
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Evaluation and Implementation of
Zero-Touch Onboarding Solutions

for IIoT

Vishwas Avinash Jadhav

Course of Study: M.Sc. Information Technology

Examiner: Dr. Ilche Georgievski

Supervisor: Dr. Wilfried Wessner

Commenced: December 1, 2022

Completed: May 9, 2023

Abstract

The Internet of Things (IoT) has provided numerous opportunities across various industries, and its
technological advancements are rapidly progressing. The process of Device Onboarding refers to
the task of initially registering a device onto an IoT cloud. Onboarding can be very challenging
while doing a large-scale IoT deployment. A recent report by IoT analytics predicts that the number
of IoT devices will increase twofold, with an expected total of Twenty-seven billion devices by
2025. As the number of IoT devices proliferates, establishing a streamlined process for onboarding
multiple devices has become more imperative than ever.

While doing this research, we first evaluated the state-of-the-art solutions for onboarding IoT edge
devices. The methods were Fido (Fast Identity Online) Device Onboard (FDO) from the Linux
Foundation, Keylime Solutions from the cloud-native computing foundation (CNCF), and OPCUA
device onboard by the OPC foundation. The evaluation is based on 22 various factors. The
assessment led us toward the best possible solution, i.e., FDO. to do zero-touch onboarding and
register the device to an IoT device management service.

In addition to addressing the existing inconsistencies in the device manufacturing process using
FDO standards, this research has also implemented these standards in a novel way. Many zero-touch
onboarding solutions today demand special software and hardware to be integrated into the IoT device
during manufacturing. The proposed solution using FDO standards with a "Late Binding"feature is
an open, cloud-agnostic solution that allows users to choose their preferred cloud provider during
the initial power-up. It eliminates the need for Original Device Manufacturers to manufacture
unique device Stock Keeping Units (SKUs) for each customer and cloud combination.

To summarize, This research thoroughly evaluated and chose a suitable onboarding method and
successfully demonstrated the implementation. We used the raspberry pi compute module 4 as an
IoT edge device with a custom-embedded Linux OS. Developing the novel hawkBit onboarding
modules on both the client and server sides has facilitated this implementation. The proposed
software-based solution is capable of onboarding 43200 devices per day. Utilizing the FDO 1.1
standards, this approach has proven to be a highly effective solution for the zero-touch onboarding
of a large number of IoT devices.

2

Contents

1 Introduction 9
1.1 Motivation of Research . 10
1.2 Research Questions . 11
1.3 Research Methodology . 12
1.4 Organisation of Report . 12

2 Background 14
2.1 IoT Device Onboarding . 14
2.2 Zero Touch IoT Device Onboarding . 14
2.3 FIDO Device Onboarding (FDO) [2] . 15
2.4 Keylime[3] . 18
2.5 OPCUA Device Onboard . 20
2.6 Embedded Linux . 22
2.7 The Yocto Project . 22
2.8 Basic Hardware Terms . 26
2.9 Software Tools . 28
2.10 Device Management Service(DMS) . 29

3 State of the Art 30
3.1 Literature Survey . 30

4 Evaluation of Onboarding Methods 33
4.1 Evaluation Criteria . 33
4.2 Evaluation . 34
4.3 Advantages and Disadvantages . 46

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO
standards 51
5.1 Manual Onboarding to hawkBit Server . 51
5.2 Architecture Design . 55

6 Software Solution Implementation 60
6.1 Device manufacturing . 60
6.2 FDO hawkBit Device Module . 60
6.3 FDO hawkBit Owner Module . 63

7 Validation and Testing of Prototype 67
7.1 Quick Overview of FDO . 67
7.2 Server and Device Setup . 68
7.3 FDO Demonstration and Validdation . 70

3

7.4 Testing & Evaluation . 73
7.5 Onboarding of Smart Energy Meter . 76

8 Conclusion and Future Scope 77

4

List of Figures

1.1 Number of Internet of Things (IoT) connected devices worldwide from 2015 to
2022, with forecasts from 2023 to 2025, from [1] 10

2.1 FIDO Device Onboard Entities and Entity Interconnection, from [2] 17
2.2 Graphical Representation of the FIDO Device Onboard Protocols, from [2] . . . 18
2.3 Kelyme Workflow (High level), from [5] . 19
2.4 OPCUA Device Lifecycle, from [7] . 22
2.5 Yocto Project Overview, from [11] . 23
2.6 Yocto Project Workflow, from [11] . 25
2.7 Raspberry Pi Compute Module 4 . 26
2.8 Compute Module 4 IoT Router Carrier Board Mini 27
2.9 IoT Edge Device complete hardware setup . 27

4.1 Three Party Bootstrap Key Derivation Protocol [3] 35
4.2 Keylime Latency [3] . 37
4.3 Scaling the Keylime Verifier (CV) on bare metal [3] 39
4.4 FDO Ownership Voucher [2] . 40

5.1 Step 1: Log in to hawkBit Server . 52
5.2 Step 2: Create a target(device) on hawkBit server 52
5.3 Step 3: Security Token generated . 53
5.4 Step 4: Configure and register the device . 54
5.5 Step 5: Confirm device status as registered . 54
5.6 Management Service - Agent Interactions via ServiceInfo 55
5.7 Intel FDO Client Block Diagram [27] . 56
5.8 Intel FDO Client Execution Flow [27] . 57
5.9 FDO Device architecture with hawkBit device module 58
5.10 Zero touch onboarding to hawkBit using FDO Architecture 59

7.1 FIDO Device Onboard Entities and Entity Interconnection, [2] 67
7.2 database server . 68
7.3 Manufacturer server . 68
7.4 Rendezvous server . 69
7.5 Owner server . 69
7.6 hawkBit server . 69
7.7 Adding all required data to the device . 70
7.8 DI log from the Device, Device got its unique GUID and Serial number 70
7.9 Manufacturing Server Log, msg 13 means DI protocol complete 70
7.10 Sharing of Ownership voucher and triggering TO0 protocol 71
7.11 Manufacturer Log: Manufactured voucher for serial no lxfdo005 71

5

7.12 Owner Log: TO0 completed by Owner server 71
7.13 RV Log: RV server confirming TO0 completion 71
7.14 Device log : validates the TO2 protocol completed 72
7.15 hawkbit.config: validates that correct configurations are sent using T02 protocol . 72
7.16 hawkbit.log: validates the device is registered to hawkBit server 72
7.17 RV Log: RV server confirming TO1 completion 73
7.18 Owner server Log: Owner server confirming TO2 completion. msg71 means T02

completed . 73
7.19 Latency of FDO to hawkBit server . 74

6

List of Tables

2.1 Steps for FIDO Device Onboard . 17

4.1 Keys used by keylime and their purpose [3] . 35
4.2 Average TPM Operation Latency (ms)[3] . 38
4.3 Evaluation of Onboarding Methods . 44
4.4 Advantages and disadvantages IoT device onboarding methods 50

7.1 FDO Protocols and Messages . 68
7.2 FDO Device latency . 74

7

Listings

4.1 keylime_tenant command to provision keylime agent 34

5.1 swupdate suricatta daemon . 53

6.1 fdolinuxclient.service . 60
6.2 get_device_serial_number function . 61
6.3 hawkbitOnboarding function . 62
6.4 Receive serial number from device . 63
6.5 createHawkbitTarget method . 64
6.6 createHawkbitConfig and writeHawkbitConfig methods 64
6.7 confirmTargetRegistration method . 65

8

1 Introduction

The world is at the threshold of a significant change that will revolutionize the way we live and work,
specifically in smart cities, logistics, supply chains, things to do with transportation, and even the
way we do agriculture and the way we manage precious resources such as water and energy. This
transformation will be powered by the Internet of Things (IoT), which involves deploying numerous
devices and collecting data to make better decisions. Linutronix GmbH is enthusiastic about the
potential of IoT to benefit our customers, industry, and, eventually, citizens worldwide. However, to
realize this potential, we must deploy and connect billions of devices safely, securely, efficiently, and
cost-effectively. This thesis focuses on developing a key enabler to facilitate this transformation and
automatically provide improved services to onboard millions of devices without human intervention.
Traditional methods of onboarding devices, such as manual provisioning, can be time-consuming,
error-prone, and impractical for these future-oriented large-scale IoT deployments.

To proceed, we need to understand the onboarding process for an IoT edge device. This process
involves various steps to connect and configure the device to an IoT cloud platform, like Azure
IoT, AWS IoT, hawkBit, and others, referred to as IoT Device Management Services (DMS). This
research will consider an example of an IoT-enabled smart energy meter that needs to connect to
the hawkBit Device Management Service. Here is a typical manual onboarding process for an
IoT edge device or a smart energy meter. First, the commissioning technician installs the device
physically and connect it to the internet. After that, he configures the device, such as the name, ID,
and authentication token. These details are then provided to the device, which will authenticate to
the IoT DMS. Ultimately, the technician will check if the device is functioning correctly. If yes, an
IoT edge device is successfully onboarded onto an IoT DMS, enabling it to collect and transmit data
and participate in the larger IoT ecosystem.

This thesis will evaluate state-of-the-art IoT device onboarding solutions and explore scalability,
latency, cost, compatibility concerns, and other requirements and specifications for a successful IoT
device onboarding technique. A combination of simulations, real-world use cases, and experimental
testing will be used to design and assess the suggested solution. The findings of this study will
open the door for more successful and scalable IoT deployments by offering insightful information
about the viability and efficacy of the designed and existing solutions. The primary objective of this
thesis is to develop and demonstrate a cutting-edge zero-touch IoT device onboarding solution that
advances IoT technology and has the potential to enhance how we connect to and interact with IoT
devices.

9

1 Introduction

1.1 Motivation of Research

As mentioned earlier, The Internet of Things (IoT) is growing at a spectacular rate. We are on the
verge of an explosion of IoT-related products and services, as per a report from IoT Analytics [1]
The number of IoT devices worldwide is forecast to almost double from 14.4 billion in 2023 to more
than 27 billion IoT devices in 2025. The graph of this projection can be visualized in Figure 1.1.

Figure 1.1: Number of Internet of Things (IoT) connected devices worldwide from 2015 to 2022,
with forecasts from 2023 to 2025, from [1]

However, are we prepared for this huge growth? Onboarding these many devices one by one the first
time or after IoT Hub reset (for security reasons) will be a cumbersome task. The current manual
onboarding process has several drawbacks as given below:

1. Time-consuming: Manual onboarding requires manual configuration, and testing, which can
be time-consuming and delay the deployment of IoT devices. As per this research[21] manual
onboarding may take a minimum of 5 to 20 minutes.

2. Human Error: Manual configuration is prone to human error, which can lead to incorrect
settings, security vulnerabilities, and malfunctioning devices.

3. Inconsistent Configuration: Manual configuration can result in inconsistent settings across
different devices, making it harder to manage and maintain the network.

4. Security Risks: Manual configuration can increase security risks, as credentials and security
settings can be mishandled, forgotten, or misconfigured, leading to potential security breaches.

5. Costly: Manual onboarding can be costly, as it requires human resources to perform the
installation and configuration, increasing the deployment and operational costs.

6. Outdated software: IIoT devices are often equipped with outdated software at the time of
commissioning, so they require an update.

10

1 Introduction

These drawbacks can cause serious hurdles in achieving this growth. To address these challenges,
a state-of-the-art zero-touch IoT device onboarding (ZTO) solution is needed to enable seamless
and automated device provisioning. The IoT device only needs to be drop shipped to the point of
installation, connected to the network and powered up. ZTO should do the rest.

1.2 Research Questions

To find out a suitable method for onboarding, we evaluate three different methods of IoT device
onboarding: FIDO IoT device onboard from the Linux Foundation, Keylime solutions from MIT,
and OPCUA device onboard from OPC foundation.

FIDO IoT device onboard is a method that utilizes the FIDO (Fast Identity Online) authentication
protocol to securely and efficiently onboard IoT devices. This method aims to address the security
concerns that arise during onboarding by providing a secure and streamlined authentication
process.

Keylime solutions from MIT is another method that focuses on security during onboarding. This
method uses Trusted Platform Modules (TPMs) to verify the integrity of IoT devices before allowing
them onto a network. This ensures that only trustworthy devices are connected, thereby minimizing
the risk of security breaches.

Finally, OPCUA device onboard from OPC foundation is a method that aims to improve the scalability
and ease of use of IoT device onboarding. This method uses the OPC Unified Architecture (OPC
UA) standard to provide a standardized and efficient process for onboarding a large number of
devices onto a network.

The research questions are given below.

Research Question 1: What are the key differences between all these IoT Device onboarding
solutions? Set up evaluation criteria and compare each method against them.

Research Question 2: What are the advantages and disadvantages of each of these solutions?

By evaluating the effectiveness of these three methods using various evaluation criteria (such as
scalability, ease of use, and reliability), we aim to provide organizations with valuable insights
into the strengths and weaknesses of each approach, enabling them to make informed decisions
regarding onboarding their own IoT devices.

Research Question 3: How can we develop a zero-touch onboarding solution using FDO standards
to efficiently onboard a large number of IoT devices to a hawkBit Device Management server?

Research Question 4: Which onboarding method is more suitable for smart energy meters
(IoT-enabled energy meters) based on the merits and demerits of each method, and how does the
suitability depend on the specific use cases of the smart energy meters?

11

1 Introduction

1.3 Research Methodology

The research was built upon standard industry practices. To answer the first two research
questions, we used “ISO/IEC/IEEE 42030 INTERNATIONAL STANDARD: Software, systems,
and enterprise — Architecture evaluation framework” to set the evaluation criteria. We came
up with 22 evaluation criteria. The comparison was theoretical and practical; we used sources
such as official documentation, research papers, and feasibility studies to evaluate the methods.
We implemented the Keylime Solutions and FDO onboarding to check evaluation criteria such
as development efforts, required programming skills, and maintainability. The OPCUA device
onboard standards were released in November 2022; therefore, the implementation was not yet
available, so we could only evaluate them theoretically.

A prototype was created to answer the third research question, which comprises Raspberry Pi
Compute Module 4 and IoT Router Carrier Board Mini. This prototype board is considered an IoT
edge device, referred to as a device from here onward. A software solution is developed using FDO
1.1 standards such that the device will have a Linux client responsible for device onboarding. On
the other hand, the owner server will have an onboarding module that provides the device with the
correct DMS credentials. Apart from that, We used a docker container environment to create virtual
servers, running the manufacturer, rendezvous, owner, and hawkBit servers in containers. We also
created a docker image of the IoT edge device to simulate and test various evaluation criteria. We
tested the scalability and latency by simulating a virtual onboarding process. We also tested the
effects when multiple devices were simultaneously trying to connect to the owner onboarding server
and documented the results.

The prototype device uses an embedded Linux Operating System built using the Yocto project.
When we add a new feature to the OS, we have to change the Linux distribution, build the image,
and flash it to the device. We did this to add the Linux client. The device has a serial console, which
we can use to test and debug the newly added feature.

The fourth question was answered based on our evaluation so far, considering the merits and
demerits of our use case.

1.4 Organisation of Report

The research project report is structured as follows.

• Chapter 2 we will learn about theories and concepts that readers should be familiar with, such
as Device Onboarding, Zero Touch, Embedded Linux, The Yocto Project, FDO, keylime, and
OPCUA. We will also make users familiar with the Hardware of devices, and software such
as the hawkBit server,usbboot. It will also make readers well acquainted with various terms
in IoT device onboarding.

• Chapter 3 presents the reader with the necessary state-of-the-art research in the field of IoT
device onboarding. It will outline every method currently used to onboard IoT edge devices.
It will also describe how we defined IoT device onboarding and zero-touch onboarding. It
will also highlight what guidelines we have referred to come up with the evaluation criteria.

12

1 Introduction

• Chapter 4 discusses What are the key differences between all these IoT Device onboarding
solutions? It will make the reader well-informed about the advantages and disadvantages of
each onboarding method.

• Chapter 5 will describe the architecture design of the software solution to perform zero-touch
onboarding to the hawkBit server using fdo 1.1 standards.

• Chapter 6 is all about the realization of this software solution and how we have implemented
it.

• Chapter 7 will validate our software solution. We will inform the readers how the prototype
is following each subprotocol in the fdo 1.1 standard.

• Chapter 8 Concludes the thesis, It will interpret the findings of our research and highlight the
future scope.

13

2 Background

2.1 IoT Device Onboarding

Based on our literature survey and industry practice, we can say that IoT device onboarding involves
below steps:

1. Physical Installation: The device must be physically installed in its intended location and
connected to a power source and the network.

2. Device Configuration: The device needs to be configured with basic settings such as device
name, network settings, and security settings.

3. Authentication and Authorization: The device must be authenticated and authorized to access
the Device Management Service, which may involve setting up security certificates and
credentials.

4. Firmware and Software Updates: The device’s firmware and software must be updated to the
latest version to ensure it has the necessary features and security patches.

5. Testing and Validation: The device must be tested and validated to ensure it is correctly
connected to the DMS and can communicate with the cloud.The device must be integrated
with cloud services to enable data storage, analytics, and remote management.

2.2 Zero Touch IoT Device Onboarding

A Zero Touch IoT device onboarding requires no human intervention during installation. A
technician will physically install the device and connect it to the Internet, but after that, the device
will automatically configure itself and authenticate to the IoT Cloud. This means that the device can
start performing its intended function right away without any additional input from humans.

We assume that the internet connection will be available to the device when it plugs in the LAN
cable. The network or proxy setup is not included in the definition of Zero Touch IoT Device
Onboarding.

14

2 Background

2.3 FIDO Device Onboarding (FDO) [2]

The FIDO Device Onboard protocol is a recently established standard that ensures IoT devices’
security and automatic onboarding. Its main aim is to simplify the provisioning and management of
a large number of devices while providing high security. The protocol employs the FIDO (Fast
Identity Online) authentication standards, widely used for secure online authentication.

It enables IoT devices to authenticate themselves to a new owner or network in a standardized
way, thus making it possible to provision and configure devices without manual intervention. This
flexible and extensible protocol supports various cryptographic mechanisms for device attestation.
It can be implemented in hardware or software and supports different types of ownership transfer,
including transfers between individuals, organizations, or cloud services. The essential advantage is
it uses late binding. Traditional methods, such as manual configuration or pre-provisioning with
keys or certificates, can be time-consuming and error-prone. FDO uses late binding such that the
end owner will be able to choose on which cloud his device should be onboarded.

Another benefit of the FIDO Device Onboard protocol is that it provides robust security guarantees.
The protocol employs cryptographic device attestation based on signed Entity Attestation Tokens
(EATs), which provides strong evidence that the device is authentic and has not been tampered with.
It is also designed to work with different networks and cloud services, enabling integration into
existing IoT infrastructures.

The protocol involves interaction between various entities. The entities and commonly used terms
are explained below:

• Manufacturer (Mfg): Device manufacturer. A FIDO Device Onboard application runs in
the factory, which implements the initial communications with the Device ROE, as part of
the Device Initialize Protocol (DI) or appropriate substitute.

• Device: The device being manufactured, later the device being provisioned. This device has
hardware and software configured on it, including a Device ROE and a Device to Manager
Agent.

• ROE: A Restricted Operating Environment (ROE) refers to a specialized system consisting
of both hardware and firmware components that are designed to create a secure and isolated
environment for executing the essential functions and applications of a FIDO (Fast Identity
Online) Device Onboard.

• Owner Onboarding Service: This is an entity constructed to perform FIDO Device Onboard
protocols on behalf of the Owner. The Owner Onboarding Service is an application that
executes on some platform already controlled by the Owner. After the protocols are completed,
the Owner Onboarding Service transfers control of the device to the Owner’s Manager, and
never interacts with the device again. In FIDO Device Onboard, the Owner Onboarding
Service is a component of the Manager, rather than a separate network service.

• Rendezvous Server: A network server or service (e.g., on the Internet) that acts as a
rendezvous point between a newly powered on Device and the Owner Onboarding Service. It
is expected that Internet versions of the Rendezvous Server will comprise multiple actual
servers and service points; the reader will understand that Rendezvous Server in this document
applies to the aggregate service.

15

2 Background

• Device Management Service: The entity that uses the Owner Onboarding Service to take
ownership of the Device, so that it can manage the device remotely using its own management
techniques (protocols, etc.). During FIDO Device Onboard operation, the Management
Service interacts with the Management Agent via the ServiceInfo key-value pairs. A common
industry term for "Management Service"is "Device Management Service"(DMS). We have
used hawkBit Server as Device Management Service for implementation purposes.

• Management Agent: The entity that uses the FDO Device software to allow the device
ownership to be transferred using FIDO Device Onboard protocols. During FIDO Device
Onboard operation, the Management Agent interacts with the Management Service via the
ServiceInfo key-value pairs. We have created a Novel hawkBit onboarding module, which
is an integral part of the linux-client that we have built. Here the linux-client is our FDO
application and the swupdate suricatta daemon is our management agent.

• Ownership Voucher: The Ownership Voucher is a structured digital document that links the
Manufacturer with the Owner. It is formed as a chain of signed public keys, each signature of
a public key authorizing the possessor of the corresponding private key to take ownership of
the Device or pass ownership through another link in the chain.

The protocol is further divided into 4 sub-protocols, These protocols are explained below.

• Device Initialize Protocol (DI): The non-normative Device Initialize Protocol (DI) provides
an example of a protocol that runs within the factory when a new device is completed. The
protocol’s function is to embed the ownership and manufacturing credentials into the newly
created device’s ROE. This prepares the device and establishes the first in a chain for creating
an Ownership Voucher with which to transfer ownership of the device. The Device Initialize
Protocol assumes that the protocol will be run in a safe environment. The trust model is Trust
on First Use (TOFU).

• Transfer Ownership Protocol 0 (TO0): Transfer Ownership Protocol 0 (TO0) serves to
connect the Owner Onboarding Service with the Rendezvous Server. In this protocol, the
Owner Onboarding Service indicates its intention and proves it is capable of taking control of
a specific Device, based on the Device’s current GUID.

• Transfer Ownership Protocol 1 (TO1): Transfer Ownership Protocol 1 (TO1) is an
interaction between the Device ROE and the Rendezvous Server that points the Device ROE
at its intended Owner Onboarding Service, which has recently completed Transfer Ownership
Protocol 0. The TO1 Protocol is the mirror image of the TO0 Protocol, on the Device side.

• Transfer Ownership Protocol 2 (TO2): Transfer Ownership Protocol 2 (TO2) is an
interaction between the Device ROE and the Owner Onboarding Service where the transfer
of ownership to the new Owner actually happens.

16

2 Background

Figure 2.1: FIDO Device Onboard Entities and Entity Interconnection, from [2]

The overall working of the FDO can be understood using the above Figure 2.1 and the details about
each step are given in Table 2.1

Serial Step Name Function
Number
1 Device Initialize Protocol (DI) Insertion of FIDO Device Onboard creden-

tials into the device during the manufacturing
process.

2 Ownership Voucher transfer The Ownership Voucher is transferred to the
device Owner From the manufacturer as a
part of the supply chain.

3 Transfer Ownership Protocol 0 (TO0) FDO Owner identifies itself to Rendezvous
Server. Establishes the mapping of GUID to
the Owner’s IP address.

4 Transfer Ownership Protocol 1 (TO1) Device identifies itself to the Rendezvous
Server. Obtains mapping to connect to the
Owner’s IP address.

5 Transfer Ownership Protocol 2 (TO2) Device contacts Owner. Establishes trust and
then performs Ownership Transfer.

6 Final State: Device in Service The Device authenticates itself to the Device
Management Service and starts with its in-
tended function.

Table 2.1: Steps for FIDO Device Onboard

17

2 Background

Figure 2.2: Graphical Representation of the FIDO Device Onboard Protocols, from [2]

2.4 Keylime[3]

Keylime is a cutting-edge CNCF-hosted project that offers a remote boot attestation and runtime
integrity measurement solution. This state-of-the-art solution empowers users to easily monitor
remote nodes with the help of a hardware-based cryptographic root of trust. Keylime originates in
the pioneering security research team at MIT’s Lincoln Laboratory.

keylime, a scalable, trusted cloud key management system. keylime provides an end-to-end solution
for bootstrapping hardware-rooted cryptographic identities for IaaS nodes and system integrity
monitoring of those nodes via periodic attestation. keylime offers a clean interface that allows
higher-level security services like disk encryption or configuration management to leverage trusted
computing without being trusted computing aware.

Regarding securing the cloud, Keylime is a reliable solution that offers Secure Bootstrapping,
System Integrity Monitoring, Secure Layering with Virtualization Support, and Compatibility
features. With Keylime, you can install an initial root secret into each cloud node safely and securely,
monitor cloud nodes as they operate, leverage hardware-rooted cryptographic keys in software to
secure services you already use and scale up quickly.

• Keylime Tenant: is a cloud resource user. Keylime’s trusted key management system allows
tenants to securely access and manage their data and applications in the cloud. The tenant is
nothing but owner of the device.[4]

• Keylime Registrar: manages cryptographic identities for nodes in an IaaS cloud environment.
The registrar bootstraps hardware-rooted cryptographic identities into physical and virtual
cloud nodes, enabling organizations to maintain strong security controls over their data and
applications while taking advantage of the benefits of cloud computing.[4]

18

2 Background

• Keylime Verifier (or CV: Cloud Verifier): verifies the integrity of a tenant’s virtualized
infrastructure in an IaaS cloud environment. It provides integrity measurement, allowlists,
and policy centralization for all integrity measurement activities, simplifying deployment
and enhancing security. [4]

• Keylime Agent (Cloud Node): refers to a virtual machine or physical server instance running
in an IaaS cloud environment. It is a computing resource that tenants provision to execute
their applications in the cloud. Simply these are the IoT edge devices.[5]

• TPM: TPM stands for Trusted Platform Module. It’s a security module designed to store
cryptographic keys, system integrity measurements, and other security data in a secure
location. TPMs are typically installed directly onto the motherboard of a computer or
electronic device, providing a root of trust for the system. They’re designed to protect against
unauthorized access, tampering, and theft of sensitive information. TPMs have a range of
applications, including secure boot, disk encryption, and digital rights management. In cloud
computing, TPMs can provide hardware-rooted cryptographic identities for cloud nodes,
increasing security and reducing insider threats.[6]

Keylime follows a simple three-step process: registration, measurement, and attestation.

The platform is given a key pair and associated credentials during registration using a trusted
platform module (TPM) or similar hardware security module. This ensures the identification
and authentication of the platform to the Keylime Registrar. In the measurement step, Keylime
measures the platform’s software stack and creates a cryptographic hash of the measurements. This
hash is then signed with the platform’s private key and stored on the Keylime Verifier. Finally,
in the attestation step, the Keylime server remotely verifies the measurements and credentials of
the platform. If they are valid, the Keylime server confirms that the platform is running trusted
software that hasn’t been tampered with. Cloud providers can use this attestation to enforce security
policies. These steps can be easily understood from the below Figure. Remember that this is a very
high-level overview. A detailed explanation can be found in the research paper "Bootstrapping and
Maintaining Trust in the Cloud."

Figure 2.3: Kelyme Workflow (High level), from [5]

19

2 Background

2.5 OPCUA Device Onboard

The OPC UA Specification for Device Onboarding is an essential industry standard that outlines
the complete life cycle of devices and composites. It also establishes mechanisms to verify
their authenticity, set up their security, and maintain their configuration. The main goal of this
specification is to make it easier for multiple vendors to develop applications that can interoperate
seamlessly.

The onboarding model is designed to ensure that the configuration of a device can be managed over
its entire life cycle, from when it is manufactured to when it is decommissioned. This is particularly
important because devices, unlike PC-class computers, are typically shipped with automation
software pre-installed and are connected directly to sensitive networks. Therefore, it is crucial to
have a process to authenticate devices before they are given access to a sensitive network.

The complete life cycle of a device involves several stages, each with its requirements and challenges
that must be addressed to ensure secure device onboarding. These stages include manufacturing,
shipping, installation, commissioning, operation, maintenance, and decommissioning.

Below are some definitions for the essential terms used in these onboarding guidelines. We will use
these terms to compare them with other onboarding methods theoretically.

• Device: A computer that can communicate via a network. A Device has a unique identifier
and may have one or more Applications

• Composite: A collection of Devices or Composites assembled into a single unit. Each
Composite has a unique identifier and may appear as a single Device on a network or multiple
Devices.

• Application: A program that runs on a Device. Each Application has a unique identifier and
communicates with other Applications on the network.

• OwnerOperator: An organization deploying and operating a system comprising devices,
Composites, or other computers connected via a network.

• Manufacturer: An organization that creates Devices.

• CompositeBuilder: An organization that creates Composites.

• Distributor: An organization that re-sells Devices and/or Composites. A Distributor
enhances Devices and Composites by adding customized products or services before resale.

• SystemIntegrator: An organization that installs and configures a system for an OwnerOpera-
tor that comprises Devices, Composites, or other computers connected via a network.

• Registrar: an OPC UA Application that registers and authenticates Devices added to the
network.

• RegistrarAdmin: A user authorized to change the configuration of the Registrar.

• SoftwareUpdateAdmin: A user authorized to update the firmware running on a Device.

• SecurityAdmin: A user authorized to change security configuration for Clients and Servers
running on the network.

20

2 Background

• Device Manufacture: A Device is created and a DeviceIdentity Certificate is assigned.
This Certificate is provided when the Device is transferred to other actors. During Device
Manufacture, Applications may be installed on the Device. A Ticket describing the Device is
created and signed by the Manufacturer.

• Composite Assembly: A Composite is created from Devices and a unique identity is
assigned to the Composite. This identity is provided when the Composite is transferred to
other actors. During Composite Assembly, Applications may be installed on the Devices
contained in the Composite. A Ticket describing the Composite is created and signed by the
CompositeBuilder.

• Distribution: The Device or Composite is stored until it is delivered to a CompositeBuilder,
SystemIntegrator, OwnerOperator, or another Distributor.

• Onboarding: The SystemIntegrator connects a Device to the network and verifies that the
identity reported by the Device matches the identity in a Ticket provided by the Manufacturer
or CompositeBuilder.

• Application Setup: The SystemIntegrator configures the Applications running on the Device
or Composite so they can communicate with other Applications running in the system. This
process includes distributing TrustLists and issuing Certificates.

• Configuration: The OwnerOperator performs tasks that are not done while the Device
is in full operation, such as updating firmware, installing new Applications, or changing
Application configuration.

• Operation: The Device does the tasks it was deployed to do.

• Decommissioning: The Device has all access revoked and, if the Device is still functional,
then it is reset to the default factory settings.

The OPCUA provides a holistic approach to Device Onboarding, The complete workflow of the
device lifecycle can be visualized by the below Figure. This is just a high-level overview to make
readers familiar with the concepts, the technical details can be found in the ÖPC Unified Architecture
Part 21: Device Onboarding".[7]

21

2 Background

Figure 2.4: OPCUA Device Lifecycle, from [7]

2.6 Embedded Linux

“An embedded device is a microprocessor-based system that is built to control a function or range of
functions and is not designed to be programmed by the end user in the same way a PC is” [80].
This definition indicates that embedded devices are often implemented on non-PC platforms, which
also results in changes in the available computing resources – often those are constrained in some
way(s). The definition also shows the modification of or insight into embedded devices is more
difficult to achieve than for PC platforms.[8]

The term “Embedded Linux” is used to describe an embedded operating system that is running a
Linux kernel inside. Embedded Linux devices are special-purpose computers running the Linux
kernel and just the necessary GNU utilities to help achieve the specific purpose the device is built
for.[10]

2.7 The Yocto Project

The Yocto Project is a Linux Foundation collaborative open-source project whose goal is to produce
tools and processes that enable the creation of Linux distributions for embedded and IoT software
that are independent of the underlying architecture of the embedded hardware. The project was

22

2 Background

announced by the Linux Foundation in 2010 and launched in March, 2011, in collaboration with 22
organizations, including OpenEmbedded. To make readers the yocto project easy to understand this
complete section is referred from [11]

The Yocto Project’s focus is on improving the software development process for embedded Linux
distributions. The Yocto Project provides interoperable tools, metadata, and processes that enable
the rapid, repeatable development of Linux-based embedded systems in which every aspect of the
development process can be customized.

The Yocto Project has the aim and objective of attempting to improve the lives of developers of
customized Linux systems supporting the ARM, MIPS, PowerPC and x86/x86-64 architectures. A
key part of this is the OpenEmbedded build system, which enables developers to create their own
Linux distribution specific to their environment. The Yocto Project and OpenEmbedded Project
share maintainership of the main parts of the OpenEmbedded build system: the build engine,
BitBake, and the core metadata, OpenEmbedded-Core. The Yocto Project provides a reference
implementation called Poky, which contains the OpenEmbedded build system plus a large set of
recipes, arranged in a hierarchical system of layers, that can be used as a fully functional template
for a customized embedded operating system.

Figure 2.5: Yocto Project Overview, from [11]

2.7.1 The Layer model

Yocto Project has a development model for embedded Linux creation which distinguishes it from
other simple build systems. It is called the Layer Model.

The Layer Model is designed to support both collaboration and customization at the same time.
Layers are repositories containing related sets of instructions which tell the build system what to do.
Users can collaborate, share, and reuse layers. Layers can contain changes to previous instructions
or settings at any time.[11]

This powerful override capability is what allows you to customize previous collaborative or
community supplied layers to suit your product requirements.

23

2 Background

2.7.2 Terms Of Reference

• Configuration Files: Files which hold global definitions of variables, user defined variables
and hardware configuration information. They tell the build system what to build and put
into the image to support a particular platform.

• Recipe: The most common form of metadata. A recipe will contain a list of settings and
tasks (instructions) for building packages which are then used to build the binary image. A
recipe describes where you get source code and which patches to apply. Recipes describe
dependencies for libraries or for other recipes, as well as configuration and compilation
options. They are stored in layers.

• Layer: A collection of related recipes. Layers allow you to consolidate related metadata to
customize your build, and isolate information for multiple architecture builds. Layers are
hierarchical in their ability to override previous specifications. You can include any number
of available layers from the Yocto Project and customize the build by adding your layers after
them. The Layer Index is searchable for layers within Yocto Project.

• Metadata: A key element of the Yocto Project is the meta-data which is used to construct a
Linux distribution, contained in the files that the build system parses when building an image.
In general, Metadata includes recipes, configuration files and other information refering to
the build instructions themselves, as well as the data used to control what things get built and
to affect how they are built. The meta-data also includes commands and data used to indicate
what versions of software are used, and where they are obtained from, as well as changes
or additions to the software itself (patches or auxiliary files) which are used to fix bugs or
customize the software for use in a particular situation. OpenEmbedded Core is an important
set of validated metadata.

• OpenEmbedded-Core: oe-core is meta-data comprised of foundation recipes, classes and
associated files that are meant to be common among many different OpenEmbedded-derived
systems, including the Yocto Project. It is a curated subset of an original repository developed
by the OpenEmbedded community which has been pared down into a smaller, core set of
continuously validated recipes resulting in a tightly controlled and an quality-assured core set
of recipes.

• Poky: A reference embedded distribution and a reference test configuration created to 1)
provide a base level functional distro which can be used to illustrate how to customize a
distribution, 2) to test the Yocto Project components, Poky is used to validate Yocto Project,
and 3) as a vehicle for users to download Yocto Project. Poky is not a product level distro,
but a good starting point for customization. Poky is an integration layer on top of oe-core.

• Build System - "Bitbake": a scheduler and execution engine which parses instructions
(recipes) and configuration data. It then creates a dependency tree to order the compilation,
schedules the compilation of the included code, and finally, executes the building of the
specified, custom Linux image (distribution). BitBake is a make-like build tool. BitBake
recipes specify how a particular package is built. They include all the package dependencies,
source code locations, configuration, compilation, build, install and remove instructions.
Recipes also store the metadata for the package in standard variables. Related recipes are
consolidated into a layer. During the build process dependencies are tracked and native or

24

2 Background

cross-compilation of the package is performed. As a first step in a cross-build setup, the
framework will attempt to create a cross-compiler toolchain (Extensible SDK) suited for the
target platform.

• Packages: The output of the build system used to create your final image.

• Extensible Software Development Kit (ESDK): A custom SDK for application developers
that allows them to incorporate their library and programming changes back into the image to
make their code available to other apps developers.

• Image: A binary form of a Linux distribution (operating system) intended to be loaded onto
a device.

2.7.3 The General Workflow

Figure 2.6: Yocto Project Workflow, from [11]

• To begin, developers specify architecture, policies, patches and configuration details.

• The build system then fetches and downloads the source code from where ever specified. The
project supports standard methods such as tarballs or source code repositories systems such
as git.

• Once downloaded, the sources are extracted into a local work area where patches are applied
and common steps for configuring and compiling the software will be run.

• The software is then installed into a temporary staging area where the binary package format
you select (deb, rpm, or ipk) will be used to roll up the software.

• Different QA and sanity checks are run throughout entire build process.

• After the binaries are created, a binary package feed is generated which is then used to create
the final root file image.

25

2 Background

• The file system image is generated.

2.8 Basic Hardware Terms

• The Raspberry Pi Compute Module 4 is specifically designed for industrial and embedded
systems use. As such, it can be used in digital signage, thin clients, and process automation.
It’s built around the same processor as the Raspberry Pi 4 and, as a result, delivers increased
performance compared to its predecessors.[12]

We are using Raspberry Pi Compute Module with following specs:

1. Broadcom BCM2711 quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

2. 2GB LPDDR4-3200 SDRAM

3. 16GB eMMC Flash memory

4. Bluetooth 5.0, BLE

5. 2.4 GHz, 5.0 GHz IEEE 802.11 b/g/n/ac wireless

6. On-board electronic switch to select either external or PCB trace antenna

Figure 2.7: Raspberry Pi Compute Module 4

• Compute Module 4 IoT Router Carrier Board Mini is an internet expansion board based
on the Raspberry Pi Compute Module 4. When connecting with a gigabit network card via
PCle, it brings Raspberry Pi CM4 two full-speed gigabit network ports and offers better
performance, lower CPU usage, and higher stability for a long time work compared with
a USB network card. Besides, with a mini size of 55 x62mm, the board still retains the
characteristic GPIO pin header of Raspberry Pi, which makes it applicable for connecting
other actuators, sensors, and smart cooling fan. Furthermore, there is also a USB2.0 interface
that can be connected to mobile hard drives, printers, WIFI modules, LTF modules, etc.
The powerful performance of BCM2711 4 core 1.5GHz Cortex-A72 and the rich software
support in the Raspberry Pi community make this board a solid foundation for building
high-performance gateways, smart routers, and home IoT platforms. It can also be connected
to peripherals and used as a mini-NAS, wireless network bridge, or LTE Internet terminal.[13]

26

2 Background

Figure 2.8: Compute Module 4 IoT Router Carrier Board Mini

• The prototype of IoT Edge Device is made up of these two boards and can be visualised from
Figure. 2.9

Figure 2.9: IoT Edge Device complete hardware setup

27

2 Background

2.9 Software Tools

Now we have got an idea about how the embedded Linux image is generated using the Yocto
project and logic unit hardware which we need to flash with that image. This section will
give brief idea about what are the tools required for flashing the hardware. First we need
to connect our logic unit with host device which will be used to flash the image. This can
be done using ’USBBOOT’ tool from raspberry-pi. Once the device has established the
connection we can flash it using ’bmap-tools’ which is developed by Intel.

2.9.1 usbboot

source code:https://github.com/raspberrypi/usbboot

This is the USB MSD boot code which supports the Raspberry Pi 1A, 3A+, Compute Module,
Compute Module 3, 3+ and 4, Raspberry Pi Zero and Zero 2 W.

The default behaviour when run with no arguments is to boot the Raspberry Pi with special
firmware so that it emulates USB Mass Storage Device (MSD). The host OS will treat this as
a normal USB mass storage device allowing the file system to be accessed. If the storage has
not been formatted yet (default for Compute Module) then the Raspberry Pi Imager App can
be used to install a new operating system.

Since RPIBOOT is a generic firmware loading interface, it is possible to load other versions
of the firmware by passing the -d flag to specify the directory where the firmware should be
loaded from. E.g. The firmware in the msd can be replaced with newer/older versions.[14]

2.9.2 bmap-tools

source code:https://github.com/intel/bmap-tools

This is also know as ’the better dd for embedded projects, based on block maps.’ bmaptool is
a generic tool for creating the block map (bmap) for a file and copying files using the block
map. The idea is that large files, like raw system image files, can be copied or flashed a lot
faster and more reliably with bmaptool than with traditional tools, like dd or cp.[15]

• Faster. Depending on various factors, like write speed, image size, how full is the image,
and so on, bmaptool was 5-7 times faster than dd in the Tizen IVI project.

• Integrity. bmaptool verifies data integrity while flashing, which means that possible data
corruptions will be noticed immediately.

• Usability. bmaptool can read images directly from the remote server, so users do not have
to download images and save them locally.

• Protects user’s data. Unlike dd, if you make a mistake and specify a wrong block device
name, bmaptool will less likely destroy your data because it has protection mechanisms
which, for example, prevent bmaptool from writing to a mounted block device.

28

2 Background

2.9.3 Docker-Container

We have used Docker-Container to perform simulated testing of novel software solutions.
Hence you must get familiar with it to understand our testing and validation section.

• A container is a standard unit of software that packages up code and all its dependencies
so the application runs quickly and reliably from one computing environment to another.
A Docker container image is a lightweight, standalone, executable package of software
that includes everything needed to run an application: code, runtime, system tools, system
libraries and settings.[9]

• Docker Engine is an open-source containerization technology for building and containerizing
your application

• Docker Compose is a tool that was developed to help define and share multi-container
applications. With Compose, we can create a YAML file to define the services and with a
single command, can spin everything up or tear it all down.

2.10 Device Management Service(DMS)

2.10.1 hawkBit Server

Eclipse hawkBit™ is an open-source,domain-independent back-end framework for rolling
out software updates to constrained edge devices as well as more powerful controllers and
gateways connected to IP-based networking infrastructure [16]. hawkBit is a cloud-ready
infrastructure that we are going to use as DMS.

2.10.2 SWupdate Suricatta Daemon

Swupdate Suricatta Daemon and hawkBit server work together to provide a complete software
update management system. hawkBit acts as a central hub for updates while Suricatta Daemon
is responsible for executing the update process on target devices. The integration between
the two enables centralized monitoring and control of updates across multiple devices, with
advanced features such as staged rollouts for testing and validation of updates before wider
distribution. Suricatta Daemon manages the download, verification, and installation of
updates, ensuring optimal device performance, security, and functionality.

29

3 State of the Art

3.1 Literature Survey

3.1.1 Evaluation Criteria

The thesis aims to evaluate a suitable solution for large-scale IoT deployments. To do so,
evaluating all the state-of-the-art methods available for device onboarding becomes crucial.

We wanted to set evaluation criteria that would give us a fair evaluation. The evaluation
criteria were selected based on the software industry’s best practices and standards. We have
referred to ISO/IEC/IEEE 42030 International Standards. These standards are specifically
designed to provide a framework for software architecture evaluation. According to this
standard, Architecture evaluation judges how well architecture objectives have been or will
be achieved. It can provide answers to an identified set of questions too, for example, provide
inputs to strategic decision-making (such as whether it would be cheaper, in the long run, to
modify an existing architecture to close value gaps) or to produce a new architecture that
better addresses current and future stakeholder needs. An architecture evaluation can also
provide inputs to decisions made at the operational and tactical levels. For example, the
evaluation may provide helpful information regarding the capability limitations of the entity
in question. [17]

In their paper-A Framework for evaluating software technology published in IEEE Software
in 1996, Alan W Brown and Kurt C. Wallnau propose a novel experimental framework for
helping organizations make informed decisions when investing in new software technologies.
The authors argue that their systematic approach, which involves modeling and experiments,
can assist companies in evaluating a new technology’s features and comparing them with
those of their peers and competitors. Companies can use this framework to make more
informed decisions about which technologies to invest in and how to maximize their benefits.
Although it is old, this paper has also guided us in setting the evaluation criteria[18]. We have
also referred to-Analysis of Alternatives (AoA) Handbook A Practical Guide to Analysis of
Alternatives. By US Air Force, This handbook helped us identify how to choose a particular
technology when alternatives are available.[19]

Ultimately, we devised 22 criteria to compare and evaluate FDO, Keylime, and OPCUA
methods for IoT Device Onboarding, which are discussed in detail in the next topic.

30

3 State of the Art

3.1.2 IoT Device Onboarding

IoT device onboarding is a part of the IoT deployment process. It refers to configuring a new
device to an IoT Device Management Server (DMS). Microsoft published a whitepaper in
collaboration with Globalsign, Eurotech, and Infineon. They mentioned that there are two
main parts to the process when it comes to onboarding a new device to a cloud-served IoT
network. The first step is to establish the initial connection to the cloud-accessed network.
Once that connection is established, the next task is configuring the Device to perform its
intended task.[20]

According to research carried out at Samsung in collaboration with Purdue Univerisity,
“Device Onboarding refers to the first-time registration of a device into an Internet of Things
(IoT) network. It involves securely sharing authentication-related information between the
already onboarded Device and the Device to be onboarded. It can have multiple non-trivial
steps.” [21]

As per the OPC foundation, Onboarding is the process where a Device or Composite is
connected to the network managed by an organization. When this happens, the Device’s
authenticity is verified via interactions with a Registrar running on the network. The commonly
understood concept of “Commissioning” is represented by the Onboarding, Application Setup,
and Configuration stages. Another aspect of onboarding is that if the Device is commissioned
after a long period from the manufacturing date. The software and OS of the Device may be
outdated and should be updated to avoid any security risks and device malfunctioning.[7]

Based upon this literature survey and our own understanding, we came up with steps involved
in IoT Device Onboarding, which are mentioned in section 2.1

3.1.3 Zero Touch IoT Device Onboarding

To overcome the drawbacks of manual device onboarding, various organizations have worked
to develop a zero-touch onboarding (ZTO) solution. We will refer to their definitions of
Zero-touch and ultimately come up with our understanding.

According to Microsoft, The goal is Zero Touch Provisioning, where a handshake triggered
when a device is powered on initiates onboarding and a subsequent automated provisioning
process. [22], the following steps should be included in ZTO:

Automatic and secure onboarding to a production certificate provider. Receipt of device
operational certificate credentials. Automatic provisioning to cloud application services.
Automation of credentials renewal and lifecycle management.

Intel is working on its product FIDO Device Onboard, which is also based on FDO 1.1
standards. It says, “Zero-Touch. Zero-Worries. Intel® FIDO Device Onboard (FDO) is an
automated “Zero-Touch” onboarding service. To more securely and automatically onboard
and provision a device, it only needs to be drop shipped to the point of installation, connected
to the network, and powered up. SDO does the rest.” This means the IoT devices should be
plug-and-play. [23]

31

3 State of the Art

As per this study(“Secure & Zero Touch Device Onboarding,” p. 1), “The solution facilitates
a process where when an IoT device is installed and establishes its first connection; it is
registered and connected automatically and securely, as a bonafide and fully trusted device,
into the cloud-based IoT platform. The platform then adopts the device as a secure device that
it monitors and maintains over the air (OTA). This overall process is known as “Zero-Touch
Device Onboarding (ZDO).”[24]

These definitions suggest the device should be connected to the Internet once plugged in the
network cable or connected to the WiFi. For our research purpose, we will also assume that
the device does not need any network configuration setup or proxy setup. We plug in the
Ethernet cable, and the Internet will be there. Hence, We will define Zero Touch Device
onboarding as given below:

A Zero Touch IoT device onboarding requires no human intervention during installation. A
technician will physically install the device and connect it to the Internet, but after that, the
device will automatically configure itself and authenticate to the IoT Cloud. This means that
the device can start performing its intended function right away without any additional input
from humans.

3.1.4 Device Onboarding to hawkBit Server

To set the scope of our thesis, we initially selected three onboarding methods. Each method
has its merits, demerits, and specific use case.

The Keylime solution is based on the research paper "Bootstrapping and Maintaining Trust in
the Cloud."[3] We have also referred to the documentation of keylime for implementation
[4]. The OPC Foundation has just released standards for Device onboarding in ÖPC Unified
Architecture Part 21: Device Onboarding"[7]. The documentation number is OPC 10000:21.
The method FIDO Device Onboard was more suitable for our application and large-scale IoT
deployments. To understand this method, we referred FIDO Device Onboard Specification
given by FIDO Alliance. The complete documentation is sufficient to understand the protocol.
We have also referred to documentation from the Linux Foundation, which provided a
practical overview and implementation guidelines.[25]

The existing FDO implementation has no module that can onboard the IoT device to the
hawkBit server. The FIDO alliance expects the industry to work on its own DMS and
develop a module that can onboard the device to the DMS. Such as, Microsoft will create an
Azure IoT onboarding module and contribute to the source code of FDO. Similarly, We have
implemented a cutting-edge method and created a unique software solution for IoT devices to
be onboarded to hawkBit DMS. It is the first time IoT devices are utilizing the Late Binding
feature of FDO to onboard to the hawkBit server. As part of our research, we developed a
hawkBit onboarding module to help expand our knowledge and contribute to the open-source
code of FDO. Our research has resulted in a revolutionary Zero Touch IoT Device Onboarding
solution that eliminates the need for pre-configuration during manufacturing. All we have to
do is power on the device and connect it to the internet, and our solution will onboard the IoT
device to the Hawkbit server automatically. Our testing has shown that it is highly scalable
and can onboard multiple devices simultaneously.

32

4 Evaluation of Onboarding Methods

We will review each criterion and compare FDO, Keylime, and OPCUA onboarding. We
aim to compare each method on fair grounds so that this evaluation will be helpful for
organizations to select suitable onboarding methods. Research Question 1 seeks to identify
the critical differences between these IoT device onboarding solutions by setting up evaluation
criteria and comparing each method against them. By doing so, this research aims to provide
a comprehensive understanding of each solution’s strengths and limitations, which can assist
organizations in selecting the most suitable approach for their specific needs. Section 4.2 will
answer research question 1.

Research Question 2 complements this analysis by exploring the advantages and disadvantages
of each solution, allowing organizations to make informed decisions regarding onboarding
their own IoT devices based on a thorough understanding of the strengths and limitations of
each method. Section 4.3 will answer research question 2.

4.1 Evaluation Criteria

As discussed in section 3.1, we have developed the following evaluation criteria.

1. Zero Touch: Is it a complete zero-touch onboarding solution?

2. Hardware requirement: Basic hardware components required for device onboarding

3. Computing Requirements: What is the minimum computing architecture it supports?

4. Time/latency: Time taken for each device to complete the onboarding

5. Efforts: Efforts required to onboard a device

6. Scalability: How many devices can be onboarded to a server

7. Reliability: Can the device connect to the server reliably in case of network failure/
power failure during onboarding.

8. Maintainability: Can we maintain and provide service for this method, solution
maintainability

9. Ease of manufacturing: Is the method provides ease of manufacturing? How?

10. Ease of distribution/life cycle management: Is the method provides a secure distribution,
such as the device can have a chain of trust?

11. Expertise required: What level of expertise the technician needs to have to onboard the
device

33

4 Evaluation of Onboarding Methods

12. Development efforts: How much effort a developer needs to spend to implement the
provided method

13. Programming skills: Which programming language and skills needed as a developer

14. User Friendliness: does the end user finds this mechanism valuable and easy?

15. Overall cost: Overall cost, including hardware+software+on-boarding

16. Security: Does this method provide proper security guidelines for each stakeholder?

17. Runtime integrity: Can this method provide runtime integrity(trust) measurement?

18. Software update: Does this method takes care of software update?

19. Certificate management: Does this method takes care of certificate management

20. Device Attestation: How does this method take care of device attestation

21. Proof of ownership: How does this method take care of proof of ownership

22. Correlation Attack Concerns: Are the device onboarding credentials used for application
provisioning?

4.2 Evaluation

• Criteria 1: Zero Touch: Is it a complete zero-touch onboarding solution?

FDO: FDO is a complete zero-touch onboarding solution. It does not need any manual input
from the installation/commissioning technician for device onboarding.

Keylime: Keylime is not a zero-touch solution. It uses the "Three Party Bootstrap Key
Derivation Protocol". It can be explained using the below Figure 4.1. Here The Commissioning
technician must share the Keylime agent’s IP Address, UUID, and Port With the tenant and
eventually to the cloud verifier. It means the technician must manually enter the input and
run a CLI command to proceed with onboarding. The keylime_tenant utility can be used to
provision the keylime agent. For example, the following command tells Keylime to provision
a new agent at 127.0.0.1 with UUID d432fbb3-d2f1-4a97-9ef7-75bd81c00000 and talk to a
verifier at 127.0.0.1. Finally, it will encrypt a file called file to send and send it to the agent,
allowing it to decrypt it only if the configured TPM policy is satisfied[26]:
keylime_tenant -c add -t 127.0.0.1 -v 127.0.0.1 -u D432fbb3-d2f1-4a97-9ef7-75bd81c00000

-f filetosend

Listing 4.1: keylime_tenant command to provision keylime agent

OPCUA Onboarding: The OPCUA Onboarding documentation never mentions a word
such as zero touch. However, it uses Automatic, which eventually means without human
intervention. When a CompositeBuilder or Integrator receives a shipment of Devices, it
needs to connect them to its network and verify their authenticity. This process is automated
using a Registrar that detects new Devices added to the network, inspects their DeviceIdentity
Certificates, and finds the corresponding DeviceIdentityTicket. If a match is found, the
Device is accepted and can be provisioned for use on the network.

34

4 Evaluation of Onboarding Methods

Key Type Purpose
EK RSA 2048 Permanent TPM credential that identifies the TPM hardware.
SRK RSA 2048 TPM key that protects TPM created private keys when they are stored outside

the TPM.
AIK RSA 2048 TPM key used to sign quotes.
K𝑒 AES-256 Enrollment key created by the registrar and used to activate the AIK.
K𝑏 AES-256 Bootstrap key the tenant creates. keylime securely delivers to the node.
U, V 256-bit random Trivial secret shares of Kb, derived with random 256-bit V: U = Kb ⊕ V.
NK RSA 2048 Non-TPM software key used to protect secret shares U, V in transit.

Table 4.1: Keys used by keylime and their purpose [3]

Figure 4.1: Three Party Bootstrap Key Derivation Protocol [3]

35

4 Evaluation of Onboarding Methods

The ’Three Party Key Derivation Protocol’ used in keylime is explained below in simplified
words:

1. The tenant generates a random encryption key (Kb) and uses it to encrypt sensitive data
that will be sent to the cloud node.

2. The tenant splits Kb into two parts: U and V. The tenant keeps U and shares V with
a component called the Cloud Verifier (CV), which is responsible for ensuring the
integrity of the cloud node.

3. The tenant requests the cloud service provider to create a new cloud node and sends the
encrypted data (EncKb(d)) to the provider as part of the node creation process.

4. The provider/manufacturer/installation technician assigns a unique identifier (UUID)
and an IP address to the newly created node and shares this information with the tenant.

5. The tenant notifies the Cloud Verifier (CV) about their intent to boot the cloud node.
The tenant provides information about the node, such as UUID, IP address, and a TPM
policy (which specifies acceptable values for certain security measures).

6. The attestation protocol begins between the CV, the cloud node, and the tenant. It
involves exchanging messages to verify the integrity of the cloud node’s Trusted Platform
Module (TPM) and establish a secure connection.

7. The tenant and the CV request a TPM quote from the cloud node. The quote contains
information about the TPM’s identity and the values of certain measurements.

8. The CV validates the TPM quote to ensure the integrity of the cloud node according to
the tenant’s whitelist policy. The tenant validates the TPM quote to verify the identity
of the cloud node’s TPM.

9. Once the TPM quote is validated, the tenant and the CV can securely transmit their
shares of the encryption key (Kb) to the cloud node. The tenant sends EncNK(U), and
the CV sends EncNK(V).

10. The cloud node decrypts the encrypted data using the received shares of Kb (U and V)
and can proceed with the boot or startup process.

11. The cloud node stores the share U in its Trusted Platform Module’s non-volatile memory
(NVRAM) to avoid needing the tenant’s interaction in case of node reboot or migration.
If rebooting or migrating, the node must be verified by the CV again to obtain the share
V and re-derive Kb.

• Criteria 2: Hardware requirement: Basic hardware components required for onboarding

FDO: As per FDO 1.1 standards the IoT Edge device must have a Restricted Operating
Environment(ROE), This can be a TPM or TEE or Intel EPID. The allowed list of ROE can
be found here ’https://fidoalliance.org/specs/fido-security-requirements/fido-authenticator-
allowed-restricted-operating-environments-list-v1.3-fd-20211102.pdf’

Keylime: Keylime Solely depends upon TPM for its operation.

36

4 Evaluation of Onboarding Methods

OPCUA Onboarding: The OPCUA needs to have SecureElements. SecureElements are
hardware-based storage for cryptographic secrets that protect them against authorized access
and disclosure. The mechanisms defined for Device authentication depend on PrivateKeys
that are stored in SecureElements. Private keys stored on Devices without SecureElements
can be stolen and reused on counterfeit Devices. OwnerOperators may provision Devices
without SecureElements if they have other ways to ensure their authenticity.

• Criteria 3: Computing Requirements: What is the minimum computing architecture it
supports?

FDO: The FDO 1.1 specifications are drafted to support the FDO on Microprocessors
as well as MCU. However, as of now, the implementation is developed only for 64-bit
microprocessors.

Keylime: Keylime depends on TPM 2.0 library and Its main objective is to bootstrap and
maintain trust in the cloud so it is specifically built for microprocessors.

OPCUA Onboarding: In OPCUA Every Device has multiple layers of hardware and software
that are installed and managed at different stages in the lifecycle by different actors. So
OPCUA onboarding does support microprocessor-based IoT devices.

• Criteria 4: Time/latency: Time taken for each device to complete the onboarding.

FDO: Intel claims that the FDO takes less than a minute to onboard a device. For our
implementation, the latency increases as the number of devices trying to connect to the server
simultaneously increases—the min. Latency is 13.167 seconds, and max. is 24.936 seconds.
This data is for simulated devices in a container. The actual time on our prototype is less than
a minute. We will discuss this in detail in the Testing and Validation section.

Keylime: As per the evaluation carried out in this [3] research paper, The latency can be
visualized from the below charts.

(a) Latency of keylime bootstrapping protocol. (b) Latency of TPM operations

Figure 4.2: Keylime Latency [3]

So the avg. Latency for TPM operations can be seen in the below table. During our
implementation with virtual TPM, we also got similar results. Keylime also has latency in an
acceptable range.

37

4 Evaluation of Onboarding Methods

Table 4.2: Average TPM Operation Latency (ms)[3]
TPM vTPM Deep Quote

Create Quote 725 68.5 1390
Check Quote 4.64 4.64 5.33

OPCUA Onboarding: We do not have any data to compare the latency of OPCUA
onboarding.

• Criteria 5: Efforts: Efforts required to onboard a device

FDO: FDO is a complete Zero Touch solution. The installation technician has to plug the
Device into the internet and power it on. FDO will take complete responsibility to onboard
the Device to a specific IoT cloud. So FDO needs very minimal effort to onboard.

Keylime: The commissioning agent has to install the Device. Log into the Device and check
its IP address. Then this IP address needs to be provided to Keylime Verifier manually using
the Keylime tenant. Compared to FDO, This process increases the efforts required to onboard
the Device.

OPCUA Onboarding: As OPCUA Device Onboarding is drafted to be the Automatic or
zero-touch device onboarding, the efforts required to onboard the Device shall be equal to
FDO.

• Criteria 6: Scalability: How many devices can be onboarded to a server

Scalability is the ability of a system to handle an increasing amount of work or traffic without
compromising its performance or availability.

FDO: During our testing of FDO, we observed that we could onboard at least 30 simulated
devices in less than a minute. Considering this data for physical devices, We can onboard
1800 devices per hour and 43200 devices per day. It means that the FDO is highly scalable.

The scalability also depends upon the hardware of the owner onboarding server. The primary
factor affecting FDO scalability is the number of cores and RAM available, which can be
increased to scale up the system. The system is also shown to provide linear speedup by
adding more cores and parallelism until the parallelism of the host CPU is exhausted.

Keylime: Based on the information provided in this research [3], the scalability of the
Keylime cloud verifier is truly impressive. It can handle a large number of cloud nodes
while maintaining reasonable detection latency and response time. It is possible through
parallelization and test nodes with zero latency TPM emulation. With the available resources,
the system can quickly scale up to handle hundreds or thousands of virtual machines. Similar
to other servers, the scalability also depends upon hardware of the server.

OPCUA Onboarding: We do not have any data to compare the scalability of OPCUA
onboarding.

• Criteria 7:Reliability: Can the device be onboarded reliably in case of failure during
onboarding.

38

4 Evaluation of Onboarding Methods

Figure 4.3: Scaling the Keylime Verifier (CV) on bare metal [3]

Reliability is the ability of a software system to perform its intended function under specific
conditions for a specified period.The reliability depends upon Stability, Error handling,
Exception handling and Robustness of the soliton.

FDO: We have tested FDO for reliability. FDO is designed in such a way that we can rely on
it to handle any failure, such as power and network failure.

Keylime: As the keylime needs its tenant to enter the command to add the device to the
cloud. If the device is not connected to the internet or in case of power failure the tenant
again has to enter the command to onboard the device. So when onboarding a device using
keylime the technician has to ensure that the device must not have any exception cases such
as power or network failure.

OPCUA Onboarding: We do not have any data to compare the reliability of OPCUA
onboarding.

• Criteria 8: Maintainability: Can we maintain and provide additional service for this method?

Maintainability is an important aspect of software solutions, which refers to the ease with
which a program can be modified, improved, or fixed over time, without causing any new
issues or impacting the existing features.

FDO: FDO is a Linux Foundation Open-source project which follows all standard practices
making it maintainable.

Keylime: Keylime is also Open-Source and maintainable as good as FDO.

OPCUA Onboarding: OPCUA onboarding has no central code maintaining authority,
specifically for onboarding. We have to refer to multiple sources to implement the onboarding.
As of now, there is yet to be a complete solution available.

39

4 Evaluation of Onboarding Methods

• Criteria 9: Ease of manufacturing: Is the method provide ease of manufacturing, How?

FDO: FDO provides a Late binding feature. The end owner of the IoT device can choose
any cloud provider of his choice. The manufacturer can manufacture identical devices
without pre-configured data for specific customers. The manufacturer does not have to
maintain any SKU numbers because all the produced devices are identical. It eventually saves
time in manufacturing, which means it can manufacture more devices, reducing the cost of
manufacturing.

Ease of manufacturing is the most significant advantage of choosing FDO for large-scale IoT
deployments.

Keylime: keylime is initially designed to measure runtime integrity and improve the Device’s
security. It provides no inputs to guide the manufacturer or how the supply chain will work.
So, FDO and OPCUA onboarding is a far better solution in case of ease of manufacturing.

OPCUA Onboarding: OPCUA onboarding has complete guidelines on how to manufacture
the devices and how they will be transferred through the supply chain. However, it does not
specify whether it will ease the manufacturing process.

• Criteria 10: Ease of distribution/life cycle management: Is the method provide a secure
distribution, such as the device can have a chain of trust?

FDO: FDO is designed to provide secure supply chain management. The threat model of
FDO is so mature that it does not allow any of the supply chain members to get access to the
credentials of the Device.

Figure 4.4: FDO Ownership Voucher [2]

The Ownership Voucher is a structured digital document that links the Manufacturer with
the Owner. It is formed as a chain of signed public keys, each signature of a public key
authorizing the possessor of the corresponding private key to take ownership of the Device or
pass ownership through another link in the chain.

The above diagram 4.4 illustrates an Ownership Voucher with 3 entries. In the first entry,
Manufacturer A, signs the public key of Distributor B. In the second entry, Distributor B
signs the public key of Retailer C. In the third entry, Retailer C signs the public key of Owner
D. The entries also contain a description of the GUID or GUIDs to which they apply, and a
description of the make and model of the device.

40

4 Evaluation of Onboarding Methods

The signatures in the Ownership Voucher create a chain of trust from the manufacturer to
the Owner. The Device is preprovisioned (e.g., in the Device Initialize Protocol (DI)) with
a crypto-hash of A.PublicKey, which it can verify against A.PublicKey in the Ownership
Voucher header transmitted in the TO2 protocol. The owner can prove his connection with
the Ownership Voucher (and thus his right to take ownership of the Device) by proving its
ownership of D.PrivateKey. It can do this by signing a nonce (sometimes called a challenge),
and the signature may be verified using D.PublicKey from the Ownership Voucher.

The last entry in the Ownership Voucher belongs to the current owner. The public key signed
in that entry is the owner’s public key, signed by the previous owner. We call this public key
the “Owner Key.”

In the TO2 Protocol, the Owner proves his ownership to the device using a signature (as
above) and an Ownership Voucher that is rooted in A.PublicKey. The Device verifies that the
hash of A.PublicKey stored in its ROE matches A.PublicKey in the Ownership Voucher, then
verifies the signatures of the Ownership Voucher in sequence, until it comes to D.PublicKey.
The Owner provides the Device separate proof of D.PublicKey (the “owner key”), completing
the chain of trust. The only private key needed to verify the Owner’s assertion of ownership
is the key of the Owner itself. The public keys in the Ownership Voucher (and the public key
hash in the Device) are sufficient to verify the chain of signatures.

The public keys in the Ownership Voucher are just public keys. They do not include other
ownership info, such as the name of the entity that owns the public key, what other keys they
might own, where they are, etc. The Ownership Voucher is maintained only for the purposes
of connecting a particular device with its particular first owner. The entities involved can
switch the key pairs they use to sign the Ownership Voucher from time to time, make it more
difficult for potential attackers to use the Ownership Voucher as a means to map out the
flow of devices from factory to implementation. Conversely, it is conceivable that a private
data structure might contain supply chain identities, allowing the Ownership Voucher to
specifically map the identities who signed it.[2]

Keylime: Keylime has no life cycle management guidelines or discusses supply chain
management.

OPCUA Onboarding: OPCUA onboarding has complete guidelines on how to manufacture
the devices and how they will be transferred through the supply chain. However, it does not
specify whether it will ease the distribution process.

• Criteria 11: Expertise required :What level of expertise the technician needs to have to
on-boarding the device

FDO: FDO is completely zero touch, so no expertise are required to commission or onboard
the devices.

Keylime: The commissioning technician should have a basic understanding of using computer
, such that he can enter the information required to onboard the device.

OPCUA Onboarding: OPCUA onboarding shall be automatic, so the technician does not
need any specific skills to onboard the devices.

41

4 Evaluation of Onboarding Methods

• Criteria 12: Development efforts : How much efforts a developer needs to spend to implement
provided method

FDO: The Intel has developed a client-SDK and Protocol Reference Implementation for FDO.
This code is production ready. The developers can use it as a baseline to start developing
their applications. So the development efforts are moderate.

Keylime: Similarly, keylime has a well-established reference implementation, which devel-
opers can use.

OPCUA Onboarding: There is no reference implementation provided for OPCUA onboard-
ing. The development efforts are high if one chooses to use OPCUA onboarding.

• Criteria 13: Programming skills: Which programming language and skills needed as
developer

FDO: The reference implementation from Intel uses c and JAVA as their programming
languages. Red Hat has also come up with its reference implementation in RUST.

Keylime: Keylime uses Python and RUST as their programming languages.

OPCUA Onboarding: Since OPCUA onboarding does not have any reference implementation.
If one wants to refer open62541 stack then you must be skilled in c programming language.

• Criteria 14: User Friendliness: does the end user finds this mechanism useful and easy.

FDO: The FDO is user-friendly. The end owner of the Device can decide which cloud
provider he wants to choose for onboarding the Device. It also provides a feature to securely
decommission the Device and resale it to the next owner without sharing any credentials used
by him. FDO is completely zero-touch making it more user-friendly for smart home devices.

Keylime: keylime is not zero-touch or discusses anything about the Device’s resale, making
it less user-friendly.

OPCUA Onboarding: OPCUA onboarding has similar features to FDO. Hence it is also
user-friendly.

• Criteria 15: Overall cost : Overall cost including hardware+software+on-boarding

FDO: FDO needs to have a ROE on the Device, similar to TPM. So the device cost is similar
for all three methods. It requires a rendezvous server, owner server, and manufacturer server.
The software development and maintenance cost will be less than OPCUA and keylime.

FDO saves much time during onboarding, reducing the cost of person-hours required to
onboard the Device.

Keylime: Keylime has a Device cost similar to FDO and OPCUA. Since it takes more time
to onboard the Device using Keylime, the onboarding cost is more. Keylime continuously
monitors the integrity of its nodes, so it requires more computing power on the server side,
which adds to the cost.

OPCUA Onboarding: In OPCUA onboarding, the device cost remains the same. Since
there is no implementation, there will be an additional cost required to develop the complete
onboarding solution and maintain it.

42

4 Evaluation of Onboarding Methods

• Criteria 16: Security: Does this method provide proper security guidelines for each
stakeholder?

FDO: Yes, The FDO has a very well thought threat model and security guidelines, which
shows the solution has been considered to provide security by design. The details can be
found in the FDO documentation here [27].

Keylime: There are no security guidelines, or best practices provided for the implementation
of keylime.

OPCUA Onboarding: OPC foundation has very detailed documentation for security
guidelines. The details can be found in OPC 10000-2: UA Part 2: Security.

• Criteria 17: Runtime integrity : Can this method provide runtime integrity(trust) measure-
ment

FDO: No, FDO is solely responsible for onboarding the Device. If required, the user is free
to add a DMS that takes care of the Runtime security of the Device.

Keylime: Keylime has a Cloud Verifier, which constantly checks the integrity of the deployed
software and reacts if there is a breach in security.

OPCUA Onboarding: No. OPCUA does not have anything for runtime integrity measure-
ment.

• Criteria 18:Software update : Does this method takes care for automatic software update.

FDO: No, FDO is solely responsible for onboarding the Device. If required, the user is free
to add a DMS that takes care of the Software Update at the time of onboarding the Device.

Keylime: No, Keylime does not consider to do software update at the time of provisioning.

OPCUA Onboarding: Yes, OPCUA Onboarding has a Software manager server which will
take care for doing software updates at the time of Onboarding.

• Criteria 19: Certificate management : Does this method takes care for certificate management

FDO: No, FDO is solely responsible for onboarding the Device. If required, the user is free
to add a DMS that takes care of the Certificate Management of the Device.

Keylime: yes, keylime has a mechanism to do certificate management.

OPCUA Onboarding: OPCUA uses a Certificate Manager that monitors a certificate’s
validity on the client or server.

• Criteria 20: Device Attestation : How does this method takes care for device attestation

FDO: FDO uses Entity Attestation Tokens to do Device Attestation,

Keylime: Keylime uses Three party key derivation protocol to identify the device.

OPCUA Onboarding: OPCUA onboarding method has defined a Ticket. Which will be
used for device attestation.

43

4 Evaluation of Onboarding Methods

• Criteria 21: Proof of ownership : How does this method takes care for proof of ownership

FDO: FDO uses an Ownership voucher as proof of Ownership.

Keylime: Keylime uses Three party key derivation protocol to prove the ownership.

OPCUA Onboarding: OPCUA Onboarding uses DeviceIdentity Tickets as proof of
Ownership.

• Criteria 22: Correlation Attack Concerns: Are the device onboarding credentials used for
application provisioning?

FDO: No, All keys exposed by protocol entities in FIDO Device Onboard can be limited to
be used only in FIDO Device Onboard. The Transfer Ownership Protocol 2 (TO2) allows the
onboarding of additional device credentials so that the äpplication keysüsed during device
operation are distinct from the keys used in FIDO Device Onboard.

Keylime: We use a hardware TPM, which is not only limited to Device onboarding but also
to device management.

OPCUA Onboarding: The OPCUA onboarding has two distinguished certificates for device
onboarding and application provisioning. The onboarding process uses DeviceIdentity
Certificates, once the device has been authenticated the registrar issues a DCA Application
Instance Certificate to the Device that indicates that it has been authenticated. This Application
Instance Certificate is used for further operations.

Table 4.3: Evaluation of Onboarding Methods
Serial
Number

Evaluation
Criteria

FDO Keylime OPCUA Onboard-
ing

1 Zero Touch Yes No Depends
2 Hardware

Requirement
ROE TPM SecureElement

3 Computing
Require-
ments

Supports MCU and
MPU

Only for MPU Only for MPU

4 Time/Latency < 1 minute < 1 minute No data
5 Efforts Easy Moderate Depends
6 Scalability Highly Scalable Moderately Scal-

able
No data

7 Reliability Reliably handles
failures during
onboarding.

Needs to repeat the
process

No data

8 Maintainability Yes,Maintained by
open-source com-
munity

Yes,Maintained by
open-source com-
munity

No central code
maintaining author-
ity.

44

4 Evaluation of Onboarding Methods

Table 4.3 Evaluation of Onboarding Methods (continued)
Serial
Number

Evaluation
Criteria

FDO Keylime OPCUA Onboard-
ing

9 Ease of Man-
ufacturing

Late binding feature
for device provision-
ing, reduces manu-
facturing cost.

No guidelines for
manufacturer

Complete guide-
lines for manufac-
turing, no mention
of ease.

10 Ease of
Distribu-
tion/Life
Cycle Man-
agement

Provides secure sup-
ply chain manage-
ment.

No life cycle man-
agement guidelines.

Complete guide-
lines for supply
chain, no mention
of ease.

11 Expertise Re-
quired

Zero-touch, mini-
mal skills are re-
quired

Needs skilled tech-
nician

Depends if the on-
boarding is zero
touch or not

12 Development
Efforts

Moderate Moderate Very High

13 Programming
Skills

C, JAVA, RUST Python, RUST C

14 User Friend-
liness

User-friendly with
secure decommis-
sioning and resale.

Not zero-touch, no
mention of resale.

User-friendly with
similar features to
FDO.

15 Overall Cost Time-saving during
onboarding, simi-
lar software devel-
opment cost, addi-
tional cost for RV
server

Onboarding cost
is more, increased
server computing
cost.

Additional develop-
ment and main-
tenance cost re-
quired, needs addi-
tional servers

16 Security Well-thought threat
model and security
guidelines.

Developed consider-
ing security in mind,
however, no secu-
rity guidelines pro-
vided.

Detailed security
guidelines are
available.

17 Runtime In-
tegrity

No runtime
integrity measure-
ment.

Cloud Verifier for
integrity checks.

No runtime
integrity measure-
ment.

18 Software Up-
date

No automatic soft-
ware update at pro-
visioning.

No software up-
date at provisioning
time.

Software manager
server for software
updates.

19 Certificate
Management

No built-in certifi-
cate management.

Provides certificate
management mech-
anism.

Uses Certificate
Manager for mon-
itoring certificate
validity.

45

4 Evaluation of Onboarding Methods

Table 4.3 Evaluation of Onboarding Methods (continued)
Serial
Number

Evaluation
Criteria

FDO Keylime OPCUA Onboard-
ing

20 Device Attes-
tation

Uses Entity Attesta-
tion Tokens for de-
vice attestation.

Three-party key
derivation pro-
tocol for device
identification.

Defined Ticket for
device attestation.

21 Proof of
Ownership

Uses Ownership
voucher as proof of
ownership.

Three-party key
derivation protocol
to prove ownership.

Uses DeviceIden-
tity Tickets as proof
of ownership.

22 Correlation
Attack
Concerns

All keys used in
FDO are distinct
from application
keys.

Limited to device
onboarding and
management.

Uses separate cer-
tificate for DeviceI-
dentity and Applica-
tionIdentity

4.3 Advantages and Disadvantages

4.3.1 FIDO Device Onboard

• Advantages:

1. FDO is a complete zero-touch solution, making it easy and convenient to use.

2. FDO specifications support both microprocessors and MCU, although the implementa-
tion is only available for 64-bit microprocessors.

3. FDO is highly scalable, allowing up to 1800 devices to be onboarded per hour, with
linear speedup by adding more cores and parallelism until the parallelism of the host
CPU is exhausted.

4. Provides reliable onboarding even in case of power and network failure.

5. Follows standard practices and is an open-source project, making it easy to maintain.

6. Provides a late binding feature, which makes it easy to manufacture identical devices
without pre-configured data for specific customers, reducing the cost of manufacturing.

7. Provides secure supply chain management, with a mature threat model and an ownership
voucher that creates a chain of trust from the manufacturer to the owner.

8. Moderate development efforts due to a well-established client-SDK and protocol
reference implementation provided by Intel.

9. User-friendly with the ability for the end owner to choose the cloud provider and securely
decommission/resale the device.

10. Saves time during onboarding, reducing the cost of person-hours required to onboard
the device.

46

4 Evaluation of Onboarding Methods

11. FDO provides well-defined security guidelines and a threat model for the secure
onboarding of devices.

12. FDO uses Entity Attestation Tokens for device attestation to verify the authenticity of
devices.

13. FDO allows the user to add a DMS to take care of runtime security, software updates,
and certificate management of devices.

• Disadvantages:

1. FDO requires a Restricted Operating Environment (ROE) in the IoT Edge device, which
can be a TPM or TEE or Intel EPID, limiting the compatibility of the devices.

2. FDO Latency increases with simultaneous device connections

3. Similar device cost as OPCUA and Keylime, as it requires a ROE on the device and
additional servers (rendezvous, owner, manufacturer) to implement the protocol.

4. FDO does not provide any runtime integrity measurement for devices during operation.

5. FDO does not have any built-in mechanism for software updates or certificate manage-
ment.

4.3.2 Keylime

• Advantages:

1. Keylime is built specifically for cloud nodes, making it optimized for such devices.

2. Keylime’s cloud verifier can handle a large number of cloud nodes while maintaining
reasonable detection latency and response time.

3. Keylime can perform parallelization and test nodes with zero latency TPM emulation,
making it scalable to handle hundreds or thousands of virtual machines.

4. Open-source and maintainable, similar to FDO.

5. Designed to measure runtime integrity and improve device security.

6. Well-established reference implementation, which developers can use.

7. Keylime uses a Three-Party Key Derivation Protocol for device attestation and ownership
verification.

8. Keylime provides a Cloud Verifier for continuous runtime security monitoring of
deployed software.

47

4 Evaluation of Onboarding Methods

• Disadvantages:

1. Keylime is not a complete zero-touch solution. Keylime requires the commissioning
agent to manually provide the IP address of the Device to Keylime Verifier, which may
increase the efforts required to onboard the Device.

2. Keylime depends solely on TPM for its operation, which may limit its compatibility
with devices that do not have TPM.

3. Does not provide inputs to guide the manufacturer or supply chain, making it difficult to
use for ease of manufacturing.

4. Higher onboarding cost due to it taking more time to onboard the device compared to
FDO and OPCUA.

5. Not zero-touch and does not discuss anything about device resale, making it less
user-friendly.

6. Requires more computing power on the server side due to continuous monitoring of
node integrity, adding to the cost.

7. Keylime does not consider automatic software updates during provisioning.

8. There are no security guidelines or best practices provided for the implementation of
Keylime.

4.3.3 OPCUA Onboarding

• Advantages:

1. OPCUA onboarding is drafted to be automatic or zero-touch, making it easy to use.

2. OPCUA onboarding supports microprocessor-based IoT devices.

3. Provides complete guidelines on how to manufacture the devices and transfer them
through the supply chain.

4. Provides a secure distribution method with a chain of trust.

5. Similar features to FDO, making it user-friendly.

6. OPCUA Onboarding has a well-defined Certificate Manager for certificate management
of devices.

7. OPCUA Onboarding also takes care of software updates at the time of onboarding using
a software manager.

8. OPCUA Onboarding uses DeviceIdentity Tickets for proof of ownership.

48

4 Evaluation of Onboarding Methods

• Disadvantages:

1. OPCUA onboarding requires SecureElements, making it incompatible with devices that
do not have SecureElements.

2. There is no central code maintaining authority specifically for onboarding, which can
make it difficult to maintain.

3. No information on whether it eases the manufacturing process.

4. High development efforts as there is no reference implementation provided, and one
must be skilled in c programming language if referring to the open62541 stack.

5. Additional cost required to develop the complete onboarding solution and maintain it,
as there is no implementation provided.

6. Similar device cost to FDO and Keylime, requiring a ROE on the device and additional
servers.

7. OPCUA Onboarding does not provide any runtime integrity measurement for devices
during operation.

49

4 Evaluation of Onboarding Methods

Method Advantages Disadvantages
FDO - Complete zero-touch solution

- Supports both microprocessors and
MCU
- Highly scalable
- Reliable onboarding
- Follows standard practices and is open-
source
- Late binding feature for cost reduction
- Secure supply chain management
- Moderate development efforts
- User-friendly
- Saves time during onboarding
- Well-defined security guidelines and
threat model
- Uses Entity Attestation Tokens for de-
vice attestation
- Allows the use of DMS for runtime se-
curity, software updates, and certificate
management

- Requires a Restricted Operating Envi-
ronment
- Latency increases with simultaneous
device connections
- Similar device cost to other methods
- No runtime integrity measurement
- No built-in mechanism for software
updates or certificate management

Keylime - Optimized for cloud nodes
- Can handle a large number of cloud
nodes
- Scalable through parallelization
- Open-source and maintainable
- Measures runtime integrity
- Well-established reference implemen-
tation
- Uses Three-Party Key Derivation Proto-
col for device attestation and ownership
verification
- Provides Cloud Verifier for continuous
runtime security monitoring

- Depends solely on TPM
- Commissioning agent needs to manu-
ally provide device IP
- No inputs to guide manufacturer or
supply chain
- Higher onboarding cost compared to
FDO and OPCUA
- Not zero-touch and no device resale
support
- Requires more computing power on
server side
- No automatic software updates during
provisioning
- No security guidelines or best practices
provided

OPCUA Onboarding - Manual or zero-touch
- Supports microprocessor-based IoT de-
vices
- Provides guidelines for device man-
ufacturing and secure distribution, de-
commissioning
- User-friendly
- Well-defined Certificate Manager for
certificate management
- Uses DeviceIdentity Tickets for proof
of ownership
- No correlation attack concerns

- No data on latency and reliability
- Requires SecureElements
- No central code maintaining authority
- No information on manufacturing ease
- High development efforts
- Additional cost required for complete
onboarding solution and maintenance
- No runtime integrity measurement

Table 4.4: Advantages and disadvantages IoT device onboarding methods 50

5 Software Architecture Design for
zero-touch onboarding to hawkBit using
FDO standards

In this section of the report, we will explore the development of a zero-touch onboarding
solution using FDO 1.1 standards for the efficient onboarding of a large number of IoT devices
to a hawkBit Device Management Server. The process of onboarding a large number of
devices manually can be time-consuming and error-prone, which is why automating this
process is crucial for managing IoT devices effectively. We will discuss the key aspects of
manual onboarding to the Hawkbit server. We will analyze each step and then come up with
our software architecture which will help us to achieve automation of the onboarding process.
Chapter 5,6,7 answers our Research Question 3, by providing a software solution to facilitate
zero-touch onboarding to the hawkBit server.

5.1 Manual Onboarding to hawkBit Server

The manual onboarding of the IoT edge device to the hawkBit server starts with the
commissioning technician physically installing the device. For our implementation, we will
assume that the device is an embedded Linux platform with an SW update library configured.

He will also need to carry a list of all the devices he is going to onboard, and where the
list contain a serial number of the device, a controller id, make and model, and other such
details. The technician will create a target on the hawkBit server using this list. Sometimes,
the owner or the organization will have a tool, or software application that is responsible for
commissioning the device. This application will automate a few steps in manual onboarding
such as having a list of devices and generating security tokens automatically. However in
the end the commissioning technician needs to log in to the device and configure the device
using this security token, so still it is time-consuming. The process of creating a target using
the UI of the hawkBit server is described below.

51

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

Step 1: He will log in to the Hawkbit server using the credentials provided to him, as shown
in Figure 5.1.

Figure 5.1: Step 1: Log in to hawkBit Server

Step 2:Once logged in, he will then create a device using hawkBit UI. He must enter the
Controller ID, Name, and device description here, As shown in the below Figure 5.2.

Figure 5.2: Step 2: Create a target(device) on hawkBit server

52

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

Step 3:The target or device is now created on the hawkBit server, and a Security token is
created for that device. It can be seen below Figure5.3.

Figure 5.3: Step 3: Security Token generated

Step 4:The technician will now have to configure the device using this Security token. To do
so, he will log into the IoT Edge device using the login credentials provided in the list. It is
also a security concern because most devices are shipped with default IDs and passwords.
Once logged in, he will run a shell command to activate the suricatta daemon of swupdate.
This daemon is responsible for working as a hawkBit client. It will use the security token to
authenticate the device to the hawkBit server. The authentication will happen as shown in the
below Figure 5.4.
swupdate -u '-t DEFAULT -x -u https://localhost -i abcf12345df -k 0

c06994f479ef4e5e3b8fb6e670591a0'

-u, --suricatta [OPTIONS] : Parameters to be passed to suricatta

-t, --tenant * Set hawkBit tenant ID for this device.

-u, --url * Host and port of the hawkBit instance, e.g., localhost:8080

-i, --id * The device ID to communicate to hawkBit.

-k, --targettoken Set target token.

Listing 5.1: swupdate suricatta daemon

53

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

Figure 5.4: Step 4: Configure and register the device

Step 5:Once the device is registered with hawkBit, the hawkBit UI will update the status
of the device. We can see the updated status in the below Figure. This complete procedure
takes approximately 5-10 mins and is time-consuming. On average, a skilled technician can
only onboard or deploy a maximum of 15-20 devices per hour. Along with that, he needs
to enter all the details manually, which can lead to errors in configuration. Automating this
onboarding process is crucial to provide seamless large-scale IoT deployment if we would
like to achieve massive growth in IoT technology.

Figure 5.5: Step 5: Confirm device status as registered

54

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

5.2 Architecture Design

We are using FDO 1.1 standards to design our software architecture. As seen in the previous
section, we need to automate all five steps of manual onboarding. We will divide this
design into two parts. The first part will be a combination of steps 1,2,4,5. We will call it
cloud-side architecture design. Furthermore, the second part will be step 3, called device-side
architecture design. We did this segregation because the first part is carried out independently
of the device being onboarded, and the second part is executed on the device to be onboarded.

5.2.1 FDO Device architecture

Before going ahead, we will get an idea of the FDO Device. It has developed a unique feature
of late binding using its state-of-the-art ServiceInfo module. In simple terms, ServiceInfo is
a type that contains key-value pairs used to communicate between the Management Service
on the cloud side, and Management Agent functions on the device side. Each pair represents
a message between two modules, one on the owner’s side and the other on the device’s side,
identified by a module name and a message name separated by a colon.

As discussed in section 2.3, Once a device is onboarded to the owner server, a secure channel
is established between the device and the Owner Server. It ensures that the device and the
Owner Server authenticate each other during the TO2 protocol. After this step, the Owner
Server can query the device’s information, which is Device ServiceInfo. In addition, the
Owner Server can also send down configuration information to the device, referred to as
Owner ServiceInfo. This secure channel uses encryption and integrity protection to ensure
that data in transit from/to the device is secure. It can be visualized in the below image.

Figure 5.6: Management Service - Agent Interactions via ServiceInfo

55

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

Messages sent to a module on the FDO Device may interact with the Device OS to install
software components. Another message might use those components, in combination with
a cryptographic key, to establish communications. In some systems, the Management
Agent might be installed by cooperating modules before it is active by others, allowing an
’off-the-shelf’ device to be customized by FDO. The intention is that modules will implement
common or standardized IOT provisioning functions and will be reused for different IOT
solutions provisioned by FDO. In some cases, modules on the FDO Owner and FDO Device
will be designed to cooperate directly. For example, a module that implements a particular
device management client on the FDO Device and its counterpart that feeds it exactly the
right credentials on the FDO Owner. In other cases, modules may implement IOT or OS
primitives so that the FDO Owner or FDO Device picks and chooses among them. For
example, allocating a key pair on the FDO Device; signing a certificate on the FDO Owner;
transferring a file into the OS; upgrading software; and so on.

We have used client SDK developed by Intel. The block diagram of SDK is given below.

Figure 5.7: Intel FDO Client Block Diagram [27]

The integrated image and execution flow from the system boot are shown above and each step
is described below[27]:

1. On reset, the Board Support Package (BSP) and RTOS initialize the hardware and pass
the control to the Application. On Linux* systems, this is the normal OS boot flow and
is complete by the time the Application executes.

2. The Application initializes all FDO modules if required. The Application also ini-
tializes the SDK by calling the fdo_sdk_init() API and registers each module with
the SDK by passing the module’s name and callback address to the SDK (in the
fdo_sdk_service_info_module structure).

56

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

Figure 5.8: Intel FDO Client Execution Flow [27]

3. The Application checks if FDO onboarding has been completed by calling the
fdo_sdk_get_status() API. If the status FDO_SDK_STATE_IDLE is returned, on-
boarding has been completed and the Application goes to step 6. If not, the Application
goes to step 4.

4. The Application initiates FDO onboarding by calling the fdo_sdk_run() API. This call
returns either a successful completion of onboarding or an error. If an error occurs, the
Application will reset the device and retry the sequence, with some delay. On successful
completion of onboarding, the Application goes to step 6.

5. During the onboarding process, the SDK will call registered modules during the
ServiceInfo stage of the protocol. This is done by calling the registered module callback.
The onboarding process will succeed only if all module interactions at this stage are
successful.

6. The Application has successfully completed onboarding and continues the normal
operation of the device.

The Application continues operating until the system is powered off or reset. On System
restart, the preceding steps are re-executed.

Based upon the above architecture we have created our own module for hawkBit onboarding.
This module is responsible for sending the device GUID, and Serial Number to the Owner
server. It is also responsible for receiving Controller ID, URL to the hawkBit server, and
Security Token. After receiving this data our hawkbitonboarding module will use these
parameters to execute the swupdate suricatta daemon and will register the device to the
hawkBit server. The final architecture of our device can be seen in the below Figure. This
will cover step 4 from the manual device onboarding.

57

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

Figure 5.9: FDO Device architecture with hawkBit device module

5.2.2 FDO Owner Server architecture

Similar to the Device module, we must create an owner module on the owner server. This
module will be responsible for coordinating the device and device management server. In our
case, the DMS is the hawkBit server.

The Owner server will first receive the device service info from the device using the devMod
module. It will be the serial number of the device, GUID. The owner module will create a
target on the hawkBit server using these details. To create the target, we have used hawkBit
server management APIs.Once the target is created, we will query the security token for the
newly created target device using the same management API. It automated step 1,2,3 from
manual onboarding.

The Owner module now sends the hawkBit client configuration details to the device. It will
send a hawkBit configuration file. It will contain the Controller id of the device, URL to the
hawkBit server, and security token. The hawkBit Device Module will further read this file
and execute step 4.

Now, the owner module needs to verify that the device is registered and, if registered, update
the FDO device onboarding status as successful. It again uses management API to check the
status of the device. If the device is not registered, then the status will be unsuccessful. Step
4 will be executed again until the status changes to the device are registered and the FDO
device onboard is successful. It automates step 5 of manual onboarding. The figure below
can visualize the complete architecture.

58

5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards

Figure 5.10: Zero touch onboarding to hawkBit using FDO Architecture
59

6 Software Solution Implementation

6.1 Device manufacturing

We have used C client SDK provided by Intel, and on top of it, created our hawkBit device
module.

The one significant advantage of FDO is that it provides complete solutions from manufacturing
to decommissioning the device. During Device manufacturing, the manufacturer needs to
execute the Device Initialization protocol. It is nothing but the Insertion of FIDO Device
Onboard credentials into the device during manufacturing. To implement this process, we
have to insert the manufacturer serial number, manufacturer address, and private keys for the
device into a specific folder, /opt/fdo/data.Önce they are inserted, we run the Linux client.
It will complete the DI protocol and create a DIStatus file if the Device Initialization is
successful.

If we run the linux-client for a second time and the DI and TO0 protocols are already
completed, the device will start with TO1 and TO2 protocols. Therefore we have created
a systemd service that will run whenever the device boots. It checks if the DI is complete
by parsing the DIStatus file. If DI is completed, it will immediately execute the linux-client
so that the device executes TO1 and TO2 protocol immediately after it gets powered at
installation, making our solution zero-touch. The fdolinuxclient.service is given below.
[Unit]

Description=Run FDO Linux Client at boot if DI is complete

After=network.target

[Service]

Type=simple

ExecStart=/usr/bin/bash -c 'if [-f /opt/fdo/DIStatus]; then cd /opt/fdo && ./linux-

client; fi'

[Install]

WantedBy=multi-user.target

Listing 6.1: fdolinuxclient.service

6.2 FDO hawkBit Device Module

The FDO hawkBit Device module is responsible for the following part of device onboarding.

1. Sending the details of the device to the owner server.

60

6 Software Solution Implementation

2. Receive the configuration file from the owner server.

3. Configure and register the device to the hawkBit DMS.

We have used C client SDK provided by intel, and on top of it, created our hawkBit device
module. The implementation of the above steps is given below.

6.2.1 Sending the details of the device to the owner server

As per FDO standards, the DevMod module sends the device information to the owner’s server.
We created a c function to read the device’s serial number. The serial number is given to the
device in the manufacturing process. It is stored in a file name "manufacturer_sn.bin."The c
function get_device_serial_number is given below.
/**

* get device serial number

*

* @return

* returns device serial number as string.

*/

const char *get_device_serial_number(void)

{

FILE *fp;

char *line = NULL;

size_t len = 0;

ssize_t read;

fp = fopen("/opt/fdo/data/manufacturer_sn.bin", "r");

if (fp == NULL)

exit(EXIT_FAILURE);

LOG(LOG_ERROR, "manufacturer_sn.bin: No such file or the file is empty \n");

while ((read = getline(&line, &len, fp)) != -1) {

LOG(LOG_DEBUG, "Retrieved line of length %zu :\n", read);

LOG(LOG_DEBUG, "The Serial Number is : %s", line);

}

return line;

free(line);

exit(EXIT_SUCCESS);

}

Listing 6.2: get_device_serial_number function

6.2.2 Receive the configuration file from the owner server

We have used original functions from FDO System Module to create a hawkbit.config file
and write the configuration details from the server to the file.

61

6 Software Solution Implementation

6.2.3 Configure and register the device to the hawkBit DMS.

The configuration and registration of the device to the hawkBit server are taken care of by
the the hawkbitOnboarding function(see listing 6.3). Once the hawkBit.config file is written
successfully, and the hawkBit onboarding function will be called. This function will parse
the configuration file, read the URL, controller ID, and security token and store them as
variables. It will then execute the suricatta daemon CLI. Before that, it will also ensure that
the configuration details used are valid. It will also create a hawkbit.log file to store the logs.
void hawkbitOnboarding()

{

FILE *configFile;

char buffer[256];

char url_copy[256], controllerid_copy[256], securitytoken_copy[256];

char *url, *controllerid, *securitytoken, *timestamp;

configFile = fopen("/opt/fdo/hawkbit.config", "r");

if (configFile == NULL) {

perror("Error opening file");

exit(1);

}

while (fgets(buffer, sizeof(buffer), configFile)) {

if (strstr(buffer, "URL:") != NULL) {

strcpy(url_copy, buffer);

url = strtok(url_copy, ":");

url = strtok(NULL, " \n");

} else if (strstr(buffer, "ControllerId:") != NULL) {

strcpy(controllerid_copy, buffer);

controllerid = strtok(controllerid_copy, ":");

controllerid = strtok(NULL, " \n");

} else if (strstr(buffer, "SecurityToken:") != NULL) {

strcpy(securitytoken_copy, buffer);

securitytoken = strtok(securitytoken_copy, ":");

securitytoken = strtok(NULL, " \n");

}

}

fclose(configFile);

printf("URL: %s\n", url);

printf("ControllerId: %s\n", controllerid);

printf("SecurityToken: %s\n", securitytoken);

// check if all values are non-empty and valid

if (strlen(url) > 0 && strlen(controllerid) > 0 && strlen(securitytoken) > 0 &&

strspn(securitytoken, "abcdefghijklmnopqrstuvwxyz0123456789") == 32) {

// get the current timestamp

time_t current_time = time(NULL);

struct tm *tm = localtime(¤t_time);

strftime(timestamp, 20, "%Y-%m-%d_%H:%M:%S", tm);

62

6 Software Solution Implementation

// write the log message to the file

FILE *log_file = fopen("/opt/fdo/hawkbit.log", "a");

if (log_file == NULL) {

printf("Error: could not open log file\n");

exit(1);

}

fprintf(log_file, "Hawkbit config changed at %s\n", timestamp);

fclose(log_file);

// execute the swupdate command

char command[2048];

sprintf(command, "/usr/bin/swupdate -v -u \"-t DEFAULT -x -u %s -i %s -k %s\" >> /opt/

fdo/hawkbit.log 2>&1 &", url, controllerid, securitytoken);

popen(command, "r");

}

}

Listing 6.3: hawkbitOnboarding function

6.3 FDO hawkBit Owner Module

The FDO hawkBit Owner module is responsible for the following part of device onboarding.

1. Receive the details of the device.

2. Create a hawkBit target on the hawkBit server and Receive the security Token of the
device from the hawkBit server.

3. Send the configuration details to the device.

4. Confirm the device is onboarded to the hawkBit server.

6.3.1 Receive the details of the device

The hawkBit owner module receives the device’s serial number by reading data received
from DevMod.KEY_SN. it maps every serial number with GUID using Hashmaps, such that
whenever multiple client requests come to the owner server, it should not mix up the serial
number of one GUID with the others.

case DevMod.KEY_SN:

guid = state.getGuid().toString();

serialnumber = Mapper.INSTANCE.readValue(kvPair.getValue(), String.class);

serialNumbers.put(guid, serialnumber);

break;

Listing 6.4: Receive serial number from device

63

6 Software Solution Implementation

6.3.2 Create a hawkBit target on the hawkBit server and get security token

We have created the createHawkbitTarget(ServiceInfoModuleState state, String guid) method
to create a hawkBit target on the hawkBit server. This function uses the serial number as
the device name and guid as controllerID. It then uses management API to create the device.
Once the device is created, it will immediately retrieve the security token for the device.
/*create hawkbit target device and get security token */

protected String createHawkbitTarget(ServiceInfoModuleState state, String guid) throws

IOException{

try {

ProcessBuilder processBuilder = new ProcessBuilder();

processBuilder.command("bash", "-c", "HISTCONTROL=ignoreboth; " +

"curl -k -u admin:admin \"https://" + hawkbitserver + "/rest/v1/targets\"

-X POST -H \"Content-Type: application/json;charset=UTF-8\" -d '[{\"controllerId\":\"" +

guid + "\",\"name\":\"" + serialnumber + "\",\"description\":\"Linutronix FDO_device

\"}]' < /dev/null; " +

"get_securityToken=$(curl -k -u admin:admin \"https://" + hawkbitserver +

"/rest/v1/targets/\"" + guid + "\"\" -X GET | jq '.securityToken'); " +

"ST=$(echo \"$get_securityToken\" | tr -d '\"'); " +

"echo $ST");

processBuilder.redirectErrorStream(true);

Process process = processBuilder.start();

// read the output from the command

InputStream inputStream = process.getInputStream();

BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));

String line;

while ((line = reader.readLine()) != null) {

ST = line; // reads the value of the security Token

System.out.println(line);

}

} catch (Exception e) {

e.printStackTrace();

}

return ST; //returns the security token

}

Listing 6.5: createHawkbitTarget method

6.3.3 Send the configuration details to the device

The owner module will now send the configuration details to the device. It is divided into two
functions. The first one is to create a hawkbit.config file on the device, done by the createHawk-
bitConfig(FdoSysModuleExtra extra) method. The second one is to write the configuration
details to this file, which is carried out by the writeHawkbitConfig(ServiceInfoModuleState
state, FdoSysModuleExtra extra, String securityToken, String guid) method.
/*create hawkbit.config file */

protected void createHawkbitConfig(FdoSysModuleExtra extra) throws IOException {

ServiceInfoKeyValuePair kv = new ServiceInfoKeyValuePair();

64

6 Software Solution Implementation

kv.setKeyName(FdoSys.FILEDESC);

String filename = "hawkbit.config";

kv.setValue(Mapper.INSTANCE.writeValue(filename));

extra.getQueue().add(kv);

}

/*write hawkbit.config file */

protected void writeHawkbitConfig(ServiceInfoModuleState state,FdoSysModuleExtra extra,

String securityToken, String guid) throws IOException {

guid = state.getGuid().toString();

String CFG = "URL:https://"+ hawkbitserver +"\n"

+ "ControllerId:"+ guid +" \n"

+ "SecurityToken:"+ securityToken +"\n";

InputStream targetStream = new ByteArrayInputStream(CFG.getBytes());

try (InputStream input = targetStream) {

for (; ;) {

byte[] data = new byte[state.getMtu() - 26];

int br = input.read(data);

if (br == -1) {

break;

}

ServiceInfoKeyValuePair kv = new ServiceInfoKeyValuePair();

kv.setKeyName(FdoSys.WRITE);

if (br < data.length) {

byte[] temp = data;

data = new byte[br];

System.arraycopy(temp, 0, data, 0, br);

}

kv.setValue(Mapper.INSTANCE.writeValue(data));

extra.getQueue().add(kv);

}

}

}

Listing 6.6: createHawkbitConfig and writeHawkbitConfig methods

6.3.4 Confirm the device is onboarded to the hawkBit server.

The final step for the owner module is to confirm that the device registration to the hawkBit
server is successful. It uses the management APIs to check the hawkBit target status. If the
status is registered, it will complete the FDO TO2 protocol. Otherwise, it will just repeat the
process until the device gets registered.
protected String confirmTargetRegistration(ServiceInfoModuleState state, String guid)

throws IOException{

try {

guid = state.getGuid().toString();

ProcessBuilder processBuilder = new ProcessBuilder();

processBuilder.command("bash", "-c", "HISTCONTROL=ignoreboth; " +

65

6 Software Solution Implementation

"get_updateStatus=$(curl -k -u admin:admin \"https://" + hawkbitserver + "/

rest/v1/targets/\"" + guid + "\"\" -X GET | jq '.updateStatus'); " +

"updateStatus=$(echo \"$get_updateStatus\" | tr -d '\"'); " +

"echo $updateStatus");

processBuilder.redirectErrorStream(true);

Process process = processBuilder.start();

// read the output from the command

InputStream inputStream = process.getInputStream();

BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));

String line;

while ((line = reader.readLine()) != null) {

updateStatus = line; // reads the value of updateStatus

System.out.println(line);

}

} catch (Exception e) {

e.printStackTrace();

}

return updateStatus;

}

Listing 6.7: confirmTargetRegistration method

66

7 Validation and Testing of Prototype

7.1 Quick Overview of FDO

The FDO framework comprises three main server-side components and one client-side
component. On the server side, we have the Manufacturer, RV (Rendezvous), and Owner
Service, while on the client side, we have the device implementation in C (Client-sdk-fidoiot).
We have created a prototype IoT device that will be onboarded to the hawkBit Server using
FDO 1.1 standards. The hardware for the IoT device is explained in section 2.8. The flow
chart given below highlights the complete process of FDO.

Figure 7.1: FIDO Device Onboard Entities and Entity Interconnection, [2]

Four sets of protocols make up FDO: DI, TO0, TO1, and TO2. The DI protocol is used for
Device Initialization and involves communication between the Device and the Manufacturer
(msg 10-13). The TO0 protocol, or Transfer of Ownership 0, occurs between the Owner
and the RV server (msg 20-23), while the T01 protocol, or Transfer of Ownership 1, occurs
between the Device and the RV server (msg 30-33). Lastly, the T02 protocol, or Transfer
of Ownership 2, occurs between the Device and the Owner Server (msg 60-71). The table
below provides a quick overview of each protocol.

67

7 Validation and Testing of Prototype

Protocol Parties Involved Messages Description
DI (Device Initial-
ization)

Device, Manufac-
turer

Msg 10-13 Device initializes contact with Manu-
facturer’s service. FDO credentials, in-
cluding RVInfo, are created and inserted
into the device during this process.

TO0 (Transfer of
Ownership 0)

Owner, Rendezvous
(RV) server

Msg 20-23 Owner initiates contact with RV server
using the Ownership voucher. Map-
ping between GUID and Owner address
(DNS/IP) is created and stored in the
RV server’s database.

T01 (Transfer of
Ownership 1)

Device, Ren-
dezvous (RV)
server

Msg 30-33 Device contacts RV server using rvInfo
collected during DI. Device identifies
itself and collects the mapping of Owner
address based on its GUID from the RV
server.

T02 (Transfer of
Ownership 2)

Device, Owner
Server

Msg 60-71 Device uses the OwnerAddress col-
lected during T01 to contact the Owner
Server. Trust is established, and Owner-
ship Transfer is performed.

Table 7.1: FDO Protocols and Messages

7.2 Server and Device Setup

7.2.1 Server Setup

We have used protocol reference implementation created by Intel. On top of it, we have
modified the owner server to support our hawkBit owner module. The protocol reference
implementation can be found here: https://github.com/Vishwasrao1/pri-fidoiot. We have
built the Java application and run each server in a containerized environment. We have also
generated the necessary self-signed certificates and passwords for each server.

First of all, we need to run the MariaDB Database server. This server is responsible for
storing all the related data of the FDO protocol.

Figure 7.2: database server

Next, we will start the Device manufacturer server responsible for manufacturing the Device
and running the FIDO Device Onboard application during the factory stage to perform Device
Initialization.

Figure 7.3: Manufacturer server

68

7 Validation and Testing of Prototype

After that, we will start Rendezvous Server. It acts as a Network server or service as a
rendezvous point between a newly powered-on Device and the Owner.

Figure 7.4: Rendezvous server

We will now start the Owner server. It is an entity constructed to perform FIDO Device
Onboard protocols on behalf of the Owner.

Figure 7.5: Owner server

Ultimately, we will start Device Management Server, our hawkBit server. We have created
our own containerized version of the hawkBit server. It can be found in this repository:
https://github.com/Vishwasrao1/hawkbit-server

Figure 7.6: hawkBit server

7.2.2 Device Setup

We have created our meta-layer to add fdo functionality to the raspberry pi board. We have
written a recipe fdoclientsdk.bb to build the FDO client SDK, install the linux-client to the
embedded Linux device, i.e., raspberry pi CM4, and make it FDO capable. The same meta
layer can be found here https://github.com/Vishwasrao1/lx-fidoiot-rpi. We used usbboot and
bmaptools to flash the prototype IoT device.

69

7 Validation and Testing of Prototype

7.3 FDO Demonstration and Validdation

7.3.1 Manufacturing of Device

As discussed in section 6.1, The manufacturing process involves below mentioned steps:

• We flash the Device and add a private key. We provide the Device with the FDO Manufacturer
station address and serial number.

Figure 7.7: Adding all required data to the device

• Run the FDO application, which runs the linux-client for the first time, which will eventually
complete the DI protocol. The DI protocol is now complete. Logs from both Devices and the
manufacturer server can validate it. The Device is now manufactured and ready for sale.

Figure 7.8: DI log from the Device, Device got its unique GUID and Serial number

Figure 7.9: Manufacturing Server Log, msg 13 means DI protocol complete

7.3.2 Sale of the Device: Transfer of Ownership

The ownership voucher ensures the transfer of ownership in the supply chain. As discussed,
the current Owner will send the ownership voucher to the next Owner. This transfer happens
through the HTTP protocol and the APIs provided by the manufacturer and owner server. We
have used a shell script to generate the ownership voucher, transfer it to the next Owner and
Initiate the TO0 protocol. The below Figures can validate the transfer of ownership. Once
the TO0 protocol is completed, the Device is ready to be commissioned.

70

7 Validation and Testing of Prototype

Figure 7.10: Sharing of Ownership voucher and triggering TO0 protocol

Figure 7.11: Manufacturer Log: Manufactured voucher for serial no lxfdo005

Figure 7.12: Owner Log: TO0 completed by Owner server

Figure 7.13: RV Log: RV server confirming TO0 completion

71

7 Validation and Testing of Prototype

7.3.3 Provisioning of the Device: Installation and Onboarding

Now, the TO0 protocol is completed, and the Device is ready to be installed. We will power
on the Device and connect it to the internet. The Device will then contact the RV server
to get the Owner server IP details, completing the TO1 protocol. It will then initiate the
T02 protocol and transfer the hawkbit.config file to the Device, and using this config details
Device will register itself to the hawkBit server. Everything will happen without any human
intervention. The below Figures can validate the zero-touch onboarding to the hawkBit server
achieved successfully using FDO 1.1 standards.

Figure 7.14: Device log : validates the TO2 protocol completed

Figure 7.15: hawkbit.config: validates that correct configurations are sent using T02 protocol

Figure 7.16: hawkbit.log: validates the device is registered to hawkBit server

72

7 Validation and Testing of Prototype

Figure 7.17: RV Log: RV server confirming TO1 completion

Figure 7.18: Owner server Log: Owner server confirming TO2 completion. msg71 means T02
completed

7.4 Testing & Evaluation

We have performed various tests to evaluate our software solution’s reliability, scalability, and
latency. We wanted to check how our servers will react when multiple clients try to connect
with them and query for getting hawkbit.config file. To test this, we created a simulated
environment, creating a docker image of our IoT edge device. The rest of the servers were
also in a containerized environment. The demonstration and the source code can be found
here: https://github.com/Vishwasrao1/fidoiot-edge-device.

7.4.1 Scalability

We have tested scalability by using simulating multiple devices trying to connect to the server.
Initially, the server was getting jumbled between the serial number, GUI, and security Token
of the device. However, modifying our source code has improved the scalability.

We simulated 1,10,20,30 devices at a time and our solution was perfectly fine to onboard 30
devices within less than a minute. We tried going beyond 30 but due to computing power
restrictions, the host machine was not capable of doing so.

We must note that these are virtual devices, which don’t have any other high-priority processes,
the onboarding is quick such that 30 devices are onboarded in half a minute. However, our
prototype device has other high-priority processes which must run at the time of boot so the
approximate time to onboard the device is less than a minute. Considering this scenario, if
we can onboard 30 devices per minute, that means 1800 devices per hour, and eventually
43200 devices can be onboarded in 24 hours. This makes our application highly scalable for
large-scale IoT deployments.

73

7 Validation and Testing of Prototype

7.4.2 Latency

We have observed the latency of the devices when multiple devices try to communicate with
the server. The latency increases as the number of parallel processes required increases. The
data is shown in below table and graph.

Sr No Device Name Actual Time (s) User Space Time (s) Kernel Space Time (s)

1 1 Device 13.167 0.1 0.044
2 10 Devices in parallel 14.95 0.116 0.046
3 20 Devices in parallel 20.627 0.126 0.047
4 30 Devices in parallel 24.936 0.133 0.0557

Table 7.2: FDO Device latency

Figure 7.19: Latency of FDO to hawkBit server

As mentioned earlier, this data is for a simulated environment with virtual devices running
as containers. on actual hardware, it took approximately 60 seconds to onboard the device
considering the boot time.

74

7 Validation and Testing of Prototype

7.4.3 Reliability

We tested our prototype device in case of power and network failure. Our solution is highly
reliable and takes care of such errors and exceptions.

Power Failure Testing

The device functions reliably when power failure happens at the time of onboarding. We
started the device onboarding and unplugged the power cable to simulate a power failure.

Manufacturing: During manufacturing, if a power failure occurs at the time of the device
initialization. The Device Initialization status will be stored as incomplete, and when we
retry the device initialization again, the DI protocol will complete successfully.

Provisioning: During provisioning, if a power failure occurs and Device onboarding is
incomplete. We need to power up the device again. The systemd service fdolinuxclient.service
will take care to start the onboarding process again and onboard the device. If the TO1
protocol is already completed before the power failure, our software solution will start the
TO1 protocol again at the next retry. Similarly, if any of the onboarding steps still need to be
completed, the complete onboarding process will run again at the next boot.

Network Failure Testing

The device is highly reliable if any network failure exception occurs during onboarding. We
started the device onboarding and unplugged the network cable to simulate a network failure.

Manufacturing: During manufacturing, if a network failure occurs at the time of the device
initialization. The device will retry to connect to the manufacturer’s server. The DI status
will be stored as failed if the connection does not happen during three retries. Whenever the
network is restored, the manufacturer should try device initialization again.

Provisioning: A network failure during device onboarding does not cause any severe
breakdown. Instead, it will retry to connect the server, and if the network is restored, it will
continue the process and onboard the device. If the network is not restored, the device will
store the onboarding status as failed. We need to reboot the device and ensure the network is
available to start the onboarding process again.

75

7 Validation and Testing of Prototype

7.5 Onboarding of Smart Energy Meter

Research question 4 was about choosing a suitable method for onboarding smart meters. As
we develop smart cities and buildings, we inevitably need to deploy IoT on a large scale.
When considering onboarding solutions for smart energy meters, several important factors
must be remembered. These include the level of security needed to protect the device and data,
the ability to scale the method to handle a large number of devices, compatibility with the
device’s hardware and software, cost and time required for implementation and maintenance,
and the ability to support specific use cases such as remote monitoring, meter data analytics,
billing, and demand response management.

To ensure efficiency and avoid delays, the onboarding process of the smart meters needs
to be zero-touch, especially considering the large-scale deployment. FDO simplifies the
installation and configuration process by having plug-and-play devices. FDO makes sure that
the installation is quick and worry-free, especially when we have to install a large number
of devices. The smart meters are shipped with the default login id and password. If we use
FDO, this can be avoided, reducing the device’s vulnerability to cybersecurity attacks. There
will not be any need for skilled installation technicians as the onboarding is zero-touch.

Moreover, we can integrate various DMS to provide runtime integrity checks, software
updates, and certificate management which is important in the case of smart energy meters to
handle the overall lifecycle of the device. Smart energy meters are mostly used for remote
monitoring, meter data analytics, billing, and demand response management. Each energy
provider may have developed its cloud solution to satisfy these use cases. Each energy
provider may have different preferences regarding cloud providers. It means the manufacturer
has to take care of each device and cloud combination when manufacturing the device.
However, this can be resolved through the late binding capabilities of FDO. Customization
can be done at the end of the supply chain by using identical devices for all providers. The
energy provider is free to choose the cloud provider of his choice at the time of onboarding;
therefore, the energy meters need not be preconfigured.

Considering all the merits of FDO, it is recommended to choose FDO for the onboarding
process of smart energy meters. However, it may not be cost-effective for small-scale
deployment.

76

8 Conclusion and Future Scope

This study has found that large-scale IoT deployments can benefit significantly from zero-touch
onboarding. Three different methods were evaluated: FIDO Device Onboard (FDO), Keylime,
and OPCUA Onboarding. Each approach had its pros and cons, but it is clear that zero-touch
onboarding is future of IoT deployments. This method offers numerous benefits, such as
increased security, scalability, efficiency, and cost-effectiveness. By removing the weaknesses
associated with traditional manual onboarding methods, zero-touch onboarding can simplify
the process while maintaining strong security measures. It also automates device management
and provisioning, improving interoperability and reducing operational expenses.

In conclusion, We choose FIDO Device Onboard (FDO) as the preferred solution for IoT
device onboarding over Keylime and OPCUA Onboarding. FDO’s complete zero-touch
approach ensures ease of use and automation, saving time and reducing costs. It supports a
wide range of devices, provides scalability, and ensures reliable onboarding despite failures.
FDO follows standard practices as an open-source project, offers a late binding feature for
cost-effective manufacturing, and provides a user-friendly experience with options for cloud
provider selection and secure device decommissioning/resale. These advantages make FDO
the ideal choice for organizations seeking a versatile, efficient, and user-centric onboarding
solution for their IoT deployments. In addition, zero-touch onboarding aids organizations
in complying with regulatory requirements, safeguarding sensitive data, and adhering to
regulatory standards such as IEC 62443.

We developed a novel software solution to facilitate zero-touch device onboarding to the
hawkBit server using FDO 1.1 standards. The significant finding was that we could onboard
the device in less than a minute and onboard up to 43200 devices per day, eventually making
it more than a million per month. The scalability of our solution is promising. The FDO
did not provide any specific mechanism for the certificate or runtime integrity management;
however, these things can be easily integrated using various Device Management Services.
One possible approach could be integrating FDO and Keylime. The Keylime does not have
any automatic method to get the device’s IP address. FDO can provide this to keylime, and
from there, Keylime would take care of the certificate and runtime integrity measurement.
Right now, we have integrated the software update manager with FDO. If we integrate all
three management services into FDO, it will be a significant achievement. There is also scope
for improvement in the implementation of the solution.

To sum up, this thesis represents a significant contribution to large-scale IoT deployments
using zero-touch onboarding. Through extensive research and analysis, we have provided
valuable insights into the benefits and challenges of implementing such deployments. This
thesis has led to a solid foundation for future research and advancements. The findings of this
research serve as a valuable guide for organizations and stakeholders looking to leverage the
potential of IoT at scale while ensuring secure and efficient device onboarding.

77

Bibliography

[1] Hasan, M. (2022, June 14). State of IOT 2022: Number of connected IOT devices
growing 18% to 14.4 billion globally. IoT Analytics. Retrieved May 8, 2023, from
https://iot-analytics.com/number-connected-iot-devices/

[2] Fido device onboard specification. FIDO Alliance. (2021, December 14). Retrieved
May 8, 2023, from https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-RD-v1.1-
20211214/FIDO-device-onboard-spec-v1.1-rd-20211214.pdf

[3] Schear, N., Cable, P. T., Moyer, T. M., Richard, B., & Rudd, R. (2016). Bootstrapping and
maintaining trust in the cloud. Proceedings of the 32nd Annual Conference on Computer
Security Applications. https://doi.org/10.1145/2991079.2991104

[4] Keylime documentation. Keylime Documentation - Keylime Documentation 7.0.0 docu-
mentation. (n.d.). Retrieved May 8, 2023, from https://keylime.readthedocs.io/en/latest/

[5] Open source summit north america 2022. (2022, June 1). Keylime: Boot-
strap and Maintain Trust on the Edge, Cloud, and IoT - Lily Stur-
mann & Michael Peters, Red Hat. ossna2022. Retrieved May 8, 2023,
from https://ossna2022.sched.com/event/11Nme/keylime-bootstrap-and-maintain-trust-
on-the-edge-cloud-and-iot-lily-sturmann-michael-peters-red-hat

[6] Arthur, W., & Challener, D. (2015). A practical guide to Tpm 2.0 using the Trusted
Platform Module in the New Age of security. Apress.

[7] Ua Part 21: Device onboarding. OPC UA Online Reference - Re-
leased Specifications. (2022, November 1). Retrieved May 8, 2023, from
https://reference.opcfoundation.org/Onboarding/v105/docs/

[8] Hardware threat landscape and good practice guide. ENISA. (2021, August 26). Retrieved
May 8, 2023, from https://www.enisa.europa.eu/publications/hardware-threat-landscape

[9] What is a container? Docker. (2023, February 21). Retrieved May 8, 2023, from
https://www.docker.com/resources/what-container/

[10] Ei. (2019, December 18). The field of ëmbedded linuxëxplained! Embedded Inventor.
Retrieved May 8, 2023, from https://embeddedinventor.com/a-clear-cut-explanation-to-
embedded-linux/

[11] Software. Yocto Project. (n.d.). Retrieved May 8, 2023, from
https://www.yoctoproject.org/software-overview/

[12] Raspberry pi compute module vs Raspberry Pi 4 - jfrog connect (for-
merly UPSWIFT). JFrog Connect. (n.d.). Retrieved May 8, 2023, from
https://jfrog.com/connect/post/raspberry-pi-compute-module-vs-raspberry-pi-4/

78

Bibliography

[13] Mixos. (2021, March 31). Raspberry pi compute module 4 IOT Router Carrier
Board Mini. Electronics. Retrieved May 8, 2023, from https://www.electronics-
lab.com/raspberry-pi-compute-module-4-iot-router-carrier-board-mini/

[14] Raspberrypi. (2022, May 6). Usbboot/readme.md at mas-
ter · raspberrypi/USBBOOT. GitHub. Retrieved May 8, 2023,
from https://github.com/raspberrypi/usbboot/blob/master/secure-boot-
recovery/README.md

[15] Intel. (n.d.). Intel/bmap-tools: BMAP tools. GitHub. Retrieved October 7, 2022, from
https://github.com/intel/bmap-tools

[16] Project, T. E. hawkB. (n.d.). Eclipse hawkbit. The Community for Open Innovation and
Collaboration. Retrieved May 8, 2023, from https://www.eclipse.org/hawkbit/

[17] ISO/IEC/IEEE 42030:2019. ISO. (2019, July 24). Retrieved May 8, 2023, from
https://www.iso.org/standard/73436.html

[18] Brown, Alan & Wallnau, Kurt. (1996). Framework for evaluating software technology.
Software, IEEE. 13. 39 - 49. 10.1109/52.536457.

[19] Office of Aerospace Studies Air Force Materiel Command (AFMC) OAS/A9.
(n.d.). Aoa Handbook - Afacpo.com. Retrieved May 8, 2023, from
https://www.afacpo.com/AQDocs/AoAHandbook.pdf

[20] Secure IOT begins with zero-touch provisioning at scale. IoT Security. (2021, April
1). Retrieved May 8, 2023, from https://azure.microsoft.com/en-us/resources/secure-iot-
begins-with-zero-touch-provisioning-at-scale/

[21] Kumar, V., Mohan, S., & Kumar, R. (2019). A voice based one step solution for bulk IOT
device onboarding. 2019 16th IEEE Annual Consumer Communications & Networking
Conference (CCNC). https://doi.org/10.1109/ccnc.2019.8651724

[22] Eustace Asanghanwa Principal Program Manager. (n.d.). The blueprint to securely solve
the elusive zero-touch provisioning of IOT devices at scale: Azure blog and updates:
Microsoft Azure. Azure Blog and Updates | Microsoft Azure. Retrieved May 8, 2023,
from https://azure.microsoft.com/en-gb/blog/the-blueprint-to-securely-solve-the-elusive-
zerotouch-provisioning-of-iot-devices-at-scale/

[23] Intel® secure device onboard simplifies the supply chain. Intel. (n.d.). Retrieved May 8,
2023, from https://www.intel.com/content/www/us/en/internet-of-things/secure-device-
onboard.html

[24] Zoualfaghari, M. H., & Reeves, A. (2019). Secure & zero touch device onboarding.
Living in the Internet of Things (IoT 2019). https://doi.org/10.1049/cp.2019.0133

[25] Fido device onboard. LF Edge. (2023, April 19). Retrieved May 8, 2023, from
https://www.lfedge.org/projects/fidodeviceonboard/

[26] Keylime. (n.d.). Keylime/keylime: A CNCF project to Bootstrap & Maintain
Trust on the edge / cloud and IOT. GitHub. Retrieved May 8, 2023, from
https://github.com/keylime/keylime

79

Bibliography

[27] Contributers, F. I. D. O. D. O. (n.d.). Home - Fido device onboard. Retrieved May 8, 2023,
from https://fido-device-onboard.github.io/docs-fidoiot/1.1.4/security-best-practices/

All links were last followed on May 8, 2023.

80

	1 Introduction
	1.1 Motivation of Research
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Organisation of Report

	2 Background
	2.1 IoT Device Onboarding
	2.2 Zero Touch IoT Device Onboarding
	2.3 FIDO Device Onboarding (FDO) 2
	2.4 Keylime3
	2.5 OPCUA Device Onboard
	2.6 Embedded Linux
	2.7 The Yocto Project
	2.8 Basic Hardware Terms
	2.9 Software Tools
	2.10 Device Management Service(DMS)

	3 State of the Art
	3.1 Literature Survey

	4 Evaluation of Onboarding Methods
	4.1 Evaluation Criteria
	4.2 Evaluation
	4.3 Advantages and Disadvantages

	5 Software Architecture Design for zero-touch onboarding to hawkBit using FDO standards
	5.1 Manual Onboarding to hawkBit Server
	5.2 Architecture Design

	6 Software Solution Implementation
	6.1 Device manufacturing
	6.2 FDO hawkBit Device Module
	6.3 FDO hawkBit Owner Module

	7 Validation and Testing of Prototype
	7.1 Quick Overview of FDO
	7.2 Server and Device Setup
	7.3 FDO Demonstration and Validdation
	7.4 Testing & Evaluation
	7.5 Onboarding of Smart Energy Meter

	8 Conclusion and Future Scope

