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Computational models of the neuromusculoskeletal system provide a
deterministic approach to investigate input-output relationships in the human
motor system. Neuromusculoskeletal models are typically used to estimate
muscle activations and forces that are consistent with observed motion under
healthy and pathological conditions. However, many movement pathologies
originate in the brain, including stroke, cerebral palsy, and Parkinson’s disease,
while most neuromusculoskeletal models deal exclusively with the peripheral
nervous system and do not incorporate models of the motor cortex, cerebellum,
or spinal cord. An integrated understanding of motor control is necessary to
reveal underlying neural-input and motor-output relationships. To facilitate
the development of integrated corticomuscular motor pathway models, we
provide an overview of the neuromusculoskeletal modelling landscape with
a focus on integrating computational models of the motor cortex, spinal
cord circuitry, α-motoneurons and skeletal muscle in regard to their role in
generating voluntary muscle contraction. Further, we highlight the challenges
and opportunities associated with an integrated corticomuscular pathway
model, such as challenges in defining neuron connectivities, modelling
standardisation, and opportunities in applying models to study emergent
behaviour. Integrated corticomuscular pathway models have applications in
brain-machine-interaction, education, and our understanding of neurological
disease.

KEYWORDS

neuromuscular, corticospinal, proprioception, biophysical modelling, motor control,
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1 Introduction

From everyday tasks to highly-skilled athletic performance, movement is the result of
a complex interaction between the central and peripheral nervous systems and muscle-
tendon actuators. Neural circuits recruit skeletal muscle in a coordinated manner to
produce movement and are connected through various feedback loops in the brain and
spinal cord. Control of voluntary movement involves the interaction of multiple structures
including the motor cortex, spinal cord circuits, skeletal muscles, and sensory organs.
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Signals from the motor cortex are carried via neurons of the
corticospinal tract, and are integrated within spinal cord circuits,
which in turn interact with skeletal muscles via α-motoneurons.
Corticomotoneuronal cells (CM) of the motor cortex also make
direct connections with α-motoneurons, particularly in the distal
muscles of the upper limb (Lemon, 2008; Rathelot and Strick, 2009;
Yeo et al., 2013). Sensory organs within the muscle and tendon
provide the nervous system with information on the current state of
the muscles, including their force, length, and contraction velocity,
which modulates the descending drive from the cortex.

A mechanistic understanding of motor pathways, originating
from the motor cortex, can lead to more effective diagnoses
and personalised interventions to treat neuromuscular disorders.
Neuromuscular pathologiesmay affect any and all parts of themotor
pathway, impairing movement control and reducing quality of life.
Degenerative disorders originating from supraspinal circuits, for
example, impact the descending drive and can lead to ataxia (lack of
coordination), dystonia (involuntary muscle spasms), and spasticity
(stiffness, tightness of muscles) (Mukherjee and Chakravarty, 2010;
Ganguly et al., 2021). Given the highly integrated and intricate
nature of the motor pathway, the effects of neuromuscular disorders
often spread beyond the afflicted region. For example, disorders
such as amyotrophic and primary lateral scleroses affect “lower”
and “upper” motoneurons, leading to the degeneration of muscle
and muscle weakness, respectively (Tawil and Venance, 2011;
Larsson et al., 2018). More generally, motoneuron atrophy also
alters a muscle’s fibre composition during ageing (sarcopenia)
(Larsson et al., 2018). Many other diseases also originate from the
brain and have a downstream effect onmuscle contraction including
cerebral palsy, stroke, Parkinson’s, and Huntington’s disease. These
are a few illustrative examples of movement disorders involving the
motor pathway.

Experimental techniques capture essential data to investigate
the properties and function of various components in healthy and
diseased states, which provides valuable insight to understand
the motor pathway. However, given the complexity and
interdependency of the motor pathway, combined with technical
and ethical limitations, experiments on isolated parts of the pathway
leave many unanswered questions regarding the input/output
relationships of the system. For example, transcranial magnetic
stimulation (TMS) has been successfully used as a measure of
cortical excitability to assess patients with stroke and epilepsy,
but its limited ability to only impact the cortical level and the
large variability in responses is a major limitation in exploring
the role of subcortical components in the motor pathway
(Blicher et al., 2009; Badawy et al., 2014). Neuromuscular activity
and architecture can be characterised by various means such
as: electrophysiological techniques for muscle activity, motor
unit number, and spike train estimates, medical imaging for
motor unit anatomy, intramuscular pressure for muscle activity,
and joint force estimation for determining motor unit twitch
properties (Troiani et al., 1999; Holobar et al., 2010; Csapo et al.,
2015; Ateş et al., 2018; Lapatki et al., 2019; Rohlén et al., 2020). Each
experimental technique is accompanied by certain drawbacks; for
example, electrophysiological techniques only capture a fraction
of active motor units, are prone to cross-talk, and are sensitive
to movement artefacts (Negro et al., 2016a; Yavuz et al., 2018;
Lapatki et al., 2019; Mesin, 2020), and medical imaging techniques

are typically constrained to low contraction levels or non-functional
poses (Csapo et al., 2015; Rohlén et al., 2020). These limitations
highlight a need for a computational approach, which incorporates
experimental data to understand the motor pathway.

Mathematical and computational models provide an alternative
means to investigate the motor pathway. The process of describing
physiological systems as mathematical models requires systematic
and detailed analyses of the system and the identification of relevant
inputs, outputs and “physiological parameters”. The advantage
of mathematical models is the ability to perform in silico
experiments to test hypotheses, which is especially beneficial
to intricately connected systems such as the motor pathway.
However, integrating the various components of the motor pathway
remains a challenge, and most approaches only consider a
limited number of parts or combinations of the physiological
components involved inmovement generation. A common example
is to include α-motoneuron pools in skeletal muscle models to
predict force generation as a function of α-motoneuron firing
times or neural input (e.g., Röhrle et al., 2008; Farina et al., 2017;
Sartori et al., 2017; Volk et al., 2021). Integrating afferent feedback
from proprioceptive sensory organs within spinal cord neuronal
circuits is another example of combining different components of
the motor pathway to understand inherent behaviour, such as the
relationship between spinal circuit connectivity and postural control
(e.g., Stienen et al., 2007; Raphael et al., 2010; Elias et al., 2014;
Dideriksen et al., 2015; Sreenivasa et al., 2015; Moraud et al., 2016;
Aoyama and Kohno, 2022; Kapardi et al., 2022). By beginning to
incorporate more physiologically realistic circuits further upstream
tomuscle, neuromusculoskeletal models can becomemore useful in
answering questions about motor pathologies and motor control.

Our aim is to facilitate the development of a generalised,
integratedmodel of themotor pathway frommotor cortex tomuscle
for the voluntary control of movement, i.e., the corticomuscular
pathway, by building on existing models. Holistic corticomuscular
pathwaymodels, which aim to represent the interconnectionswithin
the pathway rather than isolated parts, could provide distinct
insights. For example, investigating the contribution of the cortex
to long-latency responses of reflexes could help to distinguish spinal
and cortical contributions to reflexes (Matthews, 1991; Reschechtko
and Pruszynski, 2020). Elucidating relationships between motor
cortex excitability andmotor output can provide amoremechanistic
understanding of underlying clinical presentations enabling design
of more effective rehabilitation protocols (Derosiere et al., 2020).
Clinically, modelling of neurosurgical procedures could help guide
treatments, such as selective dorsal rhizotomy, which involves
the cutting of dorsal roots to mitigate spasticity in patients with
cerebral palsy by reducing sensory feedback (Enslin et al., 2019).
Furthermore, the relationship between cortical activity and muscle
activity, and ultimately the role of themotor cortex in the generation
of movement can be investigated (Scott, 2008). This, certainly
incomplete, list of research questions reveals the potential of a
holistic approach to modelling the corticomuscular pathway.

Despite advances towards integrated modelling of the
neuromuscular system, the contribution of the central nervous
system (CNS), or any supraspinal input, is rarely considered.
Recently, attempts have been made towards modelling more
complex representations of the corticomuscular pathway
(Teka et al., 2017; James et al., 2018; Pérez Fernández et al., 2021).
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These models are important milestones towards a holistic approach
of motor pathway modelling but are limited in scope since they
either consider very specialised pathways, such as the control of
eye movement (James et al., 2018; Pérez Fernández et al., 2021),
or use simplified model components (Teka et al., 2017). Thus,
these modelling frameworks are not suited to investigate the
complex interplays within the corticomuscular pathway and related
pathologies, highlighting the need for an integrated model.

This work provides an overview of the modelling landscape
of components that make up the pathway from cortex to muscle,
namely, the motor cortex, spinal circuits, skeletal muscle, and
proprioceptive sensory organs. Section 2 provides the physiological
background for each component. Section 3 addresses the
mathematical modelling of the corticomuscular pathway. Here,
each subsection synthesises typical modelling approaches and
provides exemplary model equations, together with relevant
parameterisation and proposals for input-output parameters to
adjacent component models. Section 4 concludes with a discussion
on model implementation, validation, and future opportunities.

2 Physiological background of the
corticomuscular pathway

The motor cortex issues volitional movement commands as a
result of intricate interactions involving internal network dynamics
and connections with other brain areas (Sauerbrei et al., 2020;
Logiaco et al., 2021). These movement commands, in the form of
action potentials, travel down the spinal cord and synapse with a
variety of spinal interneurons as well as α-motoneurons (Lemon,
2008; Baldissera et al., 2011). A number of descending pathways,
such as the reticulospinal pathway, progress via brainstem nuclei,
and while these are clearly important for motor control (Sheean,
2002; Li et al., 2019), they are beyond further scope of this text. Each
α-motoneuron innervates a specific set of muscle fibres (forming
the motor unit), thus controlling muscle contraction. The state of
the musculoskeletal system is monitored by a number of sensory
organs in muscle and tendon, which send signals back to the central
nervous system where this afferent information is used to adapt the
movement commands. This work focuses on the feedback pathways
within the spinal cord circuits; for models of feedback in motor
control involving supraspinal circuits see Scott (2016). Figure 1
shows the overview of the components in the motor pathway
considered. In the following section, an overview of the relevant
physiology of components making up the corticomuscular pathway
is given. A more detailed anatomical and physiological description
of the components of the neuromuscular system and movement
control can be found in Kandel et al. (2021).

2.1 Motor cortex

Themotor cortex is directly involved in the generation ofmuscle
contraction. The experiments of Fritsch and Hitzig in the mid-19th
century established that electrically stimulating the frontal regions
of the cortex elicits movement, mainly in the contralateral side of
the body (Gross, 2007; Hagner, 2012). By the 1930s, mapping of
body representations in the motor and sensory areas was carried

out through electrical stimulation applied to the exposed cortical
surface of epileptic patients in surgery (Penfield and Boldrey, 1937).
Presently, studies using non-invasive methods, including TMS, link
the stimulation of neurons in the motor cortex to evoked responses
in the peripheral muscle (Badawy et al., 2014; Volz et al., 2015).
Neurons in the motor cortex make up a significant proportion of
the corticospinal tract (CST), which is one of the primary motor
pathways involved in voluntary movement of humans (Lemon,
2008). CST neurons then connect to spinal interneurons and α-
motoneurons and then on to muscle, resulting in movement.

Neurons of the central and peripheral nervous system send
and receive information through electrochemical signalling. The
membrane of a neuron acts to separate charges between the inside
and outside of the cell. It also contains channels which control ion
flow and pumps that maintain concentrations of ions inside and
outside of the cell. At rest, there is typically a high concentration of
extracellular Na+ and Cl− and intracellularly a high concentration
of K+. This difference in ion concentrations creates an electrical
potential. When the electrical potential of the neuron reaches a
certain threshold a sudden and transient depolarisation of the cell
occurs, known as an action potential or ‘spike’. When a pre-synaptic
neuron fires an action potential, it travels down the axon and crosses
the synapse with post-synaptic neurons resulting in a post-synaptic
potential, either increasing or decreasing the membrane potential
of the post-synaptic neurons. The membrane potential ranges from
approximately −90 mV when it is at rest, to approximately 50 mV
during an action potential. The threshold is approximately −60 mV,
though these values depend on species and cell type (Dayan and
Abbott, 2001). A typical representation of an action potential is
shown in Figure 2, note that the shape of an action potential can
vary widely (Krutki et al., 2022).

In 1 mm2 of surface area in the motor cortex there
are approximately 50,000–90,000 neurons (Young et al., 2013;
Collins et al., 2016). Neurons in the cortex have a diverse range
of morphologies and electrophysiological behaviour. Neurons can
be categorised by their connectivity: those that are connected within
the cortex are refered to as corticocortical neurons and those that
make connections outside the cortex include corticothalamic,
corticospinal or corticomotor neurons (Oswald et al., 2013).
Neurons can also be distinguished by their effect on post-synaptic
ion channels resulting from neurotransmitter release. Excitatory
neurotransmitters such as glutamate increase a cell’s likelihood
to fire an action potential, whereas inhibitory neurotransmitters
decrease a cell’s likelihood to fire an action potential. Excitatory
and inhibitory post-synaptic potentials are received and integrated
mostly in the dendrites of a post-synaptic neuron which, if it reaches
threshold, triggers an action potential to propagate along the post-
synaptic neuron’s axon. Therefore, the connectivity of neurons
can play a significant role in the propagation of action potentials
and information in the neuronal circuits involving movement
(Udvary et al., 2022). For more information on neuron behaviour
and circuits, see Dayan and Abbott (2001).

Experiments involving microstimulation or tracer injections
have uncovered a somatotopic organisation of the motor cortex
with areas effecting the lower limb located more medially and the
areas controlling the trunk, upper limb, face and hands extending
distally [(He et al., 1995; Mitz and Wise, 1997; Park et al., 2001), but
very recently revised by (Gordon et al., 2022)]. The face and hands,
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FIGURE 1
Intentional movement commands from the motor cortex are transferred via the axons of layer V pyramidal neurons, which make up the corticospinal
tract, to the neurons of the spinal cord. From these, the α-motoneurons finally activate muscle fibres. Muscle contraction is monitored by Golgi tendon
organs and muscle spindles and sensory information is fed back to the spinal circuits modulating the activity of the neurons in the spinal cord.

FIGURE 2
A representation of an action potential in a neuron, which occurs
when the membrane reaches threshold from accumulated
post-synaptic potentials. Regions of the graph show 1) Depolarisation,
2) Repolarisation, 3) Hyperpolarisation. This transient increase in
membrane potential occurs over less than 3 ms.

which have finer motor control, are represented by larger surface
areas of the cortex (Schieber, 2001). Recent research has also showed
distributed and overlapping representations of muscles and body
parts in specific regions, for example, in the upper limb region,
digit, wrist, elbow and shoulder areas show patchy (0.25–1.0 mm
radius) connectivity patterns (Schieber, 2001; Rathelot and Strick,

2009; Hatsopoulos, 2010; Card and Gharbawie, 2020). This suggests
that the intrinsic networksmay be functionally connected according
to end-effectors (i.e., muscles) within the somatotopic organisation
of the motor cortex (Card and Gharbawie, 2020).

Evidence of the cortex having a layered structure dates back
to histological staining carried out by Broadmann and Cajal who
delineated the cortex into six layers differing in populations of cell
bodies and cell types (Castro-Alamancos, 2013). In themotor cortex,
layer V is the most prominent and contains the bodies of large
pyramidal cells which serves as the main ‘output’ layer to other
movement areas in the brainstem and spinal cord (Li N. et al., 2015)
(for review of descending tracts see Lemon, 2008). Layer I mainly
contains projections and no cell bodies. Thalamic input projections
to the motor cortex occur across all layers, densely to layer III–V
and less densely to layer VI (Tanaka, 2016). Experimental evidence
has also suggested the idea of vertical columns in the cortex but
the functional properties of this spatial structure have not been
determined (Horton and Adams, 2005; Georgopoulos et al., 2007).

The motor cortex instigates voluntary muscle contraction of
the body mainly thorough direct corticomotor (CM) connections
to α-motoneurons and the corticospinal tract (CST) via spinal
interneuron circuits (Lemon, 2008; Fregosi et al., 2019). The CST is
the major anatomical pathway for transmitting movement related
information from the brain to the spinal cord (Figure 1). Only
approximately 0.05% of cells in the motor cortex contribute to
the CST (Keller, 1993). However, projections from the motor
cortex are the largest contributor to the CST, making up 30%–50%
of the descending pathway, which contains approximately 1
million myelinated axons (Keller, 1993; Saliani et al., 2017). Other
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contributions to the CST come from secondary motor areas
including the premotor and supplementary motor areas, as well
as the somatosensory cortex (Dum and Strick, 2005; Lemon,
2008). Approximately 90% of neurons of the CST decussate in the
brain stem, resulting in contralateral control (Lacroix et al., 2004;
Natali et al., 2022). CST axons project to the grey matter of the
ventral horn of the spinal cord forming synapses with interneurons
and α-motoneurons along multiple levels of the spinal column and
multiple α-motoneuron pools within levels.

2.2 Spinal circuitry

In the spinal circuits, signals from motor areas in the brain
as well as from peripheral sensory organs are integrated and
processed (Kandel et al., 2021). The α-motoneurons located in
the ventral horn of the spinal cord, receive these signals and
activate muscle contraction (Figure 1). Some afferent nerves,
originating from peripheral sensory organs in muscles, form
direct (i.e., monosynaptic) connections to the α-motoneurons.
However, most afferent nerves terminate on interneurons which
then connect, directly or indirectly via several other interneurons
to α-motoneurons, creating polysynaptic pathways. These pathways
excite or inhibit α-motoneurons, depending on the type of sensory
organ and the muscle it is located in (Baldissera et al., 2011).
Thereby, interneurons are themselves regulated by supraspinal
inputs (Baldissera et al., 2011). In addition, signal transmission
from central as well as peripheral pathways differs between flexor
and extensor muscles (Yavuz et al., 2018; Castle-Kirszbaum and
Goldschlager, 2021). Further, Renshaw cells deliver direct recurrent
inhibition to α-motoneurons (Windhorst, 1990). The totality of
these pathways determines the generation of action potentials along
the motor axon to initiate contraction in the muscle fibres. Spinal
circuits also potentially contribute to the recruitment of muscle
synergies, i.e., groups of multiple muscles activated concurrently,
and in central pattern generators, particularly in locomotion
(Duysens and de Crommert, 1998; Tresch and Bizzi, 1999; Dietz,
2003).

Each α-motoneuron innervates a specific set of muscle fibres,
which is called a motor unit (MU) (Section 2.3). The number of
innervated muscle fibres is proportional to the size of the neuron,
resulting in different sizedmotor units (Heckman and Enoka, 2012).
A pool of α-motoneurons, which consists of all the motoneurons
that innervate a single muscle, typically contains a larger number of
smaller neurons (Gustafsson and Pinter, 1984; Powers and Binder,
1985). The central nervous system uses two strategies to modulate
the force that is produced by a specificmuscle: recruitment increases
the number of active MUs and rate coding increases the activity of
a specific MU. With increasing excitatory synaptic input into a pool
of α-motoneurons, motor units are usually recruited in an ordered
manner, from smallest (low-threshold) to largest (high-threshold),
followingHenneman’s size principle (Henneman et al., 1965). At the
same time, increasing synaptic input leads to an increase in the
frequency of action potentials generated by a specific neuron. Small
neurons, which are recruited earlier, usually fire action potentials
at higher rates compared to large motoneurons. This is known as
the onion skin principle (De Luca and Hostage, 2010). The size
and onion skin principle are illustrated in Figure 3. Note that

FIGURE 3
Sequence of action potentials of ten α-motoneurons (αMN) in
response to a ramp-and-hold type of synaptic input (grey). Cell size
and recruitment threshold increase exponentially from αMN1 to
αMN10. The number of recruited α-motoneurons and their respective
firing rates increase with increasing synaptic input, illustrating the size
principle and onion skin firing scheme.

recent evidence suggests that Henneman’s size principle might be
a simplification, and that more complex patterns of motor unit
recruitment are possible (Marshall et al., 2022). Further, it is widely
accepted that motoneurons innervating one and the same muscle
share most of the inputs (Negro et al., 2016b; Del Vecchio et al.,
2022). Interestingly, recent research suggests that this approach
should be redefined to functional groups of motor units spanning
more than one muscle (Hug et al., 2023).

More detailed information on motor units can be found in
Heckman andEnoka (2012) and for an elaborate review of the neural
circuits within the spinal cord see Baldissera et al. (2011).

2.3 Skeletal muscle

Skeletal muscle can rapidly contract and generate force in
response to recruitment via the central and peripheral nervous
systems (Figure 1). The tremendous range of movements that the
human body is capable of is partly made possible by the variety
of muscle shapes and architecture. For example, the soleus of the
lower legs may be thousands of times larger than the lumbricals
of the hand. Despite this variety, individual muscles and tendons
(musculotendon complex) share commonalities that are adapted
to each individual joint. Skeletal muscle is a hierarchical structure
of repeating units—these are, from the largest (at the centimeter
range) to the smallest (at the micrometer range): muscle fascicles,
fibres, myofibrils, and sarcomeres. The contractile elements are
surrounded by connective tissues: the epimysium, perimysium, and
endomysium, which surround the muscle, fascicles, and fibres,
respectively. Connective tissues are the primary means of force
transmission, both laterally within the muscle and longitudinally
towards the tendons (Purslow, 2010; Turrina et al., 2013).

Muscle fibres can be separated by histochemical staining
intensities, which generally correspond to their rate of contraction
and fatiguability. Commonly, three classifications are used,
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type-I, -IIA, and -IIB, but there may be up to seven, with each
classification increasing in contractile speed and fatiguability
(Scott et al., 2001). A single α-motoneuron typically innervates
multiple muscle fibres. The neuron and its fibres are referred to
as a motor unit. Muscles have varying numbers of motor units
(equalling the number of α-motoneuron axons per muscle), e.g.,
ranging from five in the rectus lateralis to approximately 1750 in the
gastrocnemius. Furthermore, motor units within a muscle vary in
size according to the number of muscle fibres they contain, termed
as a motor unit’s innervation ratio. The largest motor unit in a
muscle may contain up to eighty times the fibres of the smallest
one. The remaining motor units typically follow an exponential
distribution between these extremes (Heckman and Enoka, 2012,
and references therein). Furthermore, the contractile properties of
motor units varies due to their fibre type composition. The three-
fold classification of muscle fibres is thus commonly applied to
motor units also, with type-I, IIA, and IIB fibres comprising type S,
FR, and FF motor units, respectively. The variability in contraction
dynamics and fatigability means that certain motor units are better
suited for certain tasks, e.g., type S, FR, and FF motor units for
posture maintenance, walking and running (Henning and Lomo,
1985).

The distribution of a motor unit’s fibres (or motor unit anatomy)
is typically not uniform within the muscle but rather limited to a
fraction of the muscle. Motor unit anatomy can be altered due to
factors, such as age, pathological conditions, and level of physical
(in) activity (e.g., Lexell and Downham, 1991; Messi et al., 2016).
Despite this large degree of variation, motor unit anatomy can be
generalised as locally confined to a region of themuscle, overlapping
with multiple other territories, irregularly shaped, and as having
varying degrees of fibre-type clustering (e.g., Bodine-Fowler et al.,
1990; Lexell and Downham, 1991; van Dijk et al., 2016). Muscle
force production is a complex interplay between various factors,
including its geometry, material properties, fibre-arrangement, and
motor unit recruitment and anatomy.

The neural system does not recruit individual muscle fibres
but rather groups of fibres simultaneously, i.e., via recruitment of
motor units. An action potential from the α-motoneuron arrives at
the neuromuscular junctions of all fibres that it innervates. When
recruited, excitation-contraction coupling initiates at the muscle
fibre’s neuromuscular junction, leading to (local) depolarisation of
the muscle fibre. Sarcomeres are composed of thin (myosin) and
thick (actin) filaments, and is the site at which chemical energy is
converted into mechanical force. This process is referred to as cross
bridge cycling, and is initiated by changes in ion concentrations
within the cell as a result of muscle (fibre) recruitment via the α-
motoneurons. The amount of force produced within the sarcomere
depends in part on the degree of overlap between the thick- and
thin-filaments and the rate of contraction. Briefly, as sarcomeres
lengthen or shorten beyond their optimal length, filament overlap
decreases and fewer cross bridges can be formed, leading to lower
force production (Ramsey and Street, 1940; Gordon et al., 1966).
Furthermore, as the rate of contraction increases, myosin headsmay
no longer find actin attachment sites and a lower force is produced
(Hill, 1938). The action potential propagates outwards towards the
fibre’s distal ends. In the wake of the action potential, an increase in
Ca2+ concentration occurs in the sarcoplasm, leading to cross bridge
cycling in muscle fibres.

2.4 Proprioceptive feedback

The ability to perform coordinated movements is closely
linked to the ability to sense position. The term proprioception
is commonly used to describe the awareness of limb position
and movement, force, effort and balance (Proske and Gandevia,
2012). Several sensory organs provide the central nervous system
with proprioceptive information. In particular, muscle spindles and
Golgi tendon organs (GTOs) (Figure 1) play an important role
in motion control, since their activity is closely related to muscle
activity.

Muscle spindles can be found in almost all skeletal muscles and
make the biggest contribution to proprioception (Macefield and
Knellwolf, 2018).They are sensitive to length changes of their parent
muscle, i.e., muscle fibre stretch. The number of muscle spindles in
humanmuscles can vary between less than ten andmore than 1,000,
depending onmuscle size and function (Banks, 2006). Anatomically,
muscle spindles are arranged in parallel to and embedded within
the main, or extrafusal, muscle fibres. Three different types of
intrafusal fibres experience length changes whenever their parent
muscle changes in length. The different types of fibres have different
viscoelastic properties thatmake themdifferently sensitive tomuscle
length and velocity. The sensory information is transferred to the
neural circuits in the spinal cord via two types of afferent nerves,
Ia (primary) and II (secondary) afferents. Thereby, Ia afferents
are unique in that they form monosynaptic connections to α-
motoneurons of the same (homonymous) muscle (Stauffer et al.,
1976; Watt et al., 1976). Further, Ia and II afferents connect di-
and polysynaptically to the homonymous as well as to other
(heteronymous) muscles, i.e., synergists and antagonists (Scott
and Mendell, 1976; Watt et al., 1976). In general, muscle spindles
excite homonymous and synergistic muscles and inhibit antagonists
(Scott and Mendell, 1976; Watt et al., 1976). In particular, the
excitatory Ia input to motoneurons contributes to a considerable
extent to muscle activation (Gandevia et al., 1990; Hiebert and
Pearson, 1999). Muscle spindle activity is modulated by the
fusimotor system, which comprises two types of spinal neurons,
namely, static and dynamic γ-motoneurons (Matthews, 1962).
By activating muscle spindles, γ-motoneurons modulate the
spindles’ sensitivity and, importantly, ensure that spindles remain
responsive during muscle contraction (Macefield and Knellwolf,
2018).

Golgi tendon organs are located at the musculotendinous
interface and each GTO lies in series with a number of muscle
fibres (Schoultz and Swett, 1972). GTOs are sensitive to the force
produced by these muscle fibres (Anderson, 1974). Thereby, each
GTO is sensitive to contractions of several motor units and each
motor unit is monitored by several GTOs (Jami, 1992). Each
tendon organ is usually innervated by a single afferent nerve
fibre, a Ib afferent (Schoultz and Swett, 1972). Ib afferents form
di- or trisynaptic inhibitory connections to the α-motoneuron
pool of the homonymous muscle (Jami, 1992). The number of
GTOs per muscle is in general smaller than the number of
spindles, with approximately 0.7 GTOs per muscle spindle (Jami,
1992). For information beyond this short summary the reader
is referred to Proske and Gandevia (2012) and Kandel et al.
(2021).
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3 Mathematical modelling of the
corticomuscular pathway

This work aims to describe how state-of-the-art models of the
motor cortex, spinal circuits, skeletal muscle, and proprioceptive
sensory organs can be integrated to form a model of the
corticomuscular pathway. Figure 4 provides an overview of the
model components and illustrates the relevant interfaces. We
consider the voluntary and sensory control of an antagonisticmuscle
pair. Therefore, neither synergistic muscle activity nor rhythmic
muscle activity (i.e., emerging from central pattern generators) is
considered. Additionally, proprioceptive feedback is considered on
the spinal cord level only, i.e., spinal-cortical pathways are beyond
the scope of this work.

We define mathematical models as both stochastic and
deterministic models as opposed to experimental or animal models.
Modelling approaches to physiological systems can be classified
broadly into two categories: phenomenological and biophysical.
Phenomenological models aim to describe and relate input/output
variables to match experimental data, irrespective of the underlying
mechanism, i.e., a “black-box” approach. In contrast, biophysical
models use relevant physiological knowledge to describe the
underlyingmechanism(s). Phenomenological models may be useful
for model reduction, and may be the only viable choice when
computational costs are a factor. On the other hand, mechanistic
physiological representations may be paramount to understand
emergent behaviour in integrated, complex systems.

This section is structured as follows; firstmotor cortexmodelling
is covered, including isolated neuron models, approaches to form
neural networks, and the corticospinal pathway (Section 3.1).
Second, spinal circuitry models are described, with a focus on
spinal neurons and pathways (Section 3.2). Thirdly, an overview of
skeletal muscle modelling is provided, with a focus on contractile
behaviour and the integration of sensory fibres (Section 3.3). Lastly,
proprioceptive feedback modelling is described, closing the loop
between the skeletal muscle and spinal circuit models (Section 3.4).
This paper by no means aims to include a detailed description of
all models, but to provide an overview of the modelling approaches
taken in representing each component and how they can be
connected.

3.1 Motor cortex models

The role of the motor cortex in the generation of movement,
functionally and computationally, has not been resolved (Scott,
2008; Tanaka, 2016). Electrophysiological studies have provided
insights into mapping the physiological structure of the motor
cortex, but have not yet been able to provide a cohesive
understanding of how the neural activity in the motor cortex is
involved in producing muscle contraction. There have been two
main theories about how neurons in the motor cortex relate to
and produce movement. The previously held representational view
sought to relate the firing of pyramidal neurons in the motor cortex
to movement parameters such as muscle tension, direction and
velocity of movement, joint angle, or EMG (Georgopoulos et al.,
1986; Sergio and Kalaska, 1997; Reina et al., 2001; Cherian et al.,
2011). Phenomenological approaches to modelling cortical activity

in movement have therefore used kinematic variables, such as
movement direction, as an input to describe the firing rates of upper
motoneurons (Mussa-Ivaldi, 1988; Todorov, 2000). This approach is
described in Section 3.1.2.

More recently, the dynamical systems perspective argues that
individual neurons cannot code for movement parameters, but
there may be patterns generated by the activity of populations
of neurons which determine the motor output. For a summary
on dynamical systems in modelling movements see Shenoy et al.
(2013). Neuron activity has been modelled at different levels, from
individual cells using biophysically-based models of neurons model
action potentials (further described in section 3.1.1) to populations
of neurons connected in networks (Wilson and Cowan, 1972;
Brette and Gerstner, 2005; Jolivet et al., 2008; Abbott et al., 2016;
Vyas et al., 2020). Recently, artificial neural network models have
been used to model the complex dynamics found in cortical activity.
Some of these are phenomenological in their representation of
the motor cortex while others reconstruct detailed physiological
structures (Hill and Tononi, 2004; Esser et al., 2005; Potjans and
Diesmann, 2014; Michaels et al., 2020; Dura-Bernal et al., 2022).
Neural network models are able to replicate the firing dynamics of
the cortex during rest and movement. Firing rates of neurons in
the cortex, even at rest, are highly irregular and asynchronous with
long tailed distributions of interspike intervals (Churchland and
Shenoy, 2007; Kumar et al., 2008; Tomov et al., 2014; Borges et al.,
2020; Dabrowska et al., 2021) and these properties are thought to
arise from, or be influenced by the properties of the neural network
(Destexhe, 2011; Chen and Gong, 2019).

3.1.1 Individual neurons
The initiation and propagation of action potentials in neurons

were first quantitatively modelled by Hodgkin and Huxley in 1952
(Hodgkin and Huxley, 1952). Their model incorporated the sum
of three currents (K+, Na+ and leak) to describe the membrane
current (Eq. 1). The rapid, transient Na+ current is responsible for
the ‘spike’ of the action potential and theK+ current is responsible for
repolarising the neuronback to resting potential or a hyperpolarised,
refractory state after an action potential. The proportion of ion-
channels available as a proportion of the maximum conductance is
described by three voltage and time dependent variables m, n and h
in Eq. 1:

Cm
dV
dt
= I (t) − gK n

4 (V (t) −EK) − gNa m
3 h (V (t) −ENa) − gL (V (t) −EL) .

(1)

Therein, Cm is the membrane capacitance, V is the membrane
potential of the neuron, I is an applied membrane current, g is the
conductance of the membrane (subscript denotes ion channel) and
E is the equilibrium potential of the respective channels (denoted by
subscripts).

In models with many neurons, Hodgkin-Huxley equations may
be computationally expensive, and so simplified neuron models
such as Izhikevich neurons, Fitz-Hugh Nagamo and leaky integrate-
and-fire (LIF) neurons are used to reduce computational burden
(Izhikevich, 2003; Yamazaki et al., 2022). These simplified neuron
models neglect detailed ion-channel dynamics but are still able to
describe the basic shape and timings of neuronal action potentials

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2023.1095260
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Haggie et al. 10.3389/fphys.2023.1095260

FIGURE 4
Circuit diagram of corticomuscular pathway model components. Arrows indicate excitatory connections, circles indicate inhibitory connections. Note
that the spinal circuits transmit sensory organ signals differently to flexor and extensor α-motoneuron pools (for details see Section 2.4).

(Trappenberg, 2002). The leaky integrate-and-fire neuron takes the
form:

τm
dV (t)
dt
= −(V (t) −Vr) +

I (t)
Cm
, (2)

where V is the membrane potential, Vr is the value to which the
membrane potential is reset after firing an action potential, τm is
the time constant and Cm is the capacitance of the membrane. I
represents the currents in and out of the cell due to post-synaptic
potentials from other neurons or external microelectrodes (Dayan
and Abbott, 2001; Gerstner et al., 2014) (Eq. 2).

3.1.2 Representational approach
Motor cortex neurons have been found to be most ‘active’ for

certain directions, exhibiting tuning curves of preferred directions
(Georgopoulos et al., 1986). By representing the firing of individual
neurons as vectors and then using a weighted vector sum,
Georgopoulos et al. (1986) found that the resulting population
vector was in a direction congruent with the direction of hand
movement. The firing rate of neurons using their ‘preferred
direction’ can be characterised by the following cosine tuning
equation, where fr(i, t) is activity of neuron i at time t, d(t) is intended
movement direction, dpref(i) is the preferred direction of the neuron,
fr0 is the baseline firing rate and gneuron(i) is the gain of the neuron,
i.e., a scaling factor representing the neuron’s sensitivity to input
(Eq. 3):

fr (i, t) = fr0 + gneuron (i) cos[d (t) − dpref (i)] . (3)

It has been suggested that the preferred direction of neurons
is determined by the musculoskeletal system’s biomechanical

properties (Hirashima and Nozaki, 2012; Lillicrap and Scott, 2013;
Suminski et al., 2015). Neural activity in the motor cortex has
been phenomenologically described in motor control models based
on the assumption that neuronal firing rates are reflective of
properties such as end effector position and velocity, joint torque
ormuscle-length (Mussa-Ivaldi, 1988; Todorov, 2000; Ajemian et al.,
2008). Models by Mussa-Ivaldi (1988) and Todorov (2000) have
demonstrated that neuron firing can also be described using
functions of muscle length, shortening velocity, acceleration and
force.

The general equation of phenomenological models of neuron
firing rates is:

fr (i, t−ϕ (i)) = fi (p1 (t) ,p2 (t) ,…,pN (t)) , (4)

where fr(i) is neuron activity, ϕ(i) is the neuron specific latency
between cortex and muscle, fi is a neuron specific input-output
function, and pi are movement parameters (Wang et al., 2022)
(Eq. 4). These models have been able to reproduce the directional
tuning curve of activity from recorded neuron populations but
the correlations to kinematics and biomechanical properties may
be epiphenomenal and do not capture the nuances in the wide
range of individual neuron activity or represent the physiological
connections of supraspinal circuits (Scott, 2000).

Modelling approaches using traditional recurrent neural
networks (RNNs) to generate neural activity at the population
level based on muscle activity, have also been implemented to
capture both directional tuning properties and underlying rotational
dynamics observed in neural firing data (Michaels et al., 2016; 2020;
Sussillo et al., 2016). Rotational trajectories in neural firing data
have been observed in the primate motor cortex during arm reaches
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following the application of a dimensionality reduction method,
jPCA. When the first two principal components are plotted against
each other, they show rotational trajectories which are thought to
represent oscillatory or rhythmic patterns of activity in the brain.
The criticisms of this approach is that rotational dynamics are
not linked to physiological structure, mechanisms or behaviour
and so lacks explanatory power (Lebedev et al., 2019). Traditional
RNNs also use non-biophysically based models of ‘neurons’ and
continuous values of activation rather than capturing the dynamics
of physiological action potentials.

3.1.3 Spiking neural networks
A neural network refers to a population of neurons as well as the

synapses and connections between them. Spiking neural networks
are artificial neural networks based on biologically-realistic
models of neuron action potentials (described in the previous
Section 3.1.1), which encode information in the coordinated timing
of action potentials or ‘spikes’. Synaptic current models are used to
represent the dynamics of the receptors or rate of ion flows in the
pre- and/or post-synaptic neuron. Inhibitory synapses typically are
stronger than excitatory synapses by two to six times (Alvarez and
Destexhe, 2004; Xue et al., 2014; Gao et al., 2017).

The single exponential model of a post-synaptic current (Isyn)
acting on the membrane potential takes the general form of an
exponential decay function with time constant τsyn (Eq. 5):

dIsyn (t)
dt
= −

Isyn (t)
τsyn
. (5)

The connectivity, or topology, of neural networks and
its influence on firing dynamics is a rich area of research
(Larremore et al., 2011; Litwin-Kumar and Doiron, 2012; Bennett
and White, 2021). Neurons in the brain exhibit local connectivity,
but also have long range connections between areas. Small
world or patchy network topologies where the distribution of
connections are unevenly distributed or spatially defined may be
more physiologically representative than a model with random
connectivity (Wang and Chen, 2003; She et al., 2016; Card and
Gharbawie, 2020). In the motor cortex there is broader intralayer
connectivity with narrower, columnar interlayer connectivity and
recurrent connections between layers, with a large number of
connections from superficial layers to deep layers (Weiler et al.,
2008; Hooks et al., 2013). The connectivity of a neural network
model can have an architecture based on these connectivity
principles, and experimental data from physiological experiments
can also be used to inform and tune these connectivity parameters.

Potjans and Diesmann (2014) used previous experimental
data to create a cortex model with complex connectivity within
and between cortical layers which was able to capture the
asynchronous, irregular spiking behaviour in larger, more realistic
numbers of neurons and synapses (i.e., tens-of-thousands and
millions respectively). Large-scale biologically-inspired spiking
neural networks, containing populations of hundreds to tens-of-
thousands of excitatory and inhibitory leaky integrate-and-fire
neurons, have recently been used inmodels ofmotor cortical activity
(Esser et al., 2005; Farokhniaee and Lowery, 2019; Rostami et al.,
2020). These models have been able to replicate the spontaneous
firing activity in the laminar structure of the cortex, the oscillatory

rhythm in the condition of Parkinson’s disease and neural states
involvingmovement (Farokhniaee and Lowery, 2019; Rostami et al.,
2020). Spiking neural networks are more biologically realistic
than traditional RNNs and so can provide a more mechanistic
understanding about how cortical activity is generated. However,
previous corticalmodels have not been linkedwithmodels ofmuscle
contraction and feedback circuits in the spinal cord to represent the
corticomuscular pathway.

3.1.4 Corticospinal pathway
The descending activity from the motor cortex to neuron pools

in the spinal cord has typically been modelled as direct inputs of
firing rates or currents which represent the cumulative descending
drive of the corticospinal tract and brain (Stienen et al., 2007;
Sreenivasa et al., 2015; Mascaro et al., 2020; Volk et al., 2021). This
is supported by experimental and simulation studies which suggest
that the majority of the input to α-motoneurons are common to the
pool (Negro et al., 2016b; Del Vecchio et al., 2022). However, recent
work by Marshall et al. (2022), showed that motor units might be
flexibly recruited according to task demands and suggested that the
descending drive from the cortex may play a role in this ability.
Previous models that have linked motor cortex or brain activity to
spinal cord and muscle models have used the output of individual
neurons or neuron groups to drive individual muscles (Teka et al.,
2017; Mascaro et al., 2020; Pérez Fernández et al., 2021). Teka et al.
(2017) used six neurons corresponding to each muscle in the
upper limb arm model to directly control the spinal motoneurons.
Pérez Fernández et al. (2021) used a more complex neural model
of three layers representing the sensory input, interneurons and
α-motoneurons, respectively, with 48 neurons in each layer. These
models, however, do not capture the complex dynamics of firing in
the motor cortex nor take into account any recurrent connections
which are prevalent in the circuitry and subsequently play a role in
α-motoneuron recruitment.

The previous subsections described approaches tomodelling the
upstream neural activity of the motor cortex. Here we provide an
example of a motor cortex model using a spiking neural network
that can provide the descending drive of the corticospinal tract
and be integrated with downstream spinal cord and muscle models
discussed in Section 2.3 and Section 3.4, paving the way towards
modelling the connection from cortex to muscle. A more detailed
description of this motor cortex model can be found in Haggie et al.
(2022).

The cortex can be represented by a spiking neural network
with populations arranged in a laminar structure. The connectivity
within and between cortical layers is adapted from previous cortical
models notably Esser et al. (2005) and Potjans and Diesmann
(2014), which were based on experimental evidence. Individual
neuron activity is described by a leaky integrate-and-fire (Eq. 2), to
reduce computational expense allowing for more realistic numbers
of neurons in networks, i.e., tens of thousands, and degrees of
synaptic connections of each neuron, i.e., thousands, to bemodelled.
Parameters are described in Table 1.

When the neuron membrane potential reaches threshold θ,
the neuron fires an action potential. On the firing of an action
potential in a pre-synaptic neuron, the post-synaptic neuron receives
a change in synaptic current, Ipostsyn , of the synaptic strength value,
Ssyn, scaled by a relative weighting value, wsyn (Eq. 6). The synaptic
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TABLE 1 Table of example parameters for a spiking neural networkmodel of
motor cortex (taken from Potjans and Diesmann, 2014).

Symbol Name Value

Cortical Neurons

Cm Membrane capacitance 250 pF

θ Threshold value −50 mV

tref Refractory time 2 ms

τm Membrane time constant 10 ms

Vr Reset value −65 mV

Synapses

τsyn Synaptic time constant 10 ms

wsynE Weighted excitatory strength 1

wsynI Weighted inhibitory strength −4

Ssyn Synaptic strength 87.8 pA (SD 8.78 pA)

Delays

Δe Excitatory delay 1.5 ms (SD 0.75 ms)

Δi Inhibitory delay 0.8 ms (SD 0.4 ms)

Subscripts denote excitatory (e) or inhibitory (i) neuron parameters. SD: standard deviation.

strength and the synaptic weight both contribute to the change
in conductivity which influences the response of the post-synaptic
membrane potential in response to the pre-synaptic action potential.
The synaptic weight specifically represents the potential modulation
of the post-synaptic transmission. This occurs after a delay Δ
which accounts for the time it takes for the action potential to
propagate down the axon. The value of Ipostsyn is described by a single
exponential model in Eq. 5. After a neuron fires an action potential,
its membrane potential is reset toVr. A neuron cannot fire an action
potential to other neuronswhen it is within the time of the refractory
period (tref) since its previous action potential.

Ipostsyn (t) = I
post
syn (t) + Ssyn wsyn,

when pre‐synaptic neuronV (t) ≥ θ. (6)

The firing frequency of a neuron is the number of times the
neuron reaches the threshold over a timestep. The firing activity of
a proportion of the layer V motor cortex neurons in this spiking
neural network can then be used to represent the descending
corticospinal tracts which synapse onto spinal interneurons and α-
motoneurons in the spinal cord. Because the specific connectivity of
the corticospinal tract to the spinal cord neurons is still unknown,
this could be a probabilistic parameter based on spatial distances or
tuned to experimental data of the input to α-motoneurons.

Model inputs and outputs: The model receives input from a
Poisson distribution tomaintain spontaneous activity during resting
state, and an external stimulation or extrinsic currents can be applied
to increase firing frequencies and produce the patterns of increased
firing related to motor output depending on the research question.
The output of this model would be the firing times of a subset of
the group representing layer V excitatory pyramidal neurons which
make up part of the axons in the corticospinal tract connecting the
cortex to spinal circuitry.

3.2 Spinal circuitry models

In the spinal cord, descending motor commands, for example,
from the motor cortex, as well as signals from peripheral sensory
organs are integrated and processed by interneurons, Renshaw-
cells and α-motoneurons, which subsequently activate muscle fibres
(Section 2.2). To represent the spinal circuitry, populations of
neurons and their connections within the spinal cord as well as
to the periphery need to be defined according to the physiological
pathways. Different modelling strategies for neurons are extensively
discussed in Section 3.1 and so this section will focus on the specific
neuron characteristics that need to be considered in the spinal cord.

3.2.1 Spinal neurons
Models of neurons in spinal circuits mainly use two approaches

to describe neuron behaviour. Transfer functions can be used
to describe the input-output behaviour of neuron populations,
following a phenomenological approach. For example, the relation
between input, αin(t) ∈ [−1,1], and the activity of a neuron
population, αout(t) ∈ [0,1], is typically described by a sigmoidal
function (e.g., Raphael et al., 2010):

αout (t) = [1+ exp (−a [αin (t) − b])]−1, (7)

where, a and b are parameters that are tuned to represent
experimentally determined input-output behaviour (Eq. 7). Due
to their low computational cost, transfer functions are well
suited to investigate the interplay within large networks of
neuron populations; however, transfer functions cannot adequately
represent the spiking activity of single α-motoneurons (e.g.,
Raphael et al., 2010; Li S. et al., 2015; Teka et al., 2017; Parziale et al.,
2020).

The second approach employs biophysical neuron models,
which explicitly model the membrane dynamics of individual
neurons in response to synaptic inputs (Section 3.1.1). Cisi and
Kohn (2008) used the Hodgkin-Huxley formalism to describe α-
motoneurons, interneurons and Renshaw-cells by a compartmental
model considering the activity of a number of ion channels.
Their model has been integrated in several models of spinal cord
circuitry, e.g., by Dideriksen et al. (2015) and Elias et al. (2014).
Variations of the standard integrate-and-fire model (Section 3.1.1)
were employed by Sreenivasa et al. (2015), Stienen et al. (2007)
and York et al. (2022), which is a common way to reduce
the computational cost of modelling neuron populations. In
the biophysical modelling approach, each neuron is modelled
individually and governed by one set of equations. Neuron
populations can be obtained by replicating the models according to
the desired pool size.α-motoneurons that innervate the samemuscle
differ significantly from each other with respect to their properties
and behaviour (Section 2.2). The model parameters for a pool of
α-motoneurons can be obtained from an exponential distribution
where the value of a parameter pi of the i-th neuron of a pool of
NMN α-motoneurons is calculated from the equation:

pi = plow +
pup − plow

100
exp(ln (100) i

NMN
), (8)

where plow and pup are the lower and upper extremes of the
parameter’s value range, respectively (Fuglevand et al., 1993; Negro
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and Farina, 2011) (Eq. 8). α-motoneuron pools that follow the
approach described above inherently account for physiological
principles like the orderly recruitment following the size principle.
Populations of interneurons andRenshaw-cells are usually described
with a constant set of parameters (e.g., Cisi and Kohn, 2008;
Sreenivasa et al., 2015). In Table 2 we provide an exemplary set
of parameters for α-motoneurons and interneurons following the
integrate-and-fire approach (Eq. 2).

3.2.2 Spinal pathways
The neurons in the spinal cord receive inputs from different

sources and are connected to each other via synapses, creating
spinal pathways. Due to the large number of, partly still unknown,
interactions between the neurons of the spinal cord, modellers
must make a decision on which pathways shall be considered.
Focusing on a single pathway such as the monosynaptic stretch
reflex, which is based on the monosynaptic connection of muscle
spindle Ia afferents and α-motoneurons, enables the investigation
of pathways in isolation, but possible interactions are neglected
(e.g., Schuurmans et al., 2009). Often, a system with two muscles,
acting as agonist and antagonist, and their respective motoneuron
pools and sensory organs are considered. Thereby, muscle spindles
provide feedback to the neuron pools of both muscles, i.e., both
the excitatory homonymous input to the agonist muscle and the
reciprocal inhibition of the antagonist, enabling the coordination
of behaviour based on sensory information (e.g., Sreenivasa et al.,
2015). Considering further pathways, for example, the secondary
afferents ofmuscle spindles or Ib afferents fromGolgi tendonorgans,
can provide additional sources of sensory information. For those
specific afferents, often only the connections to the homonymous
muscle are considered (e.g., Elias et al., 2014; Dideriksen et al.,
2015; Moraud et al., 2016; York et al., 2022). By implementing both
mechanical and neural interactions between the simulated muscles,
these approaches are suited to improving our understanding of
strategies the central neural system could use to control the
neuromuscular system. To investigate the spinal circuity in more
detail, modellers could also consider the influences of Renshaw-
cells, sensory pathways involving more than one interneuron
(e.g., Stienen et al., 2007; Raphael et al., 2010; Buhrmann and
Di Paolo, 2014; Parziale et al., 2020) and γ-motoneurons, which
innervate muscle spindles (Li S. et al., 2015). These models can help
researchers to understand how certain connectivity rules and their
modulation enable the central nervous system to perform numerous
different tasks with one anatomical kind of neuronal network.

In the spinal cord, information is exchanged between the cells via
synapses. Physiologically, every spike of a pre-synaptic cell induces
a local change of the membrane potential in the post-synaptic cell.
The configuration of synapses in the model ultimately depends
on the neuron model. Using the leaky integrate-and-fire approach,
synapses can be defined as described in Section 3.1.4, Eqs 5, 6,
where the time constant can be chosen according to experimental
observations (Table 2). The synaptic strength in combination with
the synaptic weight, previously defined in Section 3.1.4, defines
the potency of the interaction, which can vary between pathways
and movement tasks (Bawa and Sinkjaer, 1999; Baudry and Enoka,
2009; Yavuz et al., 2018). Thus, these parameters need to be adjusted
to the applied scenario. The weights can be tuned empirically to
obtain some desired motor output (Teka et al., 2017; Kapardi et al.,

2022) or by employing an optimisation algorithm (Raphael et al.,
2010). When considering populations of neurons, the connectivity
rules can be based on the distance of the neurons to each other
(e.g., Sreenivasa et al., 2015) or on stochastic distributions (e.g.,
Dideriksen et al., 2015).

Neural signals (action potentials) require a finite amount of time
to travel from the sensory organs to their respective target neurons in
the spinal cord.Thismeans that sensory information is not provided
to the neural system instantaneously. The delay in the transmission
of action potentials is determined by the conduction velocity of the
respective nerve and the anatomical distance between the muscle
and the location of the neuron pool in the spinal cord. Conduction
velocities for the nerve types named within this document can be
found in Table 3.

Model inputs and outputs: The signals emerging from
supraspinal centres as well as sensory organs serve as inputs to
a spinal circuit model. For each arriving spike from pre-synaptic
neurons, the target neurons receive a post-synaptic potential, i.e.,
current is injected into these neurons. The final output variables of
this model component would be the firing rates frMN

i ,where i =
1,…,NMN, of the α-motoneurons, each innervating a specific set of
muscle fibres.

3.3 Skeletal muscle models

In skeletal muscles, α-motoneuron axons synapse with muscle
fibres at their neuromuscular junction and initiate excitation-
contraction coupling. This leads, ultimately, to force generation that
is transmitted to the skeleton via the connective tissues. There are
a multitude of methods to model skeletal muscle. The following
presents only a brief description of the modelling landscape, with
a particular focus on muscle’s contractile behaviour. First, a general
overview of muscle modelling is given followed by an exemplary
model to demonstrate integration of sensory fibres.

Muscle models can be broadly classified as either
phenomenological or biophysical, stemming from pioneering works
of Hill (1938) and Huxley (1957), respectively. Phenomenological
models are a superposition of lumped parameter functions
that describe various muscle behaviours as black boxes at the
macroscopic level and are typically based on Hill’s experimental
observations (Section 3.3.2). Biophysical models consider the
micromechanics and energetics of the interactions within the cross
bridges and are typically based on Huxley’s sliding filament theory
(Section 3.3.3). While the later models capture muscle behaviours
such as the force-length in an emergent sense, i.e., based on
micromechanical interactions, they are typically too cumbersome
and computationally expensive to describe whole muscle behaviour.
This has favoured the popularity of phenomenological models,
especially in the simulation of limb or whole body movement.

For further reading on muscle modelling, see Dao and Tho
(2018) or Röhrle et al. (2019) for 3D models (the latter including
multiscale models), and Rockenfeller and Günther (2017b); Scovil
and Ronsky (2006); Schmitt et al. (2019) for 1D models.

3.3.1 Spatial modelling of skeletal muscles
Independent of the approach used to describemuscle behaviour,

a muscle model usually requires a spatial component to predict
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TABLE 2 Example parameters for spinal cord neurons and synapses according to the standard leaky-integrate-and-firemodelling approach.

Symbol Name Value Source

α-motoneurons

Cm Membrane capacitance 81.14–375.62 pF Sreenivasa et al. (2015)

Vr Reset potential −70 mV

τm Membrane time constant 7.83–13.36 ms

Interneurons

Cm Membrane capacitance 160 pF Sreenivasa et al. (2015)

Vr Reset potential −70 mV

τm Membrane time constant 10 ms

Synapses

τexcsyn Excitatory synaptic time constant 0.5 ms Finkel and Redman (1983)

τinhsyn Inhibitory synaptic time constant 1 ms Stuart and Redman (1990)

TABLE 3 Conduction velocities for different types of nerves and their distribution within populations.

Nerve type Conduction velocity Distribution Source

Corticospinal axons 5–94 ms−1 Exponential Firmin et al. (2014)

Type I sensory 80–100 ms−1 Normal Boyd and Kalu (1979), Heckman and Binder (1988)

Type II sensory 30–40 ms−1 Normal Boyd and Kalu (1979)

Motor axon 70–110 ms−1 Exponential Heckman and Binder (1988), Zengel et al. (1985)

movement, i.e., muscle forces must be directed and transmitted
towards the skeleton to generate joint torques and limb movement.
Muscles are typically modelled either as line-segments (1D models)
or as volumes (3D models). One-dimensional models assume that
force transmission within the muscle is solely characterized by the
attachment points of the musculotendon complex. That is, a single
force vector between attachment points describes whole muscle
behaviour (e.g., Delp et al., 2007; Wu et al., 2016; Wochner et al.,
2020). This idealisation of muscles provides a straightforward and
computationally inexpensive method to model muscles, but comes
at the cost of physiological accuracy.

On the other hand, 3D models treat the muscle as a
volumetric solid and are able to capture varying fibre architecture
and force transmission to the skeleton via attachment areas
(rather than points) (e.g., Johansson et al., 2000; Blemker et al.,
2005; Röhrle et al., 2017). While being more computationally
expensive and often difficult to characterise, 3D models can reveal
subtleties in muscle deformation not possible via 1D models, e.g.,
varying line-of-action, non-uniform muscle strains, contact with
surrounding tissue, and surface deformations (e.g., Blemker et al.,
2005; Wu et al., 2014; Röhrle et al., 2017; Weickenmeier et al., 2017;
Ramasamy et al., 2018; Péan et al., 2019).

3.3.2 Phenomenological approach: Hill-type
models

Phenomenological models stem from the pioneering work
of Hill (1938), who investigated the relationship between force
production and contraction velocity. These models describe whole

muscle behaviour and are typically composed of three elements:
contractile element (CE), passive element (PE) and series elastic
element (SEE), with the relationship (e.g., Zajac, 1989):

FCE (t) + FPE (t) = FSEE (t) . (9)

where FCE(t) is the contractile element and represents the muscle
active or contractile force, and FPE(t) and FSEE(t) are the parallel
elastic and serial elastic elements and typically represent the
connective tissues in the muscle and tendons, respectively (Eq. 9).
Here, we focus on muscle’s active force and thus only consider
the FCE in the following (Eq. 10). The CE accounts for the
hallmark behaviours of muscle contraction such as the force-
velocity fvel(t) ∈ [0,1] and force-length flen(t) ∈ [0,1] relationships
via superposition, (e.g., Gordon et al., 1966; Lloyd and Besier, 2003):

FCE (t) = αmusc (t)Fmax cos(ϕpenn) flen (L (t)) fvel (L̇ (t)) . (10)

Here, L(t) and L̇(t) = dL(t)/dt are muscle length and velocity,
respectively, Fmax is the maximum isometric force and ϕpenn is the
pennation angle. Lastly, αmusc(t) ∈ [0,1] is the muscle activity, which
describes the average degree of muscle activation, with αmusc(t) = 1
for full activation.

Eq. 10 assumes that the muscle properties, deformation, and
activation are constant over the muscle. Therefore, such models
lend themselves to a 1D representation of muscles, i.e., as line
segments between attachment points. The low computational cost
and simplicity of these models have led to their prevalence in the
musculoskeletal biomechanical modelling community (e.g., Hatze,
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1981; Zajac, 1989; Cheng et al., 2000; Scovil and Ronsky, 2006;
Delp et al., 2007; Wu et al., 2016; Seth et al., 2018; Wochner et al.,
2020).

Despite their prevalence, 1D muscle models are not without
limitations. For example, it is not straight-forward to capture
complex muscle architecture, model contact with surrounding
tissues, or to consider the distributions of connective tissue and
shearing within the muscle.

To overcome these limitations, the phenomenological approach
has also been utilized with 3D geometries (e.g., Blemker et al.,
2005; Wu et al., 2014; Röhrle et al., 2017; Weickenmeier et al., 2017;
Péan et al., 2019). Here, local contractile stresses rather than total
muscle force are considered. Then, Eq. 10 can be reformulated as
(e.g., Johansson et al., 2000):

SCE (t,X) = αmusc (t)Smax flen (λf (t,X)) fvel ( ̇λf (t,X))M, (11)

where λf = L(X)/L0(X) is the normalised fibre length or fibre stretch
at positionX, and is the square of the invariant I4 of theCauch-Green
deformation tensor (Eq. 11). For the 1D case, the geometric line
segment acts to direct FCE(t) towards the attachment points, whereas
in the 3D case, muscle stress is directed along the local muscle
fibre direction a(X) and is accounted for by the structural tensor
M = a⊗ a. An exemplary force-length relationship (Röhrle et al.,
2017) is given as;

flen (λf) = exp(−
|||

|

λf

λopt
f

− 1

wi

|||

|

ri

), (12)

where λopt
f is the optimal fibre length, wi and ri govern shape of the

force-length relationship, where i = asc when λf < λ
opt
f and i = dsc

when λf > λ
opt
f corresponding to the ascending and descending

legs, respectively. Additionally, an exemplary force-velocity relation
(van Leeuwen, 1991; Böl and Reese, 2008) is given as;

fvel (λ̇f) =

{{{{{{
{{{{{{
{

1− ̇λ̄f

1+ qc
̇λ̄f

if λ̇f ≤ 0,

dv − (dv − 1)
1+ ̇λ̄f

1− qc qe
̇λ̄f

if λ̇f > 0,

(13)

where ̇λ̄f = λ̇f/λ̇
min
f is the stretch rate normalised to the minimum

fibre stretch rate, and qc and qe are dimensionless characterisation
parameters for the concentric and eccentric parts, respectively.
Lastly, dv is the degree of force enhancement during eccentric
contractions. Exemplary material parameters for Eqs 12, 13 are
given in Table 4.

Typically, muscle activation (αmusc(t); Eqs 10, 11) is treated
at the whole muscle level, i.e., αmusc scales whole muscle
activity—regardless of the dimensionality of the muscle model,
i.e., 1D or 3D (e.g., Blemker et al., 2005; Delp et al., 2007;
Péan et al., 2019; Wochner et al., 2020). A common approach to
characterize αmusc is via a muscle’s electrophysiological signals.
Here, electromyography (EMG) signals are rectified and smoothed
and serve as a basis for muscle activity. However, since the EMG-
to-force relationship is non-linear, a further mapping is used and is
usually termed “activation dynamics,” i.e.,

αmusc (t) = f (EMG (t)) , (14)

where EMG(t) is the rectified and smoothed EMG signal. While
this is common place in 1D models (e.g., Hatze, 1981; Lloyd and
Besier, 2003; Rockenfeller and Günther, 2017a; Walter et al., 2020),
3D models typically apply inverse dynamics to compute αmusc(t) or
impose it directly (e.g., Röhrle and Pullan, 2007; Péan et al., 2019).

While 3D models theoretically allow for spatial heterogeneity
of muscle properties and activation, this is often overlooked. This
means that the muscle volume is activated simultaneously (e.g., via
Eq. 14), and no distinction is made between different fibre types.
Recently, 3D models have included the spatial distribution of motor
units by treating them in a volumetric sense, i.e., VFi(X) represents
the volume fraction ofmotor unit i at positionX in themuscle.Then,
muscle activity may be computed by (e.g., Röhrle et al., 2019; Saini
and Röhrle, 2023),

αmusc (t,X) =
NMN

∑
i
αi (t) VFi (X) , (15)

where αi(t) is the activity of motor unit i. Heterogeneous contractile
properties can analogously be defined in relation to VFi(X). For
example, the peak isometric stress (Smax, Eq. 11), which is typically
spatially constant, may be defined by

Smax (X) =
NMN

∑
i
Smax,i VFi (X) , (16)

where Smax,i is the peak isometric stress of motor unit i.
Note that Eq. 11 additively splits passive and active muscle

behaviours and can be considered as a generalisation of theHill-type
model (Eq. 10). Alternatively, passive and active contributions can
bemultiplicatively split (at the level of the deformation gradient). For
detailed discussion of the differences between the approaches, and a
further development of hybrid approaches, see Klotz et al. (2021).

3.3.3 Biophysical approach: Sliding filament
models

Rather than taking a black box approach to muscle contraction,
biophysical models simulate contractile mechanisms at the
microscale.Thesemodels are primarily based on the sliding filament
theory pioneered by A. F. Huxley (Huxley, 1957). Briefly, the starting
point of themodel is a fraction of attached cross bridges nXB (uXB, t),
where uXB is the cross bridge displacement from the equilibrium
(null force) position (along direction x). The conservation of cross
bridges over an arbritary distance yields (e.g., Keener and Sneyd,
2009):

∂nXB

∂t
= (1− nXB) fatc (uXB) − nXB gdtc (uXB) + v (t)

∂nXB

∂x
. (17)

That is, the rate of change of cross bridges ṅXB is the difference
between attachment (1− nXB)fatc(uXB) and detachment nXB
gdtc(uXB) plus the “inflow” of nXB over uXB with velocity v (where
v > 0 is contraction). By assuming that a bound cross bridge acts as
a linear spring with stiffness κ, total contractile muscle force can be
computed by:

FCE (t) = αmusc (t) ρXB κ∫
−∞

∞
uXB nXB (uXB, t) dx, (18)

where ρXB is the total number of cross bridges with displacement
uXB. Force production occurs via the molecular motor myosin,
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TABLE 4 Material properties for themuscle contractile stress.

Symbol Description Value Source

Smax Maximum isometric stress 0.09–0.21 N/mm2 Maughan et al. (1983), Kent-Braun and Ng (1999)

Force-length

λopt Optimal sarcomere length 1.09 to 1.31 Saini and Röhrle (2022)

wasc Shape param. (ascending branch) 0.32 to 0.36

rasc Shape param. (ascending branch) 2.4 to 3

wdsc Shape param. (descending branch) 0.23 to 0.37

rdsc Shape param. (descending branch) 1.4 to 2.2

Force-velocity

λ̇min
f maximum fibre stretch rate −17 1/s Böl and Reese (2008)

qc Shape param. (concentric) 5

qe Shape param. (eccentric) 5

dv Eccentric force enhancement 1.5

which interacts with actin and converts chemical energy into
mechanical energy. Such models have been typically been used to
study micromechanical contraction dynamics, as they become too
cumbersome and computationally expensive at the whole muscle
scale. Attempts have been made to simplify the partial differential
equations in the Huxley type models to ordinary differential
equations (e.g., Zahalak, 1981; Razumova et al., 1999).Thesemodels
make certain a priori assumptions on the distribution of cross
bridges n(x, t) and have been used at the whole muscle scale for
1D and 3D models (e.g., Gielen et al., 2000; Oomens et al., 2003;
Hayashibe and Guiraud, 2013). In such models, muscle activity
is typically a function of α-motoneuron firing times ( frMN

i (t),
for α-motoneuron i) that control Ca2+ concentration, leading
subsequently to cross bridge cycling (e.g., Razumova et al., 1999;
Shorten et al., 2007). This can be broadly formulated as (c.f. Eq. 14)

αmusc (t) = f ( fr
MN
i (t) ) i = 1,…,NMN, (19)

where NMN is the total number of α-motoneurons. Note that
the phenomenological approach can also be applied to compute
muscle activity on the basis of individual motor unit activity (e.g.,
Fuglevand et al., 1993; Raikova et al., 2018).

The muscle models presented thus far do not consider action
potential propagation along muscle fibres. This can be justified by
assuming instantaneous propagation of the action potential, which
has been shown to have a negligible effect on musculotendon
force, when behaviour in the range of seconds is of interest
(Schmid et al., 2019; Saini et al., 2022). However, action potential
propagation must be modelled when sub-millisecond contractile
behaviour is of interest or when electrophysiological modelling is
required (e.g., Mordhorst et al., 2015; Klotz et al., 2022). The latter
requires multi-physics modelling to compute potential fields at
the macroscopic scale (e.g., Fernandez et al., 2005; Böl et al., 2011;
Klotz et al., 2022) or within individual muscle fibres via multiscale
modelling (e.g., Heidlauf and Röhrle, 2014; Mordhorst et al., 2015;
Schmid et al., 2019). Multi-physics muscle models simulate action
potential propagation via Hodgkin-Huxley type models (Hodgkin
and Huxley, 1952). In multiscale models, muscle activity is a

function of the local (half) sarcomere stress γsarc, which itself is
dependent on the percentage of cross bridges in the post-stroke state
Ā2(t), and the rate of shortening λ̇f along the fibre, parameterised by
s, i.e., (c.f. Eq. 15),

αmusc (t,X) = f ( γsarc (Ā2 (t) , λ̇f (s) ,X) ) . (20)

3.3.4 Integrating proprioceptive feedback
Mechanical quantities such as muscle stretch, rates of stretch,

pressure, and tension throughout the musculotendon complex are
sensed by proprioceptive sensory organs, which interact with the
neural system, completing the feedback loop (Section 3.4). From
a modelling perspective, these mechanical quantities are readily
available from the muscle models.

Within the 3D framework, a distribution of muscle spindles
can be defined within the muscle at locations Xspindle

k , k =
1,…,Nspindle. Experimental data on the exact locations of muscle
spindles is sparse; assuming a uniformdistribution seems reasonable
to ensure a good sensory coverage of the muscle. On the other
hand, Golgi tendon organs (GTOs) are confined to regions adjacent
to the myotendinous junctions and each GTO lies in series within
a specific set of muscle fibres (Schoultz and Swett, 1972), i.e., at
locations XGTO

j , j = 1,…,NGTO confined to the myotendinous
region. These locations are associated with a set of fibres for 3D
multiscale models and with a given volume (with fibre orientation)
for 3D macroscopic models. The mechanical variable of interest can
be extracted in a straightforward manner at these locations at any
given time, e.g., stretch and rate of stretchmay be used for themuscle
spindles, i.e., λf(X

spindle
k , t), λ̇f(X

spindle
k , t), or fibre tensile stress for

Golgi tendon organs, i.e., S(XGTO
j , t). Note that λf does not require

the modelling of individual fibres (i.e., multiscale model), and can
be approximated by local deformation in continuum mechanical
models, or by whole muscle deformation in 1D models (see below).
Furthermore, since many Golgi tendon organ models take total
muscle force as input (Section 3.4.2), the local stresses need to be
converted to a singular force value that represents total muscle force.
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This may be achieved by defining a surface over the myotendinous
junctions and calculating the total force from the local stresses and
the plane’s cross-sectional area, i.e., Fmusc = ∫SS(XGTO)dS.

In 1D models, the entire muscle experiences the same
deformation and thus only an averaged sense of muscle stretch
can be obtained, i.e., λf(t) = f(L(t)/L0(t)), where L0 and L are the
resting and current muscle lengths, respectively. That is, all muscle
spindles experience the same deformation. ComputingGTOactivity
is similarly straightforward given that force at the myotendinous
junction must equal total muscle force (at static equilibrium) since
the musculotendon-complex is modelled as a 1D force vector.

Model inputs and outputs: Typical inputs to muscle models
are spike trains of the α-motoneuron pool. Typical outputs of the
muscle models are contractile forces and length changes (for non-
isometric contractions). Muscle models may either be biophysical
or phenomenological or a combination of the two (i.e., multiscale
models), and either 1D or 3D.

3.4 Proprioceptive feedback models

The preceding sections dealt with efferent activity in the
descending corticomuscular pathway, through which signals from
the motor cortex are propagated through the spinal circuitry
and culminate in muscle contraction. The afferent or ascending
pathway proceeds in the opposite direction, where proprioceptive
information from sensory organs embedded in the musculotendon
complex are carried “upstream” towards the spinal cord and motor
cortex. Muscle spindles and Golgi tendon organs are the major
sources of proprioceptive feedback directly modulating muscle
activity. Thereby, muscle spindle activity excites and GTO activity
inhibits the α-motoneurons of the parent muscle (Section 2.4). This
section will describe the contributions of these two types of sensory
organs to the corticomuscular pathway and themost frequently used
modelling approaches.

3.4.1 Muscle spindles
Muscle spindles are specialised organs that sense muscle stretch

and stretch velocity. There exists a range of phenomenological
models that provide mathematical functions to describe the
experimentally derived relationship between muscle stretch and the
resulting change in afferent firing rate (Prochazka and Gorassini
(1998) and references therein). Prochazka and Gorassini (1998)
provides a generalised model for the muscle spindle Ia firing rate
frIa(t):

frIa (t) = 4.3 vfib(t)0.6 + ufib (t) + frIa, (21)

where the firing rate depends on the muscle fibre displacement
ufib(t), muscle fibre velocity vfib(t) and the mean firing rate frIa.
Fibre deformation information may be derived via a muscle
biomechanical model (i.e., Section 3.3.4). This model has been able
to replicate experimentally recorded muscle spindle firing rates for
a range of stretch velocities, however, it ignores the modulation of
spindle sensitivity by the fusimotor system.

Maltenfort and Burke (2003) and Schmid et al. (2022) proposed
another phenomenological model, which calculates the Ia afferent
firing rate not only in response tomuscle stretch, but also in response

to fusimotor activation.Therefore, separate Ia firing rates in response
to passive stretch, and static and dynamic fusimotor input are
calculated, then the contributions in response to fusimotor drive are
summed such that the higher rate partially suppresses the lower rate
before being added to the passive contribution.

Mileusnic et al. (2006) and Lin and Crago (2002b) both created
so called semi-physiological models, by explicitly modelling the
anatomical structure of the spindle, i.e., the three intrafusal fibre
types and their contributions to Ia and II afferent firing rates as well
as their sensitivity to fusimotor input. In the physiological spindle,
the contributions of each of the intrafusal fibres to the overall firing
rate are summed non-linearly,meaning that the lower firing rates are
partially suppressed by the higher rates, which is known as occlusion
(Schäfer, 1974; Banks, 1994). The model by Mileusnic et al. (2006)
considers this appropriately, while in comparison the larger rate
in the model by Lin and Crago (2002b) completely suppresses the
lower rate. Recently, Blum et al. (2020) published a sophisticated
muscle spindle model, based on the contraction mechanism of
the intrafusal fibres and their interaction with the muscle-tendon
complex.Themodel is able to predictmany experimentally observed
activation- and history-dependent patterns of Ia afferent firing
without explicitlymodelling them.However, due to its complexity, it
is expected to exceed the requirements for amuscle spindlemodel in
a framework focusing mainly on the corticomuscular pathway from
cortex to contraction.

Commonly, muscle spindle models represent the afferent firing
rates as continuous frequency values. However, for the integration
in spike-based spinal circuitry models, the signals have to be
converted into spike trains. A Poisson process such as that
described byVannucci et al. (2017) or alternatively a renewal process
(Gerstner et al., 2014; Ross, 2014) can be used. This means that the
variability of the inter-spike intervals of individual spindles can also
be considered (e.g., Burke et al., 1979; Nordh et al., 1983). It must be
noted that the described muscle spindle models are parameterised
with experimental data of muscle spindle firing rates recorded from
cats. To represent human muscle spindle firing, which is slower than
in cats, the frequency can be scaled (e.g., Dimitriou and Edin, 2008;
Grandjean and Maier, 2014).

Model inputs and outputs: The choice of the muscle spindle
model is coupled to the types of pathways that shall be considered
within the spinal circuitry model. Depending on the model, muscle
fibre stretch, its first and second time derivatives as well as activity of
static and dynamic γ-motoneurons modulate the firing rates of the
muscle spindle’s Ia and II afferents. It might be necessary to convert
the firing rates into spike trains to pass the information to respective
target neurons in the spinal cord.

3.4.2 Golgi tendon organs
Golgi tendon organs (GTO) are located at the muscle-tendon

interface and sense the force produced by the muscle fibres to
which they are connected (Section 2.4). To our knowledge the only
biophysically representative GTO model that relates single GTO
activity to the contraction of specific muscle fibres was presented
by Mileusnic and Loeb (2006). The integration of this model in the
corticomuscular pathway, requires the muscle model to provide the
tension in singlemuscle fibres and their assignment to specificmotor
units.
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According to Al-Falahe et al. (1990), the ensemble firing rate
of all GTOs in a muscle is a better representation of muscle force
than the activity of single GTOs. Thus, several so called ensemble or
population models have been proposed (e.g., Lin and Crago, 2002a;
Mileusnic and Loeb, 2009; Crago, 2018) that relate total muscle
force to the summed, or alternatively averaged, Ib afferent firing
rate. The model by Lin and Crago (2002a), which is based on a
three step filtering process, is the only one which considers the
effect of muscle tension history. However, if this is not relevant for
the intended modelling approach, a computationally more efficient
approach such as a polynomial function can be used. A saturating
function (Eq. 22) as proposed by Mileusnic and Loeb (2009) and
Crago (2018) is able to predict the relation between total muscle
force Fmusc(t) and (total or mean) Ib afferent firing rate frIb(t),
wherein, Fmax denotes the maximum voluntary muscle force:

frIb (t) = a(
Fmusc (t)
Fmax
)
b
+ c. (22)

The parameter b determines the steepness of the function
and takes on values between 0.2 and 0.26 (Mileusnic and Loeb,
2009; Crago, 2018), and the parameters a and c determine the
lower threshold for sustained firing and the maximum rate at
maximum muscle force. Muscle force may be derived via a muscle
biomechanical model (i.e., Section 3.3.4). These parameters can be
tuned to correspond to the range of frequencies recorded in human
subjects (e.g., Dimitriou and Edin, 2008).

Note that, to convert the Ib afferent frequency values into a spike
train, a Poisson or renewal process can be employed, similar to the
muscle spindle models (Section 3.4.1).

Model inputs and outputs: The Golgi tendon organ model
calculates the firing times of Ib afferents with reference to the
total (or alternatively local) muscle force. Similar to muscle spindle
afferents, it might be necessary to convert the firing rates into spike
trains to pass the information to the respective target neurons in the
spinal cord.

4 Discussion

In the preceding sections, we presented themodelling landscape
of the corticomuscular motor pathway: the motor cortex, the
spinal cord circuits, skeletal muscles and proprioceptive feedback
systems, with a particular focus on their integration. System
level models are important, particularly in the fields of motor
control and biomechanics, because studying complex physiological
behaviour such asmovement involvesmany elaborate, complex, and
hierarchical interactions and mechanisms. Individual components
have usually been modelled in isolation by phenomenological
and biophysical descriptions. However, there are very few studies
which have taken a holistic approach to corticomuscular pathway
modelling, i.e., between cortex and contraction.

Existing models of the corticomuscular pathway, which have
considered the motor cortex and spinal network in conjunction
with biomechanical models of muscle have typically used individual
neurons or motor units to control eachmuscle separately. Simplified
circuits of the spinal cord and connectivity from the cortex are used,
which is understandable given that these connections are intricate
and challenging to define. However, building on state-of-the art

models of each component along the corticomuscular pathway and
integrating them will result in a more realistic model to explore
motor control.

Simplifying components of the corticomuscular pathway such
as descending drive or motor unit recruitment can result in specific
nuanced behaviour being missed. For example, the use of single α-
motoneurons and motoneuron pools to represent an entire muscle
means that questions regarding how recruitment might change
within the MN pool, which occurs in fatigue, ageing and disease
states, cannot be answered. Increasing the complexity of previous
models, such as that by Teka et al. (2017), which used simplified
single neuron models to represent descending drive and simplified
motor unit pools to model contraction of individual Hill-type
muscle models in the arm with an integrated spinal network, means
that more complex behaviours and strategies used by the human
motor control system can be explored. A key suggestion from the
work by Teka et al. (2017) was that the afferent feedback from
spinal networks played a significant role in the directional firing
of motor cortex neurons, which highlights the potential interaction
of subsystems in emergent phenomena. However, ignoring the
behaviour of populations or networks of neurons by only having
simplified, single neuron representationsmakes it difficult to address
questions about the role of motor cortex.

Amore realisticmodel of the corticomuscular pathway is needed
to provide a mechanistic understanding of the entire system. Recent
studies have discussed “closing the loop” between the computations
of the brain and biomechanical representations of body (James et al.,
2018; Mascaro et al., 2020; Pérez Fernández et al., 2021). James et al.
(2018) integrated detailed brain circuits and biomechanical models
in saccadic eye movements and Pérez Fernández et al. (2021)
addressed the vestibular-ocular reflex. However, extraocular motor
units use unique recruitment and contractile characteristics and
are hard to compare to generalised limb movements (Shall and
Goldberg, 1992). A more generalisable model which incorporates
typical corticospinal and proprioceptive circuits of limb muscles
would be more useful in applying the model to understanding
neuromuscular diseases involving the corticomuscular pathway.

Mascaro et al. (2020) described a methodological framework in
which combining experimental data with computationalmodels can
be used to construct and update model parameters, as well as drive
experimental design. The framework by Mascaro et al. (2020) used
experimental data from calcium imaging and electrophysiological
recordings to drive and tune a mouse model which combined
a spinal cord and biomechanical model of the upper limb, but
did not yet include the motor cortex. Including the motor cortex
would be a step further in modelling the entire corticomuscular
pathway. In a similar framework with a human model, experimental
data for model tuning and testing could be derived from non-
invasive means such as TMS, functional near-infrared spectroscopy
(fNIRS), electroencephalography (EEG), and EMG, as well as
available invasive electrophysiological recordings such as that taken
from micro-electrocorticography (μECoG) of epilepsy patients. The
characterisation and validation of an integrated corticomuscular
pathway model poses a major challenge, this will be further
discussed in Section 4.2.

The work outlined here lays out the beginning of a framework
for integrating the motor areas upstream from the spinal cord in
biomechanical models and reinforces the constructive synergy of
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experimental and modelling research. An important consideration
to build and run these models is a suitable implementation
environment. An overview of existing platforms is outlined in
Section 4.1. The integration of complex, physiologically based
models of the motor cortex, spinal cord, muscle and sensory
feedback organs can build understanding about the corticomuscular
pathway at the biophysical level with the continued use of
experimental data and testing (Section 4.2).

4.1 Implementation

There are a plethora of model implementations, software
packages, and programs for each of the corticomuscular pathway
components, available both in the literature and commercially. The
selection of a particular modelling tool is challenging and is often
guided by a mixture of practical (e.g., cost and availability) and
research considerations. The wide range of available options hinders
collaboration within the modelling community as modelling
tools typically remain isolated, leading to model duplication and
impeding validation and verification. Compounding this issue is a
poor uptake of strong open-source policies by journals and research
groups regarding the availability of themodelling outputs.Therefore,
most models are implemented and kept in-house, using general
purpose programming languages such as Fortran, C++, Matlab, or
Python.

Despite this, certain software tools have gained prominence
within the neuromuscular modelling community. For example,
modelling the brain with neural network packages such as
NEURON (Hines and Carnevale, 2001), NEST (Diesmann and
Gewaltig, 2001), BRIAN2 (Stimberg et al., 2019), or MIIND
(Osborne et al., 2021); or modelling musculoskeletal mechanics
with OpenSim (Delp et al., 2007), or AnyBody Modelling System
(AnyBody, Aalborg, Denmark) for 1D muscle models; or FEBio
(Maas et al., 2012) or OpenCMISS (Bradley et al., 2011) for 3D
models. An overview of software tools is provided in Table 5.
In addition to these tools, databases provide important steps
towards model unification and data sharing at the level of
the individual motor pathway components. For example, the
Musculoskeletal Atlas Project (MAP) (Zhang et al., 2014) aims to
standardise musculoskeletal geometries and ModelDB provides
a model exchange platform for computational neuroscience
(McDougal et al., 2017). Also, The Allen Institue (Brain Map and
Neurodata Without Borders) (Oh et al., 2014) and eBrains (Human
Brain Project) (Schirner et al., 2022) provide a wide range of data
and tools for brain-based research and technology development.
BioModels hosts a broad collection of mathematical models of
biological systems (Malik-Sheriff et al., 2020).

Although most modelling tools can interface with others via
application programming interfaces (APIs), this often comes with
modelling limitations, or involves added model configuration
effort and computational costs. Here, standardisation of models
and their inputs and outputs is key to unifying motor pathway
models and fostering exchange and communication within
the modelling community. For example, the Human Physiome
project (Nickerson et al., 2016) seeks to standardise computer
models across physiological systems (including the neural, spinal
and musculoskeletal systems) and across scales. The Physiome

Model Repository (PMR) (Yu et al., 2011) provides a platform
to supply standardised modelling components for the motor
pathway. Beyond that, the Physiome journal offers a means to
publish mathematical models of physiologial components in a
peer-reviewed journal, thereby ensuring model availability and
reproducibility. Additionally, projects such as SimTK (National
Institutes of Health, United States) provide a platform to
share software, data, and models for the biomedical modelling
community. Recently developed modelling tools enable the
modelling of the integrated motor pathway in a single environment
(e.g., Iyengar et al., 2019; Maier et al., 2019). While these tools
currently exclude cortex modelling, they take steps towards a fully
integrated motor pathway modelling environment.

In neuroscience, there have been recent advances in
capturing and processing large sets of neural data recorded
from microelectrode arrays, even in real time (Franke et al.,
2012; Robinson et al., 2013). Newman et al. (2012) developed
the NeuroRighter API which can be used to carry out ‘closed-
loop’ experiments in which dynamic, real-world behaviour can
be linked to electrophysiological measurements of brain activity.
Taking a “Model-in-the-loop” approach (Potter et al., 2014) to
combine model building with experiments is necessary for
hypothesis testing and generation, data collection, and model
validation.

4.2 Model validation

It is important to validate physiological models by comparing
output variables or behaviours to experimental data. This poses
a challenge in validating corticomuscular pathway modelling
methods since the neuromuscular system remains relatively
inaccessible to non-invasive methods. However, this lack of
experimental data provides an opportunity to use modelling
to inform and guide experimental studies and to increase our
understanding of the corticomuscular pathway in an iterative
fashion, i.e., formulating theories, building models, and conducting
experiments, the findings of which can refine theories.

Motor pathway components have largely been validated in
isolation. At the system or corticomuscular pathway level, however,
what remains a challenge is the validation of the interactions
and overall behaviour. Coupling previously validated models of
individual components means that new parameters of connectivity
will arise. This can result in new emergent behaviours and
interactions, resulting in behaviours or outputs which need to be
systematically validated. The modelling frameworks that combine
spinal circuits, muscles and sensory organs already provide various
coupling strategies and can be referred to for respective validation
data (e.g., Stienen et al., 2007; Raphael et al., 2010; Dideriksen et al.,
2015; Sreenivasa et al., 2015; Moraud et al., 2016; Kapardi et al.,
2022).

This leaves two challenges for the validation of a model of
the corticomuscular pathway. First, experimental studies which
guide the coupling of the motor cortex and the spinal circuits
have to be identified. Second, the overall system behaviour, ideally
involving the action of all model components, has to be validated
by comparing the simulated motor output to those of appropriate
experimental studies.
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TABLE 5 A list of selected software tool for the implementation of the corticomuscular motor pathway.

Name Neurons Muscle Sensory organs Source

Single cells Neural networks 1D 3D

NEST ✓ ✓ Diesmann and Gewaltig (2001)

OpenCOR ✓         Garny and Hunter (2015)

BRIAN2 ✓ ✓ Stimberg et al. (2019)

NEURON ✓ ✓       Hines and Carnevale (2001)

MIIND ✓ Osborne et al. (2021)

OpenSim     ✓     Delp et al. (2007)

Anybody* ✓ AnyBody Technology, Denmark

LS-DYNA*     ✓     Ansys Inc., United States

FEBio ✓ Maas et al. (2012)

OpenCMISS ✓     ✓   Bradley et al. (2011)

ReMoto ✓ ✓ ✓ Cisi and Kohn (2008)

OpenDiHu ✓     ✓ ✓ Maier et al. (2019)

NEUROiD ✓ ✓ ✓ ✓ Iyengar et al. (2019)

✓ indicates that the tool is suited, by default, for the implementation of the respective pathway component. Commercial software tools are marked with an asterisk (*).

There are many techniques used in the field of connectomics
such as anterograde and viral tracers which are used to map the
connections of neurons (Rathelot and Strick, 2009; Saleeba et al.,
2019). However, only in simpler organisms such as a roundworm,
C. Elegans (Varshney et al., 2011), has the full connectivity of
neurons been mapped; the mouse brain has also been a recent
focus of large-scale research projects (Oh et al., 2014; Erö et al.,
2018). The sheer scale and complexity of mapping the human
nervous system proves to be a challenge, though methods in
electron microscopy and immunohistochemistry can be useful
in determining synaptic pathways in the cortex and spinal cord
(Saleeba et al., 2019 for a review on these methods). Invasive
techniques for measuring data from neuron activity such as
electrode arrays and calcium imaging (Trautmann et al., 2021)
can be used, as well as intramuscular and intracellular electrodes
(e.g., Powers and Binder, 1985; Zaback et al., 2022). Perturbations
through pharmacological blockades, optogenetics, or localised
lesions in animal models can also provide experimental evidence
to test disruptions and resulting behaviour in the corticomuscular
pathway model (Ziemann, 2013; Watanabe et al., 2020).

Non-invasive brain stimulation techniques such as transcranical
direct current stimulation (tDCS), TMS and transcranial alternating
current stimulation (tACS) can be used to stimulate activity in the
motor cortex and investigate the downstream effects. For example,
different protocols of strength and timings of TMS experiments
can have facilitatory or inhibitory effects on the size of the motor
evoked potentials (MEP) recorded by electromyography (EMG)
(Ni et al., 2011; Volz et al., 2015). This can be combined with other
experimental manipulations of excitation or inhibition, for example,
through pharmacological blockades, to develop and test theories
about circuits in the corticomuscular pathway (Ziemann, 2013).
In addition, peripheral nerves can also be strategically stimulated
with direct current stimulation to modulate spinal circuitry (e.g.,

Pierrot-Deseilligny, 2002) and high-density EMG can be utilised
to analyse the activity of motor units (e.g., Yavuz et al., 2018).
These experimental methods can be used in the model development
loop to validate and fine tune the parameters in building the
corticomuscular pathway circuitry.

4.3 Opportunities

Integrating existing knowledge about the motor system in a
single system model means that we can potentially explain many
phenomena involving different types of human movements and
movement pathologies. Amodel encompassing the corticomuscular
motor pathway will be able to contribute to explaining a wide
range of electrophysiological findings related to health and
disease, such as the task-dependent alteration of the motor unit
recruitment order (e.g., Desnedt and Gidaux, 1981; Formento et al.,
2021). Furthermore, it can also be of great benefit to provide
a model of neurosurgical procedures, for example, selective
dorsal rhizotomy for the reduction of spasticity in cerebral palsy
patients by selectively cutting dorsal afferent fibres carrying
sensory feedback to the spinal cord, or for the investigation
of other “upper” or “lower” motoneuron diseases to compare
and understand the causes of spasticity and flaccidity. Models
may also help with the interpretation of responses to brain
stimulation such as the effect of TMS protocols on motor evoked
potentials as well as shed light onto the significance of direct,
corticomotoneuronal connections onmotor control, a characteristic
unique to humans as well as higher primates (Lemon, 2008). An
integrated modelling framework can also be used to investigate the
effect of traumatic events on the corticomuscular pathway such
as spinal cord injury or ischemic stroke. Continued development
and improvement of the modelling frameworks, for example, by
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extending sensory feedback loops to the cortex, can also enable
the investigation of the contribution of the cortex to long-latency
responses of reflexes (Matthews, 1991; Reschechtko and Pruszynski,
2020).

A model of the corticomuscular motor pathway combines the
fields of computational neuroscience and biomechanics. To continue
the development of integrated models in motor control, experts
from experimental neuroscience, connectomics, computer science,
electrical engineering and mathematics will need to collaborate,
providing an opportunity to open up new fields of research.
Including clinicians in the model development process is an
opportunity to guide clinically relevant questions, experiments and
applications and can promote use in relevant cases. Models such as
the one proposed in this text, which combine multiple subsystems
from the brain to the muscle, can direct experiments, allow us to
test theories and thereby develop new concepts and hypotheses of
human motor control.

5 Conclusion

The motor pathway is composed of multiple interrelated
and intricately connected subsystems. Therefore, knowledge
of individual components cannot illuminate properties of the
entire system since the interrelations themselves are responsible
for emergent behaviours. So far, the field of computational
biomechanics has tended to focus on motor output, i.e., the
properties of muscle and the peripheral nervous system, while
the field of computational neuroscience has tended towards the
central nervous system, brain regions, and the properties of neural
networks.

Modelling the corticomuscular motor pathway from motor
cortex to muscle contraction is the next step in integrating
neuroscience models of neurons and brain activity with
biomechanicalmodels ofmuscles in the body.This allowsmicroscale
models of cells to be expanded upon to allow for the exploration
of larger meso- and macroscale systems. For each component
in the corticomuscular motor pathway, the motor cortex, the
spinal cord, the muscle, and its proprioceptors, a variety of
modelling approaches already exists. Choosing the type and
complexity of the model and components will depend on the
scientific questions asked or the application in which it is to be
used.

A major challenge which remains in modelling the
corticomuscular pathway is being able to characterise the
connectivity between the parts and so the gathering of additional
experimental evidence will be vital to provide plausible parameters
and validation. This endeavour requires a team of interdisciplinary
experts to direct and test new theories. Creating integrated models
means that how each of these different components interact and

contribute to complex behaviours can be explored which will
develop our understanding of motor pathologies and the human
motor system.
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