
Journal of Combinatorial Optimization (2021) 42:231–257
https://doi.org/10.1007/s10878-021-00777-3

Sublinear search spaces for shortest path planning in grid
and road networks

Johannes Blum1 · Stefan Funke2 · Sabine Storandt1

Accepted: 8 July 2021 / Published online: 29 July 2021
© The Author(s) 2021

Abstract
Shortest path planning is a fundamental building block in many applications. Hence
developing efficient methods for computing shortest paths in, e.g., road or grid net-
works is an important challenge. The most successful techniques for fast query
answering rely on preprocessing. However, for many of these techniques it is not
fully understood why they perform so remarkably well, and theoretical justification
for the empirical results is missing. An attempt to explain the excellent practical per-
formance of preprocessing based techniques on road networks (as transit nodes, hub
labels, or contraction hierarchies) in a sound theoretical way are parametrized analy-
ses, e.g., considering the highway dimension or skeleton dimension of a graph. Still,
these parameters may be large in case the network contains grid-like substructures—
which inarguably is the case for real-world road networks around the globe. In this
paper, we use the very intuitive notion of bounded growth graphs to describe road
networks and also grid graphs. We show that this model suffices to prove sublinear
search spaces for the three above mentioned state-of-the-art shortest path planning
techniques. Furthermore, our preprocessing methods are close to the ones used in
practice and only require expected polynomial time.

Keywords Shortest path planning · Bounded growth model · Road network
dimensions

B Johannes Blum
blum@inf.uni-konstanz.de

Stefan Funke
funke@fmi.uni-stuttgart.de

Sabine Storandt
storandt@inf.uni-konstanz.de

1 Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany

2 Universität Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00777-3&domain=pdf
http://orcid.org/0000-0003-1102-3649

232 Journal of Combinatorial Optimization (2021) 42:231–257

1 Introduction

Shortest paths in general graphs can be computed byDijkstra’s algorithm in near-linear
time. Nevertheless, this is still too slow for many practical purposes, as, e.g., provid-
ing driving directions in real-time for road networks of continental size, or finding
shortest paths in large grid domains like game maps. This spurred the development of
preprocessing based shortest path speed-up techniques. Here, auxiliary data is created
in a preprocessing phase which can then be used to prune the search space for subse-
quent queries yet preserving optimality of the result. Incarnations of this scheme, as
contraction hierarchies (CH) (Geisberger et al. 2012), transit nodes (TN) (Bast et al.
2007), and hub labels (HL) (Abraham et al. 2011b), allow the answering of shortest
path queries on large road networks and grids in milliseconds or less, while exhibiting
small preprocessing times and space consumption. But there is still a lack of theoretical
explanation why these approaches perform so remarkably well in practice. The main
question is which characteristics of a network are necessary or sufficient to guarantee
efficiency.

The notion of highway dimension (Abrahamet al. 2010)was introduced for this pur-
pose. Intuitively, the highway dimension h of a graph is small if there exist sparse local
hitting sets for shortest paths of a certain length. For CH and HL, search space sizes
in O(h log D) were proven (with D denoting the network diameter). For TN, query
times ofO(h2) are possible. The space consumption was shown to be inO(nh log D)

or O(hn), respectively. Note that there is a distinction between search space size and
query time. The search space size is defined as the number of nodes that are considered
during query answering, while the query time also accounts for additional operations
required for query answering. For HL these two are asymptotically the same as the
usual query answering routine takes time linear in the number of considered nodes.
For TN, the query time is asymptotically quadratic in the number of considered nodes.
For CH, query answering is more involved and hence the search space size and the
query time cannot be related in a straightforward manner. While the query time is at
most quadratic in the search space size, scalability experiments conducted on large
networks suggest that the query time is clearly subquadratic in the search space size
(Blum and Storandt 2018b).

Given the existing bounds for CH, HL, and TN based on the highway dimension,
one could conjecture be that real-world networks exhibit a highway dimension which
is (poly)logarithmic in the size n of the network. However, in grid graphs with uniform
costs we have h ∈ Θ

(√
n
)
(Abraham et al. 2010). Grids comply with all standard

characterizations of road networks, as constant maximum degree Δ, a linear num-
ber of edges m = |E |, and (near) planarity. And all three—CH, TN, and HL—have
been successfully applied to (pure) grid graphs (Storandt 2013; Antsfeld et al. 2012;
Delling et al. 2014). Accordingly, the notion of highway dimension alone is not suf-
ficient to explain all these results as, e.g., the query times of TN are at least linear
for h ∈ Θ

(√
n
)
. Moreover, as many real-world road networks contain large grid

like substructures, a highway dimension in the same order is to be expected. For the
road networks of the U.S. and Germany with about 20 million nodes each, a lower
bound on the highway dimension of more than 500 is known (Blum and Storandt
2018a). In Kosowski and Viennot (2017) it was shown that the grid-like street net-

123

Journal of Combinatorial Optimization (2021) 42:231–257 233

work of Brooklyn already has a highway dimension of at least 172, which was proven
through a packing lower bound. Due to the high complexity of highway dimension
computation, exact values are currently not known even for small networks.

We will use a different model, assuming that the underlying graph metric has
bounded growth. This model subsumes grid graphs, and its validity can be tested on
general networks in polynomial time. We show that the bounded growth assumption
suffices to prove sublinear search spaces, a clearly subquadratic space consumption,
and in expectation polynomial time preprocessing for CH, TN, and HL in unweighted
graphs.

1.1 Related work

There have been several attempts to explain the good performance of shortest path
planning techniques besides the parametrized analysis depending on the highway
dimension. We will now briefly review these methods and ideas. For a concise
overview, we refer to Table 1.

For HL, the skeleton dimension k (Kosowski and Viennot 2017) is suitable to prove
a theoretical search space size ofO(k log D) and a space consumption ofO(nk log D).
It is known that graphs with constant maximum degree have a skeleton dimension of
k ∈ O(h) (Kosowski and Viennot 2017), but that in general, highway dimension and
skeleton dimension are incomparable (Blum 2019). In Gupta et al. (2019), the skeleton
dimension was used to analyze the performance of 3-hopsets, another route planning
technique similar to TN. For TN and CH, however, no bounds in dependency of the
skeleton dimension are known so far. In Bauer et al. (2013), CH were analyzed by
considering only the topology of the network. For graphs with a treewidth t , the search
space size was shown to be in O(t log n) and the space consumption in O(nt log n).

However, the models based on highway dimension, skeleton dimension, and
treewidth cannot fully explain the performance of CH, HL, and TN on grid graphs:
Abraham et al. (2010) observed that a square grid with unit edge lengths has highway
dimension h ∈ Θ(

√
n). There are grid-like graphs of constant skeleton dimension

and highway dimension h ∈ Θ(
√
n), but on a unit length square grid we also obtain a

skeleton dimension of k ∈ Θ(
√
n). Moreover, it is a well-known fact that the treewidth

of a square grid is t ∈ Θ(
√
n), see e.g., Robertson and Seymour (1986). Thismeans for

instance that for unit grid graphs, the analyses based on highway dimension, skeleton
dimension, and treewidth only give us upper bounds ofO(

√
n log D) orO(

√
n log n)

on the search space sizes of CH and HL, which appears far too pessimistic, given the
actual performance of these algorithms on grid graphs.

The bounded growth model was introduced in Funke and Storandt (2015). Assum-
ing this model, CH were analyzed by drawing a connection to randomized skip lists
(Pugh 1990). Queries were proven to be answered correctly with high probability
(w.h.p.) with an expected search space size of O(

√
n log n). We will also use the

bounded growth model in our analysis, improving the previous result for CH, and
showing that this model can also be used to explain the good performance of TN and
HL.

123

234 Journal of Combinatorial Optimization (2021) 42:231–257

Ta
bl
e
1

T
he
or
et
ic
al

re
su
lts

fo
r
sh
or
te
st

pa
th

sp
ee
d-
up

te
ch
ni
qu
es

in
de
pe
nd
en
cy

of
n
(n
um

be
r
of

no
de
s)
,
m

(n
um

be
r
of

ed
ge
s)
,
Δ

(m
ax
im

um
de
gr
ee
),

D
(d
ia
m
et
er
),
h

(h
ig
hw

ay
di
m
en
si
on

),
k
(s
ke
le
to
n
di
m
en
si
on
)
an
d
t
(t
re
ew

id
th
)

Pr
ep
ro
ce
ss
in
g

O
ri
gi
na
lr
es
ul
t

R
es
ul
tf
or

h
,
k,

t
∈O

(√ n)

N
P

P
P∗

C
H
:g

ra
ph

s
w
ith

hi
gh

w
ay

di
m
en
si
on

h
(A

br
ah
am

et
al
.2

01
3)

•
◦

◦
ss

O
(h

lo
g
D

)
O

(√ n
lo
g
D

)

•
◦

◦
sc

O
(n
h
lo
g
D

)
O

(n
√ n

lo
g
D

)

C
H
:g

ra
ph

s
w
ith

hi
gh

w
ay

di
m
en
si
on

h
(A

br
ah
am

et
al
.2

01
1a
,
20

13
)

◦
•

◦
ss

O
(h

lo
g
h
lo
g
D

)
O

(√ n
lo
g
n
lo
g
D

)

◦
•

◦
sc

O
(n
h
lo
g
h
lo
g
D

)
O

(n
√ n

lo
g
n
lo
g
D

)

C
H
:m

in
or
-c
lo
se
d
gr
ap
hs

w
ith

ba
la
nc
ed

se
pa
ra
to
rs
(B
au
er

et
al
.2

01
3;

D
ib
be
lt
et
al
.2

01
4)

•
◦

◦
ss

O
(√ n)

•
◦

◦
sc

O
(n

lo
g
n)

C
H
:g

ra
ph
s
w
ith

tr
ee
w
id
th

t
(B
au
er

et
al
.2

01
3;

D
ib
be
lt
et
al
.2

01
4)

•
◦

◦
ss

O
(t
lo
g
n)

O
(√ n

lo
g
n)

•
◦

◦
sc

O
(n
tl
og

n)
O

(n
√ n

lo
g
n)

C
H
:b

ou
nd

ed
gr
ow

th
m
od

el
,c
or
re
ct
qu

er
ie
s
w
.h
.p
.(
Fu

nk
e
an
d
St
or
an
dt

20
15

)

◦
•

•
ss

O
(√ n

lo
g
n)

◦
•

•
sc

O
(n

lo
g2

n)

C
H
:b

ou
nd

ed
gr
ow

th
m
od

el
(N

E
W
,T

he
or
em

2)

◦
•

•
ss

O
(√ n

lo
g
n)

◦
•

•
sc

O
(n

lo
g
D

)

T
N
:g

ra
ph
s
w
ith

hi
gh
w
ay

di
m
en
si
on

h
,s
pe
ci
al
T
N
va
ri
an
t(
A
br
ah
am

et
al
.2

01
0)

•
◦

◦
ss

Δ
+

h
lo
g
D

Δ
+

√ n
lo
g
D

123

Journal of Combinatorial Optimization (2021) 42:231–257 235

Ta
bl
e
1

co
nt
in
ue
d

Pr
ep
ro
ce
ss
in
g

O
ri
gi
na
lr
es
ul
t

R
es
ul
tf
or

h
,
k,

t
∈O

(√ n)

N
P

P
P∗

•
◦

◦
sc

O
(n
h
lo
g
D

)
O

(n
√ n

lo
g
D

)

T
N
:g

ra
ph
s
w
ith

hi
gh
w
ay

di
m
en
si
on

h
,s
pe
ci
al
T
N
va
ri
an
t(
A
br
ah
am

et
al
.2

01
0)

◦
•

◦
ss

Δ
+

h
lo
g
n
lo
g
D

Δ
+

√ n
lo
g
n
lo
g
D

◦
•

◦
sc

O
(n
h
lo
g
n
lo
g
D

)
O

(n
√ n

lo
g
n
lo
g
D

)

T
N
:g

ra
ph
s
w
ith

hi
gh
w
ay

di
m
en
si
on

h
(A

br
ah
am

et
al
.2

01
3)

•
◦

◦
qt

O
(h

2
)

O
(n

)

•
◦

◦
sc

O
(n
h

+
m

)
O

(n
√ n

+
m

)

T
N
:g

ra
ph
s
w
ith

hi
gh
w
ay

di
m
en
si
on

h
(A

br
ah
am

et
al
.2

01
3)

◦
•

◦
qt

O
((
h
lo
g
h
)2

)
O

(n
lo
g2

n)

◦
•

◦
sc

O
(n
h
lo
g
n

+
m

)
O

(n
√ n

lo
g
n

+
m

)

T
N
:g

ra
ph
s
w
ith

sk
el
et
on

di
m
en
si
on

k
(N

E
W
,T

he
or
em

4)

◦
•

•
qt

O
(k

2
lo
g2

n)
O

(n
lo
g2

n)

◦
•

•
sc

O
(n

lo
g
n(
k

+
lo
g
n)

)
O

(n
√ n

lo
g
n)

T
N
:b

ou
nd

ed
gr
ow

th
m
od

el
(N

E
W
,L

em
m
a
12

)

◦
•

•
qt

O
(n

2/
3
lo
g8

/
3
n)

◦
•

•
sc

O
(n

4/
3
lo
g4

/
3
n)

T
N
:b

ou
nd

ed
gr
ow

th
m
od

el
(N

E
W
,L

em
m
a
13

)

◦
•

•
qt

O
(√ n

lo
g4

n)

◦
•

•
sc

O
(n

√ n
lo
g
n)

H
L
:g

ra
ph
s
w
ith

hi
gh
w
ay

di
m
en
si
on

h
(A

br
ah
am

et
al
.2

01
3)

•
◦

◦
ss

O
(h

lo
g
D

)
O

(√ n
lo
g
D

)

•
◦

◦
sc

O
(n
h
lo
g
D

)
O

(n
√ n

lo
g
D

)

123

236 Journal of Combinatorial Optimization (2021) 42:231–257

Ta
bl
e
1

co
nt
in
ue
d

Pr
ep
ro
ce
ss
in
g

O
ri
gi
na
lr
es
ul
t

R
es
ul
tf
or

h
,
k,

t
∈O

(√ n)

N
P

P
P∗

H
L
:g

ra
ph
s
w
ith

hi
gh
w
ay

di
m
en
si
on

h
(A

br
ah
am

et
al
.2

01
1a
,
20

13
)

◦
•

◦
ss

O
(h

lo
g
h
lo
g
D

)
O

(√ n
lo
g
n
lo
g
D

)

◦
•

◦
sc

O
(n
h
lo
g
h
lo
g
D

)
O

(n
√ n

lo
g
n
lo
g
D

)

H
L
:g

ra
ph
s
w
ith

sk
el
et
on

di
m
en
si
on

k
(K

os
ow

sk
ia
nd

V
ie
nn

ot
20

17
)

◦
•

•
ss

O
(k

lo
g
D

)
O

(√ n
lo
g
D

)

◦
•

•
sc

O
(n
k
lo
g
D

)
O

(n
√ n

lo
g
D

)

H
L
:g

ra
ph
s
w
ith

tr
ee
w
id
th

t
(G

av
oi
lle

et
al
.2

00
4,
C
or
ol
la
ry

2)

•
◦

◦
ss

O
(t
lo
g
n)

O
(√ n

lo
g
n)

•
◦

◦
sc

O
(n
tl
og

n)
O

(n
√ n

lo
g
n)

H
L
:b

ou
nd

ed
gr
ow

th
m
od

el
(N

E
W
,T

he
or
em

1)

◦
•

•
ss

O
(√ n)

◦
•

•
sc

O
(n

√ n)

Pr
ep
ro
ce
ss
in
g
m
ar
ke
rs
in
di
ca
te
w
he
th
er

th
e
un

de
rl
yi
ng

m
et
ho

d
fo
r
pr
ep
ro
ce
ss
in
g
po

se
s
an

N
P-
ha
rd

pr
ob

le
m

(N
P)
,o

r
ca
n
be

co
m
pu

te
d
in

po
ly
no

m
ia
lt
im

e
(P
)
or

ex
pe
ct
ed

po
ly
no

m
ia
l
tim

e
(P

∗)
.T

he
ro
w
s
w
ith

an
ss

fla
g
pr
ov
id
e
re
su
lt
ab
ou
t
th
e
se
ar
ch

sp
ac
e
si
ze

of
th
e
re
sp
ec
tiv

e
te
ch
ni
qu
e,
th
e
on
es

fla
gg
ed

qt
sh
ow

qu
er
y
tim

es
,a
nd

th
e
ro
w
s

fla
gg
ed

sc
gi
ve

sp
ac
e
co
ns
um

pt
io
n
bo

un
ds
.S

pa
ce

co
ns
um

pt
io
n
is
m
ea
su
re
d
in

m
ac
hi
ne

w
or
ds

123

Journal of Combinatorial Optimization (2021) 42:231–257 237

1.2 Contribution

We show that the bounded growth model in combination with randomized prepro-
cessing is suitable to prove sublinear search space sizes for the three state-of-the-art
shortest path planning techniques, contraction hierarchies (CH), transit nodes (TN)
and hub labels (HL) in unweighted networks, while using subquadratic space. Here,
we build on and significantly extend the results from the conference version (Blum
et al. 2018). More precisely, we provide the following results:

– We analyze the relationship between bounded growth and the skeleton dimension
of the graph. We show that the skeleton dimension of an unweighted bounded
growth graph is in O (√

n
)
. We use this relation to prove bounds on HL search

space sizes. On the other hand, we show that even a constant skeleton dimension
does not imply the bounded growth property.

– We formalize an observation by Abraham et al. (2011b) which states that on any
graph, the HL search spaces can be bounded by the CH search spaces. This yields
search spaces of size O(t log n) and a space consumption of O(nt log n) for HL.

– For randomized CH, we improve the space consumption reported in Funke and
Storandt (2015) from O(n log2 n) to O(n log D) by using a new random con-
traction order. Furthermore, we show that randomized CH can be constructed in
polynomial time such that all queries are answered correctly (and not only w.h.p.
as in Funke and Storandt (2015)).

– We show how to instrument ε-net theory and random sampling for TN preprocess-
ing. We provide a parametrized analysis which allows to trade space consumption
against query time. On that basis, we achieve the smallest known space bound for
TN and sublinear query times on graphs with h ∈ Θ

(√
n
)
.

– We furthermore discuss how ε-net theory can be applied to TN preprocessing on
graphs with low skeleton dimension. This is the first analysis of TN based on the
skeleton dimension k.

– We extend the results from Blum et al. (2018) to weighted graphs, and describe
how our preprocessing algorithms can be modified to handle weighted graphs
without explicitly subdividing the whole graph into edges of unit length, which
would introduce a large number of unnecessary nodes. Instead, we introduce the
maximum edge length �max as an additional parameter and show that this adds a
factor of �2max to the space consumption and a factor of �max to the search space
sizes of CH and TN, whereas the bounds from the unweighted settings still hold
in the case of HL.

Our new results are also included in Table 1.

2 Bounded growth and skeleton dimension

We first introduce basic notation and formally define the bounded growth model. For
the remainder of this paper we consider a directed graph G(V , E) with n = |V |
nodes, m = |E | edges and uniform edge costs. In real-world road networks the ratio
between the longest and the shortest edge is typically bounded by a small constant, so

123

238 Journal of Combinatorial Optimization (2021) 42:231–257

subsampling long edges to achieve uniform edge lengths does not increase the graph
size considerably. In Sect. 7, however, we describe how our results can be applied to
weighted graphs. We assume all shortest paths to be unique in G, which is a standard
assumption but can also be enforced, e.g., by lexicographic sorting of edges.We denote
by dv(w) the shortest path distance from v tow. For a node v and a radius r , we define
the set of all nodes within a distance r of v as the ball Br (v) = {w | dv(w) ≤ r}.

2.1 Bounded growthmodel

Throughout our analysis, we assume the graph metric to have bounded growth (not to
be confused with the notion of growth bounded graphs as used in Kuhn et al. (2005)).
Formally, we demand that there exists some constant c ∈ R

+ (w.l.o.g. c ≥ 1) such
that for every r > 0, the number of nodes at distance r from a node v is at most cr . If
this property is fulfilled, it immediately follows that

|Br (v)| ≤ cr(r + 1)/2 ∈ O(r2).

Intuitively, this reflects the area growth of a disk in the Euclidean plane in dependency
of its radius. As Fig. 1 shows, this comes very close to the growth of a ball in real-world
road networks.

In Funke and Storandt (2015), it was shown empirically that the bounded growth
model represents real-world road networks well. In fact, the parameter c can be com-
puted for a network in polynomial time (the same is true for the skeleton dimension
but not for the highway dimension or the treewidth). The results reported in Funke
and Storandt (2015) imply that for Euclidean edge costs, c = 1 is a good model. We
furthermore observe that grids with uniform costs fit the model well as the number of
nodes at distance r is bounded by 4r . Hence our model subsumes grid networks with
a highway dimension, a skeleton dimension as well as a treewidth of Θ

(√
n
)
.

2.2 Relation to skeleton dimension

For a formal definition of the skeleton dimension (Kosowski and Viennot 2017), let T̃u
be the geometric realization of the shortest path tree Tu of some vertex u. Intuitively,
T̃u is a subdivision of Tu into infinitely many infinitely short edges such that for every
edge vw of Tu and any α ∈ [0, 1] there is a vertex in T̃u at distance α from v and
distance 1 − α from w. The skeleton T ∗

u of Tu is now defined as the subtree of T̃u
induced by all vertices v that have a descendant w satisfying dv(w) ≥ 1

2du(v). The
skeleton dimension k of a graph G is defined as k = maxu∈V ,r>0 x∗

u,r where x∗
u,r

denotes the number of vertices in T ∗
u that are at distance r from u.

The doubling dimension of a graph with skeleton dimension k was shown to be
2k + 1 (Kosowski and Viennot 2017). We now investigate the relationship between
the skeleton dimension and the bounded growth model.

Lemma 1 There are graphs with uniform edge costs and constant skeleton dimension
k that do not have bounded growth.

123

Journal of Combinatorial Optimization (2021) 42:231–257 239

Fig. 1 Balls of different radii in the road networks of the US and Germany. Every ball resembles a disk in
the Euclidean plane

123

240 Journal of Combinatorial Optimization (2021) 42:231–257

Fig. 2 The different branch
types of T̃v : type (i) in green,
type (ii) in blue and type (iii) in
yellow (Color figure online) vj− 1

v

vj

Proof To construct a graph with the mentioned properties we start with a complete
quadtree (a tree where every internal node has four children) of height d rooted at
some node s. Then we subdivide every edge connecting two nodes of height i and
(i−1), respectively, into 3i edges, which gives us a tree T .We show that T has skeleton
dimension k ≤ 8.Consider therefore somenode v of T . The node v lies on some simple
path between two nodes v j and v j−1, that were adjacent in the original quadtree and
had height j and (j−1), respectively. If v has degree 5 (whichmeans that it was already
contained in the quadtree) we choose v j = v. We have ds(v) = ∑d

i= j+1 3
i + � for

some � ∈ {0, . . . , 3 j − 1}, i.e., v is the �-th node on the path from v j to v j−1 which
has length 3 j .

Consider the skeleton T ∗
v of v’s shortest path tree Tv . We show that T ∗

v contains at
most 8 branches which implies k ≤ 8.We distinguish three different types of branches
of the geometric realization T̃v of Tv: (i) branches that include v j−1, (ii) branches that
include s and (iii) the remaining branches (cf. Fig. 2).

Consider some node u of T̃v contained in some type (i) branch. The distance from
u to some furthest descendant w in T̃v is du(w) = dv(w) − dv(u) = ∑ j

i=1 3
i − � −

dv(u) = 3
2 (3

j − 1) − � − dv(u). For u to be contained in the skeleton we require
du(w) ≥ 1

2dv(u) which gives us dv(u) ≤ (3 j − 1) − 2
3� = (3 j − �) + 1

3� − 1 ≤
dv(v j−1)+3 j−1−1. As the node v j−1 has 4 children and all nodes at distance at most
3 j−1−1 from v j−1 have degree 2, the number of type (i) branches in T ∗

v is bounded by
4. Similarly, one can show that the number of type (ii) and (iii) branches are bounded
by 1 and 3, respectively, from which the bound on the skeleton dimension follows.

To prove that there is no constant c which bounds the number of nodes at distance r
fromevery node by cr , observe that there are 4d leaves at distance

∑d
i=1 3

i = 3
2 (3

d−1)
from the root s. �	

Lemma 2 The skeleton dimension of a bounded growth graph with uniform edge costs
is upper bounded by O (√

n
)
.

Proof Consider a bounded growth graph G(V , E) with uniform edge costs and skele-
ton dimension k. Then there is a vertex u ∈ V such that the geometric realization T̃u
of the shortest path tree Tu contains a set S̃ of k vertices at some depth r that have a
descendant at distance at least r/2. Every vertex from S̃ has
r/2� > r/4 descendants
contained in G. For every v ∈ S̃ let wv be the first descendant of v satisfying wv ∈ V
if v /∈ V , otherwise let wv = v. Then for S = {wv : v ∈ S̃} we have |S| = |S̃| = k
and as G has bounded growth we have k ≤ c · �r < c · (r + 1). This means that
n ≥ kr/4 > k(k/c − 1)/4, so k ∈ O (√

n
)
. �	

123

Journal of Combinatorial Optimization (2021) 42:231–257 241

Kosowski and Viennot (2017) also introduced the integrated skeleton dimension
which weights the vertices in a shortest path tree according to their distance. For a
vertex u ∈ V the integrated skeleton dimension is k̂(u) = ∑

r∈N x∗
u,r/r with x∗

u,r

being defined as above. On general graphs k̂(u) is bounded by O(k log D). If the
graph metric has bounded growth, we can however show a bound of O (√

n
)
as a

consequence of the following Lemma (observe that x∗
u,r ≤ xu,r).

Lemma 3 Let xu,r denote the number of nodes at distance r from a node u. Then we
have

∑D
r=1 xu,r/r ∈ O (√

n
)
in bounded growth graphs.

Proof We have
∑D

r=1 xu,r = n − 1 and xu,r ≤ cr . Hence, the sum
∑D

r=1 xu,r/r is
maximized for

xu,v =
{
cr if r ≤ √

2n

0 otherwise.

It follows that

D∑

r=1

xu,r/r ≤
√
2n∑

r=1

xu,r/r ≤ √
2n · c ∈ O (√

n
)
.�	

�	
Corollary 1 The integrated skeleton dimension k̂(u) of any vertex u in a bounded
growth graph is in O (√

n
)
.

While these results might be of independent interest, we will explicitly use themwhen
bounding the query time and the space consumption of HL in bounded growth graphs.

3 Preprocessing-based shortest path algorithms

In this section we briefly introduce the algorithms contraction hierarchies (CH), transit
nodes (TN), and hub labels (HL), which we will study in the remainder of this paper.
Given two vertices s and t of a (weighted) graph, they compute the shortest path
distance ds(t) from s to t . Note that in many applications, it is more desirable to
compute the actual shortest path from s to t , not only its length. However, with minor
modifications, all three algorithms can also be used to compute shortest paths. As we
alreadymentioned before, CH, TN, andHL consist of two phases: In the preprocessing
phase, auxiliaryData is computed, which is used in the query phase to quickly compute
the shortest path distance ds(t) for a given query pair (s, t).

3.1 Hub labels

In the hub labels (HL) approach (Abraham et al. 2011b), every node v gets assigned
a label set L(v). Here a label is a node w, together with the distance dv(w). The goal

123

242 Journal of Combinatorial Optimization (2021) 42:231–257

is to find concise label sets which fulfill the so-called cover property, that is, for every
s, t ∈ V the label set intersection L(s) ∩ L(t) contains a node w on the shortest
path from s to t . If this is the case, queries can be answered by simply summing up
ds(w)+dt (w) for allw ∈ L(s)∩L(t) and keeping track of theminimum. Provided that
the label sets are sorted, we can compute the intersection L(s)∩L(t) by amerging-like
step in linear time. Therefore the query time is inO(|L(s)| + |L(t)|), while the space
consumption is in O(

∑
v∈V |L(v)|).

3.2 Contraction hierarchies

In the preprocessing phase of contraction hierarchies (CH), a so called overlay graph
is computed, based on the node contraction operation. Contracting a node v means to
delete it from the graph, and to insert shortcut edges between its neighbors if they are
necessary to preserve the pairwise shortest path distances. The preprocessing phase of
CH consists of contracting all nodes one-by-one until the graph is empty. In the end,
the overlay graph is given by G+(V , E ∪ E+), where E+ is the set of shortcut edges
inserted during the contraction process. This means that the space consumption of CH
is determined by Θ(|E+|).

The rank of a node in the order of contraction is called rank(v). To answer an s-t-
query, bidirectional Dijkstra runs are used from s and t in G+. However, edges (v,w)

are only relaxed if rank(v) < rank(w), i.e., w was contracted after v. It was proven
that both runs will settle the node that was contracted last on the original shortest path
from s to t in G. Hence identifying p such that ds(p) + dt (p) is minimized yields
the correct result. The search space of a query is defined by the number of nodes
settled in these Dijkstra runs. Note that any contraction order leads to correct query
answering, but the space consumption and the search space sizes heavily depend on
the contraction order.
Relation to Hub Labels Abraham et al. (2011b) observed that hub labels can be com-
puted based on CH. More precisely, we can choose the label set L(v) of every node
v ∈ V as the CH search space of v, i.e. the set of all nodes that are visited in a
CH-Dijkstra run from v. However, in order to fulfill the cover property, it suffices to
consider only the vertices w for which the shortest v-w-path contains only nodes of
rank at most rank(w), the so called direct search space DSS(v). An illustration can
be found in Fig. 3. We obtain the following lemma.

Lemma 4 Consider a CH overlay graph G+(V , E ∪ E+) of a graph G(V , E) and let
DSS(v) be the direct CH search space of a node v. There are HL label sets such that
for any node v the label size is bounded by |DSS(v)| and the total space consumption
is bounded by

∑
v∈V |DSS(v)|.

It follows straight that there is no graph on which the CH approach is superior to all
feasible HL data structures in terms of the search space size. In Lemma 7 (Sect. 5)
we will show that in a bounded growth graph the expected size of the direct search
space is bounded byO(

√
n). Lemma 4 hence implies an alternative proof to Theorem1

(Sect. 4), wherewe use the relation of bounded growth and skeleton dimension to show

123

Journal of Combinatorial Optimization (2021) 42:231–257 243

s

2

3

2
1

2

2 1 2

no
de

ra
nk

1 2

t

2

3

2
1

2

2 1 2

no
de

ra
nk

1 2

Fig. 3 The search space SS(v) (dashed region) and the direct search space DSS(v) (shaded region) of two
nodes in an CH overlay graph. The direct search space constitutes a valid HL label set L(v) for every node v

bounds of O (√
n
)
and O (

n
√
n
)
on the search space sizes and space consumption of

HL, respectively.
In Bauer et al. (2013) it was shown, that for graphs with treewidth t there is a

contraction order such that the number of nodes in the resulting CH search space is
bounded byO(t log n). Exploiting Lemma 4 we can conclude the following corollary
which relates the HL data structure and the treewidth.

Corollary 2 For graphs with treewidth t, there exists a HL data structure where for
every node the label size is bounded by O(t log n) and the space consumption is
O(nt log n).

This matches the label size previously shown by Gavoille et al. (2004).

3.3 Transit nodes

The TN algorithm relies on the observation that all shortest paths from some small
region to faraway destinations (for some notion of far) pass through a small set of
so-called access nodes. If ’far’ is defined as having a distance at least r , this means,
there needs to be a concise hitting set for all shortest paths that leave/enter the ball
Br (v) for every node v ∈ V . This hitting set is called the access node set AN (v) of
v. The union of all access node sets forms the transit node set T . For a suitable radius
r , access node sets of close-by nodes can have large intersections, hence it is possible
to construct small transit node sets in practice. This is important, because for every
pair of transit nodes, the shortest path distance is precomputed and stored in a look-up
table. Therefore the space consumption is quadratic in the number of transit nodes.
In addition, every node stores the distances to all its access nodes. So the total space
consumption can be expressed as |T |2 + ∑

v∈V |AN (v)|.
There are two types of queries in the end, ’long’ queries with ds(t) > r , and ’short’

queries. A ’long’ s-t-query reduces to checking all access node distances of s and t and
the respective distances between them, all of which is precomputed. Hence the query
time is in |AN (s)| · |AN (t)|. For ’short’ queries, the TN approach does not guarantee
correctness. Therefore, a fall-back algorithm is used, e.g., a local Dijkstra run up to
radius r . As ds(t) is not known beforehand, the query is first treated as long query.
If the distance value returned is at least 5r , the result is correct for sure, see (Eisner

123

244 Journal of Combinatorial Optimization (2021) 42:231–257

and Funke 2012). Otherwise, the query is treated subsequently as ’short’ query and
the best outcome of both query procedures is returned.

4 Hub labels

In Abraham et al. (2011a, 2013) hub labels were constructed by computing multiple
hitting sets Hr for sets of shortest paths with length r = 1, 2, 4, · · · , D. The label
set of a single node v is then determined by L(v) = ⋃

r (Hr ∩ B2r (v)). As there are
log D many radii to consider and Hr ∩ B2r (v) ∈ O(h) according to the definition of
the highway dimension, the label size and therefore the query time is in O(h log D)

for NP-hard preprocessing (computing hitting sets of minimum size), and the space
consumption in O(nh log D). If hitting sets are constructed via a greedy algorithm
in polynomial time, the label size and the space consumption increase by a factor of
O(log n). (Kosowski and Viennot 2017) presented a more practical algorithm for HL,
where labels are selected via a randomized process. A thorough analysis shows that it
chooses on average O(k log D) labels per node, so the total space consumption is in
O(nk log D).

4.1 Analysis in the bounded growthmodel

We now briefly sketch the algorithm by Kosowski and Viennot and study its perfor-
mance on graphs with bounded growth. The algorithm uses edge-based labels, i.e.,
every label set L(v) is a set of edges such that for every pair of nodes s, t ∈ V , the
shortest s-t-path contains some edge η ∈ L(s) ∩ L(t). This notion is slightly stronger
than the aforementioned node-based approach, but given an edge hub labeling one can
easily obtain valid node label sets by choosing from every edge η ∈ L(v) the incident
node with minimum id.

The algorithms starts with assigning a random real value ρ(e) ∈ [0, 1] to every
edge e of the graph. Then it chooses for every pair of nodes u, v ∈ V a hub edge
η(u, v) as the edge with minimum value of ρ amongst all edges (u′, v′) on the shortest
u-v-path that satisfy du(u′) ≥ 5

12du(v) and du(v′) ≤ 7
12du(v). Finally, the label set of

every node u is chosen as L(u) = {η(u, v) | v ∈ V }. This preprocessing algorithm
can be implemented on top of n runs of Dijkstra’s algorithm such that it takes time
O(n2 log n). It was shown that the average size of a single label set can be bounded by
O(1n

∑
u∈V k̂(u)). In combination with Corollary 1 we obtain the following Theorem.

Theorem 1 HL in bounded growth graphs can be computed in polynomial time with
expected query times of O (√

n
)
and a space consumption of O (

n
√
n
)
.

This improves on the respective results reported in Kosowski and Viennot (2017)
assuming k ∈ Θ

(√
n
)
by a factor of log n and is clearly superior to the highway

dimension dependent analysis for h ∈ Θ
(√

n
)
.

123

Journal of Combinatorial Optimization (2021) 42:231–257 245

5 Contraction hierarchies

Inspired by the topology based analysis of CH (Bauer et al. 2013), another CH con-
struction scheme was developed, based on so-called nested dissections. It was proven
that this scheme also leads to excellent performance in practice (Dibbelt et al. 2014).
Nevertheless, the theoretical results do not directly apply for practical instances as the
computation of a balanced separator of minimum size as required in the preprocessing
is NP-hard. Hence these computations are replaced by heuristics when applied to real
networks.

The NP-hard preprocessing as well as the polynomial time preprocessing when
assuming a highway dimension of h both involve the enumeration of all shortest paths
in the network and computing (approximate) hitting sets, taking at least superquadratic
time and space in n. Therefore, these schemes cannot be applied to large real-world
networks either (Abraham et al. 2013).

The skip list inspired randomized CH construction was shown to be implementable
(Funke and Storandt 2015). Nevertheless, it also differs from the heuristic construction
described in the original CHpaper.Wewill revisit the original node contraction scheme
and show that it leads to even better space bounds than proven in Funke and Storandt
(2015).

5.1 Analysis in the bounded growthmodel

In contrast to previous provably efficient CH construction schemes (Abraham et al.
2011a, 2013; Bauer et al. 2013; Dibbelt et al. 2014), which involve rather heavy algo-
rithmic machinery such as graph separators or hitting set algorithms, our randomized
scheme maintains the simplicity of the original CH idea. While in Geisberger et al.
(2012) (and most state-of-the-art implementations of CH) the order is determined on-
the-fly using quantities like edge difference, we simply contract the nodes in (uniform)
random order, otherwise we employ exactly the same contraction process. Also our
query algorithm closely resembles the original query algorithm with a slight modifi-
cation similar to the stall-on-demand technique in Geisberger et al. (2012).
Space Consumption The space consumption of a CH is defined by the number of
shortcuts created in the preprocessing. Hence we now aim for an upper bound on this
number.

Lemma 5 The expected number of shortcuts created in a CHwith random contraction
order is upper bounded by O(n log D) in bounded growth graphs.

Proof Consider a pair v,w of nodes with shortest path π = vv1v2 . . . vr−1w of length
r . A shortcut from v to w is created if and only if rank(w) > rank(v) and the ranks
of all intermediate nodes on π are smaller than rank(v). For a random permutation,
the probability of the event S ’shortcut (v,w) created’ to happen is

P(S) = (r − 1)!
(r + 1)! = 1

r(r + 1)

123

246 Journal of Combinatorial Optimization (2021) 42:231–257

sincewmust have the largest rank amongst the r+1 nodes, v the second largest, and the
remaining ranks can be arbitrarily distributed. Now we compute the expected number
of shortcuts created by summing over all pairs of nodes v,w, always considering
the probability of a shortcut being created:

∑
v,w P(S) = ∑D

r=1
∑

v,w:d(v,w)=r P(S).

Having rearranged the sumaccording to the distance of the involvednodes,we continue
by plugging in our derived probability andmaking use of the bounded growth property
which implies that there are no more than n · cr pairs of nodes with distance r :

D∑

r=1

∑

v,w:d(v,w)=r

1

r(r + 1)
≤

D∑

r=1

(n · cr) 1

r(r + 1)

= c · n
D∑

r=1

1

r + 1
= O(n log D)

�	
Search Space SizeAs in Funke and Storandt (2015), we define the search space SS(v)

for a node v ∈ V as the number of nodes that are pushed into the priority queue
(PQ) during a CH-Dijkstra run from v. We will first analyze the direct search space
(DSS) of v. A node w is in DSS(v) if on the shortest path from v to w all nodes have
rank at most rank(w). Hence, w will be settled with the correct distance d(v,w) in
the CH-Dijkstra run. Unfortunately, SS(v) is typically a superset of DSS(v) as also
nodes on monotonously increasing (with respect to rank) but non-shortest paths are
considered. We will later modify the query algorithm to bound the number of such
nodes.

Lemma 6 The probability of a node w at distance r to be contained in DSS(v) is
1/(r + 1).

Proof Consider the nodes v = v0v1v2 . . . vr = w of the shortest path from v to w.
The node w is in DSS(v) iff rank(vi) < rank(w) for all i = 0, . . . r − 1. Clearly
each of the vi , i = 0, . . . , r has the same probability 1/(r + 1) of having the largest
rank amongst v0, v1, . . . , vr , the Lemma follows. �	
Lemma 7 The expected size of DSS(v) in a bounded growth graph is O (√

n
)
.

Proof Recall that xv,r denotes the number of nodes at distance r , furthermore let pr
be the probability of a node at distance r to be in DSS(v). Then we can sum up over
all nodes at all possible distances as follows:

D∑

r=0

xv,r pr =
D∑

r=1

xv,r/(r + 1) <

D∑

r=1

xv,r/r

The claim now follows from Lemma 3. �	
Unfortunately, the actual search space SS(v) during a query executionmight be consid-
erably larger than the direct search space DSS(v). As in actual CH implementations

123

Journal of Combinatorial Optimization (2021) 42:231–257 247

(via the technique of stall-on-demand, Geisberger et al. 2012) we will modify the
search procedure, pruning nodes from SS(v) (by not putting them into the priority
queue) which are very unlikely to be part of the shortest path we are after.

To that end, we first need to investigate the correlation of a nodew being in DSS(v),
its distance from v, and its rank. Intuitively, when considering a shortest path π con-
sisting of r + 1 nodes we would expect the highest rank appearing amongst the nodes
of π to be n − n/(r + 2) = n(1 − 1/(r + 2)). The following Lemma formalizes this
intuition showing that the probability for deviating greatly from the expected rank is
slim.

Lemma 8 The probability of a node w at distance r to v for being in DSS(v) and
having rank(w) ≤ n(1 − c′/r ln r) is less than r−(c′+1).

Proof Let v = v0v1 . . . vr = w be the shortest path from v to w. The probability
p for all nodes vi , 0 ≤ i ≤ r having rank at most R := n(1 − c′/r ln r) (a clear
prerequisite for w being contained in DSS(v) and having rank at most R) can be
upper bounded by counting all permutations where this happens dividing by the total
number of permutations

p =
(R
r+1

)
(r + 1)!(n − r − 1)!

n! = R!(n − r − 1)!
n!(R − r − 1)!

<

(
R

n

)r+1

=
(
1 − c′ ln r

r

)r+1

≤
(
e

−c′ ln r
r

)r+1

< r−c′

Amongst all these permutations we are only interested in those permutations which
result inw being in DSS(v). But those are exactly thosewhere the rank ofw ismaximal
amongst the ranks of v0, . . . , vr . So given that all nodes v0, . . . , vr have rank ≤ R,
the probability of w being in DSS(v) is 1/(r + 1) < r−1. Hence the probability for
w being in DSS(v) and having rank at most R is upper bounded by r−(c′+1). �	
For appropriate choice of c′, we can now actually prove that with high probability
there is no node in DSS(v) with too small a rank:

Lemma 9 For c′ > 2, the probability that there exist vertices v ∈ V and w ∈ DSS(v)

with the shortest path from v to w having length r > n1/4 and the rank of w being

less than n(1 − c′/r ln r) is upper bounded by n
−c′+7

4 .

Proof There are less than n2 pairs (v,w) to consider. According to Lemma 8, the
probability of w ∈ DSS(v) and the rank of w being small is bounded by r−(c′+1)

for each of them,. For r > n1/4 this probability is upper bounded by n−(c′+1)/4. The
statement follows by the union bound over the at most n2 bad events. �	
This suggests a modification of the standard search procedure and pushing nodes
w with tentative distance d(w) into the priority only if (1) d(w) ≤ n1/4 or (2)

d(w) > n1/4 and rank(w) ≥ n
(
1 − c′ ln d(w)

d(w)

)
. So when constructing a CH based on

a random permutation of the nodes and employing the above search procedure, with

123

248 Journal of Combinatorial Optimization (2021) 42:231–257

high probability, all queries are answered correctly. There is a slim chance less than

n
−c′+7

4 that we incorrectly prune out one or more nodes in one of the direct search
spaces.

Lemma 10 The expected size of the search space for an s-t query is bounded by
O (√

n log n
)

Proof Let xs,r denote the number of nodes at distance r from s. The number of nodes

with r ≤ n1/4 can be easily bounded by
∑n1/4

r=0 c · r ≤ c
√
n ∈ O (√

n
)
. For the nodes

further away, we only sum up the ones with a rank > n(1− c′ ln r
r). The probability of

a node to have such a rank is c′ ln r
r . So we are interested in

∑D
r=n1/4 xs,r

c′ ln r
r . As c′ ln r

r
decreases with growing r , and the sum is maximized for D = √

2n, we can upper
bound the sum as follows:

D∑

r=n1/4

xs,r
c′ ln r
r

≤
√
2n∑

r=1

c · r c
′ ln r
r

= c · c′
√
2n∑

r=1

ln r

≤ c · c′√2n ln
√
2n ∈ O (√

n log n
)

So in total, the search graph of s contains at most O (√
n log n

)
nodes. The same

argumentation holds for t respectively, the statement of the Lemma follows. �	
FromMonte Carlo to Las Vegas Preprocessing The randomized CH construction with
the modified query routine guarantees an expected data structure size of O(n log D)

and expected search space size of O (√
n log n

)
, yet the outcome is only correct with

probability at least 1 − n(−c′+7)/4. It is not difficult, though, to guarantee that no
far away nodes exhibit too small a rank. This can be done by performing a Dijkstra
computation from each node and checking that all nodes further away than n1/4 exhibit
large enough rank. If a node with too small a rank is found, the whole preprocessing
is repeated. For a choice of c′ ≥ 8, in expectation less than one repetition is necessary.
The construction cost can be bounded byO(n2 log2 n+mn log n), the verification has
cost O(n2 log n + nm), hence we end up with the following theorem:

Theorem 2 For bounded growth graphs, a randomized CH with an expected number
of O(n log D) shortcuts and search space sizes of O (√

n log n
)
can be computed in

expected O(n2 log2 n + nm log n) time.

Remember that for h, t ∈ O (√
n
)
, for the number of shortcuts only a bound of

O (
n
√
n log n

)
could be obtained in previous work. Our result for bounded growth

graphs is better by a factor of
√
n (with matching or improved search space sizes), and

matches results previously only achieved for planar graphs and minor-closed graphs
with balanced separators (Bauer et al. 2013; Milosavljević 2012). Note also that the
space consumption of a CH in dependency of h was lower bounded by Θ(nh log D)

in White (2015). Hence our space consumption of O(n log D) cannot be beaten by
any analysis based on (even constant) highway dimension.

123

Journal of Combinatorial Optimization (2021) 42:231–257 249

6 Transit nodes

In Abraham et al. (2013), the TN approach was analyzed by first fixing an upper bound
τ ≤ √

m on the size of the transit node set T and then computing hitting sets Tr for
r = D, D/2, · · · to choose T = Tr for the smallest r such that |Tr | ≤ √

τ holds.
Access nodes are then computed per node v by collecting the set of transit nodes that
first hit a shortest path starting at v. Note that the radius r to distinguish short and
long queries can not be fixed a priori with this approach, but is only known after the
preprocessing.

In the end, the space consumption is dominated by storing the access node sets.
This implies that the total space consumptionmight be improved by allowing a slightly
larger transit node set. In the following, we provide a parametrized analysis which
allows to balance the space consumption better. This also enables to fix the radius r
for short queries a priori. Our preprocessing time will turn out to be subquadratic for
reasonable choices of r . This is a significant improvement compared to Abraham et al.
(2013), where both preprocessing time and space are superquadratic at best (and cubic
in a naive implementation). Furthermore, our query times will be sublinear even if the
networks contains large grid-like structures.

6.1 VC-dimension and�-net construction

In our TN construction, we do not fix the transit node set size a priori. Instead we
consider the radius r as a parameter. The goal is then to hit all shortest paths of length
at least r with a concise set of nodes.

The general hitting set problem is NP-hard with an inapproximability bound of
ln |S|(1 − o(1)) with |S| being the number of sets in the system. Better bounds are
achievable, though, if the set system has a low VC-dimension (Vapnik and Cher-
vonenkis 2015). In case S is a set of unique shortest paths, it was proven that the
VC-dimension d is at most 2 for undirected networks (Abraham et al. 2011a; Tao
et al. 2011) and 3 for directed networks (Funke et al. 2014). For a set system with
VC-dimension d, a hitting set of size O(d log(dOPT) · OPT) can be computed
efficiently (Brönnimann and Goodrich 1995). The fact that shortest path sets have a
constant VC-dimension was exploited in Abraham et al. (2013) to find hitting sets of
size O(h log h) instead of O(h log n) in polynomial time.

In our analysis, we use the fact that for systems with constant VC-dimension d,
there exist small ε-nets. An ε-net for ε ∈ [0, 1] is a hitting set for all sets S ∈ S
with |S| ≥ ε|U |. So setting εn = r , the respective ε-net is a valid set of transit nodes
for parameter r . It was shown that a random sample of U of size d/ε log 1/ε is an
ε-net with constant probability (Haussler and Welzl 1986). For a random sample of
size |T | = O(n/r log n/r), we can check whether it is indeed an r/n-net for G in
polynomial time. Hence, we can find in expected polynomial time a true r/n-net which
then serves as transit node set T .

123

250 Journal of Combinatorial Optimization (2021) 42:231–257

6.2 Analysis in the bounded growthmodel

It remains to compute the expected number of access nodes for v ∈ V . As all shortest
paths of length at least r are hit, it suffices to count the ε-net nodes in an r -radius around
v, that is AN (v) = Br (v) ∩ T . According to our bounded growth model we have
|Br (v)| ∈ O(r2). The probability for some node to be in T is d/r log n/r (with d = 2
or d = 3). Hence the expected number of access nodes is E(|AN (v)|) = O(r log n/r).

Theorem 3 TN can be computed in expected O(n2/r log2 n + nr2 log r) time in
bounded growth graphs. The expected space consumption is in O(n2/r2 log2 n +
nr log n) and the expected query time in O(r2 log2 n).

Proof The first phase of the preprocessing consists of choosing a random sample
of size O(n/r log n/r), and checking its validity. The check requires Dijkstra runs
from each v ∈ V up to distance r , making sure that every shortest path of length
r is hit. This takes a total time of O(nr2 log r) when invoking the bounded growth
model. As the success probability for a random sample to be a valid net is constant,
we only expect a constant number of repetitions to find a valid net. It remains to
compute the pairwise distances between the transit nodes, which can be accomplished
inO(|T |n log n) = O(n2/r log2 n). The computation of the access node distances for
every v ∈ V is equivalent to the validity check. So the total preprocessing time is in
O(n2/r log2 n + nr2 log r). The expected space consumption can be computed as

|T |2 +
∑

v∈V
E(|AN (v)|) = O(n2/r2 log2 n + nr log n)

with |T | = O(n/r log n) and E(|AN (v)|) = O(r log n), upper bounding log n/r
terms by log n. The expected query time is then E(|AN (v)|)2 = O(r2 log2 n) for
long queries. For short queries we use the algorithm of Dijkstra up to a distance of r ,
which takes O(r2 log r) time. Hence, the total runtime is O(r2 log2 n). �	

For not too large r , the bounds on space consumption and query time hold with
high probability.

Lemma 11 For r ∈ O(
√
n), with high probability the space consumption is in

O(n2/r log2 n + nr log n) and the query time in O(r2 log2 n).

Proof We first show that with high probability we have |AN (v)| ≤ 2 · E(|AN (v)|)
if r ∈ O(n1−ε) for some ε > 0. For any node v, the number of access nodes AN (v)

follows a binomial distribution of |Br (v)| ∈ O(r2) trials with success probability
p ∈ O(1/r log n/r). Hoeffing’s inequality yields that the probability of |AN (v)| ≥
2 · E(|AN (v)|) = 2p · O(r2) is at most

e−2p2O(r2) = e−O(log2 n/r) = e−O(log2 n) = n−O(log n) = n−O(1),

where we use the fact that log n/r ∈ O(log n) if r ∈ O(n1−ε) for some ε > 0. This
shows that the query time is in O(r2 log2 n) with high probability.

123

Journal of Combinatorial Optimization (2021) 42:231–257 251

Similarly, the number of transit nodes |T | follows a binomial distribution of n
trials with probability p ∈ O(1/r log n/r). We obtain that the probability of |T | ≥
2 · E(|T |) = 2pn is at most

e−2p2n = e−2·O(1/r2 log2 n/r)·n = e−O(log2 n) = n−O(1),

where we use that r ∈ O(
√
n). Moreover, a union bound yields that with high proba-

bility, the total size of all access node sets is bounded by O(nr log n), and hence, the
stated bound on the space consumption also holds with high probability. �	

Note that our approach always computes the correct shortest path distance, as in the
bounded growthmodelwe can handle local queries efficiently through the algorithm of
Dijkstra. The above Theorem allows to choose r such that the total space consumption
is minimized.

Lemma 12 In bounded growth graphs, TN can be computed in expected polynomial
timewith an expected space consumption ofO(n4/3 log4/3 n) and expected query times
of O(n2/3 log8/3 n).

Proof Let f (r) = n2/r2 log2 n + nr log n describe the space consumption up to a
constant factor. To find the global minimum, we compute

f ′(r) = −2n2/r3 log2 n + n log n = 0.

Rearranging this term results in r3 = 2n log n. It follows that the radius minimizing
the space consumption is in Θ(n1/3 log1/3 n). Inserting this term in the formulas for
space consumption and query time given in Theorem 3 concludes the proof. �	

We observe that under the assumption h ∈ Θ
(√

n
)
, our new bound of

O(n4/3 log4/3 n) is the smallest known space consumption bound for TN; and we
achieve sublinear query times using this space. But we can also allow the same space
consumption as required in Abraham et al. (2013) with polynomial time preprocessing
and analyze the query times under this condition.

Lemma 13 In bounded growth graphs, ε-net based TN can be computed in expected
polynomial time with a space consumption of O (

n
√
n log n

)
and query times of

O (√
n log4 n

)
.

Proof The goal is to find the smallest r such that O(n2/r2 log2 n + nr log n) =
O (

n
√
n log n

)
. The first summand requires r ≥ cn1/4 log n, the second r ∈ O (√

n
)
.

As log n ∈ O(n1/4), both conditions are fulfilled for r ∈ Θ(n1/4 log n). The respective
query time is then O(n1/2 log2 n log2 n) = O (√

n log4 n
)
. �	

Compared to the query time of O((h log h)2) = O(n log2 n) for h ∈ Θ
(√

n
)
, our

query times are better by a factor of
√
n/ log2 n and clearly sublinear. If we allow

a space consumption of O (
n
√
n log2 n

)
as required for the special TN-variant in

Abraham et al. (2010) with polynomial preprocessing, we get r = n1/4 as smallest
feasible radius and hence a query time of O (√

n log2 n
)
. This matches the result in

Abraham et al. (2010) assuming h ∈ Θ
(√

n
)
.

123

252 Journal of Combinatorial Optimization (2021) 42:231–257

Corollary 3 For r = Θ(nε logO(1) n) the preprocessing time is subquadratic for all
ε ∈]0, 0.5[according to Theorem 3.

We observe that this Corollary applies for all our analyzed radius values r ∈
Θ(n1/3 log1/3 n), r ∈ Θ(n1/4) and r ∈ Θ(n1/4 log n). Moreover, for all radii from the
Corollary, the concentration bounds from Lemma 11 hold.

In summary, our analysis in the bounded growth model yields better bounds on the
space consumption, the query times and the preprocessing times for TN compared to
the h-dependent analysis for h ∈ Θ

(√
n
)
.

6.3 Graphs with low skeleton dimension

To compute a transit node set T for a graph with skeleton dimension k, we can also
choose an ε-net for εn = 2/3r . Again, we construct T by selecting a random sample
of sizeO(n/r log n/r). The access nodes AN (v) of a node v can now be restricted to
the nodes u ∈ T ∩B2/3r (v) that have a descendantw in v’s shortest path tree satisfying
du(w) ≥ 1

3r . This guarantees that all shortest paths of length at least r are hit. Every
node u ∈ B2/3r (v) having such an descendant w with du(w) ≥ 1

3r ≥ 1
2dv(u) is

contained in the skeleton T ∗
v , so their number is bounded by

∑2/3r
i=0 k ∈ O(rk). As the

probability for some node to be in T is d/r log n/r , the expected number of access
nodes is E(|AN (v)|) = O(k log n/r). This gives us the following Theorem.

Theorem 4 In graphs with skeleton dimension k, TN can be computed in expected
O(n2 log n) time. The expected space consumption isO(n2/r2 log2 n/r +nk log n/r)
and the expected query time for long queries is in O(k2 log2 n/r).

Proof Choosing a random sample of size O(n/r log n/r) and checking its validity
via n Dijkstra runs can be performed in O(n2 log n) time. In expectation we need to
repeat this step a constant number of times until we obtain a valid ε-net. The com-
putation of the distances from every node to all of its access nodes and between all
transit nodes can be done through n Dijkstra runs in O(n2 log n) time. The expected
space consumption for the transit and access nodes is |T |2 + ∑

v∈V |AN (v)| =
O(n2/r2 log2 n/r + nk log n/r) and the expected query time for long queries is
(E(|AN (v)|))2 = O(k2 log2 n/r). �	

To treat short queries, we need an alternative to the algorithm of Dijkstra as it might
require Ω(n log n) time. A possible solution is to adopt the skeleton-based hub label
approach by Kosowski and Viennot (2017), but to consider only pairs of nodes at a
distance of at most r , i.e., in the preprocessing step we choose L(u) = {η(u, v) | v ∈
V : du(v) ≤ r} for every node u (c.f. Sect. 4.1). Following the analysis fromKosowski
and Viennot (2017), the average size of every such ‘local’ label set can be bounded
by

∑r
i=1 k/i ∈ O(k log r). Therefore, this approach adds a term ofO(nk log r) to the

expected space consumption.
For a skeleton dimension k ∈ O(n/ log n), the expected space consumption of TN

is O(nk log n/r). In order to beat the space consumption of the skeleton-based (global)
HL from Kosowski and Viennot (2017), which has an expected space consumption

123

Journal of Combinatorial Optimization (2021) 42:231–257 253

of O(nk log D) for a graph diameter of D, we need to choose r ∈ Ω(n/D), which is
only useful if D ∈ Ω(

√
n). For a radius of r = n/D, we obtain an expected query

time of O(k2 log2 D), which is worse than the HL approach by a factor of k log D.
Better query times than for HL can only be achieved if the skeleton dimension k is

bounded by O(log D). In this case we need to choose a radius r ∈ Ω
(
n/e

√
1/k log D

)

which implies that r ∈ Ω(n/Dε) for any ε > 0. As a radius of r > D is pointless, it
follows that we require D ∈ Ω

(
n1/(1+ε)

)
for any ε > 0. Hence, we can only beat the

query times of HL on very special networks for large radii.
This complies also with the experimental results from Blum and Storandt (2018b),

which suggest that on large networks (CH-based) TN is dominated by (skeleton-
based) HL. On real-world road networks with at most two million nodes, however,
it was shown that TN still exhibits a lower space consumption than HL at the cost
of higher query times, which might be due to hidden constants not included in our
analysis.

Note that in Gupta et al. (2019), the skeleton dimension was used for the analysis
of so called 3-hopsets, where a graph is augmented with shortcut edges, such that for
any pair of nodes there is a shortest path consisting of at most 3 edges. For graphs with
skeleton dimension k, the authors could show bounds of O(nk log k log log n) and
O(k2 log2 k log2 log n) on the space consumption and search space sizes, respectively.
We would like to emphasize that the notion of a 3-hopset differs however from TN, as
in the former only relevant ‘middle hops’ are stored whereas in the latter approach we
store the pairwise distances between all transit nodes. Therefore, any TN data structure
is also a valid 3-hopset, but not vice versa.

7 Weighted graphs

In this section we discuss how our algorithms can be applied to graphs G(V , E) that
have non-uniform integer edge costs � : E → N. A naïve approach is to subdivide
every edge e into �(e) edges of unit length which results in an unweighted graph
H(V ∪ V+, EH), where V+ are the non-terminal nodes inserted during this process.
On real-world road networks this increases the graph size only by a constant factor
as the average edge length is usually quite small. Alternatively, one might modify the
algorithms as follows in order to avoid the introduction of many unnecessary nodes.

7.1 Hub labels

Our results for HL carry immediately over to weighted graphs as the algorithm from
Kosowski and Viennot (2017) does not require an unweighted input graph.

7.2 Contraction hierarchies

One key observation of our CH analysis in unweighted bounded growth graphs is that
any shortest path of length r contains r + 1 nodes. In the weighted setting this is no

123

254 Journal of Combinatorial Optimization (2021) 42:231–257

Ta
bl
e
2

C
ur
re
nt
ly

kn
ow

n
th
eo
re
tic
al

re
su
lts

fo
r
C
on
tr
ac
tio

n
H
ie
ra
rc
hi
es

(C
H
),
T
ra
ns
it
N
od
es

(T
N
)
an
d
H
ub

L
ab
el
s
(H

L
)
in

de
pe
nd
en
cy

of
hi
gh
w
ay

di
m
en
si
on
,
sk
el
et
on

di
m
en
si
on

,t
re
ew

id
th

an
d
fo
r
bo

un
de
d
gr
ow

th
gr
ap
hs

H
ig
hw

ay
di
m
en
si
on

Sk
el
et
on

di
m
en
si
on

T
re
ew

id
th

B
ou
nd
ed

gr
ow

th

C
H

A
br
ah
am

et
al
.(
20

11
a,

20
13

)
O
PE

N
B
au
er

et
al
.(
20

13
)

T
he
or
em

2

T
N

A
br
ah
am

et
al
.(
20

11
a)

T
he
or
em

4
O
PE

N
L
em

m
a
13

H
L

A
br
ah
am

et
al
.(
20

11
a)

K
os
ow

sk
ia
nd

V
ie
nn

ot
(2
01

7)
G
av
oi
lle

et
al
.(
20

04
),
C
or
ol
la
ry

2
T
he
or
em

1

123

Journal of Combinatorial Optimization (2021) 42:231–257 255

longer true, but if we denote the maximum edge length of a given weighted graph
by �max, it holds that the number of nodes of any shortest path of length r is at least
r/�max. If we incorporate this into the analysis of Sect. 5, we obtain that on weighted
bounded growth graphs, a random contraction order yields an CH overlay graph with
an expected number of shortcuts of O(�2maxn log D) and expected search space sizes
of O(�max

√
n log n).

7.3 Transit nodes

Like in the case of CH, we can also extend our analysis of TN to weighted graphs by
by introducing the maximum edge length �max as an additional parameter. The central
idea of our TN preprocessing is to compute an ε-net in order to find a set of nodes that
hit all shortest paths of length at least r . On graphs of maximum edge length �max, any
such path contains at least r/�max many vertices. Hence, we can choose the transit node
set T is an ε-net for ε = r/(n�max). This means that we can compute a transit node
set such that the expected space consumption is O(�2maxn

2/r2 log2 n + �maxnr log n)

and the expected time for a long query is O(�2maxr
2 log2 n).

8 Conclusions and open problems

We showed that the bounded growth model is sufficient to prove sublinear search
spaces for contraction hierarchies, transit nodes and hub labels. Results for all three
approaches were previously only available in dependency of the highway dimension
of the network. For graphs where the highway dimension (as well as the treewidth
and the skeleton dimension) is in the order of Θ

(√
n
)
—which is the case for grid

graphs and also most likely for many road network instances—our derived bounds
on the search space sizes, the space consumption, and the preprocessing times match
previous results or are superior.

Moreover, for TN andHLwe could show new bounds in dependency of the skeleton
dimension and the treewidth, respectively. Table 2 shows a compilation of theoretical
results for the three state-of-the-art route planning techniques. So far, no bounds for
CH in dependency of the skeleton dimension or for TN in dependency of the treewidth
are known.

In terms of analyzing contraction hierarchies, it is still open to prove a subquadratic
relation between the query time and the search space size. Furthermore, lower bounds
for query times and space consumption when assuming bounded growth would be of
interest to see if our analyses are tight.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

256 Journal of Combinatorial Optimization (2021) 42:231–257

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abraham I, Fiat A, Goldberg AV, Werneck RF (2010) Highway dimension, shortest paths, and provably
efficient algorithms. In: Proceedings of the 21st annual ACM-SIAMsymposiumon discrete algorithms
(SODA), pp 782–793. SIAM . https://doi.org/10.1137/1.9781611973075.64

Abraham I, Delling D, Fiat A, Goldberg AV, Werneck RFF (2011a) VC-dimension and shortest path algo-
rithms. In: Proceedings of the 38th international colloquiumon automata, languages and programming,
(ICALP), lecture notes in computer science, vol 6755, pp 690–699. Springer. https://doi.org/10.1007/
978-3-642-22006-7_58

Abraham I, Delling D, Goldberg AV,Werneck RF (2011b) A hub-based labeling algorithm for shortest paths
in road networks. In: Proceedings of the 10th international conference on experimental algorithms
(SEA), lecture notes in computer science, vol 6630, pp 230–241. Springer. https://doi.org/10.1007/
978-3-642-20662-7_20

Abraham I, Delling D, Fiat A, Goldberg AV,Werneck RF (2013) Highway dimension and provably efficient
shortest path algorithms. Tech. Rep. MSR-TR-2013-91, Microsoft Research. https://www.microsoft.
com/en-us/research/wp-content/uploads/2013/09/tr-msr-2013-91-rev.pdf

Antsfeld L, Harabor DD,Kilby P,Walsh T, et al. (2012) Transit routing on video gamemaps. In: Proceedings
of the 8th AAAI conference on artificial intelligence and interactive digital entertainment (AIIDE).
AAAI Press. http://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/view/5459

Bast H, Funke S, Sanders P, Schultes D (2007) Fast routing in road networks with transit nodes. Science
316(5824):566–566. https://doi.org/10.1126/science.1137521

Bauer R, Columbus T, Rutter I, Wagner D (2013) Search-space size in contraction hierarchies. In: Proceed-
ings of the 40th international colloquium on automata, languages, and programming (ICALP), lecture
notes in computer science, vol 6124, pp 93–104. Springer. https://doi.org/10.1016/j.tcs.2016.07.003

Blum J (2019) Hierarchy of transportation network parameters and hardness results. In: Proceedings of the
14th international symposium on parameterized and exact computation (IPEC), LIPIcs, vol 148, pp
4:1–4:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.IPEC.
2019.4

Blum J, Storandt S (2018a) Computation and growth of road network dimensions. In: Proceedings of the
24th international computing and combinatorics conference (COCOON), lecture notes in computer
science, vol 10976, pp 230–241. Springer. https://doi.org/10.1007/978-3-319-94776-1_20

Blum J, Storandt S (2018b) Scalability of route planning techniques. In: Proceedings of the 28th international
conference on automated planning and scheduling (ICAPS), pp 20–28. AAAI Press. https://aaai.org/
ocs/index.php/ICAPS/ICAPS18/paper/view/17741

Blum J, Funke S, Storandt S (2018) Sublinear search spaces for shortest path planning in grid and road
networks. In: Proceedings of the 32nd AAAI conference on artificial intelligence (AAAI), pp 6119–
6126. AAAI Press. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16271

Brönnimann H, Goodrich MT (1995) Almost optimal set covers in finite vc-dimension. Discrete Comput
Geom 14(4):463–479. https://doi.org/10.1007/bf02570718

Delling D, Goldberg AV, Pajor T, Werneck RF (2014) Robust exact distance queries on massive networks.
Tech. Rep. MSR-TR-2014-12, Microsoft Research. https://www.microsoft.com/en-us/research/wp-
content/uploads/2014/07/complexTR-rev2.pdf

Dibbelt J, Strasser B, Wagner D (2014) Customizable contraction hierarchies. In: Proceedings of the 13th
international symposium on experimental algorithms (SEA), lecture notes in computer science, vol
8504, pp 271–282. Springer. https://doi.org/10.1145/2886843

Eisner J, Funke S (2012) Transit nodes—lower bounds and refined construction. In: Proceedings of the 14th
workshop on algorithm engineering and experiments (ALENEX), pp 141–149. SIAM/Omnipress.
https://doi.org/10.1137/1.9781611972924.14

Funke S, Storandt S (2015) Provable efficiency of contraction hierarchies with randomized preprocessing.
In: Proceedings of the 26th international symposium on algorithms and computation (ISAAC), lecture
notes in computer science, vol 9472, pp 479–490. Springer. https://doi.org/10.1007/978-3-662-48971-
0_41

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/1.9781611973075.64
https://doi.org/10.1007/978-3-642-22006-7_58
https://doi.org/10.1007/978-3-642-22006-7_58
https://doi.org/10.1007/978-3-642-20662-7_20
https://doi.org/10.1007/978-3-642-20662-7_20
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/09/tr-msr-2013-91-rev.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/09/tr-msr-2013-91-rev.pdf
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/view/5459
https://doi.org/10.1126/science.1137521
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.4230/LIPIcs.IPEC.2019.4
https://doi.org/10.4230/LIPIcs.IPEC.2019.4
https://doi.org/10.1007/978-3-319-94776-1_20
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17741
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17741
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16271
https://doi.org/10.1007/bf02570718
https://www.microsoft.com/en-us/research/wp-content/uploads/2014/07/complexTR-rev2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2014/07/complexTR-rev2.pdf
https://doi.org/10.1145/2886843
https://doi.org/10.1137/1.9781611972924.14
https://doi.org/10.1007/978-3-662-48971-0_41
https://doi.org/10.1007/978-3-662-48971-0_41

Journal of Combinatorial Optimization (2021) 42:231–257 257

Funke S, Nusser A, Storandt S (2014) On k-path covers and their applications. Proc VLDB Endow
7(10):893–902. https://doi.org/10.14778/2732951.2732963

Gavoille C, Peleg D, Pérennes S, Raz R (2004) Distance labeling in graphs. J. Algorithms 53(1):85–112.
https://doi.org/10.1016/j.jalgor.2004.05.002

Geisberger R, Sanders P, Schultes D, Vetter C (2012) Exact routing in large road networks using contraction
hierarchies. Transport Sci 46(3):388–404. https://doi.org/10.1287/trsc.1110.0401

Gupta S,KosowskiA,Viennot L (2019) Exploiting hopsets: improved distance oracles for graphs of constant
highway dimension and beyond. In: Proceedings of the 46th international colloquium on automata,
languages, and programming (ICALP), LIPIcs, vol 132, pp 143:1–143:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik). https://doi.org/10.4230/LIPIcs.ICALP.2019.143

Haussler D, Welzl E (1986) Epsilon-nets and simplex range queries. In: Proceedings of the 2nd annual
ACM SIGACT/SIGGRAPH symposium on computational geometry (SCG), pp 61–71. ACM. https://
doi.org/10.1145/10515.10522

Kosowski A, Viennot L (2017) Beyond highway dimension: small distance labels using tree skeletons. In:
Proceedings of the 28th annual ACM-SIAM symposium on discrete algorithms (SODA), pp 1462–
1478. SIAM. http://dl.acm.org/citation.cfm?id=3039686.3039781

Kuhn F,Moscibroda T, Nieberg T,Wattenhofer R (2005)Fast deterministic distributedmaximal independent
set computation on growth-bounded graphs. In: Proceedings of the 19th international conference on
distributed computing (DISC), lecture notes in computer science, vol 3724, pp 273–287. Springer.
https://doi.org/10.1007/11561927_21

Milosavljević N (2012) On optimal preprocessing for contraction hierarchies. In: Proceedings of the 5th
ACMSIGSPATIAL international workshop on computational transportation science, pp 33–38. ACM.
https://doi.org/10.1145/2442942.2442949

Pugh W (1990) Skip lists: a probabilistic alternative to balanced trees. Commun ACM 33(6):668–676
Robertson N, Seymour PD (1986) Graph minors. v. excluding a planar graph. J Comb Theory Ser B

41(1):92–114. https://doi.org/10.1016/0095-8956(86)90030-4
Storandt S (2013) Contraction hierarchies on grid graphs. In: Proceedings of the 36th annual german

conference on AI (KI), lecture notes in computer science, vol 8077, pp 236–247. Springer. https://doi.
org/10.1007/978-3-642-40942-4_21

Tao Y, Sheng C, Pei J (2011) On k-skip shortest paths. In: Proceedings of the ACM SIGMOD international
conference on management of data, pp 421–432. ACM. https://doi.org/10.1145/1989323.1989368

Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative frequencies of events to their
probabilities. In: Measures of complexity, pp 11–30. Springer

White C (2015) Lower bounds in the preprocessing and query phases of routing algorithms. In: Proceedings
of the 23rd annual European symposium on algorithms (ESA), lecture notes in computer science, vol
9294, pp 1013–1024. Springer. https://doi.org/10.1007/978-3-662-48350-3_84

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.14778/2732951.2732963
https://doi.org/10.1016/j.jalgor.2004.05.002
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.4230/LIPIcs.ICALP.2019.143
https://doi.org/10.1145/10515.10522
https://doi.org/10.1145/10515.10522
http://dl.acm.org/citation.cfm?id=3039686.3039781
https://doi.org/10.1007/11561927_21
https://doi.org/10.1145/2442942.2442949
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1007/978-3-642-40942-4_21
https://doi.org/10.1007/978-3-642-40942-4_21
https://doi.org/10.1145/1989323.1989368
https://doi.org/10.1007/978-3-662-48350-3_84

	Sublinear search spaces for shortest path planning in grid and road networks
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 Bounded growth and skeleton dimension
	2.1 Bounded growth model
	2.2 Relation to skeleton dimension

	3 Preprocessing-based shortest path algorithms
	3.1 Hub labels
	3.2 Contraction hierarchies
	3.3 Transit nodes

	4 Hub labels
	4.1 Analysis in the bounded growth model

	5 Contraction hierarchies
	5.1 Analysis in the bounded growth model

	6 Transit nodes
	6.1 VC-dimension and ε-net construction
	6.2 Analysis in the bounded growth model
	6.3 Graphs with low skeleton dimension

	7 Weighted graphs
	7.1 Hub labels
	7.2 Contraction hierarchies
	7.3 Transit nodes

	8 Conclusions and open problems
	References

