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Chemically induced local lattice distortions versus structural
phase transformations in compositionally complex alloys
Yuji Ikeda 1,2✉, Konstantin Gubaev3, Jörg Neugebauer 2, Blazej Grabowski1 and Fritz Körmann 2,3✉

Recent experiments show that the chemical composition of body-centered cubic (bcc) refractory high entropy alloys (HEAs) can be
tuned to enable transformation-induced plasticity (TRIP), which significantly improves the ductility of these alloys. This calls for an
accurate and efficient method to map the structural stability as a function of composition. A key challenge for atomistic simulations
is to separate the structural transformation between the bcc and the ω phases from the intrinsic local lattice distortions in such
chemically disordered alloys. To solve this issue, we develop a method that utilizes a symmetry analysis to detect differences in the
crystal structures. Utilizing this method in combination with ab initio calculations, we demonstrate that local lattice distortions
largely affect the phase stability of Ti–Zr–Hf–Ta and Ti–Zr–Nb–Hf–Ta HEAs. If relaxation effects are properly taken into account, the
predicted compositions near the bcc–hcp energetic equilibrium are close to the experimental compositions, for which good
strength and ductility due to the TRIP effect are observed.
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INTRODUCTION
High entropy alloys (HEAs), or compositionally complex alloys
(CCAs), have inspired a new era in alloy design1,2. Particularly the
body-centered cubic (bcc) HEAs composed of refractory elements
from the groups 4, 5, and 6 in the periodic table reveal excellent
materials properties such as high strength and high melting
points and are thus potential alternatives to Ni-based superalloys3.
The unique mechanical strength of HEAs is ascribed to local lattice
distortions (LLDs) that are driven by chemical disorder. For
example, solid solution strengthening has often been rationalized
by the degree of LLDs4. However, specifically for refractory HEAs, a
critical drawback is their low ductility, as also more generally
known from bcc metals and alloys. To overcome this deficiency, it
has recently been suggested5,6 to make use of transition-induced
plasticity (TRIP) that relies on the structural transformation from
the bcc to the hexagonal close-packed (hcp) phase. Experiments
have shown that a transformation from bcc to hcp-based phases
can be achieved for non-equiatomic compositions of the
refractory Ti–Zr–Nb–Hf–Ta alloy family (Ti35Zr27.5Hf27.5Nb5Ta5

5

and Ti29.4Zr29.4Hf29.4Ta11.8
6) and ductility can be improved as

compared to the equiatomic TiZrHfTa alloy6. A bcc TRIP-HEA
design route thus seems indeed very promising.
Parameter-free ab initio calculations can be employed to

compute LLDs7–10 as well as phase stabilities11,12, i.e., the key
driving force for structural transformations. LLDs have been
investigated from various ab initio perspectives. In fcc HEAs,
interatomic distances were shown to be strongly affected by local
chemical environments13, and this clearly reveals the importance
of local chemistry for determining LLDs. Reversely, LLDs can also
modify the local and global chemistry by their impact on short-
range and long-range order14. Correlations between LLDs and
local atomic properties (atomic charges and volumes) could be
established for various 3d-transition-element HEAs9 and refractory
HEAs15. Furthermore, relaxation energies due to LLDs were shown
to substantially affect phase stabilities of HEAs16,17. Therefore, in

view of an accurate prediction of phase stabilities for the design of
TRIP HEAs, a careful treatment of LLDs is indispensable.
For bcc refractory HEAs containing a significant fraction of

group 4 elements (Ti, Zr, Hf) the situation is, however, seriously
complicated because of the imminent dynamical instability of
these alloys at low temperatures. Complications can indeed be
expected by considering the intrinsic low-temperature dynamical
instability of the individual group 4 elements in the bcc structure,
which is reflected by imaginary phonon modes in ab initio
calculations at 0 K18–21. Dynamical instability is also signified for
the bcc HEAs, e.g., TiZrNbHf22, ZrNbHf22,23, and TiZrMoHfTa23 by
ab initio-computed phonon dispersions. In general, dynamical
instability indicates the tendency of the system to transform
spontaneously to another, low-temperature stable structure. As a
consequence, chemically induced LLDs cannot be determined by
merely utilizing the standard atomic relaxation procedure,
because the latter unavoidably intermixes LLDs and atomic
displacements due to the structural transformation.
Previous molecular-dynamics (MD) simulations21,24 revealed

that, at low temperatures and under cell-shape-constraints, bcc
Ti transforms to a hexagonal ω phase. The ω phase was also
observed in Zr25 and Hf26,27, and in Ti-based alloys like Ti–Nb28.
Recent experiments reported the ω phase for some bcc HEAs as
well. For example, Ti31.25Zr31.25Hf31.25Nb6.25

29, Sc10Ti30Zr30Hf25Re5,
and Sc7Ti30Zr30Hf25Re8

12 exhibit ω nanoprecipitates in the as-cast
state. Homogenized and recrystallized equiatomic TiZrNbHfTa
features the ω phase at bcc twin boundaries when deformed at
77 K30. From an experimental perspective, control over the ω
phase is of high importance, because ω precipitates can cause
embrittlement12,31,32.
To distinguish the atomic displacements caused by the bcc–ω

structural transformation (which could cause embrittlement) from
those induced by chemically induced LLDs (which are often
beneficial for improving the materials’ strength10) it is essential to
systematically distinguish the bcc and the ω structures. For pure
metals (Fig. 1a), this is immediately possible due to the apparent
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symmetry differences between the two structures. For a typical
relaxed configuration of a disordered alloy (Fig. 1b), however, a
distinction of the two structures is much less straightforward due
to the chemical disorder, which breaks the ideal crystallographic
symmetries in both structures. This becomes even more challen-
ging if the relaxed ω structures show line defects21,24.
In this study, we tackle the challenge and develop a robust method

for bcc-disordered alloys to distinguish the bcc–ω transformation
from chemically induced LLDs. Using this method, in combination
with ab initio calculations, we evaluate the phase stabilities of
Ti–Zr–Hf–Ta and Ti–Zr–Nb–Hf–Ta refractory HEAs and reveal the
critical importance of relaxation energies on the bcc–hcp phase
stability. Our results agree well with recent experiments and give
guidance to the design of novel bcc–hcp TRIP HEAs.

RESULTS
Perfect and defective ω structures
The ω phase is particularly known from Ti and Zr alloys33, in which it
can be stabilized by alloying with bcc-stabilizing elements such as V,
Cr, Nb, and Mo28,33. In experiments, it can be likewise stabilized for the
unary crystals of the group 4 elements Ti25, Zr25, and Hf26,27 by
application of high pressure. In DFT calculations at 0 K, the ω phase is
found to be the most stable phase for Ti even at zero pressure, i.e., it is
lower in energy than bcc and hcp34,35. Conventionally, the ω phase is
represented by the perfect ω crystal structure.
The perfect ω structure belongs to the hexagonal crystal system

and, in particular, obeys the symmetries of the P6/mmm space
group (No. 191). The primitive cell of the perfect ω structure
consists of three atoms, one atom located on a 1a Wyckoff site
and the other two atoms on 2d Wyckoff sites. The ω structure can
be obtained by a martensitic transformation starting from the bcc
structure via atomic displacements along one of the 〈111〉bcc
directions without significant cell deformation. The relation
between the lattice parameters of the coherent bcc and ω

structures is

aω ¼
ffiffiffi
2

p
abcc; (1)

cω ¼
ffiffiffi
3

p

2
abcc; (2)

where abcc is the lattice parameter of the bcc structure, and aω and
cω are the lattice parameters of the ω structure perpendicular and
parallel to the sixfold rotation axis, respectively. Specifically, the ω
structure is obtained from the bcc structure by displacing one-
third of the atoms by cω/6 into a positive 〈111〉bcc direction and
another one-third of the atoms into the corresponding negative
direction as sketched in Fig. 2a.
In MD simulations, the perfect ω structure is rarely

observed21,24. Instead, defective ω structures are mostly found.
These structures can be constructed from the perfect ω structure
by introducing linear-chain defects along the symmetry-broken
〈111〉bcc direction as illustrated in Fig. 2b. Korbmacher et al.21,24

reported such defective ω structures for MD simulations in pure Ti.
The authors found that the density of linear-chain defects
becomes higher for larger supercell models and that the
arrangement of these defects is random if not constrained by
periodic images21,24. The specific arrangement of the 〈111〉bcc line
defects depends on the supercell geometry. As discussed below,
the HEAs in the focus of the present work, Ti–Zr–Hf–Ta and
Ti–Zr–Nb–Hf–Ta, display defective ω structures in the same
manner as pure Ti.
Korbmacher et al.21,24 proposed an approach to effectively

distinguish between the perfect ω structure, any possible

Fig. 1 Schematics of the bcc and ω structures. a Pure metals.
b Disordered alloys. Spheres with different colors represent different
chemical elements. Visualization was performed using VESTA55.

Fig. 2 Schematics of the bcc–ω transformation. Black and red
circles represent the bcc and the ω lattice sites, respectively.
a Perfect ω structure. b Defective ω structure. c Twin variant of the
original bcc structure, obtained from the twice larger displacements
for the perfect ω structure. Orange circles represent the twin-variant
bcc lattice sites.
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defective ω structure, and the bcc structure which, with slight
modifications, reads:

1. Compute atomic displacements according to

di ¼ ri � rbcci ; (3)

where rbcci and ri denote the internal atomic coordinates of
the ith atom on the ideal bcc lattice site and after relaxation. In
addition to the original bcc lattice sites, the four possible twin
variants obtained according to Fig. 2c should be considered as
candidates for rbcci . Among the five possible candidates,
the relevant rbcci coordinates can be selected by considering
the smallest value of the average of ph111i bcc as defined in the
next step. The reference values rbcci are adjusted to satisfy
X

i

di ¼
X

i

ðri � rbcci Þ ¼ 0; (4)

which ensures that all atomic displacements are exactly
zero in the ideal case, i.e., when all atoms are on their bcc
lattice sites. For MD simulations, the relaxed positions ri should
be understood to correspond to the MD time-averaged
positions ri over a sufficient number of MD steps.

2. Calculate the following projection amplitude for each of the
four 〈111〉bcc directions:

ph111ibcc � hjdi � eh111ibcc ji ¼
1
n

Xn

i¼1

jdi � eh111ibcc j; (5)

where n is the number of atoms, eh111ibcc the unit vector along
the considered 〈111〉bcc direction, and di � eh111ibcc the
projected displacement of the ith atom along the 〈111〉bcc
direction. The explicit formulae for the four 〈111〉bcc directions
are as follows:

p½111�bcc ¼ hjdi � e½111�bcc ji; (6)

p½111�bcc ¼ hjdi � e½111�bcc ji; (7)

p½111�bcc ¼ hjdi � e½111�bcc ji; (8)

p½111�bcc ¼ hjdi � e½111�bcc ji: (9)

3. Sort the projections according to their values:

p½111�bcc ; p½111�bcc ; p½111�bcc ; p½111�bcc ) p1; p2; p3; p4; (10)

where p1 is the largest, followed by p2, p3, and p4.

4. Pick up p1, corresponding to the direction showing the largest
amplitude, as the structure descriptor. This direction is the
one along which the symmetry is broken and which is
therefore representative of the bcc–ω transformation. Then
classify the investigated structure according to p1 into the
different possible classes of structures. Specifically, if the
structure is bcc, p1 should be close to zero. If the structure is
pefect or defective ω, in contrast, p1 should be close to the
values corresponding to the displacements visualized in Fig. 2.
Table 1 shows the values of p1 for the ideal cases.

In the following, we will take the approach above for pure metals
as our starting point and extend it to disordered alloys.

Detection of the bcc–ω transformation for disordered alloys
The approach described above is well suited to detect the bcc–ω
transformation in pure metals21,24. For disordered alloys, however,
this approach is not sufficient, because the atomic displacements

are induced not only by the structural transformation but also by
chemical disorder, i.e., chemically induced LLDs. Consequently,
regardless of whether the bcc structure is dynamically stable or
not, the relaxed atomic positions can feature significant deviations
from the ideal bcc lattice sites due to the different local chemical
environments. This means that a nonzero p1 cannot be uniquely
connected to the bcc–ω transformation.
The key to solve this issue is to consider the symmetry breaking

due to the bcc–ω transformation. Specifically, when a transforma-
tion to an ω-like structure occurs, the atomic displacements
should be substantially larger for the symmetry-broken 〈111〉bcc
direction than for the other directions, i.e., p1≫ p2. If the relaxed
structure is bcc, in contrast, there should be no substantial
preference towards a certain 〈111〉bcc direction.
We thus modify the approach as follows to distinguish the

bcc–ω transformation from chemically induced LLDs for dis-
ordered alloys:

1. Same as for unary systems.
2. Same as for unary systems.
3. Same as for unary systems.
4. Classify into bcc-like and ω-like structures according to

bcc : if Δp ¼ p1 � p2 <Δbcc!ω; (11)

ω-like : if Δp ¼ p1 � p2 >Δbcc!ω; (12)

where Δbcc→ ω is a given criterion to distinguish the bcc and
the ω-like structures.

The proper critical value for Δbcc→ω will likely show some
dependence on the considered system. For our present system, as
shown below and in Supplementary Discussion, we found that a
value of Δbcc→ω ≈ 0.04cω distinguishes well the bcc and the ω-like
structures.
For the structures detected as bcc, the atomic displacements

∣di∣ are in general not zero for disordered alloys, unlike for pure
metals. These “remaining” displacements can be now unambigu-
ously identified with chemically induced LLDs.

Relaxation of atomic positions at zero temperature
Figure 3 shows the values (marked by the black crosses) of Δp=
p1− p2 for a pseudobinary section of the quaternary Ti–Zr–Hf–Ta
alloy after atomic relaxation starting from the ideal bcc lattice
sites. It should be emphasized that for each of the investigated
compositions many different calculations have been performed
representing various chemical arrangements. This variety in the
chemical arrangements leads to a spread of the Δp values for a

Table 1. {p1, p2, p3, p4} values for several ideal cases in units of cω (cf.
Eq. (2)).

p1 p2, p3, p4

bcc 0 0

perfect ω
1
9

1
3
� 1
9

defective ωa 11
81

1
3
� 11
81

bcc twin variant
2
9

1
3
� 2
9

aValues for the case of one line defect in a 3 × 3 × 3 expansion of the
2-atom conventional bcc unit cell are given. Note that the value given
here is different from that in Eq. (3) of ref. 24, because the equation in the
reference did not consider the condition to make the sum of atomic
displacements equal to zero (Eq. (4)) utilized in the present study.
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fixed composition, as can be observed by the many vertically
stacked crosses in each of the columns.
For the alloys enriched by group 4 elements (left side of the

plot), many calculations show p1 to be substantially larger than p2,
indicating the preference of the atomic displacements to occur
along one of the 〈111〉bcc directions. As detailed above, this
reveals the dynamical instability of the bcc phase and the
transformation towards the ω phase. Note, however, that at each
of the shown concentrations in Fig. 3, there are always calculations
that give Δp values in the lower region. In fact, it is possible to
classify the results of all these calculations into two distinct
groups, i.e., a group that shows larger and a group that shows
smaller Δp values. The critical value that serves best to separate
the two groups is Δbcc→ω ≈ 0.04cω. This choice for Δbcc→ω is
corroborated by inspecting other composition regimes and
different initial structures (see Supplementary Discussion).
We therefore choose this value as the criterion to distinguish

bcc and ω-like structures within the approach for disordered alloys
introduced above. As a result, we can now quantify that among
the whole set of calculations contributing to Fig. 3 (including all
SQS models and all volumes) there are 65%, 68%, 26%, 3%, and
6% of ω-like structures for a Ta content of x= 0%, 5.6%, 11.1%,
16.7%, and 22.2%, respectively. For alloys with a Ta content of
more than 25 at.%, none of the calculations shows a Δp larger than
Δbcc→ω. This means that these alloys do not show any preference
for atomic displacements along one of the four possible 〈111〉bcc
directions, indicating that the bcc phase is dynamically stable at
0 K and that the corresponding atomic displacements represent
pure chemically induced LLDs.
It is worth stressing with emphasis the fact that even for the

alloy composition containing exclusively group 4 elements (x=
0%), there is still a substantial amount of relaxed structures that
are detected as bcc. This is likely due to the complex potential
energy hypersurface of these chemically disordered alloys, on
which the structure can relax at 0 K to a local minimum in the
vicinity of the ideal bcc sites rather than the positions
corresponding to the ω phase. From a technical perspective,
this finding highlights that such derived atomic positions
sensitively depend on the specific computational conditions for
the relaxation procedure. It is therefore practically essential to
compute a sufficient number of configurations to derive reliable
conclusions.

Atomic trajectories at finite temperatures
An important feature of low-temperature dynamically unstable
phases is the fact that they may be stabilized at higher
temperatures. We have therefore also conducted ab initio MD
simulations for TiZrHf to analyze the temperature-driven stabiliza-
tion. Figure 4 shows a representative set of atomic trajectories
(Fig. 4a–c) and respective averaged atomic positions (Fig. 4d–f) at
different temperatures.
At 1500 K, the average atomic positions are close to the ideal

bcc lattice sites, with the MD trajectories fluctuating around
these average positions (Fig. 4c, f). This observation matches the
behavior of the constituting group 4 elements (Ti, Zr, Hf), all of
which show a thermodynamically stable bcc phase at elevated
temperatures. In contrast, at lower temperatures (300 and 900 K)
the trajectories and more clearly the average atomic positions
show a preference to be shifted along a particular direction
indicating the structural transition from the bcc to the ω phase. In
order to quantify the transformation behavior, we utilize the
averaged atomic positions as the key input to our detection
method. This enables us to separate the impact of atomic
vibrations from the transformation and from the chemically
induced LLDs.
Figure 5 shows the absolute values of the projections (p1–p4)

obtained from the average atomic positions. At temperatures less
than ≈1000 K, p1 (blue symbols) is clearly larger than the other p’s
(i.e., Δp > Δbcc→ω), which demonstrates that for TiZrHf ω-like
structures are more favorable as compared to the bcc structure.
From the representation of the absolute values of the projections
it is possible to directly classify the average structures obtained at
300 and 600 K as defective ω structures (cf. Table 1). For 900 K
the averaged MD geometries correspond to the defective ω
structure as well, but the values of the projections can occasionally
be higher due to the possibility of transforming into the twin-
variant bcc structure (cf. Fig. 2c). This observation is consistent
with results obtained for pure Ti21,24 and indicates that the
simulations at 900 K are close to the bcc–ω transformation.
At temperatures higher than ≈1000 K, all projections show

similar values (i.e., Δp < Δbcc→ω) confirming the thermodynamic
and dynamical stability of the bcc phase at high temperatures. The
projections are however non-zero as it would be the case for the
ideal bcc structure, and these non-zero values indicate the impact
of chemically induced LLDs even at these high temperatures. For
TiZrHf at 1500 K, the such obtained chemical-disorder-induced
mean displacement is ≈0.16Å (cf. Supplementary Discussion C).
This value is similar to the chemical-disorder-induced atomic
displacements for other bcc refractory alloys with 60–70 at.% of
group 4 elements, namely, ZrNbHf, TiZrNbHfTa, and TiZrMoHfTa,
reported previously15.
Note that the here-employed 54-atom 3 × 3 × 3 supercell of the

2-atom conventional bcc unit cell may not provide a quantitative
bcc–ω transition temperature, as previously found for pure Ti21,24.
Calculations with larger supercells are beyond the scope of the
present work.

Phase stabilities and TRIP behavior
Based on the foregoing analysis that allows us to properly
distinguish between bcc and ω structures, we are now in a
position to derive well-quantified phase stabilities including
atomic relaxations also for refractory HEAs enriched by group 4
elements. We thus analyze in the following the phase stabilities for
the quaternary Ti–Zr–Hf–Ta and quinary Ti–Zr–Nb–Hf–Ta alloys
and show the connection to the experimentally observed TRIP
behavior. We start the discussion by considering unrelaxed, i.e.,
ideal-lattice, phase stabilities to clarify the impact of relaxations.
Figure 6a shows the ideal-lattice ab initio energies of the bcc,

hcp, and ω phases for the same pseudobinary section of
Ti–Zr–Hf–Ta as in Fig. 3. While the hcp and the ω phase are close

Fig. 3 Values of Δp= p1− p2 to distinguish bcc and ω-like
structures for the pseudobinary Ti(1−x)/3Zr(1−x)/3Hf(1−x)/3Tax alloys
relaxed from the ideal bcc lattice sites at 0 K. For each
composition, the results from all the SQS models and from all the
volumes are shown.
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in energy over the whole composition range, there is a strong
destabilization of the bcc phase with respect to the other two
phases when the Ta concentration is decreased. When the Ta
content becomes less than ≈30 at.%, bcc becomes energetically
destabilized as compared with the other two phases. These results
are largely inconsistent with the experimental findings; in ref. 6 a
bcc phase was observed for Ta concentrations down to 12 at.%.

This contradiction can be resolved by taking the impact of LLDs
into account. Figure 6b shows the corresponding phase stabilities
and reveals that the stability of bcc with respect to hcp and ω is
strongly affected by LLDs. Note that, as discussed above, a bcc-
initialized structure can relax into an ω phase and vice versa,
which can be detected by our proposed approach. The bcc phase
is now the energetically preferred phase even down to a Ta
concentration of ≈14 at.%, which is in close agreement with
experiments6. The strong change in the bcc stability is due to the
much larger impact of LLDs in the bcc phase than in the hcp and
the ω phases (see Supplementary Fig. 6). Note that the bcc phase
may be further stabilized by temperature effects as demonstrated
by the MD results above.
As highlighted in Fig. 6b by the thick gray line, the ab initio-

computed phase stabilities are in good consistency with the
experimentally reported occurrence of the bcc–hcp TRIP behavior
reported in ref. 6. To make TRIP possible, the bcc–hcp energy
difference must be close to zero, which is reflected in Fig. 6b.
Turning this argument around, we can say that the ab initio-
computed phase stabilities—properly containing the impact of
LLDs—can be utilized as a guiding descriptor in the design of
TRIP-supported bcc HEAs.
To scrutinize this design hypothesis we extend our analysis to

the quinary Ti–Zr–Nb–Hf–Ta system. Figure 7 shows the energy
difference between bcc and hcp for a ternary subsection. The
lower right corner corresponds to Nb0.5Ta0.5 and this is the
composition where the bcc phase is the most stable, by
≈140meV/atom over the hcp phase. Moving away from this
composition into the triangle increases the concentration of the
group 4 elements (Ti, Zr, Hf), and we observe that the bcc phase is
quickly destabilized with respect to the hcp phase.

Fig. 5 Projected displacements of the average MD positions of
TiZrHf at the bcc lattice parameter of ≈ 3.469Å. The projection
directions are distinguished by the orientation of the triangular
markers. The solid and dashed horizontal lines indicate the
projection amplitudes for the ideal (perfect and defective ω) cases
provided in Table 1.

Fig. 4 Atomic positions for a 54-atom model of TiZrHf at the bcc lattice parameter of ≈3.469Å from ab initio MD simulations. The thin
gray grids correspond to the boundaries of the 2-atom conventional bcc unit cells. a–c Two-dimensional histograms of the atomic positions
projected onto the {001}bcc plane at the corresponding temperature. The histograms are normalized into one and color-coded in a log scale.
d–f Mean atomic positions at the corresponding temperatures.
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Similarly as for the quaternary alloy system, the ab initio
energies for the quinary Ti–Zr–Nb–Hf–Ta alloy system are in good
consistency with experiments if atomic relaxations are taken into
account. In ref. 5 various compositions were experimentally
investigated for Ti–Zr–Nb–Hf–Ta as indicated by the circles in
Fig. 7. TRIP behavior was observed for the composition of
Ti35Zr27.5Hf27.5Nb5Ta5 (pink circle) which is located close to the
contour of the bcc–hcp equilibrium compositions, but not for the
other compositions (orange circles). This strengthens the argu-
ment that the ab inito predicted bcc–hcp equilibrium composi-
tions provide a good descriptor for selecting candidates for TRIP
alloys, if LLDs are properly included. Inclusion of LLDs is indeed
necessary as it modifies the bcc–hcp energy difference qualita-
tively and quantitatively (see also dotted vs. thick lines in Fig. 7 as
well as Supplementary Fig. 8a).
We note that in general for a high-accuracy prediction of phase

stabilities other contributions such as chemical short-range order
may be of relevance36. Such effects could be assessed with Monte
Carlo simulations14,37 also in combination with MD simulations7,38–45.

Valence electron concentration (VEC)
Ab initio simulations of phase stabilities are computationally
expensive, and it would be useful to have a more efficient descriptor
for the search of TRIP HEAs available. In this respect, we have analyzed
the VEC, which was previously reported to correlate well with HEA
phase stabilities46–48. Our results for Ti–Zr–Nb–Hf–Ta (Supplementary
Fig. 8b) show that the VEC indeed correlates well; however, only with
the ideal-lattice energy differences (Supplementary Fig. 8a). Since, as
mentioned above, LLDs change the dependence qualitatively and
quantitatively, the correlation with the VEC is impaired for the relaxed
energy differences. The quantitative shift can be accounted for by
“calibrating” the VEC with our explicit ab initio data. The qualitative
changes cannot be easily accounted for, and they reveal the
approximative nature of the VEC descriptor. The best estimate
extracted from our data is that the VEC for finding bcc–hcp TRIP HEAs
should lie in the range of 4.1–4.2.

DISCUSSION
For disordered alloys, it is a non-trivial task to rigorously separate
atomic displacements caused by a structural transformation from
those induced by chemical disorder. We have therefore intro-
duced and applied a method to solve this challenge. In our
method, the symmetry breaking due to the structural transforma-
tion is analyzed by utilizing projected atomic displacements. We
have applied the developed method to a large set of bcc
refractory HEAs including group 4 elements (Ti, Zr, Hf) to analyze
their dynamical and thermodynamic phase stability.
A crucial finding of our study is that the—properly determined

—chemically induced LLDs significantly shift the bcc–hcp
equilibrium compositions towards larger contents of group 4
elements. The such obtained bcc–hcp equilibrium compositions
are in good agreement with those for which experimental studies
reported a beneficial bcc–hcp TRIP effect. By calibration to our ab
initio data, we could device a VEC range of 4.1–4.2 as the most
promising one for the search of bcc–hcp TRIP HEAs.
The results in the present study highlight the strong coupling

between bcc–hcp TRIP, LLDs, and ω precipitates, all of which are
key factors of mechanical properties of refractory alloys. We have
demonstrated that, by carefully analyzing the atomic displace-
ments, the relations among these key factors can be discussed in a
rigorous way. The approach introduced in the present study will

Fig. 6 Phase stabilities with respect to the bcc phase for the
pseudobinary section Ti(1−x)/3Zr(1−x)/3Hf(1−x)/3Tax. a Atoms fixed to
the ideal lattice sites. b Atoms allowed to relax. The energies shown
for ω correspond to the defect-free ω structure. The bcc–hcp TRIP
composition confirmed by experiments (≈12 at.%6) is shown by the
thick gray vertical line.

Fig. 7 Ab initio-computed relaxed energy differences between
bcc and hcp for the pseudoternary Tix(Zr0.5Hf0.5)y(Nb0.5Ta0.5)1−x−y
alloys. Compositions investigated experimentally in ref. 5 are shown
by the circles. The thin gray dotted line shows the bcc–hcp
equilibrium composition when the atoms are fixed to the ideal
lattice sites (cf. Supplementary Fig. 8a). The two arrows highlight the
impact of the relaxations. Visualization was performed using
MPLTERN56.
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promote the understanding of mechanical properties of refractory
alloys on the basis of ab initio calculations and will help designing
of novel bcc–hcp TRIP HEAs.

METHODS
Supercell models
In this study, we considered two sets of alloys, namely, Ti(1−x)/3Zr(1−x)/3Hf(1
−x)/3Tax pseudobinary alloys and Tix(Zr0.5Hf0.5)y(Nb0.5Ta0.5)1−x−y pseudo-
ternary alloys. For Ti(1−x)/3Zr(1−x)/3Hf(1−x)/3Tax, we considered seven x
from 0 up to 1/3. For Tix(Zr0.5Hf0.5)y(Nb0.5Ta0.5)1−x−y, we considered 16
compositions.
All the considered refractory alloys were modeled based on the supercell

approach. 54-atom supercells based on a 3 × 3 × 3 expansion of the 2-atom
unit cells of the bcc and the hcp phases were considered. Chemical disorder
was mimicked using special quasirandom structures (SQSs)49, where the
pair probabilities of the first few nearest-neighbor shells were optimized to
be close to those in the ideal-mixing state. To achieve better energy
convergence, we computed several SQS-based configurations with similarly
optimized pair correlation functions and by permuting the elements.
Further details can be found in Supplementary Methods A.
As discussed in the “Results” section, the bcc structure is dynamically

unstable for alloys consisting mainly of group 4 elements and hence
transforms to the ω-like structures. We therefore also computed the
energies of the perfect ω structure to discuss this structural transformation
and also the stability with respect to the hcp phase. The supercell models
of the perfect ω structure were made by displacing the atoms in the bcc-
phase supercell models according to the way described in Fig. 2a.

Electronic-structure calculations
The plane-wave basis projector-augmented wave (PAW) method50 was
employed in the framework of density functional theory (DFT) within the
GGA of the Perdew–Burke–Ernzerhof (PBE) form51 as implemented in the
VASP code52–54. Internal atomic positions were initialized on the ideal
lattice sites. For each fixed volume, ionic relaxations were performed until
the residual forces became <5 × 10−2 eV/Å with keeping the cell shape
fixed. Further details can be found in Supplementary Methods B.

Ab initio molecular dynamics (MD)
To analyze the structural stability of the bcc phase we also evaluated the
averaged atomic positions at finite temperatures employing ab initio MD
simulations. For this purpose we considered the prototypical bcc TiZrHf
alloy, which reveals strong dynamical instabilities at low temperatures. We
utilized two 54-atom bcc SQS models with a lattice parameter of ≈3.469Å,
which is close to the equilibrium lattice parameter at 0 K taking relaxations
into account. For the MD runs, the NVT-ensemble was employed, where
the temperature was controlled by the Langevin thermostat. Further
details can be found in Supplementary Methods C.
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