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Abstract
The planning of on-demand services requires the formation of vehicle schedules consist-
ing of service trips and empty trips. This paper presents an algorithm for building vehicle 
schedules that uses time-dependent demand matrices (= service trips) as input and deter-
mines time-dependent empty trip matrices and the number of required vehicles as a result. 
The presented approach is intended for long-term, strategic transport planning. For this 
purpose, it provides planners with an estimate of vehicle fleet size and distance travelled 
by on-demand services. The algorithm can be applied to integer and non-integer demand 
matrices and is therefore particularly suitable for macroscopic travel demand models. Two 
case studies illustrate potential applications of the algorithm and feature that on-demand 
services can be considered in macroscopic travel demand models.

Keywords  Vehicle scheduling · Macroscopic travel demand models · Automated vehicles · 
Carsharing · Ridesharing · On-demand service

Introduction

In densely populated areas public transport is more efficient than private means of trans-
port for two reasons. First, it pools the trips of several people. This leads to a high occu-
pancy rate and thus reduces the total vehicle distance traveled. Second, service trips are 
concatenated to vehicle schedules. This reduces the number of required vehicles.

In contrast to traditional public transport, on-demand services in the form of carshar-
ing or ridesplitting [definitions from Feigon and Murphy (2016)] have neither a fixed 
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route nor a predetermined timetable. The actual vehicle schedules are only known at the 
end of an operating day. For the planning of on-demand services, travel demand models 
are used to either determine the number of served passengers for a given fleet size or to 
determine the required fleet size for a given demand situation.

So far, primarily microscopic travel demand models are used for modeling on-
demand services (see literature review in Sect.  “State of the art and related work”). 
Microscopic models simulate the demand of individuals and the operational processes 
at the level of individual vehicles using agent-based approaches. Typical input values 
are trip requests coming from a demand model, fleet size, vehicle capacity, and ser-
vice parameters, e.g. maximum detour factor for passengers. Using some type of vehicle 
scheduling process, the models deliver as results indicators describing the service qual-
ity from the perspective of passengers (e.g. waiting time, in-vehicle-time, detour factor, 
number of passengers not served) and operators (e.g. empty and loaded vehicle kilom-
eters, occupancy rates, revenues).

This paper presents an algorithm for the vehicle scheduling process of on-demand 
services, which can be embedded in macroscopic travel demand models. The presented 
approach is intended for long-term, strategic transport planning. For this purpose, it pro-
vides planners with an estimate of vehicle fleet size and distance travelled by on-demand 
services. Using a macroscopic travel demand model has advantages and disadvantages 
compared to a microscopic approach. Important advantages include the following:

•	 Many cities, regions, and states use macroscopic travel demand models to quantify 
the impacts of supply changes on travel demand. Moeckel et al. (2019) report that 
most states in the U.S. operate macroscopic travel demand models. A survey by 
Rieser et al. (2018) finds that most travel demand models operated on regional and 
state level in German speaking countries are macroscopic models.

•	 A macroscopic travel demand model replicates the demand of an average day in one 
model run. It works with probabilities so that every model run produces the same 
solution. A microscopic model simulates a certain day and requires multiple simula-
tions to obtain results for an average day.

•	 Macroscopic model implementations are usually faster.

The main disadvantage of macroscopic models is probably that they can reproduce the 
traffic-related decision processes of activity choice, destination choice, mode choice, 
departure time choice, and route choice only in a simplified way. Microscopic models 
can capture a more complex decision process considering household constraints, vehicle 
ownership, and temporal constraints coming from an activity schedule. In case average 
results are obtained with multiple simulations, microscopic models also give informa-
tion about the variability of the results.

Looking at the pooling and vehicle scheduling processes in connection with on-
demand services, macroscopic travel demand models bring a further challenge: demand 
is not represented as discrete trips of individuals but as a probability. This leads to a 
non-integer demand that is stored in demand matrices. For modelling fluctuations in 
travel demand over the course of a day, demand is divided into time intervals, e.g. 96 
intervals of 15 min. This rather abstract representation of travel demand requires spe-
cific methods for integrating on-demand services into a macroscopic travel demand 
model. Friedrich et al. (2018) describe an algorithm to pool macroscopic travel demand 
to demanded vehicle trips (= service trips).
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In this paper, we present an algorithm for the vehicle scheduling problem that uses these 
time-dependent vehicle trips as input. As a result, the algorithm determines the number 
of required vehicles and empty trips for vehicle relocation per time interval. The efficient 
algorithm design makes it suitable for solving large instances in short computation time, 
which is crucial for the use in travel demand models. Furthermore, it can be applied for 
both integer and non-integer demand matrices, which also allows an application to micro-
scopic models with integer demand. A python implementation can be found in Hartleb 
et al. (2020).

The contribution of this paper is twofold: First, we develop a vehicle scheduling algo-
rithm to estimate the vehicle fleet size of on-demand services efficiently. Second, we show 
in two case studies that the algorithm is suitable for the vehicle scheduling problem as it 
arises in macroscopic travel demand models.

The remainder of this paper is structured in the following way: In Sect. “State of the art 
and related work”, the presented approach is compared to existing research on on-demand 
services in travel demand models and on vehicle scheduling approaches. Section  “Prob-
lem definition” defines the vehicle scheduling problem in a formalized way, followed by a 
description of the basic algorithm in Sect. “Algorithm”. In Sect. “Extensions”, extensions 
of the basic algorithm are discussed. Section “Applications” illustrates the applicability of 
the algorithm in two case studies. A conclusion and outlook complete the paper.

State of the art and related work

In Sect.  “On-demand services in travel demand models”, we relate our work to existing 
research on on-demand services in travel demand models. The differences of macroscopic 
and microscopic travel demand models, i.e., agent-based models, are highlighted. In 
Sect. “Vehicle scheduling”, we report on related vehicle scheduling approaches and their 
solution techniques.

On‑demand services in travel demand models

Travel demand models replicate the decision-making process of travelers, which is trig-
gered by the need of people to participate in activities. According to Friedrich et  al. 
(2016) “these decisions range from long-term to short-term decisions. Long-term deci-
sions cover decisions concerning the place of residence and the workplace. These deci-
sions influence subsequent medium-term decisions regarding the purchase of a car or a 
season ticket for public transport, which then affect later decisions on the activity loca-
tions and the transport modes. Short-term decisions on departure time, a certain route or 
a certain lane are taken within a short time horizon.” Most transport models cover only 
some of these decisions or replicate some decisions in a simplified way. Many macro-
scopic travel demand models capture the decisions associated with the pursuit of activi-
ties within the framework of the four-step algorithm. This framework distinguishes the 
steps trip generation, destination choice, mode choice and route choice (Ortúzar and 
Willumsen 2011; McNally 2010). To consider temporal travel patterns, macroscopic 
models are supplemented by a step for departure time choice. This step requires a model 
implementation, which distinguishes trip matrices not only by trip purpose but rather by 
activity pairs (e.g. Home-Work, Home-Education, Home-Shopping, Work-Shopping). 
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For each activity pair observed temporal distributions are used to compute time-depend-
ent trip tables. Figure 1a provides a schematic flow chart of a standard travel demand 
model.

While there are many approaches to model pooling and scheduling of on-demand ser-
vices in general, only a limited number of modelling approaches replicate the impacts of 
on-demand services on travel demand, especially on destination and mode choice. Almost 
all of these are microscopic approaches. In their overview of demand models including 
one-way carsharing services, Vosooghi et al. (2017) come to the same conclusion.

Examples of microscopic approaches including on-demand services in existing travel 
demand models are presented by Azevedo et  al. (2016) for SimMobility, Maciejewski 
(2016), Hörl (2017) for MATSim, Heilig et  al. (2018), Wilkes et  al. (2019) for mobi-
Topp and Martínez et al. (2017) for an agent-based model for Lisbon. A macroscopic 
approach is described by Richter et al. (2019).

All approaches need to deal with the challenge that the transport supply provided by 
on-demand services depends on the demand and is not given as a model input. Although 
traditional models capture the impact of demand on the supply in form of volume-delay 
functions, the spatial and temporal structure of the supply remains fixed. For on-demand 
services, however, the spatial and temporal supply structure must be adapted to the 
demand.

Therefore, to include on-demand services in the four-step algorithm, the travel 
demand model needs to be extended by an additional set of steps determining the on-
demand supply. These steps replicate short-term decisions of operators which schedule 
the on-demand supply. Hence, the structure and availability of the on-demand supply is 
established in response to the trip requests of travelers. Figure 1b extends the algorithm 
of Fig. 1a to include the additional steps. The short-term decisions of operators can be 
categorized into two parts: First, pooling of passenger trip requests into vehicle trips 
and, second, scheduling of vehicles to serve the vehicle trips.

trip
generation

destination
choice

mode choice

departure
time choice

route choice
supply
quality

travelers’
decisions

trip
generation

destination
choice

mode choice

departure
time choice

person trip
pooling

vehicle
scheduling

route choice
supply
quality

operators’
decisions on
on-demand
services

(a) Four-step algorithm supplemented by
departure time choice

(b) Extended four-step algorithm to model
the impact of on-demand services

Fig. 1   Standard and extended travel demand model
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The pooling step converts person trip requests into vehicle trip requests, i.e., trips of 
vehicles carrying passengers. This step is only required for on-demand services which aim 
at pooling several independent travelers into one vehicle, i.e., for ridesplitting services. On-
demand carsharing does not require a pooling step as users directly request a vehicle trip. 
Microscopic approaches to pooling algorithms can be found in Zhang et al. (2015), Bis-
choff et  al. (2017) or Engelhardt et  al. (2020), for example. A macroscopic approach is 
proposed by Friedrich et al. (2018).

The focus of this paper is on the vehicle scheduling step, where vehicle trip requests 
identified in the previous pooling step are assigned to specific vehicles. This step either 
determines the number of vehicles needed for serving a given demand or it defines the 
demand which can be served by a given vehicle fleet. The scheduling step also identifies 
empty vehicle trips which are required for vehicle relocation. Approaches to replicate this 
step differ for microscopic and macroscopic travel demand models as discussed in the 
following.

Microscopic or agent-based travel demand models simulate discrete choices of persons 
using probability distributions. Each model run replicates the demand situation of a spe-
cific day. This modelling approach is described for example by Ortúzar and Willumsen 
(2011) or Horni et al. (2016). Commonly, persons are assigned daily plans which are pro-
cessed chronologically. In this chronological processing, the problem of vehicle scheduling 
can be defined as a dynamic vehicle routing problem (Maciejewski et al. 2017). At the start 
of the analyzed time period, not all trip requests are known. Instead, requests come in over 
time.

Macroscopic models, in contrast, aim to replicate an average day. This is achieved by 
using average trip rates for trip production and by assigning probabilities to each choice 
of a choice set. The results are non-integer values that represent the demand situation of a 
recurrent average day. As on-demand systems are designed to adapt to a specific demand 
situation varying from day to day, it is not helpful for planning purposes to replicate the 
trip requests of one specific day. Instead, an average demand situation should be used for 
the system design. Furthermore, it seems reasonable to assume that information on all trip 
requests is available at the beginning of the vehicle scheduling step. This makes the prob-
lem more similar to traditional vehicle scheduling in timetable-based public transport.

Due to their respective ways of calculating travel demand, microscopic and macro-
scopic approaches tend to answer different research questions: Microscopic approaches 
rather answer the question of how well a certain vehicle fleet can satisfy a given demand 
[e.g. Marczuk et al. (2015), Maciejewski et al. (2017), PTV Group (2020)]. Macroscopic 
approaches rather take the reverse approach and determine the required fleet size to fully 
satisfy a given demand.

Nevertheless, it is important to note that although the model types are prone to the uses 
shown, it is also possible to use them in the opposite way. Boesch et al. (2016), Wang et al. 
(2018) or Fagnant and Kockelman (2018), for example, confirm this by using microscopic 
approaches to calculate the number of vehicles needed.

Vehicle scheduling

The literature on vehicle scheduling provides many approaches to find schedules with a 
minimal number of vehicles. Standard models and solution approaches for vehicle schedul-
ing in public transport are summarized in Bunte and Kliewer (2009). Recent vehicle sched-
uling approaches usually incorporate problem specific aspects such as variable timetables 
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(Desfontaines and Desaulniers 2018; Lan et al. 2019) or limited range of electric vehicles and 
recharging strategies (Wen et al. 2016; Rogge et al. 2018). To be able to find good schedules 
for realistic instances, elaborate solution methods are proposed. For example, Desfontaines 
and Desaulniers (2018) rely on column generation, and Lan et al. (2019) combine Benders 
decomposition with a branch-and-price approach. With these methods, instances with up to 
2100 vehicle trips could be solved within less than 1 h to optimality or close to optimality. The 
considered instances in Wen et al. (2016) contain up to 500 vehicle trips and are solved with 
an adaptive large neighborhood search within 20 min. Rogge et al. (2018) develop a genetic 
algorithm and provide results for instances with up to 200 vehicle trips.

Lam et  al. (2016) formulate a vehicle scheduling problem specifically for a ridesharing 
setting with automated vehicles. Their model includes admission control and pooling of pas-
sengers, as well as a maximum route length due to a restrictive battery capacity. They use dif-
ferent instances constructed from taxi data from Boston with 100 trips and propose a genetic 
algorithm to find vehicle schedules. Lin et al. (2012) use a simulated annealing approach to 
find vehicle movements that are both cost-efficient and convenient for passengers in a ride-
sharing setting for taxis. They find that both the mileage as well as the number of vehicles can 
be reduced significantly by ridesharing, however, only results of a single and relatively small 
instance with 29 trips was discussed.

Most vehicle scheduling contributions consider an operational setting and aim at provid-
ing an optimal solution for a certain demand situation. In contrast to these approaches, our 
algorithm is designed for usage in an extended four-step algorithm as depicted in Fig. 1b. We 
intend to provide good estimates for the required fleet size and the impact on the traffic vol-
ume within short computation times. This is suitable for long-term strategic transport plan-
ning. Furthermore, most solution methods exploit that each planned trip has to be covered 
exactly once. Since this does not necessarily hold for macroscopic demand models, a general-
ized approach is required. Similar to early approaches as presented in Bodin (1983), we model 
the vehicle scheduling problem as a flow problem. This design choice is motivated by the 
huge demand data of realistic instances considered in this paper that include up to 100 million 
vehicle trips.

We formulate the problem as minimum-cost circulation with lower bounds. Schrijver 
(2003) describes a polynomial solution algorithm based on a gradual convergence by itera-
tively finding better routes for vehicles: First, an initial circulation is found that is not nec-
essarily optimal. Then, the solution is iteratively improved by identifying a directed circuit 
with negative cost in the residual graph. The circulation is adjusted correspondingly along this 
circuit. To identify a directed circuit, a flow problem has to be solved. This yields a time com-
plexity of O(|Z|8|T|5 log(|Z||T|)) for this approach, where Z and T correspond to a discretiza-
tion of space and time, respectively.

In a project many vehicle schedules have to be computed since often many scenarios are 
considered and a feedback loop between demand estimation and supply design is common. 
Hence, we propose a simple heuristic approach for macroscopic on-demand problems to real-
ize short solution times for huge instances. Our approach presented in Sect. “Algorithm” has a 
time complexity of O(|Z|2|T|2) and meets the requirements of an application in travel demand 
models.
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Problem definition

In this section, the problem of finding a vehicle scheduling with minimal fleet size is 
formalized. To this end, the required input is described and the underlying network for 
the presented solution algorithm is introduced.

Input and notation

Passenger demand is given as demanded vehicle trips, aggregated in time and space. For 
ridesharing applications, passenger trips are pooled to vehicle trips in a preceding step.

The analysis period is split into time intervals of equal length. Time intervals are 
indexed with t  and the set of time intervals is denoted by T = {1, 2,… , |T|} . The exami-
nation area is divided into traffic zones, the set of traffic zones is Z . A traffic zone is 
denoted by  z , or, when considering a traffic zone as origin or destination zone, by  p 
and q , respectively.

The number of demanded vehicle trips from an origin zone  p to a destination zone q 
starting in time interval  t is denoted by dpqt . In this setting, these requested vehicle trips 
are composed of pooled trips of passengers and called service trips. Further, distances �pq 
between traffic zones are given as multiples of time intervals. They result from the travel 
time  j between traffic zones and the duration of a time interval l , �pq = ⌈ jpq

l
⌉. For the pres-

entation of the algorithm in this paper, two assumptions are made. First, the travel time 
between zones is independent of the time of day. To consider the asymmetric nature of 
congestion, the distance matrix can be extended by a third dimension representing the 
departure time interval. Second, all trips within one zone require a travel time of at most 
one time interval, that is �zz = 1 ∀z ∈ Z. If this assumption does not apply, the model can 
be extended to distinguish between waiting and traveling within a zone.

The input of an instance I = (�, d) consists of a distance matrix � and a demand situ-
ation d . By concatenating the demanded vehicle trips to vehicle schedules, the presented 
algorithm determines the number of required vehicles as well as empty trips for vehicle 
relocation per time interval as a result. The aim is to serve the entire demand with as few 
vehicles as possible.

Underlying network

For a simpler representation of the algorithm, a time-space network G = (V ,E) is intro-
duced. Nodes can be interpreted as traffic zones at the beginning of time intervals and arcs 
as potential time-bound vehicle trips between zones. In the network, we depict traffic zones 
on the vertical and time intervals on the horizontal axis. An example network with three 
traffic zones and four time intervals is shown in Fig. 2a.

Formally, we introduce the set of nodes V = VZ ∪ V
Z,T

 with

where T = T ∪ {|T| + 1,… , |T| +maxp,q∈Z �pq} is an extended set of time intervals. For 
each traffic zone z ∈ Z there is a node vz0 in the network G at the beginning of the analysis 
period. Moreover, there is a node vzt representing each traffic zone z ∈ Z at the beginning of 

VZ = {vz0 ∶ z ∈ Z} and V
Z,T

= {vzt ∶ z ∈ Z, t ∈ T},
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Figure 2a shows the input situation without vehicle flow. The schedule construction in
Figures 2b to 2e is described in detail in Section 4.
In each figure, the rectangular labels display the traffic zones on the vertical and the
time intervals on the horizontal axis. The nodes in V are represented with round node
shapes, reading the node label vzt. The directed edges in E are represented with arcs
in the network, distinguished in three cases. Grey dotted lines show potential vehicle
trips without demand or vehicle flow, dashed lines indicate demand on edges, and solid
lines depict edges with vehicle flow. The numbers written at the arcs read the flow
values f , and, in brackets, the demand values d.

Fig. 2   Step-wise construction of a vehicle schedule on a network with 3 traffic zones and 4 time intervals. 
For better presentation, nodes v

zt
 are omitted for t > 5
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each time interval t ∈ T  . The nodes in V  are connected by directed edges in E = EZ ∪ EZ,T , 
where

From each node vz0 there is a directed edge to the node vz1 , which represents the traffic 
zone z at the beginning of the first time interval. There are also |T| edges that connect each 
pair of origin zone p and destination zone q . These edges start in the time intervals t ∈ T  
and end in t + �pq ∈ T  , corresponding to the distance between the traffic zones.

The demand dpqt can be interpreted as a lower bound on the edges e ∈ EZ,T , defining 
a minimum flow on these edges. The distances �pq between the traffic zones p and q are 
modeled by the horizontal length of the edges. A trip from the first to the second traf-
fic zone in the example of Fig. 2a can be covered in one time interval, the return trip 
needs two time intervals. Asymmetries can be caused by one-way streets or differing 
traffic volumes in the network. The presented vehicle scheduling algorithm is designed 
to find a feasible vehicle flow in this network with as few vehicles as possible, so that 
demand is met on all edges.

Vehicle scheduling

The flow variables  fpqt ∈ ℝ+ are introduced to represent a vehicle flow on the 
edges  e ∈ EZ,T . The value  fpqt can be interpreted as the number of vehicles driving 
from traffic zone p to q , starting in time interval  t  . To ensure that the total demand is 
served, the flow on each edge must be at least as large as the demand,

For the flow to be feasible, it must also be ensured that the total number of arriving and 
departing vehicles in each node vzt is equal,

This ensures that the flow is preserved in every node and that at no time t vehicles “appear” 
or “disappear” in traffic zone  z . A feasible flow  f  in the network  G is called a vehicle 
schedule. Next, the variables  xz ∈ ℝ+ are introduced to model the vehicle flow on the 
edges EZ . These correspond to the total number of vehicles leaving the traffic zone z ∈ Z in 
the first time interval, defined as

xz as determined in Eq. (3) can be interpreted as the number of vehicles that must be avail-
able in the traffic zone z at the beginning of the analysis period. The aim is to serve the 
demand with as few vehicles as possible, that corresponds to minimizing the sum of vehi-
cles leaving traffic zones in the first time interval 

∑
z∈Z xz . Equations (1) and (2) ensure that 

any demand is met and the vehicle schedule is feasible.

EZ = {(vz0, vz1) ∶ z ∈ Z} and EZ,T = {(vpt, vq(t+�pq)) ∶ p, q ∈ Z, t ∈ T}.

(1)fpqt ≥ dpqt ∀p, q ∈ Z, ∀t ∈ T .

(2)

∑

p ∈ Z ∶

t − �pz ≥ 1

fpz(t−�pz) =
∑

q∈Z

fzqt ∀z ∈ Z, ∀t ∈ T ⧵ {1}.

(3)xz =
∑

q∈Z

fzq1 ∀z ∈ Z.
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Algorithm

Description

The basic structure of the algorithm is simple: the nodes vzt in the network are pro-
cessed chronologically and the vehicle flow is expanded step by step on the outgoing 
edges. Figure 2b–e illustrate the construction of a vehicle schedule in the example net-
work in Fig. 2a. In each step it is ensured that the demand is met and that the vehicle 
flow is feasible at all processed nodes. Thus, the design of the algorithm ensures that 
Eqs.  (1) and (2) are fulfilled step by step. While the algorithm constructs the vehicle 
flow chronologically, that is, from left to right in the network in Fig. 2, the flow in the 
previous time intervals can be amended. To perform this amendment efficiently, we 
maintain node labels a storing the current number of vehicles at each node during flow 
construction.

For a simpler representation of the vehicle scheduling algorithm, we split it into 
three nested parts. The basic structure is given in Algorithm 1. This part specifies that 
the nodes in the network are considered in a chronological order, and that at each con-
sidered node all demand on outgoing edges is met and the flow conservation holds. The 
flow conservation, which ensures that there is the same number of incoming and out-
going vehicles at each node, is specified in Algorithm 2. There, three cases are consid-
ered. First, the number of incoming vehicles is sufficient for the number of demanded 
vehicles on outgoing edges. Second, vehicles in other zones are available and can be 
relocated to the current traffic zone. Third, additional vehicles need to be added to the 
vehicle flow under construction. While the first and third case are easy to handle, the 
relocation of vehicles in the second case requires an amendment of the flow in previ-
ous time intervals. This amendment is described in Algorithm 3.

The nested structure means that Algorithm 1 calls Algorithm 2 to ensure the flow 
conservation, which in turn calls Algorithm 3 for vehicle relocation, if necessary. In 
the following, the pseudocode of the three algorithms is described and exemplified 
with the flow construction in Fig. 2.

Algorithm 1

In Algorithm 1 the basic structure of the vehicle scheduling algorithm is given as pseu-
docode. The loops in lines 4 and 5 scroll through the nodes vzt in chronological order. 
Starting from the considered node, the demand is served on each outgoing edge, see 
line  6. This step ensures that there is sufficient vehicle flow on the demanded edges 
in the network, see for example Fig.  2b where a flow of 1.0 and 1.1 vehicles is set 
between nodes  v11 and  v12 , and between nodes  v21 and  v32 , respectively, to meet the 
demand. Then, in line  7, labels are updated at the nodes indicating how many vehi-
cles are available in the traffic zones at the beginning of the time intervals. After the 
first time interval is processed in Fig.  2b, there are 1.0 and 1.1 vehicles available at 
nodes  v12 and  v32 , respectively. Finally, calling the function FlowConservation() in 
line  8 ensures that the number of arriving and departing vehicles at the considered 
node vzt are equal and, thus, that the vehicle flow is feasible.
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Algorithm 1: VehScheduling(I)
1 Input: Instance I = (δ, d) with distance matrix and demand
2 Output: Number of required vehicles x and vehicle flow f
3 Initialisation: Required vehicles per station xz ← 0 ∀z ∈ Z,

available vehicles per traffic zone and time interval azt ← 0 ∀z ∈ Z, t ∈ T ;
# Process all nodes vzt in the network chronologically;

4 for t ∈ T do
5 for z ∈ Z do

# Fix minimal flow on all outgoing edges, satisfies equation (1);
6 fzqt ← dzqt ∀q ∈ Z;

# Update label: Mark vehicles as available in destination zone;
7 aq(t+δzq) ← aq(t+δzq) + dzqt ∀q ∈ Z;

# ensure feasible flow, satisfies equation (2);
8 FlowConservation(z, t, a, x, f , I);

9 return (x, f);

Algorithm 2

Algorithm 2 is called at every node vzt to ensure flow conservation. This is necessary since 
in Algorithm 1 only the vehicle flow on outgoing edges was set in order to meet demand. In 
Algorithm 2, sufficient incoming flow is ensured to match the outgoing flow, or the outgo-
ing flow is increased if the incoming flow is predominant. To match the number of incom-
ing and outgoing vehicles in that node, vehicles from three different sources are considered 
in the following priority. 

1.	 The first step is to try to satisfy as much demand as possible with vehicles available at 
the current node vzt . Vehicles are considered available at a node vzt if they are idle in 
the traffic zone z at the beginning of the time interval t . In the algorithm, the number of 
available vehicles at each node is stored in the label azt . If more vehicles are available 
than needed, they wait in the traffic zone and the labels at the nodes are adjusted, see 
lines 3, 5, and 6 in Algorithm 2. Both usage of available vehicles and waiting in the 
traffic zone can be observed at the node v34 in Fig. 2e, for example. There, 0.1 vehicles 
are sent to node v25 to meet demand, and the remaining 1.0 available vehicles wait in 
the third traffic zone.
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Algorithm 2: FlowConservation(z, t, a, x, f , I)
1 Input: Traffic zone z, time interval t, available vehicles a, number of required

vehicles x, vehicle flow f and instance I = (δ, d)
# 1. If sufficient vehicles are available, these are used;

2 if azt ≥
∑

q∈Z

dzqt then

3 azt ← azt −
∑

q∈Z

dzqt;

# Other available vehicles are waiting in the zone;
4 if azt > 0 then
5 fzzt ← fzzt + azt;

# Update label: Mark vehicles in destination zone as available;
6 az(t+1) ← az(t+1) + azt;

# Otherwise additional vehicles are needed;
7 else

# Define n as number of additional vehicles required;

8 n ←
∑

q∈Z

dzqt − azt;

# Update Label: All available vehicles are used;
9 azt ← 0;

# 2. Relocate as many available vehicles as possible from other
zones;

10 n ← VehRelocation(z, t, a, n, f , I);
# 3. Insert vehicles if still needed after relocation;

11 if n > 0 then
# Increase number of required vehicles per zone accordingly;

12 xz ← xz + n;
# Increase vehicle flow, vehicles wait in the zone until
demanded;

13 fzzt′ ← fzzt′ + n ∀t′ < t;

14 return;

 

2.	 If there are not enough vehicles available, the algorithm tries to relocate vehicles from 
other traffic zones p to traffic zone z . For a permissible relocation, the vehicles must be 
available already �pz time intervals before the considered time interval t  . Only in that 
case they can be relocated in time to meet demand at the beginning of time interval t in 
traffic zone z . The relocation is designed in such way that demand will continue to be 
met on all previously considered edges and that flow will continue to be preserved in 
all previously considered nodes.

	   By relocation, it is possible to find good vehicle schedules requiring few vehicles 
only at the expense of empty vehicle kilometers. In the Sect. “Applications” the number 
of required vehicles and the length of empty trips is compared in scenarios with and 
without vehicle relocation. The exact procedure of vehicle relocation is described in 
Algorithm 3, which is called in line 10 of Algorithm 2 if there are not enough vehicles 
available.

3.	 If after the relocation of vehicles from other traffic zones the total demand on outgo-
ing edges of the considered node vzt is not met, further vehicles are necessary for a 
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feasible vehicle flow. These vehicles are inserted in the traffic zone z by increasing the 
variable xz and are idle until time interval t  , see lines 12 and 13 in Algorithm 2. In the 
example network, this happens at the beginning of the analysis period, see Fig. 2b, and 
when processing the last time interval, see Fig. 2e. In the former, 1.0 and 1.1 vehicles 
are inserted in the first and the second traffic zone, respectively. In the latter, another 1.0 
vehicles are inserted in the first traffic zone. There, it is possible to see how all flow vari-
ables within this zone are increased, indicating that the vehicles are idle until demanded 
in the fourth time interval.

Algorithm 3

Algorithm 3 describes how the relocation of vehicles is performed and the flow in previous 
time intervals is amended. First, it is calculated how many vehicles can be relocated, see 
lines 5 to 7. Then, the previously set vehicle flow is undone and the corresponding labels 
are updated, see lines 8 to 12. Finally, the empty vehicle trip for relocation is added to the 
vehicle flow, see line 13. Figure 2c, d show the relocation of vehicles from the first to the 
second traffic zone. Initially, 1.0 vehicles wait in the first traffic zone during the second 
time interval. When processing the third time interval, this flow is undone and the vehicles 
are relocated from the first to the second traffic zone during the second time interval to 
meet demand. While the basic structure in Algorithm 1 works chronologically, the reloca-
tion of vehicles in Algorithm 3 can be seen as a backward correction.

Algorithm 3: VehRelocation(z, t, a, n, f , I)
1 Input: Traffic zone z, time interval t, available vehicles a, needed vehicles n,

vehicle flow f and instance I = (δ, d)
2 Output: Number of vehicles that are still needed n

# Check all other zones for available vehicles;
3 for p ∈ Z do

# Relocation can only start within the analysis period;
4 if t− δpz ≥ 1 then

# Define ap as maximum number of relocatable vehicles from
zone p;

5 ap ← min
t′ : t−δpz≤t′<t

apt′ ;

# Relocate at most as many vehicles as needed;
6 ap ← min{n, ap};

# Update number of needed vehicles;
7 n ← n− ap;

# Reset previously set vehicle flow;
8 fppt′ ← fppt′ − ap ∀(t− δpz) ≤ t′ < t;

# Update label: Reset number of available vehicles;
9 apt′ ← apt′ − ap ∀(t− δpz) ≤ t′ ≤ t;

# If node vpt has been edited in Algorithm 1, reset flow and
label;

10 if p < z then
11 fppt ← fppt − ap;
12 ap(t+1) ← ap(t+1) − ap;

# Relocate vehicles;
13 fpz(t−δpz) ← fpz(t−δpz) + ap;

14 return n;
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Summary

The presented vehicle scheduling algorithm is designed such that the vehicle flow is fea-
sible at each node and the demand is served on each edge. The relocation of vehicles pre-
serves these properties at nodes and edges that have already been processed. Therefore, 
the solution of the algorithm is a feasible vehicle flow  f  , which requires as few vehicles x 
as possible. An implementation of the presented algorithm is available in  Hartleb et  al. 
(2020).

Solution quality

The algorithm is deterministic and provides the same solution in every call. However, it is 
a heuristic procedure that does not necessarily find an optimal solution. This can be seen 
in the example in Fig. 2. At node v23 not enough vehicles are available to serve the outgo-
ing demand. Therefore, attempts are made to relocate vehicles from other traffic zones, 
see Fig. 2d. In this case, there are enough vehicles available in the first traffic zone, that 
are relocated within the second time interval. As a result of this relocation, no vehicles 
are available at node v14 in the fourth time interval. Additional vehicles must be inserted, 
increasing the total number of required vehicles, see Fig. 2e.

In the solution of the algorithm a total of 3.1 vehicles is required to meet the entire 
demand. In an optimal solution, however, only 2.1 vehicles are needed, for example, by 
relocating vehicles from the third instead of the first traffic zone to node v23 . This shows 
that the solution quality depends, among other things, on the order of traffic zones from 
which vehicles are relocated. In the example described, the algorithm finds a solution that 
is almost 50% worse than an optimal one. However, preliminary tests have shown that the 
solution quality on both randomly generated and real networks is significantly higher than 
in this contrived example. In most practical applications the deviation from the optimal 
number of required vehicles was smaller than the deviation due to other modeling errors.

Complexity

In a case study many vehicle schedules need to be computed because usually sev-
eral scenarios are examined and a feedback loop between demand and supply is 
applied within each scenario. Therefore, a heuristic approach with short running 
times is most practical. The vehicle scheduling algorithm presented in this paper per-
forms |Z||T|(|Z| + |Z| + |Z| + |Z| + |Z| + |Z|(� + � + �) + |T|) operations, where 
�∶ = maxp,q∈Z �pq is the maximum distance between two time intervals. Hence, the time 
complexity is in O(|Z|2|T|� + |Z||T|2) . Since � is bounded by the number of time intervals 
|T| , the presented algorithm is strongly polynomial with complexity O(|Z|2|T|2) . This low 
complexity is achieved by locally improving the solution during its construction. The net-
work has to be traversed only once.

Existing exact approaches are based on an iterative improvement of an initial circula-
tion by identifying a directed circuit with negative cost in the residual graph. The circula-
tion is adjusted correspondingly along this circuit. In these approaches, the graph has to be 
traversed multiple times, yielding a time complexity of O(|Z|8|T|5 log(|Z||T|)) (Schrijver 
2003).
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Extensions

In this section multiple extensions are discussed that enhance the basic algorithm. They 
aim at improving the solution quality or the running time of the algorithm. All extensions 
are implemented and each of them states how they are used in the experiments.

Consideration of the neighborhood of traffic zones The relocation of vehicles from other 
traffic zones results in empty trips, which should be kept as short as possible for cost rea-
sons. This can be taken into account by adjusting the order of the neighboring traffic zones 
in row 3 in Algorithm 3. For all experiments, the set of traffic zones Z is replaced by a 
sorted neighborhood N(z) of the considered traffic zone z . This means that vehicles are first 
requested from the traffic zones that are closest. This favours short empty vehicle trips and 
implicitly takes operating costs into account. The total number of vehicles required can be 
influenced positively or negatively.

Limitation of the relocation distance Further, it is possible to not only sort the set of all 
neighboring traffic zones, but also to limit it. This can, for example, prevent particularly 
long empty vehicle trips. This restriction can result in more vehicles being needed to 
meet the overall demand. In return, the length of empty trips will decrease. The trade-off 
between number of vehicles and empty trips is discussed in Sect. “Applications”.

Scanning of future time intervals Vehicles can be relocated if they have been available in 
another traffic zone for a sufficient number of time intervals. Still, it may be better to not 
relocate the vehicles, for example, if they are needed shortly thereafter in their current traf-
fic zone. With scanning of future time intervals, it is possible to prevent such unneces-
sary vehicle relocations. However, both future incoming and outgoing edges at the nodes 
should be taken into account. Since this entails a high calculation effort for each additional 
time interval, in the current implementation only one future time interval is scanned. The 
total number of required vehicles can either increase or decrease, but operating costs are 
reduced.

Termination criterion In the current implementation, the vehicle relocation in Algorithm 3 
is terminated as soon as enough vehicles have been found. This significantly reduces the 
runtime of the algorithm.

Applications

The applicability of the algorithm is illustrated in two case studies. Both case studies show 
that it is possible to consider on-demand services in macroscopic demand models by the 
use of the vehicle scheduling algorithm. In the first case study, the number of vehicles 
required for a regional carsharing system in a region in southern Germany is determined. 
It is assumed that carsharing is used for all private car journeys. This is not a realistic 
assumption, but it demonstrates the capability of the algorithm in large networks with a 
very large number of demanded vehicle trips. In the second case study, the required fleet 
size of an electric scooter rental system for operation on a university campus is computed. 
This case study emphasizes the importance of appropriate time interval durations for 
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models with small spatial dimensions as well as the influence of demand symmetry on the 
number of vehicles needed.

Regional carsharing

The Stuttgart Region covers an area of 80 × 80 kilometers with 2.7 million inhabitants liv-
ing in urban and rural surroundings. The regional travel demand model is used to deter-
mine the fleet size of a regional carsharing system. The model is a macroscopic travel 
demand model covering the four model steps of trip generation, destination choice, mode 
choice and route choice in person transport. It calculates the demand on workdays for the 
modes car driver, car passenger, public transport, bicycle and walking with a tour-based 
model. The model includes |Z| = 1013 traffic zones in the examination area of the Stutt-
gart region. The baseline scenario assumes a situation without carsharing, which describes 
more or less the current state, where sharing is a rare event.

From this baseline scenario three scenarios are derived for comparison, all assume that 
private car journeys will be carried out with carsharing vehicles. The scenarios S02 and 
S03 require automated vehicles allowing driverless relocation of the vehicles. The follow-
ing scenarios are distinguished: 

S00	� Baseline scenario without carsharing, private cars only.
S01	� Carsharing rides replace car rides, 
	 Carsharing without relocation.
S02	� Carsharing rides replace car rides, 
	 Carsharing with relocation aiming at a minimum number of vehicles, 
	 Duration of empty trips is not limited.
S03	� Carsharing rides replace car rides, 
	 Carsharing with relocation aiming at a minimum number of vehicles, 
	 Duration of empty trips must not exceed 15 min.

The same demand situation is assumed throughout all scenarios. It considers 3.6 million 
private car trips that have their origin and destination in the region. Two input variables are 
passed to the scheduling algorithm: 

1.	 Day-time dependent demand d By using trip-purpose specific temporal distributions, 
the demand for car trips is divided into 96 time intervals of 15 min. This demand defines 
the service trips in the network.

2.	 Distance matrix � This matrix describes the travel time between the traffic zones as 
multiples of time intervals. The values of the matrix are based on the car travel times in 
the congested road network. For service trips and empty trips the same travel times are 
assumed.

The algorithm calculates a vehicle schedule and outputs the number of vehicles required. 
The vehicle schedule contains all necessary information about empty trips which are 
needed for relocating vehicles. An assignment of the service trips and empty trips to the 
road network provides the vehicle kilometres traveled.

From the results of the German national travel survey 2017  (infas et  al. 2017) it can 
be deduced that only about two thirds of all private cars in Germany are moved on an 
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average working day. On average, these moving vehicles perform 3.2 trips per working 
day. This leads to about 1.1 million vehicles (without not moving vehicles) in the baseline 
scenario S00.

This number of vehicles is normalized in Fig. 3a to the value 100 and serves as refer-
ence for the calculated fleet sizes of scenarios  S01 to  S03. While demand remains con-
stant, the number of vehicles in scenario S01 can be reduced to less than one third of the 
private cars required in the baseline scenario although no vehicle relocation is allowed. 
When including vehicle relocation in scenarios S02 and S03, the number of vehicles drops 
to about one eighth of the vehicles required in the baseline scenario. The limitation of the 
empty trip duration to 15 min in S03 implies a comparatively small increase in the number 
of required vehicles.

In the scenarios S00 and S01 the vehicle kilometers traveled are identical, since there 
are no empty trips. In the scenarios S02 and S03, however, the vehicle kilometers traveled 
increase due to empty vehicle trips by  9.2 and  7.7%, respectively (see Fig.  3b). In sce-
nario  S02 an average carsharing vehicle travels about 230  km per day. By limiting the 
empty trip duration to 15 min in S03, this daily distance goes down to 215 km. This corre-
sponds to an average reduction of the total vehicle kilometers traveled by about 55 km per 
additional vehicle.

Figure 4 shows the time series of the moving vehicles in relation to the total number of 
required vehicles per scenario. Carsharing increases the occupancy rate of the vehicle fleet 
considerably, especially during peak hours. In both scenarios S02 and S03, the maximum 
share of empty vehicle trips per time interval is 20%. Similar to the service trips, the empty 
trips take place mainly during peak hours.

Sharing of electric scooters on a university campus

The University of Stuttgart plans to introduce a campus-wide shared scooter service with 
autonomous electric scooters. Autonomous electric scooters still require a human driver, 
but they are able to perform driverless empty trips to relocate or to drive to a charging 

Fig. 3   Number of required vehicles and total vehicle distance traveled per scenario. Normalization: S00 = 
100
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station (Wenzelburger and Allgöwer 2020). To estimate the required size of such an elec-
tric scooter fleet, the demand for pedestrian traffic between bus stops, parking lots and 
buildings is determined for the campus of the University of Stuttgart. The basis for this 
estimation is a travel survey recording the choices of students and employees regarding 
their mode of transport (car, public transport), the exit stop or the destination car park and 
the time of day for their trips to and from the campus. In a baseline scenario C00, all move-
ments between car parks or stops and university buildings are walking trips. In scenar-
ios C01 and C02 it is assumed that walking trips longer than 400 m are no longer covered 
by foot, but with electric scooters. Since the demand at a university shows considerable 
peaks at the beginning and end of lectures, many scooters are required in the respective 
load direction. An automated relocation of autonomous scooters could reduce the number 
of scooters. This results in the following three scenarios:

C00	� Baseline scenario without scooter, only walking.
C01	� Scooter rides replace walking for trip lengths from 400 m,

	�Scooters are not relocated.
C02	� Scooter rides replace walking for trip lengths from 400 m,

	�Scooters are relocated aiming at a minimum number of vehicles,
	�Duration of empty trips is not limited.

For walking trips, a speed of 4 km h−1 , and for scooter rides, a speed of 10 km h−1 is 
assumed. With this speed, a distance matrix is created for the 150 locations on campus. 
Since the average time of one scooter trip on campus is only 4 min, trip times would be 
greatly overestimated when using time intervals of  15  min. Therefore, the demand is 

Fig. 4   Share of moving vehicles per time interval in relation to the total number of required vehicles for 
each scenario
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divided into 288 time intervals of 5 min each. Using these input variables, the algorithm 
can be applied as in the carsharing scenarios to find scooter schedules for the three campus 
scenarios.

Figure 5 shows the number of person and vehicle trips made as well as the total time 
spent in each of the three scenarios. On an average workday, there are almost 40000 walk-
ing trips to and from the buildings. In scenario C00, the trips are completely covered by 
foot. In the scenarios C01 and C02 about a third of the trips are performed with scoot-
ers. This reduces the total time spent traveling by approximately 40%. However, in sce-
nario  C01 without relocation nearly  6500  scooters are required. In scenario  C02 the 
number of scooters can be reduced to about 500 scooters by relocation. The vehicle num-
bers correspond to roughly 2.2 vehicle trips per scooter and day in C01, whereas in sce-
nario C02 a scooter is used for about 51.0 vehicle trips, of which 23.0 are empty trips.

A test shows the importance of the selected time interval length: If the demand and 
the distance matrix are divided into 15 min time intervals instead of 5 min time intervals, 
the vehicle scheduling algorithm only finds a solution with 1400 scooters for scenario C02 
instead of 500 scooters due to the overestimated travel times.

Figures 5 and 6, which distinguishes the number of scooters in scenario C02 by activity 
(service trip, empty trip and idle) per time interval, show that the share of empty scooter 
trips on campus is considerably higher compared to the regional carsharing scenarios dis-
cussed in Sect. “Regional carsharing”. This can be explained by the demand structure on 
a university campus with strongly pronounced load directions. The more asymmetrical the 
demand, the more vehicles or empty trips are required to serve the same number of trip 
requests.

Fig. 5   Number of trips and total time spent for all scenarios. Normalization: C00 = 100
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Conclusion and outlook

In this paper, we present an efficient heuristic for the vehicle scheduling problem [available 
at Hartleb et al. (2020)]. The aim is to find a vehicle schedule serving a given demand with 
as few vehicles as possible.

In contrast to most existing vehicle scheduling approaches, the presented algorithm is 
suitable for integration into existing macroscopic travel demand models to estimate the 
required vehicle fleet size and the corresponding traffic volumes of on-demand services. 
The presented algorithm provides two advantages compared to standard applications of 
vehicle scheduling.

The first difference is the problem size. Due to the simple procedure of the presented 
algorithm, vehicle schedules for large instance sizes can be found in short running 
times. This allows the analysis of large scale on-demand systems with a high number 
of trip requests. The second difference is the usability for integer as well as non-integer 
demand values. Macroscopic models deal with non-integer demand structures, which 
can be handled by the presented algorithm. With a high temporal resolution, it can also 
be used in microscopic travel demand models.

Two case studies illustrate the applicability of the algorithm in a macroscopic travel 
demand model with on-demand services. In the first case study, the algorithm is used 
to determine the number of required vehicles and the vehicle distance traveled includ-
ing empty trips for a regional car sharing system. The results show that the number of 
required vehicles can be reduced drastically by using carsharing as a substitute for pri-
vate cars. The second case study quantifies the impacts of autonomous scooters on the 
number of required scooters necessary for a shared scooter service. The results indicate 
a considerable potential for reducing the required fleet size by relocating the scooters.

One limitation of the algorithm is that travel costs can be considered only to a limited 
extent. We discuss extensions to the algorithm to implicitly account for these costs and 
illustrate the trade-off between number of vehicles and empty trips. In further extensions 

Fig. 6   Number of scooters in scenario C02 per time interval, subdivided into service trips, empty trips and 
idle
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of the algorithm time-of-day dependent travel times and different speeds for service 
trips and empty trips could be considered. Both extensions allow a more detailed mod-
eling but potentially have a negative effect on the runtime.
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