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Abstract: This study investigates the influence of the considered Electric Equivalent Circuit Model
(ECM) parameter dependencies and architectures on the predicted heat generation rate by using
the Bernardi equation. For this purpose, the whole workflow, from the cell characterization tests
to the cell parameter identification and finally validation studies, is examined on a cylindrical 5 Ah
LG217000 Lithium-Ion-Battery (LIB) with a nickel manganese cobalt chemistry. Additionally, different
test procedures are compared with respect to their result quality. For the parameter identification, a
Matlab tool is developed enabling the user to generate all necessary ECMs in one run. The accuracy of
the developed ECMs is evaluated by comparing voltage prediction of the experimental and simulation
results for the highly dynamic World harmonized Light vehicle Test Cycle (WLTC) at different states
of charges (SOCs) and ambient temperatures. The results show that parameter dependencies such as
hysteresis and current are neglectable, if only the voltage results are compared. Considering the heat
generation prediction, however, the neglection can result in mispredictions of up to 9% (current) or
22% (hysteresis) and hence should not be neglected. Concluding the voltage and heat generation
results, this study recommends using a Dual Polarization (DP) or Thevenin ECM considering all
parameter dependencies except for the charge/discharge current dependency for thermal modeling
of LIBs.

Keywords: lithium-ion-battery; equivalent circuit model; Bernardi equation; computational fluid
dynamics; cylindrical cell; heat generation

1. Introduction

In June 2022, the European Union played a leading role in the fight against climate
change by proclaiming the prohibition of the registration of new internal combustion
engines from 2035 going forward (except e-fuels) [1]. Battery electric vehicles (BEVs) have
already established themselves in the market and are likely to become the main powertrain
technology in the near future. Hence, battery power-train applications have become one of
the most important topics in engineering research.

Currently, Lithium-Ion-Batteries (LIB) are the main choice for application in BEVs,
because of their high power density, energy density, low self-discharge rate and long service
life [2]. However, for application in BEVs, thermal safety and degradation of LIBs are two of
the most challenging topics [3]. It has been widely studied that capacity, cycle life and safety
are highly dependent on the LIB temperature [4–6]. According to Pesaran [7], the optimum
operating temperature of LIBs is between 25–40 ◦C. Lower and higher temperatures result
in degradation [6]. Operating the LIB at lower temperatures results in capacity reduction
due to lithium plating. On the other hand, higher temperatures lead to degradation due
to the faster growth of the solid electrolyte interphase (SEI) layer or can even result in a
thermal runaway scenario of the LIB.
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This leads to the topic of this research paper: the heat generation prediction of cylin-
drical battery cells for the application in BEVs. For an accurate design of the thermal
management, reliable models are necessary to describe the generated heat while operating
the LIBs. Hence, models are used to capture the electrical and thermal behavior of LIBs.
These models estimate the State of Charge (SOC), State of Health (SOH), heat generation Q̇,
available power and available energy of a battery cell [8].

According to Nejad [9], there are three common modeling methodologies for battery
cells. Firstly, there are the electrochemical or physic-based models, the Single-Particle
Model; Pseudo 2D Model; second, empirical or data driven models [10] and lastly the
Equivalent Electrical Circuit Models (Rint-Model and Thevenin-Model). As already in-
dicated by the name, physics-based models are based on the detailed electrochemical
understanding of the cell’s operation and dynamic. This behavior is determined by phys-
ical equations describing the processes and reactions occurring in the battery cell. Data
driven models and Equivalent Circuit Models (ECM) do not need a detailed understanding
of the electrochemical processes. Data driven models rely on generated training data and
hence need a lot of test time to train the model. ECMs describe the cell behavior through
an equivalent circuit based on an analogy to electric circuits.

The most commonly used model methodology to describe the electrical battery behav-
ior of thermal management design processes are ECMs [11]. The benefits are an accurate
description of the electrical behavior of LIBs with reasonable computational effort, while
providing a prediction for the heat generation out of the electrical behavior through the
energy balance (Bernardi equation [12]).

Several studies described the influence of the chosen ECM architecture type for the
voltage prediction. Wilfeuer et al. [13] studied the parameter dependencies of SOC, tem-
perature, current and pulse test duration on the cell and module levels, by comparing the
resulting inner cell resistances. However, they used a simple Rint Model for studying the
influence of the parameters on the resistance R0 while ignoring possible influences on the
Open Circuit Voltage (OCV) and heat generation Q̇. They have concluded, that the SOC,
temperature and pulse test duration need to be considered, while the current dependency
should only be included for extreme conditions, e.g., low temperatures.

Regarding LIB thermal management analysis, the chosen ECM architecture and pa-
rameter dependencies vary significantly. Current researchers only mention the chosen
ECM architecture; Dual Polarization [14] (2021), Thevenin [15] (2021) or Rint [16] (2021) do
not give a detailed explanation of the used model [17] (2016). Furthermore, the thermal
properties (including the heat transfer coefficient to the environment) are fitted, showing
that the model’s predicted temperature agrees well with the experimentally measured
temperature. This results in a pretended accuracy of the thermal model, which cannot be
achieved alone by the different electrical models used.

The heat generation of LIBs is a topical issue. However, current research focus on
machine learning algorithms [18,19], the spatial distribution of heat generation within the
cell [20] or on the heat generation rate at the limits of the operating range of LIBs [21]. All
these studies have in common the fact that on the modeling side they mostly rely on ECMs
to predict the generated heat by using the (simplified) Bernardi equation.

Consequently, the research question has been raised to which extent the choice of the
ECM architecture and the ECM parameter dependencies influence the predicted LIB heat
generation. The goal of this paper is to better understand the impact of the chosen ECM on
the design process of the thermal management systems of LIBs and hence, being able to
choose the ECM with the least computational effort while not losing model accuracy.

For this purpose, the cylindrical LIB cell LG INR21700 M50 is studied, which is compa-
rable to the Panasonic 21700 cell used in the Tesla Model 3 Long Range in terms of power,
nominal voltage and capacity [22,23].
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2. Methodology

The methodology consists of two parts. First of all, the electric behavior of LIBs has to
be described, and secondly, the thermal model has to be identified.

2.1. Electric Equivalent Circuit Models for Lithium-Ion-Batteries

Electric equivalent circuits are used to describe the input/output current and voltage
behaviors of LIBs. These current and voltage behaviors can be described by using an
analogy to electric equivalent circuits. The ECMs mostly consist of a voltage source,
an OCV, resistors, capacitors, hysteresis and sometimes a Warburg impedance. While
these parameters do not represent real electrochemical LIB characteristics, they are able to
describe the electrical behavior well [8].

ECMs can generally be divided into two groups. There are the time and the frequency
domain ECMs [11]. The difference between the two domains mainly lies in the conducted
experiments to parameterize the ECM. While the time domain models focus on a simple
current, voltage and temperature measurement apparatus, the frequency domain models
require a more complex test system called Electrical Impedance Spectroscopy (EIS). The
EIS methodology uses different frequencies to excite the battery and measure the resulting
voltage and current response. These results yield a wide range of LIB battery operating
points to parameterize the ECM. However, because of the available laboratory environment,
this study uses the time domain approach.

2.1.1. The Rint Model

The simplest ECM architecture is called the Rint model, marked as (a) in Figure 1. It
consists of an ideal voltage source, called the OCV UOCV, and the internal resistance R0. By
using the equation

Ut = UOCV − I R0 (1)

the terminal voltage Ut can be calculated. However, the Rint model has its disadvantages
in describing the dynamic behavior of the LIB.

2.1.2. The Thevenin Model

The Thevenin model, shown in Figure 1b, is an improved version of the Rint model.
It connects a parallel Resistance-Capacitance (RC) network in series to the existing model
parameters to describe the dynamic behavior of the LIB. The RC network consists of a
polarization resistance R1 and an equivalent capacitance C1 that describe the diffusion
voltage drop [8].

The terminal voltage can be determined by

Ut = UOCV −U1 − I R0 (2)

whereas,

U̇1 = − U1

R1 C1
+

I
C1

(3)

is defined as the change in polarization voltage U̇1.

2.1.3. The Dual Polarization Model

The Dual Polarization model (DP) adds a second RC network to the Thevenin model,
as shown in Figure 1c. This enables the description of the polarization characteristics more
precisely. In the DP model, the polarization is divided into the electrochemical polarization
with the first RC network and the concentration polarization with the second RC network.
This leads to more accurate model performances [24].

The DP terminal voltage is calculated by

Ut = UOCV −U1 −U2 − I R0 (4)
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hereby

U̇1 = − U1

R1 C1
+

I
C1

(5)

defines the change in electrochemical polarization and

U̇2 = − U2

R2 C2
+

I
C2

(6)

the change in concentration polarization.
In general, the accuracy of ECMs can be improved by using more RC networks in

series. However, according to Hu et al. [25], the increased accuracy of more than two RC
networks does not overcome the increased computational effort. Since this study tries to
find the most accurate ECM for thermal modeling with the least computational effort, two
RC networks are the maximum considered.

UOCV Ucell

R0

C1 C2

R1 R2

UOCV Ucell

R0

C1

R1

UOCV Ucell

R0

(a)

(b)

(c)

Figure 1. Schematic of (a) Rint, (b) Thevenin and (c) Dual Polarization Equivalent Circuit Model.

2.1.4. Dependencies

First, independent of the usage of ECMs, there is the faradic (coulombic) efficiency.
This efficiency describes the generated losses while charging a battery. The coulombic
efficiency is defined as

ηC =
Qdischarge

QCharge
(7)

whereas Q represents the total charge/discharge load. The coulombic efficiency should
always be ηC < 1 [8]. For LIB it is mostly > 0.99 and, therefore, is often neglected and used
as ηC = 1.
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The ECM parameter dependencies can be divided into two groups: the OCV and
resistance/capacitance dependencies. The OCV can be a function of the SOC, temperature T
and hysteresis hyst. The resistances/capacitances can be a function of the SOC, temperature
T, charge/discharge pulse cdc and current I. Furthermore, both groups can be a function
of the SOH. Aging phenomena should play no role in the initial decision of the most
suitable ECM model for thermal management simulations. Consequently, LIB aging is not
considered in this research.

Furthermore, in this study the C-rate is used. The C-rate can be calculated by dividing
the applied current I through the nominal capacity CN. It is defined as I = 1 C when the
current applied fully charges/discharges the LIB in one hour. When the applied current
takes two hours to fully charge/discharge the LIB, the C-rate is equal to I = 0.5 C.

2.1.5. State of Charge Estimation

The estimation of the SOC is an essential part of LIB modeling. There are several esti-
mation methods available, while Coulomb Counting and an estimation over the SOC–OCV
relationship are the most commonly used techniques.

The Coulomb Counting method is straight forward, integrating the current I over a
period of time [t0, t1] by

SOC = SOC0 −
1

CN

∫ t1

t0

I(τ)dτ (8)

whereas, SOC0 describes the SOC at t0. According to Ng et al. [26], the SOC0 can be
estimated by measuring the OCV and taking the corresponding SOC value when the LIB
cell is rested for a minimum of 120 min before.

2.2. Heat Generation Calculation

The total heat generated in an LIB can be described by the Bernardi equation [12] in
the energy balance form as

Q̇ = Q̇irr + Q̇rev + Q̇reac + Q̇mix (9)

Here, Q̇irr describes the Joule heating losses, Q̇rev describes the electrochemical reaction
entropy, Q̇mix are the mixing enthalpy losses in the electrolyte and Q̇reac represents the heat
generation of the side reactions.

When the LIB is used in normal operating conditions, the side reaction losses Q̇react ([27])
and the mixing losses in the electrolyte Q̇mix ([28]) can be neglected. Consequently, the
heat generation inside of a LIB can be calculated out of the ECM parameters through the
simplified Bernardi equation

Q̇loss = I (UOCV −Ut)− I T
∂ UOCV

∂ T
(10)

where, Ut is the cell terminal voltage and ∂ UOCV/∂ T is the LIB entropic coefficient [12]. This
is because current sign convection charging the cell is defined as a negative current and
discharging is equal to a positive current in this study.

2.3. Thermal Model

Computational Fluid Dynamics software Star CCM+ has been used for all studies
conducted in this paper. The ECM has been included by using the Battery Equivalent Circuit
Model tool by Star CCM+. A simple cylinder geometry with the battery cell dimensions is
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used. For solving the thermal model, Star CCM+ uses a finite volume method where the
integral form of the energy balance

∂

∂ t

∫
V

ρ E dV +
∮

A
ρ H v · da = −

∮
A

q̇′′ · da+∮
A

T · v da +
∫

V
fb · v dV +

∮
A

∑
i

hi Ji da
(11)

is solved, which is described in more detail in the Simcenter User Guide [29]. The heat
generation in Star CCM+ is calculated, as shown in Equation (10), neglecting phase change
and mixing losses [29]. For the purpose of this paper, which is to study the influence of ECM
parameters and architectures on the predicted voltage and heat generation, the thermal
model has a secondary importance. Hence, the established assumptions and boundary
conditions for the thermal model are only briefly discussed.

2.3.1. Assumptions

Heat generation has been assumed as uniform throughout the whole battery cell, as
previously carried out by many researchers [14–16,30]. Furthermore, it has been necessary
to set two different types of boundary conditions. First, the coat of the battery cell is taken
as adiabatic because the coat has been wrapped around with thermal insulation tape to
minimize the environmental influence on the temperature development in the experimental
validation runs. Since there are electrical contacts on both collector sides, they could not be
isolated. This results in the second boundary condition for both collector sides, which takes
the summed up effect of heat convection and heat radiation into account. The simulation
time step is set to ∆t = 1 s because of the chosen highly dynamic WLTC cycle for the
model validation. Two inner iterations per time step have been used to adequately solve the
electrical and thermal model. For every time step, the resulting volume averaged battery
cell temperature is used as the input temperature for the ECM.

2.3.2. Heat Convection and Heat Radiation

Heat convection is defined as

Q̇conv = hconv A (∆ T) (12)

where, hconv represents the heat transfer coefficient, A the involved surface in the heat
transfer and ∆T the temperature difference between the surface and ambient temperatures.
For free convection on a cylinder, the Nusselt number Nu can be calculated according to
Klan [31] by the Nusselt correlation

Nu =
{

0.752 + 0.387 [Ra f3(Pr)]1/6
}2

(13)

while the Nusselt number Nu and Rayleigh number Ra are calculated with the length
L = π

2 d. The function f3(Pr) is defined as

f3(Pr) =

[
1 +

(
0.559

Pr

)9/16
]−16/9

(14)

depending only on the Prandtl number Pr.
Heat radiation can be calculated according to Stephan [32] by

Q̇rad = ε σ A (T4
2 − T4

1 ) (15)

whereas, ε represents the emissivity of the surface material, σ is the Stefan–Boltzmann
constant, A is the surface involved in the heat radiation and T1,2 is the temperatures on the
ambient and surface.
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3. Experimental Setup and Parameter Identification

In this section, firstly the experimental setup and examined test procedures are pre-
sented. Secondly, the used parameter identification methodology is introduced.

3.1. Battery Test Bench

To conduct the necessary tests, a battery test bench was used. The battery test bench
is composed of a Basytec HPS battery tester system with one channel, a computer on
which the Basytec Software is installed and a climate chamber from Weiss Umwelttechnik
GmbH. Furthermore, a cylindrical cell holder with integrated voltage and temperature
measurement from the company FEINMETALL was used to measure the cell voltage. The
experimental platform is shown in Appendix A Figure A1.

The voltage range of the battery tester is 0–6 V and the current range is ±60 A. The
maximum error in the voltage detection is at 1 mV and 0.05% Full Scale in the current
detection [33]. The workflow for the development of a LIB ECM is well documented in the
literature, as, e.g., by Nikolian et al. [34]. It consists of a characterization, parameter identifi-
cation and validation process. The electrical characterization process can be divided into
three different types: capacity test, OCV-SOC-test and High Pulse Power Characterization
(HPPC). Furthermore, to capture the reversible heat generation term, an entropic coefficient
test is necessary. The individual test procedures are described in the following.

3.1.1. Capacity Test

The capacity test comprises a full charge of the cell and a full discharge afterwards
according to the manufacturer’s recommendation. Through the Ampere-Hour integration

CN =
∫ tend

t0

I(τ)dτ (16)

the nominal capacity CN of the LIB can be calculated.
According to Belt [35], the procedure should be repeated until the difference in dis-

charge capacity is less than 2% for three consecutive complete discharge cycles. Further-
more, the capacity of a LIB is dependent on the cell temperature Tcell. Hence, the capacity
test needs to be examined at different test temperatures CN = f(T).

3.1.2. OCV-SOC Test

For determining the OCV-SOC curve, there are two different approaches. Firstly, the
constant current method (CCM), and secondly, the relaxation method (RM) [36].

The CCM is to perform low constant current charge or discharge processes over the
whole LIB SOC range. According to Plett [8], a current of CN/30 is sufficient to depict
a current where neglectable losses and heat generation occur in the LIB. Therefore, the
resulting measured voltage over the SOC range of the battery can be taken as the actual
OCV.

The RM is to discharge the LIB in sufficient (e.g., 5, 10%) SOC steps while resting the
LIB for an adequate time trel after each step for the relaxation process. It is assumed that the
voltage measured after the relaxation time trel represents the OCV at the SOC. The procedure
needs to be examined for discharge and charge to get the hysteresis behavior of the LIB.

3.1.3. HPPC Test

The last test procedure is the HPPC. It has been defined by Belt [35] to capture the
dynamic behavior of a LIB with an ECM. Consistent to the capacity test, the HPPC test
procedure needs to be performed for different cell temperatures Tcell as well. Additionally,
varying charging/discharging current pulses should be used. The more data points are
available to parameterize the ECM, the more accurate the ECM will be to describe the
dynamic behavior of the LIB. However, those tests can take up to one week for one test
temperature Ttest. Hence, a good trade-off between accuracy and test time is desirable.
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3.1.4. Entropic Coefficient Test

There exist two methods to determine the entropic coefficient. The first option is to
use the results of the OCV determination at different test temperatures (OCV method). The
second option, which requires an additional test procedure, is the state-of-the-art method
for the determination of the entropic coefficient (EC method).

The OCV method utilizes the results of the SOC-OCV tests at different temperatures
for the determination of the entropic coefficient [37]. For each SOC point, the gradient
of the OCV over the temperature can be calculated, resulting in the entropic coefficient.
Geifes et al. [37] have shown the linear behavior of the entropic coefficient over varying
temperatures. Therefore, it is already sufficient to use the OCV results of only two different
temperature data points.

The EC method as, for example, proposed by Forgez et al. [38], can be divided into
several steps. The battery cell is soaked at the test temperature Ttest,1, resulting in an OCV
UOCV,1. Afterwards, the test temperature is set to Ttest,2 and the cell is soaked again. The
resulting OCV UOCV,2 enables the calculation of the entropic coefficient term by

∂UOCV

∂T
(SOC) =

UOCV,2(SOC)−UOCV,1(SOC)

Ttest,2 − Ttest,1
(17)

depending just on the SOC. While the usage of the OCV method saves additional test
time, the EC method is more reliable and accurate since it is not dependent on the defined
relaxation time of the OCV test.

3.2. ECM Parameter Identification

With the chosen test procedure, the ECM parameters can be identified. Depending on
the desired level of detail, different ECMs can be generated. Representing the parameter
identification process, the process is explained for a DP model. The parameter identification
process is an advanced version of the method proposed by Zhu et al. [39].

In case of the DP model, there are six parameters to be identified: the OCV UOCV, the
ohmic resistance R0, the electrochemical polarization resistance R1, the electrochemical
transient capacitance C1, the concentration polarization R2 and the concentration transient
capacitance C2. The OCV can be determined separately from the other five parameters.

3.2.1. Open Circuit Voltage

The OCV is identified using the RM or CCM test results. Regarding the RM, the OCV
is taken as the measured voltage after the relaxation time trel for every 5% SOC step. Fur-
thermore, the OCV is determined for the SOC steps while charging and while discharging.
This enables the possibility to distinguish between charge and discharge OCV in the ECM
(hysteresis). When using the CCM method, the measured voltage equals the OCV over the
full SOC range. The SOC-OCV results are stored in Look-Up-Tables (LUT).

3.2.2. Resistances and Capacitances

The resistances and capacitances parameter identification process represents an ad-
vanced method of the process proposed by Zhu et al. [24]. In the following, the process is
explained in detail for one exemplary pulse test result shown in Figure 2. Here, ta is the start
time of the pulse, tc is the end time of the pulse and te is the end time of the relaxation process.

The terminal voltage of a DP model is calculated, as shown in Equation (4). To describe
the dynamic LIB behavior, the polarization voltages have to be time dependent and are
defined as

Ui(t) = URC,i exp(− t− tc

τi
) (18)
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whereas, URC,i represents a calculation variable and τi is equal to τi = Ri Ci. This results in

Ut(t) = UOCV −URC,1 exp(− t− tc

τi
)

−URC,2 exp(− t− tc

τi
)− I R0

(19)

for the calculation of the terminal voltage Ut. Since the OCV is already determined in the
first parameter identification step, it can be subtracted here, normalizing all measured pulse
end voltages to U(te) = 0. This leads to the parameter identification equation

Umodel(t) = −URC,1 exp(− t− tc

τi
)

−URC,2 exp(− t− tc

τi
)− I R0

(20)

whereas, Umodel stands for the predicted voltage by the ECM. This equation is used to
optimize the parameters URC,i, τi and R0 by the Matlab gradient optimization function
lsqnonlin on the measured voltage results for time span tc to te. Using the optimized
parameters, the polarization resistances Ri

Ri =
URC,i

I
(

1− exp(− tc−ta
τi

)
) (21)

can be calculated for i = 1, 2. The resulting optimized five dynamic ECM parameters Ri, τi
are added to the SOC-OCV LUTs. As such, the parameter identification process is finalized.

0 20 40 60 80 100 120 140 160 180 200
3.90

3.95

4.00

4.05

4.10

a

c

e

time in s

U
t

in
V

0

1

2

3

4

I
in

A

Figure 2. Measured 0.5 C-Rate current pulse and voltage behavior to identify the parameters for the
different ECMs.

In this study, a Matlab parameter identification tool has been developed using the
described process. This tool enables the user to optimize the ECM parameters on chosen
dependencies and ECM architectures. By providing the Matlab tool with the conducted
HPPC test results as an input, the user can choose between considering the parameter
dependencies of OCV hysteresis hyst, OCV temperature T, resistance/capacitance tem-
perature T, resistance/capacitance charge/discharge pulse cdc and resistance/capacitance
current I. In Table 1, the parameter identification assumptions for considering or neglecting
these dependencies are shown. Furthermore, all dependency studies can be conducted for
a DP, Thevenin and Rint ECM architecture.
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Table 1. Explanation of the ECM parameter dependencies when including them (dependent) or
neglecting them (independent) in the developed Matlab tool.

Dependent Independent

I LUTs for every tested current pulse value LUT for optimized value of all tested current pulses
cdc LUTs separately for charge and discharge pulses LUT for optimized value of both charge and discharge pulses
hyst LUTs for charge OCV and discharge OCV LUT taking the arithmetic middle between charge and discharge OCV
T LUTs for all conducted test temperatures LUT only for Ttest = 25 ◦C

4. Results and Discussion

In the following, the experimental test results, the validation profile and the compari-
son of the voltage and heat generation results of the studied ECMs are shown.

4.1. Experimental Results

The experimental results present the capacity, OCV-SOC, HPPC and entropic coeffi-
cient results.

4.1.1. Capacity Test Results

Before any battery test procedure is examined, the studied LIB is activated by five
full charge/discharge cycles according to the manufacturer’s data sheet [23]. The capacity
test procedure is performed as explained in Section 3.1.1. For this study, three different
temperatures Ttest = 5, 25, 45 ◦C were selected. The analyzed temperature range is limited
at the bottom side to Ttest = 5 ◦C. If the temperature is T < 5 ◦C, the battery pack in the
BEVs would be preconditioned to avoid degradation of the battery cells. Too high operating
temperatures T > 45 ◦C also result in a degradation of the battery cell or can even lead to
thermal runaway events, so the upper limit is set to Ttest = 45 ◦C. The resulting discharge
nominal capacities CN are shown in Table 2.

Table 2. Capacity test results for the studied cell at the selected test temperatures.

Nominal Capacity CN in mA h

Ttest 5 ◦C 25 ◦C 45 ◦C

LG 21700 4590 4800 4720

4.1.2. OCV-SOC Test Results

The OCV-SOC relationship results are determined by both test procedures, the CCM
and the RM test procedure. For the RM test procedure, a pre-test was examined. At all
three test temperatures Ttest, the necessary relaxation time trel for the determination of
the OCV was studied at SOC = 50%. The results show that at the test temperature of
Ttest = 25 ◦C, the requirement was fulfilled after trel = 40 min. However, the required
relaxation time increases at low SOCs and low test temperatures Ttest. Therefore, a safety
margin was used. The relaxation time was increased to trel = 2 h for the OCV determination
to ensure thermal and chemical equilibrium at all test temperatures and SOCs while still
maintaining a reasonable total test time. Furthermore, SOC steps of 5% were taken to
accurately determine the OCV–SOC relationship.

Figure 3 shows the OCV–SOC relationship for the CCM I = CN/30 and the RM test
procedure at test temperature Ttest = 25 ◦C. As can be seen, the CCM test results show a
stronger hysteresis relationship compared to the RM. According to Plett [8], the CCM test
procedure assumes that the battery cell is close to electrochemical and thermal equilibrium
if the current is small enough. However, the CCM equals a stronger hysteresis compared to
the RM because of the non-linear behavior of the LIB polarization processes [36]. Conse-
quently, the RM results are used in this study. This enables the proposed test procedure to
be simplified, as can be seen in Figure A2 in the Appendix A. The simplified test procedure
combines the OCV-SOC test and the HPPC test. For this purpose, after every 5% SOC step



Batteries 2023, 9, 274 11 of 26

is set, a relaxation time of trel = 2 h is taken to measure the OCV at the respective SOC.
After the relaxation time trel, the HPPC profile is run and the procedure is repeated for
every SOC step both for charging and discharging.
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Figure 3. Comparison of Constant Current Test Method (CCM) and Relaxation Test Method (RM)
results for the determination of the OCV–SOC relationship at test temperature Ttest = 25 ◦C.

4.1.3. HPPC Test Results

The HPPC test was examined, as proposed by Belt [35], with two adjustments em-
ployed to achieve better ECM accuracy. Firstly, the rest time after every current pulse
was increased from trest,pulse = 40 s to trest,pulse = 600 s to better capture the dynamic LIB
response to the pulse. Furthermore, the recharge pulse was set at the same current as
the discharge pulse to not change the SOC of the battery over a HPPC profile. Another
benefit of this adjustment is being able to distinguish between charge and discharge pulse
responses. The current pulse time was kept at tpulse = 10 s.

The HPPC profile was run at every 5% SOC steps for charging and discharging. The
current pulses tested are I = 0.2, 0.5, 1, 2 C. However, the maximum possible current pulses
vary with different SOC levels and are adapted to the manufacturer’s data sheet [23]. The
HPPC procedure is performed at all three test temperatures mentioned in Section 4.1.1.
The measured voltage results are used to identify the ECM parameters, as explained in
Section 3.2. The test time necessary for a HPPC profile at Ttest = 25 ◦C, including OCV-SOC
determination, is equal to tHPPC = 4.5× 105 s = 125 h excluding the previous constant-
current-constant-voltage-charge and soaking time.
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4.1.4. Entropic Coefficient Test Results

Both methods proposed in Section 3.1.4 are studied. First, the results for the OCV
method are discussed. The OCV-SOC measurements at different test temperatures
Ttest = 5, 25, 45 ◦C were used to evaluate the OCV change ∂UOCV/∂T over the tempera-
ture. However, the results show that at high and low SOCs the relaxation time trel for
Ttest = 5 ◦C is not sufficient to achieve thermal and chemical equilibrium inside the LIB.
Hence, the assumption by Geifes et al. [37] of the linear behavior of the entropic coefficient
with the temperature change is taken. This enables the possibility to only use the OCV
results of Ttest = 25 ◦C and Ttest = 45 ◦C to determine the entropic coefficient. The OCV
method results are shown in Figure 4.
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Figure 4. Entropic coefficient results using the Open Circuit Voltage (OCV) method and the Entropic
Coefficient Test (EC) method by comparison.

The EC method could be examined as explained in Section 3.1.4. The rest time
after every temperature change was set to trest = 4 h. Consistently to the OCV-SOC
and HPPC test, 5% SOC steps and the three test temperatures Ttest were taken for the
determination. The results are shown in Figure 4. The OCV method and the EC method
show no good agreement. Especially in low and high SOC regions, the results between the
two methods have large deviations. The reason, therefore, can be identified by analyzing the
gradient of the OCV over time ∂UOCV/∂t in the last ten minutes before the OCV measurement
points for both analyzed methods. Adequate results expect the gradient at the OCV
measurement point to be equal to zero ∂UOCV/∂t = 0 V/h.

For the OCV method, ∂UOCV/∂t is not equal to zero, especially in the high and low SOC
regions, where the differences for the two methods can be identified the most. Hence, the
thermal and chemical equilibrium have not been achieved. Looking at ∂UOCV/∂t of the EC
method, the gradients are zero, except for the really low SOC region SOC < 5%. The reason



Batteries 2023, 9, 274 13 of 26

for the difference can be identified in the chosen rest time trel(EC method)= 2 trel(OCV
method). Furthermore, the EC results agree well with the results of Geng et al. [40]. Hence,
for all simulations the EC method results are used as entropic coefficient LUTs. All examined
test procedures are summarized in Appendix A Figure A2.

4.2. Thermal Modeling Results

In the following, the calculated and assumed thermal parameters of the investigated
LIB cell are presented. The thermal parameters are the LIB density, specific heat capacity
and anisotropic heat conductivities. For the determination of the density, the LIB has been
weighed and the volume has been calculated out of the LIB dimensions. This results in the
LIB density of ρ = mcell/Vcell = 2792.7 kg/m3.

The specific heat capacity and the thermal conductivities are taken from Steinhardt
et al. [41] and Bui et al. [42] as cp = 850 J/kg K, kr = 1.4 W/m K and kφ,z = 30 W/m K. The ther-
mal conductivity in tangential direction kφ = kz is assumed to be the same as in the axial
direction.

Lastly, for the heat convection and radiation boundary condition, the heat transfer
equations for convection (Equation (12)) and radiation (Equation (15)) were solved on the
heat transfer coefficient. By adding up both heat transfer coefficient equations, a boundary
condition could be set in Star CCM+ for both collector surfaces, which considers the corre-
sponding surface averaged temperature Tavg(z) and the measured ambient temperature
Tamb for the calculation of the transferred heat. The emissivity is assumed to be ε = 0.3.
The boundary condition at the coat surface is adiabatic. Furthermore, a mesh independence
study was successfully completed, showing no influence of the chosen mesh base size on
the simulation results. Figure 5 shows the mesh and boundary conditions of the thermal
model used in this study.

∂ T
∂ r

∣∣∣
r=R

= 0

r

z

q
∣∣∣
z=+/− Lcell/2

= (hconv + hrad)

(Tavg(z = Lcell/2)− Tamb)

Figure 5. Cut through the rz-plane of the used thermal model and boundary conditions in Star-CCM+
for the multi-physics simulation.

4.3. Validation Profile

First, the current-time WLTC profile for the studied LIB corresponding to the velocity-
time WLTC profile has to be evaluated. This is derived from several assumptions taken
by the comparison with a Tesla Model 3 Long Range [43]. The resulting cycle is shown in
Figure 6, whereas the current is normalized with the nominal capacity CN (C-rate). This
profile is used in the experimental setup as well as in the numerical simulation.

For the validation of the models, the WLTC profile was examined at three SOC-
steps (25, 50, 75%) and three temperatures (Tamb = 15, 25, 35 ◦C). The SOC steps were
chosen to cover the usable battery range for the application in BEVs and the temperatures
have been chosen to enable evaluation of the temperature dependency of the ECMs. In
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total, the studied LIB cell was cycled 23 times to obtain the electrical model before the
validation profiles was examined. This corresponds with a SOH > 99% according to the
manufacturer’s data sheet [23].
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Figure 6. World Harmonized Light Vehicle Test Cycle (WLTC) for the validation of the studied ECMs.

4.4. Voltage Validation and Comparison ECMs

In total, there were eight different ECMs studied, labeled ECM1−8. They are shown in
Table 3 and can be divided into three groups. First, the ECM parameter dependency group
ECM1−5, second, the test parameters ECM6 and third, the ECM architectures ECM7,8.

Table 3. Studied ECMs with different parameter dependencies, test parameters and ECM architec-
tures.

Open Circuit Voltage
UOCV

Ohmic Resistance
R0

Resistance/Capacitance
R1/C1

Resistance/Capacitance
R2/C2

SOC Data Points

ECM1 f(SOC,T,hyst) f(SOC,T,cdc,I) f(SOC,T,cdc,I) f(SOC,T,cdc,I) 5% steps
ECM2 f(SOC,T,hyst) f(SOC,T,cdc) f(SOC,T,cdc) f(SOC,T,cdc) 5% steps
ECM3 f(SOC,T,hyst) f(SOC,T,I) f(SOC,T,I) f(SOC,T,I) 5% steps
ECM4 f(SOC,hyst) f(SOC,cdc,I) f(SOC,cdc,I) f(SOC,cdc,I) 5% steps
ECM5 f(SOC,T) f(SOC,T,cdc,I) f(SOC,T,cdc,I) f(SOC,T,cdc,I) 5% steps

ECM6 f(SOC,T,hyst) f(SOC,T,cdc,I) f(SOC,T,cdc,I) f(SOC,T,cdc,I) 10% steps

ECM7 f(SOC,T,hyst) f(SOC,T,cdc,I) f(SOC,T,cdc,I) - 5% steps
ECM8 f(SOC,T,hyst) f(SOC,T,cdc,I) - - 5% steps

For the ECM parameter dependency group, the influence of the current, charge/discharge
pulses, temperature and hysteresis are studied. Regarding the test parameters, ECMs were
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parameterized with the test results for every 5% SOC steps and 10% SOC steps. Hindermost,
the influence of choosing a Rint, Thevenin and DP model is studied.

The absolute error for the comparison of the ECMs is calculated by

errU(t) =
Uexp(t)−UECM(t)

Uexp(t)
(22)

for every temporal point t. This means that a negative error is an ECM overprediction of
the voltage; thus, a positive error is an ECM underprediction of the voltage. The mean
WLTC voltage error is calculated by

errU,mean =
∑tend

t=0 |errU(t)|
tend

(23)

and used for the comparison of the accuracy of the ECM models.
The results of the experiment and the ECM1 simulation voltage, as well as the error

errU for a WLTC at Tamb = 25 ◦C and SOC = 25, 50, 75 % are shown in Figure 7. It can
be seen that the simulation underpredicts the LIB resistance for all three SOC starting
points resulting in an overprediction of the LIB terminal voltage Ut. Hence, there is an
increasing negative error errU. The error can be caused due to not using enough RC
networks for the modeling of the dynamic LIB behavior. Furthermore, the validation tests
were examined after the characterization cycles. This could lead to LIB aging, which has
already increased the battery resistance. However, the mean errors at all three SOCs are
still small |errU,mean| = 0.254%− 0.366 %.
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Figure 7. Left: Experimental and ECM1 voltage results; Right: ECM1 error compared to the experi-
mental results for a WLTC profile at SOC = 25, 50, 75% and Tamb = 25 ◦C.

4.4.1. Assumptions

To enable a comparison between the ECMs, several assumptions have to be made. To
get an adequate comparability, SOC correction on the measured OCV is assumed to be
performed at the beginning of the WLTC t = 0. Referring to Section 2.1.5, this assumption
is valid since a rest time of trest > 120 min is fulfilled before every WLTC cycle. Hence,
the SOC for every model is adapted so the start OCV UOCV(t = 0) is the same for every
compared ECM. This results in an error of the test profile of errU(t = 0) = 0 % for all studied
ECMs. The start SOC values used in the simulation for all ECMs can be seen in Appendix A
Table A1.
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The ECM parameter dependency studies were examined with a DP model. In total,
nine simulations (three SOC starting points SOC = 75, 50, 25% at three different ambient
temperatures Tamb = 15, 25, 35 ◦C) were experimentally tested and simulated for all studied
ECMs. The discussion of the results regarding the voltage prediction is carried out by
using Figure 8 (left). Since the changing ambient temperature only has an influence on
the temperature dependency study (ECM4), the mean errors are averaged for every SOC
starting point over all three temperatures ∑3

i=1 errU,mean(Tamb,i)/3. Additionally, the mean error
over all nine WLTC cycles is shown in Figure 8 (right). The results are mainly discussed in
comparison to the ECM1, where all dependencies are considered and a DP model with 5%
SOC steps is used.
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Figure 8. Comparison of studied ECMs: Left: absolute voltage error in mV; right: voltage error in %.
Values at SOC points are averaged over three temperatures.

4.4.2. ECM Parameter Dependencies

First, the accuracy while considering the ECM parameter dependency of the current is
analyzed. For this purpose, all other dependencies have been included and just the current
dependency is changed. As can be seen in Figure 8(left), the mean SOC voltage error
increased by 0.12 mV (1.4%) compared to the ECM1. The discrepancy is in a reasonable
range of the measuring accuracy, so the influence of the current dependency on the voltage
prediction is neglectable. This can as well be seen in the LUT results for the different
currents applied, as the identified resistances have relatively small deviations. Hence, the
results agree well with Wildfeuer et al. [13].

The influence of the charge/discharge pulse dependency on the voltage prediction is
even less. The mean SOC voltage error increases by 0.05 mV (0.6%) compared to the ECM1.
Consequently, the LIB internal resistance is not dependent on the direction of Lithium-Ion
transport inside the cell, but more on the absolute value of the current. This corresponds
well with the data in the literature, where the charge pulse usually is used as regeneration
pulse to the previously examined discharge pulse.

The temperature dependency has a strong influence on the accuracy of the ECM. This
can be seen for all three evaluated SOC points, with a mean SOC voltage error increase up to
21.4% compared to the ECM1. If the results for the temperature of Tamb = 25 ◦C were ignored,
the mean SOC voltage error increases even more. This is due to the fact that the battery
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inner resistance and reaction (Arrhenius equation) changes with the temperature. Hence, the
lower the temperature the higher the LIB resistance compared to the recommended operating
temperature. This leads to underpredicted resistances at lower temperatures. As can be seen in
Figure 7, the ECM of all dependencies underpredicts the LIB resistance. Consequently, using
the already too low LIB resistances at Tamb = 25 ◦C for the voltage prediction at Tamb = 15 ◦C,
the ECM voltage error further increases. Temperature dependency needs to be considered to
achieve better ECM accuracy in the voltage prediction.

The discussion of the hysteresis dependency is strongly related to the SOC correction
assumption. The SOC correction is the reason why the model neglecting hysteresis starts at
different SOCs than the previously discussed ECMs, as can be seen in Appendix A Table A1.
The WLTC cycle starts after a discharge process. Hence, for the ECMs considering hysteresis
the measured discharge OCV equals the start OCV for the simulation. When hysteresis
is ignored, the OCV at the same SOC point is generally higher. In consequence, for a
hysteresis independent ECM with SOC correction, the start SOC will be lower compared to
the hysteresis dependent model. Lower SOCs equal higher LIB resistances in the low SOC
region SOC < 25%. Since the ECM1 with all dependencies underpredicts the resistance,
ignoring the hysteresis effect leads to a 14% decreased mean SOC voltage error compared
to the ECM1.

4.4.3. ECM Test Parameter

The mean SOC voltage error is 25.5% less with the usage of 10% SOC step data points
compared to the 5% SOC step data points used for the ECM1. Expecting more accurate
results with more experimental data points, the opposite can be seen here. Especially for the
25% SOC, the ECM6 is more accurate. The explanation lies, as for the hysteresis dependency,
in the assumed SOC correction. At SOCs lower than 25%, the SOC-OCV gradient starts
to increase significantly. For the 10% SOC step model, there are only measured OCVs
at 20% and 30% available. As previously explained, the model start SOC is adapted on
the start OCV. This results in Tamb = 25 ◦C and SOC=25% in a 1.9% lower start SOC
(SOC(ECM1) = 24.1%, SOC(ECM6) = 22.2%), as can be seen in Appendix A Table A1. At
lower SOCs, the LIB resistance is higher, which leads to more accurate voltage predictions
in this case. Compared to the hysteresis dependency, the interpolation between SOC data
points further increases the taken resistances by the ECM.

4.4.4. ECM Architecture Influence

For the Thevenin (ECM7) architecture, the voltage error increases by 6.2% compared
to the DP model ECM1. While the tendencies are the same, the missing RC network cannot
model the dynamic behavior of the LIB voltage as accurately as the DP model.

The mean SOC voltage error by the Rint model ECM8 of 17.29 mV is too high to be
shown in Figure 8 (left). However, in Figure 8 (right), it can be seen that the error is almost
doubled compared to the DP model ECM1. Hence, the completely missing modeling of the
dynamic LIB behavior in the Rint model is not accurate enough to model highly dynamic
profiles as the WLTC cycle.

4.5. Heat Generation Comparison ECMs

In this section, the breakdown of the heat generation as well as the comparison of the
studied ECMs are described.

4.5.1. Heat Generation Breakdown

Depending on which ECMs are compared regarding their heat generation prediction,
the breakdown between irreversible and reversible heat losses is relevant. ECMs using
the same SOC-OCV data (ECM1−4,6−8) are expected to have identical reversible losses
(neglecting minor temperature discrepancies). However, compared with different SOC
starting points (ECM5,6), reversible heat losses can differ between the models. To capture
this influence, firstly a breakdown between irreversible Joule losses Qirr and reversible
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entropic losses Qrev for all three studied SOC points at ambient temperature Tamb = 25 ◦C
is performed.

The total heat generated over a WLTC is defined as

QWLTC =
tend

∑
t=0

Q(t) (24)

which represents the sum of every generated heat per time step. Figure 9 (right) shows that
the total generated heat Qtot differs significantly between the start SOC points. The reason
for that is more on the reversible term than on the irreversible one. While the irreversible
heat generation Qirr is in a range of 5% at all three SOC points, the reversible heat generation
Qrev is the main factor for the difference in the total generated heat. The root cause behind
this is explained in Figure 4. While the entropic coefficient is negative (exothermic entropy
reaction), the reversible heat term is positive. When the entropic coefficient is positive
(endothermic entropy reaction) the reversible heat term is negative. Compared to the heat
generation at SOC = 25%, the total heat generation over the WLTC cycle at SOC = 50% is
83% less, and at SOC = 75% it is 56% less.

With the gained knowledge over the heat generation breakdown, the results regarding
the studied ECMs can be analyzed.
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Figure 9. Left: Comparison of studied ECMs (error in reference to ECM1) for the sum of generated
heat over a WLTC cycle; right: total, irreversible and reversible heat generation breakdown at
Tamb = 25 ◦C and SOC = 25, 50, 75% for the ECM1.

4.5.2. ECM Comparison

Since there are no experimentally measured heat generation rates available, the heat
generation results of the ECM1 model with all dependencies was set as reference. So, the
error errQWLTC is defined as the absolute error value

errQWLTC =
|QWLTC(ECM1)−QWLTC(ECMi)|

QWLTC(ECM1)
(25)
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whereas QWLTC(ECMi) represents the heat generation of the compared ECM. Using the
mean error per time step is not beneficial in this case, since the WLTC profile has time
phases with an applied current of zero. This equals to no heat generation of the LIB and
hence would distort the discussion. This enables this study to quantitatively analyze
the influence of the studied parameter dependencies and architectures on the predicted
generated heat. The assumption is valid, since the overall mean voltage error errU = 0.241%
of the ECM1 is accurate to describe the battery voltage in highly dynamic drive cycles. The
results are shown in Figure 9 (left).

The influence of the dependencies is discussed from left to right. The current indepen-
dent ECM2 has an mean SOC heat generation error of errQWLTC = 5.5%. Compared with
the voltage difference to the ECM1 of 1.2%, the influence on the predicted heat generation
is increased by more than four times. The reason for this is the mean voltage error errU,mean.
The current dependency mainly has an influence on the voltage prediction at the current
peaks. For the studied LIB the WLTC profile has only few high current peaks, as can be seen
in Figure 6. However, in terms of the heat generation, the current peaks are responsible
for the majority of the generated heat in the WLTC profile. In consequence, the current
dependency is more important for the heat generation prediction than for the voltage
prediction in highly dynamic drive cycles. For a better visualization of the results, the heat
generation absolute error over time is shown in Appendix A Figure A4.

The charge/discharge pulse independent ECM3 shows a heat generation average error
of errQWLTC = 1.7%. Since it has no significant influence on neither the voltage nor the heat
generation prediction, this dependency can be neglected.

The temperature independent ECM4 results in an error of errQWLTC = 11.8%. While
the error for all three SOC points at Tamb = 25 ◦C is 0.28% in average, it increases to 5.5%
at Tamb = 35 ◦C and to 29.5% at Tamb = 15 ◦C. Hence, in accordance with the voltage
prediction results, temperature should never be neglected either for the voltage or for the
heat generation prediction.

The mean SOC heat generation error for the hysteresis independent ECM5 is equal
to errQWLTC = 11.1%. The main reason can be identified in the assumed SOC-correction,
agreeing well with the conclusions of the voltage results. However, there are not only the
increased LIB resistances. Regarding the heat generation, different start SOCs result in the
usage of different entropic coefficient values. The importance of the entropic coefficient
terms can be seen, because the error increases from 0.6% at SOC = 75%, to 10.9% at
SOC = 50% and even 21.6% at SOC = 25%. Relating to Figure 4, the gradient of the
entropic coefficient can be identified as the main cause for this observation. Hence, when
relying on the predicted heat generation, the hysteresis effect has to be taken into account
also for nickel manganese cobalt cells. The increasing heat generation error over time can
additionally be seen in Appendix A Figure A5.

For the 10% SOC step model (ECM6), the mean SOC heat generation error is at
errQWLTC = 5.6%. This can be attributed to the same reasons as for the previously discussed
ECM5. Hence, 5% SOC steps should be used.

Finally, the ECM architecture influence is discussed. The Thevenin architecture has
a mean SOC heat generation error of errQWLTC = 1.4%. This is within the limits of the
accepted tolerance for the heat generation prediction. Analyzing the Rint architecture
ECM8, the error is at errQWLTC = 15.3%. The high discrepancy for the ECM8 is explained by
the insufficient modeling of the dynamic resistances of the LIB.

Taking the voltage and heat generation results into account, the most suitable ECM
for thermal modeling simulations can be identified. Out of all studied parameters and
architectures only one has been shown as neglectable in the voltage as well as in the
heat generation comparison. The charge/discharge pulse dependency can be neglected
in the voltage prediction (error to ECM1 = 0.6%) and in the heat generation prediction
(error to ECM1 = 1.7%). All other dependencies and architectures result in one of the two
predictions in mean errors > 5%. However, for thermal simulations the Thevenin ECM
architecture has an error in the heat generation prediction of only 1.4% compared to the
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ECM1. Hence, because of the decreased computational effort the Thevenin model can be
used for thermal management simulations, while for electrical simulation a DP model
should be preferred.

To show the importance of the influence on heat generation prediction, the BEV of
comparison is shortly explained. The chosen LIB for this study is comparable to the LIB
cells used in the Tesla Model 3 Long Range. In total, there are 4416 cells in this BEV [43].
So, while the absolute heat generation error in Joule can seem small in the first place,
by multiplying it by the total amount of cells, the heat generation prediction error can
have a large impact on the design of thermal management systems. Assuming that the
ECM1 predicts the LIB heat generation perfectly well, for the WLTC cycle at Tamb = 25 ◦C
and SOC = 25%, a 5.5% misprediction in the heat generation over the whole WLTC cycle
would result in a total generated heat misprediction of Qerr,cell = 7.42 J for one cell and
Qerr,Tesla−LIB−Pack = 32.8 kJ for 4416 LIB cells.

5. Conclusions

This paper describes a complete workflow for the characterization and parameter iden-
tification of ECMs for LIBs. Furthermore, different test procedures for the characterization
of the OCV and the entropic coefficient have been studied and compared. Additionally, the
developed parameter identification tool enables the user to study the influence of different
ECM parameter dependencies and architectures. The LUTs generated by the tool have been
used to compare the resulting ECMs regarding the voltage and heat generation prediction.
The key results of this paper are summarized in the following.

The relaxation method results in a more accurate description of the OCV than the
constant current method. The OCV method for the determination of the entropic coefficient
delivers insufficient results. Hence, the RM method with the separate entropic coefficient test
procedure should be used and justifies the additional test time. The resulting ECM1 model
with all dependencies shows good agreement with the validation experiments. The mean
accuracy over all validation cycles is at 0.241% (8.77 mV) error in the voltage prediction.

Concluding the voltage and heat generation results, this study recommends using a
Thevenin ECM with all parameter dependencies included except for the charge/discharge
current dependency for the thermal modeling. Taking into account both the voltage and
heat generation prediction changes the best suitable model compared to only considering
the voltage prediction, whereas the neglection of hysteresis or current would be acceptable.
If LIB parameters such as energy need to be considered as well, this study recommends
using a DP model neglecting charge/discharge current dependency. The results help to
better understand the influence of the chosen ECM on key parameters as voltage or heat
generation and can save valuable computational effort for 1D/3D battery pack simulations
for thermal management designers.

Further studies are planned to capture the LIB thermal properties over the studied
temperature range and the heat generation over a WLTC and fast charge experimentally by
using heat flux sensors. With those results, the models can again be compared regarding
their heat generation prediction with the results of experimental data. The developed electro-
thermal model will be used for LIB thermal management design studies and optimization.
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Nomenclature

Latin symbols
A Area (m2)
cp Specific Heat Capacity (J/kg K)
cdc Charge/Discharge Pulse Dependency (−)
C C-Rate Lithium-Ion-Battery (−)
C Capacitance (F)
CN Nominal Capacity (A h)
d Diameter (m)
err Error (%)
h Heat Transfer Coefficient (W/m2 K)
hyst Hysteresis Dependency (−)
I Current (A)
k Heat Conductivity (W/m K)
L Length (m)
m Mass (kg)
Nu Nusselt Number (−)
Pr Prandtl Number (−)
Q Total Charge (A h)
Q Heat (J)
Q̇ Heat Generation Rate (W)
R Electrial Resistance (Ω)
R0 Ohmic Resistance (Ω)
Ra Rayleigh Number (−)
SOC0 Previous State of Charge (−)
t Time (s)
T Temperature (K)
U Voltage (V)
V Volume (m3)
Greek Symbols
ε Emissivity (−)
ηC Coulombic Efficiency (−)
ρ Density (kg m−3)
σ Stefan-Boltzmann-Constant (W/m2 K4)
τ Time Constant (s)
Subscripts
amb Ambient
cell Lithium-Ion-Battery Cell
conv Heat Convection
exp Experimentally
end End Time
i Counting Variable
indep Independent
irr Irreversible Losses
mean Mean Error
mix Mixing Enthalpy Losses
OCV Open Circuit Voltage
pulse Current Pulse
rad Heat Radiation
reac Side Reaction Losses
rel Relaxation Time
rest Rest Time
rev Reversible Losses
t Terminal Voltage
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Abbreviations
BEV Battery Electric Vehicle
CCM Constant Current Test Method
DP Dual Polarization Model
EC Entropic Coefficient Test Method
ECM Electrical Equivalent Circuit Model
EIS Electrical Impedance Spectroscopy
HPPC High Pulse Power Characterization
LIB Lithium-Ion-Battery
LUT Look-Up Tables
OCV Open Circuit Voltage
RC Resistance-Capacitance
RM Relaxation Test Method
SOC State Of Charge
SOH State Of Health
WLTC World Harmonized Light Vehicle Test Cycle

Appendix A

Basytec
Battery Testing System

Laboratory
Computer

Weiss Climate Chamber

Feinmetall Cell Contacting
System Cell Sample

Control Signal Measurement Signal

Figure A1. Experimental platform of the Lithium-Ion-Battery (LIB) test bench.
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Figure A2. Examined test procedure for the the LIB ECM characterization. Tests (1.)–(3.) need to be
examined at all test temperatures, test (4.) only needs to be examined once.

Table A1. Comparison of experimental start SOC and simulation start SOC with OCV-SOC-correction.

Temperature Tamb in ◦C Experimental Start SOC Start SOC ECM1,2,3,7,8 Start SOC ECM4 Start SOC ECM5 Start SOC ECM6

15 0.250 0.239 0.255 0.213 0.225
15 0.500 0.502 0.508 0.491 0.502
15 0.750 0.752 0.758 0.745 0.745

25 0.250 0.241 0.241 0.213 0.222
25 0.500 0.500 0.500 0.489 0.500
25 0.750 0.753 0.753 0.746 0.745

35 0.250 0.245 0.247 0.218 0.227
35 0.500 0.501 0.505 0.491 0.501
35 0.750 0.753 0.755 0.747 0.746
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Figure A3. High Pulse Power Characterization (HPPC) current (top) and voltage (bottom) results
using 5% SOC-steps for discharge and charge at Tamb = 25 ◦C.
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Figure A4. Comparison of heat generation prediction over the WLTC cycle at Tamb = 25 ◦C and
SOC = 50%.
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Figure A5. Comparison of heat generation prediction over the WLTC cycle at Tamb = 25 ◦C and
SOC = 25%.

References
1. European Union. Fit for 55. 2022. Available online: https://www.bundesregierung.de/breg-de/themen/europa/fit-for-55-eu-1

942402 (accessed on 18 October 2022).
2. Jouhara, H.; Khordehgah, N.; Serey, N.; Almahmoud, S.; Lester, S.P.; Machen, D.; Wrobel, L. Applications and thermal management

of rechargeable batteries for industrial applications. Energy 2019, 170, 849–861. [CrossRef]
3. Liu, J.; Duan, Q.; Ma, M.; Zhao, C.; Sun, J.; Wang, Q. Aging mechanisms and thermal stability of aged commercial 18650 lithium

ion battery induced by slight overcharging cycling. J. Power Sources 2020, 445, 227263. [CrossRef]
4. Hussein, A.A. Experimental modeling and analysis of lithium-ion battery temperature dependence. In Proceedings of the 2015

IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 1084–1088.
5. Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in

Lithium-ion batteries—A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [CrossRef]
6. Lu, Z.; Yu, X.; Wei, L.; Cao, F.; Zhang, L.; Meng, X.; Jin, L. A comprehensive experimental study on temperature-dependent

performance of lithium-ion battery. Appl. Therm. Eng. 2019, 158, 113800. [CrossRef]
7. Pesaran, A.A. Battery thermal models for hybrid vehicle simulations. J. Power Sources 2002, 110, 377–382. [CrossRef]
8. Plett, G.L. Battery Management Systems, Volume I: Battery Modeling; Artech House: Norwood, MA, USA, 2015.
9. Nejad, S.; Gladwin, D.; Stone, D. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of

lithium-ion battery states. J. Power Sources 2016, 316, 183–196. [CrossRef]
10. Wang, Q.K.; He, Y.J.; Shen, J.N.; Ma, Z.F.; Zhong, G.B. A unified modeling framework for lithium-ion batteries: An artificial

neural network based thermal coupled equivalent circuit model approach. Energy 2017, 138, 118–132. [CrossRef]
11. Zhang, X.; Zhang, W.; Lei, G. A review of li-ion battery equivalent circuit models. Trans. Electr. Electron. Mater. 2016, 17, 311–316.

[CrossRef]
12. Bernardi, D.; Pawlikowski, E.; Newman, J. A general energy balance for battery systems. J. Electrochem. Soc. 1985, 132, 5.

[CrossRef]
13. Wildfeuer, L.; Wassiliadis, N.; Reiter, C.; Baumann, M.; Lienkamp, M. Experimental characterization of Li-ion battery resistance

at the cell, module and pack level. In Proceedings of the 2019 Fourteenth International Conference on Ecological Vehicles and
Renewable Energies (EVER), Monte-Carlo, Monaco, 8–10 May 2019; pp. 1–12.

14. Behi, H.; Karimi, D.; Jaguemont, J.; Gandoman, F.H.; Kalogiannis, T.; Berecibar, M.; Van Mierlo, J. Novel thermal management
methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy 2021, 224, 120165.
[CrossRef]

15. Liang, Z.; Wang, R.; Malt, A.H.; Souri, M.; Esfahani, M.; Jabbari, M. Systematic evaluation of a flat-heat-pipe-based thermal
management: Cell-to-cell variations and battery ageing. Appl. Therm. Eng. 2021, 192, 116934. [CrossRef]

16. Alihosseini, A.; Shafaee, M. Experimental study and numerical simulation of a Lithium-ion battery thermal management system
using a heat pipe. J. Energy Storage 2021, 39, 102616. [CrossRef]

17. Qian, Z.; Li, Y.; Rao, Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling.
Energy Convers. Manag. 2016, 126, 622–631. [CrossRef]

18. Cao, R.; Zhang, X.; Yang, H. Prediction of the Heat Generation Rate of Lithium-Ion Batteries Based on Three Machine Learning
Algorithms. Batteries 2023, 9, 165. [CrossRef]

19. Pang, H.; Wu, L.; Liu, J.; Liu, X.; Liu, K. Physics-informed neural network approach for heat generation rate estimation of
lithium-ion battery under various driving conditions. J. Energy Chem. 2023, 78, 1–12. [CrossRef]

https://www.bundesregierung.de/breg-de/themen/europa/fit-for-55-eu-1942402
https://www.bundesregierung.de/breg-de/themen/europa/fit-for-55-eu-1942402
http://doi.org/10.1016/j.energy.2018.12.218
http://dx.doi.org/10.1016/j.jpowsour.2019.227263
http://dx.doi.org/10.1016/j.jpowsour.2014.03.112
http://dx.doi.org/10.1016/j.applthermaleng.2019.113800
http://dx.doi.org/10.1016/S0378-7753(02)00200-8
http://dx.doi.org/10.1016/j.jpowsour.2016.03.042
http://dx.doi.org/10.1016/j.energy.2017.07.035
http://dx.doi.org/10.4313/TEEM.2016.17.6.311
http://dx.doi.org/10.1149/1.2113792
http://dx.doi.org/10.1016/j.energy.2021.120165
http://dx.doi.org/10.1016/j.applthermaleng.2021.116934
http://dx.doi.org/10.1016/j.est.2021.102616
http://dx.doi.org/10.1016/j.enconman.2016.08.063
http://dx.doi.org/10.3390/batteries9030165
http://dx.doi.org/10.1016/j.jechem.2022.11.036


Batteries 2023, 9, 274 26 of 26

20. Wu, L.; Liu, K.; Liu, J.; Pang, H. Evaluating the heat generation characteristics of cylindrical lithium-ion battery considering the
discharge rates and N/P ratio. J. Energy Storage 2023, 64, 107182. [CrossRef]

21. Liu, J.; Huang, Z.; Sun, J.; Wang, Q. Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging
cycling. J. Power Sources 2022, 526, 231136. [CrossRef]

22. Catenaro, E.; Onori, S. Experimental data of lithium-ion batteries under galvanostatic discharge tests at different rates and
temperatures of operation. Data Brief 2021, 35, 106894. [CrossRef]

23. Kim, Y.S. Product Specifications Rechargeable Lithium Ion Battery Model: INR21700 M50 18.20Wh. 2016. Available online:
https://www.dnkpower.com/wp-content/uploads/2019/02/LG-INR21700-M50-Datasheet.pdf (accessed on 18 October 2022).

24. He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an
experimental approach. Energies 2011, 4, 582–598. [CrossRef]

25. Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367.
[CrossRef]

26. Ng, K.S.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health
of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [CrossRef]

27. Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [CrossRef]
28. Thomas, K.E.; Newman, J. Thermal modeling of porous insertion electrodes. J. Electrochem. Soc. 2003, 150, A176. [CrossRef]
29. Siemens, P. STAR-CCM+ User Guide Version 13.04; Siemens PLM Software Inc.: Munich, Germany, 2022.
30. Immonen, E.; Hurri, J. Incremental thermo-electric CFD modeling of a high-energy Lithium-Titanate Oxide battery cell in different

temperatures: A comparative study. Appl. Therm. Eng. 2021, 197, 117260. [CrossRef]
31. Klan, H. Wärmeübergang durch freie Konvektion an umströmten Körpern. In VDI-Wärmeatlas; Springer: Berlin/Heidelberg,

Germany, 2002; pp. 567–591.
32. Stephan, P. B2 Grundlagen der Berechnungsmethoden für Wärmeleitung, konvektiven Wärmeübergang und Wärmestrahlung.

In VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany, 2019; pp. 23–36.
33. Basytec. Battery Cell and Module Test System, 2017. Available online: https://basytec.de/prospekte/2023_01_BaSyTec%20MRS

.pdf (accessed on 18 October 2022).
34. Nikolian, A.; Jaguemont, J.; De Hoog, J.; Goutam, S.; Omar, N.; Van Den Bossche, P.; Van Mierlo, J. Complete cell-level lithium-

ion electrical ECM model for different chemistries (NMC, LFP, LTO) and temperatures (−5 C to 45 C)–Optimized modelling
techniques. Int. J. Electr. Power Energy Syst. 2018, 98, 133–146. [CrossRef]

35. Belt, J.R. Battery Test Manual for Plug-in Hybrid Electric Vehicles; Technical Report; Idaho National Lab. (INL): Idaho Falls, ID, USA,
2010.

36. Schmidt, J.P. Verfahren zur Charakterisierung und Modellierung von Lithium-Ionen Zellen; KIT Scientific Publishing: Karlsruhe,
Germany, 2013; Volume 25.

37. Geifes, F.; Bolsinger, C.; Mielcarek, P.; Birke, K.P. Determination of the entropic heat coefficient in a simple electro-thermal
lithium-ion cell model with pulse relaxation measurements and least squares algorithm. J. Power Sources 2019, 419, 148–154.
[CrossRef]

38. Forgez, C.; Do, D.V.; Friedrich, G.; Morcrette, M.; Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion
battery. J. Power Sources 2010, 195, 2961–2968. [CrossRef]

39. Zhu, Q.; Xiong, N.; Yang, M.L.; Huang, R.S.; Hu, G.D. State of charge estimation for lithium-ion battery based on nonlinear
observer: An H∞ method. Energies 2017, 10, 679. [CrossRef]

40. Geng, Z.; Groot, J.; Thiringer, T. A time-and cost-effective method for entropic coefficient determination of a large commercial
battery cell. IEEE Trans. Transp. Electrif. 2020, 6, 257–266. [CrossRef]

41. Steinhardt, M.; Gillich, E.I.; Rheinfeld, A.; Kraft, L.; Spielbauer, M.; Bohlen, O.; Jossen, A. Low-effort determination of heat
capacity and thermal conductivity for cylindrical 18650 and 21700 lithium-ion cells. J. Energy Storage 2021, 42, 103065. [CrossRef]

42. Bui, T.M.; Niri, M.F.; Worwood, D.; Dinh, T.Q.; Marco, J. An Advanced Hardware-in-the-Loop Battery Simulation Platform for the
Experimental Testing of Battery Management System. In Proceedings of the 2019 23rd International Conference on Mechatronics
Technology (ICMT), Salerno, Italy, 23–26 October 2019; pp. 1–6.

43. Lambert, F. Tesla Model 3: Exclusive First Look at Tesla’s New Battery Pack Architecture. 2017. Available online: https:
//electrek.co/2017/08/24/tesla-model-3-exclusive-battery-pack-architecture/ (accessed on 18 October 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.est.2023.107182
http://dx.doi.org/10.1016/j.jpowsour.2022.231136
http://dx.doi.org/10.1016/j.dib.2021.106894
https://www.dnkpower.com/wp-content/uploads/2019/02/LG-INR21700-M50-Datasheet.pdf
http://dx.doi.org/10.3390/en4040582
http://dx.doi.org/10.1016/j.jpowsour.2011.10.013
http://dx.doi.org/10.1016/j.apenergy.2008.11.021
http://dx.doi.org/10.1016/S0378-7753(02)00488-3
http://dx.doi.org/10.1149/1.1531194
http://dx.doi.org/10.1016/j.applthermaleng.2021.117260
https://basytec.de/prospekte/2023_01_BaSyTec%20MRS.pdf
https://basytec.de/prospekte/2023_01_BaSyTec%20MRS.pdf
http://dx.doi.org/10.1016/j.ijepes.2017.11.031
http://dx.doi.org/10.1016/j.jpowsour.2019.02.072
http://dx.doi.org/10.1016/j.jpowsour.2009.10.105
http://dx.doi.org/10.3390/en10050679
http://dx.doi.org/10.1109/TTE.2020.2971454
http://dx.doi.org/10.1016/j.est.2021.103065
https://electrek.co/2017/08/24/tesla-model-3-exclusive-battery-pack-architecture/
https://electrek.co/2017/08/24/tesla-model-3-exclusive-battery-pack-architecture/

	Introduction
	Methodology
	Electric Equivalent Circuit Models for Lithium-Ion-Batteries
	The Rint Model
	The Thevenin Model
	The Dual Polarization Model
	Dependencies
	State of Charge Estimation

	Heat Generation Calculation
	Thermal Model
	Assumptions
	Heat Convection and Heat Radiation


	Experimental Setup and Parameter Identification
	Battery Test Bench
	Capacity Test
	OCV-SOC Test
	HPPC Test
	Entropic Coefficient Test

	ECM Parameter Identification
	Open Circuit Voltage
	Resistances and Capacitances


	Results and Discussion
	Experimental Results
	Capacity Test Results
	OCV-SOC Test Results
	HPPC Test Results
	Entropic Coefficient Test Results

	Thermal Modeling Results
	Validation Profile
	Voltage Validation and Comparison ECMs
	Assumptions
	ECM Parameter Dependencies
	ECM Test Parameter
	ECM Architecture Influence

	Heat Generation Comparison ECMs
	Heat Generation Breakdown
	ECM Comparison


	Conclusions
	Appendix A
	References

