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Abstract
13C labeling data are used to calculate quantitative intracellular flux patterns reflecting in vivo conditions. Given that 
approaches for compartment-specific metabolomics exist, the benefits they offer compared to conventional non-compart-
mented 13C flux studies remain to be determined. Using compartment-specific labeling information of IgG1-producing Chi-
nese hamster ovary cells, this study investigated differences of flux patterns exploiting and ignoring metabolic labeling data 
of cytosol and mitochondria. Although cellular analysis provided good estimates for the majority of intracellular fluxes, half 
of the mitochondrial transporters, and NADH and ATP balances, severe differences were found for some reactions. Accurate 
flux estimations of almost all iso-enzymes heavily depended on the sub-cellular labeling information. Furthermore, key dis-
crepancies were found for the mitochondrial carriers vAGC1 (Aspartate/Glutamate antiporter), vDIC (Malate/H+ symporter), 
and vOGC (α-ketoglutarate/malate antiporter). Special emphasis is given to the flux of cytosolic malic enzyme (vME): it could 
not be estimated without the compartment-specific malate labeling information. Interesting enough, cytosolic malic enzyme 
is an important metabolic engineering target for improving cell-specific IgG1 productivity. Hence, compartment-specific 
13C labeling analysis serves as prerequisite for related metabolic engineering studies.
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Abbreviations
13C MFA	� 13C metabolic flux analysis
CHO	� Chinese hamster ovary
VCD	� Viable cell density
PPP	� Pentose phosphate pathway
CAC​	� Citric acid cycle
MID	� Mass isotopomer distribution
MPC1/2	� Mitochondrial pyruvate carrier
ME	� Malic enzyme

Symbols
ci	� pmol L−1 Concentration of metabolite i
cx	� cell L−1 Viable cell density
dof	� [-] Degree of freedom

E	� [-] Expected MID measurement data
fi	� [-] Cytosolic fraction of metabolite i
I	� [-] Isotopomer distribution vector
IMM	� [-] Isotopomer mapping matrices
MID	� [-] Mass isotopomer distribution
n	� [-] Number of measurement data
O	� [-] Observed MID simulation
p	� pmol cell−1 h−1 Vector containing estimated 

fluxes using mass-isotopomers data
p	� [-] Number of fitted parameter
Qi	� pmol L−1 h−1 Feed-rate of metabolite i
qi	� pmol cell−1 h−1 Cell-specific rate of exo-

metabolite i
qm	� pmol cell−1 h−1 Vector containing measured 

extracellular rates
S	� [-] Stoichiometric matrix of biochemical 

network
M	� [-] Measurement information matrix
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vj	� pmol cell−1 h−1 Intracellular flux of biochemi-
cal reaction j

v	� pmol cell−1 h−1 Vector containing intracellular 
metabolic fluxes

Greek symbols
α	� [-] Statistical confidence interval
β	� [-] Reversibility constant
σ	� [-] Measurement standard deviation of MID
Θ	� [-] Parameter

Indices
ex	� [-] Compartment indication
feed	� [-] Feed
in	� [-] Compartment indication
i	� [-] Compound/metabolite i
j	� [-] Biochemical reactions j
meas	� [-] Indication for measurement vector
net	� [-] Indication for net fluxes
X	� [-] Cells/biomass

Introduction

13C metabolic flux analysis (13C MFA) is a key tool for 
quantitative analysis in systems metabolic engineering. 
First, applications dealt with prokaryotic cells [1] but the 
technique was also applied for eukaryotes, such as yeast [2, 
3], fungi [4], mammalian [5–8], and plant [9] cells. Among 
others, prokaryotes and eukaryotes differ in cellular com-
partmentation, which is particularly important when using 
13C MFA. In eukaryotes, compartmentation is essential since 
each cellular compartment fulfils different functions [10]. 
Even multi-compartment isozymes exist that serve different 
purposes. For example, Chinese hamster ovary (CHO) cells 
comprise cytosolic and mitochondrial malic enzymes (MEs) 
with different NAD+ and NADP+ regeneration capacities, 
thereby fulfilling diverse catabolic and anabolic needs [8].

Metabolic compartmentation must be considered when 
performing 13C MFA [10]. There are two levels of complex-
ity; on the one hand, subcellular metabolic models should 
be used to enable proper in silico predictions. On the other 
hand, in vivo compartment-specific metabolome data should 
be available to allow data-driven studies. Nicolae et al. and 
Pfizenmaier & Takors provided evidence for the importance 
of subcellular stoichiometric models for estimating fluxes in 
CHO cells [11, 12]. Regarding the latter,  Matuszczyk et al. 
[13] applied compartment-specific metabolomics in CHO 
outlining that cytosolic ATP pools are considerably larger 
than their mitochondrial counterparts. Later, Junghans et al. 
[8] continued investigating mitochondrial and cytosolic met-
abolic patterns under different cultivation conditions. They 

found that pool sizes differed between cytosol and mitochon-
dria for all conditions.

Given that subcellular metabolomics are very laborious 
[8, 13] the question arises what differences may occur if 13C 
flux analysis is based on whole-cell metabolomics instead 
of compartment-specific measurements. In other words, 
whether the additional lab-efforts justify the information 
gain of subcellular studies.

Alternative approaches such as superimposing the pat-
terns of two independent 13C experiments using labeled 
glucose and labeled glutamine also aim to decipher subcel-
lular flux distributions [6]. However, they rely on glutamine 
synthase deficient cells whereas the suggested subcellular 
metabolomics approach may be universally applicable.

Given that labeling dynamics in metabolite pools 
expressed by the 13C labeling turn-over (τ13C) are a key 
information for quantifying fluxes, influencing factors may 
be considered. Two factors, pool size of metabolite i and 
net labeling flux j through this pool exist [14]. Either factor 
may change when a system’s analysis shifts from simplifying 
single to realistic multi-compartment analysis. Differences 
in τ13C may occur originating from individual pool sizes and 
fluxes inside the compartments. In theory, the same metabo-
lite in different compartment might present a different labe-
ling dynamic providing that the metabolite turn-over time 
is different. Thus, resulting on a different labeling dynamics 
(τ13C).

Exploiting the unique subcellular labeling dataset of 
Junghans et al. [8] this study investigated whether subcel-
lular labeling information is crucial to obtain the correct 
compartment-specific flux patterns. Flux distributions con-
sidering and ignoring subcellular metabolite labeling were 
performed using CHO as the showcase. This study investi-
gated whether significant differences exist using whole-cell 
and compartment-specific metabolic information.

Materials and methods

This study was based on published metabolome and 13C iso-
topologue data [8]. In particular, the 13C dataset covering the 
first 24 h was used to focus on the exponential growth phase.

Cell culture and experimental set‑up

The CHO DP-12 cell line (ATCC​® CRL-1445TM) was cul-
tivated in a suspension with TC-42 medium (Xell AG, Biele-
feld, Germany) supplemented with 42 mM d-glucose, 6 mM 
ʟ-glutamine, and 200 mM methotrexate. Precultures were 
cultivated in pre-sterilized disposable shake flasks (Corning 
Inc., NY, USA) with culture volume ranging from 125 mL to 
1 L at an initial viable cell density (VCD) of 0.4 × 106 cells/
mL in a humidified shaking incubator (Infors HT Minitron, 
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Infors GmbH, Einsbach, Germany) at 37 °C, 150 rpm, and 
5% saturated CO2.

Bioreactor cultivations were performed in a two-fold 
parallel CellFerm Pro bioreactor system (DASGIP, Eppen-
dorf, Germany) equipped with pitched blade impellers and a 
process control system. Bioreactor cultivations were started 
with a VCD of about 0.4 × 106 cells/mL, temperature was 
set to 37 °C and agitation to 150 rpm. In addition, the dis-
solved oxygen content was controlled using an amperomet-
ric electrode (Mettler-Toledo Inc., Columbus, OH, USA) at 
40%. The pH was measured with a conventional pH probe 
(Mettler-Toledo Inc., Columbus, OH, USA) and maintained 
at 7.1 using 1 M Na2CO3 or CO2 gassing. Carbon labe-
ling experiments were performed in the same setup using 
[U-13C6]-d-glucose as a carbon tracer with an average iso-
topic ratio of 25% [U-12C6]- and 75% [U-13C6]-d-glucose. 
Experiments were performed as biological duplicates. In 
addition to carbon labeling experiments, bioreactor culti-
vations with [U-12C6]-d-glucose were performed using the 
same conditions for metabolome profiling.

Extracellular and intracellular analytics

VCD was monitored with a 12 h interval with Cedex XS, 
an offline cell counting system (Innovatis AG, Bielefeld, 
Germany). Extracellular d-glucose and ʟ-lactate were moni-
tored offline with LaboTRACE, an amperometric biosensor 
system (Trace Analytics GmbH, Braunschweig, Germany). 
Extracellular antibody (IgG1) concentrations were meas-
ured using ELISA as reported previously [15]. Extracellular 
amino acid concentrations were quantified with reversed-
phase chromatography (Agilent 1200 Series, Agilent Tech-
nologies, Waldbronn, Germany) [8].

Sampling for metabolomics was performed using differ-
ential fast filtration [8, 13]. Then, processed samples were 
analyzed regarding metabolome quantification using an 
Agilent 1200 HPLC system coupled with an Agilent 6410B 
(Agilent Technologies, Waldbronn, Germany) triple quad-
rupole mass spectrometer equipped with an electrospray 
ion source. Analytical sample preparation and methodology 
were conducted as reported previously [8, 16].

13C metabolic flux analysis

Isotopic non-stationary 13C MFA was performed in MAT-
LAB 2018a (The MathWorks, Inc., MA, USA). Before 
performing 13C MFA, measured 13C labeling distributions 
were corrected for natural stable isotope abundances [17]. 
Parameter optimization was conducted using MATLAB 
least square optimization fmincon function in combination 
with GlobalSearch and MultiStart algorithm in a multi-core 

computing machine [18]. The first derivative of each isoto-
pomer balance was solved using MATLAB Ordinary Differ-
ential Equations ode15s solver. The study used the metabolic 
and carbon-atom transition model in the previous study [8]. 
Details of the model are indicated in Table S1 (Supplemen-
tary Material S1) and are displayed in Fig. 1.

Metabolite balancing

The two-compartment CHO-cell model comprises the stoi-
chiometric matrix S (Supplementary Material S1, Table S1) 
consisting of m metabolites and n reactions (m × n). The fol-
lowing cell-specific rates [pmol cell−1 h−1] were defined: q 
for cellular uptake and secretion rates, k as inter-compart-
ment transport, and v as compartment-specific reaction. The 
balance of metabolite i participating in reaction j localized 
externally, in cytosol, or in mitochondria was described by 
Eqs. 1 and 2:

where ci denotes the concentration of metabolite i [mol L−1], 
cx denotes VCD [cell L−1], t denotes time [h], and Qi,feed 
denotes the feed-rate of metabolite i [pmol L−1 h−1].

The process model describing the batch cultivation is 
given in Eq. 1 and allows the estimation of q for metabolite 
i by time-series analysis of extracellular concentrations ci. 
Therefore, the metabolic steady-state was defined as mir-
rored in the constraint dc,intracellular

dt
= 0 , which is a prerequisite 

for 13C flux analysis. Both stationary and non-stationary 
labeling patterns were analyzed, originating from the meta-
bolic steady-state condition.

Metabolic flux analysis

MFA was performed using the metabolic network S con-
sidering the following constraints: (i) pool sizes of cyto-
solic and mitochondrial metabolites were in a steady-state 
and (ii) the entire system was (over)-determined because of 
the ample 13C labeling information. Fluxes were estimated 
according to:

where M is the measurement matrix containing the stoi-
chiometric coefficients of qmeas (measured rates [pmol 
cell−1 h−1]) and p contains the estimated fluxes using mass-
isotopomer data [pmol cell−1 h−1]).

(1)
dCi,ex

dt
= Qi,feed + qicX ,

(2)
dci,in

dt
=

(
−qi − ki +

n∑
j=1

vj

)
⋅ cx = 0,

(3)v =

(
S

M

)−1(
0[

qmeas p
]
)
,
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Fig. 1   Metabolic model of CHO cells used in this study (modified 
figure from Junghans et al. [8]). Arrow coloring indicates the locali-
zation of biochemical reactions as follows: black encodes single 

compartment; red encodes multi-compartments; and blue encodes 
inter-compartment transporters. In addition, multi-compartment 
metabolites are indicated in red (color figure online)
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Isotopomer balancing and bidirectional reactions

Isotopomer balancing was applied to mathematically 
describe the incorporation of 13C tracers into intracellular 
metabolite carbon skeletons [19, 20]. Isotopomer balances 
for intracellular metabolites are according to Eq. 4:

where the isotopomer transition from reactant k to product 
m is described by IMMk→m.

Furthermore, Eq. 5 was used to describe labeling dilution 
by extracellular pools (ʟ-lactate, ʟ-glutamate, ʟ-aspartate, 
and ʟ-alanine):

Exchange fluxes were defined for each reversible bio-
chemical reaction [21, 22] according to Eq. 6:

Parameter estimation and uncertainty

Parameter (flux) estimation was achieved by fitting the simu-
lated mass isotopomer distribution (MID) to the measured 
in vivo MID as presented in Eq. 7:

Cytosolic and mitochondrial MIDs were defined for sub-
cellular studies. Non-compartmented analysis considered 
that no subcellular measurements were available. Instead, 
only entire cell labeling patterns should exist. Consequently, 
compartment-specific information was merged again, apply-
ing Eq. 8:

(4)

d
�
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�
dt
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⎡
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,

(5)
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(
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)
dt
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1

ci,ex

[
cX

(
⇀

qi,ex ⋅ �i,in −
↼
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)
−

dci,ex

dt
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]
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⇀
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net
i,ex

↼
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.
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⇀
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net
j

↼

vj =
⇀

vj − vnet
j
.

(7)min f (Φ) =
∑(

MIDsim
i

−MID
exp

i

�i

)2

.

where f denotes the molar fraction of metabolite i in the 
cytosol. During simulations, f was treated as an optimization 
parameter for those metabolites presented in both compart-
ments; pyruvate, citrate, α-ketoglutarate, malate, alanine, 
aspartate, asparagine, and glutamine. Accordingly, f serves 
as an alternate indicator for the importance of considering 
compartments properly. Furthermore, flux estimation was 
achieved by fitting the measured non-compartment metabo-
lome data with calculated MID using Eq. 9:

A χ2 statistical test was used to assess goodness of fit as 
described in Eq. 10:

Parameter uncertainty is essential to evaluate the flux dif-
ferences including versus excluding compartment-specific 
data. Conventional parameter uncertainty estimates make 
use of the local calculation of the Jacobian matrix as a lin-
earized proxy for variance. However, this approach only 
shows poor performance if a complex and non-linear set 
of equations should be analyzed, as it is the case in this 13C 
MFA study. Thus, confidence intervals of each parameter 
(fluxes) were estimated using the Chi-squared (χ2) statistics, 
which works best for non-linear equations as demonstrated 
by Antoniewicz et al. [23]. The method relies on the assump-
tion that the minimized variance-weighted sum of squared 
residuals is χ2 distributed. Thus, the residual difference 
evaluating the global optimum and fixing one parameter is 
χ2 distributed with one degree of freedom.

Statistical analysis

The significant differences between the two analyses were 
assessed using Welch’s t-test for unequal variances [24].

Results

Prior to the 13C MFA studies, a metabolic network model 
was formulated (Supplementary Material S1). First the 
structural identifiability and calculability of the network was 
assessed applying well established methodologies (Supple-
mentary Material S4). Next, the identifiability of distinct 

(8)MIDcomb
i

= MID
cyt

i
⋅ f +MIDmit

i
⋅ (1 − f ),

(9)min f (Φ) =
∑(

MIDcomb
i

−MID
exp

i

�i

)2

.

(10)
�2 =

∑ (
xsim − xexp

)2
�2

dof = (n − p)

�2
≤ �2

(1−�),dof .
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fluxes was checked by simulating intracellular 13C labeling 
patterns assuming pool sizes measured by Junghans et al. 
[8]. Results presented in the Supplementary Material S4 
indicate the good identifiability of intracellular fluxes which 
motivated us to continue the study by analyzing real labeling 
patterns and flux distributions.

In the study by Junghans et al. [8] CHO-DP12 cells 
were cultivated in a bioreactor to investigate three dis-
tinct growth scenarios; (I) exponential growth with no 
(carbon and nitrogen) limitation; (II) moderate growth 
with ʟ-glutamine depletion and ʟ-asparagine saturation; 
and (III) stationary phase with severe nitrogen limitation. 
However, the current study regarding the impact of subcel-
lular 13C data only covers the exponential growth phase 
during the first 24 h. This period is typically investigated 
in vitro because labeling and cultivation conditions can 
be controlled easily, giving accurate results regarding flux 
distributions and cell-specific productivities [5, 7]. Fur-
thermore, additional cultivation study data investigating 
the same cell line and process conditions was used for 
broadening the data set of subcellular versus cellular 13C 
metabolomics for flux analysis (see Supplementary Mate-
rial S6). The summary of all estimated intracellular fluxes 
is provided in Supplementary Material S2.

Cell growth and carbon labeling studies

During the exponential growth phase, cells grew with 
0.025 ± 0.001 h−1. Carbon and nitrogen sources were con-
stantly consumed, and metabolic byproducts were steadily 
released with constant specific rates (Supplementary Mate-
rial S1, Table S2). d-Glucose was consumed as a major car-
bon source while ʟ-glutamine and ʟ-asparagine served as 
primary nitrogen sources. In addition, the Warburg effect 
[25] was observed, showing a glucose-to-lactate ratio of 0.93 
mold-glucose/moll-lactate. 13C carbon labeling was introduced 
by the addition of 75% [U-13C6]-d-glucose after 2.5 days, 
revealing no phenotypic changes, i.e., no alterations of cel-
lular metabolism.

13C metabolic flux analysis using 
compartment‑specific metabolome data

13C MFA was performed using compartment-specific 
metabolome data reflecting subcellular pools of cytosol and 
mitochondria together with isotopomer profiles of the said 
compartments. Flux estimations were performed at least 100 
times with randomized input values and rational boundary 
values for each parameter (Supplementary Material S2). 
Finally, the chi-square tests achieved 228.87, which served 
the statistical constraint of 232.92 on a 95% significance 
level.

Glycolysis and PPP

High glycolytic (0.112 ± 0.017 pmol cell−1 h−1 of hexoki-
nase) and extremely low PPP fluxes (0.008 ± 0.001 pmol 
cell−1  h−1 of G6P dehydrogenase) were found. The lat-
ter accounted for 6.68% of the d-glucose consumed. 
These observations are in agreement with the findings 
of Ahn & Antoniewicz [5], who performed 13C MFA in 
adherent CHO-K1 cells. In addition, approximately 15% 
(0.016 ± 0.002 pmol cell−1 h−1) of intracellular G6P was 
continuously in exchange with endogenous glycogen.

In vivo mitochondrial shuttle

Glycolytic carbon fueled into mitochondria via two transport 
mechanisms; 77% entered via the mitochondrial pyruvate 
carrier (MPC1/2) and 23% via a putative l-alanine trans-
porter. MPC1/2 showed the highest mitochondrial transport 
activities while other transporters exchanged compounds for 
different purposes; (i) mitochondrial citrate carrier (citrate/
malate antiporter; 0.049 ± 0.002 pmol cell−1 h−1) served as 
a citrate exporter to provide cytosolic acetyl-CoA for the de 
novo lipid biosynthesis pathway; (ii) the malate-aspartate 
shuttle comprising 2-oxoglutarate carrier (α-ketoglutarate/
mal antiporter) and aspartate-glutamate carrier (aspartate/
glutamate antiporter), which is often described as an indi-
rect NADH shuttle because imported malate is oxidized to 
oxaloacetate, releasing NADH, fulfilled a different function; 
malate was net exported from mitochondria to fuel cytosolic 
ME.

Cytosolic malic enzyme and NADPH production

NADPH is a key electron donator for anabolic pathways 
and is essential for monoclonal antibody biosynthesis. Ahn 
& Antoniewicz, Templeton et al. [5, 7] suggested MEs as 
key NADPH producers in CHO cells. This hypothesis was 
further confirmed via compartment-specific flux analysis by 
Junghans et al. [8]. Cytosolic ME (MEcyt) was identified as 

Fig. 2   A Intracellular flux distribution estimated using compartment-
specific (left) and non-compartmented data (right); B fluxes of bio-
chemical reactions involving single-compartment metabolites; C 
fluxes of biochemical reactions involving multi-compartment metab-
olites; and D mitochondrial carrier fluxes estimated with compart-
ment-specific and non-compartmented data (* indicates significance 
p < 0.05)

◂
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the primary provider serving NADPH needs. Compartment-
specific 13C MFA estimated that about 86% of the NADPH 
requirement was fulfilled by MEcyt (0.09 ± 0.01  pmol 
cell−1 h−1).

13C Metabolic flux analysis using 
non‑compartmented metabolome data

An additional 13C MFA was performed to investigate the 
importance of distinct sub-cellular information to eluci-
date proper in vivo subcellular flux patterns. Analyzing the 
merged data (Eq. 6) via 13C MFA yielded a Chi-squared 
value of 140.12 on the 95% confidence level, which was 
accepted as a good fit (with 154.30 as the χ2 statistical 
threshold on 95% confidence interval).

This study was performed using the same model con-
sisting of 42 intracellular biochemical reactions. Figure 2A 
provides the comparison of intracellular flux distributions 
estimated with (left) and without (right) sub-cellular infor-
mation (Fig. 2A). The related single-compartment key fluxes 
and iso-enzymatic rates are depicted as bar plots in Fig. 2B, 
C. Notably, the term ‘iso enzymes’ encodes fluxes connect-
ing the same substrates and products but localized in differ-
ent compartments.

Biochemical reactions localized in a single compartment

Figure 2B, C left shows fluxes of biochemical reactions that 
exist in one compartment (cytosol or mitochondria) only. 
Most of them revealed similar results irrespective of whether 
compartment-specific information was used (black) or not 
(gray). Figure 2B demonstrates the case the metabolome 
pools and the respective fluxes were the same for both stud-
ies, yielding a similar τ13C. This is also true for citrate syn-
thase vCS, although identifiability was poor. Similar results 
were observed for cytosolic-based reactions: pyruvate car-
boxylase (vpc) and PEP carboxykinase (vpepck) (Fig. 2C). 
These single-compartment reactions possessed the particu-
larity of utilizing the same metabolites but in different com-
partments (Fig. 1). In this particular case, no statistically 
sound difference between vpc and vpepck was found, most 
likely because compartment-specific OAA values lacked.

Iso‑enzymatic reactions localized in different 
compartments

Special emphasis is laid on the so-called iso-enzymatic reac-
tions of Fig. 2C right that catalyze similar conversions in 
different compartments. The fluxes of malate dehydroge-
nase (vmdh), ME (vme), aspartate amino-transferases (vast), 
and alanine amino-transferases (valt) are localized in cytosol 

and mitochondria, respectively. Of the eight iso-enzymes 
analyzed, seven conversion rates were significantly different. 
The only exception is the mitochondrial malate dehydroge-
nase (vmdh,mit) which revealed statistical similarity although 
fluxes even reversed. On contrary, the cytosolic malate dehy-
drogenase (vmdh,cyt) also disclosed flux reversion but with a 
sound statistical identifiability.

Non-compartmented data were not able to properly reflect 
real fluxes of the amino-transferases (vast), namely alanine 
amino-transferases (valt) and aspartate amino transferases 
(vast). The analysis of whole-cell data resulted in flux over-
estimation compared to compartment-specific analysis. 
Notably, the substrate aspartate occurred in cytosol and 
mitochondria and is a key player of the aspartate-malate 
shuttle. Moreover, alanine was involved in the co-transport 
of glycolytic carbon into mitochondria with the MPC1/2. In 
this case, proper localization and labeling information of the 
compound is key to estimate fluxes correctly.

In addition, severe bias was observed for fluxes of both 
malic enzymes (vme) as displayed in Fig. 2C right. By trend, 
13C flux estimations using non-compartmented data identi-
fied significantly lower (about 30%) cytosolic vme,cyt than 
the non-compartmented data. Regarding mitochondria, the 
opposite was found. The finding for vme using non-compart-
mented data is consistent with the observations of Ahn & 
Antoniewicz, Templeton et al. [5, 7] who also performed 13C 
MFA with cellular data. Importantly, cytosolic ME activ-
ity via vme,cyt was identified as a key supplier for NADPH 
needed for IgG production in CHO cells (Junghans et al. 
[8]).

Mitochondrial metabolite carriers

Comparing shuttle activities using sub-cellular and cel-
lular labeling information reveals significant differences 
for half of the inter-compartment transporters, namely the 
aspartate/glutamate antiporter (vAGC1), malate carrier (vDIC), 
α-ketoglutarate/malate antiporter (vOGC), and the putative 
alanine carrier (vmAla) (Fig. 2D). Similar to the identification 
of aspartate amino-transferases, the proper identification of 
vAGC1 depends on the labeling turnover τ13C of Asp in both 
compartments. Missing compartment-specific measurements 
lead to the different shuttle fluxes, which are also reflected in 
the biased flux vast. The same scenario also holds true for the 
putative alanine carrier (vmAla) and the corresponding reac-
tions (alanine amino-transferases; valt). Shuttle estimations 
regarding vDIC and vOGC using non-compartment-specific 
data contradict flux calculations using compartment-specific 
information estimation. The sub-cellular labeling informa-
tion of malate is essential to get accurate flux estimates. 
Interestingly, the flux estimation of putative asparagine car-
rier (vmAsn) was not biased by the use of whole-cell labeling 
data only. This may reflect that vmAsn heavily depends on the 
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measured ʟ-asparagine uptake rate (qAsn) irrespective of the 
existence of additional subcellular information.

Estimated cytosol–mitochondrial fraction (f factor)

Using Eq. 8, f factors were estimated for each metabolite 
and compared with the measurements of Junghans et al. [8] 
(Table 1). As indicated, all estimated cytosolic fractions (f) 
were poorly identified with pyruvate showing the smallest 
difference of 8.59% only. On average, 59.71% difference 
was found compared to the real labeling fraction. Notably, 
the best estimates of pyruvate and asparagine also enabled 
improved flux values for the corresponding biochemical 
reactions, e.g. vMPC1/2, vpdh for pyruvate, and vasns, vmAsn for 
asparagine.

Cellular NADH and NADPH production

Table 2 shows a comparison of NADH and NADPH pro-
duction via compartment-specific analysis and neglection 
of sub-cellular data.

Neglecting sub-cellular data, NADPH production is 
underestimated by approximately 25%. This reflects the 
30% underestimation of cytosolic vME when cellular and not 
subcellular data are used. In the case of NADH and ATP, 
the utilization of different datasets disclosed only minor 

differences. NADH and ATP fluxes were overestimated by 
9% and 14% for non-compartmented data, respectively.

Challenging the key statements by an additional data set

To investigate whether or not the observed flux characteris-
tics may be specific for the data sets used, additional data of 
cultivations with the same cell line, cultivation conditions, 
and analytical tools was used. Figure S6-1:S6-3 (Supple-
mentary Material S6) outlines that very similar key mes-
sages are obtained analyzing the new data set: Glycolytic 
fluxes are fairly similar irrespective whether subcellular or 
cellular 13C metabolomics is used. On contrary, fluxes for 
cytosolic malate dehydrogenase and malic enzyme differ sta-
tistically significant depending on the granularity of meta-
bolic labeling resolution. The same holds true for shuttle 
activities such as DIC, GC1, and OGC which is in agreement 
with the results derived from the other data sets.

Discussion

This study challenges the information gain when perform-
ing 13C MFA with compartment-specific metabolome data 
compared to exploiting cellular labeling information not 
distinguishing between cytosol and mitochondria.

Figure 2 outlines the complexity of the interactions. A 
group of fluxes (vpgi, vGAPdh vG6Pdh, and vphdgh) located in 
a single compartment (here: cytosol) disclose equal values 
irrespective of the analytical approach selected. Interest-
ingly, this also holds true for vcs, located in mitochondria, 
primarily due to poor flux identifiability. Furthermore, vpepck 
and vpc revealed such high flux variances that no distinc-
tion could be found whether cellular or subcellular 13C data 
were used. Apparently, both reactions depend on cytosolic 
(OAAcyt) and mitochondrial oxaloacetate (OAAmit). They 
act at the interphase of the two compartments and rely on 
proper sub-cellular measurement information (τ13C) for cor-
rect identification. Distinct OAA measurements were not 
available in the current study due to challenging analytical 
access to the compound. Accordingly, flux estimations might 
be biased by the quality of OAA pool estimations.

In addition, some other fluxes should be interpreted with 
great care, too. This holds particularly true for mitochondrial 
malate dehydrogenase (vmdh,mit) and the pyruvate carrier 
vMPC1. Both disclose large error bars rendering a discrimi-
nation between cellular versus subcellular approaches hardly 
possible (Fig. 2C, D). Flux imprecisions reflect the lack of 
reliable CO2 evolution rates ( qCO2

 ) and CO2 labeling profiles.
The whole-cell (cellular) flux estimation failed to esti-

mate the mitochondrial and cytosolic fluxes of the amino-
transferases valt and vast. This may reflect that those fluxes 

Table 2   Comparison of NADH, ATP, and NADPH net production 
rates in compartment-specific analysis and whole-cell analysis (values 
presented in pmol cell−1 h−1)

NADH ATP NADPH

Compartment-specific 0.55692 0.22752 0.10577
Non-compartmented 0.60815 0.25914 0.07924

Table 1   Complete list of estimated and measured cytosolic fractions 
of subcellular metabolites used for 13C MFA

Metabolites Cytosolic fraction (f)

Estimated Measurement 
(Junghans et al. 
[8])

% difference (meas-
urement as the refer-
ence value)

Mal 0.100 0.829 87.9
Pyr 0.910 0.838 8.59
aKG 0.100 0.714 85.99
Cit 0.995 0.489 103.48
Glu 0.373 0.827 54.90
Ala 0.100 0.840 88.1
Asn 0.717 0.805 10.48
Asp 0.500 0.809 38.20
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heavily depend on the compartment-specific labeling infor-
mation of alanine and aspartate. Not providing this infor-
mation by using whole-cell labeling data leads to the large 
discrepancies given in Fig. 2C.

Almost all mitochondrial carrier fluxes were poorly esti-
mated when using non-compartmented data. Inaccurate esti-
mations of vAGC1 and vmAla are also reflected by the results 
of vast and valt. In addition, the poor estimation of the malate 
carriers vDIC and vOGC depended on vme. In general, fluxes of 
transporters and bioreactions heavily relied on the labeling 
dynamics measured in the related metabolites. Regarding 
vMPC1, the reduced shuttle activity based on non-compart-
mented data reflects the missing malate exported into cyto-
sol (Fig. 2D).

To check whether the additional use of labeled glu-
tamine [6] might have achieved similar subcellular flux 
resolutions as the compartment-specific analysis, simula-
tions were performed using [U-13C5]-ʟ-glutamine (Sup-
plementary Material S3). Interestingly, without informa-
tion about compartment-specific metabolomics, cytosolic 
13C signals obtained from simulations are pretty similar to 
those of the whole-cell. This is mainly due to the relatively 
low information gain with respect to the key mitochondrial 
metabolites malate and aspartate. Compartment-specific 
labeling information and turnover of the latter are decisive 
to resolve activities of mitochondrial transporters.

In general, most of the flux estimations using either 
non-compartmented or compartmented data led to similar 
values. Even global cell qualifications, such as rates of 
total ATP formation and NADH production, were similar. 
However, two main findings should be considered:

1.	 Often, cellular analysis achieved similar flux estimations 
as subcellular studies by fitting measured cytosolic labe-
ling fractions for the sake of estimating pool sizes prop-
erly (Table 1). In other words, flux optimization algo-
rithms adapted cytosolic and mitochondrial pool sizes to 
complement missing labeling information. However, the 
simulated pool size readouts were strongly misleading.

2.	 Among the fluxes with the largest discrepancies is the 
cytosolic ME vme. Remarkably, this flux was found to be 
a promising metabolic engineering target to maximize 
the formation of heterologous proteins by improved 
NADPH supply [8]. Accordingly, exact estimation is 
a prerequisite for proper strain engineering. Figure 3 
illustrates that even the result of non-compartment data 
analysis still fits to the subcellular kinetics published in 
Junghans et al. [8]. Whether or not experimentalists may 
have identified this enzyme as a metabolic engineering 
target remains open and is a matter of qualitative discus-
sion rather than quantitative target identification [8].

To date, the compartment-specific analytical approach 
has shown its suitability for multiple metabolomic studies 

Fig. 3   Cell-specific produc-
tion of monoclonal antibodies 
in CHO cells (modified from 
Junghans et al. [8])



2577Bioprocess and Biosystems Engineering (2021) 44:2567–2578	

1 3

investigating CHO cells under in vivo-like conditions [8, 
15, 24–30]. The latter is enabled by fast and standardized 
metabolism inactivation. Furthermore, data quality essen-
tially relies on the quantitative access to internal standards, 
such as G6P/F6P (in cytosolic space) and cis-aconitate (in 
mitochondrion) to correct for mitochondrial leakage. In 
general, fast metabolic inactivation, standardized sample 
processing and use of internal standards are prerequisites 
for any compartment-specific metabolomics approach that 
might be used in future applications.

Conclusions

Investigating the need for using subcellular 13C labeling 
data, the study revealed that non-compartmented data 
enabled to identify most fluxes involving single compart-
ment metabolites. Besides, half of the mitochondrial shut-
tle fluxes and global properties, such as ATP and NADH 
formation, were fairly well estimated without requiring 
further subcellular labeling information. However, there is 
a number of sensitive fluxes that could only be identified 
properly if compartment-specific pool information was 
used. Among those were mitochondrial shuttles that rely 
on alanine, aspartate and malate. Furthermore, key meta-
bolic engineering targets, such as the cytosolic ME flux for 
NADPH formation, were severely underestimated using 
(total) cellular data. This may disguise their role as prom-
ising metabolic engineering target if non-compartmented 
pool analysis is performed, only. The finding underlines 
the necessity to apply subcellular data for flux estimation, 
not only to quantify cytosolic/mitochondrial shuttle activi-
ties but also to identify metabolic engineering targets and 
obtain valid values for real pool sizes.
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