
Vol.:(0123456789)

https://doi.org/10.1007/s11219-021-09556-z

1 3

Evaluate and control service and transaction dependability
of complex IoT systems

Sina Niedermaier1 · Thommy Zelenik2 · Stefan Heisse3 · Stefan Wagner1

Accepted: 7 April 2021
© The Author(s) 2021

Abstract
Observing and controlling the dependability of service provision of complex IoT systems
is challenging. In practice, many organizations struggle to derive consumer needs related
to quality and to observe and quantify the service provision in the context of the dynamic
behavior of a complex distributed system. In this paper, we present an approach to define
and evaluate the dependability of complex IoT systems. Our approach is an adaptation of
the ISO/IEC 25040, an international standard for the evaluation process for system and
software quality, which is part of the systems and software quality requirements and eval-
uation (SQuaRE) series. Our approach was designed and evaluated with action research
in an industrial study at Robert Bosch GmbH. Based on the framework of the SQuaRE
series, we integrated different elements of site reliability engineering (SRE) and com-
bined them with distributed tracing as a promising measurement method. Our approach
introduces the IoT transaction concept to reduce modeling and observation efforts while
increasing operationalization to measure performance against dependability targets. Our
adaption was effectively applied, consumer-centricity along different system stakeholders
were enhanced, and negative consequences of organizational silos were reduced. This has
improved the dependability evaluation of service provision to enable fast feedback cycles
for service performance control and improvement.

 *	 Sina Niedermaier
	 sina.niedermaier@iste.uni-stuttgart.de

	 Thommy Zelenik
	 t.zelenik@live.de

	 Stefan Heisse
	 stefan.heisse@de.bosch.com

	 Stefan Wagner
	 stefan.wagner@iste.uni-stuttgart.de

1	 Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
2	 University of Stuttgart, Stuttgart, Germany
3	 Bosch Engineering GmbH, Abstatt, Germany

Published online: 3 May 2021

Software Quality Journal (2022) 30:337–366

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09556-z&domain=pdf

1 3

1  Introduction

Quality is not a property of a product or service. The quality of a product or service can
only be assigned in relation to its stakeholder, the intended task, the context of use, and the
value it is providing Bevan (1995); ISO/IEC. Systems and software engineering (2011d).
Therefore, it is essential to understand the stakeholder needs and expectations to transform
them into requirements and to set measurable targets for evaluating its quality. In practice,
quality requirements derived from a quality model do not get enough attention compared
to the planning, design, and evaluation of functionalities Wagner (2013). However, the
quality of value provision, like availability and time behavior, is critical to a company’s
success that offers services. With the concept of dependability, the “ability to perform as
and when required” IEC (2015), we are able to aggregate and express quality characteris-
tics from time-dependent and, therefore, dynamic consumer perspective in operation.

One reason for neglecting the derivation of quality requirements is that “unlike
functional requirements, most quality requirements represent emergent properties of
the system, which appear on a set of components, not on a specific component” ISO/
IEC. Systems and software engineering (2019) and are dependent on the context of
use. Therefore, it is challenging to define traceable quality requirements, which can be
implemented and verified along the product lifecycle and validated in the context of use
during operation ISO/IEC. Systems and software engineering (2019). This problem is
intensified for developing and operating distributed IoT service systems with complex
interactions of system components, dynamic changes, and a short time to market. Devel-
opment and deployment paradigms of microservices, DevOps, and cloud are creating
maximum independence and specialization of development, resulting in isolated observ-
ability and monitoring methods, not allowing to control a service from a customer and
consumer-centric view. Neglecting quality requirement elicitation and lack of effective
and efficient control loops for controlling service quality can result in failures related to
the value proposition to consumers. In consequence, service failures are usually noticed
by the consumers only Niedermaier et al. (2019).

The interview study of Niedermaier et al. (2019) with 28 participants from 16 companies
identified that distributed systems are continually changing and produce massive amounts of
isolated monitoring data from individual components, often without contextual information
to a consumer service. Therefore, developers and operators are often overwhelmed to create
meaningful conclusions out of anomaly data from monitoring systems. A method with high
potential to observe the dynamics in the service provision of complex systems is distributed
tracing. It uncovers the trace of an IoT transaction within distributed systems by capturing
data at runtime to infer causal relationships Sambasivan et al. (2016).

For the evaluation and control of the service dependability from a consumer-centric
view, an approach is necessary to derive quality characteristics and appropriate indica-
tors and enable a context-dependent dynamic observation and control. To be suitable for
practical utilization, the approach needs to reduce observation complexity.

We propose a lightweight method explicitly designed for the dependability evalua-
tion of complex IoT service systems from a consumer-centric view to address this need.
To reduce observation and control complexity, we focus on component effects in rela-
tion to high business value of an IoT transaction. Via distributed tracing, we are able to
observe and verify the value provision of an IoT transaction in a dynamic context of use.
As a result, time for fault detection can be reduced, and implementing feedback cycles
for service performance control and improvement is enabled.

338 Software Quality Journal (2022) 30:337–366

1 3

The research artifact – the transaction-based dependability evaluation approach – was
developed and evaluated by performing action research in two stages. Based on industry
requirements, in the first research stage, we designed the artifact, which is derived from the
process model of ISO/IEC 25040 ISO/IEC. Systems and software engineering (2011b) and
integrated approaches of Google’s discipline of Site Reliability Engineering (SRE) Beyer
et al. (2016) as well as distributed tracing as an observation method. In the second research
stage, we investigated the quality in use of the artifact by the practical application at Robert
Bosch GmbH, a company providing IoT solutions. By observing the application of the arti-
fact and conducting a focus group discussion with the software practitioners applying the
research artifact, we evaluate its quality in use.

This paper is structured as follows. After the introduction, we present the related work
and fundamental concepts in Section 2. In this section, we introduce approaches that are
the basis of our designed research artifact, the – transaction-based dependability evalua-
tion approach. Furthermore, we present a systematic derivation of our understanding of
the concepts of service, transaction, and monitoring for this paper. Section 7 describes our
research objective and the two-staged research process. The results of stage one, the design
of our transaction-based dependability evaluation approach is presented in Section 4. Sec-
tion 5 further describes the instantiation of the research artifact by applying it at the case
company. We present the results of the application and the evaluation of the quality in use
of the artifact from the perspective of software practitioners. We interpret the results of the
study and derive practical implications in the discussion in Section 6. Finally, Section 7
describes the limitation of this study and the last Section 8 summarizes this paper and sug-
gests future work.

2 � Concepts and related work

This section introduces approaches for quality operationalization which are the basis of our
designed research artifact, the – transaction-based dependability evaluation approach. In
addition, we present a systematic derivation of the terminology of the concepts of service,
transaction, and monitoring for this paper.

2.1 � Approaches for quality operationalization

The following sections present the structure of the quality models of ISO/IEC 25010 and
the quality evaluation process of ISO/IEC 25040, from which we derived our transaction-
based dependability evaluation approach. Furthermore, we describe Google’s Site Reliabil-
ity Engineering concepts of SLO, SLI, which we integrated into our approach to create
quality feedback cycles.

2.1.1 � SQuaRE: ISO/IEC 25010 and 25040

In research and practice, various quality models exist. Most well known is the interna-
tional standard ISO/IEC 25010 – system and software quality models ISO/IEC. Systems
and software engineering (2011d). ISO/IEC 25010 ISO/IEC. Systems and software engi-
neering (2011d) is part of the systems and software quality requirements and evaluation
(SQuaRE) ISO/IEC 25000 series, a framework for the requirement specification and
evaluation of system and software quality.

339Software Quality Journal (2022) 30:337–366

1 3

ISO/IEC 25010 ISO/IEC. Systems and software engineering (2011d) includes a stand-
ard decomposition of quality characteristics and sub-characteristics, which can be indi-
cated through quality measures. It contains two quality models: quality in use (QIU)
and product quality (PQ), which can be used to specify requirements and derive meas-
ures and evaluation. The QIU model takes the consumer’s perspective and focuses on
the characteristics of their interaction with the product in a specific context of use. It
comprises five quality characteristics: the effectiveness, efficiency, satisfaction, freedom
from risk, and context coverage. The PQ model decomposes characteristics of the prod-
uct into eight characteristics: functional suitability, performance efficiency, compatibil-
ity, usability, reliability, security, maintainability, and portability ISO/IEC. Systems and
software engineering (2011d).

The concept of quality measurement of the SQuaRE series is illustrated in Fig. 1.
It presents the relationship among characteristics and sub-characteristics, which can

be measured by and are indicated through quality measures that are quantifications of
quality (sub-) characteristics. A measure is defined by a measurement function that
is composed of quality measure elements. The measurement elements are generated
through a measurement method applied to a target entity ISO/IEC. Systems and soft-
ware engineering (2011d, 2011c). A target entity is a “fundamental thing of relevance to
the user, about which information is kept, and need to be measured.” A target entity can
be a work product or behavior of a system, software, or stakeholders ISO/IEC. Systems
and software engineering (2012).

The quality evaluation process is described as a sequence of activities to determine the
extent to which an entity meets its specified requirements ISO/IEC. Systems and software
engineering (2011b). ISO/IEC 25040 ISO/IEC. Systems and software engineering (2011b)
provides a generic process model (see Fig. 2) to evaluate system or software products,
including five activities, which are described in the following.

1. Establish the evaluation requirements In this activity, the evaluation purpose,
according to the entity, needs to be established. Furthermore, quality requirements need to
be specified by applying a quality model.

2. Specify the evaluation Based on the quality requirements, measures need to be
selected, and decision criteria like numerical thresholds or targets need to be determined.

3. Design the evaluation After specifying requirements and measures, the evaluation
needs to be designed considering budget, methods, tools, and resources ISO/IEC. Systems
and software engineering (2011b).

4. Execute the evaluation In the execution, the quality measurement is performed and
needs to be assessed against the numerical thresholds or target values.

Fig. 1   Measurement of quality
characteristics (based on ISO/
IEC. Systems and software engi-
neering (2011d))

So�ware Product Quality

Quality Characteris�cs

Quality Subcharacteris�cs

Quality Measure

Quality Measure Elements

Measurement
Func�on

composed of

composed of

indicate

indicate

generates

are applied to

340 Software Quality Journal (2022) 30:337–366

1 3

5. Conclude the evaluation In the last activity, the evaluation is concluded. A review of
the evaluation results and on the validity of the evaluation process needs to be performed to
provide feedback to the organization.

While the SQuaRE series provides abstract guidance on how to decompose the quality
of software and systems into characteristics and measure and evaluate them, the standards
are criticized for being too generic Plöesch et al. (2015); Wagner et al. (2015). For the
evaluation process of ISO/IEC 25040 ISO/IEC. Systems and software engineering (2011b)
the same criticism concerning the abstract nature and lack of applicability is stated by
Argotti et al. (2019). Therefore, our approach introduces the concept of the IoT transac-
tion as a discrete target entity and applies the patterns of SQuaRE series while describing
and evaluating its application and the operationalization of transaction quality
characteristics.

2.1.2 � Site reliability engineering (SRE)

SRE Beyer et al. (2016) is a discipline originated from Google, which applies aspects of
software engineering to infrastructure and operations problems with a focus on consumer
experience. It is an emerging framework, which many industries increasingly adopt to bal-
ance competing demands of functionality development and quality of a service Niedermaier
et al. (2019); Beyer et al. (2016). An essential principle is to define which behavior matters
for the value provision for a consumer and how to evaluate these behaviors. This is enabled
by the concepts of service level indicators (SLIs) and service level objectives (SLOs). Prod-
uct owners, developers, and operators select important quality characteristics that aim to
represent consumer experience and identify SLIs to measure them. For the SLIs, SLOs with
target values are defined and are verified against measurements running a control loop Beyer
et al. (2016). IEEE Std. 15939 defines an indicator as a “measure that provides an estimate
or evaluation of specified attributes derived from a model with respect to defined informa-
tion needs” IEEE. Systems and software engineering (2008). In this paper, we apply the
concepts of measure and indicator as synonyms.

Fig. 2   Software product qual-
ity evaluation process defined
by ISO/IEC 25040 ISO/IEC.
Systems and software engineer-
ing (2011b)

2. Specify the evalua�on

1. Establish the evalua�on requirements

3. Design the evalua�on

4. Execute the evalua�on

5. Conclude the evalua�on

341Software Quality Journal (2022) 30:337–366

1 3

–	 SLI: Defined quantitative measure to indicate the quality of the provided service
–	 SLO: Defined quality objective represented by a target value for the service quality

which is to be achieved in a certain observation interval and verified against measure-
ments at operation stage.

In SRE, specific SLIs, called the “golden signals of monitoring” are observed. These
include traffic, latency, error rate, and saturation Beyer et al. (2016). In the context of this
paper, we apply the more precisely defined quality characteristics and measures of the
SQuaRE series ISO/IEC. Systems and software engineering (2011d) to formulate SLIs. It is
possible to map our derived SLIs of this paper: throughput, turnaround time, and transac-
tion completion ratio, described in Section 5.2, to the first three of the “golden signals” of
SRE. We did not include saturation measures, as we are focusing on characteristics and
related indicators from a consumer point of view and not from a provider view.

Within the SRE approach, SLIs and SLOs are defined from a customer journey perspec-
tive and measured at an observation point. In contrast, with our concept, we indicate the
quality characteristics transaction-based rather than at one observation point and therefore
are able to detect faults in the value provision and react to them.

2.2 � Concepts of IoT service, IoT transaction, and IoT transaction monitoring

This section presents our terminology with relationships between the concepts of IoT ser-
vice, IoT transaction, and IoT transaction monitoring which are part of our transaction-
based dependability evaluation approach. There are different meanings for the concepts of
service and transaction depending on the context in which they are applied. Thus, the pur-
pose of the following sections is to facilitate a common understanding of the fundamental
concepts of this paper to enable effective and efficient communication and collaboration
among different organizational units working asynchronously and geographically sepa-
rated. Following, we derive the concept of IoT service from common industry standards.
Furthermore, we systematically deduce the concepts of IoT transaction and IoT transaction
monitoring from our concept of IoT service and depict their relationships.

2.2.1 � IoT service

Since different service concepts exist, which are ambiguous, we derive a more precise con-
cept of an IoT service for this paper.

As stated by ISO/IEC/IEEE 24765:2017 systems and software engineering vocabu-
lary ISO/IEC/IEE. Systems and software engineering (2017), a service can be expressed
by “means of delivering value for the customer by facilitating results the customer wants
to achieve” or “performance of activities, work, or duties.” Further, it is stated that ser-
vices are intangible. This service concept is symmetrical to the service concept provided
by ISO/IEC 20000-1:2018 ISO/IEC. Information technology (2018): “means of delivering
value for the customer by facilitating outcomes the customer wants to achieve.” Instead of
“result” ISO/IEC 20000-1:2018 ISO/IEC. Information technology (2018) applied the con-
cept of “outcome”.

We suggest applying the concept “process outcome” for our definition of the con-
cept service, for which ISO/IEC/IEEE 24774 IEEE. Systems and software engineer-
ing (2012) provides the following definition. “An outcome is an observable result of
the successful achievement of the process purpose. Outcomes are measurable, tangible,

342 Software Quality Journal (2022) 30:337–366

1 3

technical or business results that are achieved by a process [...]. Outcomes are observable
and assessable.”

The technical specification regarding service quality models ISO/IEC TS 25011:2017 ISO/
IEC. Information technology (2017) refers to the concept of service by ISO/IEC 20000-
1:2011 ISO/IEC. Information technology (2011a): “means of delivering value for the user by
facilitating results the user wants to achieve” and changed “customer” to the concept “user”.
Whereupon ISO/IEC TS 25011:2017 ISO/IEC. Information technology (2017) differen-
tiate customer and user by referring to the concept customer provided by ISO/IEC 20000-
1:2011 ISO/IEC. Information technology (2011a), defining a customer as an “organization or
part of an organization that receives a service or services” and a user as a “person or an
organization that uses an IT service” ISO/IEC. Information technology (2017).

For the operationalization of service quality, we need to be more specific than ISO/IEC
TS 25011:2017 ISO/IEC. Information technology (2017) by differentiating the concepts of
customer and consumer in relation to the concept of service as follows:

IoT Service: performance of activities1 for delivering

a)	 value to the customer or
b)	 value to the consumer

by facilitating

a)	 the outcomes the customer and
b)	 the outcomes the consumer

wants to achieve.
We differentiate the concepts of consumer and customer based on their different rela-

tionships on value and different feedback mechanisms for quality improvement.
A customer is an individual or organization that purchases products or service via

financial business transactions. The customer value focuses on a normative perspective of
the evaluation at the point in time of purchase Lai (1995). If we consider services and not
one-time product purchases, this also includes performance-based billing such as per IoT
transaction performed. The customer’s feedback-mechanism is normative, following a dual
logic based on terms and conditions of a contract, such as by retaining transaction related
payments.

A consumer is an individual who consumes the product or service. The consumer value
focuses on the evaluation during consumption. This view highlights the dynamic perspec-
tive of the consumption in a specific consumption context Lai (1995). The consumer is
interested in the dependability, “the ability to perform as and when required” IEC (2015)
when consuming the service. In contrast to a customer, a consumer (if not simultaneously
being the customer with a contractual relationship) does not have a direct feedback mecha-
nism to communicate quality deficiencies and improve quality. Therefore, it is necessary to
observe the consumption of service in the context of use to indicate the value provided and
detect anomalies that impact service dependability.

1  We apply the concepts of activities and tasks from the ISO/IEC/IEEE 24774 IEEE. Systems and software
engineering (2012).

343Software Quality Journal (2022) 30:337–366

1 3

2.2.2 � IoT transaction

As a service is intangible and has a continuous nature, we introduce the concept of the
IoT transaction which is a procedure with discrete and observable properties, which can be
evaluated.

A transaction in the context of a database is a sequence of operations following the
ACID properties: atomicity, consistency, isolation, and durability. According to this con-
cept, a transaction must be executed completely or fail as a unit and cannot be partially
complete Gray and Reuter (1992). With our concept of the IoT transaction, we distinguish
ourselves from the concept of database transaction and the ACID properties as our concept
allows us to consider transactions with degraded quality and partial completeness (see Sec-
tion 5.2, Table 4).

Sigelman, author of one of the early tracing frameworks – Dapper Sigelman et al.
(2010), describes the concept of transaction as a “single, logical unit of work in its
entirety” Blumen (2019).

For our concept of the IoT transaction, we are more restrictive than Sigelman Blumen
(2019) and deduce it from the concept of IoT service, whereby an IoT service is decom-
posed into IoT transactions. As described in the IoT service concept, the customer has a
dual perspective and evaluates a transaction as completed or not completed. In contrast, the
consumer has a dynamic perspective on transaction dependability, which can be evaluated
by a projection on a subjective quality model.

IoT Transaction: performance of activities of a workflow that starts and ends for
delivering

a)	 a quantum of value to the customer or
b)	 a quantum of value to the consumer

by providing component effects of an IoT system

a)	 to target the completion of the workflow for the customer and
b)	 to target dependability for the consumer via a quality model for the consumer.

An IoT system decomposes into a set of components that provide functionalities. A
component-effect is the performance of a function in the dynamic system view related to
a quantum of business value of an IoT transaction (see Fig. 3). To reduce observation and
control complexity, we focus with the concept of component effects on business-relevant
component behaviors, which, in case of faults, can propagate to a failure. Thereby, they are
means to define from the set of possible behaviors to be observed, a smaller subset of ele-
ments, and represent points of observation and control.

2.2.3 � Distributed tracing

Distributed tracing is a method to approximate a transaction path in a distributed sys-
tem. Fundamental for this method is the concept of a span, a named, and timed operation
representing a part of a workflow that needs to be processed to complete a transaction.
Every span propagates span context, which enables the reconstruction of an instance of a

344 Software Quality Journal (2022) 30:337–366

1 3

transaction, represented as a trace. The span context includes different elements. It contains
the parent span ID, which is the context relating a child span to its parent, and the trace
ID, which defines the trace, a span is related to. Each span creates an individual ID and
propagates its ID as the parent span ID and the trace ID within the span context to a child
span. Spans without a parent are called root spans Sigelman et al. (2010). A trace can be
represented as causal relationship with a directed acyclical graph (DAG) (see Fig. 4) and as
temporal relationship with a time bar (see Figs. 5 and 6).

The concept of distributed tracing became of growing interest with the Dapper
paper Sigelman et al. (2010), which further motivated open-source implementations like
Jaeger Jaeger (2020). Developers and operators use tracing to gain insight into distributed
system behaviors, including troubleshooting and diagnosing distributed system behaviors.

2.2.4 � IoT transaction monitoring

The IoT transaction concept comprising of component effects has observable and quantifi-
able properties that enable us to indicate transaction completion and indicate transaction
dependability by IoT Transaction-Monitoring.

Fig. 3   Component effects in
relation to a transaction of an IoT
system

component1

component2

component
4

component
5

component
3

IoT system componenteffect 1

componenteffect 3

Fig. 4   Causal relationship –
DAG adapted from OpenTracing
(2020) Span A

Span B Span C

Span D Span FSpan E

Span A is the root span

Span C is a child of Span A

345Software Quality Journal (2022) 30:337–366

1 3

IoT Transaction Monitoring: performance of activities of an IoT-System for delivering
(a quantum of) information

a)	 to indicate IoT transaction completion
b)	 to indicate IoT transaction dependability

by providing

a)	 a method to observe component effects and class the observation: completed/not com-
pleted

b)	 a method to observe component effects and quantify the observation.

According to the IoT transaction concept, a) corresponds to the customer view, applying
dual logic to the value provision and b) the consumer view, differentiating quality charac-
teristics of value provision in time. Applying the method of distributed tracing component
effects can be indicated (observed and quantified) through spans and reconstructed into a
trace (Fig. 6). Therefore, it is possible to indicate IoT transaction completion and indicate transac-
tion dependability via distributed tracing.

Distributed Tracing:
performance of activities for delivering (a quantum) of information

Fig. 5   Temporal relationship –
time bar adapted from OpenTrac-
ing (2020)

Span A
Span B

Span E

Span D
Span C

Span F

client

load balancer

component
y

client transac�on from start to end

load balancer

component Y component Z

component
z

component
x

trace span

component X

span

Fig. 6   Relationship spans and trace adapted from Whitmore (2019)

346 Software Quality Journal (2022) 30:337–366

1 3

a)	 to indicate IoT transaction completion or
b)	 to indicate IoT transaction dependability

by providing

a)	 a method to observe spans
b)	 a method to observe spans and quantify the observation.

With our concept of IoT transaction, we can model the service needs and expectations
of a consumer and a customer by defining IoT transaction completion and IoT transaction
dependability requirements. IoT transaction monitoring enables us to indicate IoT transac-
tion completion from a dual customer view, e.g., for billing and indicate IoT transaction
dependability from a dynamic consumer view. As we focus in this paper on the consumer
view and IoT transaction dependability, we do not further consider the customer view.
Therefore, we take the IoT transaction concept and project the quality characteristics of
a transaction onto the quality models of the SQuaRE series ISO/IEC. Systems and soft-
ware engineering (2014). This enables us to implement control loops with SLIs and SLOs,
which can be quantified in operation through distributed tracing. We integrated this idea by
adapting the software quality evaluation process defined by ISO/IEC 25040 ISO/IEC. Sys-
tems and software engineering (2011b) for our research artifact accordingly. Furthermore,
we evaluated the quality in use of our artifact from the perspective of software practitioners
applying it within an action research project.

3 � Research design

We followed the method of action research, which combines research and practice in a
cyclical approach Reason and Bradbury (2001). While it focuses on improving industrial
practices, it enables iteratively to develop solutions for complex problems Staron (2019).
Action research is appropriate for the solution of our design problem, where we aim to
improve the dependability evaluation with our research artifact – the transaction-based
dependability evaluation approach – and simultaneously studying the experience of apply-
ing it in real-world industry use case Davison et al. (2004).

3.1 � Research objective

The research objective of this work can be defined as follows:

Enable the evaluation of transaction dependability in dynamic operations for com-
plex systems by designing an approach for dependability evaluation using distributed
tracing as a measurement method. The approach should satisfy the needs and expec-
tations of software practitioners towards its quality in use, with a focus on effective-
ness, efficiency, and satisfaction.

The following research questions in Table 1 guided our study.
We designed an artifact – the transaction-based dependability evaluation approach – in

a design science project to address the research questions. Furthermore, we evaluated its
quality in use, focusing on effectiveness, efficiency, and satisfaction in an action research
project at Robert Bosch GmbH.

347Software Quality Journal (2022) 30:337–366

1 3

3.2 � Case context

We conducted the research project at Robert Bosch GmbH, a company providing IoT ser-
vices in two stages (see Fig. 7). Objective of stage one is the design of the artifact – trans-
action-based dependability evaluation approach – which addresses RQ1. The evaluation of
the artifact was conducted in stage two and focused on answering RQ2 and RQ3.

3.3 � Stage 1

The challenges, requirements, and possible solutions of the interview study of Niedermaier
et al. (2019) served as input for the requirement stage. We further analyzed existing
approaches to define and evaluate quality characteristics. These included the ISO/IEC
SQuaRE series ISO/IEC. Systems and software engineering (2014) and Google’s SRE
approach for defining and evaluating SLOs and SLIs Beyer et al. (2016), which was high-
lighted as a dominated industry practice in Niedermaier et al. (2019). In collaboration
with seven industry experts coming from the case company and other companies provid-
ing services, we discussed the approaches and the requirements of our artifacts. Following
Table 2 provides an overview of the roles of the experts and their experience in software
development and operation.

After a revision, these results were used in the next stage to design the initial artifact
(RQ1). Stage 1 lasted from February 2019 till May 2019.

3.4 � Stage 2

In Stage two, the application and the evaluation of the artifact were conducted between
June 2019 and March 2020 to answer RQ2 and RQ3 at an IoT service team at Robert
Bosch GmbH. The evaluation of the research artifact was performed in the context of a
service that was not yet released at the time of evaluation. Therefore, to create load on the
system we emulated consumer behavior and produced a synthetic workload.

Table 1   Overview of the research questions

RQ1 What is a feasible and efficient approach for dependability evaluation and control? (design)
RQ2 How effective is the approach to fulfil requirements of software practitioners?
RQ3 Can software practitioners understand and use the approach easily and are they satisfied

with the approach? (efficiency, satisfaction)

Analyze Exis�ng
Methods

Define
Requirements

Design
Ar�fact

Evaluate
Ar�fact

Improve
Ar�fact

Stage1

Stage 2

Fig. 7   Research Process

348 Software Quality Journal (2022) 30:337–366

1 3

As summarized in Table 3, we performed an observation of the application of the
approach and a focus group discussion to triangulate the observations with opinions of the
participants.

Observation of Application The artifact was applied by an IoT service team of the
case company to define and evaluate dependability requirements for transactions of an IoT
service. Different team members, like the product owner, architect, service manager, and
DevOps engineers, were involved in the different stages of applying the transaction-based
dependability evaluation approach. The application was guided by one researcher and a
second researcher accompanied the execution to validate the quality in use (with a focus on
effectiveness, efficiency, and satisfaction) of the approach in practice.

Focus Group Discussion After completing the application of the approach, we per-
formed a focus group that lasted 2,5 hours, where we reflected the artifact’s application
to reduce a threat to internal validity. The focus group setting enabled us to explore the
experiences of the participants with the artifact throughout an interactive setting Kontio
et al. (2008).

Participants were the system architect and a DevOps engineer who were actively
involved in all of the activities performing the dependability evaluation approach. Both
had experience in developing and operating service-based systems and knowledge in moni-
toring and distributed tracing. We reviewed the application of the approach by executing
them exemplarily with the participants again. One researcher acted as a moderator who
guided the participants throughout the approach. After each activity, the researcher asked
for feedback with a focus on effectiveness, efficiency, and satisfaction as documented in the
interview guide Niedermaier et al. (2020). The second researcher took the role of an inde-
pendent observer and noted the participants’ answers and reactions related to the artifact.

Table 2   Expert information for
discussing design requirement of
the research artifact

Expert role Expert experience

Chief Technology Officer 26 years
Senior Technical Lead 14 years
Chief Architect Microservice Solution 7 years
Service Manager of IoT Solution 15 years
Software Quality Manager 17 years
DevOps Engineer 11 years
Product Owner 14 years

Table 3   Research approach of Stage 2

Observation of application Focus group discussion

Description observing the product team in execut-
ing the activities of the dependabil-
ity evaluation approach

interviewing team members for getting detailed
feedback of the application of the approach
by reflecting the application activities in
retrospective

Participants Chief Product Owner, System Archi-
tect, Service Manager, DevOps
Engineers

System Architect, DevOps Engineer

Researcher
Roles

one researcher as coach, second
researcher as independent observer

one researcher as moderator, second researcher
as minutes-taker

349Software Quality Journal (2022) 30:337–366

1 3

Afterward, the notes were analyzed using qualitative content analysis Mayring (2014) with
a focus on the quality in use of the artifact. The expert opinions led to further improve-
ments in the approach which are described in Section 5.3.

4 � Stage 1: design of transaction‑based dependability evaluation
approach

In this section, we present the transaction-based dependability evaluation approach. We
start outlining the requirements for the approach. Based on the results of the analysis of
existing approaches provided in Section 2, we designed the artifact.

4.1 � Define Requirements for the Design of the Artifact

The outcomes of the interview study of Niedermaier et al. (2019), our experiences
developing IoT services and a literature review resulted in the following requirements
and characteristics for the dependability evaluation approach.

–	 Targeted at distributed Service Systems. The approach is tailored for distributed
systems providing consumer services. We focus on containerized systems that use
RESTful HTTP or lightweight messaging (e.g., AMQP) and the integration of (Io)
things.

–	 Management of dependability from consumer-centric view. The goal is to provide a
concrete approach that enables to evaluate the abstract concept of consumer perceived
dependability: “perform as and when required.” Therefore, dependability requirements
need to be defined by a cross-functional perspective where business, technical, and
operation perspectives are aligned. Furthermore, the dependability is to be assessed in
the dynamic context of use in operation. The approach aims to enable fault detection,
which is the base to control the value provision with fault reactions. Moreover, the arti-
fact intends to enable continuous product improvement by observing anomalies in the
dynamic context of use.

–	 Dynamic view and context propagation. The approach needs to support the contin-
uous observation of the dynamic context of use of consumer transactions; therefore,
context propagation, along with components of an IoT system, providing component
effects, is necessary. Applying distributed tracing enables to propagate context of con-
sumer transactions and to derive quality and performance measurements. It further ena-
bles us to observe anomalies in the high frequency of system changes and detect faults
in service operation to enable fast fault reaction.

–	 Efficient for dynamic dependability evaluation. The approach should address the
industry context and needs to be efficient and easy to understand. This includes the
efficiency with which practitioners achieve the specified goals in relation to expenditure
of resources, like mental effort. Following the goal of reducing observation complexity,
our approach focuses on business-value component effects for evaluating the dynamic
behavior of service provision in operation.

–	 Relies on existing and proven approaches and measures: ISO/IEC 25040 and SRE.
Due to the criticism of the quality evaluation process of ISO/IEC 25040 ISO/IEC. Sys-
tems and software engineering (2011b) for being too abstract, we enhanced the generic

350 Software Quality Journal (2022) 30:337–366

1 3

reference model with the concept of the IoT transaction as an entity of interest and dis-
tributed tracing as an observation and measurement method. To complement industry
needs to focus on consumer-centricity Niedermaier et al. (2019), we integrated control
loops with the concepts of SLI and SLO.

4.2 � Transaction‑based Dependability Evaluation Approach (RQ1)

This section presents the results for RQ1, the designed artifact of the transaction-based
dependability evaluation approach, which includes the different activities and tasks to
guide the transaction dependability evaluation (see Fig. 8).

1. Decompose IoT service into IoT transactions An IoT service is decomposed into
types of IoT transactions delivering a quantum of value for the customer and consumer.
Focus on IoT transactions with high business value, which in case of faults are propagating
to significant quality deficiencies (failures) a consumer experiences and cares about.

2. Specify dependability requirements for each IoT transaction The target entity
for evaluation is the IoT transaction, which needs to be controlled to deliver a quantum
of value for the consumer. For each type of IoT transaction, a set of requirements to indi-
cate dependability can be defined by applying a quality model (like ISO 25010 ISO/IEC.
Systems and software engineering (2011d)). Therefore, suitable quality characteristics and
sub-characteristics need to be derived from consumer needs with regard to the quantum of
value to be delivered. The IoT transaction dependability can be specified by selecting qual-
ity measures (SLIs) and defining quality objectives represented by target values (SLOs).
Target values and acceptable range of value with a numerical threshold indicate the need
for further investigation or intervention. The IoT transaction dependability specification has
to be documented using the following items:

Fig. 8   Activities of the
transaction-based dependability
evaluation approach

2. Specify dependability requirements
for each IoT transac�on

1. Decompose IoT service into IoT
transac�ons

3. Design the evalua�on

4. Execute the evalua�on

5. Conclude the evalua�on and iterate

351Software Quality Journal (2022) 30:337–366

1 3

–	 transaction type with reference to consumer
–	 quality characteristic and sub-characteristic
–	 quality measure (SLI)
–	 quality objective with target values (SLO)

–	 target value for SLI or
–	 acceptable range of value for SLI

The selection of appropriate quality characteristics and definition of SLIs and SLOs is an
interdisciplinary activity with consumer, business, and product implications, which should
be reflected in the specification. Often there are trade-offs needed between different stake-
holder groups. The following aspects, inspired by SRE practice Beyer et al. (2016) and
ISO/IEC 25030 ISO/IEC. Systems and software engineering (2019) shall assist the specifi-
cation of SLOs and SLIs.

–	 Simplicity: Have as few SLOs as possible. Choose relevant characteristics and meas-
ures reflecting IoT transaction dependability.

–	 Realistic SLOs: Analyze whether SLOs are consistent with other quality requirements
and whether prioritization is needed. Set realistic SLOs that can be achieved regarding
constraints such as business constraints.

–	 Safety margin: Start with a conservative SLO and tighten it iteratively. If SLO is
offered to consumers and customers, set a tighter internal SLO for having options for
tactical intervention.

3. Design the evaluation Model system structure view and dynamic execution flow:
Identify and model components providing component effects to be included to indicate IoT
transaction dependability. The component effects shall be described from the perspective
of outcome, providing a quantum of value for the consumer. Model the high-level concep-
tual execution flow of the IoT transaction.

Instrument components: As we consider distributed tracing as the measurement
method, instrument the components providing component effects, allowing them to propa-
gate metadata to log the start and end time of a span and reconstruct the corresponding
trace.

4. Execute the evaluation The measurements are taken with the initiation and process-
ing of IoT transactions. Trace, span, and parent ID are propagated and span duration is
logged. The tracing agent collects the span data that a tracing backend receives to recon-
struct the trace out of the corresponding spans. In the following, the trace data has to be
aggregated and analyzed. The trace measurements need to be compared against the targets
of SLOs.

5. Conclude the evaluation and iterate To conclude the evaluation, the results need to
be reviewed, and the limitations of the evaluation procedure need to be discussed.

Furthermore, this activity is representative of the tasks of operation, where the evalua-
tion is executed iteratively. Continuous observations to find deviation in the SLI measure-
ments compared to SLOs are necessary to decide whether or not investigation or interven-
tion is required. The information from distributed trace data enables us to detect faults and
respond to them with fault reactions. Through the increasing exploration of the context of
use, the model of component effects and, therefore, the points of observation and control
have to be validated iteratively. Moreover, the suitability of SLIs and SLOs need to be con-
tinuously evaluated and adapted to the changing environment in terms of requirements and
system changes.

352 Software Quality Journal (2022) 30:337–366

1 3

5 � Stage 2: evaluation of the artifact

To evaluate the designed artifact, we applied it in the context of the IoT solution – remote meas-
urement service – at the business unit of Connected Mobility Solutions of Robert Bosch GmbH.
This section provides an abstract description of the IoT solution and its main components. Fur-
thermore, we present the application of the transaction-based dependability evaluation approach
in the context of the remote measurement service and describe the challenges which appeared in
the different activities and tasks during execution. Finally, we delineate the focus group results
to evaluate the effectiveness, efficiency, and satisfaction of the approach (RQ2 and RQ3).

5.1 � System description ‑ remote measurement

The system under scope provides over the air access to vehicle measurements, e.g., the engine
temperature or the vehicle speed with different protocols. A consumer can define a measure-
ment job, configuring the data to be extracted from the vehicles. The systems architecture,
containing the essential components and communication flows, is abstracted in Fig. 9.

The component Zuul Netflix (2020) serves as an API gateway and routes a consumer
request to corresponding components. The Remote Measurement (RM) Job Configura-
tion is responsible for the events triggered by the consumer, e.g., the activation or deactiva-
tion of a measurement job configuration. The measurement job configuration is passed to
the DC Device Communication component, which acts as a gateway to route job configu-
rations and job results (vehicle data) to other components. The measurement job configura-
tion is routed to the Mobility Cloud Suite (MCS), an external component that provides
the vehicle data. The measurement job results (in the form of binary data) are sent to the
Zuul, which routes the data to the DC Device Communication. The RM Data Converter
converts the data into a consumer-defined format and passes it on to the RM Data Pro-
vider component, which stores and provides the data to the consumer. The components in
the grey box (see Fig. 9) are developed by the team.

DC Device
Communica�on

Mobility Cloud Suite
(MCS)

RM Data Converter

RM Data Provider

RM Job
Configura�on

Zu
ulREST Client

(UI)

Fig. 9   Overview Remote Measurement system

353Software Quality Journal (2022) 30:337–366

1 3

5.2 � Application of the transaction‑based dependability evaluation approach

In the following, we present the application of our artifact, by exemplary describing the
execution of the five activities of the dependability evaluation approach.

1. Decompose IoT service into IoT transactions The first task is to decompose the
IoT service into IoT transactions providing quantifiable value to the customer. Consum-
ers for this service are original equipment manufacturer (OEM) engineers, who want to
gain access to vehicle lifecycle measurement data. The consumer need can be defined as
follows.

Consumer need: An engineer (consumer) of an OEM (customer) needs to have access
to required vehicle field data that can be downloaded from central storage to process or
analyze data using a client UI. Four types of IoT transactions could be defined.

–	 Activate a measurement job configuration (T1)
–	 Deactivate a measurement job configuration (T2)
–	 Provide access to measurement result (T3)
–	 Download measurement result (T4)

For the scope of this work, T3 – provide access to measurement result – was used to apply
the approach. As the service was still under development at the evaluation stage, IoT trans-
action three was the only one for which dependability measurements could be derived. The
quantum of value for T3 corresponds to the access to the requested vehicle measurement
data in the specified data format.

2. Specify dependability requirements for each IoT transaction To define dependa-
bility requirements for T3, characteristics of the transaction have been projected onto qual-
ity models with related measures of ISO/IEC 25000 series ISO/IEC. Systems and software
engineering (2014). Essential quality (sub-) characteristics have been selected together
with the chief product owner, two system architects, and the service manager. The interpre-
tation of the concept of dependability “perform as and when required” IEC (2015) yielded
to the following requirements, including the specification defining SLIs, their measurement
function, and SLOs (Table 4 and 5). As the specific target values for the SLOs are confi-
dential company data, they cannot be published in this paper. Therefore we have abstracted
the SLO syntax.

Table 4   Effectiveness SLIs and SLOs for T3 (individual IoT transaction view)

SLI Measurement function SLO

Transaction completeness (C1)
(derived from objectives
achieved measure)

C1∶=max(0,B)B = (1 −
∑

e

Pe) target ≤ C1 per transaction

(Pe) ∶ Proportional value of each missing
or incorrect component effect (e) (with
a fault) of the transaction (max. value of
each (Pe = 1))

Transaction completeness (C2)
(derived from functional appro-
priateness measure)

(C2 = 1 − Nf ∕Nr)(Nf) ∶ Number of com-
ponent effects missing or incorrect (with
a fault) among those that are required for
delivering the quantum of value (Nr) ∶
Number of component effects required
for delivering the quantum of value

target ≤ C2 per transaction

354 Software Quality Journal (2022) 30:337–366

1 3

A critical quality in use characteristics for T3 is the effectiveness, the ability to suc-
cessfully provide access to measurement results accessible in the specified data format
by transaction completion. Furthermore, the efficiency, the ability to quickly process the
measurement result and making it accessible, as well as the performance of how many
transactions are successfully processed in an observation interval.

The effectiveness of an IoT transaction can be indicated by the objective achieved
measure of the QIU model, which is: “The proportion of the objectives of the task that
are achieved correctly without assistance” ISO/IEC. Systems and software engineering
(2011c). As we cannot observe the sum of the objectives achieved, which corresponds to
the quanta of value in this paper, we propose to indicate the effectiveness of T3 through
its completion by observing and quantifying the provided component effects. Therefore,
we adapt the objective achieved measure as transaction completeness with the following
description.

–	 Transaction completeness: The proportion of the component effects of a transaction
that are provided to facilitate the accomplishment of a quantum of value of a transac-
tion.

The corresponding measurement function and the form of the SLO are defined in Table 4.
For each missing or incorrect component effect, representing a fault, a proportional value
P
e
 can be assigned.
In the context of effectiveness indication, we also discussed the characteristic of func-

tional appropriateness, which is a sub-characteristic of the functional suitability of the PQ
model. The functional appropriateness is defined as the “degree to which the functions
facilitate the accomplishment of specified tasks and objectives” ISO/IEC. Systems and
software engineering (2011d). The functional appropriateness measure is the “[...] propor-
tion of the functions required by the user [that] provides appropriate outcome to achieve
a specific usage objective.” The measurement function of functional appropriateness ISO/
IEC. Systems and software engineering (2016) is similar to the measurement function of
objectives achieved measure ISO/IEC. Systems and software engineering (2011c), but rep-
resents a special case in which all component effects are equally weighted. This measure-
ment function is suitable when a provider does not have enough knowledge about the con-
sumer context to set a proportional value for an anomalous component effect.

Table 5   Efficiency SLIs and SLOs for T3 (across several instances of T3)

SLI Measurement function SLO

Transaction throughput
(Qj)

(Qj = Nc,j∕Δtj)(Nc,j) ∶ Number of
transactions completed during obser-
vation interval (j) (Δtj) ∶ observation
interval (j)

transactions completed per time unit
(e.g., number of transactions per
min): target (≤ Qj)

Transaction completion
ratio (Rj)

(Rj = Nc,j∕Ni,j)(Nc,j) ∶ Number of
transactions completed during
observation interval (j) (Ni,j) ∶ Total
number of transactions initiated dur-
ing observation interval (j)

transactions completed per time unit:
target (≤ Rj)

Transaction turnaround
time (tk)

(tk = (tk,c − tk,i))(tk,i) ∶ Time of initiat-
ing a transaction (k) (tk,c) ∶ Time of
completing a transaction (k)

proportion (p) of transactions com-
pleted in (tk) (≤) target (in, e.g., ms)

355Software Quality Journal (2022) 30:337–366

1 3

The target value (SLO) for the proportion of completeness introduces a class boundary
to class instances of IoT transactions into complete and not complete. A proportional value
of a missing and incorrect component effect can be indicated via anomalous span patterns
of a component effect as part of a directed acyclic graph.

Identifying the component effects is described in activity 3 of the dependability evalua-
tion approach, where the evaluation is designed. Furthermore, we identified expected span
patterns representing component effects.

To indicate the efficiency of the value provision from a consumer view, the number
of completed transactions in a time interval needs to be observed. We apply the SLI of
transaction throughput, which is similar to time efficiency measure of ISO/IEC 25022 ISO/
IEC. Systems and software engineering (2011c) and the mean throughput measure of ISO/
IEC 25023 ISO/IEC. Systems and software engineering (2016).

–	 Transaction throughput: Number of the transactions that are completed within an
observation interval.

The transaction throughput target is formulated for a particular observation interval, a
standardized time unit, whose interval must be large enough to quantify a difference in the
observed property.

To assess the quantity of completed transactions relative to the initiated transactions in an
observation interval, we formulated a SLI of transaction completion ratio adapted from the task
completed measure of ISO/IEC 25022 ISO/IEC. Systems and software engineering (2011c).

–	 Transaction completion ratio: Proportion of the transactions that are completed
within a time interval in comparison to the total number of transactions initiated.

The time efficiency of the transaction completion can be indicated by transaction turna-
round time, which is adapted from the task time measure of ISO/IEC 25022 ISO/IEC.
Systems and software engineering (2011c) and the mean turnaround time measure of
ISO/IEC 25023 ISO/IEC. Systems and software engineering (2016).

–	 Transaction turnaround time: The time taken to successfully complete a transaction.

The distribution of the transactions turnaround times can be indicated by the nth percentile
turnaround time under expected load conditions, which we adapted from the time behavior
measures of ISO/IEC 25023 ISO/IEC. Systems and software engineering (2016).

Challenges: When interpreting the abstract definition of dependability: “perform as, and
when required” IEC (2015), the team had difficulties identifying essential characteristics. Ini-
tially, they struggled to determine which characteristics have a significant impact on the con-
sumer perceived quality. DevOps engineers and PO tend to suggest product quality properties
from a provider view. As the team was prone to take the provider view instead of the consumer
view, we identified the importance of differentiating and highlighting the viewpoint and the pur-
pose for which quality characteristics, related measures, and targets are formulated and linking
the views appropriately. In this case of defining requirements and evaluating operation by emulat-
ing the behavior of one consumer, the performance measures from provider and consumer view
are similar. Only the assignment of measures to the characteristics would change for this case
(e.g., the transaction throughput can be assigned to indicate provider effectiveness). Besides, for a
provider view, additional performance measures would be of interest, e.g., saturation.

356 Software Quality Journal (2022) 30:337–366

1 3

Furthermore, the research team and participants discussed the interpretation of the
quality characteristics of QIU and PQ characteristics and measures of ISO/IEC 25000
series ISO/IEC. Systems and software engineering (2014). Therefore, we compared
suitable measures of QIU and PQ standards and adapted them to our formulation and
measurement functions for the SLIs.

Moreover, we identified difficulties related to the terminology and concepts of SLOs
and SLIs. Some participants had the impression that all SLOs have to be part of a con-
tractual agreement like a service level agreement (SLA). Therefore, we included a ter-
minology page into the company internal glossary for the concepts of SLA, SLO, and
SLI, which also handles information about the purpose and viewpoint from which they
should be developed.

3. Design the evaluation Model System structure view and dynamic IoT trans-
action flow: We modeled the system structure view with the components that provide
component effects to the IoT transaction and further added the (high-level) dynamic
transaction flow in Fig. 10. Each of the component effects needs to be successful (with-
out a fault) to consider the IoT transaction as complete.

1)	 Zuul: receives data and routes data to DC Device Communication
2)	 DC Device Communication: receives data in binary data format and inserts data into

messaging queue
3)	 RM Data Converter: converts data into a consumer-specified format and inserts data

into messaging queue
4)	 RM Data Provider: persists data in data base

DC Device
Communica�on

Mobility Cloud Suite
(MCS)

RM Data Converter

RM Data Provider

Zu
ul

AMQP
HTTP

1)

2)

3)

4)

Fig. 10   T3: Provide access to measurement result

357Software Quality Journal (2022) 30:337–366

1 3

As the remote measurement service was not in production yet, and the MCS is an exter-
nal service, we performed load tests by emulating measurement data. For the load test,
we used JMeter Foundation (2020), which is an application to perform functional and
performance load tests. The load test scenario included requirements provided by the
customer: connection of ten vehicles and each of the ten vehicles sending a message
every 120 seconds to the DC Device communication. We also needed to set up a MCS
mock service, which emulated the external real MCS that forwards the processed vehi-
cle data and passes it to the DC Device Communication.

Instrument components: For this action research project, two distributed tracing
systems had been available for the product team. One system was Jaeger Jaeger (2020),
which is an open-source distributed tracing tool and is inspired by Dapper Sigelman
et al. (2010). As the Zuul, RM Data Provider, RM Data Converter, and the DC Device
Communication have already implemented a Jaeger tracer. Therefore, no modifica-
tions to instrument components were required. Furthermore, we deployed New Relic
(NR) NewRelic (2020), which is an application performance management tool and sup-
ports the analysis of distributed tracing data with its extensive UI.

4. Execute the evaluation As the Remote Measurement system was not yet in produc-
tion, we performed a load test according to the customer specification.

Reconstruction of trace and measurement of SLIs: We used Jaeger and NR to recon-
struct and display the traces. With NR, we could not reconstruct the whole trace due to the
communication protocol of AMQP. The trace context was not attached to AMQP at the
time of the evaluation, and therefore we could not gain full trace visibility. With Jaeger,
we were able to produce the overall trace, but due to its limited aggregation capability, we
imported the data to NR for SLI measurement and visualization. Since the measurements
of runtime data generated in the research project are confidential, in the following, we pro-
vide some exemplary abstraction and visualizations for the SLIs and SLOs, produced via
NR.

Transaction completeness: We were able to deductively assign component effects to the
related span patterns, as illustrated in Fig. 11. It presents an exemplary trace of an instance
of a transaction type T3 that we abstracted from Jaeger. According to the completeness
measure C1

 , we assigned a proportional value P
e
 for each component effect, in case a fault is

detected. As described in Activity 3 – Design the evaluation –, each component effect needs
to be successful to consider a transaction as complete, therefore P

1
= P

2
= P

3
= P

4
= 1 .

In this example, no faults for the component effects of the trace of an instance of T3 are
detected, consequently C

1
= 1 . This represents the maximum value possible for the measure

of transaction completeness. Thus this instance of T3 can be classed as complete.
For a more complex type of transaction, where software practitioners do not have suffi-

cient knowledge about the operations and the component interactions, it would be possible

Zuul
Zuul
DC Device Communica�on
DC Device communica�on
RM Data Converter
RM Data Converter
RM Data Provider

Components 0 ms

1)

2)

3)

4)

If fault detected: 1 = 1

Iffault detected: 2 = 1

Iffault detected: 3 = 1

Iffault detected: 4 = 1

Fig. 11   Exemplary trace including component effects abstracted from Jaeger (2020)

358 Software Quality Journal (2022) 30:337–366

1 3

to indicate a completed transaction inductively through specific trace patterns (by the num-
ber and the compilation of span patterns). This indication could be performed by labeling
them in a machine learning context.

Transaction throughput: Figure 12 illustrates the SLI measurement for the transaction
throughput, representing the number of the completed transactions plotted over a specific
observation interval.

Transaction completion ratio: As we performed a load test and did not simulate faults,
100% of the transactions were completed in the observation interval.

Transactions turnaround time percentiles: Figure 13 visualizes the 99th, 98th, 95th,
and 50th percentile transactions turnaround time t

k
 for a specific observation interval.

5. Conclude the evaluation and iterate Since the system was not in production at
the time of the artifact evaluation, we conducted a load test that cannot represent the
consumer’s operation real-world context. Therefore, we see a threat to the interpretation
validity of the results for the dependability from a consumer’s perspective. Nevertheless,
the results were valuable in terms of the IoT system’s performance capabilities, espe-
cially concerning the time-behavior to process transactions. We identified that the RM
Data Provider and the RM Data Converter consume the largest part of the transaction
turnaround time. Moreover, we detected a fault, a bottleneck between these two com-
ponents (see Fig. 11). Within the relatively large time gap, the enqueued data is wait-
ing for being consumed by the data provider. This time interval grows with increasing

Fig. 12   Number of transactions
as a function of time

Fig. 13   Transactions turnaround
time (t

k
) in percentiles

359Software Quality Journal (2022) 30:337–366

1 3

load. Thus, we detected a defect in the conception of the underperforming data provider,
which the team redesigned subsequently to decrease the bottleneck.

We need to compare the results from the load test with real-world consumer load
results in operation. Deviations from expected and normal system behavior can indicate
anomalies that have to be further investigated. Moreover, we identified and discussed
the following errors related to modeling and measurement:

–	 modeling errors, which arise when the conceptual models used provide a simplified
or insufficient description of the phenomena in reality,

–	 observational errors, which arise through inaccuracies of the measurement instru-
ment and

–	 errors related to distributed tracing as measurement instrument, impacting the sys-
tem performance.

We need to investigate the implications of the discussed errors in consumer operation when
consumer feedback can be obtained. This also includes the validation of the suitability of
SLIs and SLOs. Furthermore, the model of component effects, the selection of observation
points through distributed tracing, and the assigned proportional value for the component
effects have to be evaluated.

5.3 � Focus group

This section provides the results of the focus group with two software practitioners who
applied the approach. Following the interview guide’s structure, we present expert opinions
on the effectiveness, efficiency, satisfaction, and challenges of the approach by reviewing
and discussing its application.

Effectiveness: The focus group discussion confirmed that the approach assists the
operationalization of the concept dependability from a consumer perspective. The partici-
pants stated that the application of the approach promotes early discussion and alignment
of different system stakeholder perspectives. The concept of transaction and its compo-
nent effects are suitable abstractions to bring together business, technical, and operations
domains and provide a common understanding of essential quality characteristics from a
consumer perspective. Furthermore, the artifact increased a better understanding of how
the IoT system needs to support the transaction’s effective and efficient execution and how
to operationalize the evaluation of the transaction dependability. The participants pointed
out the application of the concepts SLO, SLI as they enable them to formulate measur-
able targets from a consumer’s perspective. Moreover, they stated that they tend to focus
on the functional perspective and the monitoring of individual components and neglected
the dynamic transaction view without the approach. The synthetic probing, which the team
applies, is also capturing a dynamic perspective. However, synthetic probing approximates
the consumer experience, unlike distributed tracing, which captures real-world consumer
transactions during operation. The participants further highlighted that the capability of the
approach of getting an overview of the component dependencies helping to identify critical
paths.

Efficiency and satisfaction: The experts outlined that their procedure would have
been less structured without the approach and would have taken longer. The approach
gives systematic guidance to focus on high-value transactions, characteristics a consumer
cares about, and component effects that contribute to the value provision of a transaction.

360 Software Quality Journal (2022) 30:337–366

1 3

Therefore, it is possible to reduce the observation space while at the same time getting
a holistic overview of the dynamic processing of a transaction. Furthermore, the experts
stated that it is easier to derive dynamic requirements transaction-based than on system
level. In terms of understandability, the participants noted that the approach is well-defined
and explained in a comprehensible way and that they are satisfied with it. While there was
a discussion on whether the approach introduces additional specification efforts, partici-
pants also expressed that the expected benefits outweighed the compromises inherent in
any structured method. Especially, since the precise specification is primarily done for high-
value transactions and not for every transaction possible. The incorporation of SLOs and
SLIs created confusion initially, as the terminology was too abstract, and concrete exam-
ples of applications were missing. By creating the internal documentation with the con-
cepts of SLA, SLO, and SLI, the experts confirmed that a clear distinction and application
can be ensured.

Challenges and improvements: The specification of transaction dependability require-
ments and interpretation of the abstract definition: “perform as and when required.” was
stated as challenging. The large number of possible projections onto quality models and
measures of SQuaRE series was perceived as complicated by the participants. It was effec-
tive to adapt the approach to differentiate the consumer perspective from the provider per-
spective and start the projection of the concept of dependability onto the quality model of
ISO/IEC 25010 ISO/IEC. Systems and software engineering (2011d) with the trivial quality
characteristics of efficiency and effectiveness. Furthermore, the participants stated that the
aggregation of traces was challenging. The traces are raw data and need to be processed
sufficiently to quantify transaction properties and compare them against SLOs. As Jaeger
was not sufficient for trace aggregation and NR could not trace the whole transaction due
to the AMQP, the traces needed to be converted and imported to NR for performing SLI
measurement. We prefer to apply the World Wide Web Consortium (W3C) trace context
specification for future projects. It is a de facto standard, developed by open-source and
commercial tool providers, which defines a unified format for propagating tracing context
between components W3C (2020). Most of the open-source and commercial tracing tools
support this context specification. Applying a standardized trace context reveals the poten-
tial to include further external components like the mobility cloud suite for this research
study. Lastly, for the application of distributed tracing as the measurement method, the par-
ticipants noted that discussions about the data storage and sampling are needed.

6 � Discussion

Service design and evaluation should be performed from the perspective of customer
or consumer needs and expectations. Based on these needs, quality requirements with
quality characteristics operationalized through measures (SLIs) with appropriate tar-
gets (SLOs) are necessary. The approach’s application demonstrated that the definition
and measurement of SLIs and SLOs could be the base for continuous feedback cycles
for service performance evaluation and control. The approach enables us to detect
anomalies and to react to them. Furthermore, it can be applied to improve a service
providing consumer value gradually.

The artifact’s application indicates that it can improve collaboration and commu-
nication between teams and align the perspective from which they develop and oper-
ate services. Besides, it enables the detection of anomalies in the dynamic context of
use, and changes in the quality of value provision can be observed when the system

361Software Quality Journal (2022) 30:337–366

1 3

is modified. In addition, the team confirmed to get valuable insight into the system’s
performance that can be utilized to iterate the SLOs. Besides, we see a high potential
for the indication of system performance anomalies by quantifying the rate of change
(gradient) of transaction completeness across the instances of transactions processed
by the system. We also identified that it is possible to extend the concept faults of com-
ponent effect, regarding missing component effects to anomalies in the time behavior
of providing component effects. Moreover, we can apply the completeness indicator to
assess completed transactions for the customer billing process, as stated in the concept
in Section 2.2.2.

Even though modern distributed tracing systems like Jaeger are designed for mini-
mal performance overhead, they still create additional load. Therefore, the usage of
such an approach with a critical production system needs to be carefully evaluated.

7 � Threats to validity

Since we conducted a focus group to evaluate effectiveness, efficiency, and satisfaction
with the artifact, we anticipate some personal bias in the participants’ statements and
answers and a threat to internal validity. Furthermore, participants may tend to comment
and answer in confirmation of our approach. This could lead to confirmation bias. We
consider this threat as reduced as we triangulated the answers with the observation of the
application. Moreover, we see the possibility that the results of the focus group are the phe-
nomenon of groupthink. We think this risk is low, as the participants seemed not worried
about pointing out negative aspects of the artifact. We tried to control this risk by triangu-
lating the observation results of the application of the dependability evaluation approach
with the results of the focus group. As we did not audio-recorded the focus group, we see a
risk of researcher bias. We tried to mitigate this risk as one researcher took the moderator’s
role, making some notes, and the other researcher acting as an independent observer who
was dedicated to recording the reactions, statements, and answers. To increase interpreta-
tion validity, the minutes were counter checked by the researchers.

In terms of external validity, we have the limitation that the application of the artifact
in one action research project is too little to claim generalizability on a quantitative level.
Furthermore, generalizability to other domains and further cases is not possible and needs
to be evaluated.

Lastly, since we have described, documented, and attached an exemplary application of
the artifact, we consider that the study can be reproduced, and a threat to reliability has
been reduced.

8 � Conclusion and future work

We designed and evaluated an artifact to define and evaluate service and transaction
dependability from a consumer-centric view in an action research project. The artifact
design is based on industry approaches like SRE and traditional frameworks like the
ISO/IEC 25000 series. We evaluated its quality in use with a focus on effectiveness, effi-
ciency, and satisfaction by applying it to an IoT service of Robert Bosch GmbH. Our action
research project demonstrated that the artifact enables consumer-centricity and transforms
the complexity of observation and control of service provision into discrete observable

362 Software Quality Journal (2022) 30:337–366

1 3

and controllable transactions, for which dependability characteristics and targets can be
defined, indicated, and evaluated in a dynamic context of use.

The results of applying the artifact indicate to create cross-functional alignment on
consumer-centricity and have the potential to break down silos. It focuses on observing
high-value contributing components and their behavior in the context of a transaction with
an emphasis on characteristics that are of importance for consumers. Therefore, it fosters
early discussion about important transaction characteristics from a consumer perspective
while involving different system stakeholders like developers, operators, product owners,
architects, and service managers. This enabled us to create a shared understanding of trans-
action and service dependability aspects and its related observability and control needs.

The participants experienced the quality in use of the artifact as positive. It was per-
ceived as easy to understand. Nevertheless, it remains challenging to identify appropriate
quality characteristics representing consumer needs and appropriate measures with target
values to indicate transaction dependability from a consumer view. The evaluation led to
further improvements, where we adapted our concepts of service and transaction and dif-
ferentiated these respectively from the view of a customer and a consumer. Furthermore,
we described the relationship among a quality model, with quality characteristics, qual-
ity measures (SLIs) and target values (SLOs) precisely and provided them via a company
internal terminology management system.

The aggregation of individual trace data to generate measurements for the efficiency
SLIs was challenging. Due to the use of AMQP as the messaging protocol, we had to con-
vert the Jaeger trace data to import them into NR. For future projects, we prefer applying
the standardized W3C context specification, which, if consistently applied, has the poten-
tial of full trace observability, including external components. Besides, strategies for trace
data storage and trace sampling are needed.

The approach enables detecting anomalies in the dynamic context of use, and changes
in the quality of value provision can be observed when the system is modified. Future work
should focus on developing a concept for training and collecting further empirical data
including consumer feedback to validate the suggested quality measures.

Researchers can use the insights to further develop industry-oriented observation meth-
ods and procedures. Practitioners receive guidance on developing consumer-centered indi-
cators and observing and quantifying dynamic system behavior to evaluate the dependabil-
ity of the value provision.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Argotti, Y., Baron, C., & Esteban, P. (2019). Quality quantification in systems engineering from the qualim-
etry eye. In 2019 IEEE International Systems Conference (SysCon), pages 1–8. IEEE.

Bevan, N. (1995). Measuring usability as quality of use. Software Quality Journal, 4(2), 115–130.

363Software Quality Journal (2022) 30:337–366

http://creativecommons.org/licenses/by/4.0/

1 3

Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (2016). Site Reliability Engineering: How Google Runs
Production Systems. “O’Reilly Media, Inc.”.

Blumen, R. (2019). Ben sigelman on distributed tracing [software engineering radio]. IEEE Software,
36(01), 98–101. https://​doi.​org/​10.​1109/​MS.​2018.​28805​98

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research. Information
Systems Journal, 14(1), 65–86.

Foundation, A. S. (2020). Interview guide: Quality in use of anomaly classification. https://​jmeter.​apache.​
org/​index.​html

Gray, J., & Reuter, A. (1992). Transaction processing: concepts and techniques. Elsevier.
IEC. (2015). International electrotechnical vocabulary – part 192 dependability (IEC 60050-192).
IEEE. (2008). Systems and software engineering – measurement process (IEEE Std 15939).
IEEE. (2012). Systems and software engineering – life cycle management – guidelines for process descrip-

tion (IEEE Std 24774).
ISO/IEC. (2011a). Information technology – service management – part 1: Service management systems

requirements (ISO/IEC 20000-1:2011).
ISO/IEC. (2011b). Systems and software engineering – systems and software quality requirements and eval-

uation (SQuaRE) – evaluation process (ISO/IEC 25040).
ISO/IEC. (2011c). Systems and software engineering – systems and software quality requirements and eval-

uation (SQuaRE) – measurement of quality in use (ISO/IEC 25022).
ISO/IEC. (2011d). Systems and software engineering – systems and software quality requirements and eval-

uation (SQuaRE) – system and software quality models (ISO/IEC 25010).
ISO/IEC. (2012). Systems and software engineering – systems and software quality requirements and evalu-

ation (SQuaRE) – quality measure elements (ISO/IEC 25021).
ISO/IEC. (2014). Systems and software engineering – systems and software quality requirements and evalu-

ation (SQuaRE) – guide to (SQuaRE) (ISO/IEC 25000).
ISO/IEC. (2016). Systems and software engineering – systems and software quality requirements and evalu-

ation (SQuaRE) – measurement of system and software product quality (ISO/IEC 25023).
ISO/IEC. (2017). Information technology – systems and software engineering – systems and software quality

requirements and evaluation (SQuaRE) – service quality models (ISO/IEC TS 25011).
ISO/IEC. (2018). Information technology – service management – part 1: Service management systems require-

ments (ISO/IEC 20000-1:2018).
ISO/IEC. (2019). Systems and software engineering – systems and software quality requirements and evalua-

tion (SQuaRE) – quality requirements framework (ISO/IEC 25030).
ISO/IEC/IEE. (2017). Systems and software engineering - vocabulary (ISO/IEC/IEE 24765).
Jaeger. (2020). Jaeger: open source, end-to-end distributed tracing. https://​www.​jaege​rtrac​ing.​io/
Kontio, J., Bragge, J., & Lehtola, L. (2008). The focus group method as an empirical tool in software engineer-

ing. In Guide to advanced empirical software engineering, pages 93–116. Springer.
A. W. Lai. Consumer values, product benefits and customer value: a consumption behavior approach. Advances

in consumer research, 22:381–381, 1995.
Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software solution.
Netflix. (2020). Zuul. https://​github.​com/​Netix/​zuul
NewRelic. (2020). Distributed tracing. https://​docs.​newre​lic.​com/​docs/​under​stand​depen​denci​es
Niedermaier, S., Koetter, F., Freymann, A., & Wagner, S. (2019). On observability and monitoring of distributed

systems–an industry interview study. In International Conference on Service-Oriented Computing, pages
36–52. Springer.

Niedermaier, S., Zelenik, T., & Wagner, S. (2020). Interview guide: Quality in use of dependability evaluation
approach. http://​doi.​org/​10.​5281/​zenodo.​38260​99

OpenTracing. (2020). The open tracing semantic specification. https://​opent​racing.​io/​speci​ficat​ion/
Plöesch, R., Schuerz, S., & Koerner, C. (2015). On the validity of the it-cisq quality model for automatic meas-

urement of maintainability. In 2015 IEEE 39th Annual Computer Software and Applications Conference,
volume 2, pages 326–334. IEEE.

Reason, P., & Bradbury, H. (2001). Handbook of action research: Participative inquiry and practice. Sage.
Sambasivan, R. R. , Shafer, I., Mace, J., Sigelman, B. H., Fonseca, R., & Ganger, G. R. (2016). Principled

workflow-centric tracing of distributed systems. In Proceedings of the Seventh ACM Symposium on Cloud
Computing, pages 401–414.

Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M., Beaver, D., et al. (2010). Dapper, a
large-scale distributed systems tracing infrastructure. Technical Report, Google: Technical report.

Staron, M. (2019). Action research in software engineering: Metrics’ research perspective (invited talk). pp.
In B. Catania, R. Královič, J. Nawrocki, & G. Pighizzini (Eds.), SOFSEM 2019: Theory and Practice of
Computer Science (pp. 39–49). Cham: Springer International Publishing.

364 Software Quality Journal (2022) 30:337–366

https://doi.org/10.1109/MS.2018.2880598
https://jmeter.apache.org/index.html
https://jmeter.apache.org/index.html
https://www.jaegertracing.io/
https://github.com/Netix/zuul
https://docs.newrelic.com/docs/understanddependencies
http://doi.org/10.5281/zenodo.3826099
https://opentracing.io/specification/

1 3

W3C. (2020). Trace context. https://​www.​w3.​org/​TR/​2020/​REC-​trace-​conte​xt-1-​20200​206/​trace-​id
Wagner S. (2013). Software product quality control. Springer.
Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., et al. (2015). Operationalised

product quality models and assessment: The quamoco approach. Information and Software Technology,
62, 101–123.

Whitmore, R. (2019). Understand distributed tracing. https://​docs.​light​step.​com/​docs/​under​stand-​distr​ibuted-​
traci​ng

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Sina Niedermaier  is a PhD student at the Institute of Software Engineering at the University of Stuttgart
in Germany since 2018. Besides, she is an external PhD student at Robert Bosch Group in the domain of
Software Quality Management. She obtained her master`s degree in Industrial Engineering, focusing on
Information Systems at Friedrich-Alexander University of Erlangen-Nuremberg, Germany. Since 2017 her
research is focused on the observability and monitoring of complex distributed systems for quality evalua-
tion and control. She investigates anomalies from a dynamic system view to control the quality in use with
fault reactions. In case study research, she develops, implements and evaluates concepts for quality evalua-
tion and control in collaboration with industry.

Thommy Zelenik  obtained his bachelor`s degree in software engineering at the University of Stuttgart in
2016 by conducting research on the relationship between stress and attention by using thermal imaging
techniques. He also obtained his master`s degree in software engineering in 2020 by researching the appli-
cability of distributed tracing for deducing quality measures in distributed systems. Furthermore, he is an
open-source contributor of the winery project, licensed by eclipse and has experience in full-stack software
development.

365Software Quality Journal (2022) 30:337–366

https://www.w3.org/TR/2020/REC-trace-context-1-20200206/trace-id
https://docs.lightstep.com/docs/understand-distributed-tracing
https://docs.lightstep.com/docs/understand-distributed-tracing

1 3

Stefan Heisse  is a Senior Systems Analyst at the Bosch Engineering GmbH Abstatt, Germany. Currently, he
is working on ontology and terminology management to support cooperation and collaboration relationships
of inter- and intra-team communications of different departments at Robert Bosch Group in the context of
Bosch IoT-Services. Since 1991 he owns a Master`s Degree in Numerical Mathematics and Computer Sci-
ence. He has professional experience in financial accounting and implementingfront- and back-offce sys-
tems and service management. He changed to Systems and Software Engineering for automotive ECU with
functional safety, now focusing on models and standards of the Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 7, Software and systems engineering. He researches on the in
influence of strategic quality management topics and organization of work.

Stefan Wagner  is a full professor of empirical software engineering at the University of Stuttgart, Germany.
His research interests include software quality, requirements engineering, safety and security, and agile and
continuous software engineering. He is member of ACM, IEEE and the German GI.

366 Software Quality Journal (2022) 30:337–366

	Evaluate and control service and transaction dependability of complex IoT systems
	Abstract
	1 Introduction
	2 Concepts and related work
	2.1 Approaches for quality operationalization
	2.1.1 SQuaRE: ISOIEC 25010 and 25040
	2.1.2 Site reliability engineering (SRE)

	2.2 Concepts of IoT service, IoT transaction, and IoT transaction monitoring
	2.2.1 IoT service
	2.2.2 IoT transaction
	2.2.3 Distributed tracing
	2.2.4 IoT transaction monitoring

	3 Research design
	3.1 Research objective
	3.2 Case context
	3.3 Stage 1
	3.4 Stage 2

	4 Stage 1: design of transaction-based dependability evaluation approach
	4.1 Define Requirements for the Design of the Artifact
	4.2 Transaction-based Dependability Evaluation Approach (RQ1)

	5 Stage 2: evaluation of the artifact
	5.1 System description - remote measurement
	5.2 Application of the transaction-based dependability evaluation approach
	5.3 Focus group

	6 Discussion
	7 Threats to validity
	8 Conclusion and future work
	References

