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Abstract We study fluid-saturated porous materials that undergo poro-elastic deformations in thin domains.
The mechanics in such materials are described using a biphasic model based on the theory of porous media
(TPM) and consisting of a system of differential equations for material’s displacement and fluid’s pressure.
These equations are in general strongly coupled and nonlinear, such that exact solutions are hard to obtain and
numerical solutions are computationally expensive. This paper reduces the complexity of the biphasic model
in thin domains with a scale separation between domain’s width and length. Based on standard asymptotic
analysis, we derive a reduced model that combines two sub-models. Firstly, a limit model consists of averaged
equations that describe the fluid pore pressure and displacement in the longitudinal direction of the domain.
Secondly, a corrector model re-captures the mechanics in the transverse direction. The validity of the reduced
model is finally tested using a set of numerical examples. These demonstrate the computational efficiency of
the reduced model, while maintaining reliable solutions in comparison with original biphasic TPM model in
thin domain.

Keywords Model reduction · Theory of porous media (TPM) · Biphasic deformable materials · Fluid-
saturated porous materials · Asymptotic analysis

1 Introduction

Fluid-saturated, deformable, porous materials are ubiquitous in many environmental, industrial and biological
applications. Examples of suchmaterials are soil, polymers, foams and living organs likemuscle, liver, cartilage
or even brain tissues. These types of materials can be characterized as porous biphasic materials with additional
substances. The phases are understood to be the immiscible components, such as the porous solid matrix and
the saturating fluid. However, the solutes are not considered further in this work. We reduce ourselves to the
two-phase model, with the aim of demonstrating the performance of the developed model reduction method.
Mathematical models are the classical tool to describe and predict the mechanics in these biphasic materials.
They are derived from different multiphase homogenization approaches. Themost common approaches are the
Biot theory [6], themixture theory [22] and the theory of porousmedia (TPM) [9]. Following the latter approach,
this paper considers a biphasic model of coupled quasi-static balance equations of mass and momentum. We
refer to [10] for a comprehensive introduction to the TPM.
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For the aim of a simple presentation, we consider a quasi-static biphasicmodel with negligible constituents’
acceleration.We also assume isothermal conditions, negligible viscous extra stresses of the fluid and negligible
gravity forces. Despite this choice of a simplified biphasic model, it is still a strongly coupled system of differ-
ential equations for fluid pressure and solid displacement. Hence, solving this model is of high computational
complexity, mainly for nondeterministic models [29] or in data-driven evaluations [20], where the model has
to be repeatedly solved. Therefore, it is our goal in this paper to reduce the complexity of the full biphasic
model, in particular for any kind of limit regimes.

In the last decades, several model order reduction methods have been established. These are typically
applied to the discretized models, with the advantage of preserving the details of the original continuous
models. We refer here to the most popular projection-based model order reduction approaches, namely the
singular value decomposition (SVD)-based methods. Examples of the SVD-based reduced methods are the
method of balanced truncation [21] and the method of proper orthogonal decomposition (POD) [24] for
biomechanical applications. The first method aims to approximate a system by identifying the important
system modes and neglecting those of low impact, and the latter method approximates a given data set with
a reduced basis in a low-dimensional subspace by applying a Galerkin projection. Further modifications of
the POD method have been suggested to treat nonlinear terms in models. Examples of such extensions are:
the Gappy-POD method [11], the discrete empirical interpolation method (DEIM) [8] and for biomechanical
applications [13]. In addition to this, is the approach of hyper-reduction (HR) [27,28]. We also refer to further
developing modified approaches with a weighted inner product to perform a “goal-oriented” POD [7,17]. For
a general overview of these reductions methods, we refer to [12].

We focus in this paper on knowledge-driven model order reduction methods for saturated materials in
thin domains, where the domain’s width and length are scale separated. In such domains, fluid flow can be
assumed essentially hydrostatic in the transverse direction and the dynamics in the domain are almost in the
longitudinal direction only. In petroleum application and CO2 sequestration, this assumption is known as
the vertical equilibrium assumption [14,19,30], while in the field of hydrogeology, it is called the Dupuit’s
assumption [16]. It has been utilized to reduce the computational complexity of two-phase flow models in
nondeformable porous materials in thin domains. We refer here to the asymptotic approach proposed in [30]
for Darcy regimes and extended in [4] for Brinkman regimes. This approach aims to reduce the complexity of
the models by means of asymptotic analysis based on the geometrical width–length ratio of the domain. It has
been tested for accuracy and computational efficiency, see, e.g., [2,4]. In Brinkman regimes, thewell-posedness
of the resulting reduced model is investigated in [3]. Moreover, it is proved in [1] that the reduced model is the
analytical limit of the full two-phase flowmodel as the geometrical ratio approaches zero. For other approaches
that also utilize the hydrostatic assumption, we refer to [5,14,15,23]. We also refer to [25,26] for coupled two-
scale PDE–ODE approaches and to [20] for model order reduction approaches in biomechanical applications.

The main contribution of this paper is a mathematical derivation of a reduced biphasic model consisting of
two sub-parts. The first part is a limit model that describes the mechanics in the longitudinal direction of the
domain. It results from the asymptotic analysis by letting the geometrical parameter of domain’s width–length
ratio approach zero. It consists of three coupled one-dimensional equations for fluid pressure and material dis-
placement in the longitudinal direction, in addition to displacement in the transverse direction at the boundary
where load is applied. The second part is a corrector model (of small order) that re-captures the mechanics in
the transverse direction. It consists of two full-dimensional equations for material displacements in both trans-
verse and longitudinal directions. A further contribution is a numerical validation of the reduced model based
on a comparison study with the full model for accuracy and computational efficiency. For the comparison, four
scenarios with different input parameters, like permeability and load position, are designed.

The paper has the following structure. Section 2 introduces the original biphasic model (which we call here
the full model) together with a set of suitable initial and boundary conditions. In Sect. 3, we derive the reduced
model by, first, rescaling the full model into a dimensionless one that explicitly depends on the geometrical
parameter of domain’s width–length ratio. Then, we apply formal asymptotic analysis to the dimensionless
full model as the geometrical parameter approaches zero. Finally, we propose in Sect. 4 a numerical scheme,
based on the finite difference method, to the reduced model. The reduced model is then numerically tested for
accuracy and computational efficiency in comparison with the dimensionless full model.

2 Full biphasic model

We consider a fluid-saturated porous material ϕ = ϕS ∪ϕF in a thin rectangular domain� = (0, H)× (0, L)
that undergoes small elastic deformation. Without loss of generality, and for more illustration, we consider an
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Fig. 1 A sketch of a thin rectangular domain � = (0, H) × (0, L) with load applied at the drained top boundary. The left, right
and bottom boundaries are undrained and fixed in their perpendicular direction

initial boundary value problem of a classical consolidation scenario, where the longitudinal direction is the
z-direction and the transverse direction is the x-direction, see Fig. 1. The fluid ϕF and solid ϕS constituents
are material incompressible. Thus, the true densities ραR of the partial densities ρα with

ρα = nα ραR (1)

remain constant, where nα defines the volume fraction of the phase ϕα with α ∈ {S, F}. The full-saturation
condition is expressed with the sum of volume fractions via

nS + nF = 1. (2)

As mentioned before, we assume isothermal conditions, negligible extra stresses of the low-viscous fluid, in
addition to negligible gravity forces and constituents’ acceleration terms. Consequently, the biphasic model is
quasi-static and governed by the balance equation of momentum

0 = divT = div (TS
E − λ I) , (3)

the balance equation of volume

0 = div (uS)′S + div (nFwF ) (4)

and Darcy’s law

nFwF = − kSF

μFR
grad λ. (5)

In Eq. (3),T is the Cauchy stress tensor,TS
E is the solid’s extra stress and λ denotes the fluid’s pore pressure.

A further simplification of the problem follows by using a materially and geometrically linear model. Hence,
the Cauchy extra stress simplifies to

TS
E = 2μSεS + λS(εS · I) I (6)

where εS is the linearized strain with

εS = 1

2
(grad uS + grad TuS), (7)

and μS and λS are the Lamé constants. Consequently, Eq. (3) can be expressed by the solid displacement field
uS . In Eqs. (4) and (5), wF is the seepage velocity, kSF the intrinsic (isotropic) permeability and μFR the
fluid’s viscosity.

The primary variables in the biphasic model are the fluid’s pressure λ and the solid displacement
uS = (uS1 , u

S
2 )

T , where uS1 and uS2 are the displacement components in the horizontal (transverse) and vertical
(longitudinal) directions, respectively. We set wF = (wF

1 , wF
2 ), where wF

1 and wF
2 are the seepage velocity
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components in the horizontal and vertical direction, respectively. Then, the volume balance equation (4) can
be written as

∂x (n
FwF

1 ) + γ −2∂x (u
S
1 )

′ + ∂z(n
FwF

2 ) + ∂z(u
S
2 )

′ = 0,

nFwF
1 = − kSF

μFR
∂xλ,

nFwF
2 = − kSF

μFR
∂zλ. (8)

Note that we scaled second term in the first equation in (8) by γ −2, where γ = H
L is the domain’s width–

length ratio. This approach allows deriving balance equation for the horizontal processes in the system. It
implies that the gradient of the solid velocity in this direction is large enough and will not lead to a trivial
horizontal displacement as γ approaches zero. Similar approaches have been repeatedly used in the literature,
and we refer to [18], where Darcy’s law is derived from the Navier–Stokes equation via homogenization.
Substituting the explicit form of the strain

εS =
(

∂xuS1 0.5(∂xuS2 + ∂zuS1 )
0.5(∂zuS1 + ∂xuS2 ) ∂zuS2

)

into the momentum balance equation (3) produces

−∂xλ + λS(∂xxu
S
1 + ∂xzu

S
2 ) + μS(2∂xxu

S
1 + ∂zzu

S
1 + ∂xzu

S
2 ) = 0, (9)

and

−∂zλ + λS(∂zxu
S
1 + ∂zzu

S
2 ) + μS(∂xxu

S
2 + ∂xzu

S
1 + 2∂zzu

S
2 ) = 0. (10)

Throughout the paper, we call Eqs. (8), (9) and (10) the full model. It is noticeable for the consolidation
problem in Fig. 1 that the fluid is essentially hydrostatic in the horizontal (transverse) direction and flows almost
only in the vertical (longitudinal) direction. The right, bottom and left sides of the domain are undrained, and
fixed in the direction perpendicular to the boundary. A load function q = q(x, t) is applied to the top side.
The Dirichlet and Neumann boundary conditions are summarized as

2μSεS + λS(εS · I )I − λI = q on ∂�top × (0, T ),

kSF∇λ · n = 0 on ∂�bot ∪ ∂�le f t ∪ ∂�right × (0, T ),

uS1 = 0 on ∂�le f t ∪ ∂�right × (0, T ),

uS2 = 0 on ∂�bot × (0, T ), (11)

where the vector n in (11)2 is the outer normal to the boundary. We also set periodic boundary conditions on
the left and right boundaries

uS(0, z, t) = uS(H, z, t) for z ∈ (0, L), t ∈ (0, T ),

∇uS(0, z, t) = ∇uS(H, z, t) for z ∈ (0, L), t ∈ (0, T ). (12)

The initial conditions for this problem are defined as

uS = uS
I in �,

λ = λI in �. (13)

Remark 1 The choice of periodic boundary conditions in Eq. (12) fits with the classical consolidation problem
under consideration. However, and as will be seen in the next sections, the derivation of the reduced model
can be extended to more general boundary conditions.
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3 Reduced biphasic model

In this section, we rescale the full model (8), (9) and (10) using dimensionless variables. This leads to a dimen-
sionless full model that expresses the importance of the domain’s geometrical ratio γ > 0 explicitly. Then,
by applying standard asymptotic analysis, based on the small γ , to the dimensionless full model we derive a
reduced biphasic model consisting of two main parts: The first is a limit model for γ approaches zeros, while
the second is a corrector that re-captures the process in the horizontal direction.

3.1 Dimensionless model

We define the geometrical parameter γ = H/L and the dimensionless variables

x = x

H
, z = z

L
, t = t

L/ψ
, K

SF = kSF

kSFm
,

wF
1 = wF

1

ψ
, wF

2 = wF
2

ψ
, λ = λ

qm
,

(14)

where ψ = qmK SF
m

μFR L
, kSFm = 1

|�|
∫
�
kSF dx dz is the mean value of the intrinsic permeability in the domain,

and qm = 1
H

∫ H
0 |q| dx is the mean load applied to the top of the domain (see Eq. (11)1). Substituting these

variables into the volume balance equation (8), then omitting the par-signs yields

γ −2∂x (u
S
1 )

′ + γ −1∂x (n
FwF

1 ) + ∂z(u
S
2 )

′ + ∂z(n
FwF

2 ) = 0,

nFwF
1 = −γ −1K SF∂xλ,

nFwF
2 = −K SF ∂zλ. (15)

Substituting the dimensionless variables (14) into momentum balance equations (9) and (10), then multiplying
the resulting equations by H and L , respectively, produces

−∂xλ + λ̂S(∂xxu
S
1 + ∂xzu

S
2 ) + μ̂S(2∂xxu

S
1 + γ 2∂zzu

S
1 + ∂xzu

S
2 ) = 0. (16)

and

−∂zλ + λ̂S(∂zxu
S
1 + ∂zzu

S
2 ) + μ̂S(γ −2∂xxu

S
2 + ∂xzu

S
1 + 2∂zzu

S
2 ) = 0. (17)

In these two equations, the par-signs are omitted and the parameters λ̂S and μ̂S are the dimensionless Lamé
constants defined as

λ̂S = λS

qm
, and μ̂S = μS

qm
.

The Dirichlet and Neumann boundary conditions for the dimensionless model are now summarized as follows

2μ̂SεS + λ̂S(εS · I )I − λI = q

qm
on ∂�top × (0, T ),

K SF∇λ · n = 0 on ∂�bot ∪ ∂�le f t ∪ ∂�right × (0, T ),

uS1 = 0 on ∂�le f t ∪ ∂�right × (0, T ),

uS2 = 0 on ∂�bot × (0, T ), (18)

where � = (0, 1) × (0, 1) is the rescaled domain.
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3.2 Asymptotic analysis

We consider a solution (uS,γ
1 , uS,γ

2 , w
F,γ
1 , w

F,γ
2 , λγ ) of the dimensionless full model (15)–(17) and define

the asymptotic expansions

Zγ = Z0 + γ Z1 + O(γ 2) Z ∈ {uS1 , uS2 , wF
2 , λ},

Zγ = γ Z1 + O(γ 2) Z ∈ {wF
1 }. (19)

Note that the choice that wF
1 = O(γ ) corresponds to the assumption that the fluid is hydrostatic in the

x-direction.
Mass Balance Equations: Substituting the expansions (19) into the horizontal component of Darcy equation
(15)2 yields

nF
(
wF
1,1 + γ 1wF

1,2

) = −γ −2K SF∂x (λ0 + γ λ1 + γ 2λ2). (20)

Equating the terms of the highest power of γ , namely O(γ −2), yields

K SF ∂xλ0 = 0. (21)

Assuming that the intrinsic permeability K SF is strictly positive in the domain, Eq. (21) implies that λ0 is
independent of the horizontal direction

λ0 = λ0(z, t). (22)

Similarly, equating the terms of order O(γ −1) implies

λ1 = λ1(z, t). (23)

The terms of order O(γ 0) in (20) fulfill the equation

nFwF
1,1 = −K SF∂xλ2. (24)

Now, we substitute the expansions (19) into the vertical component of Darcy equation (15)3 and consider the
terms of order O(γ 0). Then, we have

nFwF
2,0 = −K SF∂zλ0. (25)

Finally, we substitute (19) into (15)1. This leads to

γ −2∂x (u
S
1,0 + γ uS1,1 + γ 2uS1,2)

′ + ∂x (n
F (wF

1,1 + γwF
1,2))

+ ∂z(u
S
2,0 + γ uS2,1 + γ 2uS2,2)

′ + ∂z(n
F (wF

2,0 + γwF
2,1 + γ 2wF

2,2)) = 0.

Equating the terms of order O(γ −2) gives ∂xuS1,0 = 0. Then, using the boundary condition (11)3, we obtain

uS1,0 = 0. (26)

Similarly, the terms of O(γ −1) satisfy

uS1,1 = 0. (27)

However, equating the terms of order O(γ 0) gives

∂x (u
S
1,2)

′ + ∂x (n
FwF

1,1) + ∂z(u
S
2,0)

′ + ∂z(n
FwF

2,0) = 0. (28)

Setting Eqs. (24) and (25) into (28) produces

∂x (u
S
1,2)

′ − ∂x (K
SF ∂xλ2) + ∂z(u

S
2,0)

′ − ∂z(K
SF ∂zλ0) = 0. (29)
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Integrating this equation over the horizontal direction from 0 to 1 produces

∂z

∫ 1

0
(uS2,0)

′ dx − ∂z

∫ 1

0
(K SF ∂zλ0) dx = 
right − 
le f t − (uS1,2)

′|x=1
x=0,

where 
right = (K SF ∂xλ2)|x=1 and 
le f t = (K SF ∂xλ2)|x=0 are the flux terms through the left and right

boundaries. Then, using the boundary conditions (11)2 and (11)3, the previous equation reduces to

∂z

∫ 1

0
(uS2,0)

′ dx − ∂z

∫ 1

0
(K SF ∂zλ0) dx = 0. (30)

Applying the equilibrium result (22) for λ0 and (35) for uS2,0 leads to the one-dimensional equation for λ0 and

uS2,0

∂z(u
S
2,0)

′ − ∂z(K
SF
av ∂zλ0) = 0, (31)

where K SF
av = ∫ 1

0 K SF dx . Now, we integrate Eq. (29) again over the horizontal direction from 0 to x , which
leads to

(uS1,2)
′ − K SF∂xλ2 + x ∂z(u

S
2,0)

′ − ∂z
(
∂zλ0

∫ x

0
K SF dx

) = −
le f t + (uS1,2)
′|x=0.

Reordering the terms in the this equation leads to a new formula for the pressure gradient ∂zλ2

K SF∂xλ2 = x ∂z(u
S
2,0)

′ + (uS1,2)
′ − ∂z

(
∂zλ0

∫ x

0
K SF dx

) + 
le f t − (uS1,2)
′|x=0.

Then, using Eq. (22), the later coming result in Eq. (35), in addition to the boundary conditions (11)2 and
(11)3, we obtain the new formula ∂zλ2

K SF∂xλ2 = x ∂z(u
S
2,0)

′ + (uS1,2)
′ − ∂z

(
∂zλ0

∫ x

0
K SF dx

)
. (32)

Remark 2 Note that whenever the intrinsic permeability K SF is independent of the horizontal direction x and
using Eq. (31), Eq. (32) reduces to

K SF∂xλ2 = (uS1,2)
′. (33)

Momentum Balance Equations: We substitute the asymptotic expansions (19) into the momentum balance
equation (17). Then, we have

− ∂z(λ0 + γ λ1 + γ 2λ2) + λ̂S(∂zx (uS1,0 + γ uS1,1 + γ 2uS1,2)

+ ∂zz(u
S
2,0 + γ uS2,1 + γ 2uS2,2)

) + μ̂S(γ −2∂xx (u
S
2,0 + γ uS2,1 + γ 2uS2,2)

+ ∂xz(u
S
1,0 + γ uS1,1 + γ 2uS1,2) + 2∂zz(u

S
2,0 + γ uS2,1 + γ 2uS2,2)

) = 0. (34)

Equating the term of order O(γ −2) leads to

∂xxu
S
2,0 = 0.

This equation together with the periodic boundary condition (12) implies that

uS2,0 = uS2,0(z, t). (35)

Similarly, equating the terms of order O(γ −1) leads to

uS2,1 = uS2,1(z, t). (36)
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Equating the terms of order O(γ 0) in (34), then using the result (26) leads to

−∂zλ0 + (λ̂S + 2μ̂S)∂zzu
S
2,0 + (λ̂S + 2μ̂S)∂xzu

S
1,0 + μ̂S∂xxu

S
2,2 = 0. (37)

Note that uS1,0 = 0 inside the dimensionless domain (0, 1)×(0, 1) as shown in (26), but not at the top boundary
as will be shown later. Integrating this equation over the x-direction gives

−∂zλ0 +
(∫ 1

0
(λ̂S + 2μ̂S) dx

)
∂zzu

S
2,0 = (λ̂S + 2μ̂S)

(
∂zu

S
1,0|x=1 − ∂xu

S
1,0|x=0

)

+ μ̂S(∂xuS2,2|x=1 − ∂xu
S
2,2|x=0

)
. (38)

Then, the periodic boundary condition (12) produces the one-dimensional equation

−∂zλ0 +
( ∫ 1

0
(λ̂S + 2μ̂S) dx

)
∂zzu

S
2,0 = 0. (39)

This equation together with (31) represents a coupled system of one-dimensional equations for the primary
variables λ0 and uS2,0.

Finally, we substitute the asymptotic expansions (19) into the dimensionless momentum balance equation
(16). Then, we have

− ∂x (λ0 + γ λ1 + γ 2λ2) + λ̂S(∂xx (uS1,0 + γ uS1,1 + γ 2uS1,2)

+ ∂xz(u
S
2,0 + γ uS2,1 + γ 2uS2,2)

) + μ̂S(2∂xx (uS1,0 + γ uS1,1 + γ 2uS1,2)

+ γ 2∂zz(u
S
1,0 + γ uS1,1) + ∂xz(u

S
2,0 + γ uS2,1 + γ 2uS2,2)

) = 0.

Equating the terms of order O(γ 0), then using the result (31) produces
(
λ̂S + 2μ̂S)∂xxuS1,0 + (

λ̂S + μ̂S)∂xzuS2,0 = 0. (40)

Note that this equation emphasizes that uS1,0 = 0 (see Eq. (26)) in the dimensionless domain (0, 1) × (0, 1),

as a consequence of (35). However, Eq. (40) includes also the mechanics of uS1,0 at the upper boundary of the
domain where the load q < 0 is applied. Hence, this equation can be written as a one-dimensional equation
for uS1,0 at the top boundary of the domain (z = 1)

(
λ̂S + 2μ̂S)∂xxuS1,0|z=1 = −(

λ̂S + μ̂S)∂xzuS2,0|z=1. (41)

Similarly, the terms of order O(γ ) satisfy
(
λ̂S + 2μ̂S)∂xxuS1,1 + (

λ̂S + μ̂S)∂xzuS2,0 = 0. (42)

This equation, however, implies that u1,1 = 0 inside the domain (0, 1) × (0, 1) and at the upper boundary too,
because the load q is fulfilled by the zero component of the asymptotic expansions only. Finally, we equate
the terms of order O(γ 2) and use (26). Then, we obtain

−∂xλ2 + (λ̂S + 2μ̂S)∂xxu
S
1,2 + (λ̂S + μ̂S)∂xzu

S
2,2 = 0.

Setting result (32) into this equation produces

− (uS1,2)
′ + (λ̂S + 2μ̂S)K SF∂xxu

S
1,2 + ( p̂S + μ̂S)K SF∂xzu

S
2,2

= x ∂z(u
S
2,0)

′ − ∂z

(
∂z p0

∫ x

0
K SF dx

)
. (43)

In the following, we summarize the reduced biphasic model as a combination of two sub-models. The first
is a limit model that describes the mechanics mainly in the vertical (longitudinal) direction. It consists of three
one-dimensional equations for the components � = λ0, US

2 = uS2,0 and US
1 = uS1,0. The second model is a

corrector of the limit model and describes the mechanics in the horizontal (transverse) direction. It is a coupled
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system of two two-dimensional equations for the components uS2 = uS2,2 and uS1 = uS1,2. The reduced model
can be written as

reduced model = limit model + γ 2 corrector model. (44)

The limit model is a coupled system of the one-dimensional equations

∂z(U
S
2 )′ − ∂z

(
K SF
av ∂z�

) = 0,

−∂z� +
( ∫ 1

0
(λ̂S + 2μ̂S) dx

)
∂zzU

S
2 = 0,

(
λ̂S + 2μ̂S

)
∂xxU

S
1 |z=1 = −

(
λ̂S + μ̂S

)
∂xzU

S
2 |z=1, (45)

while the corrector model is a coupled system of two-dimensional equations

− (uS1 )
′ + (λ̂S + 2μ̂S)K SF∂xxu

S
1 + (λ̂S + μ̂S)K SF∂xzu

S
2

= x ∂z(U
S
2 )′ − ∂z

(
∂x�

∫ x

0
K SF dx

)
,

μ̂S∂xxu
S
2 = ∂z� − (λ̂S + 2μ̂S)∂zzU

S
2 − (λ̂S + 2μ̂S)∂xzU

S
1 |z=1. (46)

Remark 3 It is remarkable that the right side of the corrector model vanishes whenever the permeability K SF

and the material parameters λ̂S and μ̂S are independent of the transverse direction x . In such cases, and
assuming the initial and boundary condition in (18), the reduced model simplifies to the limit model only.

Remark 4 The derivation of the reduced model can be extended to more general boundary conditions with
less periodicity constrains. As an example, we assume the following boundary conditions

2μSεS + λS(εS · I )I − λI = q on ∂�top × (0, T ),

kSF∇λ · n = 
 on ∂�bot ∪ ∂�le f t ∪ ∂�right × (0, T ), (47)

where n is the outer normal to the boundary. In addition, we set periodic boundary conditions on the first
two components in the asymptotic expansions of the displacement vector, which fits to our consideration of
almost unidirectional dynamics in thin domains. So, we assume that the first uS

0 = (uS1,0, u
S
2,0)

T and second

uS
1 = (uS1,1, u

S
2,1)

T terms in the asymptotic expansions of the displacement vector uS = uS
0 + γuS

1 + γ 2uS
2

are periodic in the horizontal direction, but not necessarily the third term uS
2 = (uS1,2, u

S
2,2)

T as it accounts to
the processes in the horizontal direction. These can be summarized as follows

uS
0 (0, z, t) = uS

0 (H, z, t) for z ∈ (0, L), t ∈ (0, T ),

uS
1 (0, z, t) = uS

1 (H, z, t) for z ∈ (0, L), t ∈ (0, T ),

∇uS
0 (0, z, t) = ∇uS

0 (H, z, t) for z ∈ (0, L), t ∈ (0, T ),

∇uS
1 (0, z, t) = ∇uS

1 (H, z, t) for z ∈ (0, L), t ∈ (0, T ).

(48)

Then, we obtain a more general reduced model with the limit part

∂z(U
S
2 )′ − ∂z

(
K SF
av ∂z�

)
= 
|x=1 − 
|x=0 − (uS1 )

′|x=1 + (uS1 )
′|x=0,

−∂z� +
(∫ 1

0
(λ̂S + 2μ̂S) dx

)
∂zzU

S
2 = 0,

(
λ̂S + 2μ̂S)∂xxU S

1 |z=1 = −
(

λ̂S + μ̂S
)

∂xzU
S
2 |z=1 (49)



606 A. Armiti-Juber, T. Ricken

and a corrector part

− (uS1 )
′ + (λ̂S + 2μ̂S)K SF∂xxu

S
1 + (λ̂S + μ̂S)K SF∂xzu

S
2

= x ∂z(U
S
2 )′ − ∂z

(
∂x�

∫ x

0
K SF dx

)
+ 
|x=0 − (uS1 )

′|x=0,

μ̂S∂xxu
S
2 = ∂z� − (λ̂S + 2μ̂S)∂zzU

S
2 − (λ̂S + 2μ̂S)∂xzU

S
1 |z=1. (50)

Remark 5 The derivation of the reduced model can be systematically extended to three-dimensional thin
domains. For this, similar periodic boundary conditions have to be set for the third thin direction. The result-
ing limit model will then have an extra one-dimensional equation for the transverse displacement at the load
surface, while the corrector model will consist of three three-dimensional equations for the displacement com-
ponents in the whole domain. However, for one-dimensional domains the reduced model, which simplifies to
the limit model, is then the one-dimensional full biphasic model itself.

4 Numerical validation of the reduced model

In this section, we investigate the validity of the reduced model (45), (46) by comparing its numerical solutions
with those of the dimensionless full model (15), (16) and (17), which is considered here as a reference of
accuracy. For this, we use a finite difference scheme to discretize the spatial derivatives in both models, while
the time derivatives are approximated using the Euler method.

4.1 Numerical treatment of the reduced model

We solve the reducedmodel numerically by discretizing the spatial derivatives using centered finite differences,
and the time derivatives of the displacements using the backward Euler method. First, the limit model (45) is
solved for the components �, US

2 and US
1 . Then, the corrector model (46) is solved for the components uS2

and uS1 . The final solution for the reduced model is then given as US
2 + γ 2uS2 for the vertical displacement,

US
1 + γ 2uS1 for the horizontal displacement and � + γ 2λ for the pressure, where λ = λ2 satisfies (32).
We define a partition 0 = t0 < t1 < · · · < t N = T of the time interval [0, T ] with constant step size

�t = tn − tn−1, for n, N ∈ N. For the sake of a lighter notation, we keep the continuous operators of the
spatial derivatives and integrals. Then, a time-discrete version of the limit model (45) is given as

∂z
U S,n+1
2 −US,n

2

�t
− ∂z

(
∂z�

n+1K SF
av

)
= 0,

− ∂z�
n+1 +

(∫ 1

0
(λ̂S + 2μ̂S) dx

)
∂zzU

S,n+1
2 = 0.

Then, Eq. (45)3 is solved for US,n+1
1 using

(
λ̂S + 2μ̂S)∂xxU S,n+1

1 |z=1 = −(
λ̂S + μ̂S)∂xzU S,n+1

2 |z=1.

Finally, the corrector model (46) for uS1 and uS2 is solved using

− uS,n+1
1 − uS,n

1

�t
+ (λ̂S + 2μ̂S)∂xxu

S,n+1
1 + (λ̂S + μ̂S)K SF∂xzu

S,n+1
2

= x ∂z
U S,n+1
2 −US,n

2

�t
− ∂z

(
∂z�

n+1
∫ x

0
K FS dx

)
,

μ̂S∂xxu
S,n+1
2 = ∂z�

n+1 − (λ̂S + 2μ̂S)∂zzU
S,n+1
2 − (λ̂S + 2μ̂S)∂xzU

S,n+1
1 |z=1.

In the following, we present numerical solutions for the reduced model and compare them with those
of the dimensionless full model (reference model). Note that the dimensionless domain is the squared unit



Model order reduction for deformable porous materials in thin domains 607

Fig. 2 Scenario 1: Classical consolidation problem with constant permeability and load applied to whole upper boundary

(0, 1) × (0, 1). At the domain’s upper boundary, we choose the load q , see Eq. (11)1, to be an enforced
displacement satisfying

q = (λ̂S + 2μ̂S) ∂zu2 = −1 Pa, (51)

where the fluid pressure λ is set to zero, allowing an outflow. The load is also assumed to linearly increase
over 10 time increments. For accuracy testing, the solutions of the dimensionless full model are considered in
domains with decreasing geometrical parameter γ ∈ {1, 1/5, 1/10, 1/15}.

For the numerical examples, we consider a domain consisting of a porousmaterial withmaterial parameters
λS = 100 Pa and μS = 200 Pa. The material is saturated with a fluid with viscosity μ = 10−3. The domain
has a fixed width H = 1 m, and we variate the parameter γ by changing the length L = 1, 5, 10 or 15 meters.
Choosing a material with intrinsic permeability K SF = 10−5m2 in a domain with length L = 10 m leads
the factor ψ

L = 10−4, see Eq. (14), that maps the real time t to the dimensionless time t̄ . For example, if the
end time t = 2 seconds with time step size �t = 0.1, then end time of the dimensionless full model (and
consequently in the reduced model) is t = 2 × 10−4 with time step size �t = 10−5.

For the comparison of the two models, four scenarios are designed. These have an academic character with
different boundary conditions that can occur in applications of bio- and soil mechanics. The first scenario is a
classical consolidation problemwith constant permeability and load applied to thewhole upper boundary. In the
second scenario, the load q is applied to the whole upper boundary, but the domain consists of three horizontal
layers with different permeabilities, while, in the third scenario, the load is also fully applied to the upper
boundary, but the domain consists of three columns with different permeabilities. Finally, the load is applied
partially in the fourth scenario, while the permeability is set to be constant. Note that all numerical examples
are performed on the same hardware: Intel�CoreTM i7-8565U CPU at 1.80GHz×8 with memory 16 GB.

Remark 6 In this section, the accuracy of the reduced model compared to the full solution is verified for
small strains in the reference configuration. In fact, further extensions of the reduced model and its numerical
scheme to more general cases, such as finite deformations or nonlinear constitutive relation, are part of our
future investigations.

Scenario 1: Full load and constant permeability
We consider a classical consolidation problem, such that the porous material has constant permeability
kSF = 10−5 m2 and load q = −1 Pa is applied downwards to the whole upper boundary of the domain,
see Fig. 2. We take this parameter set because it shows a high sensitivity between the solid and fluid load-
bearing behavior and thus provides a more challenging task for the reducedmodel. In this scenario, the reduced
model simplifies to the limit model as the right side of the corrector model vanishes, see Remark 3. Note here
that the corresponding dimensionless permeability in the dimensionless full model and the reduced model sat-
isfies K SF = 1. For the numerical comparison, we choose a Cartesian grid with 30×30 squared elements. This
choice guarantees a convergence of the solutions for all numerical examples. The time step size is �t = 10−5,
and simulation end time is 2 × 10−4 seconds.

In Fig. 3, we present the numerical solutions for the horizontal displacement US
1 (first row), the vertical

displacement US
2 (second row) and the pressure � (third row) for both full and reduced models. To demon-

strate the effect of decreasing the geometrical parameter γ on the mechanics in the domain, solutions for the
dimensionless full model are presented with γ = 1 (left column) and γ = 1/10 (middle column). Solutions of
these two cases are compared with the corresponding solutions for the reduced model (right column). Figure 3
shows that numerical solutions of reduced model are very similar to those of the full model in domains with
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Fig. 3 Comparison of numerical solution for the reduced model (right) and the full model with γ = 1 (left) and γ = 1/10
(middle). First row is horizontal displacement, second row is vertical displacement, and the third is pressure in a grid with 30×30
elements, �t = 10−5 and end time 2 × 10−4 seconds

Fig. 4 Convergence of horizontal displacement (left), vertical displacement (middle) and pressure (right) for the full model at the
1D column x = 1/6 in domains with decreasing γ ∈ {1, 1/5, 1/10, 1/15} to the corresponding solution for the reduced model

small geometrical parameter (γ = 1/10). For domains with γ = 1, the vertical displacement and pressure are
well approximated by the reduced model, but not the horizontal displacement.

For the sake of preciseness, we compare in Fig. 4 the numerical solutions for the reduced model in the one-
dimensional column of the domain {(x, z)|x = 1/6} to those for the full model in four domainswith fixedwidth
H = 1 m, but increasing lengths L ∈ {1, 5, 10, 15} meters. Figure 4 shows that the horizontal displacement
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Fig. 5 Scenario 2: A sketch of consolidation process in a unit square of three layers with different permeabilities

uS,γ
1 converges to that of the reduced model US

1 as the domains length L gets larger. However, vertical

displacement uS,γ
2 and pressure λγ for the full model are identical to those for the reducedmodel for all γ > 0.

Scenario 2: Full load and permeability changes vertically
Here, the accuracy and computational efficiency of the reduced model are investigated in a domain consisting
of three horizontal layers with different permeabilities (kSF = 10−4 in the upper and lower layers, while
kSF = 10−6 in the middle), see also Fig. 5. Then, the dimensionless permeability is given as

K SF =
{
10−4/K SF

m , in 0 < z < 1
3 ∪ 2

3 < z < 1,
10−6/K SF

m , in 1
3 ≤ z ≤ 2

3 ,
(52)

where K SF
m = 2

3 10
−4 + 1

310
−6. For this setup, the corrector model has also a zero solution and the reduced

model reduces to the limit model (Remark 3).
In Fig. 6, we present the numerical solutions for the horizontal displacement US

1 (first row), the vertical
displacement US

2 (second row) and the pressure � (third row) for the reduced model and the full model with
different geometrical parameters (γ = 1 and γ = 1/10). Figure 6 shows that the reduced model is a good
approximation of the full model in thin domains (γ = 1/10). However, for non-thin domains (γ = 1), the
reduced model well approximates the vertical displacemet and pressure, but not the horizontal displacement.

For more preciseness, we present in Fig. 7 material displacement and fluid pore pressure in the one-
dimensional column of the domain {(x, z)|x = 1/6} for both models. For the full model, solutions are
computed in domains with fixed width H = 1, but increasing lengths L ∈ {1, 5, 10, 15}. Figure 7 shows, as
in the previous scenario, that horizontal displacement uS,γ

1 converges to that of the reduced model US
1 as the

domains’ lengths L get larger, or in other words, the parameter γ = 1/L becomes smaller. In addition, the
figure shows that the vertical displacements uS,γ

2 and pressures λγ for the full model are almost identical to
those for the reduced model, for all γ > 0.

For more investigation of the accuracy of the reduced model, we study in Fig. 8 the pressure distribution
behavior over increasing time levels and compare it with that for the full model. On the left side of Fig. 8 is the
pressure distribution for the full model over different times, while on the right is that for the reduced model.
It is clear from the figure that the reduced model is able to capture the rate of convergence to steady-state
solutions as the full model.

Finally, we investigate in Fig. 9 the computational efficiency of the reduced model. For this, we compare
the CPU time required for solving the reduced model with that of the full model in grids with increasing
number of elements. The CPU times are summarized in Table 1. The values in the table show a high reduction
in computational time by the reduced model. For more clarity, these values are also plotted in Fig. 9, which
shows that the CPU time required for solving the full model grows exponentially as the number of grid cells
duplicates. On the contrary, the CPU time for the reduced model increases by a factor of 1/3 as the gird
size duplicates. This is a consequence of the reduction in the dimension of the linear system resulting from
discretizing the reduced model (limit model in this scenario).
Scenario 3: Full load and permeability changes horizontally
In this scenario, we investigate the effect of changing the material’s intrinsic permeability in the horizontal
(transverse) direction on the accuracy of the reduced model. Hence, we consider a domain consisting of three
columns with different permeabilities (kSF = 10−4 m2 in the left and right layers, while kSF = 10−6 m2 in
the middle), see also Fig. 10. Note that in this setup, the corrector model has no trivial solutions and is part of
the reduced model.
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Fig. 6 Comparison of the reduced model and the full model in layers with different permeabilities. First row is horizontal
displacement, second is the vertical displacement, and third is pressure. Here, grid is with 30× 30 elements, �t = 10−5 and end
time 2 × 10−4 seconds

Fig. 7 Convergence of horizontal displacement (left) vertical displacement (right) and pressure for the full model in domains
with H = 1 and increasing length L ∈ {1, 5, 10, 15} to the those of the reduced model in the 1D column x = 1/6 after 20 time
loops
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Fig. 8 Pressure distribution at different times levels for the full model (left) and the reduced model (right)

Fig. 9 CPU time required to solve the full and the reduced model using grid sizes {30 × 30, 60 × 60, 120 × 120, 420 × 420}
over 50 time loops

Table 1 Comparison of CPU time required for solving the reduced model (limit model) and the dimensionless full model with
γ = 1/10

Grid size 30 × 30 60 × 60 120 × 120 240 × 240

Reduced model 0.12 s 0.15 s 0.21 s 0.22 s
Full model 1.2 s 15.8 s 132 s 927 s

In Fig. 11, we present numerical solutions for the horizontal displacement US
1 + γ 2uS1 (first row), vertical

displacementUS
2 +γ 2uS2 (second row) and pressure�+γ 2λ (third row) for the reduced model (right column)

and compare them with the corresponding solutions for the full model with γ = 1 (left column) and γ = 1/10
(middle column). The Cartesian grid has 30 × 30 elements, time step size �t = 10−5, and simulation ends
after 20 time loops. The figure shows that solutions for the reduced model match very well with those for the
full model in domains with small ratio γ = 1/10, but different from those for the full model with γ = 1.

For more clarity, we present in Fig. 12 solutions for the full model in the one-dimensional column
{(x, z)|x = 1/3} of domains with fixedwidth H = 1 but increasing length L ∈ {1, 5, 10, 15}. These solutions
are compared with corresponding solution of the reduced model in the same column. The figure shows that
solutions for the full model converge to those of the reduced model as the domain’s ratio approaches zero,
even when permeability changes in the transverse direction.

InFig. 13,we study the convergence rate of the reducedmodel to the steady state. For this,wepresent the ver-
tical displacement solutions for the reducedmodel (right) and the full model (left) overs various times. It is clear
from the figure that the reducedmodel has the same convergence rate to steady-state solutions as the full model.

In Fig. 14, we compare the volumetric strain for the reduced model with that for the full model with a
small geometrical parameter γ = 1/10. In the first row (left to right), we present the volumetric strain in
the Scenarios 1, 2 and 3, respectively. Similarly, the corresponding volumetric strain for the full model in the
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Fig. 10 Scenario 3: Illustration of consolidation process in a porous domain of three columns with different permeabilities

Fig. 11 Numerical solutions for the full model (left: γ = 1 and right: γ = 1/10) in a domain of three columns with different
permeabilities against the reduced model (right). First row is horizontal displacement, second row is vertical displacement, and
third is pressure. Solutions correspond to 30 × 30 grid, �t = 10−5 and end time 2 × 10−4 seconds
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Fig. 12 Convergence of horizontal displacement (left), vertical displacement (middle) and pressure (right) for the full model to
those of the reduced model as domain’s length increases L ∈ {1, 5, 10, 15}. Solutions in the 1D column x = 1/6 after 20 time
loops are plotted

Fig. 13 Comparison of vertical displacement for the full model (left) and for the reduced model (right) over various times in the
1D column x = 1/6

three scenarios is presented in the second row. Finally in the third row, the volumetric strain for both models
is plotted in the 1D column at x = 1/6. The figure shows that the strain is very well approximated by the
reduced model in the Scenarios 1 and 2, where no horizontal variations in the permeability occur. However,
in Scenario 3, where permeability changes horizontally, the strain of the reduced model is well approximated
only for domain with small enough geometrical ratio γ .

In Fig. 15, we repeat the numerical comparison from Fig. 14 for the von Mises stress instead of the vol-
umetric strain. It is clear from the figure, that von Mises stress is well approximated by the reduced model in
Scenarios 1 and 2. On the contrary to Scenario 3, the stress calculated by the reduced model is not sufficiently
close to the that of the full model, even in domains with small parameter γ .

Finally, as the reduced model here consists of the limit model and the corrector model, we re-compare in
Fig. 16 the computational efficiency of the reduced model with the full model. Here, the CPU time is plotted
for both models as the number of spatial grid duplicates. It is noticeable that the CPU time of the reduced
model is still significantly less than that of the full model.

Scenario 4: Partial load and constant permeability We study the effect of applying the load q partially
to upper boundary of the domain on the accuracy of the reduced model, see Fig. 17. For this, we define the
load function q in Eq. (51) as

q =
{−3 Pa, 0 < x < 1

3 ,

0 Pa, 1
3 ≤ x < 1.

(53)
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Fig. 14 The volumetric strain for the reduced model (first row) in Scenarios 1, 2 and 3 (left to right) and the full model (second
row) with γ = 1/10. Third row compares both models in the 1D column with x = 1/6 after 20 time loops

Then, the mean load value equals qm = 1 Pa. We use constant permeability kSF = 10−5 m2 as in Scenario
1. In Fig. 18, we present the numerical solutions for the reduced model (right column), the dimensionless full
model with γ = 1 (left column) and the dimensionless full model with γ = 1/10 (middle column). In the first
row is the material horizontal displacement, in the second is the vertical displacement, and in the third is the
fluid pressure. Figure 18 shows a large difference between solutions for the reduced model and the full model
with γ = 1. However, the difference significantly decreases as the geometrical parameter decreases γ = 1/10.

In Fig. 19, we plot solutions for the reduced model in a one-dimensional column of the domain and
compare them to the corresponding solution for the dimensionless full model with decreasing parameters
γ = {1, 1/5, 1/10, 1/15}. In the first row of the figure are the solutions of the models in the column x = 1/6,
while in the second are the solutions in the middle column x = 1/2. It is noticeable that the horizontal dis-
placement solutions for the full model converge to that of the reduced model at both positions. However, for
the vertical displacement and pressure, the convergence rate in the middle of the domain (x = 1/2) is much
faster than at the sides (x = 1/6).

5 Conclusion

Wehave derived a reduced biphasicmodel for saturated porousmaterials that undergo poro-elastic deformation
in thin domains. The derivation is based on formal asymptotic analysis with respect to the small geometrical
parameter γ > 0 of domain’s width–length ratio. The reducedmodel is a combination of a limit and a corrector
model. The limit model is the asymptotic limit of the full model as the parameter γ tends to zero. It consists
of one-dimensional equations that describe the transversely averaged fluid pressure and material displacement



Model order reduction for deformable porous materials in thin domains 615

Fig. 15 The von Mises stress for the reduced model (first row) in Scenarios 1, 2 and 3 (left to right) and the full model (second
row) with γ = 1/10. Third row compares both models in the 1D column with x = 1/6

Fig. 16 CPU time required to solve the fullmodel and the reducedmodel using grid sizes {30×30, 60×60, 120×120, 420×420}
over 50 time loops

in the longitudinal direction. The corrector model is of small orderO(γ 2) and describes mechanics caused by
variations in the permeability or the applied load in the transverse direction.

We have proposed a numerical scheme, based on the finite difference method, to investigate the validity
of the reduced model. For this, we used the dimensionless full model as a reference of accuracy and computa-
tional efficiency. For the numerical validation, we have designed several scenarios of a classical consolidation
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Fig. 17 Scenario 4: A sketch of a consolidation process with partial load applied to the upper boundary

Fig. 18 Numerical solutions for the full model in domains with γ = 1 (left column) and γ = 1/10 (middle column) vs. that of
the reduced model (right column). Solutions correspond to a 30 × 30 grid, after 20 time loops

problem. These aim to study the effect of changing permeability or position of the applied load on the accuracy
of the model.

The numerical examples demonstrated the high computational efficiency of the reduced model over the
full model. In addition to this, the reduced model has reliable solutions that match very well with those for the
full model whenever the geometrical parameter is small enough (γ = O(10−1)).

Finally, we emphasize that the presented analytical model reduction method is excellently suited to support
challenging engineering tasks, for example, in soil mechanics and biomechanics. This includes, e.g., growth
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Fig. 19 Convergence of numerical solution of the full model with increasing length L ∈ {1, 5, 10, 15} to the solution of the
reduced model at the 1D columns x = 1/6 (first row) and at x = 1/2 (second row)

and remodeling of living tissue, uncertainty quantification, optimization tasks, as well as fatigue and life cycle
investigations.
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