

niederschlagen

Sprachrohr

G

Triebkraft

G1 G2

Figure A.11: WUGs from DiscoWUG. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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Waffenruhe

Warschauer

Zehner

G

zurückwerfen

G1 G2

Figure A.12: WUGs from DiscoWUG. Full graph G (left), subgraphs for 1st time period G1
(middle) and 2nd time period G2 (right).
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Abend Anstalt Anstellung

billig Donnerwetter englisch

Feder Feine Presse

Steckenpferd Vorwort Zufall

Figure A.13: WUGs from DURel showing the COMPARE subgraph G1,2.
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abschrecken Eiweiß Gemüse

Gericht Hamburger Messer

Paprika Prise schlagen

Schnee Schnittlauch Strudel

Figure A.14: WUGs from SURel showing the COMPARE subgraph G1,2.
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abbauen

abgebrüht

Knotenpunkt

sense description

Manschette

WUG reduced WUG full

Figure A.15: Cluster comparison for words from SemEval DE.
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sense description

zersetzen

WUG reduced WUG full

Figure A.16: Cluster comparison for words from SemEval DE.
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Appendix B

Formal Relations between Change
Measures

The change measures described in Section 3.1.5 are mathematically related, e.g.,
they coincide for certain special cases of sense probability distributions (normal-
ized sense frequency distributions). In this chapter, we show some of these rela-
tions under simplifying assumptions. We focus on relations between the measures’
maximum and minimum values. Specifically, we show that:

Lemma 1 If G(P,Q) = 1, then B(P,Q) = 1.

Lemma 2 If G(P,Q) = 0, then B(P,Q) = 0.

Lemma 3 G(P,Q) = 1 iff C(P,Q) = −1.

Lemma 4 If C(P,Q) = −4, then G(P,Q) = 0.

Lemma 5 If C(P,Q) = −4, then B(P,Q) = 0.

Lemma 6 If C(P,Q) = −1, then B(P,Q) = 1.

Definitions and Assumptions

Assume that G = (U,E,W) is a Word Usage Graph (see Section 3.1.3) of word w

containing w’s uses U from two time periods. D and E are the time-specific sense
frequency distributions (see Section 3.1.4) of length K, obtained by clustering the
uses in U based on the edge weights in W , and P and Q the corresponding sense
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probability distributions, obtained by dividing D and E by their respective total
frequencies. Note that P and Q are probability distributions, i.e., for each pi, qi,
0 ≤ pi, qi and

∑K
i pi = 1,

∑K
i qi = 1.1 Further, assume that G1,2 = (U,E1,2,W1,2)

is the subgraph of G containing all uses U from both time periods, but only those
edges (u1, u2) and their weights where word uses u1 and u2 are from different time
periods (COMPARE edges, see Section 3.1.3).

Binary change B(w) was defined (see Section 3.1.5) as

B(D,E) = 1 if for some i, Di ≤ k and Ei ≥ n,

or vice versa.

B(D,E) = 0 else.

We assume that k = 0 and n = 0. Hence, B(D,E) = B(P,Q) becomes

B(P,Q) = 1 if for some i, Pi = 0 and Qi > 0,

or vice versa.

B(P,Q) = 0 else.

Graded change G(w) was defined as the Jensen-Shannon Distance between P and
Q:

G(P,Q) = JSD(P,Q) .

The JSD has two alternative formulations (Lin, 1991):

JSD(P,Q) =
√
H(M)− 1

2
(H(P ) +H(Q)) ,

JSD(P,Q) =
√
KLD(P ‖M) +KLD(Q ‖M)

2
where

H(P ) = −
K∑
i

pi log2(pi),

1We allow for zero-probability events.
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M = P +Q

2
,

KLD(P ‖ Q) =
K∑
i

pi log2
(
pi
qi

)
.

The Negated COMPARE score C(w) was defined as the negated mean of the
COMPARE weights W1,2:

C(W1,2) = − 1
|W1,2|

∑
x∈W1,2

x .

Now, assume that R : set(W1,2) 7→ [0, 1] is the probability distribution over the
COMPARE weights W1,2 mapping each possible unique edge weight to its prob-
ability of occurrence given by its normalized occurrence frequency in W1,2. Now,
note that the negated mean (expectation) of this distribution is equivalent to the
mean of COMPARE weights W1,2:

C(R) = C(W1,2) = −
∑

x∈set(W1,2)

xR(x) .

Now, assume that edge weights between uses of different senses (clusters) in P

and Q are constantly 1 while weights between uses of the same sense are con-
stantly 4. This implies that the distribution of the COMPARE weights is defined
by R(4) =

∑K
i piqi, R(1) = 1−

∑K
i piqi (cf. Arefyev and Bykov, 2021). Now, C(R)

can be expressed as the negated sum of probabilities of sampling the same sense or
different senses of a word from two time-periods multiplied by the corresponding
weights (4 or 1):

C(P,Q) = −
(
4 ∗

K∑
i

piqi + 1 ∗
(
1−

K∑
i

piqi
))

= −
(
3 ∗

K∑
i

piqi + 1
)
.

Proofs

We now give proofs of the Lemmas under the assumptions mentioned above.

Lemma 1 If JSD(P,Q) = 1, then B(P,Q) = 1.
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Proof Assume that JSD(P,Q) = 1. From Lemma 7, it follows that for every i

either pi > 0 and qi = 0, or qi > 0 and pi = 0, or pi = qi = 0. Also, there must
be at least one i, j such that pi > 0 or qj > 0 as otherwise it would not hold that∑K

i pi = 1,
∑K

i qi = 1.
�

Lemma 2 If JSD(P,Q) = 0, then B(P,Q) = 0.

Proof Assume that JSD(P,Q) = 0. Then, by Lemma 10, it holds that P = Q.
This directly implies that B(P,Q) = 0.

�

Lemma 3 JSD(P,Q) = 1 iff C(P,Q) = −1.

Proof Assume that JSD(P,Q) = 1. From Lemma 7, it follows that for every i

either pi > 0 and qi = 0, or qi > 0 and pi = 0, or pi = qi = 0. Hence, it holds that for
every i, piqi = 0. This implies that C(P,Q) = −

(
3
∑K

i piqi + 1
)

= −1.
Now, assume that C(P,Q) = −

(
3
∑

i piqi + 1
)

= −1. Then,

−
(
3

K∑
i

piqi + 1
)

= −1

3
K∑
i

piqi + 1 = 1

3
K∑
i

piqi = 0

K∑
i

piqi = 0

This means that for every i either pi > 0 and qi = 0, or qi > 0 and pi = 0, or
pi = qi = 0. From Lemma, 7 it follows that JSD(P,Q) = 1.

�

Lemma 4 If C(P,Q) = −4, then JSD(P,Q) = 0.
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Proof Assume that C(P,Q) = −4. Then,

−
(
3

K∑
i

piqi + 1
)

= −4

3
K∑
i

piqi + 1 = 4

3
K∑
i

piqi = 3

K∑
i

piqi = p1q1 + . . . piqi . . .+ pKqK = 1 (B.1)

Note that for each i, it holds that piqi ≤ qi and piqi ≤ pi. Now, assume that for some
i, 0 < pi < 1. From this, it follows that

∑K
i piqi < 1. This contradicts Equation B.1.

Similarly for 0 < qi < 1. Hence, it follows that for each i, pi = 0 or pi = 1, and
qi = 0 or qi = 1. Now, assume that for some i, pi 6= qi, i.e., either pi = 0 and qi = 1
or vice versa. It again follows that

∑K
i piqi < 1. This again contradicts Equation

B.1. It follows that pi = qi for every i. This means that P = Q. From Lemma 10, it
follows that JSD(P,Q) = 0.

�

Lemma 5 If C(P,Q) = −4, then B(P,Q) = 0.

Proof Assume that C(P,Q) = −4. From Lemma 4, it follows that JSD(P,Q) = 0.
From Lemma 2, it follows that B(P,Q) = 0.

�

Lemma 6 If C(P,Q) = −1, then B(P,Q) = 1.

Proof Assume that C(P,Q) = −1. From Lemma 3, it follows that JSD(P,Q) = 1.
From Lemma 1, it follows that B(P,Q) = 1.

�

Lemma 7 JSD(P,Q) = 1 iff for every i either pi > 0 and qi = 0, or qi > 0 and pi = 0,
or pi = qi = 0.
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Proof Assume that JSD(P,Q) = 1 =
√
H(M)− 1

2(H(P ) +H(Q)). Then,

√√√√1− 1
2

log2
K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

= 1 (Lemma 8)

1− 1
2

log2
K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

= 1

−1
2

log2
K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

= 0

− log2
K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

= 0

K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

= 1

∏K
i (pi + qi)pi+qi∏K

i p
pi
i q

qi
i

= 1

K∏
i

(pi + qi)pi+qi =
K∏
i

ppi
i q

qi
i

K∏
i

(pi + qi)pi+qi =
K∏
i

ppi
i

K∏
i

qqi
i

K∏
i

(pi + qi)pi

K∏
i

(pi + qi)qi =
K∏
i

ppi
i

K∏
i

qqi
i (B.2)

First, note that for each pi, qi, it holds that (pi + qi)pi ≥ ppi
i and (pi + qi)qi ≥ qqi

i as
0 ≤ pi, qi ≤ 1 implies pi + qi ≥ pi, pi + qi ≥ qi. Now, assume that pi, qi 6= 0 for
some i. It holds that (pi + qi)pi > ppi

i and (pi + qi)qi > qqi
i . From this, it follows

that
∏K
i (pi + qi)pi >

∏K
i p

pi
i and

∏K
i (pi + qi)qi >

∏K
i q

qi
i . Finally, this implies∏K

i (pi+qi)pi
∏K
i (pi+qi)qi >

∏K
i p

pi
i

∏K
i q

qi
i . This contradicts Equation B.2. Hence,

for every i either pi > 0 and qi = 0, or qi > 0 and pi = 0, or pi = qi = 0.
Now, assume that for every i, either pi > 0 and qi = 0, or qi > 0 and pi = 0, or
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pi = qi = 0. We know that

JSD(P,Q) =

√√√√1− 1
2

log2
K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

(Lemma 8)

We consider all three cases: (i) Assume that pi > 0 and qi = 0. This means that
the term (pi+qi)pi+qi

p
pi
i q

qi
i

reduces to p
pi
i

p
pi
i

= 1. Similarly for (ii), assuming that qi > 0 and

pi = 0. And, in case (iii) with pi = qi = 0, 00
00 = 1. Hence,

JSD(P,Q) =
√

1− 1
2

log2(1) =
√

1 = 1

�

Lemma 8 JSD(P,Q) =
√

1− 1
2 log2

∏K
i

(pi+qi)pi+qi

p
pi
i q

qi
i

.

Proof

JSD(P,Q) =
√
H(M)− 1

2
(H(P ) +H(Q))

=

√√√√1− 1
2

K∑
i

(pi + qi) log2(pi + qi)−
1
2

(H(P ) +H(Q)) (Lemma 9)

=

√√√√1
2

(
2−

K∑
i

(pi + qi) log2(pi + qi)− (H(P ) +H(Q))
)

=

√√√√1
2

(
2−

K∑
i

(pi + qi) log2(pi + qi)−
(
−

K∑
i

pi log2(pi)−
K∑
i

qi log2(qi)
))

=

√√√√1
2

(
2−

K∑
i

(pi + qi) log2(pi + qi)−
(
−

K∑
i

pi log2(pi) + qi log2(qi)
))

=

√√√√1
2

(
2−

K∑
i

(pi + qi) log2(pi + qi) +
K∑
i

pi log2(pi) + qi log2(qi)
)

=

√√√√1
2

(
2−

( K∑
i

(pi + qi) log2(pi + qi)−
K∑
i

pi log2(pi) + qi log2(qi)
))



162 B Formal Relations between Change Measures

=

√√√√1
2

(
2−

K∑
i

(pi + qi) log2(pi + qi)− pi log2(pi)− qi log2(qi)
)

=

√√√√1
2

(
2−

K∑
i

log2((pi + qi)pi+qi)− log2(p
pi
i )− log2(q

qi
i )
)

=

√√√√1
2

(
2−

K∑
i

log2((pi + qi)pi+qi)− log2(p
pi
i q

qi
i )
)

=

√√√√1
2

(
2−

K∑
i

log2
(pi + qi)pi+qi

ppi
i q

qi
i

)

=

√√√√1
2

(
2− log2

K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

)

=

√√√√1− 1
2

log2
K∏
i

(pi + qi)pi+qi

ppi
i q

qi
i

�

Lemma 9 H(M) = 1− 1
2
∑K

i (pi + qi) log2(pi + qi).

Proof

H(M) = −
K∑
i

pi + qi
2

log2
pi + qi

2

= −
K∑
i

pi + qi
2

(
log2

1
2

+ log2(pi + qi)
)

= −1
2

K∑
i

(pi + qi)
(

log2
1
2

+ log2(pi + qi)
)

= −1
2

K∑
i

(pi + qi)(−1 + log2(pi + qi))

= −1
2

K∑
i

−(pi + qi) + (pi + qi) log2(pi + qi)
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= −1
2

K∑
i

−(pi + qi)−
1
2

K∑
i

(pi + qi) log2(pi + qi)

= 1
2

K∑
i

pi + qi −
1
2

K∑
i

(pi + qi) log2(pi + qi)

= 1− 1
2

K∑
i

(pi + qi) log2(pi + qi)

�

Lemma 10 JSD(P,Q) = 0 iff P = Q.

Proof Assume that JSD(P,Q) = 0 =
√

KLD(P‖M)+KLD(Q‖M)
2 . Then,

1
2
(
KLD(P ‖M) +KLD(Q ‖M)

)
= 0

KLD(P ‖M) +KLD(Q ‖M) = 0

From the first part of Gibbs’ inequality (Lemma 11), it follows that KLD(P ‖M) =
KLD(Q ‖ M) = 0. The second part of Gibbs’ inequality implies that P = M and
Q = M . From this, it follows that P = Q.

Now, assume that P = Q. It follows that P = Q = M . Hence, KLD(P ‖ M) =
KLD(Q ‖M) = 0, which means that JSD(P,Q) = 0. �

Lemma 11 (Gibbs’ inequality) KLD(P ‖ Q) ≥ 0, where KLD(P ‖ Q) = 0 iff
P = Q.

Proof Find a proof in Cover and Thomas (2006, p. 28).
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Appendix C

Annotation of SemEval LA

In this chapter, we describe the procedure devised to annotate the Latin SemEval
data. This procedure is different from the other languages as in a trial annotation
task the annotators reported difficulties to judge use-use pairs. In consideration of
this, annotators were asked to judge use-sense pairs.

Use-Sense Annotation

Following Erk et al. (2013), semantic proximity for use-sense pairs can be measured
by human annotator judgments on a similar scale as for use-use pairs. Hence, we
ask annotators to judge the semantic relatedness of use-sense pairs using the same
scale as for use-use pairs (see Table 3.1 in Chapter 3). (C.1) contains an example of
a use-sense pair for sacramentum, displaying the older sense ‘a civil suit or process’.

(C.1) Use: Cum Arretinae mulieris libertatem defenderem et Cotta xviris
religionem iniecisset non posse nostrum sacramentum iustum iudicari, [. . . ]
‘When I was defending the liberty of a woman of Arretium, and when Cotta had
suggested a scruple to the decemvirs that our action was not a regular one, [. . . ] ’ 1

Sense: ‘a cause, a civil suit or process’

Graph Representation

We represent annotated data (semantic proximity judgments of use-sense pairs) in a
graph which we call Use-Sense Graph (USG). A USG G = (V,E,W) is a weighted,

1M. Tullius Cicero. The Orations of Marcus Tullius Cicero, literally translated by C. D. Yonge, B.
A. London. Henry G. Bohn, York Street, Covent Garden. 1856.
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Figure C.1: USG of Latin pontifex (left), potestas (middle) and sacramentum (right). Nodes in
blue/red represent uses/senses respectively.

undirected graph whose nodes v ∈ V represent either word uses or sense descrip-
tions and weights w ∈ W represent the semantic proximity of a use-sense pair
(u, s) ∈ E (cf. Section 3.1.3).2 We denote the set of word uses as U and the set of
word sense descriptions as S, where V = U ∪ S.

Figure C.1 shows three USGs resulting from our annotation. The first word, pon-
tifex, originally meant ‘a member of the college of priests having supreme control
in matters of public religion in Rome’, and with Christianity it acquired the sense
of ‘bishop’. The three senses presented to the annotators were ‘priest, high priest’,
‘Roman high-priest, a pontiff, pontifex’, and ‘bishop’. The first two correspond to
the two red nodes in the bottom left corner of the first plot in Figure C.1, and the
last one corresponds to the top right red node. The plot of the second word, potes-
tas shows a complex and highly related set of senses, which can be summarised as:
‘power of doing any thing’, ‘political power’, ‘magisterial power’, ‘meaning of a
word’ (the isolated sense on the far right of the plot), ‘force, efficacy’ and ‘angelic
powers’. The last plot refers to sacramentum and shows how the two senses ‘mil-
itary oath of allegiance’ and ‘oath’ are closely together on the top left of the plot
while the legal sense ‘a civil suit or process’ is separated from the others in the top
right corner and the Christian sense of ‘sacrament’ is at the bottom right corner.

Clustering

From the annotation, we obtain USGs where each use is connected to each sense by
one edge (see Figure C.1). Therefore, there is a first-order path between each use-

2Note that we do not consider the possible cases where E contains additional use-use pairs or
sense-sense pairs.
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C1 C2
corpus period tokens types TTR corpus period tokens types TTR

Latin LatinISE -200–0 1.7M 65k 38.24 LatinISE 0–2000 9.4M 253k 26.91

Table C.1: Statistics of SemEval LA corpora. TTR = Type-Token ratio (number of types /
number of tokens * 1000).

sense pair and a second-order path between each use-use pair. Similarly to WUGs
derived from use-use judgments described in Section 3.1.2, we want to assign uses
and senses to the same cluster if they receive high judgments (3, 4) and to different
clusters if they receive low judgments (1, 2). For this, we use the same clustering
algorithm as for WUGs, defined in Section 3.1.4, to cluster uses and senses in V

at the same time. In this way, uses end up in the same cluster if they have high
judgments with the same senses. If there are contradictory judgments (e.g. a use
has high judgments with several senses), the clustering uses the global information
to decide on the cluster assignment by choosing the clustering with the lowest loss.
This can also lead to the collapsing of two sense descriptions into one cluster, e.g.
for Latin sacramentum in Figure C.2.

Data

Corpora

The corpora are created in a similar procedure as the one described in Section
3.2.1.1. We use the lemmatized and POS tagged LatinISE corpus (McGillivray and
Kilgarriff, 2013), spanning from the 2nd century B.C. to the 21st century A.D. A
study on lemmatization accuracy on a sample of two texts (Cicero’s De Officiis and
Rutilius Taurus Aemilianus Palladius’ Opus agriculturae) against the PROIEL tree-
bank (Haug and Jøhndal, 2008) as a gold standard showed an accuracy of 92.77%
and 80.96%, respectively. We then extract two time-specific subcorpora C1, C2, as
defined in Table C.1. From these two subcorpora, we then sample the released
test corpora in the following way: Sentences with < 2 tokens are removed, tokens
are replaced by their lemma, punctuation is removed and sentences are randomly
shuffled within each of C1, C2. We also create a tokenized version of the corpora
with sentences in the same order as in the lemmatized version. Find a summary of
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G G1 G2

Figure C.2: USG of Latin sacramentum (left), subgraphs for 1st time period G1 (middle) and
2nd time period G2 (right). D1 = (28, 0, 2, 0, 0, 0, 0, 0), D2 = (10, 13, 0, 2, 2, 1, 1, 1), B(w) = 1
and G(w) = 0.69.

the released (lemmatized) test corpora in Table C.1.3

Target Words

We select a range of target words whose meaning has changed between the pre-
Christian and the Christian era according to the literature (Clackson, 2011) and in
the pre-annotation trial we check that these meanings are present in the corpus
data. For each changed word, we select a control word whose meaning did not
change from the pre-Christian era and the Christian era, whose POS is the same
as the changed word, and whose frequency development between C1 and C2 is
similar to the changed word.

Annotators

Since we do not have access to native speakers of Latin, eight annotators with a
high-level knowledge of Latin are recruited, ranging from undergraduate students
to PhD students, post-doctoral researchers, and more senior researchers.

Use and Sense Sampling

For each target word, 30 uses from each of the tokenized versions of C1 and C2 are
randomly sampled, yielding a total of 60 uses per target word. The sense defini-

3Find the extracted corpora at https://www.ims.uni-stuttgart.de/data/
sem-eval-ulscd.

https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd
https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd
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General Binary Graded
n N/V/A SPR KRI |U | LSC FRQd FRQm PLYm LSC FRQd FRQm PLYm

Latin 40 27/5/8 .64 .62 59 .65 .16 .02 .14 .33 .39 -.13 .31

Table C.2: Overview SemEval LA target words. n = number of target words, N/V/A =
number of nouns/verbs/adjectives, SPR = weighted mean of pairwise Spearman on virtus,
KRI = Krippendorff’s alpha on virtus, |U | = avg. no. uses per word (after cleaning), LSC
= mean binary/graded change score, FRQd = Spearman correlation between change scores
and target words’ absolute difference in log-frequency between C1, C2. Similarly for mini-
mum frequency (FRQm) and minimum number of senses (PLYm) across C1, C2.

tions are taken from the Latin portion of the Logeion online dictionary.4 Due to the
challenge of finding qualified annotators, each word is assigned to one annotator,
apart from virtus, which is annotated by four annotators and used for calculation
of inter-annotator agreement (see Table C.2). The senses and uses are presented in
randomized order to the annotators.

Edge Sampling

The USG annotation procedure has an upper bound on the total number of an-
notated use-sense pairs of n × k, with k senses for n uses. The number of senses
ranges between 2 and 7 with a use sample size of 60 (30 + 30), which yields a fea-
sible number of annotation instances. Hence, no further optimization of the edge
sampling procedure is carried out. Note though that a similar optimization as in
Section 3.2.1.5 would be possible by annotating the data incrementally or by ran-
domly subsampling edges.

Summary

Find a summary of the annotation outcome in Table C.2. The final test set contains
40 target words. The inter-annotator agreement is comparable to the ones observed
in Section 3.2.1.6. Figure C.2 shows the annotated and clustered USG for Latin tar-
get sacramentum from Figure C.1 along with the two time-specific subgraphs for C1

and C2. The process of deriving change scores is identical to the one for WUGs as
described in Section 3.1.4: For each target word, we obtain the two time-specific
sense frequency distributions D1 and D2 from the full clustering. From these, we

4https://logeion.uchicago.edu/

https://logeion.uchicago.edu/
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infer the binary and the graded change score, setting the lower frequency thresh-
olds to k = 0, n = 1 (see Section 3.1.5).
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Appendix D

Annotation Simulation

We validate the annotation procedure and the clustering algorithm described in
Chapter 3 in a simulation study by simulating 40 ground truth WUGs with zip-
fian sense frequency distributions covering roughly the frequency range of the
majority of SemEval target words (50–1000). We first simulate the zipfian sense
frequency distributions and then introduce change to half of the target words by
setting some of its senses’ frequencies to 0 in either of D1, D2. We then simulate
fully-connected (true) graphs sampling weights between clusters uniformly from
{1, 2} and weights within clusters uniformly from {3, 4}. Then we sample edge
weights from these graphs in several rounds as described in Section 3.2.1.5, sim-
ulate human judgments in each round by adding a normally distributed error to
sampled edge weights and compare the resulting clustering to the clustering of the
true graph. The true clustering can be recovered with high accuracy (average of
> .96 ARI). We also use the simulation to predict the feasibility of the study and to
tune parameters of the annotation such as sample sizes for nodes and edges. With
the finally chosen parameters described in Section 3.2.1.5, the algorithm converges
on average after 5 rounds and ≈ 8000 judgments per annotator. This was within
the bounds of our time limits and financial budget.

We also test the clustering algorithm against several standard techniques (Bie-
mann, 2006; Blondel et al., 2008) and vary the loss optimization algorithm. None of
these variations had a comparable performance to our approach.
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Appendix E

Cluster Bias

In this chapter, we report more detailed results on the clustering bias experiments
described in Section 5.3. Please find the full results in Tables E.1–E.3.

Layer Token Lemma TokLem

Pe
rf

or
m

an
ce G
ra

de
d

1 -.141 -.033 .100
12 .205 .154 .168
1+12 -.316 .130 .081
6+7 .075 -.103 .017
9-12 .325 .345 .293

C
lu

st
er

1 .022 .041 .045
12 .116 .111 .158
1+12 .022 .141 .149
6+7 .119 .111 .145
9-12 .150 .159 .163

Layer Token Lemma TokLem

Pe
rf

or
m

an
ce G
ra

de
d

1 -.265 -.062 -.170
12 .123 .427 .624
1+12 -.252 .235 .401
6+7 .002 .464 .320
9-12 .122 .420 .533

C
lu

st
er

1 .033 .002 .003
12 .119 .159 .161
1+12 .037 .064 .080
6+7 .101 .158 .152
9-12 .155 .142 .154

Table E.1: Clustering performances on SemEval EN (left) and DE (right).
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Layer Token Lemma TokLem

Fo
rm

In
flu

en
ce

1 .907 .014 .014
12 .389 .018 .077
1+12 .881 .020 .057
6+7 .572 .013 .028
9-12 .334 .018 .051

R
an

do
m

1 .002 .002 .002
12 -.001 .001 -.001
1+12 -.002 -.001 -.001
6+7 .001 .002 .001
9-12 -.001 -.001 -.002

G
ol

d

1 .017 .017 .017
12 .017 .017 .017
1+12 .017 .017 .017
6+7 .017 .017 .017
9-12 .017 .017 .017

Po
si

ti
on

In
flu

en
ce

1 .001 .026 .024
12 .012 .012 .015
1+12 -.001 .019 .007
6+7 -.002 .018 -.003
9-12 .002 .007 .003

R
an

do
m

1 .001 .003 .001
12 .001 -.001 -.001
1+12 -.001 -.001 -.001
6+7 .001 -.001 -.001
9-12 .001 .001 -.001

G
ol

d

1 -.002 -.002 -.002
12 -.002 -.002 -.002
1+12 -.002 -.002 -.002
6+7 -.002 -.002 -.002
9-12 -.002 -.002 -.002

Layer Token Lemma TokLem

Fo
rm

In
flu

en
ce

1 .706 .024 .004
12 .439 .056 .150
1+12 .687 .039 .046
6+7 .503 .050 .050
9-12 .420 .047 .094

R
an

do
m

1 -.001 -.002 .020
12 -.001 .001 .021
1+12 -.001 -.001 .020
6+7 .002 .001 .019
9-12 .001 -.001 .021

G
ol

d

1 .036 .036 .036
12 .036 .036 .036
1+12 .036 .036 .036
6+7 .036 .036 .036
9-12 .036 .036 .036

Po
si

ti
on

In
flu

en
ce

1 .005 .023 .027
12 -.002 .005 -.002
1+12 .002 .021 .013
6+7 .010 .020 .018
9-12 .009 .018 .012

R
an

do
m

1 .001 .001 .001
12 .001 -.001 .001
1+12 -.001 -.001 .002
6+7 -.001 .001 .001
9-12 -.001 .001 .001

G
ol

d

1 .005 .005 .005
12 .005 .005 .005
1+12 .005 .005 .005
6+7 .005 .005 .005
9-12 .005 .005 .005

Table E.2: Clustering influences of target word form and position on SemEval EN (left) and
DE (right).
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Layer Token Lemma TokLem

C
or

po
ra

In
flu

en
ce

1 .019 .021 .033
12 .078 .056 .082
1+12 .027 .050 .074
6+7 .034 .035 .050
9-12 .056 .044 .063

R
an

do
m

1 .001 -.001 .003
12 .001 .001 .001
1+12 -.001 .001 .001
6+7 .001 .001 .002
9-12 .002 .001 .002

G
ol

d

1 .018 .018 .018
12 .018 .018 .018
1+12 .018 .018 .018
6+7 .018 .018 .018
9-12 .018 .018 .018

N
am

es

In
flu

en
ce

1 -.007 .010 .010
12 .025 .027 .033
1+12 .018 .022 .027
6+7 .012 .016 .027
9-12 .019 .022 .026

R
an

do
m

1 -.001 -.002 -.002
12 -.001 .001 .001
1+12 -.001 .001 -.001
6+7 -.001 .001 .001
9-12 -.001 -.001 .001

G
ol

d

1 .019 .019 .019
12 .019 .019 .019
1+12 .019 .019 .019
6+7 .019 .019 .019
9-12 .019 .019 .019

Layer Token Lemma TokLem

C
or

po
ra

In
flu

en
ce

1 .074 .003 .005
12 .110 .095 .096
1+12 .077 .024 .052
6+7 .101 .058 .075
9-12 .107 .068 .089

R
an

do
m

1 -.001 -.001 .001
12 .001 -.001 .001
1+12 -.001 .001 .002
6+7 -.001 .001 -.001
9-12 -.001 .001 -.001

G
ol

d
1 .083 .083 .083
12 .083 .083 .083
1+12 .083 .083 .083
6+7 .083 .083 .083
9-12 .083 .083 .083

N
am

es

In
flu

en
ce

1 - - -
12 - - -
1+12 - - -
6+7 - - -
9-12 - - -

R
an

do
m

1 - - -
12 - - -
1+12 - - -
6+7 - - -
9-12 - - -

G
ol

d

1 - - -
12 - - -
1+12 - - -
6+7 - - -
9-12 - - -

Table E.3: Clustering influences of corpora and proper names on SemEval EN (left) and DE
(right).
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do campoléxico. In Actas do XIX Congreso Internacional de Lingüı́stica e Filoloxı́a
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