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0 Introduction

0.1 Preoperads and operads

Operads determine algebra structures. For instance, there is an operad ASS such that algebras over
ASS are associative algebras; cf. §0.3.1. There is an operad COM such that algebras over COM are
commutative algebras; cf. §0.3.3 and the diagram in §0.3.5. Here the principle of forming an algebra
over an operad is the same as the principle of forming a module over a ring.

The theory of operads we develop differs from the classical notion of an operad. In fact, the linear
operads we define in §6 closely resemble the PROPs, as defined by S. Mac Lane. Concerning the
notion of an operad in the classical sense and the connection to Mac Lane’s PROPs, cf. also §0.4
below.

With all definitions and constructions we will always handle two different cases. On the one hand,
we will define set-preoperads and set-operads, where all involved maps are mere maps between sets.
On the other hand, we will define linear preoperads and linear operads over a commutative ring R
where all involved sets are R-modules and all involved maps are R-linear. This may lead to some
repetition, yet the distinction is usually necessary.

0.1.1 Preoperads

In §2 we treat the basic theory of set-preoperads and linear preoperads as well as basic examples.

A setl-preoperad is essentially a strict monoidal category (cf. [10, VII.1]) with Z>o as the set of
objects, where the monoid structure is given by addition in Z-g. More precisely, a set-preoperad
(Po,[x,-) consists of a biindexed set Py = (Po(m,n))mn=0 with distinguished identity elements
idy, € Po(m, m) for m € Z=q, an associative multiplication, given by multiplication maps

(X) : Po(m,n) x Po(m',n') — Po(m +m’,n +n),
and an associative composition, given by composition maps
() : Po(m,n) x Po(n, k) — Po(m, k),

such that certain compatibility conditions are satisfied; cf. Definition 2.6.

A linear preoperad (P,[X],-) over a commutative ring R is defined similarly, with the additional
properties that we ask P(m,n) to be an R-module and that we ask for the multiplication maps

(®) : P(m,n) @ P(m/,n') — P(m +m',n +n')
and the composition maps

to be R-linear maps.

A morphism of (set- or linear) preoperads is a biindexed map ¢ = (¢(m,n))m n=0 : P —> Q that is
compatible with the structure of the preoperad, that is, compatible with multiplication, composition
and identities.

A subpreoperad of a (set- or linear) preoperad is a biindexed subset Q@ € P that contains all identity
elements idp ,,, and that is closed under multiplication and composition of P. In the case of linear
preoperads we additionally ask for Q(m,n) € P(m,n) to be a submodule.



For a (set- or linear) preoperad P and a biindexed subset X € P, the subpreoperad generated by X
is the smallest subpreoperad of P containing X, i.e.

(X )= ﬂ {R < P : R is asubpreoperad with X € R}.

preop

A basic example is the set-preoperad Map, , where Mapy(m, n) consists of maps f : [1,m] — [1,n]
with the usual composition of maps and with multiplication defined by stacking and renumbering,
i.e. for f € Mapy(m,n), f' € Mapy(m’,n') we have f Xl f' € Mapy(m + m',n +n’) given by

if if i € [1,m]

(e f) = {(i—m)f’—i—n ifie[m+1,m+m].

The set-subpreoperad of Map, consisting only of monotone maps is called Assg. Similarly, the set-
subpreoperad of Map, consisting only of bijective maps is called Sym,. By linearly extending to
Map(m,n) := RMapgy(m,n) and (Knap) := R(HMap,) a0d (‘Map) := R(*Map, ), We obtain the linear
preoperad Map = RMap,. Similarly, the linear subpreoperads Ass € Map and Sym S Map are
defined.

For a set X, the set-preoperad Endo(X) has Endg(X)(m, n) consisting of all maps f : X*™ — X *"
with the usual composition of maps and with multiplication defined by joining tuples.

Similarly, for an R-module V', the linear preoperad End(V') has End(V')(m,n) consisting of R-linear
maps f : VO™ — VO with the usual composition of maps and with the tensor product of maps
as multiplication.

In §3 we establish the connection between linear preoperads and operads in the classical sense, as
defined by J.P. May [13, Definition 1.1], which for our purposes we call “absolute operads”.

In §4 we construct the free set-preoperad Freeg(X) for a biindexed set X and the linear preoperad
Free(X) = RFreep(X). Furthermore, we define presentations of preoperads, so that we may write a
set-preoperad as Po = _ (X |Y ) and a linear preoperad as P = | (X |Y") using a biindexed set
X of generators and a biindexed set Y of relations.

More precisely, the free set-preoperad Freeg(X) over a biindexed set X has Freeqg(X)(m, n) consisting
of equivalence classes of certain words which are built from letters being elements of X that are
formally multiplied by identities on both sides.

Theorem (cf. Theorem 4.32, Theorem 4.33) We have

Asso < (& ((ARidDA, (i EA)A), ((dEe)a, idi ), (ERidy)j, idi))

Ass | (& p | ((pRid)a — (idi B a)a), ((idiFé)a —idr ), (ERidi)a —idi ) ),
where fi maps to p, the unique element in Assy(2,1) and where € maps to €, the unique element in
Ass(0,1).
In 85 we define algebras over preoperads and take a closer look at Assp-algebras and Ass-algebras.

For a set-preoperad Py, a Po-algebra (X, o) is a set X together with an action morphism of set-
preoperads 9o : Py —> Endo(X). Similarly, for a linear preoperad P, a P-algebra (V, o) is an
R-module V together with an action morphism of linear preoperads ¢ : P — End(V).

The set-preoperad Assg and the linear preoperad Ass have the property that every Assg-algebra
(X, o) is an associative monoid and every Ass-algebra (V1)) is an associative algebra over R.

Conversely, we show that every associative monoid can be turned into an Assg-algebra and that
every associative algebra over R can be turned into an Ass-algebra. We show this with two different
approaches. One uses the usual convention of dropping all brackets when associativity is known and



leads to an explicit formula for the action morphism, the other involves the presentations for Assg
and Ass, yet merely shows the existence of an action morphism.

It turns out that a morphism gg from Map, to Endo(X) does not, however, have to yield a commu-
tative monoid, since the image of the transposition (1,2) € Mapy(2,2) under gp is in End(X)(2,2)
but does not necessarily have to be the map

x : XX — X*?
(@, y) — (y, ).

If we could prescribe (1,2)00 = 7x, then 7xux = (1,2)00 - poo = ((1,2) - 1)oo = poo = px would
force the resulting monoid to be commutative.

So in order to obtain similar results for commutative monoids, commutative algebras or for Lie
algebras, we need to impose some extra structure and study set-operads and linear operads.

0.1.2 Operads

In §6 we treat the basic theory of set-operads and linear operads as well as algebras over set-operads
and linear operads.

For the definition of set-operads and linear operads we need certain elements of Mapy, .

For m,n € Z=( we have the blockwise transposition s, , € Symgy(m+n, m+n) € Mapy(m+n, m+n),
which we can illustrate as follows.

m
n

Furthermore, for k,m € Z>¢ the map hy,, € Mapy(km,m) maps k blocks of size m to one such
block. For the case k = 3 this can be illustrated as follows.

m

m m

A set-operad Py = (P§™°,po) is a set-preoperad PJ'° together with a morphism of set-preoperads
Po : Mapgp — gre

satisfying the following two conditions.

(sol) We always have (s,” po) - (fE&f') = (f'&[f)- (s,,po) for f € Py (m,n), f'e Py (m',n').

(s02) We always have (k" po) - fo = - (hyh po) for f e Py™(m,n).



We can illustrate the conditions (sol) and, e.g. for the case k = 3, (s02) as follows.

! !
m n m n 4 n

m /! !

m f
n n

\ m f n = m f n \

[
Equivalently, the morphism pg has to satisfy the following assertion Bg(a) for all a € Mapy(m,n).

Bo(a): For I = (Ii)ep1,n] € (Z20)*" and r = (r3);e[1,n] € (Z=0)*" and for f; € P5(l;, ;) we have

(B9 #) - aioo) = (o) ([ £),

i€[1,n] Jje[l,m]

where aj,q : [1, > rja] —[1, X ri] and ap : [1, > U] — [1, X U] are block versions of
Je[l,m] i€[1,n] Jje[1,m] i€[1,n]

the map a : [1,m] — [1,n]; cf. Definition 6.8.

Whenever necessary, the multiplication on PJ*° is also written (Bprre) or simply (Xp,). Likewise,

the composition is also written (-ppre) or simply (-p,).

Given set-operads Py = (Py™, po) and Qo = (9%, qo), then a morphism of set-operads ¢y is given

by a morphism of set-preoperads ¢ © : Py™* — O™ that satisfies popl = qo -

pre

pre %0 pre
Po Qo
\ %
op
Map,,
So if we consider the morphism of set-operads (g as a mere morphism of set-preoperads, we often

. . pre
write 1t ¢ .

A set-suboperad of a set-operad Py = (P, po) is given by a set-subpreoperad Qy < PJ'° such that
Im(pg) € Qp, together with the restriction po‘go.

For example, defining the morphism ¢ : Mapg” — Endg(X) for a set X to send f°P € Mapg®(m, n)
to the map

Xxm N XX’n
(xlw . '7xm) — (x1f7 tee ,.I'nf)

in Endg(X)(m,n), we obtain the set-operad ENDy(X) := (Endo(X), ¢g). So in particular, we have
ENDo(X)P"® = Endg(X).



For a set-operad Py, a Py-algebra (X, o) consists of a set X and an action morphism of set-operads
00 - 7)0 e END()(X)

Unlike with preoperads, linear operads can not be defined in complete analogy to set-operads, since
there seems to be no sensible definition of a morphism of linear preoperads from Map®® to End(V)
for an R-module V. Moreover, we have to drop condition (so2) when passing to the linear case.

A linear operad P = (PP, p) is a linear preoperad PP™ together with a morphism of linear preop-
erads
p : Sym°P — PPre

satisfying the following condition.

(lo) We always have (s2,,p) - (f E/) = (F'BLS) - (s5%) for £ € PP(m,n), f' € PPe(r', ).
Equivalently, the morphism p has to satisfy the assertion B(a) for all a € Symgy(m,n).
B(a): For I = (Ii)ie[1,n] € (Z=0)*" and 7 = (7;)ie[1,n] € (Z=0)*" and for f; € PP*(I;,7;) we have

(3 5) taipe) = i) (& 1)

i€[1,n] je[1,m]

cf. Definition 6.8.

Whenever necessary, the multiplication in PP™ is also written (Xlpere) or simply (Xlp). Likewise, the
composition is also written (-pere) or simply (-p).

Given linear operads P = (PP p) and Q = (QP*, q), then a morphism of linear operads ¢ is given
by a morphism of linear preoperads @P™ : PP™® — QP that satisfies ppP'™® = q.

re
P

pre pre
P Q

N A

Sym®P

A linear suboperad of a linear operad P = (PP, p) is given by a linear subpreoperad Q < PP™ such
that Im(p) € Q, together with the restriction p‘Q

For a linear operad P and a biindexed subset X < PP the linear suboperad generated by X is the
smallest linear suboperad of P containing X, i.e.

WX ) = ﬂ {R <P : R is alinear suboperad with X < RP*}.
For example, defining the morphism ¢ : Sym° — End(V') for an R-module V' to send an element
f°P € Sym®P(m, m) to the map
yem __, yyem
vl®...®vmb—>vlf®...®vmf
in End(V)(m, m), we obtain the linear operad END(V') := (End(V),¢). So END(V)P™ = End(V).

For a linear operad P, a P-algebra (V, o) consists of an R-module V' and an action morphism of
linear operads g : P — END(V).



0.2 Particular set-operads

In §7 we discuss the set-operad ASSy, in §9 we discuss the set-operad COMj .

0.2.1 The set-operad ASSg

The set-operad ASSy is defined using fractions of elements of Assy and Mapy, .

For m,n € Zx¢ the set ASS)“(m,n) consists of fractions f\a, where f € Mapy(k,m) and where
a € Assg(k,n) for some k € Z=o. We have idass,,m = idMapy,m \ idAsse,m

The product of fractions f\a € ASS“(m,n) and f'\a’ € ASSy“(m’,n’) is defined using multipli-
cation in Map, and Assg, i.e.

(f\a) Rass, (f'\a") = (f BMap, f)\ (@ Hass, @)

The composite of fractions f\a € ASS{ “(m,n) and g\ b e ASS)™(n,p) is defined using what we call
a sorted pullback. A sorted pullback ([1,s],g,a) of a € Asso(k,n) and g € Map,(l,n) is a pullback of

g ng)g) is monotone for i € [1,1].

This yields a diagram
[1,s]
SN
[1, k] [1,1]
/ NN
[1,m] [1,n] [1,p]
and allows us to define (f\a)-ass, (g\b) := (¢f)\ (ab).

Then ASSy := (ASS}'°, ag) is a set-operad, where ag : Mapg® —> ASSH™ has ag(m,n) mapping
J°P € Mapg®(m,n) to f\ idassy.n € ASSH(m,n).

We have the morphism of set-preoperads o : Ass) —> ASSH™ defined by

oo(m,n) = Asso(m,n) — ASSH(m,n)

a — idMapy,m \ @

0.2.2 The set-operad COM,

The set-preoperad COMG™ has COMg"™(m, n) consisting of equivalence classes of tuples (f, a) where
f: X —[1l,m]and a: X — [1,n] are maps and X is a finite set. Two tuples (f,a) and (f,a) with

[1,m] J x4 [1,n] and [1,m] J x4 [1,n], where X and X are finite sets, are considered
equivalent if there exists a bijective map u : X — X such that uf = f and ua = a. We denote the
equivalence class of a tuple (f,a) by f\a.

So, similar to the elements of ASS)™ | the elements of COMY' are fractions of maps, but, in contrast
to the case ASSH, in COMJ™ we allow expansion by bijective maps. By abuse of notation, we use
the same fraction notation in both cases.

The identity elements of COME™ are idcomym = idMapy,m \ idMapy,m - The multiplication in
COMJ™ is defined using the disjoint union of the maps and renumbering in the image; cf. Defi-
nition 9.3.

10



The composite of fractions f\ a € COM}™(m,n) and g\ b e COM}(n, p) is defined using a pullback
of a and g. So we have the following diagram.

X V/\Xi Y
N N
[1,m] [1.7] [1.p]

This allows us to define (f\a) -com, (g\0) := (Gf)\ (ab).

Then COM := (COME™, ¢p) is a set-operad, where ¢ : Map,? —> COM§™ has ¢y(m,n) mapping
[P € Mapg(m,n) to f\ idmap,,n € COMg ™ (m, n).

We have the morphism of set-operads kg : ASSy —> COM that has «§"“(m, n) mapping a fraction
f\a € ASS™(m,n) to the fraction (f\a)k§* := f\a € COM} “(m,n). The maps k{ “(m,n) are
surjective, but in general not injective.

0.2.3 Overview of the discussed set-preoperads and set-operads

The following diagram illustrates the set-preoperads and morphisms of such under consideration.
Here X is a set.

Freeo({¢, 1})

Assg ...
! ._,7[’0
Kpre
Assgre 4()) COMgre
aop [¥e) 0 e ndO(X)
/

Mapgp

In §5 we show that for a given morphism of set-preoperads 1y : Assy — Endg(X), i.e. for a
given Assp-algebra (X, o), we get a monoid (X, ux,ex) with multiplication pux = ptby and unit
ex =€Yo.

Conversely, given a monoid (X,ux,ex), then there exists a morphism of set-preoperads

Yo : Assy — Endog(X) such that ux = ppy and ex = ebg, which turns (X, 1) into an
Assp-algebra.

Given a morphism of set-operads ¥y : ASSy — END((X), i.e. given an ASSp-algebra (X, Uy),

then (X, gUh™) = (X, ) is an Assp-algebra. Hence (X, ux,ex) is a monoid with multiplication
pre __ pre pre

px = ptho = pooPH = (idy \ )P and unit ex = ethp = exp Py~ = (ido \ &) Ty

Conversely, given a monoid (X, ux,ex), we can define the morphism of set-preoperads
1o : Ass) — Endy(X) as explained above. Then a universal property of the diagram

Assg —2> ASSH™ DL Mapg”

11



of set-preoperads induces, when compared with the diagram

Assg N Endo(X) <— MapZ®

of set-preoperads, a uniquely determined morphism of set-preoperads U§™ : ASS§™® — Endy(X)
satisfying oo} = ¢ and agPf® = e. In particular, ¥y : ASS) — END((X) is a morphism of
set-operads.

So (X, ¥y) is an ASSp-algebra and we have pux = phg = (poo) ¥ = (ida \ ) ¥f° as well as
EX = Ewo = (an)qlgre = (ido \E)qure.

Theorem (cf. Propositions 5.3, 5.4, 7.16 and 7.18). A monoid corresponds to an Assp-algebra,
which in turn corresponds to an ASSp-algebra, using the correspondences just described.

Given a morphism of set-operads ®y : COMy — END(X), i.e. given a COMjy-algebra (X, ®g),
then (X, ux,ex) is a commutative monoid with the multiplication py = (ide \ ¢)®f © and the unit
EX = (ido \E)Q)gre .

Given a morphism of set-operads ¥y : ASSy — ENDy(X), the morphism of set-operads ko has
a universal property that ensures that, under certain circumstances, there exists a morphism of
set-operads @ : COMy — END((X) satisfying kg®g = ¥y .

More precisely, if ¥g : ASSy — END((X) satisfies (idg \ p)¥5™ = ((1,2)\ )T, where p is the
unique element in Assg(2,1) and where (1,2) € Sym(2,2) is the transposition, then there exists a
uniquely determined morphism of set-operads ®y : COMy — END(X) satisfying ko®y = Uy .

So conversely, given a commutative monoid (X, px,cx), then it is in particular an associative
monoid, hence there exists a uniquely determined morphism of set-operads ¥y : ASSy — END(X)
with px = (idz \ )P and ex = (idg \&)¥H™. Since (X, px,ex) is a commutative monoid, the
morphism of set-operads Wy satisfies the condition of the universal property, hence there exists a
unique morphism of set-operads ®g : COMy — END(X) satisfying ko®o = ¥y .

So (X, ®p) is a COMy-algebra with pux = (idg \p)¥H° = (ide \ p)k§ “®H° = (ide \ p)®5 and
ex = (ido \ &) ¥y = (idp \e)kf @y = (idp \ )Py .

Theorem (cf. Propositions 9.11 and 9.15). Commutative monoids correspond to COMg-algebras,
using the correspondence just described.

Omitting the set-preoperads Freeg({¢, i}) and Assy, the above diagram of set-preoperads can be
written as the following diagram of set-operads.

ASS; —~ COM,
Wo e ; A

ENDy(X)

We can also interpret this diagram as follows. The fact that every commutative monoid is in
particular an associative monoid translates to the fact that, by composition of the action morphism
with kg, every COMjp-algebra can be turned into an ASSp-algebra.

0.3 Particular linear operads

In §7 we discuss the linear operad ASS, in §8 we discuss the linear operad BIALG, in §9 we discuss
the linear operad COM and in §10 we discuss the linear operad LIE.

12



0.3.1 The linear operad ASS

We define the linear preoperad ASSP™ = RASSSre’bij, where ASSSre’bij is the set-subpreoperad of
ASSP defined by

ASSE™Pi(m, ) := {f\a € ASSE™(m,n) : f is bijective}.

Assgre,bij
Symg®

Let a = R<a0‘ ) : Sym®P — ASSP™. Then ASS := (ASSP™, a) is a linear operad.
We have the morphism of linear preoperads o : Ass —> ASSP'® defined by
a(m,n): Ass(m,n) —> ASSP*®(m,n)
a +— idMap,,m \@ for a € Assp(m,n).

0.3.2 The linear operad BIALG

The linear operad BIALG := (BIALGP™, b) is defined as follows. We let BIALGP™ := R ASSJ™ and
b:= R(ao|g,,o0) : Sym® —> BIALGP™.
0

So ASS is a set-suboperad of BIALG, consisting of formal linear combinations of fractions with
bijective denominators. Viewed from their origin, both ASS and BIALG arise from ASSy. For
BIALG we use all denominators, whereas for ASS we only use bijective denominators.

0.3.3 The linear operad COM

We define the linear preoperad COMP™ = RCOMSre’bij, where COMS“’bij is the set-subpreoperad
of COM{™ defined by

COMgre’bij (m,n) := {f\a € COME™“(m,n) : f is bijective}.

b
CcoMprePy

Let ¢ = R(CO‘Symgp

) : Sym° — COMP™. Then COM := (COMP™ ¢) is a linear operad.
We have the morphism of linear operads k : ASS — COM which has k(m,n) mapping a fraction

f\ae ASSE I (m, n) to the fraction (f\a)k := f\a e COME™"(m, n) for m,n € Zg.

0.3.4 The linear operad LIE

The linear operad LIE) is the linear suboperad of ASS generated by the element

A= (idg \ p) — ((1,2)\ ) € R(ASSY™PI(2,1)) = ASSP™(2,1).

So we have LIE = (), that is, LIE = (LIEP*,[), where LIEP™ = " {({\} U Im(a) ) & ASSP™

and where [ := a‘LIEpre : Sym°P — LIEP™.

In the context of absolute operads, Aguiar and Livernet have defined the operad Lie as a suboperad
of Ass generated by a commutator element; cf. [1, §5.3].

13



0.3.5 Overview of the discussed linear preoperads and linear operads

The following diagram illustrates the linear preoperads and morphisms of such under consideration.
Here V' is an R-module.

Free({¢, i1})
Ass

« BIALGP™ |

// ®Pfc

q>pr.e.'

In §5 we show that for a given morphism of linear preoperads ¢ : Ass — End(V'), i.e. for a given
Ass-algebra (V, 1), we get an R-algebra (V, uy, ey ) with multiplication py = ut and unit ey = 1) .

Conversely, given an associative algebra (V| uy,ey), then there exists a morphism of linear pre-
operads ¢ : Ass — End(V) such that uy = pp and ey = e¢p, which turns (V,1) into an
Ass-algebra.

Given a morphism of linear operads ¥ : ASS — END(V), i.e. given an ASS-algebra (V, ), then
(V, aWPr®) = (V) is an Ass-algebra. Hence (V, uy, ey ) is an associative algebra with multiplication
py = pp = px P = (idg \ p) UP™ and unit ey = eyp = ealP™ = (idg \ e)UP™e.

Conversely, given an associative algebra (V, uy,ey), we define a morphism of linear preoperads
¥ : Ass — End(V') as explained above. Then a universal property of the diagram

Ass —%> ASSP™® <% Sym©P

of linear preoperads induces, when compared with the diagram

Ass V> End(V) <<“— Sym®P

of linear preoperads, a uniquely determined morphism of linear preoperads WP : ASSP™ — End(V)
satisfying oqWP™ = ¢) and a¥P* = ¢. In particular, ¥ : ASS — END(V) is a morphism of linear
operads.

So (V,¥) is an ASS-algebra that satisfies py = pwp = (ux)¥P™® = (ide \ p)UP™ as well as
ey = ep = (ex) WP = (idg \ e)UP"e.

Theorem (cf. Propositions 5.6, 5.7, 7.22 and 7.24). An algebra corresponds to an Ass-algebra,
which in turn corresponds to an ASS-algebra, using the correspondences just described.

Proposition (cf. Proposition 8.3). Given a morphism of linear operads © : BIALG — END(V),
i.e. given a BIALG-algebra (V,©), then (V, uy, ey, Ay, ny) is a bialgebra with

multiplication py = (ide \ p)OP* € End(V)(2,1)
unit ey = (idp \e)OP* € End(V)(0,1)
comultiplication Ay = (p)\id2)OP* € End(V)(1,2)
counit ny = (e\ idg)OP™ e End(V)(1,0).
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Given a morphism of linear operads ® : COM — END(V), i.e. given a COM-algebra (V,®),
then (V,puy,ey) is a commutative algebra with the multiplication py = (idg \ p)®P* and the
unit ey = (idg \ ) PP*e.

Given a morphism of linear operads ¥ : ASS — END(V'), the morphism of linear operads k has a
universal property that ensures that, under certain circumstances, there exists a morphism of linear
operads ® : COM — END(V) satisfying k® = .

More precisely, if ¥ : ASS — END(V) satisfies (ida \ ) WP™ = ((1,2)\ pu)WP*, where p is the
unique element in Asso(2,1) and where (1,2) € Sym(2,2) is the transposition, then there exists a
uniquely determined morphism of linear operads ® : COM — END(V) satisfying k® = .

So conversely, given a commutative algebra (V, uy, ey), then it is in particular an associative algebra,
hence there exists a uniquely determined morphism of linear operads ¥ : ASS — END(V') with
py = (id2 \ p)UP™ and ey = (idg \ e)UP™. Since (V, pv,ev) is a commutative algebra, the mor-
phism of linear operads V¥ satisfies the condition of the universal property, hence there exists a unique
morphism of linear operads ® : COM — END(V) satisfying k® = ¥ .

So (V,®) is a COM-algebra and we have uy = (idg \ p) UP™ = (idg \ p)kPePP™ = (idg \ p)PP™ and
ey = (idg \ &) UP™ = (idg \ e)kPePP™ = (idy \ &) DP*e.

Theorem (cf. Propositions 9.19 and 9.21). Commutative algebras correspond to COM-algebras,
using the correspondence just described.

Proposition (cf. Proposition 10.2). Suppose 2 € U(R). Let V be an R-module. Given a morphism
of linear operads A : LIE — END(V), i.e. given a LIE-algebra (V,A), then (V,[—,=]) is a Lie
algebra with Lie bracket [v,w] := (v @ w)Ay for v,w € V, where

Av o= AP = ((idy \ 1) — ((1,2)\ ) AP™.

Omitting the linear preoperads Free({é, i}) and Ass, the above diagram of linear preoperads can be
written as the following diagram of linear operads.

BIALG ..
LIE &> ASS — < com .
N AR
A "> END(V)
A

The fact that every commutative algebra is in particular an associative algebra translates to the
fact that, by composition of the action morphism with k, every COM-algebra can be turned into an
ASS-algebra.

The fact that a bialgebra has an underlying associative algebra, obtained by forgetting comultiplica-
tion and counit, translates to the fact that we may restrict the action morphism BIALG — END(V)
from BIALG to ASS.

Given an associative algebra V', we have the ASS-algebra (V,¥). So by restricting ¥ to LIE we
obtain the LIE-algebra (V, \I/|LIE) = (V,A). So in this case V is a Lie algebra with Lie bracket

[v,w] = (v @w)((ida \ p) = ((1,2) \ ) AP
= (@ w)((idz \ @)W = (1,2)\ ) )
= (VQuw)uy — (w@v)uy
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for v,w € V. That is, (V,[—,=]) is the commutator Lie algebra for the associative algebra
(V7 IU’V7€V)'

In other words, the fact that each associative R-algebra has a commutator Lie algebra translates to
the fact that we may restrict the action morphism ASS — END(V') from ASS to LIE.

However, starting with a morphism of linear operads A : LIE — END(V'), we do not know whether
there exists a morphism of linear operads ¥ : ASS — END(V') with \IJ‘LIE = A

0.4 Historical Context

In his 1963 thesis, F. W. Lawvere defined algebraic theories, which are, except for one additional
property, a first version of what would later be known as PROPs; cf. |7, p.869, 1.14].

Then, also in 1963, S. Mac Lane, one of the interlocutors of Lawvere, defined a PROP (short
for product and permutation category) as follows; cf. [8, §6] and [9, §V.24], written partially in
collaboration with J. F. Adams. Using his notation, he takes a category H with the natural numbers
as objects such that for n € Zso, the symmetric group S(n) is a subgroup of the group of all

invertible elements of H (Z) := homy(n,n), together with a functor ® : H x H — H with object

function m ® m’ = m + m/' satisfying (1)-(3) below.

(1) ® is associative, so we have f® (f'® ") = (f® fY ® f”.
!/
(2) For o € S(n) and ¢’ € S(n’) we have that c ® 0’ € H (Z 1 Z,) is the permutation that acts

on the first n letters as o does and on the remaining n’ letters as o’ does.

!/
(3) The blockwise transposition 7, € H (Z 1 Z,) that interchanges the first block of n letters
m
n/

/
with the second block of n’ letters satisfies the following. For f € H <7:) and f e H ( )

we have

T(nmn') © (f®f/) = (f/ ®f) © T(m,m/) -

Note that (fog)® (f'od) =(f® ) o (g ®¢'), whenever defined, since ® is a functor.

So essentially, a PROP, enriched in R-modules, is the same as a linear operad, we merely use different
notation. For instance, in linear operads, we obtain symmetric group elements as images of Sym®°P-
elements under the action morphism. Moreover, property (3) is equivalent to condition (lo) for a
linear operad.

Our concept of set-operads, however, does not entirely fit into the concept of a PROP. In set-operads
we consider the image of every map [1,m] — [1, n] under the action morphism, not only of bijective
maps, and thus have the additional condition (s02).

From the theory of PROPs and their complex version, called PACTs, later the theory of operads
was developed as a somewhat reduced version. Operads in the classical sense can be defined in
any symmetric monoidal category. The first definition was by J. P. May in 1972 over compactly
generated Hausdorff spaces; cf. [13, Definition 1.1].

An operad in the category of R-modules is given by R-modules P(m) for m € Z= , each carrying a
symmetric group action. There are structure morphisms

Tnimreimn - P(M) @P(M1) @ ... @ P(my) — P(ma + ... +my)
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for n,mq,...,my € Z=¢p and a unit morphism n : R — P(1) satisfying certain associativity, unity
and equivariance axioms; cf. [13, Definition 1.1] or [12, Definition IT.1.4.].

There is an equivalent definition of an operads using not the composition morphisms v,.m, ... m,, but
partial composition products

(Q) : P(m) ®P(n) — P(m+n —1)

(2

for i € [1,m] with suitable associativity, unity and equivariance axioms; cf. [1, §1.1] or under the
name “pseudo-operad” in [12, Definition I1I1.1.16]. The equivalence of these definitions was shown
e.g.in [12, I1.1.7.1].

Forgetting the symmetric groups actions on the R-modules P(m), we obtain a nonsymmetric operad;
cf. |1, §1.1] or [12, Definition II.1.18 and §I1.1.7.1] (“nonsymmetric pseudo-operads with unit”).
These nonsymmetric operads are equivalent to the absolute operads we consider in §3. An absolute
operad can be obtained from a linear preoperad P by forgetting those P(m,n) with m # 1, defining
P(m) := P(m, 1) and by defining the partial composition products ° by

fog:=(idi 1 XgXidy—i) - f€P(m+n—1)

for f € P(m) and g € P(n).

0.5 Open Questions

Recall that we show that associative algebras correspond to Ass-algebras and to ASS-algebras.

However, in §8, we only show that every BIALG-algebra is a bialgebra. Moreover, in §10, we only
show that for certain commutative rings R, every LIE-algebra is a Lie algebra. In both situations
we do not show the converse statement, i.e. we do not show that every bialgebra can be turned into
a BIALG-algebra or that every Lie algebra can be turned into a LIE-algebra.

One way to show this would be to define the free linear operad FREE(X) for a biindexed set X and
to find generators and relations, i.e. presentations for BIALG and LIE.

More generally, we may ask for a left adjoint to the forgetful functor from linear operads to linear
preoperads — which should then map Free(X) to FREE(X), as well as Ass to ASS.
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0.6

1.

10.

11.

Conventions

Let R be a commutative (unital) ring. We denote by 1g the unit of R. The ring R will play
the role of the ground ring, if applicable. A linear map between R-modules is an R-linear map.

We write Z for the set of integers. We write Zz,, := {n € Z:n = m} for m e Z.

For m,n € Z=op we write [m,n] := {i € Z=o : m < i < n}. Note that if m > n, then we have
[m,n] = 2.

For a finite set X we denote by |X| the cardinality of X.

We will often write m > 0 instead of m € Z=q for brevity, so the abbreviation m > 0 will
always imply that m is an integer.

We write maps on the right, so for sets X and Y and a map f : X — Y we write zf for
the image of x € X under f. However, we write the inverse image on the left, so for a subset
S CY welet

fYS)={re X zfesS}

Furthermore, for y € Y we abbreviate f'(y) := f '({y}) = {r € X :2f = y}.

Composition of morphisms in a category is also written on the right, i.e.
(x -y —Lez)=(x-2-7)

The identity morphism on an object X of a category is written idx.

Suppose given sets X and Y and a map f: X — Y. For a subset S € X we write f|S for
the restricted map

f‘s S —Y
s —> s(f‘s) = sf.
Moreover, suppose given a subset 7' € Y such that xf € T for z € X, i.e. Im(f) € T. Then
. T :
we write f | for the restricted map
A x —T
T
v — z(f]") = af.

We will also use a combined version of this. Suppose given a subset S € X and asubset T € Y
such that sf € T for s € S. Then we have the restricted map

fls=l" 5 —T

s+—>s(f‘§) = sf.

Suppose given finite and linearly ordered sets X and Y. Suppose given a map f: X — Y.
Then we say that f is isotone, if it is bijective and monotone.

Note that the composite of isotone maps is again isotone. Moreover, given the isotone maps
f,9: X — Y, then we have f = g, so there exists at most one isotone map between the finite
and linearly ordered sets X and Y.

In §2 we will introduce the set-preoperad Endg(X) for some set X and the linear preoperad
End(V) for some R-module V. We will not use End(V) to denote the endomorphism ring of
V.
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12.

13.

14.

15.

16.

Let n € Z>p and let X be a set. We abbreviate X *" := X x ... x X for the n-fold cartesian
product. For n = 0 this means X*? = {()}, where () is the empty tuple. Furthermore, for
m,n € Zsq we can define a bijective map X*™ x X*" —s X *(m+1) by joining the tuples, i.e.
we have

XXM x XX xx(min)
((xl, cosTm)s (Tt - - .,xm+n)) > (T1y oy Tony Tt ls - + - s Tintn ) s
thus identifying X ™ x X *" = X*(m+1) We will write
(@1, oy Tm) X Tty oo s Tmgn) = (T1y ooy Ty Tt 1y -+ + s T

for 1,...,Tmin € X.

Moreover, we identify X*! = X via the bijective map X*! — X, (z) — z.

Note that joining tuples is associative, i.e. for m,m',m” € Z>o and x1, ..., Tpmim/omr € X we
have
((.2?1, e ,.%'m) x (xm-&-la s vxm-&-m’)) x ($m+m’+17 SR xm-&-m’-&-m”)
= (T1, - s Ty Tt 1y - - -5 Tenkem!s T/ 415 - -+ T/ +m )
= (1‘1, i 7J;m) x ((:L'erly s 7xm+m’) X ($m+m’+1> RN xm+m’+m”))'

Suppose given finite sets X1, X2 and Y7, Yo and maps f1 : X1 — Y7 and fo: Xo —> Y5 . The
cartesian product of fi and fs is the map

fixfo:XixXo—Y xYs

(w1, 22) = w1 f1 X T2 f2.

A monoid (X, ux,ex) is a set X together with a multiplication map px : X x X — X and
a unit map ey : {()} = X*Y — X such that ux is associative, i.e.

(MX X idx),uX = (idX X/Ax),uX : )(><3 I X,
and such that
(5X X idx),uX = idX = (idX Xax)ux .
Note that this is equivalent to the definition of a monoid (X,e,1x) with associative multi-

plication (e) and neutral element 1x if we define x oy := (z,y)ux € X for z,y € X and
1x := ()EX e X.

We define 7y : X*2 — X *2 to be the map that maps (x,y) € X*? to (z,y)7x = (y,z). The
monoid (X, ux,ex) is said to be commutative, if Txux = px -

For n € Z~¢ and for an R-module V we write VO .= V®...QV for the n-fold tensor product.
Furthermore, we identify X® = R, V®! =V and R®" = R for n e Z.

An R-algebra (V,puy,ey) is an R-module V together with an R-linear multiplication map
py VOV — V and an R-linear unit map ey : R = VO — V such that uy is associative,
ie.

(v @idy)py = (idy @ py)py : VE — V,
and such that

(ev ®idy )y = idy = (idy @ev)py -

Note that this is equivalent to the definition of an R-algebra (V) e, 1) with associative mul-
tiplication (e) and neutral element 1y if we define v e w := (v,w)uy € V for v,w € V and
ly :=1lpey € V.
We define 1/ : V&2 — V2 {0 be the map that maps v Q@ w € V&? to (v @ w)1y = w ® v for
v,we V. The R-algebra (V, uy,ey) is said to be commutative, if Ty puy = py .
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17. A bialgebra (V, py,ev, Ay, ny) is an R-module V together with an R-linear multiplication map
py 2 V®? — V. an R-linear unit map ey : R = V® — V_ an R-linear comultiplication map
Ay 0V — V®2 and an R-linear counit map ny : V. —> V& = R such that the following
hold.

e (V,uy,ey) is an R-algebra, that is, we have (puy ® idy)uy = (idy @ uy)uy and
(ev ®idy)puy = idy = (idv Qev)uv .
(V,Ay,ny) is an R-coalgebra, that is, we have Ay (Ay ® idy) = Ay (idy ® Ay) and
Ay (ny ®idy) = idy = Ay (idv ®nv).
e The following compatibility conditions are satisfied.

— We have uy Ay = (Ay ® Ay)(idy @ 7v ® idy ) (uy ® py ), where 7y is the R-linear

map 7y VRV —> VRV, v®w+— w®uv as above.
— We have pyny = ny ®@nv .
— We have ey Ay = ey Qey .

— We have eyny =idg.
Cf. |4, Definition 4.1.3].

18. We denote by U(R) the set of units of R. That is, U(R) consists of all invertible elements of
R.
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1 Preliminaries

1.1 Tensor products
We will give a brief definition and some properties of the tensor product of R-modules. For all proofs

and for further properties we refer to [14, §1.3].

Definition 1.1. Let m € Z>¢ . Let Vi,...,V,, be R-modules. Wedenoteby & V,=V1®...QV,
the tensor product of Vi,...,V,, over R; cf. e.g. [14, Definition 13]. ie[1,m]

Note that the tensor product V1 ®...® V,;, has the R-linear generating set
{VI®...Quy v, €V forie[l,m]};

cf. [14, Lemma 14].

v,, be the map

-----

/Lvlw_?vm:V1><...><Vm—>‘/1®...®vm

(V1. V) F— 1 Q... @ Uy -

In the case m = 0 we identify &) V; = R.
1€[1,0]

Furthermore, for an R-module V we also write V®™ := (& V. In particular, V¥’ = R.
i€[1,m]

Lemma 1.2 (Universal property of the tensor product). Let m € Z=q and let Vi, ...,V and M be
R-modules. Let f: Vi x ... x Vi, —> M be an R-multilinear map; cf. [14, Definition 7].

There exists a unique R-linear map f: V1 ®...® V,, —> M such that AT me = f.

Proof. For the proof see [14, Lemma 16]. O

Lemma 1.3. Let m € Zx¢ and let V1, ..., Vy, be R-modules. Let j € [2,m]. There exists the unique
R-linear isomorphism

" (ie[® %)@(@%)—>®%

1,j—1] i€[j,m] i€[1,m]

M®..0V 1)Q[V®...0UR) 11 Q... Q0 Uy

Proof. For the proof see [14, Lemma 19]. O

i€[j,m]

Remark 1.4. We will use the isomorphism 1 to identify ( () Vi) ® ( () %) = & V for
m € Z=o and R-modules Vi,...,V,,. i€[1,j—1] ie[1,m]

In particular, given an R-module V, then we identify V" @ V&" = V®Mm+n) for m,n e Z=p using

.
Remark 1.5. Furthermore, we identify RV =V =V ® R and VOl =V for any R-module V.
Remark 1.6. Note that by identification via ¥ we have

(R =E(RER=¢(ERE

’ 4
for m,m',m" € Z=o and £ € VO™ ¢ e VO and " € VO™ as can be seen on elementary tensors.
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Definition 1.7. Let m e Z>qg. Let Vi,...,Vy, and Wy, ..., W, be R-modules and let f; : V; — W;

be an R-linear map for i € [1, m]. We define the tensor product of fi,..., f,, as follows. Let
A®...® fm: N®...0Vy —>W®...0 Wy,
Z ri(v1; ®...QUnm, ) — Z (V1 f1 ® ... @ Um jfm)-
JjE[1,m] je[1l,m]

This is a well-defined R-linear map, as proven in [14, Definition/Lemma 20].

1.2 The free R-module on a set X

Definition 1.8. Let X be a set. Then we can define the free R-module with basis X by taking all
formal R-linear combinations of elements in X, i.e.

RX := { erx:rmeR, {xeX:rx;éO}ﬁnite}.
reX

Referring to an element of RX by >, r,x, we suppose that r, € R for z € X and that the set
zeX
{x € X : ry # 0} is finite without further comment.

Identifying along the injective map
X — RX
Yyr— 2 6w,ym7
zeX

1 ifze=y

where 0, = { 0 ifx sy

}, we obtain X € RX.

Given sets X,Y and a map v : X — Y then the map
Ru : RX — RY

Z Tyl — Z e (xu)
zeX reX
is R-linear.
We have R(uv) = (Ru)(Rv) for sets X, Y and Z and maps u: X — Y, v: Y — Z. Furthermore,

we have Ridx = idrx for a set X and the identity map idx : X — X. So X — RX and u — Ru
defines a functor from the category of sets to the category of R-modules.

Remark 1.9. Let X be a set. Let M be an R-module and let ¢ : X — M be a map. Then the
map

p: RX —5M

Z Ted —> Z re(zp)

zeX zeX

is the uniquely determined R-linear map RX — M such that xp = zp for x € X.
Remark 1.10. We have the following isomorphism.
RX®RY — R(X xY)

( > mx> ® ( > syy> — > rasy(@,y)

zeX yey (z,y)EX XY
Y ten@®Y) e 3 (@)
(zy)eX XY (z,y)eX XY

We use this isomorphism to identify R(X xY) = RX ® RY.
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1.3 Equivalence relations

Lemma 1.11 (Generated equivalence relation). Let X be a set and (~) € X x X be a relation
on X. We define a relation (=) on X as follows. For x,x' € X let x ~ 2’ if there erist n > 1
and c1,...,¢cq € X such that x = ¢1, ' = ¢, and such that (¢;,ci41) € (~) or (¢iy1,¢) € (~) for
ie[l,n—1].

Then (=) is an equivalence relation on X.

We say that (=) is the equivalence on X generated by (~).

Proof. Reflexivity. Suppose given x € X. Then, setting n := 1 and ¢; := x, we have x =~ x.

Symmelry. Suppose given x, 2’ € X such that x ~ z’. So there exist n > 1 and ¢y,...c, € X such
that = = ¢, 2’ = ¢, and such that (¢;,c¢i+1) € (~) or (¢it1,¢) € (~) for i € [1,n —1].

Define ¢ := ¢,—i41 € X for i € [1,n].

Then we have ¢ = ¢,—141 = ¢, = 2’ and ¢, = ¢_ny1 = ¢1 = z and for ¢ € [1,n — 1] we have
(ciy Cip1) = (Cn—it1sCnmi) € (~) or (€41, ¢;) = (Cn—is Cn—it1) € (~), hence 2’ ~ =.

Transitivity. Suppose given x,z’,2"” € X such that z ~ 2/ and 2/ ~ 2”. So there exist n,n’ > 1

and ¢q,...,¢p, ¢}, ...c,, € X such that = ¢1, @' = ¢, and (¢, ¢i41) € (~) or (¢i+1,¢) € (~) for
i € [1,n—1] and such that 2’ = ¢}, 2" = ¢/, and (c}, ¢} 1) € (~) or (¢}, ,¢}) € (~) for j € [1,n' —1].

Define n” :=n +n'. For i € [1,n"] define ¢/ := “ ?f Le LL,n] "ot
c_, ifie[n+1,n+n]

n

"

/) [/ : /I — /I /)
Then we have z = ¢f, 2” = ¢/, and since ¢ = ¢, = 2’ = ¢| = ¢, we have (c],cj,;) € (~) or
1

(1, cl) e (~) forie[1,n+n']. Hence z ~ z". O

Lemma 1.12. Let X,Y be sets. Let (~) € X x X be a relation on X and let (=) be the equivalence
relation on X generated by (~); cf. Lemma 1.11. Let f: X — Y be a map such that for v,2' € X
with x ~ 2’ we have xf = 2'f.

Then for x,x' € X with x ~ 2’ we have xf = 2'f.

So there exists a unique map f : (X?) —> Y that maps the equivalence class of x € X to xf.

Proof. Suppose given z, 2’ € X with z ~ 2/. So there exist n > 0and ¢y, ..., ¢, € X such that z = ¢y,
2’ = ¢, and such that ¢; ~ ¢j41 or ¢;11 ~ ¢; for i € [1,n — 1]. So by assumption we have zf = ¢ f,
cnf=2'fand ¢;f =ciaf forie[l,n—1]. Sowehave zf = c1f =cof = ... =c,f =2'f. O

1.4 Disjoint unions

Definition 1.13. Let n € Zx and let X; be a set for i € [1,n]. Then the (exterior) disjoint union
of X1,...,X, is defined as follows.

|_| Xi=XiuXou...uX,:={(,z) i €[l,n],x; € X;}
i€[1,n]

Definition 1.14. Let n € Z>¢ and let X; and Y; be sets for i € [1,n]. Let f; : X; — Y; be a map
for i € [1,n]. The disjoint union of fi,... f, is defined as follows.

|_| fir=fiu.o..ufo: |_| X, — |_| Y;

i€[1,n] i€[1,n] i€[1,n]

(ia xi) — (/Lv xlfl)
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Remark 1.15.

(1) Suppose given a set X and n € Zxo. Then we write X-":= || X =Xu...uX.
i€[1,n]

Note that in the case n = 0 this means that X“° = || X = @. Furthermore, we identify
xvl = x. i€[1,0]

(2) Suppose given sets X and Y and a map f : X — Y and n € Z>o. Then we write
ffre= ] f=fu.iufi XU —YU
i€[1,n]
Note that in the case n = 0 this means that [~ : X“% = g — Y0 = & 50 [0 = idy.
Furthermore, we identify f-! = f.

Definition 1.16. Let X, X', X" be sets. Define the maps v x, x1),x» : XuX'u X" — (Xu X )u X"
and vx (x7,xm : X 0 X' 0 X" — X 0 (X' 0 X") as follows.

Yxxnxr s XoX uX' — (XuX)u X’
(Lz) — (1, (1))
(2,2") — (1,(2,2"))
(3,2") +— (2,2")

VXXX XuX X' —- XX owX")
(1,z) — (1,2)
(2,2") > (2,(1,2"))
(3,2") —(2,(2,2"))

These are bijective maps.

Lemma 1.17. Let X, X', X" Y, YY" be setsand f : X — Y, f/: X' — Y and f" : X" —Y"
be maps. Then we have the following commutative diagrams (i) and (ii).

fl_‘f/uf//

XuX uXx” YuY' uyY”

(1) ’Y(X’Xl)’X”l l’y(y’yl)’yﬂ

XuX)uX'— = (YuY)uY”
(fafaf”

fuf/ufl/

XuX uXx” YuY uY”

(ii) Vx,(X7, X" l iWY,(Y’yY”)
XuXuX)y— =Y u uY”
fuf'uf”)

Proof. We will show that (i) is a commutative diagram. Suppose given z € X 1 X' 1 X”. We have
to show that '
2(fuf o vy yr = 2vxxnxe ((Fo ff) a ).

Case 1: z = (1,z) for some x € X. Then we have

(La)(fufu f”)W(Y,Y'),Y" = (Liﬁf)W(Y,Y'),Y"
= (1,(1,zf))
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and on the other hand we have

(L z)yx xnx(fu fuf) =@ Q) ((fuf)uf)
= (1,(1,%)(]“ U f,))
= (L (L, zf))

Case 2: z = (2,2') for some 2’ € X'. Then we have

2,2)(f o f o vy = 22 vy vn

= (1,(2,2'f"))
and on the other hand we have
(2, ") yx xn xn ((F o f) w f7) = (L, ©2,2")((f u f) u f7)
= (1,(2,2)(fu )
(1, (2,2 ).

Case 3: z = (3,2") for some z” € X”. Then we have
B2 (fuf o M vy = G vy v
— (271_//‘](‘//)
and on the other hand we have
B, 2" yx xnxn (Fu fu f) = @,2")((fu f) o f)
- 2."f").
So in all three cases we have z(f 1 f' 1 f")yyyryyr = 2vx,x0,x7 ((f v f) u f7). O

Definition 1.18. Let n € Z>¢ and k = (ki)ie[1,n], Where k; € Zxg for i € [1,n]. We have the
bijective map

[ Zk]—>|_|1k

i€[1,n] i€[1,n]

t»—>(th,t— > k:s>,

s€[1,txx—1]
where xj is the map

Xk : [1, Z kzl] —> [1,n]

1€[1,n]

t — min{u € [1,n] : Z ks > t}.

Its inverse map is

LI k;]—>[1, > ki

i€[1,n] i€[1,n]

—( 2 k)

€[1,i—1]
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Example 1.19. Suppose given m,n € Zzo and k = (k;)ie[1,n] , Where k; = m for i € [1,n].

Then for s € [1,n] we have > k; = sm.
i€[1,s]

For t € [1, Y, ki| = [1,nm] we can write ¢t = tm + ¢ in a unique way with ¢ € [0,n — 1] and

i€[1,n]
t € [1,m]. Then we have

txkr = min{u € [1,n] : 2 ks >t}

se[1,u]
=min{ue [l,n] :um = tm+1}
=t+1

Hence we have

wkZ(th,t— > ks>

se[l,tx,—1]
=({t+1,t—1tm)
=(t+1, E)

for t € [1,nm].
Moreover, for (i,j) € [1, m]-™ we have
(i )p = (i = m+ 3
Lemma 1.20. Let m,m',m" € Z=o. We have the following commutative diagrams (i) and (ii).

—1
(m,m’ ,m!)

[1,m] w[1,m]u[1,m"] [1,m +m +m"]

. —1
(i) V([ md[1,m ), [1,m ] P lmtm! )

([1,m] u[1,m]) u[l,m"] [1,m +m'] u[l,m"]

—1 .
w(m,m’) - ld[lv”””]

—1
‘P(m?m/’m//)

[1,m] u[l,m] u[l,m"] [1,m +m +m"]
(11) ’Y[l,77L],([1,7”/],[1,7””]) 4‘0(_737,,771,’+”m”)
[1,m] u ([1,m] u[1,m"]) [1,m] u [1,m +m"]

id[l,m] L—“P(}i/’m//)
Proof. We will show that (i) is a commutative diagram. So let z € [1,m] u [1,m'] u [1,m"]. We

have to show that

-1 ! -1 . -1
2Pty = ZVm] L) L (P gy D[0P et

Case 1: z = (1,1) for some i € [1,m]. Then we have

(17i)¢(_7i7m/7ml,) - 7:
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and on the other hand we have

(L)) 1D, () Pty AP ot gmiry = (L L DNy D1 0P oy
1

) ( ) m m,))gp(nlwrm m”)

(
= (
(1’ ) m+m ,m/")

= 1.

Case 2: z = (2,i') for some i’ € [1,m']. Then we have

(2,@")@(1 =m+i

m’m/7m//)
and on the other hand we have

. -1 . -1 -1 : -1
(27Zl)7([1,m]7[1,m’])7[1,m”] (Qp(m,m’) - ld[l,m"])w(m+m’,m”) = (1,(2,¢ ))( Plm,m) - 1d[1’m”])¢(m+m/’m”)
= (1, (2 ) o )P om st )

= (17 m+1 )(p(m—l—m’,m”)
=m+1i.
Case 3: z = (3,1") for some i" € [1,m”]. Then we have
(3, L =m+m i

(m7m 7ml,)

and on the other hand we have

. . ) . -1
(3,8, (L D10 (P oty LDty = (257 By 2 A0 oty
2.4i"id [1,m"] )

2 z”)

= (
-1

( (‘O(erm’,m”)

( m+m ,m’)

= (

m+m') +i".

Definition 1.21. Let k€ Z>; . Let X be a set. Define the bijective map
VX - Xk xuk-l)

(i) (1,(i,z)) ifie[l,k—1]
B (2, x) if i =Fk.

Lemma 1.22. Let k€ Z~1 . Let X,Y be sets and let f : X — Y be a map. Then we have
Yex(FPE D) = ey

So we have the following commutative diagram.

Xuk for Yl_lk

VkﬂXl l“ﬂc,y

Xu(kifl) OxX - o YI_I(k‘f].) %
fu(kfl)uf

27



Proof. Suppose given (i, x)

show that

We have

(i, 2) v x (F2FD U vy

Lemma 1.23.
and l := (li)ie[l,kfl]

LetmEZZO, kEZ>1.
€ (Z=0)** 1. Then we have

€ X“F that is, i € [1,k] and = € X. Since Y,y is bijective, we have to

(i, 2) 7 x (F2F D U s

ot

So we have the following commutative diagram.

Proof. Suppose given (i,j) €

[Lm]uk’

'Yk,[l,m]l/

[1,m]

[1,m]=*

23

(i) (o
) (7o

= (i, z) "

E=D 4 vy
U Py

G )iy

= Y (1m) (97 DA )P 1ymm)

w [1,m]

- >

<pljl U id[1,'m]

. We have

28

ifie[l,k—1]
iti=k
ifie[l,k—1]
ife=k
ifie[1,k—1]
ite=k
itie|l,k—1]
iti=k

[1, km]

Let l; := m for i € [1,k] and let | := (I;)ie[1,1]

-1
Tw((kl)M»m)

N I_lld[l m]
Pk
W((k 1)m,m)
]) ((k: Dm,m)

[1, (k — 1)m] L

)«

[1,m]

1
1)m,m)

1)m,m)

D (htymm)

O
€ (Zz0)*k
ifie[lk—1]
fi=k
itie[l,k—1]
ifi=k
ifie[lk—1]
ifi=k
ifie[lk—1]
ifi=k
O



Lemma 1.24. Let X, Y, Z, X"\ Y' 7" be setsand let f : X — Y, f: X' —Y' ¢g:Y — Z and
g Y — Z' be maps. Furthermore, let idp g) : [1,0] — [1,0] be the unique map from the empty
set to itself. For some setl' define the following bijective maps.

ur: Tull,0] —T vp: [1,0]uT — T
(1,t) —t (2,t) —t

Then (i), (i) and (iii) hold.
(i) We have (fu f)(gug) = (fg)u(f'g).
(ii) We have (f widp o))uy = uxf.

(ii) We have (idp o) uf)vy = vx f.

Proof. Ad (i). Note that for z € X we have
(L) (fuf)gud)=Laf)lgug) =1 afg) = 1,2)((fg) u(fg)
and for 2/ € X' we have
2,2)(fu f)oud) =22"f)gug) =(22f9) = (2,2")((fg) u (f'9)).

So we have (f u f)(gug’) = (fg) v (f'9).
Ad (ii). Let £ € X u[1,0]. Then & = (1, ) for some x € X. Then we have

(L, 2)(f widpo)uy = (Lzfluy =zf = (1,z)ux f.
Ad (iii). Let £ € [1,0] u X. Then £ = (2, ) for some z € X. Then we have

(2,2)(idp o uflvy = (2,2 f)oy = 2f = (2, 2)vx f.

O
Remark 1.25. Let n € Z~y. Note that
Ul1,n] - [1,71] U [170] - [1,77,] = [17n + O] Ulin) - [170] o [1777’] - [1,77,] = [170 +TL]
(1,i) i (2,i) ——i=0+1

So upy ) = <p(_n1’0) and vy ) = (p(_&n) .

1.5 Pullbacks

Definition 1.26. Let XY, Z besetsand f: X — Z, g: Y — Z be maps. Furthermore, let P
be aset and f: P — Y and g: P — X be maps. We say that the tuple (P, g, f) is a pullback of
f and g if (P1) and (P2) hold.

(P1) We have fg = gf, that is, the following diagram commutes.

Pty
g g

X —7
f
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(P2) Given a set T and maps f': T —> X and ¢’ : T —> Y such that f’g = ¢’f, then there exists
a unique map u : T —> P such that uf = f’ and ug = ¢'.

—>Y

g

g

@
-

>

— 7

f

In the above situation we will also often say that the quadrangle (P, X, Y, Z) is a pullback, drawing
the attention closer to the involved sets than the involved maps, which then need to be known from
context.

A quadrangle being a pullback is often expressed graphically as follows.

Pty

o T lg

X —7
7

Remark 1.27. Let X,Y,Z be sets and [ : X —> Z and g : Y —> Z be maps. Suppose given two
pullbacks (P, g, f) and (P', ¢’ f) of f and g. Then there exists a uniquely determined bijective map
u: Pl — P such that ug = §' and uf = f.

Proof. By (P2) there exist uniquely determined maps u : P — P and v : P — P’ satisfying
ug=4g,uf =f,vy=gandvf =f.

So we get a map vu : P — P satisfying (vu)g = vg’' = g and (v u)f = f. But the identity
map idp : P — P also satisfies idp g = g and idp f = f. Since (P, g, ) pullback of f and g we
have vu = idp . Similarly, we get uwv = idp/ . Thus w is bijective. O

We generalize Remark 1.27 somewhat.

Lemma 1.28. Let XY, Z, X'\ Y Z' be setsand let f : X — Z, g:Y — Z, f': X' — Z' and
g Y —> Z' be maps. Let (P, g, f) be a pullback of f and g and let (P',§ f) be a pullback of f’
and g'. Letu: X' — X, v:Y' — Y and w: Z' — Z be maps such that uf = f'w and vg = g'w.
That is, we have the following commutative diagram.

y! g 7!
F /
/ v f
P! X' w
g/
g u
Y Z
f
T
P _ X
g

Then (1) and (2) hold.
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(1) There exists a unique map s : P' —> P such that sf = f'v and sj = §'u.

(2) If u,v,w are bijective, then so is s.

Proof. Ad (1). Since (P',§', f') is a pullback of f' and ¢’ we have f'¢’ = §'f’. Moreover, since
uf = f'w and vg = g'w we have

flvg = f'g'w = §' f'w = g'uf.
So we have the following commutative diagram.

fro

P ==Y
§'u lg

X—7,
f

Since gP,g, f) is a pullback of f and g, by (P2) there exists a unique map s : P’ — P such that
sf = flvand sg = §'u.

-1

Ad (2). If u, v, w are bijective, we can apply (1) to (v !, v~ w 1) and obtain a map §: P — P’

satisfying 5f' = fv~! and 3§ = gu~'. This implies

By (P2) for (P, g, f), we have idp = §s.
In the same way we obtain s§ = idpr. Hence s is bijective. 0

Lemma 1.29. Let X,Y,Z be sets and f : X — Z and f:Y — Z be maps. Define
Si={(z,y) e X xY 1 2f = yg}

and the maps
g: S — X S —Y

(z,y) +—z (z,y) —y.

Then (S, g, f) is a pullback of f and g. We often refer to it as the standard pullback of f and g.

k¢

Proof. Ad (P1). Suppose given (z,y) € S, that is, zf = yg. Then we have

(z,y)fg=yg=2xf = (z,9)4f.

Hence fg = gf.

Ad (P2). Suppose given a set T and maps ¢’ : T — X and f' : T — Y such that f'g = ¢'f.
We have to show that there exists a uniquely determined map u : T — S such that uf = f’ and

ug=g'.
Ezistence. Define u by tu := (tg',tf’) for t € T. We have (tg")f = t(¢'f) = t(f'g) = (tf')g, hence
tue S for t € T. Moreover, we have

t(uf) = (tg', tf)f = tf'

t(ug) = (tg',tf")g = tg

for t € T. Hence we have uf = f and ug = ¢'.
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Uniqueness. Let v : T — S be a map satisfying vf = f’ and vg = ¢’. Then define (x4, yt) := to for
t e T with 2y € X and y; € Y such that z;f = y;g. Then we have

tf' =twf) = (@, u) f = w
tg' = t(vg) = (xe,y1)g = @t
so tu = (tf',tg") = (z¢,y:) = tv for t € T. Hence we have u = v. O

Remark 1.30. Let X,Y, Z be sets and let f: X — Z and g: Y — Z be maps. Let (P,Q,f) be
a pullback of f and g. Then (P, f, §) is a pullback of g and f, as we take from (P1) and (P2).

Remark 1.31. Consider the following commutative diagram.
P —f> Y

g

@

X —7
f

Then for y € Y and p e f1(y) we have pf = y and

B(af) = p(fg) = yg,

Yyg)

1(y) foryeY.

hence pg € f~(yg). So we have the restricted map §|j;:

The next property is a criterion to decide whether a tuple (P, g, f) is a pullback.

Lemma 1.32. Let X,Y,Z be sets and f : X —> Z and g : Y —> Z be maps. Let P be a set and
g:P— X and f: P—Y be maps.

Then (P, g, f) is a pullback of f and g if and only if (P1) holds and the following condition (P) is
satisfied.

(P) The map g\ﬁjgz)” is bijective for yeY.

Proof. First assume that (P, g, f) satisfies the conditions (P1) and (P). We have to show that it also
satisfies condition (P2).

Let T be aset and g’ : T'— X and f': T — Y be maps such that f'g = ¢'f. We have to show
that there exists a uniquely determined map w : T'— P such that uf = f’ and ug = ¢'.

—1 !
Existence. Let t € T. Then tf' € Y and tg’ € f'(tf'g) since (tg')f = tf'g. Since g\jﬁflg,)g) is
bijective we can define u : T'— P as follows. Let

—1(ppt -1 A
Do) e ep

tu = tg' (g
forteT.
Then u satisfies tuf = tf’ and

I0) _ig (5

) )

RGN
Fs) ) = tg'

bug = tu (9 F1e

for t € T. Hence uf = f" and uj = ¢'.
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Uniqueness. Let v : T —> P be a map satisfying v§ = ¢’ and vf = f’. Then for t € T we have
tve f1(tf"). We have
tv (g

L(tf'g) N
H(Lf) ) tog =1g,

hence

forteT. Sov =u.

Now let (P, g, f) be a pullback of f and g. We have to show that (P, g, f) satisfies condition (P),
Yyg) .
~y)
pullback (S, 9, f) cf. Lemma 1.29.

is bijective for y € Y. We will first show that this is true for the standard

So suppose given y € Y. Note that we have f~(y) = {(z,50) € S : y = o}

1 (yg) 1 yg)

Injectivity. Suppose given (z,y), (z',y) € f~1(y) with (z,%)g iy = (', 9)g P10y - Then we
have ) )
= (@93 = @)l = @ 9)ilfay = @ y)g ="

Surjectivity. Suppose given x € f~(yg). This means that xf = yg, hence (z,y) € S. Moreover, we
have (z,y) € f~(y). Hence we have

-1
(@)l = (2,9 =

This shows that the standard pullback (S, g, f) satisfies (P).

Now let (P, g, f)Abe a pullback of f and g. Then there exists a unique bijective map u : P — §
such that uf = f and ug = g; cf. Remark 1.27.

P\ F

u

\ g Iy

g

gl .

X—7
f

“yg) .
~(y)
Note that for ¢ € f ( ) we have tuf = tf =y, hence tu € f~ L(y). So the restriction u|f 1(y)

1
defined and injective. o

is bijective.

Conversely, given 7 € f1(y), we have ru 1 f = ru tuf = rf =y, hence ru~t € f1(y). Moreover,

1 “(y)

—1y, [ _ _ f it
(ru )u|f_1(y) =ru~u = r. Hence u‘f_l(y) is bijective. We have

AT o N T we) (TN (T we)
a0y = WDl = (“‘f*(y)) (9 ) )
() is bijective as the composite of bijective maps. ]

)

Note that with Remark 1.30 we can also interchange the roles of § and f in Lemma 1.32 and ask
Ap—1
for f‘g,l(i{) to be bijective for x € X.
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Lemma 1.33. Let X,Y,Z, T be sets and let f : X — Z, g:Y — Z, f' : T — Y and
g : T —> X be maps such that f'g = ¢'f and such that g and g’ are bijective maps. Then (T,q', f')
1s a pullback of f and g.

T oy
[
g | 2|9
X A
f

(zf) .
/1()

1
But since g and ¢’ are bijective we have |¢'~1(z)| = |[g7(xf)| = 1 for x € X. So f’|g, l(w is bijective
for x € X. O

Proof. By Lemma, 1.32 and Remark 1.30, we have to show that f'|’

is bijective for x € X.

Corollary 1.34. Let X be a set, n € Zso and let f : X —> [1,n] be a map. Then (X,idx, f) is a
pullback of [ and idp , -

x L [1,7]
idx ﬁ lid[l’n]
Lemma 1.35. Consider the following pulback.
Pty
g B 9
X—7
f
(i) If f is injective, then so is f.

(ii) If f is surjective, then so is f.

(i) If f is bijective, then so is f.

Proof. Ad (i). Suppose given p,p € P with pf = pf.
We have pgf = pfg = ﬁfg = pgf. Since f is injective, this implies that pg = pg.
(pf9)

A~ A~ ~ ~ —1
Now since pf = pf, we have p,p € f~1(pf). By Lemma 1.32 we know that g‘;_l(g;)

is injective, so

pgl}- 1%7) = pg = pg = P} 1%?)
implies p = p.
Ad (ii). Suppose given y € Y. Since f is surjective, there exists x € X such that xf = yg, so
y € g~Y(zf). Since by Lemma 1.32 and Remark 1.30 the map f‘g_lg ) is surjective, there exists
p € § (z) such that

= y'
Ad (iii). Since f is bijective, the map f is injective by (i) and surjective by (ii). O
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Lemma 1.36. Let X,Y, Z, Z be sets and let f: X — Z and g : Y —> Z be maps. Let (P, g, f) be
a pullback of f and g and let u : Z — Z be an injective map. Then (P, g, f) is also a pullback of
fu and gu.
p-loy
[

g g

Xtz A\

X
fu 5

Z

Proof. First note that we have fgu = gfu.

(f) '(ygu)
()

Suppose given z € X. Since u is injective, we have x € (fu)~!(ygu) if and only if zfu = ygu, i.e.
xf =yg,ie xe f Y(yg). This implies that (fu) 1(ygu) = f (yg).

Now since (P, g, f) is a pullback of f and g, (fu1)( )(ygu) al’, lgyf) is bijective;

cf. Lemma 1.32. OJ

is bijective.

Lemma 1.37. Let X,Y,X’,Y’A,X”,Y” be sets and let f : X —X,9g:Y —X, f:X" — X',
g:Y' — XL Y — Y, §g: Y — X" and f' : Y" — Y be maps such that (Y', g, f) is a

pullback of f and g and (Y",§, f') is a pullback of f' and §.

Y —— Y’4>Y

| @i b

X' X X
f f

Then (Y", g, (f'f)) is a pullback of (f'f) and g.

)f
2

Prof. Since §(4'f) = G)S = (7 i
f

f( £ = F'(f9) = (/'f)g, by Lemma 1.32 and Re-
mark 1.30 it suffices to show that ( {

is bijective for 2" € X”.

g
f

So suppose given z” € X”. We have

(FHIL

L f )
*l(w”f’) > .

@

) g—l(z//f/)> ( A~
g1 =")
A ~ -1 n el
Since (Y', g, f) is a pullback of f and g, we know that f‘g,lg I s bijective. Moreover, since

//f/)
A~ ~ A A 1 /!
(Y" g, f") is a pullback of f' and g, we know that f"g () ) s bijective. So (f'f)‘g x,,{ Dy
bijective as the composite of bijective maps. O

Finally, we are going to need compatibility of disjoint unions and pullbacks.

Lemma 1.38. Let X,Y,Z, X" Y',Z" be sets and let f : X — Z, g:Y :— Z, f': X' — Z' and
g Y — Z'" be sets. Let (P, g, f) be a pullback of f and g and (P', ', ') be a pullback of ' and

/

g .

p-I.y p—L oy

| l N l

g g g g

X7 X g
7 7
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Then (PLP',gug, fuf) is a pullback of f L f' and gL g'; c¢f. Definition 1.13 and Definition 1.14.

pup Iy Ly

Quﬁ’l J{gug’

XuX —ZzZuZ
fuf’

A~

Proof. Ad (P1). By Lemma 1.24 (i) and since (P, g, f) is a pullback of f and g and (P’, ¢’ ,f’) is a
pullback of f’ and ¢’ we have

(fufgug)=Ffoufd =afudf =@Gui)fuf)
Ad (P). Suppose given £ € Y U Y’. We have to show that ( ‘E;E;,; 122 9-9')) i bijective.
Case 1: £ = (1,y) for some y € Y. Then (g1 g') = (1,y)(g wg') = (1,y9) € Z 1 Z'. We have
(Fu )7y ={p) pe [Ty} and (f U f) 711, yg) = {(1,2) :z € fH(yg)}-
Injectivity. Suppose given (1,p), (1,p) € (f L f’)_l(l,y), that is, p,p € f‘l( ), and suppose that
5o el = o an|FufTH ) oy sy s (fuf) "(Lyg) N

(L) gud) = (LG u )5 iy = LAGUD Gy, = LHEGUG).

But this means that
(1,p9) = (Lp)(gu§) = 1,p)(gug) = (1,p9),

hence pg = pg.

Y(yg) .

Since p,p € f‘l( ) and since g‘f )

is injective, this implies that p = p.

Surjectivity. Suppose given (1,z) € (fuf)~1(1,yg), that is, z € f~!(yg). Since g‘f yg) is surjective

there exists p € f~!(y) such that pg = pg‘;:g)g) — z. So we have (1,p) e (f u f)~ (l,y) and

(Lp)(gug)

(fufH=(Lyg) Ly o
LLT0) — (1L p)(G L) = (1,pg) = (1,2).

Case 2: £ = (2,y') for some y' € Y'. Then {(g 1 g') = (2,y )(g ug)=(2,9y9)e ZuZ. Wehave
(Fuf)'@y) ={@p):p e 71y} and (fu f)7H2y'g) = {(2.2)) : 2" € 7Y )}
Injectivity. Suppose given (2,p)), (2,7) € (f u f)~1(2,9/), that is p/, 5’ € f/~'(y/') and suppose that
IN(A Ay Nea oA [(Fuf)TH2y ) noaan | (Fuf)THR2Y9) AN AL
(27]) )(g U g) - (27p )(g Ug )‘(fuf’)—l(ly’) - (2 )(g g )‘(fuf’)—l(Q,y’) - (27]) )(g g )
But this means that

(2,979") = 2,2)(gu ) = (200G ud) =207,

hence p'g’ = p'9’.

')

1) is injective, this implies that p’ = p'.

Since p/, 7 € f/~1(y/) and since §’

7—1
Surjectivity. Suppose given (2,2') € (f U f')71(2,y'g') that is, 2’ € f'il( d). Since § ;/ 1§y,) g") i
1—1
;, 1Ey) 9) _ z'. This means that we have

surjective, there exists p’ € f1(y) such that p'y’ = p'g
(2,p) € (f u f)71(2,9/) and
(FufH='eyyg)

(2,]9,)(@ o g/)|(fuf’)—1(2,y’) = (27p/)(g U g,) = (2,]99) = (2’37,)'
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2 Preoperads

2.1 Biindexed sets
Definition 2.1. A biindexed set (X, s,t) consists of a set X and of maps s : X — Zz¢ and
t: X — Zxo.

Suppose given m,n,€ Z=qo . Let X(m,n) := {x € X : xs = m and xt = n}. We will often also write
X = (X(m,n)) for the biindexed set.

Note that for z € X we have x € X (zs, xt).

m,nz=0

Definition 2.2. Let (X, sx,tx) and (Y, sy,ty) be biindexed sets and let ¢ : X —> Y be a map.
Then ¢ is called a biindexed map, if for x € X we have

(xp)sy = xsx and (xp)ty = xtyx .
This means that given m,n € Z=¢, then the restrictions ga|§((:i7;)) : X(m,n) — Y{(m,n) are maps.
Define p(m,n) := g0|§((;nnz)) . We will often also write ¢ = (¢(m,n))mn=0 for a biindexed map.

Remark 2.3. Let (X, sx,tx), (Y, sy,ty) and (Z, sz,tz) be biindexed sets and let p : X — Y and
¥ 1Y — Z be biindexed maps. The composite g : X — Z is a biindexed map, since for z € X

we have (z(py))sz = (zp)y)sz = (zp)sy = zsx and (x(pP))tz = (z)Y)tz = (zp)ty = 2ix.
So for m,n € Z=o we have (p)(m,n) = p(m,n)P(m,n).

Definition 2.4. Let (X, s,t) be a biindexed set. A biindezed subset of X is given by (Y,s‘y,t‘y)
for some subset Y € X.

Note that this means Y (m,n) € X (m,n) for m,n € Z=o. We will write Y € X to indicate that ¥
is a biindexed subset of X.

Definition 2.5. Let (X, sx,tx) and (Y, sy, ty) be biindexed sets. We define
XxY := {(Ly) eX xY :xsx =ysy and xtx = yty}.
Furthermore, we define maps s, x y and tx x y follows.

SXxY - XxY — Z>0 txxvy : XxY — Z;O
(z,y) +— wzsx =ysy (z,y) +— wtx =yty

Then we have the biindexed set (X XY, sxxy,txxy)-

Note that for m,n € Z=¢ we have (X x Y)(m,n) = X(m,n) x Y(m,n).

2.2 Set-preoperads and linear preoperads
Definition 2.6. A set-preoperad Py = (Po,X], ) consists of

e a biindexed set (Po(m,n)),, n>0
e identity elements id,, := idp, m € Po(m, m) for m € Zxo ,
e multiplication maps

(X)) := (Kp,) : Po(m,n) x Po(m’,n') — Po(m +m',n + n')
(f,f')— [Rp, [ = RS

for m,n,m’,n’ € Z=g,
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e composition maps
() == (-py) : Po(m,n) x Po(n, k) — Po(m, k)
(fr9)— frpg=f-9=:fg

for m,n, k € Z=g
such that the following axioms hold.

e concerning multiplication

(m1) Associativity: We have (f X f )X f” = f K (f' = f”) for m,n,m’,n’,m" n" € Z~y and
f € Po(m,n), f' € Po(m/,n') and f" € Py(m”,n").

(m2) We have idgXl f = fXlidg = f for m,n € Z>¢ and f € Py(m,n).
e concerning composition

(c1) Associativity: We have (f-g)-h = f-(g-h) for m,n,k,l € Z=o, and f € Py(m,n),
g€ Po(n, k), and h € Po(k, 1),

(c2) We have id,,, -f = f and f -id,, = f for m,n € Z=y and f € Py(m,n).
e concerning multiplication and composition

(mcl) We have (fX f') - (gX¢) = (f-9)K(f - ¢) for m,n, k,m',n' k' € Zso, f € Po(m,n),
frePo(m/,n'), g€ Po(n, k) and ¢’ € Po(n', k).

(mc2) The identity elements satisfy id,, = id™™ for m € Zsq, where for m,n,k € Zso and
f € Po(m,n) the product f&* e Py(km, kn) is defined as follows. We let f&0 := idy and
for k> 1 we let f&F .= fRGE-D ) f.

Remark 2.7. Note that (mc2) implies that id,, Xlid,, = id;4, for m,n € Z=g .

Remark 2.8. One could summarize this definition by saying that a set-preoperad is a strict monoidal
category with Zso as set of objects; cf. [10, VIIL1].

A linear-preoperad over the ring R can be defined similarly.

Definition 2.9. A linear preoperad P = (P,[x],-) over R consists of

e a biindexed set (P(m,n)) where P(m,n) is an R-module for m,n € Zxo,

m,nz=0 2
e identity elements id,, := idp , € P(m,m) for m € Z=,
e R-linear multiplication maps

(X) == (Xp) : P(m,n) @ P(m',n') — P(m +m',n +n)
ff — fRp f = fRf

for m,n,m',n’ € Z=y,
e R-linear composition maps

() :==(p) : P(m,n) ® P(n, k) — P(m, k)
[f®@gr— fPpg=f-9=:fg

for m,n,k € Z=g
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such that the following axioms hold.

e concerning multiplication

(M1) Associativity: We have (fX f)X f” = fK (f' K f") for m,n,m',n',m" n" € Z-y, and
feP(m,n), f'e P(m/,n') and f" e P(m",n").
(M2) We have idgXIf = fXlidg = f for m,n € Z=o and f € P(m,n).

e concerning composition

(C1) Associativity: We have (f-g)-h = f-(g-h) for m,n,k,l € Z=o and f € P(m,n),
g€ P(n,k) and h e P(k,l).

(C2) We have id,, -f = f and f-id,, = f for m,n € Z=p and f € P(m,n).
e concerning multiplication and composition

(MC1) We have (f X f')- (9K g') = (f - 9)RI(f' - ¢') for m,n, k,m’,n', k' € Zo and f € P(m,n),
freP(m/,n'), ge P(n,k) and ¢’ € P(n', k).

(MC2) The identity elements satisfy id,, = idm for m € Z=qo, where for m,n,k € Z>o and
f € P(m,n) the product f&¥ ¢ P(km,kn) is defined as follows. We let f&0 := id, and
for k > 1 we let f¥F .= fR¥E-D 5 £,

So basically the definitions of a set-preoperad and of a linear preoperad over R are the same except
in the R-linear case we ask for the multiplication and composition maps to be R-linear maps. We
will often write an index 0 as in Py to indicate that we are dealing with set-preoperads and not
linear preoperads.

Furthermore, we will often drop the additional “over R”. In these cases, all occuring linearities are
R-linearities.

Remark 2.10. We can always view a linear preoperad (P,[x], -) as a set-properad by forgetting that
P(m,n) is an R-module for m,n € Z=( and instead viewing it as a set and by using the multiplication
maps

P(m,n) x P(m',n') — P(m +m',n+n')
(f, f)— fRf

for m,n,m’,n’ € Z=qy and the composition maps

P(m,n) x P(n, k) — P(m, k)
(f.9)—f-g

for m,n, k € Z~y and by forgetting that they are R-bilinear.

Whenever we do not want to make the distinction between linear preoperads and set-preoperads
(e.g. if the statement is true for both) we will simply write preoperad.

Lemma 2.11. Let (P,[x],) be a preoperad. We have the preoperad (P X P,[Xlp x p,px p) with

o identity elements idp x pm 1= (idp m,idp ) for m € Zxo,

o multiplication defined by (f, D&pxp (fLf) = (FRS,FRS) for min,m/,n’ € Z=o and
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o composition defined by (f, ) -pxp (9.9) = (f - 9. f - §) for m,n,k € Zzg and f, f € P(m,n),
9,9€ P(n, k).

Proof. We have (P x P)(m,n) = P(m,n) x P(m,n) for m,n € Z= ; cf. Definition 2.5.

Note that in case P is a linear preoperad, these cartesian products are again R-modules. Moreover,
since in that case ([x]) and (-) are R-linear maps, so are (Xlpx p) and (-px p).

The properties (ml) — (mc2) follow from the respective properties of P since (Xlp x p) and (-p xp)
are defined entry-wise. O

Recall that given sets X,Y and a map u : X — Y then the map Ru : RX — RY is R-linear.
Furthermore, recall that we can identify R(X xY) = RX ® RY and that by identifying along some
injective map X — RX we may write X € RX; cf. Definition 1.8.

Remark 2.12. Let Py be a set-preoperad. Then RPy = (RPy(m,n))mn=0 is a linear preoperad over
R with R-linear multiplication maps

R (®p,) : RPo(m,n) @ RPy(m’,n') = R(Pg(m,n) X Po(m',n)) — RPo(m +m/,n+n)
for m,n,m',n’' € Z=q, R-linear composition maps
R (-p,) : RPy(m,n) ® RPy(n, k) = R(Po(m,n) x Py(n, k)) —> RPo(m, k)

for m,n,k € Z=q and identity elements idgrp,m := idpym for m € Zzg .

Proof. Note that

( oy f) XRP, ( > f’) = Y (R f)

fePo(m,n) fePo(m/ ,n’) fePo(m,n)
f'ePo(m/ ,n')
( 2 rf f) *RPo ( Z TIgQ) = 2 Ty Tlg (f Py 9)
f€Po(m,n) gePo(n,k) fe€Po(m,n)
g€Po(n,k)
for m,n,k,m’,n’ € Z-y. So the required properties for RPy follow from the properties of Py. [

Definition 2.13. Let (P,[X], -) be a preoperad. Then the opposite preoperad PP is defined as follows.

e Let PP(m,n):={f°P: feP(n,m)} for m,neZsg.
e Let idpop », 1= (idp )P for m € Zzy .
e Multiplication is given by

(Kop) := (Kper) : PP(m,n) x PP(m',n') — PP(m +m',n+n')
(fP, f/P) b= [P Rop f'F := (FR )P

for m,n,m’,n’ € Z=g.
e Composition is given by

(‘op) := (+por) : PP(m,n) x P°P(n,k) —> P°P(m, k)
(F2.47) > % g o= (g )

for m,n, k€ Z=g .
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2.3 Morphisms of preoperads

Now we will be interested in studying maps between (both set- and linear) preoperads
that respect the basic structure.

Definition 2.14. Let Py, Qg be set-preoperads. A morphism ¢ : Pog —> Qg of set-preoperads is a
biindexed map ¢g = (po(m,n)),, ,=0 such that (1) and (2) hold.

(1) We have idp, m wo(m, m) = idg,m for m € Zxq .
(2) Suppose given m,n,m’,n’, k € Z=g. The following two diagrams both commute.

¥o (mvn) X$o (mlvn/)

PO(ma n) X PO(mlv nl)

(®n)]

Po(m +m',n +n')

Qo(m,n) x Qo(m’,n’)
J(e,)

wo(m+m/ n+n’)
Qo(m +m/,n+n')

Po(m, ) x Po(n, k) —2 )

()]

Po(m, k)

Qo(m,n) x Qo(n, k)

i('Qo)

QO(mv k)
That is, for f € Po(m,n), f' € Po(m’,n’), g € Po(n, k) we have

Lpo(m,k‘)

(fSOO(mv n)) Xlo, (fI(PO(mlv nl)) = (f XIp, f/) 900(m + mla n+ TL,)
(feo(m,n)) g, (9e0(n, k) = (f Py 9) po(m, k).

Remark 2.15. Since ¢qg : Pg — Qp is a map, cf. Definition 2.2, we can write the equations in
Definition 2.14 (2) as

feoEa, oo = (FEp, [') @0
f0 -0 990 = (f Py 9) 0

for f € Po(m,n), f' € Po(m',n’), g € Po(n, k) and m,n,m’',n’', k € Z=g .

Again we can define morphisms of linear preoperads similarly.

Definition 2.16. Let P, Q be linear preoperads. A morphism ¢ : P — Q of linear preoperads is
a biindexed map ¢ = (p(m, n)),, >0 such that (0), (1) and (2) hold.

(0) The maps @(m,n) are linear for m,n € Zg .
(1) We have idp ,,, p(m, m) = idg, for m € Zxg.
(2) Suppose given m,n,m’,n’, k € Z=q. The following two diagrams both commute.

e(m,n)Rp(m’,n’)

P(m,n) @ P(m',n)
(P)i
P(m+m/,n+n')

Q(m,n) ® Q(m',n')
l(g)

p(m+m/ n+n’)
Q(m+m/;n+n')
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p(m,n)®p(n.k)

P(m,n) @ P(n, k) Q(m,n) ® Q(n, k)
('P)i i('g)
P(m k) s Q(m, k)
That is, for f € P(m,n), f € P(m',n’), g € P(n, k) we have

(fe(m,n)) Ko (f'o(m’,n) = (f&p ) @(m +m',n+n)
(fe(m,n)) g (gp(n, k) = (f -» g) o(m, k).

Note that, as with morphisms of set-preoperads, we may abbreviate fo = fo(m,n) for m,n € Z=g
and f € P(m,n) when it is clear which linear map ¢(m,n) is needed.

Remark 2.17. Recall that given linear preoperads P and Q then by Remark 2.10 we can view them
as set-preoperads. Furthermore, given a morphism of set-preoperads ¢ : P —> Q we can then view
this as a morphism of set-preoperads by forgetting that ¢(m,n) is linear for m,n € Z= .

The following Definition 2.18, Definition 2.19 and Lemma 2.20 pertain to set-preoperads and to
linear preoperads.

Definition 2.18.

(1) Let P be a preoperad. The identity morphism idp = (idp(m,n))mnz0 = (idp@nn))mn=0 is
given by fidp(m ) = f for m,n € Z>o and f € P(m,n).

(2) Given morphisms of preoperads ¢ : P —> Q and ¢ : Q —> R, then the composite ¢ is given
by (y)(m,n) = o(m,n)p(m,n) for m,n € Zxg.

This is again a morphism of preoperads since for m, m’,n,n’ € Z=¢ and f € P(m,n) and
e P(m',n') we have

(f(ev)) Br (f'(09)) = (f0)¥) &R ((F'0)¥)
=(f90 o (f'¢)) v
= ((f=p f)e)v
= (f&p [)(p¥)

and since for m,n, k € Z=o and f € P(m,n) and g € P(n, k) we have

(fev)) = (9(ev)) = ((f ) ) ((f'e)v)
((fe) -a (g9))¥
((f P 9)e)
= (f Pg)( Y).

Furthermore, note that if ¢ and ¥ are morphisms of linear preoperads over R, then the com-
posite p(m, n)yp(m,n) for m,n € Z= is again an R-linear map.

Definition 2.19. Let P and O be preoperads and let ¢ : P — Q be a morphism of preoperads.
Then ¢ is called an isomorphism if there exists a morphism of preoperads ¢ : @ — P such that
Y =idp and Y =idg.

We then say that P and Q are isomorphic and write P =~ Q.

Lemma 2.20. Let P and Q be preoperads and let ¢ : P — O be a morphism of preoperads. Then
@ 1s an isomorphism if and only if p(m,n) is bijective for m,n € Zxo .
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Proof. The morphism ¢ is an isomorphism if and only if there exists a morphism of preoperads
1 : @ — P such that ¢y = idp and ¢ =idg, i.e. we have

@(m,n)-(m,n) = (¢-)(m,n) =idp(m,n) = id’P(m,n)

w(mvn) : Lp(m,n) = (¢ : cp)(m, n) = ldQ(ma TL) = ldQ(m,n) )
i.e. p(m,n) is bijective. O
Remark 2.21. Note that the given preoperads P, Q and R and isomorphisms of preoperads

p:P — Qand ¢ : @ — R, then the composite vy : P —> R is also an isomorphism of
preoperads.

Definition 2.22. Let Py be a set-preoperad. Since Po(m,n) € (RPy)(m,n) = R(Po(m,n)) for
m,n € Zxq; cf. Definition 1.8 and Remark 2.12, we can define a morphism Bp, : Py — RPy by
fBp, = f for f e Py(m,n) and m,n € Z=g.

Lemma 2.23. Let Py be a set-preoperad and Q be a linear preoperad. Recall that we can also view
O as a set-preoperad. Let pg : Py —> Q be a morphism of set-preoperads. Then there exists a unique
morphism of linear preoperads ¢ : RPy — Q such that Bp,po = ¢o ; cf. Definition 2.22.

pOL

Bp
0 w3 o

RPo

Proof. By Remark 1.9, for m,n € Zs¢ there exists a uniquely determined linear map
92)0(777’7 Tl) : (RPO)(ma TZ) - Q(m,n) such that f@ = f@O(ma n) = fQO()(m, TZ) = f%p for f € PO(mvn)'
So it remains to show that ¢g := (Po(m, n))mn=0 : RPy —> Q is a morphism of linear preoperads.

First note that for m € Z=o we have idrp, m $o = idpy.m po = idg .

Suppose given m,n,m’,n' € Zzgand Y, rsfe (RPy)(m,n)and > sy fle(RPo)(m! ).
fePo(m,n) f'ePo(m/ ,n')
Then we have

(( Z Tff) RPO( 2 Sf'f')>¢o=( 2 TS (fPof')>¢o
fEPo(m,n) f'ePo(m/ ') f€Po(m,n)
f'ePo(m/ ,n')

= > resp((f B f)e0)
f€Po(m,n)
f'ePo(m/ ,n')

= > rrsp(feoXo feo)

fe€Po(m,n)
f'ePo(m/ ,n’)

:( > Tf(f@o))@( > Sf’(fISDO))

fe€Po(m,n) f'ePo(m!,n’)

=< > Tff)@og( > Sf'f'><ﬁo-

f€Po(m,n) fePo(m/ ,n’)

In the same way we can see that given m,n,k € Zsy and >, rrfe(RPy)(m,n) and

>, 8g9€ (RPy)(n, k), then we have fePo(m,n)
g€Po(n,k)
(( > 7“ff) 'RP0< > 3g9>)<ﬁ0=( > Tff)@o@( > 5g9>950-
fePo(m,n) g€Po(n,k) fePo(m,n) gePo(n,k)
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Lemma 2.24. Let Py and Qg be set-preoperads and let pg : Py —> Qg be a morphism of set-
preoperads. Then Rpg = (R(cpo(m, n))) : RPy — RQy is the unique morphism of linear

preoperads such that Sp,(Reo) = pofo, -

m,n=0

Po—2> Qq

E’PO \L iﬁQo

RPo — > RQo

Proof. Note that RQq is a linear preoperad over R that we can view as a set-preoperad and that
Yo 1= wofo, : Po — RQp is a morphism of set-preoperads.

So by Lemma 2.23, there exists a uniquely determined morphism @0 : RPy — RQq of linear
preoperads such that SBp, 10 = 1o = voB9, -

Since for m,n € Z=o and f € Py(m,n) we have
fBpy(Rpo) = f(Rpo) = feo = (fpo)Bay »
we have Ryg = 1&0 . L]

Remark 2.25.

(1) Let Py, Qo and Ry be set-preoperads and let g : Py —> Qp and ¢y : Qo9 —> R be morphisms
of set-preoperads. Then we have (Ryo)(Rvo) = R(potbo)-

(2) Let Py be a set-preoperad. Then we have Ridp, = idgp, -

(3) Let Py and Qq be set-preoperads and let ¢g : Py —> Qp be an isomorphism of set-preoperads.
Then Ryg : RPy — RQp is an isomorphism of linear preoperads.

2.4 Subpreoperads of set-preoperads and linear preoperads

Definition 2.26. Let Py, Qg be set-preoperads. Then Qy is said to be a set-subpreoperad of Py if
(1),(2) and (3) hold.

(1) We have Qg(m,n) € Py(m,n) for m,n € Z=q, so Qp  Pp is a biindexed subset.

(2) We have idp, m € Qo(m, m) for m € Zxg .

(3) The composition maps as well as the multiplication maps of Py restrict to the respective maps
of Qp, that is, for m,n,m’,n',k € Z=o and f € Qp(m,n), f' € Qo(m',n’) and g € Qp(n, k) we
have fp() f, = fQo f, and f'Pog = fQog

Lemma 2.27. Let (Po,Xp,, p,) be a set-preoperad and Qp = (Qo(m,n))m,g0 a biindexed set
satisfying (s1), (s2) and (s3).

(s1) We have Qo(m,n) < Po(m,n) for m,n e Zxg .
(s2) We have idp, m, € Qo(m, m) for m e Zzq .

(s3) We have Qo(m,n)Xp, Qo(m',n') € Qo(m+m/,n+n') and Qy(m,n) -p, Qo(n, k) S Qo(m, k)
for m,n,k,m’,n' € Z=q, that is, Qq is closed under multiplication and composition.

44



Define idg, m = idp, m for m € Z=o and define (Klo,) by fXo, [’ := f&p, [’ for m,m/,n,n' € Zx
and f € Qo(m,n), f' € Qo(m',n) and define (-a0) by f 0y 9 i= f -py g for m.m,k € Zso and
f € QO(man)z g€ QO(na k)

Then (Qo,Xoy, 0,) is a set-subpreoperad of Py .

Proof. Let Qo = (Qo(m,n)),, .o be a biindexed set satisfying (s1), (s2) and (s3). Since the mul-
tiplication and composition maps of Py restrict to those of Qg by definition and by (s2) we have
idp, m € Qo for m € Z=g, all that needs to be shown is that Qp is in fact a set-preoperad.

Since (m2),(c2) and (mc2) are true for Py they hold for Qg since idg, ,,m = idp, m for m € Zo and
since Qo(m,n) < Po(m,n) for m,n € Zxg .
The properties (m1), (c1) and (mcl) for Qg are inherited from Py . O

Definition 2.28. Let P, Q be linear preoperads over R. Then Q is said to be a linear subpreoperad
of P if (1),(2) and (3) hold.

(1) The R-module Q(m,n) is a submodule of P(m,n) for m,n € Z=g .
(2) We have idp ,, € Q(m,m) for all m € Z> .
(3) The composition maps as well as the multiplication maps of P restrict to the respective maps

of Q, that is for m,n,m’,n', k € Z=p and f € Q(m,n), f' € Q(m/,n') and g € Q(n, k) we have
fWp ff=fWo ffand fpg=f-ay.

Lemma 2.29. Let (P,Xlp, p) be a linear preoperad over R and Q@ = (Q(m,n)),, ,~o o biindezed
set satisfying (S1), (S2) and (S3).

(S1) Q(m,n) is a submodule of P(m,n) for m,n € Z=g .
(S2) We have idp ,, € Q(m, m) for m e Zxg .

(S3) We have Q(m,n) xp Q(m/,n') € Q(m +m',n 4+ n') and Q(m,n) -p Q(n, k) < Q(m, k) for
m,m',n,n', k € Z=q, that is, Q is closed under multiplication and composition.

Define idg y, 1= idp  for m € Zso and define (Kg) by fKlo f' := f&p f' for m,m',n,n’ € Z=o and
f € Q(m,n), f' € Q(nt',n') and define (-q) by f -0 g = f -p g for m,n,k € Zso and f € Qm,n),
g€ Q(n,k).

Then (Q,Xlo, -0) is a linear subpreoperad of P.

Proof. Let @ = (Q(m,n)),, ,~0 be a biindexed set satisfying (S1), (S2) and (S3). Note that this
implies that (Xlg) and (-g) define R-linear maps.

Again we only need to show that Q is a linear preoperad over R.
Since (M2), (C2) and (MC2) are true for P, they also hold for Q, since idg ,, = idp , for m e Zxg
and since Q(m,n) < P(m,n) for m,n € Zxg .

The properties (M1), (C1) and (MC1) are inherited from P. O

Since the definitions for set-subreoperads and linear subpreoperads are the same except for the fact
that in the R-linear case we are dealing with submodules instead of mere subsets, we are often going
to write subpreoperad instead of set-subpreoperad or linear subpreoperad. In these cases, when it
comes to verifying that a biindexed subset is a subpreoperad, we are often going to write (sl), (s2)
and (s3) for the properties from Lemma 2.27 and 2.29.

The following Example 2.30, Lemma 2.31 and Definition 2.32 pertain to set-preoperads and to linear
preoperads.
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Example 2.30.

(1) Let P and Q be preoperads. Let ¢ : P —> Q be a morphism of preoperads. The image
Im(¢p) = (Im(¢(m, n)))mn=0 is a subpreoperad of Q.

(2) Let P be a preoperad and let @ € P be a subpreoperad of P. Then the inclusion

tgp:Q—P
f—1

is a morphism of preoperads.

Lemma 2.31. Let I be a set. Let P be a preoperad. Let Q; € P be a subpreoperad for i € I. Then
the intersection (| Q; = (ﬂ Qi(m,n)> is a subpreoperad of P.
m,n=0

iel el

Proof. Ad (s1). Since Q;(m,n) € P(m,n) for i € I, we have (] Q;(m,n) € P(m,n). In the case of
el
linear preoperads the intersection is again an R-module.
Ad (s2). We have idp ,,, € Q;(m,m) for i € I, hence idp ,, € [] Qi(m, m).
i€l
Ad (s3). Suppose given m,n,m’,n' € Z=pand f € () Q;(m,n), f' € (| Qi(m',n'), hence f € Q;(m,n)
1€l 1€l
and f' € Q;(m/,n’) for i € I. By (s3) for Q; we have f[Xp f' € Q;(m +m',n+n') for i € I, hence
fEp ffe()Qi(m+m/ n+n).
i€l
Now suppose given m,n,k € Zso and f € () Qi(m,n), g € () Qi(n,k), so f € Q;(m,n) and
i€l 1€l
g€ Qi(n, k) for i € I. By (s3) for Q; we have f-pge Q;(m,k) forie I, hence fge ) Qi(m, k). O
i€l
Definition 2.32. Let P be a preoperad and let X € P be a biindexed subset. We define the
subpreoperad of P generated by X by

sreopl X ) 1= ﬂ {Q € P : Qis asubpreoperad with X € Q}.

The biindexed subset (X ) is a subpreoperad of P by Lemma 2.31. It is the smallest sub-

preop

preoperad of P that contains X, i.e. given a subpreoperad Q@ € P with X € Q, then we have
(X)e e

preop

2.5 Congruences on set-preoperads

Definition 2.33. Let (Py,[X),-) be a set-preoperad. A congruence on Py is a biindexed subset

(=) € Po x Pg such that (1), (2) and (3) hold. For (f, f) € (=)(m,n) with m,n € Zo we also write
f=7

(1) For m,n € Zxo the subset (=)(m,n) € Py(m,n) x Py(m,n) is an equivalence relation on
Po(m,n).

(2) Suppose given m,n,m’,n’ € Zzo and (f, f) € (=)(m,n) and (f', f') € (=)(m/,n’). Then we
have (fXf, fRf) e (=)(m+m',n+n).
So if we have f = f and f' = f, then we have (fR f') = (f& [').
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(3) Suppose given m,n,k € Zzo and (f, f) € (=)(m,n) and (g,7) € (=)(n, k), then we have
(f-9,f-9) € (E)(m, k).
Soif f= fand g = §, then we have (f-g) = (f - §).

We will denote the congruence classes of Py with respect to (=) by [f]= for f € Po(m,n) and
m,n € Zzg. So for m,n € Zzo we have [f]= = [f]= for f, f € Po(m,n) if and only if f = f, i..
(f, ) € (5)(m,n).

Lemma 2.34. Let I be a set. Let Py be a set-preoperad. Let (=;) € Py X Py be a congruence on Py

for i€ I. Then the intersection [ (=) = | [(=:)(m,n) is a congruence on Py .
el el m,n=0
Proof. First note that the intersection [|(=;)(m,n) again defines an equivalence relation on Py .
i€l
Suppose given m,n,m’,n’ € Z=o and (f, f) € N(=:)(m,n), (f,f) € N(=:)(m',n). So we have
1€l i€l

(f.f) e (52( n) and (f'f') € (=i)(m',n') for i € I. Since (=) isacongruenceforie] we have
(fR), (fRF)) e (=)(m+m',n+n') foriel, hence (fRf, f&f) Eﬂ Y(m+m/,n+n').

Now suppose given m,n, k € Zsq and (f, f) € (= ye (= ) for i € I. So we
i€l i€l
have (f, f) € (=i)(m,n) and (g,§) € (=) (n, k) for i € I. Since (=) is a congruence for i € I, we
have (fg, f§) € (=)(m, k) for i € I, hence (fg, f§) € ((=:)(m, k). O
i€l

Definition 2.35. Let Py be a set-preoperad and X € Py x Py be a biindexed subset. The congru-
ence generated by X is defined by

(=x) = ﬂ {C < PyxPy: Cis a congruence with X < C}.

We call X the generating set for (=x).

The congruence (=x) is the smallest congruence on Py containing X, i.e. given a congruence
(=) € Py x Py with X < (=), then we have (=x) < (=).

For the congruence class of f € Py(m,n) for m,n € Z=o we will often write [f]x := [f]=x -

Remark 2.36. Note that given a congruence (=) € Py x Py for a set-preoperad Py, then the
congruence generated by (=) is (=) itself. So every congruence has a generating set.

In the following Lemma we will introduce a certain kind of congruence on a set-preoperad.

Lemma 2.37. Let Py, To be set-preoperads and let 1o : Po —> Ty be a morphism of set-preoperads.
Define the biindezed subset (=) € Py x Py by

(ETO)(mvn) = {(fa f~) € pO(m7n) X PO(mvn) : fTO = .]FTO}

form,n € Zso. Then (=) is a congruence on Py .

Proof. First note that (=)(m,n) defines an equivalence relation on Py(m, n) for m,n € Z= .

Suppose given m,n,m’,n' € Zzo and f, f € Po(m,n) with (f, fe (=")(m,n) and f’, f € Po(m,n)
with (f', ') € (=™)(m/,n’). That is, we have frog = fry and f'79 = f'79. Then we have

(f Bp, )10 = (fr0) B, (f'70) = (f70) By (F'70) = (f B, f)70
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hence ((f P, f/)a (fpo f/)) € (ETO)(m +m/,n+ nl)'

Now suppose given m,n, k' € Z=o and f, f € Po(m,n) with (f, f) e (=™)(m,n) and g,§ € Po(n, k)
with (g,g) € (=™)(n, k). That is, we have fry = frp and g9 = gr9. Then we have

(f P 9)70 = (f70) 75 (970) = (f70) 75 (G70) = (f o §)70,

hence ((f “Po g)v (JE "Po g)) € (ETO)(mv k) [

Definition 2.38 (factor set-preoperad). Let Py be a set-preoperad and let (=) € Py x Py be a
congruence on Py . We define the factor set-preoperad % as follows.

e Let <( ))(m n):={[fl=: f € Po(m,n)}.

e Let 1d(( )) = [idpy m]|= for me Z=g .

e The multiplication is given by

() = ((7;0) ) (ﬂ)(m,n) X (—0)(m’,n’) — (& (m+m',n+n)

(=)
fl=. 1) — [fl=B[f)= = [f Bp, £
for m,n,m’,n’ € Z=g.
e The composition is given by

()i=(m ) (Zio))(m,n) X ((ZO))(n,k)—> (7i

([fl=.[f1=) — [fl=- == [f - f]=

Ok
Ne—’
—~
3
oy
s

for m,n, k € Zxg .

We will show now that this is a set-preoperad. Denote the multiplication and composition on (P;O)
by (X)) and (-) and on Py by (Xlp,) and (-p,).

First note that given m,n,m’,n' € Z>¢ and f.f € Po(m,n) with f = f and f', f' € Po(m/,n')
with f/ = f', we have f Xip, [ = f Xp, f', since (=) is a congruence on Py. Hence we have
[f ®p, f']= = [f Bp, f']=. So the multiplication () is well-defined.

Moreover, given m,n, k € Z>o and f.f € Po(m,n) with f = f and g, € Po(n, k) with g = §, we

have f -p, g = f -p, G, since (=) is a congruence on Py. Hence [f -p, gl= = [f *p, §]=- So the
composition (-) is well-defined.
Ad (ml). Suppose given m,n,m',n',m",n” € Zsy and [f]=¢€ (&> (m,n), [f']= <( ))(m n')

=
and [f"]= € ((730)>(m n”). We have

(fl=R[f12)Bf"= = [f&p, FI=R[f"]=
= [(f &p, ') Bp, [']=
= [f &p, (f &, f)]=
= [fl=R[f Bp, f']=

= [fl=R([fl=R[f"]=).

]
Ad (m2). Suppose given m,n € Z=o and [f]= € (%) . Then we have

[f]_ ] [ldPo7 ]_ = [f Xp, 1d7)07 ]E [f]E = [idPO,O Pof]E = [idPD,U]E [f]E :



Ad (cl).  Suppose given m,n,k,l € Zso and [f]=¢€ ((—EO)> (m,n), [g]= € (%) (n,k) and
[h]- e ((E))(k I). We have

Ad (c2). Suppose given m,n € Z=q and [f]= € (%)(m n). Then we have

[fl= - [idpynl= = [f p, idpynl= = [fl= = [idpyn po fl= = [idpynl= - [fl=-
)m.n), [

Il
m
N
up
N———
3
S
\_:

Suppose given m,n,k,m'.n’, k' € Z=p and [f]= <(=

mcl). -
(Z’;) k) and [¢']= € (fo))(n k'). We have

v

f&p f'l=- 98P, 9']=
(f .730 ) “Po (g XIp, /)]E

(f=B[f1=) - (g]=R1g']=) = [
=
[(f “Po 9) Bpy (f Py 9')]=
=
(

fpogl=BILf Py 9=
[f1=-[o]=) R ([f']=[9]=)-

Ad (mc2). Suppose given m € Z=o. We have

. X . xim
[idpym]= = [ dpf,o ]E = [1d7>071] .

Hence (73 0) is a set-preoperad.

Definition 2.39. Let Py be a set-preoperad and (=) be a congruence on Py. The congruence class

morphism po := pg,=) : Po — % is defined as follows. For m,n € Z>q we let

po(m,n) : Po(m,n) — (é)(m, n)
fr—1fl=.

This defines a morphism since pg(m,n) for m,n € Z>( maps identity elements to identity elements

and the composition and multiplication on (Pf) are defined using the composition and multiplication

of representatives.

Lemma 2.40 (Universal property of the factor set-preoperad). Let Py and Qq be set-preoperads.
Let (=) € Py x Py be a congruence on Py with generating set X € Py x Py, i.e. (=) = (=x).

Let o : Po —> Qo be a morphism of set-preoperads such that foo(m,n) = fgpg(m,n) form,n € Zxg
and (f,f) € X(m,n). Then there exists a uniquely determined morphism of set-preoperads
Do : (7);0) — Qg such that popo = @o-

Po 2 Qo

7
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Proof. Existence. Define ¢g = (@o(m, n))mn=0 by

@o(m,n) : (Z;O))(m, n) — Qu(m,n)
[f]E = f@O(mvn)

for m,n e Z=g .

For m,n € Zso and (f,f) € X(m,n) we have foy = feo, hence (f,f) € (=9°)(m,n);
cf. Lemma 2.37. So (=%°)(m,n) is a congruence on Py with X < (=%°). So by the definition of the
generated congruence we have (=) = (=x) € (=%°). So for m,n € Zsg and for f, f € Py(m,n) with
[flz = [f]E we have foo = fio, so the map @ is well-defined.

Now we have to show that ¢q is a morphism of set-preoperads.
First note that for m € Z>o we have [idp, m]=p0 = idp,m po = idgym -

Moreover, for m,n, k,m’,n' € Zy and f € Po(m,n), f' € Po(m',n’), g € P(n, k) we have

(fl=®@[f1=)@0 = [f Bp, [l=%0
= (f&p, )0
= fooXa, f'eo
= [fl=@0 Ko, [/ 1=%0

and

([f]= - [9]=)@0 = [f “py 9l=P0
= (f P, 9o
= [0 -0 90
= [f]1=%0 -0, [9]=%0-
So @p is a morphism of set-preoperads. Moreover, for m,n € Z=o and f € Py(m,n) we have
f(po®o) = [fl=Po = feo. Hence po@o = wo.
Uniqueness. Let xq : % —> Qg be a morphism of set-preoperads such that pgxg = @o. Then for

m,n € Zxo and f € Py(m,n) we have [fl=po = fevo = f(poxo) = [fl=xo, hence gy = xo. O

2.6 Ideals of linear preoperads

Much like in the study of rings we will now introduce ideals of linear preoperads. This
will lead to linear factor preoperads similar to the construction for set-preoperads.

Definition 2.41. Let P be a linear preoperad over R and let Z = (Z(m,n)) be a biindexed

set. We say that Z is an ideal of P if (I1) and (I2) hold.

m,nz=0

(I1) Z(m,n) € P(m,n) is a submodule for m,n € Z=g .

(I12) For m,n,k,m’,n’ € Z=o we have
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Example 2.42. Let P, Q be linear preoperads over R and let ¢ : P — Q be a morphism of linear
preoperads. The kernel of ¢ given by (ker ) (m,n) := ker(¢(m,n)) is an ideal of P.

Ad (I1). Since the maps ¢(m,n) : P(m,n) — Q(m,n) are linear maps, ker(p(m,n)) € P(m,n) is
a submodule for m,n € Zg .

Ad (I2). Suppose given m,n,m’,n’ € Zz¢ and f € P(m,n), f' € P(m/,n’). Then we have

(fRp )= (fe)=p (f'¢) .

If we choose f € ker(p(m,n)), then fo(m,n) = 0. Since (Xp) is R-linear, we have (f Xlp ') ¢ =0,
which shows (mr). If we choose f’ € ker(o(m’,n')), then f'p(m’,n’) = 0. Hence (fXp f')p = 0,
showing (ml).

Now suppose given m,n, k € Z=o and f € P(m,n), g € P(n, k). Then we have

(fPg)e=(fe)r(gp).

If we choose f € ker(p(m,n)) then fo(m,n) = 0. Since (+p) is R-linear, we have (f -p g)¢ = 0,
which shows (cr). If we choose g € ker(y(n, k)) then gp(n,k) = 0. Hence (f -p g) p = 0, showing

(cl).
Lemma 2.43. Let J be a set. Let P be a linear preoperad. Let T; < P be an ideal of P for j € J.
Then the intersection (| Z; = ( N Z;(m, n)) is also an ideal of P.

jEJ jEJ m,nZO
Proof. Ad (I1). The intersection (] Zj(m,n) < P(m,n) is a submodule since Z;(m,n) < P(m,n)
is a submodule for j € J. g€’

Ad (12). Suppose given m,n,m’,n’ € Z=p and f € () Zj(m,n) and f' € P(m/,n’). That is, we have

feZjm,n) for je J. e’

Then by (12) for Z; we have fXKp f' € Zj(m+m/,n+n') for j € J, hence f &Kp f' € () Zj(m +m/,n+n'),

which shows (mr). Analogously, (ml) holds. jeJ

Now suppose given m,n,k,l € Zzo and f € () Z;j(m,n), g € P(n,k) and h € () Z;(k,l), so

JjeJ JjeJ

feZj(m,n) and h € Z;(k,l) for j € J. By (I) for Z; we have f -p g € Z;(m, k) and g -p h € Z;(n,l)

for je J,so f-pge ()Zj(m,k)and g -p h € () Z;j(n,l), which shows (cr) and (cl). O
jeJ JjeJ

Definition 2.44. Let P be a linear preoperad and let X € P be a biindexed subset. The ideal
generated by X is defined by

el X = ﬂ{I C P :7is an ideal with X C I}.

From Lemma 2.43 we know that (X ) is an ideal of P. It is the smallest ideal of P containing
X, ie. given an ideal Z € P with X € Z, then we have (X )< T.

We say that X is a generating set for the ideal . (X ).

Remark 2.45. Let 7 € P be an ideal of the linear preoperad P. Then the ideal generated by Z is
7 itself. So every ideal has a generating set.

Similar to factor set-preoperads we are now able to define linear factor preoperads.

Definition 2.46 (linear factor preoperad). Let P be a linear preoperad over R. Let Z be an ideal
of P. We define the linear factor preoperad % as follows.
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Let (%)(m,n) = 7;(%2)) ={f+Z(m,n): f € P(m,n)} for m,n € Zx .
We often write [f]z := f + Z(m,n) for f e P(m,n) and m,n € Zxo .

Let id(z) L, o= 1dpm +Z(m,m) = [idp |z for m e Zxg .

z

The multiplication is given by

(&) := (

X]

%) : (g)(m, n)® (g)(m',n') — (g) (m+m',n+n)
[flz@[fr— [flzR[f ]z = [f&p f];

for m,n,m',n' € Z=g.

The composition is given by

0= (- () ommo (B — (D)ot

[flz®lglz — [flz - 9]z == [f P 9lz
for m,n, k € Zxg .

First we will show that the multiplication and composition maps are well-defined. Note that by
Lemma 1.2 it suffices to show that the corresponding maps

(B (Dot — (Dot

([f1z,[fz) — [f &p 1z

for m,n,m’,n’ € Z>( and

()< ()00 — (Z)m)
([f1z,[9)z) — [f P 9lz
for m,n, k € Z>¢ are well-defined and bilinear.

Suppose given m,n, m’,n’ € Z>o and f.f € P(m,n) such that [f]z = [flz and f', f' € P(m/,n’)
such that [f']z = [f']z, that is f — f € Z(m,n) and f'— f" € Z(m/,n'). Since (Xlp) is linear we have
fRp f = f&p [ =fRp [ = R f + [P ' — [ f

=(f-H&Ep f = f&p (f' =)

Now since f — f € Z(m,n), by (mr) we have (f — f)Np f' e Z(m + m',n + n’). Moreover,

since f' — f' € Z(m',n’), by (ml) we have f p (f' — f') € Z(m + m',n + n'). Hence we have
fRp f'—fEp ffeZim+m/,n+n),so[fEp flz =[fXp f]z. This shows that the map is
well-defined.

It is bilinear since for m,n,m’,n’ € Z>o and f1, fo € P(m,n), f' € P(m',n') and r € R we have

(([Alz +rlfalo), [f'12) = ([fr + 7 f2lz, [f]z) and
[(fr+7rf)Rp [, = [(ARp f)+r(fa&p )], = [ARe ] +7 [ 2B f];

and analogously for the second argument.
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Now suppose given m,n, k € Zzo and f, f € P(m,n) such that [f]z = [f]z and ¢,§ € P(n, k) such
that [¢g]z = [9]z, that is, f — f € Z(m,n) and g — g € Z(n, k). Since (-p) is linear we have

fo—fa=rfa—fa+fa—fq
=(f- g+ flg—23).

Now since f — f € Z(m,n), by (cr) we have (f — f)g € Z(m, k). Moreover, since g — g € Z(n, k), by

(cl) we have f(g — §) € Z(m, k). Hence we have f -p g — f -p g€ Z(m,k), so [f -pglr = [f p Jlz-
This shows that the map is well-defined. Using the definition of the residue classes [f]z and the
linearity of (+p) we see that it is a bilinear map.

This shows that ([X]) and (-) are well-defined.

Ad (M1). Suppose given m,n,m’,n’,m” . n" € Zsqy, as well as f € P(m,n), f' € P(m/,n') and
1" e P(m”,n"). Then we have

[Az® (2= [fz) = [flz R Bp f7]z
= [f&p (f &p )]z
=[(f&p ) Rp fz
=f&p flzR[f"]z
=([flzR[f'l0) B[]z

Ad (M2). Suppose given m,n € Z=o and f € P(m,n). Then we have

[flz X [idpolz = [f Bp idpolz = [flz = [idpoXp flz = [idpolz K [f]z-

Ad (C1). Suppose given m,n, k,l € Z=o and f € P(m,n), g € P(n,k) and h € P(k,l). Then we have

[flz - ([9]z - [h]z) = [flz - [9 -» hlz
fr(g-ph)lz
(fpg)Pphlz
fpylz-[hlz
[flz - l9lz) - [Pz -

|
=1
|
=
(

Ad (C2). Suppose given m,n € Z=o and f € P(m,n). Then we have
[flz - idpalz = [f -pidpalz = [flz = [idpm pflz = [idpm]z - [f]z -

Ad (MC1). Suppose given m,n,k,m',n', k' € Z=o and f € P(m,n), f' € P(m',n'), g € P(n,k) and
g € P(n',k"). Then we have

(f1z8[f12) - ([9lz®g']z) = [ &P f]z - [9Xp 9]z
= [(f&p [) P (9R&p 9],
=[(fPr9Rp (frd)];
=[frolzR[f »d]z
= (

f
[£1z - [9]D) & ([f')z - [9']2)-

Ad (MC2). For m € Zzq we have [idp ]z = [idF5™ |, = [idp 1 ]7"
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Definition 2.47. The residue class morphism p := pr : P — 7 is defined as follows. For
m,n € Z=o we let

p(m,n) : P(m,n) — (;) (m,n)

fr—=f+Z(m,n)=[flz.

This defines a morphism since the p(m,n) are R- linear, map identity elements to identity ele-
ments and since the composition and multiplication on % are defined using the composition and

multiplication of representatives.

Lemma 2.48 (Universal property of the linear factor preoperad). Let P and Q be linear preoperads
over R. Let T be an ideal of P with generating set X € P, d.e. T=  (X).

Let o : P —> Q be a morphism of linear preoperads such that xo(m,n) = 0 for m,n € Zxq and
x € X(m,n). Then there exists a uniquely determined morphism of linear preoperads @ : % — Q
such that pp = .

Proof. Ezistence. Define @ = (p(m,n)) by

m,nz=0

o(m,n) : (g) (m,n) — Q(m,n)
[f]I — f‘P(m7 n)
for m,n € Zxg .

For m,n € Z=o and x € X (m,n) we have xp(m,n) = 0, hence x € ker(y)(m,n); cf. Example 2.42. So
ker(yp) is an ideal in P with X < ker(y). Hence we have ., (X ) =7 < ker(p). So for m,n € Zzq
and f € Z(m,n) we have fp(m,n) = 0. This shows that the biindexed map ¢ is well-defined.

Now we have to show that ¢ is a morphism of linear preoperads.
First note that for m € Z>( we have [idp ,,|7¢ = idp m ¢ = idgm -
Moreover, for m,n,m’,n’,k € Z=o and f € P(m,n), f' € P(m/,n’) and g € P(n, k) we have
(1z&8[f'z) 2 = [f B flzo
=(f=p e
= feRo f'e
= [flzp Ko [f']z7

and

([flz-l9lz) ¢ = [f - 9lzp
=(frg9e

fe-agy

[f1z¢ -2 [9]z¢-

So @ is a morphism of linear preoperads. Furthermore, for m,n € Z>¢ and f € P(m,n) we have
f(pp) = [flz¢ = fo- Hence pp = ¢.

Uniqueness. Let x : % —> Q be a morphism of linear preoperads such that px = ¢. Then for
m,n € Zzo and f € P(m,n) we have [f]z¢ = fo = f(px) = [flzx, hence ¢ = x. O
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Lemma 2.49. Let P and Q be linear preoperads over R and let ¢ : P —> Q be a morphism of
linear preoperads. Recall that the kernel ker(p) of ¢ is an ideal in P; ¢f. Example 2.42 and that the
image Im(p) of ¢ is a linear-subpreoperad of Q; cf. Example 2.30 (1).

We have the isomorphism 1) : ﬁ(@ —> Im(p) defined by

P
ker ¢
[f]ker(cp) — ng

vm.n) s () (m.n) — Im(p)(m, n)

form,neZxq.

Proof. Since fo(m,n) = 0 for m,n € Zxo and f € (ker(y))(m,n), by Lemma 2.48 there exists a
uniquely determined morphism of linear preoperads ¢ such that pg = ¢. It is defined by

P
ker(¢p)

@(m,n) : ( )(m, n) — Q(m,n)

[f]ker(cp) = f@(m7 Tl)

So given [f]ker(q,) € (%) (m,n), we have [f]ker(@)gé(m, n) € Im(p)(m,n). So define ¢ := ¢|Im(@).

We know that ) : kerL(@) — Im(y) is a morphism of linear preoperads. We have to show that it is

an isomorphism. By Lemma 2.20 it suffices to show that ¢(m,n) is bijective for m,n € Z>y .

Injectivity. Suppose given [f]ker(go)a [f]ker(ap) € %@(mv n) with [f]ker(@)¢(m7 TL) = [f]ker(@)¢(m7 TL)
But that implies

f@(m7 7’L) = [f]ker(cp)@(m? n) = [f]ker(¢)¢(m? n) = [f]v,/}(m, TL) = [f]ker(ap)@(rnﬂ TL) = f@(m> 7’L),

hence 0 = fo(m,n) — fo(m,n) = (f — fle(m,n). So we have f — f € ker(¢)(m,n), hence

[flker(p) = [flker(p)- This shows that 1 (m,n) is injective.

Surjectivity. Suppose given g € Im(p)(m,n). Then there exists f € P(m,n) with g = fp(m,n),
hence [flker(p)¥(m,n) = fo(m,n) = g. This shows that ¢(m,n) is surjective. O

2.7 A comparison Lemma for congruences and ideals

Definition 2.50. Let Py be a set-preoperad and Y € Py x Py be a biindexed subset. Define the
biindexed subset Dy := (Dy (m,n))mn=0 S RPy as follows. For m,n € Z>¢ let

DY(m7n) = {f - f: (fvf) € Y(man)} = RPO
Then we can define an ideal of RPy by

Iy := <Dy>§R'P0.

ideal
Note that for biindexed subsets Y, Z € Py x Py with Y © Z we have Dy € Dy, hence Zy € Z.
In particular, given a biindexed subset Y € Py x Py, then Dy S D=y, hence Zy < L=y -

Definition 2.51. Let Py be a set-preoperad and let Z € RPy be an ideal. We define the biindexed
subset C7 = (Cz(m,n))mnz0 S Po x Py as follows. For m,n € Zz let

Cz(m,n) := {(f, f) € (Po x Po)(m,n) : f — f € Z(m,n)} S Pox Py.

Lemma 2.52. The biindezed subset Ct S Py x Py is a congruence on Py .
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Proof. Let m,n € Z=p. We show that Cz(m,n) is an equivalence relation on Py(m,n).

For f € Po(m,n) we have f — f =0 € Z(m,n), so (f, f) € Cz(m,n). Moreover, for f. f € Po(m,n)

with (f, f) € Cz(m,n) we have f — f € Z(m,n), so we have f — f = —(f — f) € Z(m,n), hence

(f,f) € Cz(m,n). Furthermore, suppose given f, f, f € ?o(m, n) with (f, f),~(f,f) e Cz(m,n).

This means that f — f, f — f € Z(m,n). So we have f — f = (f — f) + (f = f) € Z(m,n), hence

(f,f) € Cz(m,n).

Now we show that C'7 is a congruence on Py .

Suppose given m,n,m’,n’ € Zzo and (f, f) e Cz(m,n), (f',f) € Cz(m/,n'). That is, we have

f—f€e€eZI(m,n)and f' — f € Z(m',n'). Then we have

(fRf)-(fRf) = (R~ (R +(RS) - (FRS) = (F=HRF)+ (R~ f") € Zmtm', nn'),

since 7 is an ideal in RPy. So we have (f R f', fR f') € Cz(m +m/,n +n').

Now suppose given m, n, k € Z=g and (f, f) € Cz(m,n), (g,§) € Cz(n, k). So we have f—f € Z(m, n)

and g — g € Z(n, k). Then we have
f9-FD=U-9-F+F-9-F-=(F-D-9)+ (- (9—9) € Z(m, k),

since 7 is an ideal in RPy. So we have (f - g, f - §) € Cz(m, k).

This shows that C'7 is a congruence on Py . O

Lemma 2.53. Let Py be a set-preoperad and let Y < Py x Py be a bitndexed subset. Then we have
Iy =TI=y); cf. Definition 2.50.

!
Proof. Since we already know that Zy € Z—,, we have to show that Z—,,) € Zy.

!
Moreover, since Zy =, ( Dy ) and L=y = .. (D(=,)), it suffices to show that D=, ) S Zy,
since then we have that Zy is an ideal of RPy containing D(—, ), so by the definition of the generated
ideal we have Z— ) € Zy ; cf. Definition 2.44.

Let m,n € Zsq. First note that for (f, f) € Y (m,n) we have f — f € Dy(m,n), so in particular
f—f € Iy(m,n). So we have (f,f) € Cz,(m,n). Hence we have Y € Cz, . Since (=y) is the
congruence on Py generated by Y, we have (=y) € Cz, , since Cz, is also a congruence on Py
containing Y’; cf. Lemma 2.52.

Now let d € D(—,y(m,n). So there exist f, f € Po(m,n) such that d = f— f and (f, f) € (=y)(m,n).
Since (=y) € Cr,, , we have (f, f) € Cz, (m,n), hence d = f — f € Ty (m, n).

This shows that D=, ) € Zy is a biindexed subset and completes the proof. ]

Lemma 2.54 (Comparison Lemma). Let Py be a set-preoperad and let Y < Py x Py be a biindezed
subset. Recall that we have defined the biindexed subset Dy = (Dy(m,n))mn=0 S RPo by

DY(m7n) = {f_f: (fuf) EY(m7n)}

for m,n € Z=q and the ideal Iy := {Dy » in RPy in Definition 2.50.

ideal

Let (=y) € Py x Py be the congruence on Py generated by Y .

Then there exists the isomorphism of linear preoperads

‘ Po RPy
XPo.Y * R((Ey)) — ?
Yol —| X i = Y il
fEPo(m,n) fePo(m,n) v fEPo(m,n)

form,neZ=g.
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Proof. Note that by Lemma 2.53 we have Zy = Zi=,y. We abbreviate Z := Zy = 7= . Further-
more, we denote by [f]y := [f]=, the congruence class of f € Py(m,n) for m,n € Zz( with respect
to (Ey)

Let g : Pp — @ be the composed morphism of set-preoperads

Bp
Po—> RPy ——= 0,
v
®0

cf. Definition 2.22 and Definition 2.47.

Suppose given m, n € Zzo and (f, f) € Y(m,n). Then we have f — f € Dy(m,n), hence in particular
f—feI(m,n), ie. [flz =[flz. So we have

feo=fBrep = fr=1flz=1flz = fr = FBrop = feo.

So by the universal property of the factor set-preoperad there exists a uniquely determined morphism

Do : (zf/) — @ of set-preoperads such that popo = ¢¢; cf. Lemma 2.40.

Since % is a linear preoperad and since @g : (;)3) — @ is a morphism of set-preoperads,

by Lemma 2.23 there exists a uniquely determined morphism Qg : R( (53 ) — % of linear

preoperads such that 8 », @o = @ -

=y)

So we have the following commutative diagram.

p
Py —2> RPy > EPu

Note that for m,n € Zzo and >, r¢[fly € (R(

fePo(m,n) )) (m,n) we have

Po
(=y)

( 2 rf[fh’)éo 25 v ([flv@o)

fePo(m,n) fePo(m,n)

2208 ry(feo)

f€Po(m,n)

= 2 Ty (fﬁpop)

f€Po(m,n)

= > rr(fp)

Po(m,n)

fe
= > relflz
fe

Po(m,n)

o

- [ 2 rff]z’

f€Po(m,n)

SO XPo,Y = ¥0 -
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On the other hand, let ¥y : Py — R((;Dg)) be the composed morphism of set-preoperads

5(770)
po P =y P
et )

Yo

Since R(éi%) is a linear preoperad and since g : Py —> R((gg)) is a morphism of set-preoperads,

by Lemma 2.23 there exists a uniquely determined morphism 1[10 : RPy — R( (;0/)> of linear
preoperads such that Bpolﬁo =g .

Suppose given m, n € Z=q and z € Dy (m,n). This means that = f — f for some (f, f) € Y (m,n).

In particular, we have [f]y = [f]y . Then we have

a0 = (f — f)vo
= f1bo — fibo
Zf(Poﬁ%)—f(Poﬂ(;;o))

=[flyB ro — e

=y) =y)

=[fly = lfly

So we have Dy < ker(t)g). Since Z =, ( Dy ), we can apply Lemma 2.48.

Hence there exists a uniquely determined morphism of linear preoperads 1&0 : @ — R( (£§)> such
that pyo = 1.

So we have the following commutative diagram.

B(PO )
PO P =Y P
Po =) R(Z)
IBP‘L /
Yo
RPy -
Yo
|
RPo
T

Note that for m,n € Z=(y and [ >, Ty f] € (%) (m,n) we have
fePo(m,n) z

[ = ot 2 (2 s)ido
255y (fvo)

fePo(m,n)

= 2 Tf(fpoﬁ%)

f€Po(m,n)

= > re([flvBr )

f€Po(m,n) (=y)

= > relfly-

f€Po(m,n)
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So for m,n € Z=q we have

Z Tf[f]Y)@oleZ[ Z Tff] Yo = Z ri[fly

fePo(m,n) fePo(m,n) fePo(m,n)
> Tff]ziﬁovﬁ?o:( > Tf[f]Y)éO:[ > Tff]I,
fePo(m,n) fePo(m,n) fePo(m,n)
hence Q/B\OQZO =id Po and 12060 =id RPgy -
R(2) T
S0 XPpyy = Qo : R(éi%) — Rf“ is an isomorphism of linear preoperads. ]

2.8 Some basic examples

2.8.1 Some preoperads

We will now give basic examples of both set-preoperads and linear preoperads over R
that will be needed later.

Definition 2.55. Let X be a set. Define the set-preoperad Endg(X) as follows.

e Let Endo(X)(m,n) := {f: X*™ L x*nisa map} for m,n € Zs.
e Let id,, := idgndy,m := idyxm for m € Z>o .

e Let the multiplication (X]) := (Klgnd,) be the cartesian product of maps, that is, given
m,n,m’,n’ € Z=o and f € Endy(X)(m,n), f' € Endo(X)(m’,n’) then for x1,..., 2y p € X
we have

(@1, T ) (F L) = (1, ) f X (@sty e o T )
where (21,...,2Zm)f X (Tma1s---s Tmemy) S is defined by joining the tuples, that is, given
Ylye ooy Ynans € X, then (Y1, .., Un) X (Unstlys -« s Ynans) = (Yl -« o s YUns YUntls - - - s Ynn?)-

e Let the composition (-) := (‘gnd,) be given by the composition of maps, so given m,n,k € Zxg
and f € Endo(X)(m,n), g € Endo(X)(n, k), then for z1,...z,, € X we have

(@1, Zm)(f “Bndy 9) = (@1, ..., 2m)(fg) = ((:Ul,...,ajm)f)g.

Now we will show that this is actually a set-preoperad.

Ad (m1). First note that joining tuples is associative. Suppose given m,n,k,m’ . n' k' € Zxo,
f € Endg(m,n), f' € Endo(X)(m/,n") and f” € Endo(X)(m”,n”). Then for z1,...,Tmimamr € X
we have

(l'l? SUR) xm+m’+m”)((f f/) f”)
= (mlv' ,merm’)(f f/) X ($m+m’+1, .- ~a$m+m’+m”)f”
= (@1, 2m) f X @msts - T ) ) X (@415 -« > Toncpms o) S
T1,. s ) f X (($m+1a e amerm’)fl X (Tmam/+1s- - - 7xm+m’+m”)f”)

7xm)f X (xm-i-h s xm-ﬁ-m’-&-m”)(f/ f”)
7xm+m’+m”) (f (f/ f”)) .

= (z1,...
= (z1,...
= (z1,...

X,
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Ad (m2). Suppose given m,n € Z=¢ and f € Endo(X)(m,n). Then for z1,...,z, € X we have

@1 ) (Bide) = (@1, ) x )/ Bido)
= (xl,...,:pm)f X ()ido
=(21,...,2m)f x ()
=(x1,...,2m)f,

where () is the empty tuple, the only element of X 0.

In the same way we see that (x1,...,2n)(1doXf) = (x1,...,2m)f for x1,..., 2, € X. So we have

fXidg = f =idgXf.
Ad (cl). The composition of maps is known to be associative.

Ad (c2). Suppose given m,n € Z=o and f € Endo(X)(m,n). Then for xi,...,z, € X we have

(xl,...,xm)(f-id)z((xl,.. )f)idn
= (21, om) f
((xl,.. 1dm)
= (21, )(dm f)-

Ad (mcl). Suppose given m,n, k,m',n' k' € Z=o and f € Endo(X)(m,n), f' € Endo(X)(m',n'),
g € Endo(X)(n, k) and ¢ € Endg(n/, k). For x1,...,Zpmim € X we have

1y ) f X ($m+1,~~-»$m+m')f,) (9=g')

1- JUm)f)Q x ((:Eerlv e ,ﬂfm+m’)f’)gl

21,y ) (f 2 9) X (Titts s T (f - 9')

Iy, . xm+m’)((f'9)(fl'gl))'

Ad (mc2). Suppose given m € Zxo and x1,...,2, € X. We have

(1, xm)idy = (21, ..., ) = ((x11dy), ..., (T idy)) = (:cl,...,xm)(idm).

(wla-'wZEerm’)(ff g.g

— (@
((x

= (
= (

This shows that Endg(X) is in fact a set-preoperad.

We will also need a similar linear preoperad over R.

Definition 2.56. Let V be an R-module. Define the linear preoperad End(V') as follows.
e Let End(V)(m,n) := Hompg (V™ V) for m,n € Zs

e Let idy, := idgnd,m := idyem for m € Zzg .

e The multiplication (Kgnq) := (®) is given by the tensor product of R-linear maps, that is,
given m,n,m',n’ € Z=o and f € End(V)(m,n), f' € End(V)(m’,n’), we have

(V1® ... QU ®Vns1® ... QUniny) ([ ) =(11®...QUm) [ ® (U1 ® ... @ Vyyns) [
for v1,...,Vmam € V. This defines an R-linear map.

e The composition (gnq) := (+) is given by the composition of maps, so given m,n, k € Z=o and
feEnd(V)(m,n), g € End(V)(n, k), we have

(1@ . @un)(f Enag) = (1®...Qum)(fg) = (11 ®...Qum)f)g

for vi,...,v, € V. This also defines an R-linear map.
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We now have to show that this in fact is a linear preoperad over R.
Ad (M1). The tensor product (®) of R-linear maps is known to be associative.
Ad (M2). Suppose given m,n € Z=q and f € End(V)(m,n). Since V& = R we have

(M ®...0Uy) (dyeo ®f) = (1 ®...Qun) f

for vy, ..., v € V, hence idg®f = f. In the same way we obtain f ®idy = f.
Ad (C1). The composition of maps is known to be associative.

Ad (C2). Suppose given m € Z=¢ and f € End(V)(m,n). Then for vy,...,v, € V we have

(M ®...QUm) (i[dnf) = (11®...Qun) f
= ((1}1®1)m)f) ldn
= (11 ®...®v)(f idy).

So we have id,,, -f = f = f - id, .

Ad (MC1). Suppose given m,n,k,m',n' k' € Z=o and f € End(V)(m,n), f' € End(V)(m',n'),
g € End(V)(n, k) and ¢’ € End(V)(n/,k"). Then for v1,..., vy € V we have

U ® ... @V ®Vms1 ® - @ Vms) (f®F) - (9®)))

(M ®.. . OV ®Unt1 ® .. @ Uy ) ([ ® [)) (9® )
((m R...QUn)f® (V1 ®... ®Um+m’)f/)(9®gl)
(11 ®...®vn))I® (Vmi1® .. @ Vpsm) ) g’
01®... . Qun)(f9) @ Va1 ® - .. @ Vg ) (- 4
v1®...®1}m®vm+1®---®Um+m’)((f'9)®(fl 'gl))~

=
=
So (f®@f)-(9g@g)=(f-9)@(f 9.
Ad (MC2). For m € Z=¢ and vy, ..., v, we have
(M®...0UR)idn=01®...0U, =(id])®...® (v,idy) = (v1®...®vm)id(1@m.
So id, = id®™.
This shows that End(V) is in fact a linear preoperad.

We will also often use the following set-preoperad.

Definition 2.57. The set-preoperad Map is defined as follows.

e Let Mapy(m,n) := {f : [1,m] 7, [1,n] is a map} for m,n € Z> .
e Let idy, := idMapy,m = id[1 ], the identity map on [1,m] for m € Zxo.
e The multiplication is given by

(50) = (Eatap) : Mapp(m, n) x Mapg(m', n') —> Mapq(m +m’,n + ')
(f.f) — fEf

for m,n,m’,n' € Z=o, where for i € [1,m + m/] we have

if if i € [1,m]

Hrer) = {(i—m)f+n if i€ [m+1,m+m].
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e The composition (-) := (-map,) is the composition of maps, so given m,n,k € Zxo and
f € Mapy(m,n), g € Mapy(n, k) then for i € [1, m] we let

i(f "Map, g) =i(fg) = (if)g.

Informally, multiplication is given by stacking the maps and renumbering. Pictorially, we have e.g.

W N

T N =
x]

Now we will show that this defines a set-preoperad.
Note that for m,n,m’,n’ € Zso, f € Mapy(m,n) and f' € Mapy(m’,n’) and i € [1,m + m'] we have

iW(fRf)e[l,n] < iell,m].

Ad (ml1). Suppose given m,n,m',n',m"n" € Z=y and f € Mapy(m,n), f' € Mapy,(m’,n’) and

1" € Mapy(m”,n”). Then for i € [1,m +m' + m”] we have

. g £ 2f
(== m) {(i-m)(f'f”)"‘n

if
(t—m)f' +n
((i=m)—m)f"+n+n

if
(t—m)f' +n

(i—(m+m"))f"+(n+n)

i(f = f")

(i—(m+m"))f"+ n+n)
= i((fR )R "),

if i e [1,m]
ifie[m+1,m+m +m"]

if i e [1,m]

if i —me[l,m]

ifi—me[m +1,m +m"

if i e [1,m]
ifie[m+1,m+m]
ifie[m+m'+1,m+m' +m”]
if i e [1,m+m]

ifie[m+m +1,m+m'+m’|

Ad (m2). Suppose given m,n € Z=q and f € Mapy(m,n). Then for i € [1,m + 0] we have

id
i (idg XIf) {Z(i—o())f—i-o
if
if
(1 —m)idy +n
=i (f Xido) .

ifie[l,0] =2
ifie[0+1,0+m]

if i e [1,m]
ifiem+1,m+0] =0

Ad (cl). The composition of maps is known to be associative.

Ad (¢2). Suppose given m,n € Zx¢ and f € Mapy(m,n) then for i € [1, m] we have

i(f-idy) = (if)id, = if = (iidp) f = i(idm - f).
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Ad (mcl). Suppose given m,n,k,m’,n' k' € Zsy and f € Mapy(m,n), f' € Mapy,(m',n'),
g € Mapy(n, k) and g’ € Map,(n’, k"). Then for i € [1, m + m'] we have

e (o = JTTE (8 ) € [Ln]
B e = { GBS~ ) + i (/@ L) € [+ Ln+ 1
i(fEf)g if i e [1,m]

G f=f—n)g +k ifie[m+1,m+m]
(if)g if i € [1,m]
((G—=m)f'+n)—n)gd +k ifie[m+1,m+m']
i(f9) if i € [1,m)]

( —m) )+ k ifie[m+1,m+m]

i( f))

Ad (mc2). We prove this via induction on m > 0. For m = 0 this is the definition. Now let m > 1

and assume that we already know id,, 1 = d.(m Ve Mapy(m — 1,m — 1). Then for i € [1,m] we
have

$idP = i (1" Y &id, )

i if i [1,m— 1]
_{(i—(m—l))idl—i-(m—l) if i =m
 (iidp ifie[l,m—1]
_{(i—(m—l))—i-(m—l) if i =m

=1 =1id,,

This proves that Map, is a set-preoperad.
The next two examples are certain set-subpreoperads of the set-preoperad Mapy, .
Definition 2.58. Define the set-subpreoperad Assy of Map, by

Assg(m,n) := {f € Mapy(m,n) : f is monotone} € Mapy(m,n)
for m,n € Zxg .
We have to verify the axioms (s1)—(s3) from Lemma 2.27 to show that Assg is a set-subpreoperad
of Map, and hence a set-preoperad.
Ad (s1). We know that Asso(m,n) € Mapy(m,n) for m,n € Zx .

Ad (s2). Suppose given m € Z>q . The identity map id,, = idmap,,m : [1,m] — [1,m] is monotone,
hence id,, € Assg .

Ad (s3). Suppose given m,n,m'.n’ € Zsq, f € Assog(m,n) and f' € Assg(m',n’). Then for
i,7 € [1,m +m/] with i < j we have

| o (if if i € [1,m]
Z(ff)_{(i—m)f’Jrn if i € [m + 1,m +m/]

SRS - i“e{ ]

f
{(j—m)f’+n ifjem+1,m+m].
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Case 1: j € [1,m]. Then, since i < j, we have i € [1, m]. Now since f is monotone, we have
R f) =if <if =i(f@af).
Case 2: j € [m+1,m+m']. There are two possibilities: either also i € [m +1,m +m/] or i € [1,m].

If i € [1,m], then
(fRf) =if<n<(G-—m)f +n=4(f&E[f).

Ifi,5€[m+1,m+m'], then i —m < j —m and since f’ is monotone we have
(B =>G-mf +n<(@G-m)f +n=5fRf)

This shows that (f X f') < j(f X f') for i € [1,m + m']. So f[X f’ is a monotone map, hence
f e Asso(m + m!,n +n’).

Now suppose given m,n,k € Z>qo, f € Asso(m,n) and g € Assg(n, k). Then f -\ap, g is also a
monotone map, since for ¢, j € [1,m] with ¢ < j we have

i(f9) = (if)g < (5.f)g = i(f9)-
This shows (s3).

So Assy is a set-subpreoperad of Map,. Hence Assg is a set-preoperad.

Definition 2.59. Define the set-subpreoperad Sym, of Map, by
Symg(m,n) := {f € Mapy(m,n) : f is bijective} < Mapy(m,n)

for m,n e Zxg.

Again, to show that this is a set-preoperad we are going to verify the axioms (sl)-(s3) from
Lemma 2.27 to show that Sym is a set-subpreoperad of Map .

Ad (s1). We already know that Symg(m,n) € Mapy(m,n) for m,n € Zxq .
Ad (s2). Suppose given m € Zzq. The identity map id,, = idmapy,m : [1,m] — [1,m] is bijective,
hence id,, € Symg(m,m).

Ad (s3). Suppose given m,n,m',n’ € Zso and f € Symy(m,n), f' € Symo(m’,n’). Since f and f’
are bijective, there exist inverse maps f ! € Mapy(n, m) and f'~1 € Mapy(n/,m’). That is, we have
FF =i, FU = idy, fF = idy and 7L = id, .

So by (mc2) for Map, we have

FRMFTRSH =R

id,, Xid,,

idm-i—m’

F'RAHURS) =FTTHRE
= id,, X]id,,

= idpyar,

so f X f’is bijective. Hence f[X f' € Symy(m + m/,n +n’).

Now let m,n,k € Z=o and f € Symy(m,n), g € Symy(n, k). The composite of bijective maps is
known to be bijective. Hence fg € Symg(m, k).

This shows that Sym, is a set-subpreoperad of Map, and hence a set-preoperad.
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Definition 2.60. We define the following linear preoperads; cf. Remark 2.12.

e Map := RMapg with multiplication (Khap) := R(XMap,) and composition (‘Map) := R(-Map,)-
Recall that this means that for m,n,k,m’,n’ € Z>¢ and > rgf € Map(m,n),
feMapg(m,n)
>, 'y f' € Map(m/,n) and Y. Sg9 € Map(n, k) we have
f'eMapg(m/ n’) geMap (n,k)

( 2 rf f) XMap ( Z r}’ f/) = Z rf r}/ (f Mapo f,)

feMapg(m,n) f'eMapg(m/,n’) feMapy(m,n)
f'eMapgy(m’,n")

( Z rf f) "Map ( 2 Sg 9) = 2 T'fSg (f "Mapg g).
feMapg(m,n) geMapq(n,k) feMapg(m,n)
geMapg(n,k)

e Ass:= R Assy with multiplication (Klass) := R(Xlass,) and composition (-ass) := R(-Assg)-

e Sym := RSym, with multiplication (Xlsym) := R(Xlsym,) and composition (-sym) := R(-sym,)-

The linear preoperads Ass and Sym are linear subpreoperads of the linear preoperad Map.

2.8.2 Some morphisms of preoperads

Definition 2.61. Let X be a set. Define the biindexed map
eo = (¢0(m,n))m.n=0 : Mapy” — Endg(X)
as follows. Given f°P € Mapy(m,n) (corresponding to a map f : [1,n] — [1,m]), we define
fPeo(m,n) : XM — XX
(@1, Tm) > (T1f, - - Tng).

Lemma 2.62. The bitndexed map e : Mapgp —> Endy(X) is a morphism of set-preoperads.

Proof. First note that for m € Z»g and z1,...,z, € X we have
(.%'1, - ,a:m)(idMapgp’m 20) = (171, - ,xm) ((idMapo,m)Opeo)
= (371 idMapO,m’ <o Tm idMapO,m)
= (mla s >xm)‘

Hence idMapgp ¢o = idXXm = idEndO,m

Now suppose given m,n,m’,n’ € Zso and f°P € Mapg"(m,n), f'°° € Mapy®(m/,n’). Then for
X1y ey Topany € X by defining y; := x4y, for i € [1,m'] we have

(@15 s T ) (P Btapee ' P)eo = (21, T ) (f Btap, f')Peo

TA(f Bitapg £1)7 -+ 2 T (nen) (f Ritapy 1))

Tify oo s Tnfs Tnal—n) fvms - - s L(nn!—n) f+m)
Tify..- xnf,x1f1+m,...,;vn/f/+m)

TUfy ey Tnf s YLfrs s Ynlf)

1, ) (fPe0) X (Y1, -+ Y ) (f Peo)

see s Ty YLy o Y ) (P00 BEnd, fPe0)
T, $m+m')(f°p90 KEnd, /' °Peo)-

T

—_

(
= (
=
=
=
= (
= (
= (
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So we have (fOp Mapgp f’OP)eo = (fOPQO) Endo (f’OPeo).
Now suppose given m,n, k € Zzo and f°P € Map"(m,n), g°P € Mapy® (n, k).

Then for x1,...,2, € S by defining y; := x;; for i € [1,n] we have

(155 2m)(f°Pe0) “Endy (97Pe0) = (w1, .-, Tny) (97 e0)
= (Y1, Yn)(g"e0)
(ylga e 7ykg)
(w(lg)fv (k) f)
= (219 mk(gf))
(:'31, Zm)((9 Map, f)*"e0)
= @1 2 (P pgagir 97)e0)-

So we have (f°Peg) ‘End, (¢°Pe0) = (f°P “MapgP 9°P)eo

This shows that eg is a morphism of set-preoperads. O

Example 2.63. Suppose given a set X. Let (1,2) € Sym((2,2) be the transposition. Then
(1,2)°Pey € Endo(X)(2,2) is the map

(1,2)%Peq: X*%2 — X*2
(z1,72) — (551(1,2)7332(1,2)) = (z2,71).
Definition 2.64. Let V be an R-module. Define the biindexed map
e = (e(m,n))mn=0 : Sym®® — End(V)

as follows. Using linear extension, it suffices to define ¢ by the images of elements f°P € Symg"(m, m)
for m € Z>g since Sym®® = R Symg".

So given m € Zx¢ and f°P € Symg"(m, m) we define

fPe(m,m) : yem ., yem

U1®...®Uml—>1)1f®...®vmf.

We need to verify that this map is well-defined. In order to do this, consider the corresponding map
F);e(m,m) : yxm _, yom
(V1. Um) Fo V1@ .. QU
for m € Z=¢ . By Lemma 1.2 it suffices to show that this map is R-multilinear.

Let i € [1,m] and v1,...,vi—1,Vit1,...,Um € V. Let k € Z>o and v; j € V and r; € R for j € [1, k].
We have to show that we have

—— 1 ——
(Ulw--yvzel, Z iji,javiﬂ,---,Um>(f°p€) = Z 75 (V15 ooy Vi1, Vijy Vit s - - -, Um) (fOPe).

JE[1,k] JE[1,k]

Define v; := )] 7;v;;. Since f is bijective, there exists a unique ! € [1,m] such that I[f = i, in
JE[LK]
particular, uf € [1,m]\{i} for u € [1,m]\{l}.

66



So we have
(o1 vty D Tyttt v ) ()
JE[1,k]
= (vl,...,vm)(ﬁe)
=01 ®...0U_1)f QUi OUit1)f Q... @Uny
=01 ®...QU_1)f QUi QV11)f D ... Unf

= Ulf@---®v(l_1)f® ( Z T‘j’l)m’) ®U(l+1)f®---®vmf

JE[L,K]
= Z 7 (V1f @ ... ®VUg_1)f Vi @ V(41)f ® ... @ V)
Jjell,k]
- i (1 @ ®va1)r ®Vif; O V11)f B - - @ Upf)
Je[1,k]
= Z Tj ('Ul, ey Vi1, U5 5, Vg1, - - - Um)(f/‘);e)
Jell,k]

This shows that (ﬁ;e)(m, m) is a multilinear map for m € Z= , hence (f°Pe)(m,m) is a well-defined
linear map for m,n € Zxq .

Lemma 2.65. The biindezed map ¢ : Sym°® — End(V') is a morphism of linear preoperads.

Proof. Recall that by Lemma 2.23 it suffices to show that the restricted map Symg” — End(V) is
a morphism of set-preoperads.

First note that for m € Z-g and v1,...,v, € V we have
(M®...® Um)(idsymgp,m ) =(1n®...Quy,) ((idsymmm)Ope)
=1 idsym()’m ® e ® Um idSymO,m
=1 Q... Uy,
hence idsymgp’m ¢ = idv@m = idEnd(V),m .
Now suppose given m,m’ € Z=q and f°P € Symg"(m,m), f'°P € Symg”(m/, m’).

Then for v1,...,Upmim € V by defining w; := v; 4y, for i € [1,m’] we have

(V1 ® . @ Vi) (fP Bgymer f/P)e = (11 ® ... @ Vo) (f Bsym, f')Pe
= V1(f Ksymg ') ®... ®v(m+m’)(fsym0f’)
=V1f Q... QUnf @ Vims1-m)f'+m ® - Q Vmim! —m) ' +m
=V Q... QUnf@Uiffim®...0Unys1m
=01 Q... QU @wipr @ ... R Wyy
=1 ®...0U) [Pe@ (W ®... 0 wy)f Pe
=1 ® ... QUn QW Q... R wy)(fPe® fPe)
= (11 ® .. ®Vnim ) ([P Hrna [ Pe).

50 (fP Bgymge f'P)e = fPe® f'Pe = fPeXpna [/ Pe.
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Now suppose given m € Zxg and f°P, ¢°? € Symg’(m,m). Then for vi,...,v, € V by defining
w; := vy for i € [1,m] we have

(V1 ®... ®VUm)(fP¢) ‘End (97¢) = (Vif @ ... @vnyr)(g™¢)
= (01 ®...®wpy)(g°e)
=W Q... QO Wny
= V(1g)f & - - @ V(mg)s
= Vi(gf) @ O Unm(gy)
= (V1®...®vn)(g -sym, f)Pe
= (11 ®...0un)(f7 "Symg? g>P)e.

S0 (P -gymor g°P)e = fPe “pna g°Pe.

Hence by Lemma 2.23 the biindexed map ¢ : Sym®® — End(V) is a morphism of linear preoperads.
O

Example 2.66. Suppose given an R-module V. Let (1,2) € Sym(2,2) be the transposition. Then
(1,2)°Pe € End(V')(2,2) is the R-linear map defined by

(1,2)Pe: V&2, y&2

V1 @ V2 > V1(1,2) @ V2(1,2) = V2 ® V1

for vi,v9 € V.
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3 Absolute operads

The original concept of an operad is not the same as the preoperads described above. In
this section we will give the usual definition of a (non-symmetric) operad and show how
an operad (which we will call an absolute operad) can be obtained from a preoperad.

Definition 3.1. An absolute operad PP in the category of R-modules consists of

e R-modules PP5(m) for m € Z=o,
e an element I € P*>5(1) called unit,
e R-linear composition maps
(o) : P (m) @ P™(n) — P™(m +n - 1)
f®gr—Ffog
for i € [1,m] and m,n € Z>y,

such that for m,n, k € Z=q, f € P2P5(m), g € P***(n) and h € P**5(k) the following axioms hold.

(A1) We have (fqg> o h= <f9h>qgfori,je[l,m] with 7 < j.

Jj+n—1 J
(A2) We have (fqg) o h=fo (gqh) for i € [1,m] and j € [1,n].
i Jj+i—1 % J

(U) Wehavef?fzfzfqlforie[l,m];

cf. [1, 1.1] or [12, Definition II1.1.16 | (“pseudo-operad”).

Lemma 3.2. Let (P,[x],-) be a linear preoperad over R. Define P?P5(m) := P(m,1) for m € Z=o.
Then PP together with I := idp 1 and the composition maps

(o) : P™*m) @ P (n) — P™(m +n 1)
f®gr— f?g = (idpi—1 XgX¥idpm—i) - f

s an absolute operad as in Definition 3.1.

Proof. Ad (Al). Suppose given i, j € [1,m] with ¢ < j. Then we have

(15 )]+n1h = (idjpn2BARidpn1—en-) - (f 2 9)
= (idjrn 2P idn ;) - (fog)

=  (idjpn—2XhXidp—;) - (idi—1 g Kidpm—) - f
M) (i1 Ridy Bidj_i—1 A Ridm—;) - (idi—1 Kg Bidj_s_ Did; Didm;) - f
YEY (idi 1 B (idy -9) iy B (- idy) Ridi ) - f

@ (dim(g- idy) & id;—i—1 X (idy -h) Kidp—j) - f
EMEI; idi—1 X g Xidj—i—1 Kidg Kidm—;) - (idi—1 Kid; Kidj—i—1 KA Kidy—j) - f
MC2

(id
= (1 i1 Xg Xidpyyp—1— z) (1djflxhidmfj)'f
(1 i— l.g.ldm+k 1— 2)(f?h)

QD
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Ad (A2). Let i € [1,m] and j € [1,n]. Then we have

(Fea) o h = (2B Bidpin1—rion) - (f29)
= (idji 2 XA Xidpyn—i—j) - (fog)
(idji—2 XA X idpmqn—i—j) - (id;—1 X g &Xidm—s) - f
=" (idjm1 Xidj—1 A K idp—; Kidy—i) - (idi—1 K g Midm—;) - f
(idi—1 X ((idj_1 XA K idp—j) - 9) Ridpm—i) - f
= (idi-1 (g ° h) ®idy—i) - f

= reofon).

Ad (U). We have

Tof=fI=fid & f

and for ¢ € [1,m] we have

fol = (idj—1 X¥id; Kidpm—;) - f (e idy, - f () f.

O]

Definition 3.3. Let P and Q" be absolute operads. A morphism s : Pabs — Qabs ,f
absolute operads consists of R-linear maps ¢®%(m) : P2P5(m) — Q®%(m) such that (1) and (2)
hold.

(1) We have Ipansp(1) = Igabs -

(2) We have (o g)@(m +n 1) = (fo™*(m)) o (99*(n)) for m,n € Zo and [ € P%(m),
g € P?5(n) and i € [1,m];

cf. [3, §4] or [11, Definition 6], called “homomorphism” in the latter.
We write 0 = (0*5(m))m=0 : PP — Q25 for the morphism.

For m € Z=q and f € PP (m) we will also write fp®s := f*S(m) if it is clear which map ¢?P(m)
is involved.

Lemma 3.4. Let P, Q be linear preoperads over R and let ¢ = (¢(m,n))mnz0 : P —> Q be a
morphism of linear preoperads. Define ©***(m) := @(m, 1) for m € Zxg .

Then @ = (p*5(m))m=0 : PP —> Q% s a morphism of absolute operads as in Definition 3.3.

Proof. Since ¢ is a morphism of linear preoperads we have
Ipans ™5 (1) = idp 1 (1,1) = idg,1 = Igabs.
Suppose given m,n € Zxo and f € PP5(m) = P(m, 1), g € P?P5(n) = P(n,1) and i € [1,m]. Then

we have
(fgg)sﬂabs = (fogly
(ldm 159 Bidp.m—i)f)e
= ((idp.i-1 Mg Ridpm—i)e) - (fo)
((dp,i—1 ) B (99) K (idp,m—i ¢)) - (f¢)
(lsz 1.(980abs).1de i) (f‘Pabs)
(fe abs) o (99™).
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Note that during this calculation ¢ had to be applied to terms that do not appear in the absolute
operad. ]

Remark 3.5.

(1) Let P be a linear preoperad over R and idp : P —> P be the identity morphism. Then
id%‘;bs : Pabs _, Pabs ig the identity morphism of absolute operads.

et P, Qan e linear preoperads over R. Let ¢ : P — O an Q0 — € morphisms
2) Let P, Q and R be li d R. Letp:P Q and Q R b hi
of linear preoperads. Then we have (p1))2Ps = absypabs,

This means that

(=) : (linear preoperads) —> (absolute operads)
P Pabs
o —> (Pabs

is a functor from the category of linear preoperads to the category of absolute operads.
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4 The free preoperad

Our aim in this chapter will be to define the free set-preoperad Freeg(X) on a biindexed
set X. By construction, the set-preoperad Freep(X) will contain equivalence classes of
words which are built from letters being elements of X, formally multiplied with identities
on both sides.

4.1 Operations on words

For all of §4.1, let (X, s,t) be a biindexed set.

Recall that this means that X is a set and that s : X — Z>g and t : X — Z>( are maps. Recall
that we write X(m,n) = {x € X : s = m and at = n} for m,n € Zzp and X = (X(m,n))mn=0-
Note that for z € X we have x € X (xs, xt).

Furthermore, for x € X we write xd := 2t — xs € Z.

Definition 4.1. We define

Words(X) := {qo(l1, z1,71)q1(l2, 22,72)q2 - @ro—1 (i Tk, 1) Qi = k € Zg,
liyri € Zso, x; € X forie[1,k],

gi—1 =l + ;s +r; and ¢; = l; + xit + 1 for i € [1, k]}.

Note that for w = qo(l1, x1,71)q1(l2, 2,72)q2 * - - qk—1 (I, T, 71 ) g € Words(X) we have
li+xit +ri = qi = liy1 + Tit1s + i1
forie |1,k —1].

Given w = qo(l1, z1,71)q1 (l2, T2, 72)q2 - - - Q—1 (I, Tk, Tk ) @1 € Words(X), we say that w has length k.
Note that words of length 0 are of the form w = gg for gy € Z~g .

Furthermore, we extend the maps s : X — Z>g and t : X —> Z>o on Words(X) as follows. For
w = qo(l1,21,71)q1(l2, 22,72)q2 "+ - qre—1 (L, Tk, 7 ) g € Words(X) we let ws = gp and wt = g . So if
k > 1 we have ws = q9 = l1 + 18 + 1 and wt = q = Il + xit + . We have the biindexed set
(Words(X), s, t).

Remark 4.2. We have the biindexed map
X — Words(X)
x —> xs(0,z,0)xt.
We can define a composition on the biindexed set Words(X') as follows:

(1) : Words(X)(m,n) x Words(X)(n,p) — Words(X)(m, p)

(w,v) —> wv

for m,n,p € Z=q, where for w = qo(l1,21,71)q1 - * - @g—1(lg, Tk, k) g € Words(X) such that ¢g = m
and qx = n and for v = po(A1, Y1, P1)P1 * * Pr—1(Aus Yss P )P € Words(X) such that pg = n and
Px = p we have

wv = qo(l1, z1,71)q1 -+ Qe—1 (L, Tk, TR) @ (A1, Y1, pUIPL -+ - Pre1(Ai, Y Pi) D -

Note that g =n = pg .
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Remark 4.3. Note that this composition is associative, i.e. given w,v,u € Words(X) such that
wt = vs and vt = us, then we have
(wv)u = w(vu).

We will often illustrate such words as follows.

Iy

\ ly /
= ) lo — e
1 =
x S I ' L
w = T18 z1 1t
r2 = o TS T Tkt
T
=
\
1 I
1 q q2 T _
= -
\
q0 qr—1

qk

Remark 4.4. Suppose given a word w = qo(l1,21,71)q1 - - qk—1(lg, Tk, 7k ) g € Words(X). Then for
i € |1, k| we have

qi —qi—1 = (li+$it+7’i) — (ll +ﬂf7;8+7‘i)
=Tt — Ts

= xid

and for 4, j € [0, k] with ¢ < j we have

G—a= ), (u—qu1)= Y, wd

u€li+1,7] u€li+1,7]
Now consider the following relation on Words(X).
Definition 4.5 (Elementary equivalence of words). Let

w = qo (l1,71,71) q1 " - qr—1 (g, Tk, 71) @ € Words(X)
w = (jo(il,:fl, fl)(jl A (j,;fl(fl;,fc,;,f,;)q,; S WOI‘dS(X)

be two words. We say that w is elementarily equivalent to w, written w ~ w, if k = k and if there
exists ¢ € [1,k — 1] such that

o [ +xit <ljyq

R

o~

o l;=1;,r;=7;and x; =T, for j e [1,k]\ {i,i + 1}
q; = q; for j € [0, K]\ {i}

o li=liy1 —wid, Tj = w11 and T, = 14

® i1 =1 Tiy1 =x; and Ti41 =1 + 1541d

® Gi=¢qi11 TG 1.

73



Note that if k£ € {0,1}, then w # .

Pictorially, we have that the word w described by

~
S

L

liv1

liv1

8
)
8
N
8
<

B

Tit18 Tit+1 Tiy1t

T \
Ti+1
\ Ti+1
qi—1
di+1
is elementarily equivalent to the word w described by
=
&
L = = |
3
] 3
= +
Tit18 Li+1 Tip1t ¥ _ 8
\ ) - ¥
I p
Ti+1 < =
q Tit+1
i—1 \
L — qi+1

Qi+1 + qi—1 — ¢

where the dotted regions of w and @ coincide.

Remark 4.6. Let w = qo (I1,21,71) q1°* - qx—1 (Ig, Tk, 7)) @ € Words(X). Suppose that there exists
i€ |1,k — 1] such that l; + z;t < l;11 . Define

lj:=1;, 7 :=rj and &j := x; for j e [1,k]\{i,i + 1}
o qj :=q; for j € [0,k]\{i}

[ lz‘ = lz‘+1 - l’id, i‘i = T4l and fz‘ =T+

~

o [iv1:=1;, Tir1:=m; and Tiq11 =1 + xi1d
® Gi:=G¢+1+GG-1—G-

Then w = (jo(il,i'l, 771)(?1 R (jkfl(ik,i‘k,fk)qk € WOI"dS(X) and w ~ 0.

Proof. We have to show that @ € Words(X); cf. Definition 4.1.
First note that l} =ljy1 —x;d = ljy1 — it + x;8 = I; + 235 = 0 and that
Fit1 = Ti + Tiy1d
=7+ Tit1l — X418
= (g — li — zit) + is1t — @it1s
=741 T Tip18 + i1 — i — 2t + w01t — 2418
=11+ (i1 =l —xit) + 2441t

= riv1 +xipe1t = 0.
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Moreover, for j € [1,k]\ {i,i + 1} we have

lj-i-i‘jt-i-?:j:lj-i-l’jt-i-rjZq]'Zij.

Finally, we have

li +Zis + 7 = liv1 — xid + Ti418 + 11
= ¢ — xid
=q — (¢ — qi1)
=qi-1
=qi-1

li + &t + 7 = liyy — @3d + 21t + 71
= lit1 + Tit15 + Tig1 — Tip15 — Tid + T4t
= qi + Tip1d — zd
=q; + (i+1 — @) — (¢ — ¢i—1)
=(qi+1 +¢qi-1 — q;
=g

lish + Tis1S + Fiz1 =l + xis + 15 + xi1d

=l +xit +r; —xit + ;8 + v;1d
=q; — xid + zi11d
=¢ — (¢ — ¢i—1) + (i1 — @)
=qi+1 T qi—1 — G
=G

liv1 + Tip1t + Tip1 = l; + @it + i + i41d

= ¢ + Tiy1d
= qi + (¢i+1 — @)
= dqi+1
= Git1-
Thus, w € Words(X). By construction, we have w ~ . O

When dealing with elementary equivalence of words we will often omit those parts of the words that
coincide, writing

(- qim1(lis @i, 1) @il 1, Tige1s i) Qi1 -+ )
~(cqim(lign — widy gy, 1) (@1 + Gim1 — @) (L, iy 1 + Tip1d)gigr -+ ).

Remark 4.7. Let w = qo (l1,21,71) q1 - - @k—1 (I, Tk, 7)) g € Words(X). Suppose thet there exists
i€ [1,k — 1] such that l; = liy1 + x;4158. Define

o lj:=1;,&j:=xj and 7j :=r; for je[l,k—1]\{i,i + 1}
qj := q; for j € [0, k] \ {i}

[ lz = li+1 ) :Z‘Z' = Ti41 and ’I:i =Ti41 — mzd

liv1:=1l;i + ®ip1d, Tiy1 := x; and Tipq =1

4 qé =qi—1 +qit1 — q; .
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Then = Go(l1, %1, 71)q1 - - - Gt (I, T, 7 ) G € Words(X) and o ~ w.

Proof. We have to show that @ € Words(X); cf. Definition 4.1.
First note that Z,L'Jrl =li+xzi1d=li +xip1s+Hxid =11 +xi0qt = Zz + Z;,1t = 0 and that

T =Tiy1 — Tid

= Tiy1 — Tt + 238

= (¢ — lit1 — @iv18) — it + 238

=l +xit+r,— li+1 — Xi118 — x;t + ;8

= (lz —liv1 — :EiJrlS) +r; +x;8

Moreover, for j € [1, k]\ {¢,i + 1} we have
Zj‘f‘ﬂ?jf"i‘fj:lj-i—l’jt-i-rjqu'zcjj.

Finally, we have

li+ &5 + 7 = (lix1 + @ip15 +rip1) — 2d
= (l; + xit +r;) — (mit — x;8)
=l +xz;s+T;
=qi-1
= qi-1

li + it + 7 = iyt + Tioat 4+ rip1 — x4d
= lit1 + ®it18 + i1 + Tip1d — xid
=q; + (¢i+1 — @) — (¢ — qi-1)
=Gi+1 T -1 — ¢
=g

liv1 + &ip15 + Fis1 = li + xio1d + xis + 15
=l +xzit+r; —x;d+ Ti01d
=q— (¢ —qi-1) + (¢ir1 — @)
= qi+1 T ¢i-1 — G
=G
liv1 + Fip1t + Fip1 = i + 2 d + it + 1y

= (li + wit +7i) + (Tit1t — Ti15)
= (lit1 + is15 + 7riv1) + (Tigat — Ti418)
=liy1 + Tt + i
= {qi+1

= Gi+1-

So w € Words(X).
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Recall that I; = ;11 + x;,15 implies lNZ-H = l~i + Z;t. Therefore we have

( “Qi— 1(l~ i i) il z+1,33z+1,7’z+1)%+1 )

(- Gim1(livr — Zid, Figr, Fia1) (i1 + Gimr — @) (s Ti, i + Tisrd)Gier -+
( “Gi—1(li + Tip1d — wip1d, 2, 73) Gilivr, Tigr, Tip1 — Tid + 2id) g - )
(- qi-a(

w.

¢

*qi—1 lmwzyrz)(h( 2+17$Z+17r1+1)QZ+1 )

Hence w ~ w. O]

Pictorially, we have that w is described by

liv1
liva

2

- li Ti+18 Ti+1 i1t
x;S ZT; x;t _ Tit1
\ Tit1 -
Ti
T
gi—1 \
L qit1
qi
and that w is described by
lit1 / +
lz+1 -@_‘ §
x = +
) T T;S X; it
2 s
| = | \
5
: S
= ;i
G dit+1 +qz'—1—QN
i
qi+1

Definition 4.8 (The equivalence relation (~)). Now we define (=) to be the equivalence relation
on Words(X) generated by (~).

Recall that this means w ~ w if and only if there exist words v1,...,v, for some n > 1 such that
w = vy, W = vy, and such that v; ~ v;11 or vi41 ~ v; for i € [1,n — 1]; cf. Definition 1.11.

Write [w] for the equivalence class of the word w with respect to (=).

Note that given w,w € Words(X) such that w ~ @, then we have ws = ws, wt = Wt and the two
words have the same length.

Definition 4.9. Let w = qo (1, z1,71) q1 * - qk—1 (I, Tk, 1) g1 € Words(X)(qo, qx) and let g € Z=o .
Define

—~

weq:= (g +q) (1,71, +q) (@1 + @) - (@r—1 + @) (I, Tk, 1 + @) (qr + )
g<w:=(q+qo)(¢+l,z1,7m1) (¢+q1) (g + qu—1) (¢ + s vr, 1) (¢ + q)-
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Note that w = q, ¢ < w € Words(X)(qo + ¢, qx + q)-

Lemma 4.10 (Properties of (=) and (<)). Let m,n,h € Z=o and let w,w € Words(X)(m,n) with
[w] = [w] and v € Words(X)(n,h). Let p,q € Z=qo . Then we have

(i) (wegep=(wep)eg=we(p+q) andp<(gow)=g<(p<w)=(p+q<w
(i) p<(weq) = (pow) =¢q

(iii) (wv) =g = (we=q)(veq) and ¢< (wv) = (¢<w)(g<v)

(iv) [weq] = [@eq] and [¢<w] = [¢<w].

Proof. Write

w = qo(l1,x1,m)q1 - Qr—1 (U, Tho, 1) Qe

W = qo(l,Z1,71)q1 - * Qe—1(lis Tho, T ) G

v = po(A1, Y1, P1)PL " Pr—1(Ars Yns Pr) P -
Soqo=m = qo, g =n = G = po and p, = h.
Ad (i). We will show the property for (=). We have

(weq) =p
= ((0 + U, z1,m1 + )qr + @) - (qe—1 + @)U, T, i + Q) (@ + @) =P
= (g +q+p)l,z1,r1+q+p) @ +q+p) (@G- +q+p) Uk, 2k, 7 + ¢+ P) ek + ¢ +p)
=we(q+p)
= (w>p)>q.

Ad (ii). We have

p<(wegq)
=p< (g0 + @), z1,71 + ) (a1 + @) - (qe—1 + @) (U The, i + @) (qk + )
=(P+eo+gpth,z,m+qp+a+q - (P+ag-1+0®+lkrere+0) P+ g+ q)
=((p+)+h,z1,r)p+q) @+ % 1)@+ zem) P+ @) >q
=(p<w)r>gq.

Ad (iii). We will show the property for (). We have

(wv) ¢
= (o1, z1,m1)q1 - - @1 (ls T, T)PO(A L, Y15 P1IPL -+ - Pre1 (A Ynes P )Pr) B G
= (g0 + @)(lr, 21,71 + Q) (@1 + @) -+ (@1 + Ol T, Tk + @) (Po + @) (A1, 91, p1 + @) (p1 + ) -+
o (Pr1 + Qs U, P + @) (P + @)
= (w>q)(ve>q).

Ad (iv): Consider the map

Words(X)
(%)

w— [w > q].

f: Words(X) —

Recall that we have w, w € Words(X )(m,n) with [w] = [@] and that we have to show that wf = wf.
By Lemma 1.12, we can assume w ~ w.
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So there exists ¢ € [1,k — 1] such that I; + z;t < [;11 and we have le =1;, 7j =r; and ¥; = x; for
je[lk—=1]\{i,i+ 1} and g; = g; for j € [0, k]\{i} as well as l; = liy1 — xid, T = Tip1, Ti = Tig1,
G = Qiv1 +qi—1 — G, liv1 = 1l;, Tip1 = x; and 741 = r; + 211d; cf. Definition 4.5.

Then
weq=(q0+q) (g1 + Q)i xi, i + @) (@ + @) lit1, Tiv1, riv1 + Q) (@1 + @) -+ (g + q)
weq=1(q+q) (-1 + ), T, 7 + Q) (@ + @) li1, Tig1, Tig1 + O (Git1 + @) -+ (g + q)-
We have [; +x;t < l;11 and Zj =1, fj—i:q =r;+qgand T; = x; fOI‘j e[l,k—1]\{i,i+1} and qgj = qj

for j € [0, k]\ {i}. Moreover, we have l; = l;11 — x;d, Tj = Tit1, lit1 = l; and T11 = x;, as well as
Tit+q =rit1+q, Tirx1+q = ri+q+ripid and Gi+q = ¢iv1+¢i1—qi+q = (¢ir1+9)+(gi-1+9) — (g +q).

So we have w ¢ ~ @ >g¢q. So in particular wf = [w>¢q| = [0 >¢q] = O f.

The corresponding property for (<) follows analogously, except for the inequality, which is satisfied
since (I; + q) + zit < l11 +q. O

Definition 4.11. Let w € Words(X). Let g € Zx( . Define [w]>q := [w>q] and ¢g< [w] := [¢<w].

Lemma 4.12. Let w,v € Words(X) be words of length 1, i.e. w = ws(l, z,r)wt and v = vs(\, y, p)vt
for some l,r, A, p € Z=o and x,y € X. Then we have

(vws) - (vt<w) ~ (vs<w) - (v >wt).
Proof. We have A\+yt = vt—p < vt+I, so by the definition of elementary equivalence in Definition 4.5
we have

(vws) - (vt<w) = (vs +ws)(A\,y, p + ws)(vt + ws)(l + vt, z, ) (wt + vt)
~ (vs +ws)(, z,7)G(\ y, p)(wt + vt),

where
li=l4vt—yd=1+N+yt+p)—(t—ys)=l+N+ys+p) =1+uvs
G := (wt + vt) + (ws + vs) — (vt + ws) = wt + vt + ws + vs — vt — ws = wt + vs
p=prws+ad=p+(+zs+r)+(at—axs)=p+ (I +at+r)=p+uwt

So we have

(vews) - (vt<w) = (vs +ws)(A\,y, p + ws)(vt + ws)(l + vt, z, ) (wt + vt)
~ (vs +ws)(l +vs,z,r)(wt +vs)(\,y, p + wt)(wt + vt)

= (vs<w) - (v =>wt).

Pictorially, we have that, given

s xt

ys yt

T

wt
VS

g
@
-
>
[ <= \
S

vt
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then

\
= A
by =
P A —
ys Yy yt s — g —
+ = + + = + ys ) yt
\ = < = S \
g T E
+ =~ RS '\ xrs €T 2t + = S
Q + x +
s | ws E ot — g
» _ r &
/ r -
= r .
r wt + vs \
Vs + ws \ [ ws + vs
wt + vt vt + wit

vt + ws

Lemma 4.13. Suppose given w,v € Words(X) such that v is of length 1. Then we have

(vews) - (vt<w) ~ (vs<w) - (v>wt).

Proof. Write v = vs(\,y, p)vt, where A\, p € Z=¢ and y € X and write

w = qo(li,z1,71)q1 ** * Qh—1 (s T Th) G -
Note that go = ws and ¢, = wt.

If k = 0 the assertion holds because then w = ¢qp € Z»o and we have
(vews) - (vt<w) = (veqp) - (g +vt) =v>qy = (vs+ qo) - (VEqo) = (vs<w) - (v>wt).

So we may assume that k£ > 1

For i € [1,k] define w; := ¢;—1(l;, x;,7i)q; € Words(X), which is of length 1. We have w;s = ¢;—1
and w;t = ¢; for i € [1, k], so wit = w;+1s for i € [1, k — 1]. Moreover, we have w = wyws - - - wy . By
Lemma 4.10 (iii), we have

(g=w) = (g<(wiws - wp)) = (< wi)(g<=wz) -+ (< wy)
for g € Z>o. So using Lemma 4.12 iteratively, we get

(v ws)(vt < w) ve=wis)(vt < (wy -+ wg))

vews)(vt<twy) - (vt < wy)
V8 < wy

v > was)(vt < we) -+ - (vt < wy)

( )
= )
S (vs < wr) (v = wit)(vt<tws) - - - (vt < wg)
( ) s)
(vs < wr)(vs < wa)(v = wat) - - - (vt < wy)
~ (vs<wr)(vs <t wz) -+ (vs < wg) (v > wgt)
S = (vs < (wy -+ - wg)) (v > wt)

= (vs < w)(v >wt).

So we have (v >ws)(vt<w) = (vs <t w)(v =>wt). O

80



Lemma 4.14. Let v,w € Words(X). We have

(vews) - (vt<w) = (vs<w) - (vwt).

Proof. Note that if v has length 0, then v = pg € Z>¢ and we have
(vews) - (vt<w) = (po +ws) - (po<w) =po<tw = (pp<w) - (pg + wt) = (vs<w) - (v >wt).
So in this case the assertion holds and we may assume that the length of v is at least 1.
As in the proof of Lemma 4.13, we can write
V= V0. .. Uy

where £ > 1 and where v; € Words(X) of length 1 for j € [1, x| such that vis = vs, vet = vt and
vjt = vj1s for j e [1,k—1].

Again we can use Lemma 4.10 (iii). By using Lemma 4.13 iteratively, we get

(v =ws)(vt < w) = ((v1vg - - vg) = ws) (vt < w)
410 (i) (v1 = ws)(ve >ws) - -+ (v = ws) (vt < w)
4.13
~ (v1 = ws) -+« (Vg1 >ws)(vVes < w) (v, = wt)
= (v1 = ws) -+« (Vg1 >ws)(Vg—1t < w) (v, =>wt)
4.13
~ (v1 = ws) -+ (Vg—18 W) (Vg—1 = wt) (v, > wt)
N (18 < w) (v >wt)(vy =wt) - -« (v, =>wt)
4.10 (iii)

S = (vis<w)((vivy---vg) >wt)

= (vs < w)(v >wt).

4.2 Definition of the free set-preoperad
Definition 4.15. Let (X, s,t) be a biindexed set. We define the free set-preoperad Freeg(X) on X
as follows.

As a biindexed set, define Freep(X) := %S)(X) together with the maps

s: Freeg(X) — Zxo t: Freep(X) — Zxo
[w] — ws [w] — wt.

So for
w = qo(l1,z1,71)q1 - qe—1(lg, T, 71 ) @1 € Words(X)

we have [w]s = ws = qo and |w]|t = wt = g ; cf. Remark 4.2.

Hence for m,n € Zx the set Freeo(X)(m,n) consists of equivalence classes [w] with respect to the
equivalence relation (&) of words of the form

w = qo (li,z1,71) q1 (I2, x2,72) g2 - - - qe—1 (I, Tk, 1) @ € Words(X),

where m = qp and n = q; .
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The composition in Freeg(X) is given by
(+) : Freeg(X)(m,n) x Freeg(X)(n,p) — Freeg(X)(m, p)
([w], [v]) /¥ [w] - [v] := [we]

for m,n,pe Z=g.
The multiplication is given by

(X)) : Freep(X)(m,n) x Freep(X)(m',n’) — Freep(X)(m +m',n +n')

([w], [w']) — [w] B [0] == ([w] = w's) - (wt < [w'])

for m,n,m',n’' € Z=.
For m € Zo, the identity element in Freeg(X)(m, m) is idy, := idpreey(x),m := [m], the empty word,
which has length k£ = 0 and [m]s = [m]t = m.
Now we have to show that this in fact defines a set-preoperad.

First we show that the composition is well-defined. It suffices to show that for w, w € Words(X)(m,n)
with w ~ @ and v, v € Words(X)(n, p) with v ~ © we have wv ~ wv and wv = wo; cf. Lemma 1.12.

So suppose given w,w € Words(X )(m,n) with w ~ @ and v € Words(X)(n,p). Write

w = qo(l1,21,71)q1 * ** Q-1 Ui, Th, 1) Qe
W = Go(lh,%1,71)q1 * - Q-1 (Ui, Tho, T G
v = po(A1, Y1, P1)P1 -+ Pre—1 Ny Yes P ) Dre 5

where m = qo = o, n = qx = @x = po, p = pr and where for some i € [1, k] we have l; + z;t < li41
and we have [; = l;, #j = r; and &; = x; for j € [1,k]\{i,i + 1} and §; = ¢; for j € [0,k]\ {i},
as well as l; = lip1 — xid, & = @1, 75 = Tis1, lig1 = b, Fip1 = @y, Fig1 = 75 + v01d and
Gi = qi+1 + ¢i—1 — qi; cf. Definition 4.5.

Then we have

wv = qo(l1, 21, 71)q1 -+ Q=1 Tk, T1) Qe (A1, Y1, P1)P1 - Pr—1 (A, Yoy Pi)Dic
wv = Go(l1, Z1,71)q1 -+ Q=1 (k> The, T ) G ( A1, Y1, P1)PL - - Pre1(Ai, Uiy Pi) Dk -

So the conditions of Definition 4.5 are still satisfied for wv and wv. Hence wv ~ wv, so in particular
WY x W.

Analogously we can also conclude that given w € Words(X)(m,n) and v,v € Words(X)(n, p) with
v ~ D, then we have wv ~ w?.

This shows that the composition is well-defined.

Now we show that the multiplication is well-defined. But we already know that [w] > w's and
ws <1 [w'] are well-defined for v € Words(X)(m,n) and w’ € Words(X)(m/, n'); cf. Lemma 4.10 (iv)
and Definition 4.11. So since the composition is well-defined, the multiplication is also well-defined.

Ad (cl). Suppose given m,n,p,q € Z=o and words w € Words(X)(m,n), v € Words(X)(n,p) and
u € Words(X)(p, q). That is, we have w,v,u € Words(X) with wt = n = vs and vt = p = us. Then
we have



Ad (c2). Suppose given m,n € Zso and w € Words(X)(m,n), i.e. ws = m and wt = n. Then we
have

[w] -id,, = [w] < idy = [w] - [wt] = [w - wt] = [w] = [ws - w] = [ws] - [w] = idys W] = idy, -[w].

Ad (m1). Suppose given w,w’,w"” € Words(X). Note that we have (wt < [w'])t = wt + w't and
([w'] =>w"s)s = w's + w"s. Then we have
([wR[wDE[W] = ((w]=w's) - (wt<[w]) ®[w]

[w] =w's) - (wt< [w])) =w"s) - ((wt +w't) < [w"])

wew's)(wt < w')) = w’s| - [(wt + w't) < w”]

b
=
|

~
—
=
=
=
— o T 1 N

= wew's) = w’s) (wt<w') =w”s)] - [(wt + w't) < w]
4100 (we (W's + w"s)) (wt<w') =w"s)] - [wt< (w't<w")]
4.10 (@) we (w's + w's) )(w (W' =u"s))] -

|
B
v

g,

w

_l’_
S

@

i
—
=)
—
-
=
=
=

- [(wt< (W' =w"s)
I-[ )

wt<1(w =>w's
<]

|
—~
—
S
[——

(ws—i—ws))-(wt ]
w] K (([w] =w"s) - (W't < [w"]))
= [w] B ([w ] [w"]).

|
—

Ad (m2). Suppose given w € Words(X). We have

[w] Xidy = (Jw] =idg s) - (wt < idp)
[w] [0]s) - (wt < [0])

|
AN N oo
|—|S

s] - [w]
0] & ws) - ([0]t = [w])
= (idp >ws) - (idp t < [w])
= idg X[w].

Ad (mcl). Suppose given w,w’,v,v" € Words(X) such that wt = vs and w't = v's. We have

([w] - [v]) B ([w'] - [¢']) wo] B [w'v']

/

wo] =>w's) - (vt < [w'V'])

[
( )
[(wo) = w's] - [t = (w'v')]

= (e w's) (v s u's)] - [(vt <) (vt <))
[wew's] - [(v=w's) (vt < w)] - [t <]
[wew's] - [(vs = w) (v =w't)] - [vt < ]
[(w = w's) (wt < w)] - [(v = 0/s) (vt < )]

J=w's) - (wt< [w]) - ([v] = v's) - (vt < ['])
<[w] [w']) - ([o] & [V']).
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Ad (mc2). We have to show that for m > 0 we have id,, L id™™  We show this via induction on
m = 0.

For m = 0 this is the definition. So let m > 1 and assume that the statement is true for m — 1.

Then we have
i

= i Y xid,
" id g Midy
[m — 1] = [1]
([m — 1] =[1]s) - ([m — 1]t < [1])
= [m-1+1]-[(m-1)+1]
[m] - [m]
[m]
= idyp -
This shows that Freeo(X) is in fact a set-preoperad.

Remark 4.16. Given a finite biindexed set X = {xi,...,x,}, then we often also abbreviate
Freeo(x1,...,zpn) := Freeg({z1,...,zn}).

Remark 4.17. Let m,n,p € Z>o and let [w] € Freeg(X)(m,n). Then we have [w] =>p = [w] Xid,
and p< [w] = id, X [w].

Proof. We have

r—\
I—I
| |

(lw] =idy s) - (wt < idp)
([w] &p) - (wt < [p])
([w]=p) - (

= wt + p)

—_

= [w] =p

(idp mws) - (idy t < [w])
([p] &> ws) - (p= [w])
= (

[p
p+ws)- (p=[w])

p<fw].

id, (9 [w]

4.3 The universal property of the free set-preoperad

Recall that set-preoperads have underlying biindexed sets and that morphisms of set-preoperads are
biindexed maps that are compatible with composition, multiplication and identities.

Definition 4.18. Let (X, s,t) be a biindexed set and let Freep(X) be the free set-preoperad on X;
cf. Definition 4.15.

We define the biindexed map ¢g := ¢9 x : X — Freeg(X) as follows.

to,x : X — Freep(X)
x +—> |xs(0,z, 0)zt]
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Theorem 4.19 (Universal property of the free set-preoperad). Let (X, s,t) be a biindezed set. Let
To be a set-preoperad and oo : X —> To be a bitndezed map.

Then there exists a uniquely determined morphism of set-preoperads ¢q : Freeg(X) — Ty such that
LoPo = ¥o -

X% 7
LO\L 3' )
Freep(X)

Proof. Uniqueness. First note that given w = qo(l1,21,71)q1 - qk—1(lk, T, 71 )q. € Words(X) we
can write
w Z’wl’LUka,

where w; := ¢;—1(l;, x;i,r;)q; for i € [1, k], provided k > 1. If k£ = 0, then w = qo = gy, .
For i € [1, k] we have

idy, ® [i5 (0,21, 0) wt] @idy, "2 1< ([wis (0, 21,0) 24t] = 1)

= [(ll + x;8 + T’i) (li, X, T‘i) (ll + x;t + Tl)]
= g1 (L @iy i) @i
[wi] .

Hence we have

[w] = idg, [urws - - - wg] - idg,
~ idgy-[n] - [z] - [un] - iy
= idg, - (idy, ¥ [z15 (0, 21,0) 21t] K id,, ) - - - (idy, K [xks (0, 2, 0) zxt] Kid,, ) - idg,
= idg, - (idy, K100 Kidy, ) - - - (idy, K ageo X idy, ) - idg, -

Now suppose given a morphism of set-preoperads xo : Freeg(X) — Ty satisfying toxo = ¢o. Then
we have

(1qu (idj, Ma@1eo Midy, ) - - - (idy, K zgeo XMid,, ) - idg, )XO
= (idgq x0) - (idy, K@100 X idy, ) X0 - - - (idy, K@kt K idy, ) x0 - (idg, X0)
= (idg, X0) - (ids; x0 &I (z120) X0 Kidr, X0) - - - (idy,, X0 &K (2x20) X0 K idr, x0) - (idg, X0)
= id7g,q0 *(id 75,1, @100 B id 75 5y ) - - - (id 75 1), K00 K id 75 1, ) - 175,45,

so such a morphism of set-operads xg is uniquely determined by ¢q .
Eristence. First we define a biindexed map ¢o : Words(X) — T as follows.
For w = qo(l1,x1,7m1)q1 -+ - @1k, Tk, k) g € Words(X) define
weo = idr, 4 (id7 1, B0 Bidyg ) - - (id g, R Ridr ) id 7 6. -

Furthermore, define ¢q : Freeg(X) — Ty by

[w]do := wo = id7 g, (id7,1, Kz1eo Kidr,r,) - - - (d7,0, Kareo Kidrg ) id7 g, -
From now on, during this proof we will often write id,, instead of idr; ,, .

By Lemma 1.12, in order to show that ¢q is well-defined, it suffices to show that for w, w € Words(X)
with w ~ W we have wgf)o = wd)o
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So suppose given w,w € Words(X) with w ~ w. We write

w = qo(l1,z1,71)q1 - - Gi—1(liy @i, i) @i (Lig1, Tig1, i 1) Qi1 - = Qe—1 (U, Tk, T ) Qe

W = qo(l,x1,71)q1 - Gim1(lis Tiy 7)) G (Lik 1, Tie1, Tis1) Qi1 -+ Qh—1 (U, Thos T ) Qe

where l; + x;t < i1 and [; = i1 —2id, Ty = @ip1, T = riv1, livt = i, Tiyr = @, Ty = 1+ x41d
and ¢; = ¢iy1 + ¢i—1 — ¢ -

Note that we have

~

woo = (qo(l, z1,71)q1) b0 - (q1 (T2, T2, 72)q2) do - - (qr—1 (I, Thos k) G) PO -
So it suffices to show that

1 - -
(Qz 1(l27l‘u7'2)%)¢0 (QZ( 7,+17x1+177'z+1)%+1)¢0 = (QZ 1(l7,7x277”7,)%)¢0 ( 1(li+17xi+1ari+1)%+1)¢0'

Note that I; + z;t +r; = ¢; = l;+1 + x4415 + riy1, hence
ri + xis1d — (Lig1 — i — zit) = r; + Tip1t — X018 — Liv1 + 1 + @it
=r; +xit +1; — (lio1 + xi418) + Tip1t
= qi — (¢ — riy1) + Tig1t
= Tipv1l + Tig1
This means that l;,1 — l; —x;t + x; 1t +rj01 =1 +x;o1dand Loy — i —xit + 25018+ 101 =15 .
We have
(@i=1 (i, %6, 7)) D0 + (@i (li1, Fie1, Fir1)Giv1) o
= (qi—1(lis1 — mid, T, 7511 (@i + @1 — 60)) b0+ (@1 + gio1 — @) (i, 24,7 + Ti41d)giv1) o
= idg,_, (idy, 1 —a;a K Tir 100 K idy, ) idg, 4,1 —g; (idy, K i00 Kidr; oy, 1a) idg,,
iy, —zda X Tig100 Xidy,, ) - (idy, K200 K idy, 40, 14)
idy, Kidg,s Xidy,,, 1, et M Tip100 Kidy,,, ) - (idy, Ko Kidy, ;¢ Kide, ¢ Kidy,, )
idy, Kida; s - 2500 Kidy,, 1~z M @ip100 - idg;, ¢ Kidy,, )
idy, M @ipo - idge Kidy,, 1, — et Kida, s - Tip10 M idy,, )
idy, M @ipo Midy,, | —1;—a;¢ Xide, s Kidy,, ) - (idy, Kidg, Kidy,, ;-2 KTie190 KMidy,, )
idy, Wzip0 Kidy, ) - (idy,,, Kzip190 Kidy, )
= idg, , (idy, Wi Kidy, ) idg, (idy,, , Kz 41900 K idy,, ) idg,,,
= (gi—1(li, 2, 73)5) b0 - (@i (li+1, Tis1, Tis1)Gis1) P -

o~ =~

This completes the proof that ¢g : Freeg(X) — 7o is a well-defined biindexed map. It remains to
show that it is a morphism of set-preoperads.

First note that we have idpyeeq(x),m ¢0 = [m]po = idyy m for m € Zzg .
For w,v € Words(X) with wt = vs we have
([w] - [e])o = [wv] do = (wv)do = (who) - (vo) = ([w]ho) - ([v]6h0)-

Note that for w = qo(l1,x1,71)q1 - * - @k—1(lk, Tk, Tk ) g € Words(X), where k > 1, and for p € Z>( we
have

([w] = p)do

[(q0 + p)(li, 21,71 + p) (@1 + D) - - (@k—1 + P) Uk, Tk, Tk + ) (ak + P)] 0
= idg+p(idy, K@1900 K idy) 1p) - - - (idyy, K200 K idy, 1p) idg, 4
= (id, Kz190 Xid,, Kidp) - - - (id;, Kz K idy, Kidp)

" (s, Brapo Widy,) - - - (i, Regoo Bidy, ) B (idy - - -id,)

= |w]po Xid,
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This also holds for w = m € Words(X) for m € Zx since [w] = [m] = idpyeey(x),m » hence

([w] =p) ¢o = [m + pl¢o = idmip = idm Kidy = idm ¢o Kidy, = [w]do K id,

In the same way we obtain (p < [w])¢po = id, K[w]¢o for w € Words(X) and p € Zxg .
Now suppose given w,w’ € Words(X). We have

([wlR[whgo = (([w]=w's)- (wt=<[w]))do
[w] & w's)¢o - (wt< [w]
[w]go Bidys) - (id t[w’] ¢0)
[w]go - iduwi) B (idurs -[w']bo)

(
(
(mc2) (
[w]¢o B [w']¢o -

4.4 The universal property of the free linear preoperad

Definition 4.20. Let X = (X(m,n))mn=0 be a biindexed set. We define the linear preoperad
Free(X) on X by Free(X) := RFreeg(X); cf. Definition 4.15 and Remark 2.12. Recall that this
means the following.

e We have Free(X)(m,n) = RFreeg(X)(m,n) for m,n € Z=g .
e We have idFree(X),m = idFreeo(X),m = [m] for m e Z>0 .

e Suppose given m,n,m’,n’ € Z=g.

Then for > r¢ [f] € Free(X)(m,n) and > ry [f'] € Free(X) (m/,n')
feWords(X)(m,n) f'eWords(X)(m/,n')
we have

QD SRR 17:) = GRS Y17 ) ED YTt (1= v )

feWords(X)(m,n) f'eWords(X)(m/,n’) feWords(X)(m,n)
f'eWords(X)(m/,n')

e Suppose given m,n,p € Zq .

Then for > ¢ [f] € Free(X)(m,n) and > g [9] € Free(X)(n,p) we have
feWords(X)(m,n) geWords(X)(n,p)

(% v)me( X nll) - N (U] 9)

feWords(X)(m,n) geWords(X )(n,p) feWords(X)(m,n)
geWords(X)(n,p)
As in the non-linear case, we will often abbreviate Free(z1, ..., x,) := Free({z1,...,z,}) for a finite

biindexed set {z1,...,Z,}.

Definition 4.21. Let (X, s,t) be a biindexed set and let Free(X) be the free linear preoperad on
X; cf. Definition 4.20.

We define the biindexed map ¢ :=tx : X —> Free(X) as follows.

tx + X —> Free(X)
x +— |[xs(0,z,0)xt]
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Theorem 4.22 (Universal property of the free linear preoperad). Let (X, s,t) be a biindexed set.
Let T be a linear preoperad and ¢ : X — T be a biindexed map.

Then there exists a uniquely determined morphism of linear preoperads ¢ : Free(X) — T such that
tp=p.

X—2 T
T

Ll 3

Free(X)

Proof. Viewing T as a set-preoperad, by Theorem 4.19 we know that there exists a uniquely deter-
mined morphism of set-preoperads ¢ : Freeg(X) — T such that gpg = ¢.

Moreover, since Free(X) = RFreep(X), by Lemma 2.23, there exists a uniquely determined mor-
phism of linear preoperads ¢ : Free(X) — T such that [f]¢ = [f]¢o for [f] € Freeop(X)(m,n) and
m,n € Lxq .

So we have a uniquely determined morphism of linear preoperads ¢ : Free(X) — T such that
x1p = [xs(0,z,0)xt]|¢p = [2s(0, x,0)xt]pg = xLoPo = T

for x € X, hence ¢ = ¢. O

4.5 Presentations of preoperads

Definition 4.23. Let X be a biindexed set. Let Y € Freeg(X) x Freep(X) be a biindexed subset and
let (=y) € Freeg(X) x Freep(X) be the congruence on Freeg(X) generated by Y'; cf. Definition 2.35.
Freeg(X)

(=y) -~
Let Py be a set-preoperad. If Py = (X | Y ) for a biindexed set X and a biindexed subset

spo

Y < Freeg(X) x Freep(X), then we say that (X [Y ) is a presentation of Py .

Then we define the set-preoperad (X |Y ) :=

We call X a set of generators and Y a set of relators for Py .

Given finite biindexed sets X = {x1,...,zp} and Y = {y1,...,ym} S Freeg(X) x Freeo(X), we also
often write

Sp0<$1,...,$n | ylv"‘vym>:: Sp0<{$1,...,$n} | {y17aym}>

Lemma 4.24 (Universal property). Let X be a biindexed set. Let Y < Freeg(X) x Freep(X) be a
bitndezed subset and let (=y) < Freeg(X) x Freeg(X) be the congruence generated by Y. Let To be

a set-preoperad and let vo : X —> Ty be a biindexed map such that [floo = [floo for m,n € Z=o

and ([f], [f]) € Y(m,n).

Recall that we have a uniquely determined morphism of set-preoperads ¢ : Freeg(X) — To such
that Lo = o ; ¢f. Theorem 4.19.

Recall the congruence class morphism

Freep(X) _
S = XY

[F1— [LA]y

PO 1= Po,(=y) - Freep(X) —

cf. Definition 2.39.
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Then there exists a uniquely determined morphism of set-preoperads ¢ :

Dol X 1Y) — To such
that (topo)do = o , i.e. such that [[ws(O,:L‘,O)mt]]Yq_SO = xyq for v € X.

Freeo(X) 7
po '.

(X|Y)

Spo

Proof. By Theorem 4.19 the morphism of set-preoperads ¢q : Freeg(X) — 7o exists uniquely.

Moreover, since [f]po = [f]po for m,n € Z=o and ([f],[f]) € Y (m,n), by Lemma 2.40 there exists
Freeo(X) — 7o such that po(;go = ¢p.

(=v)

(X |Y ) —> To such that

a uniquely determined morphism of set-preoperads ¢y :

So we have a unique morphism of set-preoperads ¢ :

spo
Lopodo = Lodo = o -
O

Definition 4.25. Let X be a biindexed set. Let Y < Free(X) be a biindexed subset and let
T:= .. Y ) c Free(X) be the ideal generated by Y’; cf. Definition 2.44.

Free(X
ol X Y= )

Let P be a linear preoperad. If P =~ | (X | Y) for a biindexed set X and a biindexed subset
Y < Free(X) x Free(X), then we say that | (X [Y') is a presentation of P.

Then we define the linear preoperad

We call X a set of generators and Y a set of relations for P.
Given finite biindexed sets X = {z1,...,z,} and Y = {y1,...,ym} S Free(X), we also often write

ol Tl s Tn [ Y1y Ym ) o= @, mnd [ {yn, e ym) )
Lemma 4.26. Let X be a biindered set. Let Y < Free(X) be a biindered subset and let

T:= .. Y ) C Free(X) be the ideal generated by Y. Let T be a linear preoperad and let ¢ : X — T
be a biindexed map such that f¢ =0 for m,n € Z=y and f € Y(m,n).

Recall that we have a uniquely determined morphism of linear preoperads ¢ : Free(X) — T such
that 1 = ¢ ; c¢f. Theorem 4.22.

Recall the residue class morphism

cf. Definition 2.47.

Then there exists a uniquely determined morphism of linear preoperads ¢ : ol X | Y ) —> T such
that (1p)¢ = ¢, i.e. such that [[xs(0, x,O)xt]]IgZ; =uzp forxe X.




Proof. By Lemma 4.22 the morphism of linear preoperads ¢ : Free(X) — T exists uniquely.

Moreover, since f¢ = 0 for m,n € Z=o and f € Y (m,n), by Lemma 2.48 there exists a uniquely
determined morphism of linear preoperads ¢ : Fr%(x) — T such that pp = ¢.

So we have a unique morphism of linear preoperads ¢ : , ( X | Y ) — T such that

Ipo
o =16 = .
]

Lemma 4.27. Let X be a biindezed set and let Y < Freeg(X) x Freeg(X) be a biindexed subset. Let
(=y) S Freeg(X) x Freeg(X) be the congruence on Freeo(X) generated by Y.

Suppose given a set-preoperad Py and an isomorphism of set-preoperads oo : _ (X |Y ) — Pp.

Let Dy (m,n) := {f —f:(f, f) e Y(m, n)} for m,n € Z=g ; cf. Definition 2.50.

Then we have the isomorphism of linear preoperads o : 1pO<X | Dy ) — RPy such that we have the
following commutative diagram.

6FrccO(X)

(X V) —""-R(Ze) — X (X |Dy)

(=v) Ipo

%lz zla

Po B, RPy

spo

Here we abbreviate X := XFreeo(x),y ; ¢f- Lemma 2.54.

So in particular, (X |Y ) =Py implies | (X | Dy )= RPp.

Proof. Let T :=Ty = { Dy ). By Lemma 2.54 there exists the isomorphism of linear preoperads

ideal

Freep(X) Free(X)
X = XFreeo(X),Y * (ﬁ) - 7 - 1po<X | Dy )
Yol —| X ot = Y s
fePo(m,n) f€Po(m,n) Y fe€Po(m,n)

for m,n € Zso. Moreover, by Remark 2.25 (3), the linear extension Roy : R(Fr(%’y())()) — RPy

is an isomorphism of linear preoperads; cf. Lemma 2.23. Hence by Remark 2.21, the composite
o:=x! (Rao) : 1pO<X | Dy ) — RPy is an isomorphism of linear preoperads. O

4.6 A presentation for Assg

Definition 4.28. Recall that the set-preoperad Assy has Assg(m,n) consisting of monotone maps
[1,m] — [1,n] for m,n € Zx¢; cf. Definition 2.58. Now define

e :[1,0] — [1,1]

pl1,2] — [1,1]
to be the unique elements in Assg(0,1) and Assy(2, 1), respectively.

Pictorially, we have



Note that in Assp we have (uXid;)p = (id; Kp)p and (id; Xe)p = (e Kidy)p = id; .

Definition 4.29. We can more generally define p,, € Assg(m,1) to be the unique element in
Assg(m, 1) for m € Z=o. Note that we have ug = ¢ € Assp(0,1), up = idy € Assp(1,1) and
M2 = U € ASSQ(Q, 1).

Furthermore, note that for m € Z=y we have (p,, Xlid1)p € Asso(m + 1,1), s0 (o Xid1)p = fim+1 -
Hence every pu,, can be written as product and composite of ¢, id; and pu.

Remark 4.30. Suppose given m,n € Z=o and a € Assyg(m,n). Then we have
a = piy D prip &I - 4 gy,
where ij = |a1(j)| for j € [1,n].

Proof. Define a := p;, X1 i, K. .. X i, € Asso(m,n). Then by the definition of (X)) = (Klass,) We
have

pa=(h= Y w1

ke[1,ha—1] ke[1,ha—1]
=1+ha—-1=ha
for he [1,n]. Soa=a= p;y X i, X...X W, - O
Definition 4.31. Define the biindexed set X := {&, i} with £ € X(0,1) and g€ X(2,1).

Recall the injective biindexed maps

X — Words(X) X — Freeg(X)
x — xs(0,x,0)xt x > [2s(0,z,0)xt].

Abusing notation, we will refer to both 0(0, £,0)1 € Words(X)(0,1) and [0(0, £,0)1] € Freeo(X)(0,1)
also by € and to both 2(0, 1, 0)1 € Words(X)(2,1) and [2(0, 1, 0)1] € Freeo(X)(2,1) also by f.

Furthermore, define

Y= ((Ia Freeo idFreeo,l) “Freeg ﬂ, (idFreeo,l Freeo/l) *Freeg ﬂ) € FreeO (X)(37 1) X Freeo (X)(3, 1)
o o= ((<Cf XFreey idF‘reeg,l) ‘Freep [L> idFreeo,l ) € FreeO(X)(la 1) x FreeO(X)(17 1)
Vr = ((idFreeo,l Freeoé) “Freeg ﬂa idFreeo,l ) € FreeO(X)(la 1) X FreeO(X)(L 1)

and finally Y := {v, 1, 11 }.
Then we have the biindexed map ¢ : X — Assg mapping € to € and i to p.

Recall the congruence class morphism pg : Freep(X) — Fr(c%;(x) defined by

Freeg(X)
(=v)
f— 1y

po(m,n) : Freep(X)(m,n) — ( )(m,n)

for m,n € Zx ; cf. Definition 2.39, where [f]y := [f]=, is the congruence class of f € Freeo(X)(m, n)
with respect to (=y).

By Theorem 4.19, there exists a uniquely determined morphism of set-preoperads

¢o : Freeg(X) — Assg
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such that oo = ¢o , i.e. such that [xs(0, z,0)xt]dg = zpo for x € X. We have

(A Xrreey 1dFreeq,1) "Freeo )P0 = (pXidy) - p

(id1 <) - o

((idFreeq,1 BRFreeo ft) “Freeo 1) Po
(eXidy) -

idy

idFreey,1 P0

(idi Xe) - p

= idy

= idFreeo,l ¢O .

((é F‘reeo idﬁ"eeo,l) *Freeg ﬂ) ¢0

((idFreeo 1 Freeo é) ‘Freeg ﬂ) ¢0

So foo = foo for m,n € Zso and (f,f) € Y(m,n). By Lemma 4.24 there exists a uniquely

determined morphism of set-preoperads ¢o: _ (X | Y ) = Fr(c%;f)x) — Assg such that tgpodo = o .

Spo

¥o
X Assg

to
|

Freep(X)
g0
|

Freep(X)
(=v)

(X|Y)= FrLO()X) and consider the morphism of set-preoperads

So define Assgp := =

spo

Freeo (X)
=y)

that is uniquely determined and given by [f]y ¢o = foo for f € Freeg(X)(m,n) for m,n € Zq.

b0 : Assgp = —> Assg

So in particular, we have [[ms((),fx, O):mf]]y = [25(0,z,0)xt]¢g = zL0d0 = xpo for m,n € Z>p and

0
x € X(m,n), which implies [€]y¢o = € and [i]ydo = p.
Theorem 4.32. The morphism ¢ : Assg p — Assg of set-preoperads is an isomorphism.

So in particular, abbreviating (X)) := (Krreey), (+) := (‘Free;) and idq := idpree,,1 we have
Assg - sp0</l>é | ((ﬂldl) L, (ldl ﬂ) ’ la)v ((ldl é) L, idl)a ((éldl) - fu, idy ) >

Proof. We have to show that ¢g(m,n) is bijective for m,n € Z=q; cf. Lemma 2.20.

Surjectivity. Suppose given a € Asso(m,n). By Remark 4.30 we can write a = p;, X iy <1 . . . [X] fhi,, »
where i; = |a~!(j)| for j € [1,n] and where y; is the unique element in Assy(i, 1) for i € Zzq; cf.
Definition 4.29.

Now define recursively
€ ifi=0
Mg t= idFreeo,l ifi=1
(,&i—l Freeo idFreeo,l) ‘Freeg /l if ¢ =2
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for i € Z>0 . Note that [Ll € Freeo(X) (i, 1) for i € Zzo, hence [[Lz]ngo = [LZ(]SO = [ for i € ZZO . So
we have

[ iy Brrecy iy Riveey - - - Biveeq flin |y 00 = ([ftir Iy Rassop [fin]y Rassop - - - Basso p [in]y) b0
= fuiy ]y o B [fiiy ]y ¢ & - . . & [ 21, ]y o
= iy DI iy - X g,
= a.
Hence ¢o(m,n) is surjective for m,n € Z=g .
Injectivity. Tn order to show that ¢g(m,n) is injective for m,n € Z=o we will need a couple of steps.
Step 1: Finding a standard form for elements in Freeg(X).
Claim 1.1. Let m,n € Z=o and [w] € Freeg(X)(m, n) with length u > 2, that is,
w = Go(l1, 21, 71)q1 - - - Gu_1(lu, Ty 7 ) Gu € Words(X ) (m, n),

where l;,7; € Zzo and x; € {é&,n} for i € [1,u] and m = gy = L+xs+71,n=qy, =ly+ zut + 7y
and l; + x;t +7; = §; = lix1 + Tip15 + 741 fori € [1,u — 1].

Then there exists

v =qo(l1, p,r1)q1 (2, 1, 72)q2 * + * Q-1 (U, 15 k)@ (A €, P )Pi—1 - P2(A1, €, p1)p1 € Words(X)(m, n)
with I; < lj4q for i € [1,k — 1] and A\; < A\j4q1 for i € [1,k — 1] such that [w] =y [v].

We say that v is in standard form.

Note that words of length 0 or 1 are already in standard form.

Proof of Claim 1.1. For the proof of this Claim we denote by (xI) and (-) the multiplication and
composition in Freey and for m € Z=o we denote by id,, the identity element in Freeg(m,m).

For a word w = cjo(fl,xl,ﬁ)cjl---(ju,l(fu,:cu,fu)(}u € Words(X)(m,n) we define the measure

Ow = (u, >, l;) € Zso X Z=o. Let X, be the set of all measures for the different representa-
1€[1,u]
tives of the element [[w]],, that is, 3y = {0 : [w] =y [2], 2 € Words(X)(m,n)}.

Now we endow X, with the lexicographic order, that is, for (4, j), (¢, j') € X we have (i,7) < (¢, j)
if and only if i <’ or (i =4 and j < 7).

Since for w € Words(X)(m,n) we have ¥, € Zso x Zsp there has to be a representative
z € Words(X)(m,n) with [z] =y [w] that has minimal measure o, = min{%,,} > (0,0).

Assume now that this representative z is not in standard form.

Write z = (jg([l,:il,fl)(jl . --qa,l(lva,iﬁ,fa)qva. Since z is not in standard form, at least one of the
following occur in z.

A~

(1) There exists i € [1,4 — 1] such that &; = € and &;41 = fi.
(2) There exists i € [1,% — 1] such that & = i = &1 but I; > ;.1 .
(3) There exists i € [1,% — 1] such that ; = & = @41 but I; < l;,1.
To arrive at a contradiction, we search for an element 2z’ € Words(X)(m,n) with [2'] =y [2] and
Oy <0,
For the following calculation note that id =it —fis=1—-2=—landéd=¢ét—-és=1—-0=1.
Case (1). There are two different ways how to obtain z’: using the congruence on Freeg(X) or using

the equivalence relation valid in Freeg(X). We have the following four cases.
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(La.i)

(1.a.ii)

(1.b.i)

Case l; = ;1. Since [;+1+7; = §; = l;41+2+7;+1 that implies 7; = 7,1 + 1. Furthermore,
we have §;—1 = l; + 7 = lj+1 + 7i+1 + 1 = Gir1. So we have

(g1 (G &, 7) @i s Fir1)Gina] = (id;, KERIdy,) - (id;, | KARIds,,)

= (id;,,, MENidy,,,+1) - (idj, |, KA Rdy,,, )

= (id;,,, B(ERid1) Ridy,,, ) - (id;,, | HARidy,,,)

= (id;,, R ((ERidy) - o) Kidy,,,)

=y (id;,,, Kidy Kidz,,,) (using 1)

=idg, 114y,

= idg,, = [Gis1l-
So by defining

2 = qo(l, #1,7) G+ Gio(li1, Zim1, Fim1)Gir1 (L1, Fi 1, Fir 1) iz -+ - Ga—1a, Ty 7a) Gu

we obtain a word 2’ € Words(X)(m, n) with [2/] =y [z] =y [w] and

O, = <fL—2, < Z Z]) _Zi_[i+1) <0z,

Je[l,ua]

a contradiction.
Case [; = Zi+1 + 1. This implies 7#; = 7; 41 and §;_1 = li+7 = Zi+1 + 147411 =¢+1- Then
we have
[ 1 (G &, 7) @i i Fir1)Gina] = (id;, KERIidy,) - (id;, | KARIds,,,)
(1d +1+1 .8 . ldﬁﬂ) : (idi +1 /l id?‘i+1)

- (1 ldl .E) .ldrﬁ-l ) ) (idZi+1 ﬂ idr}'-ﬂ)
= (id;, it1 . ((id1 X¥é€) - ) K idy,,,)

=y (id; li+1 id; Kidy,,, ) (using 1)
- id[i+1+1+fi+1

= idg,y, = [Git1]-
So again by defining

2 = qo(l, #1,71)G1 -+ Gio(li1, Zie1, Fim1)Git1 (T 1, Fi 1, Fir 1) Giv2 - - - Ga—1a, Ty 7a) Gu

we get a word 2/ € Words(X)(m,n) with [2/] =y [z] =y [w] and
Oy = (’[L—2, ( 2 Zj)—Zi—Zi+1) <0,
jell,a]

a contradiction.

Case [; < [i+1. This implies that Zi+1 = l;+1 = [; +£t, so by the definition of the equivalence
relation (=) on Words(X) we have

Gi1 (L &, 7)) Gi(lig1, f, Fi1)Giv1 ~ Gim1 (g1 — éd, i, 1) (Giv1 + dim1 — Gi) iy €, 7 + d)Gia
= Gic1(lig1 — 1, fi, 71 (Gis1 + Gie1 — Gi)(Liy €, 7 + (—=1))Gis1 -
So define
7 = qé)(lllﬂ'fllﬂﬁll)qll qu 1(1;’ Vgu ;)qu
with
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il i ~/ ~ ~/ -~
* l = li+1 — 1, T, = Tig1 and T; = Ti+1

i
* l1+1

* 1] =1, 7 =17 and &} = &; for j € [1,a]\{i,i + 1}.

o s ! ..
lz, i1 =7 —land &; | = I;

Then we have [2'] = [2] and
WX )= (0 (X 0) 1)< (0 X 1) e,
je[1,4] je[1,4q] je[1,a]
a contradiction.

(1.b.ii) Case l; > [;41 + 1. This implies I; > I;;1 + 2 = [;11 + 15, so using the equivalence relation
(~) on Words(X) we have

Gi1(liy &, 7)Gi(li1, oy Fie1)Giv1 ~ Gio1 (L {1 Tig1 — Ed)(Giv1 + Gio1 — @) (G + fod, &, 74)Giva
= Gi1(liv1, 1y Fiv1 — D) (Giv1 + Gi1 — @) (i + (=1),€,7)Giv1
So define
Z/ = qv()( 1ai'1177211)Q1 Qu 1(lu7'fz';7 u)qu

with

w 10 =111, ¥ =1 — L and & = #41

w Uy =l}—1, Mo =7 and &, =%

s ) =1;, 7, = 7 and &) = &; for j e [1,a]\ {i,i + 1}.

Then we have [z’] = [2] and

(o, Y 8)=(a. (X 5)-1)<(@ 3 ) =0,

Jjell.a] Jjell,u] Jjell.a]

a contradiction.

Case (2). Again we can either use the congruence (=y) or the equivalence relation () on Words(X).
We have the following two cases.

(2.a) Case li =41+ 1. Since [; + 1 + 7 = ¢; = lj+1 + 2 + 741 this implies 7 = 711. So we have

[Gi—1 (T, fy 74) G (T 1s s Pt ) i1 | = (id;, M Xidy) - (id;,, | @A)
= (iq; lip1+1 XAy, ) - (idi +1 X i Xidy,, )
= (1 1d1 ./J) . ld"”H—l ) . (leZ+1 ﬂ idfi+1)
= (id;,,, B ((id1 ®@)f2) ®idr,,)
=Y (ld[i+1 (('u ldl)ﬂ) id?‘zurl) (using 0% )

(idl}-+1 (A Ridy) Ridy,,, ) - (id[i+1 XA idy,, )
(idj, | KA KIdr,,41) - (id;,, KAy, )

= (idj, WA Kids41) - (g, ARy, )

= Gio1(li = 1, 1,7+ D)Gi(liga, s Fie1) Giser -

So in this case define
! ~!

Z = CJO( 1,531,7’1)(_1 QU 1(lu7xuvru) ile Words(X)(m, n)

with
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« [l=10—1,7 =7 +1and & = @;1
w Ul =lis1, 7 =1 and = 3
¢ l} =1, 7 =7 and &} = &; for j e [1,a]\{i,i + 1}.
Then we have [2'] = [z] and
o, ) =(o (X 5)-1)< (@ X L) =0,
je[l,q] je[l,a] je[l,a]
a contradiction.

(2.b) Case l; > lj+1 + 1. This means that [; > [;;1 +2 = ;41 + [is, so using the equivalence relation
(=) on Words(X) we have

Gie1 (i, s 7)) @i (L1, 1, Tis1)Gie1 = Gim1 (i1, 1, Tirr — 2d) (Gig1 + Gim1 — Gi) (L
= Gic1(liz1, fi, Fi1 — (1)) (@1 + Gio1 — @)

(L ( i)Qi+1
Now define
2" = (0. 21, )G - G (B 75, 75) G € Words(X) (m, n)
with
w =1, 7 = rz+1 + 1 and &, = &41

loy=10—1,7, =%and ¥, =
U =1, V; = fj and & = &; for j € [1,a]\ {i,7 + 1}.
Then we have [2'] = [z] and
o, M) =(o (X 5)-1)<(a X L) =0,
jell,a] jell,a] Jell,a]

a contradiction.

Case (3). We have [, < Zi+1. This means that [; +ét = [, +1 < Zi+1, so using the equivalence relation
(~) on Words(X) we obtain

Gi1(Li, 6, 7)Gi(lig1, 6, 7)) Gir = Gia(livr — 8d, 6, 701) (Gt + Giv1 — @) iy €, 7 + éd) i
=G 1(li1 — 1,8, 71) (@1 + Giv1 — @) (i, &, 7 + 1oy -
Now define
2 = q(/)( /17 ‘f/h fi)ql qilfl(l;u ju? Tu)qil € Words(X)(m, n)
with

i1 i </ - = 5,
* li = li+1 — 1, T, = Tigl and T; = Ti+1

* ZZH =i, Fiop =7+ land &4 = &;
« [ =1;, 7 =7 and 2 = &; for j € [1,u]\{i,i + 1}



a contradiction.

This proves Clawm 1.1.

Step 2: Injectivity of the map restricted to words in standard form.

Now we will show that different standard forms are being sent to different elements of Assy by ¢o.

Let me Z>1. Let

v =qo(l1, 1, r1)q1(l2, 1, 72)q2 - - Q1 (Ues 1, T3 ) Qe (Ars €, Pr)Pi—1 - - - P1(A1, €, p1)po € Words(X)(m,n)
be in standard form, that is, I; < ;11 for i € [1,k — 1] and A\; < \jq1 for i € [1,x — 1].
Note that n > 1. Furthermore, note that k € [0,m — 1] and x € [1,n — 1].

Then we have

[[v]], ¢0 = (idy, MpEidy,) - - (idy, K pRidy,) - (idy, e Rid,,) - - (idy, e Kid,, ).
By abuse of notation we will also write

[[U]]ngo = (lla 122 Tl) T (lk> , rk) ' ()‘Na &, pﬂ) e ()‘17 €, Pl) € ASSU(m7 n)a
the same notation we know from Freep(X). In particular, if k = 0 and k = 0, then m =gy =py =n
and the empty composite is id,, = id,, .
We know that [[v]]yggo € Asso(m,n), so it is a monotone map from [1,m] to [1,n].

Claim 2.1. Any monotone map f € Assg(m,n) can be written in a unique way as the composite of a
surjective monotone map fsur € Asso(m,p) and an injective monotone map fi, € Assy(p,n) for some

pez?Oysof:fsur'fin-

Proof of Claim 2.1. This is the factorisation over the image. In particular p = |Im(f)|. This proves
Claim 2.1.

Now define

a:= (llmua 7"1) : (l27 M>T2) T (l/ﬂuv Tk) € ASSO(m’ m — k)

b= (As &, px) - (As—1,6,pk-1) - (A1,6,p1) € Asso(n — K, n).
We have m —k = ‘Im ([[v]]y%)‘ = n—k and a is surjective and b is injective. So Claim 2.1 implies
that [[v]]yggo = ab is the unique decomposition.

We will show in Claim 2.2 and Claim 2.3 that the indices [; and \; for i € [1,k], j € [1, k] can be
obtained from the sizes of the fibres of the maps a and b.

Claim 2.2. Consider a = (I, p,71) - (I2, i, r2) - - - (I, b, ) € Asso(m, m — k). Recall that k € [0, m]
and that [; < ;11 for i € [1,k — 1]. Define [y := 0. For i € [1,m — k] define f; := |a~1(i)|. Then (i)
and (ii) hold.

(i) Wehave ls + 1 =min{je [1,m—k]: >, (fi—1) > s} for se [1,k].
ie[1,5]

(ii)) We have f; —1=0forie [l +2,m—k].

Proof of Claim 2.2. We will show this via induction on the number of factors k.

Case k = 0. Then a = id,,. So we have f; = 1 for all ¢ € [1,m], hence (ii) is true. In particular
fi—1=0, hence min{j e [Il,m—k]: > (fi—1)=0}=1=1Iy+1,so (i) holds.
i€[1,4]

Case k > 0. We have a = (I3, p,71) -+ (lke—1, pts k—1) - (lgg, 1, 7:) € Asso(m, m — k).

By induction, (i) and (ii) hold for a’ = (I1, p,r1) - - (Ig_1, 4, 7k—1) € Asso(m, m —k +1). So denoting
the fibre sizes of a’ by f! := |a=1(i)| for i € [1,m — k + 1], then (') and (ii’) hold.
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(') We have > (f/—1)<sand > (f/—1)>sforse[l,k—1].
i€[1,ls] i€[1,ls+1]

(ii") We have f/ —1=0forie [lp_1 +2,m—k+1].

Note that for i € [1, m — k] the fibre sizes f; of a satisfy

fl—1 if i e[1,1]
fi=1=Rfl+f—-1 ifi=1l+1
-1 if i € [l +2,m — k.

Ad (ii). Let i € [lx +2,m — k]. Since Iy > lp—1 we have i + 1 € [ly—1 + 2,m — k + 1] and
fi—1=fl, —1=0Dby (i),

!
Ad (i). We have to show that for s € [1, k]| we have >, (fi —1) % s and o (fi—1)=s.
1€[1,ls] 1€[1,ls+1]

Case 1: s € [1,k —1]. We have s <k —1 <k, so ls < lg—1 <l. This implies that f; — 1= f/ —1
for i € [1,1s] and that fi 412> f] |-

So we have
> (i
1€[1,ls] i€[1,ls]
by (i) and
Z ( Z ) + (floe1 — 1)
ie[l,ls-H] 1€[1,ls]
( Z ) + (frg41 - 1)
1€[1,ls]
( Z )+ (fie1— 1D
i€[1, ls]
= )
ie[1,ls+ ]
by (i').

Case 2: s = k. Note that >, fi = m. We also know that f; = 1 for i € [l +2,m — k] by (ii).
This implies that i€[1,m—k]

> Gimn=( X fi)-tD

i€[1,l,+1] ie[1,l,+1]
=( > fz) ( > fi>_(lk+1)
€[1,m—k] 1€l +2,m—k]|
zm—(m—k—(lk—l-?)—i—l)-l—(lk—i-l)
= k.

With the same argument one can see that > (fl—1)=k—1, and since I <l <l +1
ie[l,lk_1+1]
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we have

(fi=1) = (fl =1)
i€[1,11] i€[1,0x]
- (> f’—l)) (% -1
le 1 iE[lk,1+1,lk]
(
(fl-’ -1) if l_1 =1
(1;/) b, [le 1
( > (fi— 1)) +(f] =) il <l
ie[1,l, 1]
Z (fi,—l)<k—1 iflk_lzlk
— 4 ie[l,lk_l]
> (fi-D=k-1 if 1y < 1,
kz’e[l,lk,lJrl]
<k,

which shows (i).
This proves Claim 2.2.

Claim 2.3. Consider b = (As,€,px) - (As—1,&, pr—1) -+ (A1,€,p1) € Asso(n — k,n). Recall that
€ [0,n — 1] and that A\; < A1 for ¢ € [1,k — 1]. Define Ao := 0. For i € [1,n — k] define
= |b=1(i)|. Then (i) and (ii) hold.

(i) We have A\; + s =min{j e [l,n—r]: >, (1 —f;) =s} for se[l,k].
ie[1,7]

(i) We have 1 — f; =0 for i € [Ax + Kk + 1,n].

Proof of Claim 2.5. Again we will show this via induction on the number of factors .
Case k = 0. This means that b = id,,, hence 1 — f; = 0 for all ¢ € [1,n], so (i) is true.
Case k > 0. We have b = (A, €, px) - (As—1,&, pr—1) - -+ (A1,€, p1) € Asso(n — Kk, n).
By induction, (i) and (ii) are true for &' = (As—1,€,px-1) - (A1,€,p1) € Asso(n — k + 1,n). So
denoting the fibre sizes of b by f/ := |b=1(4)| for i € [1,n], then (i') and (ii’) hold.
(') We have > (A-=fy<sand > (1—-f))=sforse[l,kx—1].
te[1,As+s—1] 1€[1,As+5]

(ii") We have 1 — f/ =0 for i € [A\y—1 + K, n].
Note that for ¢ € [1,n] the fibre sizes of b satisfy

1—fl ifie[l,n—p,—1] =1L, A\ +r—1]
1-fi=<1 fi=n—ps=X+r
1—f ifie[n—pe+1,n]=[A+£+1n].

Ad (ii). Let i€ [A\y + K+ 1,n] S [As—1 + k,n]. Then 1 — f; =1 — f/ =0 by (il’).

1
Ad (i). Let s € [1,k]. We have to show that > (1—fi)<sand > (1—f)=s
1€[1,As+s—1] te[1,As+s]
Case 1: s€[1,k —1]. Since s < k we have A\s < A\, and A\s + s < A\, + k. Hence

Yoa-f)= > (-f)<s

ie[1,As +s—1] ie[1,As +s—1]
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by (i) and

Y, A=f)= 3 A-f)=s
1€[1,As+s] 1€[1,As+5]

also by (1).
Case 2: s = k. Note that >, f; = n— k. Now with (ii) we have

i€[1,n]
> a-p=(Xa-p)-( X a-m)
1€[1, s +k] i€[1,n] 1€[Av+r+1,n]
=(n—(Mnm-—k)—0

and

g
—
—
|
=
~—
I

> (=) = (1= faen)

i€[1, A +r—1] i€[1, M +5]
=Kk—1,
which shows (i).
This completes the proof of Claim 2.3.
Claim 2.4. Let

v =qo(l1, 4, 71)q1 * ** Qo1 (lis 1, T8) Qi (Ar, €5 Pr)Pr—1 - - - P2(A1, €, p1)p1 € Words(X)(m, n)
RN

V' = a0 )@ G (s 73080 (N € 9)P 1 -+ Pa(N1, €, p)p) € Words (X)) (m, ')
for m,n,m’,n’ € Zz¢ be two words in standard form such that [[v]],-d0 = [[v']], %0 -

Then we have v' = v, that is, m' =m, n' =n, k' =k, &' = &, [; = ; for i € [1,k] and \} = \; for
Jje 1, k]
Proof of Claim 2.4. First note that [[v]]yg?)o = [[v’]]y(;go implies m’ = m and n’ = n.

Case1: m = 0. If k > 0 then we have gy = l1+/is+7r1 = [1+2+471, a contradiction, since l1, 71 € Z=g .
So m = 0 implies k = 0, so v is of the form v = p,(Ax, &, Pr)Pr—1 - P2(A1, €, p1)p1 € Words(X)(0,n).
Note that this implies k = n. Hence, if kK = n = 0, the only word in Words(X)(0,0) in standard
form is v = pg = px -

So suppopse that n > 0. But since 0 = p, = Ay +€s + px = A\ + pi , we have A\, = 0. Furthermore,
since A\j < Ajyq forie [1,k — 1], we have A\,—j < Ay =0for je 1,k —1],s0 \; =0 for i € [1,k].

So for m = 0 and n € Zx( the only word in Words(X)(0,n) in standard form is the word
v =0(0,¢,0)1(0,£,1)2---(n —1)(0,£,n — 1)n.
Hence in this case v = v’ is uniquely determined.

Case 2: m € Z=1. Then Claim 2.1. states that there is a unique way of writing [[v]]Y$0 = ab and
v']]\ 0 = @’ such that a and o’ are surjective and b and b’ are injective. In particular, we have
% ]

Q

= (lla,uarl)“'(lkaluark‘) EASSO(mvm_k)
b = (Mg, &, pk) - (A1,6,01) € Assg(n — K, n)
a = (Ilvﬂarll)"'(l;glvﬂa'r;g’) EASSO(mvm_k)
V' o=\, e p,) - (MN,e,p)) € Asso(n—k,n).

100



This implies that ' = a and b’ = b, hence k' = k and £’ = k.

Now using Claim 2.2. we get that [ = [; for i € [1, k] and with Claim 2.3. we get that \} = \; for
je[l, k]

This completes the proof of Claim 2.4.

Step 3: Injectivity of ¢o(m,n) for m,n € Z=q . Suppose given m,n € Z=q and two words

= (j (l17$17T1)Q1 e (]u_1(l~u,xu, fu)qu € WOI'dS( )(m n)

!

w
w ~(,)( 17$17T1)Q1"'(ﬂﬂ—1(l !y u’? u)qw EWOI'dS( )(mvn)

such that [[w]]y.¢0 = [[w']]} %o

By Claim 1.1. there exist words z € Words(X)(m,n) and 2’ € Words(X)(m’,n’) in standard form
such that [2] =y [w] and [2'] =y [w']. Hence we have

[[=]]y %0 = [[w]]y b0 = [[w]]y 0 = [[]], G0
By Claim 2.4 we have [2] = [2]. Hence ¢o(m,n) is injective for m,n € Zxg .

This completes the proof of the Theorem. O

We can get a similar result for the linear preoperad Ass.

4.7 A presentation for Ass

Theorem 4.33. We have the presentation of linear preoperads
Ass > 1p0<é,ﬂ | (([lel) 'ﬂ—(idl,&) . ) ((ldl.é) 1d1) ((6.1d1) 1d1)>

where we abbreviate (M) := (Krree), (+) := (‘Free) and id; := idFrec,1 -

More precisely, defining D := {((aRid1) -2 — (i ®A) - 4), (((di1®E) - p—idy ), (ERidy)-a—idy )},
X:={p}and T := (D)< Free(X), then we have the isomorphism of linear preoperads

¢: X | D) —> Ass

defined by [€]7¢ = € and [fi]z¢ = p.

Proof. By Theorem 4.32 we have the presentation Assg =~ (X [Y ), where X = {¢, i} and
Y = {((@@id) - i, (i1 &f) - 1), ((di1RE) - fo, idy ), (ERidy) - o, idy )}

So by Lemma 4.27 we have the presentation Ass = RAssg = | (X | Dy ), where for m,n € Zxo
we have Dy (m,n) = {f — f : (f, f) € Y(m,n)}. So in our case we have

Dy = {((aBidy) - ji — (i ) - ), ((idi ®E) - i — idy ), ((E®idy) - o —idy )} = D.

More precisely, by Lemma 4.27, we have the isomorphism of linear preoperads ¢ : ol X | D) —> Ass
that satisfies Brreeqx) XP = P0SAss, - S0 in particular, we have
(=y)

[EA]I(E = [EA]YX(E = [é]YBFrF;o(f) X& = [é]Y&OBAsso = EﬂAsso =€
[ ]I¢ [ ]YX¢ [A]YBFI'F;()(;()XQE = [ﬂ]y(EO/BASSO = MﬁAsso = K.
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5 Algebras over preoperads

5.1 General notion

Definition 5.1. Let Py be a set-preoperad. A Py-algebra (X, o) consists of a set X and a morphism
of set-preoperads
00 : Po — Endy(X).

Definition 5.2. Let P be a linear preoperad over R. A P-algebra (V,p) consists of an R-module
V and a morphism of linear preoperads

0:P — End(V).

The name “algebra” may be surprising here, but we will see that given an Ass-algebra
(V,0), then the R-module V in fact can be turned into an algebra in the usual sense.
Algebras over the set-preoperad Assg, however, will eventually yield monoids.

5.2 Associative monoids and Assj-algebras

Recall that the set-preoperad Assg has Asso(m,n) consisting of monotone maps [1,m] — [1,7n]
for m,n € Z=¢. Recall the unique elements ¢ € Assy(0,1) and p € Assy(2,1); cf. Definition 4.28.
Furthermore, recall that in Assp we have (uXidy)p = (id; K p)p and (idy Xe)p = (e Xidy)p = id; .

Proposition 5.3. Let (X, o) be an Assg-algebra, that is, X is a set and 1y : Assp —> Endo(X) is
a morphism of set-preoperads.

Define px = phg : X x X — X and ex = epg : X*0 = {()} — X. Then (X, ux,cx) is an

(associative) monoid.

Proof. First note that since in Assy we have (id; Xp)p = (pXid;)p and since ) is a morphism of
set-preoperads, we have

(idx x px)px = (idEndy,1 MEndo4X) “Endy 14X
idAsso,1 Y0 MEndy #%0) Endo #4300
(id Asso,1 DIAsso 4) *Asso 14)%0

(1 Rass 1dAssg,1) *Asso 1)P0
1o MEnd, 1dAsse,1 Y0) Endy #4800
px RMEndy 1dEndg,1) “Endg £X

px X idx)px -

(
(
(
(
(
(
(

Furthermore, since in Assy we have (id; Xle)u = id; and since vy is a morphism of set-preoperads,
we have
(idx x ex)px = (idgndy,1 XEndo€X) “Endy HX

= (idAsso,1 Y0 KEndy €%0) “Endy H%0

= ((idAsso,l Assoe) *Assg M)%Z)o

= idAsso,l 7/]0

= idEndg,1

=idx .
Finally, in the same way we see that (e [Xlidy)p = idy in Assg implies (ex x idx)ux = idy .

This shows that (X, ux,ex) is an associative monoid. O
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Our next aim will be to show the converse, that is, every (associative) monoid can be
turned into an Assp-algebra. That is, we will show that for each monoid (X, ux,ex) we
can define a morphism of set-preoperads 1y : Assy —> Endo(X) satisfying uipg = px
and g = €x .

Recall that any element f € Asso(m,n) is a monotone map [1,m] — [1,n]. That means that the
fibres f~1(i) = {j € [1,m] : jf = i} yield a partition of [1,m] into n (possibly empty) subintervals.

For an interval [a,b] € Z and s € Zx¢ define [a,b];s := [a + s, b+ s], the interval shifted to the right
by s and [a,b]_s := [a — s,b— s], the interval shifted to the left by s. Since the fibres of a monotone
map f : [1,m] — [1,n] are intervals we can use that notation as follows. Given [a,b] = f~1(i) for
some i € [1,n], then for s,t € Z=q we can define f~1(i)_ := [a,b]_s and f1(i)4¢ := [a,b] s -

Proposition 5.4. Let (X, ux,ex) be an (associative) monoid. For x,y € X define x-y := (x,y)ux -

Using the usual convention of dropping brackets where associativity is known, we may define

Tlap] 1= Ta " Tatl "+ Th =: H .
i€[a,b]
forme Zso, x1,...,2m € X and for any interval [a,b] S [1,m]. In particular, for [a,b] = @ we

have (a4 = 1x := ()ex € X.

Consider the biindezed map o = (o(m,n))mn>0 : Asso —> Endo(X) that maps f € Asso(m,n) to
fio € Endo(X)(m,n), defined by

f¢0 . XXm SN X><n
(331, oo ,:L'm) [ — (mffl(l), e ,.’L’f—l(n)).
Then g is a morphism of set-preoperads satisfying upo = ux and ey = €x .

So in particular, (X,1g) is an Assg-algebra.

Proof. First note that for m € Z~o we have

(@1, .., Tm)(1dAssg,m Vo) = (X1, ..., Tm)
for x1,..., 2y, € z, hence idAgsy,m Yo = idEndg,m -
From now on we will abbreviate (X)) := (Klass,) and (+) := (-ass)-
Suppose given m,n,m’,n’ € Zso and f € Asso(m,n), f' € Asso(m’,n’). Consider the fibres of f[xf’.
For i € [1,n] we have (f X f/)~1(i) = f~1(4).

For i € [n 4+ 1,n + n'] we have (f & f/)~1(i) = f'~1(i — n)ym, since for j € [1,m + m'] we have
jef Y i—n)imifand onlyif j —me f1(i —n),ie. jJ(fRf) =G —m)f' +n=i—n+n=1i,
e, € (FR /)10,

So for x1,...,Tm, Tmi1, .-+ Tmam’ € X we have
(@1, T ) (PR )00) = Z(pm =101y > TR )= ()
= (.’L'ffl(l), . ,Z’f—l(n),xf/—l(l)+m7 e 7Z(,'f/—l(n/)+m).

On the other hand, defining y; := 2,4, for i € [1,m’], we obtain

(-751; cee 7$m+m’)(f¢0 Endo f,¢0) =

Ty, .- '7xM)f¢0 X (xm-i-l; .. -uxm—i-m’)f,’(/}O
5L’1w--axm)f¢0 X (yla'-'aym’)f/w(]
Zﬁffl(l), . ,$f—1(n), yf/—l(l), ey yf/—l(n/))

.Z'ffl(l), . ,Hff—l(n), .If/—1(1)+m7 e ,.I'f/—l(n/)+m).

~ N N /N
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Hence we have (f X f/)¢o = f1)o Mend, [ Yo -

Now suppose given m,n,k € Z=og and f € Asso(m,n), g € Assg(n,k). In order to show that
(f - 9)%o = (f0) “End, (9%0) we will have to take a look at (fg)~'(4) for i € [1, k].

Claim: We have (fg) '(4) = L] f '(u), as a subset of [1,m].
ueg™! (i)
Proof of the Claim. First we remark that the right hand side is a disjoint union.

Suppose given j € [1,m]. We have j € (fg) (i) if and only if (jf)g = i, i.e. jf € g 1(4), i.e. there
exists u € g~1(4) such that j € f~!(u). This proves the Claim.

Now we can show that g is compatible with composition and hence a morphism of set-preoperads.
For z1,...,x, € X we have
(CUl, cee 7xm)(f1/)0 ‘Endg g’[/}o) = ((xly ceey ‘/L‘m)wa)gl/}O
= (Tp101)s - Tp1(n)) %0 -
By writing y; 1= x4-1(;) € X for i € [1,n], we obtain
(fEl, s 733m)(f¢0 ‘Endg QTbO) = (yh o 7yn)gw0
= (Yg1(1)r - Yg1(k))

( [1 ) TT )
(

upeg~*(k)

T o) TT o)

ureg— (k)
= (@(sg)1(2)7 -+ T(fg)-1(k)
= (z1,...,2zm) ((f9)¥0).
Hence we have [0 ‘End, 9%0 = (f9)%0 .
This shows that ¢y : Ass) —> Endy(X) is a morphism of set-preoperads.
Hence (X, )y) is an Assp-algebra.

Moreover, for z1,z2 € X we have (z1,22)(ubo) = xy-11) = Tpg) = 71 - T2 = (1, T2)px , SO

pbo = px . Finally, we have ()(gv0) = x.~1(1) = 2[1,0) = 1x = ()ex , hence ey = ex . O
Remark 5.5. Recall that
Asso = (& 0] (ARid1) - fi, (idi B A) - 1), ((d1 KE) - o, idy ), (ERidh) - 1, idy ) ) = Assop,

where fis = 2, it = 1, £s = 0 and £t = 1 and where we abbreviate (XI) = (Klrreey)s () = (‘Free,) and
id; = idFyee,1 ; cf. Theorem 4.32.

More precisely, if we write
Y = {((aRid1)a, (idi &) ), ((idi K, idy ), (ERidi)j, idi )} S Freeg(é, ) x Freeg(é, 1),

then, writing [f]y for the congruence class of f € Freeg(é, i)(m,n) for m,n € Z=o, we have the
isomorphism of set-preoperads

qf_)o : ASSO’P I ASSO
[€]ly — €

[i]y = 4.
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Let 1o : Asspp — Endy(X) be the morphism of set-preoperads with
[€]ydo == ex € Endo(X)(0,1)
[4]y 1o == pux € Endo(X)(2,1).

Since (pux x idx)ux = (idx xpux)px and (idx x ex)ux = idx = (ex x idx)ux , this morphism of
set-preoperads is well-defined; cf. Lemma 4.24.

Note that we have [ly dotbo = evbg = ex = [é]y?ﬁo and [fi]y dovo = wo = px = [ﬂ]yl[)o. So we
have ¢otho = o .

So using the presentation of Assg from Theorem 4.32, by defining 1y := qga 11;0 we obtain the
same morphism of set-preoperads g : Ass) — Endo(X) as in Proposition 5.4, turning X into an
Assp-algebra.

5.3 Associative algebras and Ass-algebras

Proposition 5.6. Let (V, 1) be an Ass-algebra, that is, V is an R-module and 1) : Ass — End(V)
is a morphism of linear preoperads over R.

Define py := up : VRV — V and ey := 0 : R=V® — V. Then (V, uy,ey) is an associative

algebra.

Proof. As in the non-linear case, since in Ass we have (idy X pu)p = (p X idy)p and since 9 is a
morphism of linear operads, we have

(idv @ uv)uy = (pv ®@idy )y .

Furthermore, again with the same calculations as in the non-linear case, the fact that v is a morphism
of linear preoperads and the equations (idy Xle)pu = idy = (e [Xlid1)p in Ass imply

(idy ®@ey)puy = idy = (ev @idy)uy .
This shows that (V, uy,ey) is an associative R-algebra. O

Our next aim will be to show that every associative algebra can be turned into an Ass-
algebra. Again, we will construct the morphism Ass — End(V) in two different ways.
The first will use analogous calculations to the first way for Assg-algebras and give an
explicit formula for the images of f € Ass(m,n) for m,n € Z=q . The second will use the
presentation of Ass as seen in Theorem 4.33.

Proposition 5.7. Let (V, uy,ey) be an associative R-algebra. Forv,w € V define v-w := (v@w)uy .

Using the usual convention of dropping brackets where associativity is known, we may define

Yla,b] ‘= Va * Va+1 "+ Vp = H V;
i€[a,b]
forme Zso, vi,...,um €V and for any interval [a,b] S [1,m]. In particular, if [a,b] = & we have

Vlab] = ly := lgey € V.

Consider the biindexed map ¢ = (Y(m,n))mn=0 : Ass — End(V) that maps f € Asso(m,n) to
f e End(V)(m,n), defined by

fi e
V11 Q... vy, — Vp-1(1) R... ®vf_1(n).
Then ¥ is a morphism of linear preoperads over R satisfying p = puy and ey = ey .

So in particular, (V,1) is an Ass-algebra.
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Proof. First we will show that this map is well-defined. In order to do this, consider the corresponding
map

(F)(m,n) : yxm s, yen
(V1. Um) — Vi-1(1) ® ... QUp—1(p)

for m,n € Z=o. We have to show that this is an R-multilinear map.

Let i € [1,m], vi,...,0i—1,Vi41,...,9m € V and let k € Zzq and v;; € V and r; € R for j € [1, k].
Let vV = 2 rjvm-.
J€E[1,k]

Let [ :=if. Then the factor v; occurs only in vy-1(;y. Moreover, we know that f71(1) is an interval.
So we can write f~(I) =: [a,b] < [1,m] for some a € [1,i] and b € [i,m]. We have

Uy = H Yj

j€la,b]

oy - ( 3 ,«j%j) R,
]

je[l.k

= Z rj(va‘..vlfl.?jl’].UZ+1...Ub)'
Jje[1,K]

So we have

(1)1, ey Vi1, 2 T§Vi,55 Vitls - - - 7Um)(f¢)

Je[1,k]

= ’Uf—l(]) @ e ®Uf—1(l) ® e ®Uf—1(n)

= V1) ® ... QU-1-1) @ ( Z i (Vg * - Vim1 - Vi - Vi1 - "Ub)> ®Vp-1(+1) - - - @ Vp-1()
JE[L,K]

= Z T} (vf_1(1) ®...Qup-13_ ® (Vg ***Vie1 Vi - Vig1 -+ 0p) ® V=141 @ -+ ®vf_1(n))
Jje[1,k]

= Z Tj(('l)l, . .,vi_l,vivj,viﬂ,. . ,Um)(ﬁﬁ))

je[1,k]
This shows that 1) is well-defined.
Note that for m € Z=o we have
(vl ®... ®Um)(idAss,m7»Z)) =01 ®...0Un

for vq,...,vm € V, hence idagsm ¥ = idgnd,m -
From now on we will abbreviate (X)) := (Xass) and (-) := (-ass) -

Now suppose given m,n,m’,n’ € Z=o and f € Assop(m,n), f' € Asso(m’,n’). As in the non-linear
case, for i € [1,n + n'] we have

1) if i € [1,n]

N—=1¢ _
(f&S) (l)_{f’_l(i—n)er ifie[n+1,n+n|,

where f~1(i —n)4,, is the interval f~1(i —n) shifted to the right by m.
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So for v1, ..., Uiy € V we have
(’Ul ®...&® Um+m/) ((f fl)w) = U(fRf)-1(1) ®...Q VFR )1 (ntn')
= Uf—l(l) @ . ®vf—1(n) ®Uf/—1(1)+m ® e ®'Uf/—l(n/)+7n .
On the other hand, defining w; := vy,4; for i € [1,m] we get
(Ula ce a'Uerm’)(fw ®f’¢) = ((Ul ... ®Um)fw) ® ((varl ®... ®Um+m’)f,7p)

= (1 ®.. . ®un) 1)) ® (w1 ® ... W) f'Y)
= Uf—l(l) ® . ®Uf—1(n) ®wf/_1(1) ® . ®wf’—1(n’)

= Uf—l(l) @ .. 'Uf—l(n) ®Uf/_1(1)+m ® e ®Uf’—1(n’)+m .
Hence we have (f X1 )¢ = fo ® f4 for m,n,m',n’ € Z=g and f € Asso(m,n), f € Asso(m’,n’).

Now suppose given m,n,k € Zso and f € Asso(m,n), g € Assp(n, k). Recall from the proof of
Lemma 5.4 that (fg) '(i) = || f '(u)forie[l, k]

ueg =1 (i)
Now for v1,...,v,, € V we have
(11 ® ... Qup)(fY End 9¥) = (11 ® ... @ vm) 1)) g
= (”Uffl(l) X... ®’Uf*1(n))g¢ .
By writing w; 1= vy-1(; € V for i € [1,n] we obtain

(’1)1 ... ®Um)(f1/) "End gw) = (wl ... ®wn)g¢
= Wy-1(1) R...® Wy—1(k)

:( I wm)@...@( I wuk)

u1€g—1(1) up€g (k)
= ( H Ufl(u1)> R...® ( H ’Ufl(uk)>
u1€g—1(1) upeg (k)
= R...Qv
—1(y —1(y
<u16g|_|1(1)f ( 1)) <ukEg|_|1(k)f ( k))

= Vst (1) @ -+ O V(sg)~1 (k)

Hence we have f1 -gnq g¢ = (fg)y for m,n,p € Z>o and f € Asso(m,n), g € Asso(n, p).
This shows that v : Ass — End(V') is a morphism of linear preoperads.
Hence (V, 1) is an Ass-algebra.

Moreover, fo vy, v2 € V' we have (v1 @ v2)puy) = v,-1(1) = v12] = V1 V2 = (V1 @ V2)puy , S0 ) = py .
Finally, we have 1ret) = v-1(1) = v[1,0) = lv = 1rey , hence eyp = ey . O

Remark 5.8. Recall that
Ass > | (f,é | ((pRidy)a — (idi Ka)a), ((idi RE) 4 —idy ), (ERidy)a —idy ) ) = Assp,

where fis = 2, it = 1, és = 0 and ét = 1 and where we abbreviate (X]) = (Klgree), (*) = (‘Free) and
id; = idpyee,1 ; cf. Theorem 4.33.

More precisely, if we write

D = {((pRid1)fx — (idi ®x)a), ((idi1 RE)i — idy ), (€ ®idi)i —id1 )} S Free(é, 1) = RFreeo(é, i)
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and Z := . (D), then we have the isomorphism of linear preoperads
¢ : Assp —> Ass
[é]l— — €
[i]z — 1.
Let ¢ : Assp — End(V) be the morphism of set-preoperads with
[€]7¢ := ey € End(V)(0,1)
i)z = py € End(V)(2,1).

Since (py ® idy)py = (idy @ uy)py and (idy ®ey)py = idy = (ey ® idy )uy , this morphism of
linear preoperads is well-defined; cf. Lemma 4.26.

Note that we have [ElzoY = e = ey = [€]lz and [A]zd) = wp = py = [fi]ze). So we have
oY =19
So using the presentation of Ass from Theorem 4.33, by defining v := q@‘llﬁ we obtain the same

morphism of set-preoperads ¥ : Ass — End(X) as in Proposition 5.7, turning V' into an Ass-
algebra.
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6 Operads and algebras over operads

In this chapter we will define set-operads and linear operads and consider some basic
examples.

In order to so, we will need certain elements of the set-preoperad Map, .
Definition 6.1. For m,n € Zx( define s, , € Mapy(m + n,m + n) by
, i+n ifiell,m]
Smmn =y . ir
i—m ifie[m+1,m+n]
for i € [1,m 4+ n]. We get an element spbp, € Mapy®(m + n,m + n).
Note that for m,n € Z>¢ we have s, - Snm = idmin = Snm = Smn - SO Smy is a bijective map.

Definition 6.2. For n,l € Z=( and n € [1, kl] we can uniquely write n = - u + v with v € [1,[] and
u € Z. By defining n := u and # := v we can also define a map

hk,l : [Lk ’ l] - [17l]
n—— n.
So we get an element hy; € Mapy(kl, ).

Note that we have hy; = id[y ;] = idmap,,. for [ € Z>g .

6.1 Set-operads

Definition 6.3. A set-operad (Po,po) is given by a set-preoperad (Py,[x],-) and a morphism of
set-preoperads pg : Mapy® — Py such that (sol) and (s02) hold.

(sol) We have (s‘;im,po) (R = (RS- (52{’”,;30) € Po(m +m/,n +n') for m,n,m’',n’ € Z>o,
f € PO(mvn)v f, € Pﬁ(mlvn,)‘
(s02) We have (h5, po) - JEAE (hih,po) € Po(m, kn) for k,m,n € Zzo and f € Po(m,n).

For brevity, we refer to the set-operad (Po, po) simply by Py. We then denote by Py the underlying
set-preoperad of Py .
So we have Py = (P5™°, po) for the morphism of set-preoperads pg : Mapg” — Py belonging to Py .

Whenever necessary, the multiplication in P§™ is written (pgfe) or simply (XJp,) and the composi-
tion is written (-pgre) or simply (-p,). Moreover, we usually denote the identity elements of Py by
idy, or idp, m for m e Zxq .

Remark 6.4. Let Py = (P}, po) be a set-operad. Then for m € Zso we have [Py (m,0)| = 1.

In other words, if we view PJ'° as a category, then 0 is a terminal element.

Proof. Let m € Zzq . First note that hg" po € Po(m,0), so [Po(m,0)] = 1.
Suppose given f € Po(m,0). We will show that f = hg" po.

Note that & = idg € Py(0,0) and that hg%po = idg € Py(0,0) since hgp € Mapy(0,0) and
Map(0,0) = {idmap,,0} - So by (so2) we have

(o) (o) . (o) X 2 O .
(hSP o) = (AP po) -ido = (ASE,po) - 0 2 £ (WP po) = f-ido = f.
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Example 6.5. Let X be a set. Recall the morphism of set-preoperads ¢ : Mapg” — End(X) that
maps an element a®® € Map,®(m,n) (given by a map a € Mapy(n,m)) to a®®eq € Endg(X)(m,n)
defined by

(1, yxm)(aPeo) = (T1q, - - -, Tna)
for z1,...,z, € X; cf. Definition 2.61.

Then END((X) := (Endo(X), ¢o) is a set-operad.
Ad (sol). Note that for m,m’' € Z>¢ and 1, ..., Zpim € X we have

(T1y vy Trbm?) (S(;im,eo) = (:Ulsm’m,, e ,x(mﬂn/)sm’m,) =T/ g1y o s Ton/ by Ty v oy Tt
Let m,n,m’',n’ € Z=o and f € Endo(X)(m,n), f' € Endo(X)(m',n’). Then for z1,...,Tpmim € X
we have
(@15 s Tomt) (Sn r€0) = (FES)) = (@155 Ty Tt 15+ s Tt ) (51 r€0)) (F B f)
= Ty gty e o s Tyt s 1y - -+ Ty ) (f X F7)
= (Toigts s T f X (X150 ) f
PRI N L N B +m)f)s P e
Ty ey Tonds Tont 415 - -+ s Tyt ) (' .f) ,eo
— @1 tmren) (P B - (57 050)).
Hence we have (sm o) (fRf)=(f®f)- (sffn,eo).
Ad (s02). Let m,n,k € Zso and f € Endg(X)(m,n). Then for x1,...,2,;, € X by defining
(Y1, sYn) = (z1,...,2m)f we have

(x1,...,27) ((hzlf f.k) ((xl, e, T eo))fk
(Hflhk m? T2hp o+ o ﬂﬁ(km)hk,m)fk
= (T1y ooy By TLs ey Ty e e ey Ty L) [
= (21, ., ep)f X (@1, s ) f X oo X (@1, ) f
= (Y1, Yn) X WYy Yn) X oo X (Y, Yn)
= (Y1, o Y2hy o e - 7y(kn)hk,n)

= (Y1, -, yn) (A} %0)
= (@1, -, 2m) f) (B, 00)
(xla )(f : (hkjne()))'

So we have (hy", ¢o) - ek = [ (hyhe0) -

This shows that ENDy(X) = (Endo( ), ¢0) is a set-operad. We have ENDg(X)P*® = Endy(X).

Lemma 6.6. Let m,n,m',n’ € Z=o and a € Mapy(m,n), a’ € Mapy(m’,n’). Then we have

/ /
(CL Mapo CL) "Mapy Sm,m’ = Sn,n’ "Map, (CL Mapo a)-

Proof. Let i € [1,n 4+ n']. Then we have

(4G) Sy my if i € [1,n]

1((a X a)- Smm/ =
({0 Bhtepy ) Mgy Smim {((i—n)a’+m)8m,m' ifi€fn+1n+n]

~Mia+m! it i€ [1,n]
((i—n)ad +m)—m ifie[n+1,n+n]
~Mia+m! if i€ [1,n]
(it —n)d ifie[n+1,n+n]
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and on the other hand

; . S oy = ) )@ B, @) ifie (1]
Z(Sn,n’ Map, ( Mapo )) {('L )(a .Map0 a) ifie [n+ 1,n+n’]
_J@+n) =n)a+m’ ifie[ln]
(i —n)d ifien+1,n+n]
ia +m ifi e [1,n]

So the maps are the same.

Example 6.7. We have the set-operad MAng =

morphism

ldM apgp

: Mapgp — Mapgp

ifie[n+1,n+n].

O]

(Mapq”, idygaper), where idyg,per is the identity

For the proof denote by ([x]) and (-) multiplication and composition in Mapy and by (Xop) and (-op)

multiplication and composition in Mapg® .

Ad (sol). We have to show that for m, n,m’, n’ € Z=o and a°® € Mapy® (m, n) and a’°? € Mapg® (m/, n')

we have

) ! )
(siﬁm, 1dMap8p) rop (a°P Hop @' P) = (a'°P Kop a°P) “op (sfﬁn, 1dMap8p).

Using the definition of (-op) and (Xbp) and Lemma 6.6 above, we get

(S 10apg?) “op (@7 Bop @) = 5,7 -op (a1 a’)P

(@B a) - s )
= (snm - (0’ a))P
= (a’
= (a

) ‘op SZI,)TL

Op .Op ) op ( n ldMapOD)

Ad (s02). Let m,n, k € Zzo and f°P € Mapg®(m,n). We have to show that

<k ! op -
(A 1d0apg?) op (fPYF = P oy (R)D idygapge)-

Since

(B, idagape) op (fOP)2 = (% gy )P

fop ‘op (hk,n 1dMapgp) =

it suffices to show that

= hz?m p (fk)op

(hk,n ' f)opv

1
fk 'hk,m = hk,n f
We will show this via induction on k£ = 0

Let k = 0. Then hg,, € Mapy(0,m) and hg,, € Mapy(0,n) are the unique elements in Map,(0,m)
and Map,(0,n). Furthermore, f™ = idyfap, 0 is the unique map in Map,(0,0). So the statement is
true for k = 0 since on both sides of the equation we have a map from [1,0] to [1,m] and this is
uniquely determined.
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Now let & > 0 and assume that the statement is true for kK — 1. Note that for r € Z>¢ and j € [1, kr]
we have

it = Jhk—1, if je1,(k—1)r]
BTG = = )b, i e [(— D +1,kr]
_ JIhk-1s if jell,(k—1)r]
j—(k=1)r if je[(k—1)r+1,kr];
cf. Definition 6.2. Now let i € [1,kn]. Then we have
i b)) = AV RS) - g
_ {(if(’”))hk,m ifie[l,(k—1)n]
(G = (E=1)n)f + (k= Dm)hym if i € [(k—1)n +1,kn]
{(z‘f%l))h“,m if i€ [1, (k- 1)n]
(i—(k—=Dn)f+(k—1m)—(k—1m ifie[(k—1)n+1,kn]
B i(AED ) ifie[l,(k—1)n]
 G=(k=1Dn)f if i e [(k—1)n +1,kn]
ind. i(hg—1n - f) ifie[l,(k—1)n]
(i—(k—=1n)f ifie|(k—1)n+1,kn]
(thg—1n)f ifie[l,(k—1)n]
(t—(k—=1n)f ifie[(k—1n+1,kn]
= (th,n)f
= Z(hk,n : f)

This shows that MAP(” = (Mapg”, idyapor) is in fact a set-operad.

Now recall that for n € Z> and for a tuple k = (k;)ie1,n] € (Z=0) " there exists the bijective map

[ 3 k]—> L] [1,k] given by

i€[1,n] i€[1,n]
et (o t— Y k),
se[1,txk—1]

where
[ Z k] [1,7]

1€[1,n]
t—> min{u € [1,n] : 2 ks >t}
se[1,u]

Its inverse map is

et L Lkl — |1 Y k]

i€[1,n] i€[1,n]

s€[1,i—1]

cf. Definition 1.18.
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Definition 6.8. Let m,n € Z> and let a € Mapy(m,n) be a map. Let k = (ki)ie[1,n] € (Zz0)" "
We write ka* := (kja) je[1,m] € (Z20)*"™ . Then define
arg) - |_| [1, kja] — |_| [1, k]
je[1,m] i€[1,n]
(U, z) — (ja,x)

and define the map ap) by

a[k] = Pka* * Q[k] -0
We have

(15 ko] =2 U Dk = k= (1 S K,

jelt,m]

S0 apy) eMapy (X kja, X ki)

je[1,m] i€[1,n]

Example 6.9.

(i) Let m = n and let a = id,, , the identity map. Then for k = (k;)ie[1,m] € (Zz0)*™ we have
kidy, = (kjidn)jeqim] = (kj)jeqim) = k, hence @piqx = ¢y .

Moreover, (i?im)[k] is the identity map, hence (idy )] = ids, where Xk = > k;.
i€[1,m]

(ii) Let m = n = 2 and let a = (1,2) be the transposition. Then for k = (k1, ko) € (Z=q)*? we
have (1,2)[x] = Skyk, since for i € [1, kg + k1] we have

——~—

. -1 ep -

7;(‘P(k Ei) (1/\2/) cot ) = (1’2)((172)[(k1’k2)] '(’D(k’l,kz)) if i € [1, k]

2,k1) 2/ (ksk2)] T (R k) . P ] p

(2,7 — K2) (1, 2) (g4, 4o - gp(km)) if i € ko + 1, ko + k1]

(2,1’)%117@) if i € [1, ko)
(L3 = k)P0, o) if i € [ka +1,ky + k1]

ki +i if i € [1, ko]
1 — ko ifie|ky+1,ky+ k1]

= ZSk%kl

(iii) Let m € Z=o and let a = p,,, € Mapy(m, 1); cf. Definition 4.29. Then for k = (k1) € (Z=0)*! we
have kpy, = (Kju,, ) jefim] = (k1,- .., k1) € (Z=0)*™. We can write i = i-ky +i for i € [1,m-ki]
with 7 € [1,k;] and i € [0,m — 1] in a unique way. Then we have ippx, = (14 1,i) and thus

(P - ()] - 05 ) =

Hence we have (tm)[(k,)] = Pk -
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(iv) Let m,n € Zxo and let a € Mapy(m,n). Let &k = (1,...,1) € (Zs0)*™. Then we have
ka* = (1,...,1) = k and ¢, is the map

ot [1,n] — A [1,1]

So for i € [1,n] we have

iapgy = i(er - ap - o) = (@D (@ - ¢, ") = (ia, 1), ' = (ia—1) -1+ a = ia.
Hence we have a) = a.

Lemma 6.10. Let (Py,[X],-) be a set-preoperad and let po : Mapgp — Py be a morphism of set-
preoperads.

Form,n € Z=o and a € Mapy(m,n) consider the following assertion Bo(a).
Bo(a): For li,r; € Z=o and f; € Po(li,ri) for i € [1,n] and for | = (Ii)ie[1,n) and v = (7i)ie[1,n] we

have
(0 5) Cigw) = Ci) - ( B9 5)
i€[l,n

je[l,m

We have

(1) The morphism of set-preoperads po satisfies condition (sol) from Definition 6.3 if and only if
Bo(a) holds for all m,n € Z=¢ and all a € Mapy(m,n) such that a is bijective.

(2) The morphism of set-preoperads pg satisfies conditions (sol) and (so2) from Definition 6.3 if
and only if Bo(a) holds for all m,n € Z=o and all a € Mapy(m,n).

So (Po,po) is a set-operad if and only if Bo(a) holds for all m,n € Zxo and all a € Mapy(m,n).
Proof. We will show this using a couple of steps. Note that to prove (1) we shall only need to apply

po to bijective maps, using the the Claims 1.1, 1.2, 2.1, 2.2, 3.1 and 3.2.

During this proof we denote by (Xlp,) and (-p,) the multiplication and composition in Py, by (XI)
and (-) the multiplication and composition in Mapy .

Our first aim will be to show that Bg(a’) and Bg(a”) for m,n,m’,n’ € Z=¢ and a € Mapy(m,n),
a’ € Mapy(m’,n’) imply Bo(a Xl a').

"

Claim 1.1. Let m/,n’,m" n" € Zsy and o’ € Mapy(m/,n'), a” € Mapy(m”,n"). Then for

k= (ki)ie[l,rL’+n”] € (ZZO)X(H—HLI) we have
(CL, CL”) [k] = ai:k/] a’[/k,,] s

where k' = (ki)ier1] € (Z20)*" and k" = (kiin)iep1 € (Z20)"".

Proof of Claim 1.1. We will use the following abbreviations.

K= Y K= Xk SHa* = N K= Y ki
i€[1,n/] i€[1,n/] je[1,m’] je[1,m’]
Ek” = Z k;l = Z ki+nl Ek‘”a”* = Z k;!a// - Z kja//+m/
i€[1,n"] i€[1,n"] Je[1,m"] je[1,m"]
Skoi= Y k= SE 4 Sk SE(d'®a")* = Y kg = SKa* + DK

te[1,n/+n"] Je[1,m’'+m”]

114



First note that for ¢t € [1,Xk'] we have

txr =min{ue [1,n +n"]: Z ks >t} =min{ue [1,n]: Z ks =t} =txy € [1,n]

s€[1,u] s€[1,u]

and for ¢t € [(XE') + 1,3k] we have

txkr = min{ue [1,n' +n"]: Z ks =t}

s€[1,u]
=n'+min{ue [1,n"]:( ( Z ks+n/) >
s€[1,u]
=n'+min{ue[1,n"]: Z ksin = (t — SK')}
se[1,u]

=n'+ (t =3k )xw € [0/ +1,7" +n"].

Now suppose given t € [1, Xk(a' [x1a")*].
Case t € [1, 2k a"™]. So tXp@mary* = tXpax € [1,m']. Then we have

t (a' (I”)[ = t(@k(a’.a”)* . (a’ a”)[k] ' 90];1)

th(a’.a”)* y U Z ks(a’a”)) ((al a”)[k;] ’ (70];1)

[l:th(u’ ally® —1]

th' ko, — Z k (a/a//)) ((a/ al/)[k‘] . 90];1)

€[1,tx 0 g% —1]

~
~
(th,,*a-aff) _— f>’“
(!
(.

Se[1,txprgrx—1

EXhar+) > ksaf)sog !

SE[L,tx g1 —1]

Z k‘) + 1t — 2 ksa
'—1] [

€[1,(txprqrx) se[1,tx g1 —1]
and
! " !
t(a[k,] a’[k‘”]) = ta[k/]
= t ()0,{,‘/(1/* a:ik/] ()0]:;/ )
= (th’a’* y t— Z ksa’) (&,[k/] ’ QO];’I)
se[Ltxprare—1]
((txk/ wa  t— ) ksa)sokﬁ
SE[L,txp g7 —1]
(B k) B ke
[11(txk’a’* )(l/—l] se[l7txk/a,*_1]
So we have

t (a'[k,,] a'[’k,,]) =t (a' a”) K -
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Case t € [Zk'a™ +1,Xk(a' X1a")*]. Define t’ := t — Xk'a’*. So from the above calculations we know
th(a’a”)* =m + tIXk”a”* € [m’ + 1, m' + m”]. Then we have

(CL .a//) — Phk(a/Ra")* * (a .a”)[ k] " (101;1)

th a'Xa")*» U Z ks(a’q”)) ((a”)[k] ’ 901;1)

Se[l,txk(a/ allysk —1]

tIXk” w4+ m' ,t— Z ks(a’a”)) ((a//)[k] . gplzl)

SE[1,t! Xy g1 +m/ —1]

tIXk” e m t — 2 ks(a/.a//) — Z ks(a’a”)) ((a/,)[k] . 80];1)

se[1,m/] se[m/+1,t x g +m’ —1]

( t Xk"a!* + M )(a' a") , t— Ek'a'* — 2 k(sm’)a”Jrn’)SO[;l

se[m/+1,t"x g +m' —1]

t Xk a!" a + TL t/ — Z ksa”-‘rn’) 90];1
SE[L,t X g1 —1]

k) +t — 2 ksa”-&-n’
[

(X g //*)a”Jrn' 1] s€ 17t/Xk”(a”)*71]

and
/ " _ /
t(a[k,] a[k‘”]) = t [k"] + Yk
et ) + 5K
— (t Xk t — Z ksa//+n/> (al[,k,,] (pk,,) =+ Zkl
SE[L,t xpn g1 —1]
— ( t Xk”a”* s t, — Z ksa//+n/> SO];//I + Zk’l
SE[L1,t! X gt g1 —1]
= ( kn’+i> +t' - ( Z ksa”+n’> + 3K
E[1,(t' x g Yo —1] SE[1,t! X grrse —1]
= ( k‘) +t' - ( 2 ksa”—i—n’) + XK
g[n/+1,(n th' Xl gt )a' —1] se[1,t" x g —1]
— ( k1> + t’ _ ( Z ksa//+n/> .
e[1,(t Xk” mx )’ +n'—1] SE[l,t'Xk//(a//)* —1]
So we have

t(al[k,] al[/k//]) =t (CL/ a”) [k:] .
This proves Claim 1.1.

Claim 1.2. Let m’,n’,m" n" € Z¢ and o’ € Mapy(m/,n’), a” € Mapy,(m”,n"). If By(a’) and Bo(a")
are true then so is Bo(a' x1a”).

Proof of Claim 1.2.  We have to show that for tuples | = (li)ie[1,n/4n"] € (Zso)* ' +1")
T = (Ti)ie[i 4] € (Z=0)*"*7") and for f; € Po(ls,r;) for i € [1,n' + n"] we have

( X5, fz’) “Po (((a'a")[r])Oppo) = (((a'a")[z])0ppo> Py ( Xlp, Fjamar) )

1€[1,n/+n"] JE[1,m/+m/]
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Define f] := f;, Il :==1; and 7} := r; for i € [1,n/] and [/ := an = liyn and 77 := r;,y for
i€ [1,n"]. So we have f! e 730( norh) forie [1,n'] and f! € Po(l!,r ) for i € [1,n"]. So we have

( g, f1> 7o (@ Ba")p7) o)

ie[1,n/+n"]

Bo(a),
Bo(a”

af '] OpPO ( 730 f;w)) PO (((al[ll//])()ppO) “Po ( 730 fjl‘/a//>)

je[1,m’] JE[1,m"]

g
&
N

)

2 (( gy ( By i
- (( =, ), (-P 17) ) 7 (a0 59, (o))
= (( B ) '[r/poppo)) an (02, 57) ()
((

(c

PpO .'P() ( /[Il//])opp())) “Po (( PO f‘;a/> 'P() ( 730 f]l_/a”>)

Je[1,m’] Je[1,m”]

((a’l[l’] al[ll"])oppo) “Po (( 730 fja’) XIp, ( 730 fja”-i—n’))

Je[l,m’] Je[1,m"]

Cl.zl.l ((a .all)[]po) ( 73'0 fj(a’a”)>‘

JE[1,m/+m”]

This proves Claim 1.2.

Our next step will be to show that given m,n,p € Z>o and a € Mapy(m,n), b € Mapy(n, p) such
that Bg(a) and Bg(b) hold, then Bg(a - b) holds.

Claim 2.1. Let m,n,p € Zzo and a € Mapy(m, n), b € Mapg(n, p). For k = (k;)ie[1,5) With k; € Z=o
for i € [1, p] we have

a[kb*]b[k] = (ab)[k] .

Proof of Claim 2.1. First note that (kb*)a* = (kuab)ue[1,p] = k(ab)*. So we have

pp*] brk]

LI (L kgl ——— U [Lkjal ———— 1 [1, k4]
u€g[1,m] \]e[li/ 1€[1,p]
(ab) g

which is a commutative diagram since for (u,z) € || [1,ky(p)] we have
u€g[1,m]

() papsybiag) = (wa, )by = (u(ab), ) = () @By
Hence we have d[kb*]g[k] = (ab)[k] :

This implies that

~

g b = (Peevsyar - A - Coe) * (Pror - Opig - 05 )
= Qr(avy* - (ab) iy - 05
= (ab)[k] .

This proves Claim 2.1.
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Claim 2.2. Let m,n,p € Z=¢ and a € Mapy(m,n), b € Mapy(n,p). If Bo(a) and Bo(b) are true then
so is Bo(a - ).

Proof of Claim 2.2. We have to show that for I = (l;)ie[1,5) € (Zz0)*? and 1 = (1:)ie[1,p) € (Zz0)™P
and for f; € Po(l;,r;) for i € [1,p] we have

(B, ) - (b))  ((Cabyy)o0) - (B )

ie[1,p] ugll,m]

Note that fj, € Po(ljp, ) for j € [1,n] and Bo(a) imply that

( .p f]b) Py ((app))Ppo) = ((app*])PPo) Py ( po fu(ab))-

je[1,n] u€g[1,m]
So we have

( 730 fz') “Po (((ab)[r])OPPO) < .po fz) 2o ((agp#] - b7)°PPo)

i€[1,p] ie[1,p]

= X, fz) 2o ((b1)°PP0) 2y ((agp¥])°PPo)

i€[1,p]

= ((b[l])oppo) “Po ( 7)0 fﬂ7> “Po ((a[rb*])OPPO)

Jje[1n]

Bo(a) ((b[l])°ppo) “Po ((a[lb*])OPPO) "Po ( Po f“(“b))

u€[1,m]

= ((a[zz)*] -b[z])OPPO) “Po ( .7) fu ab )

ue[1,m]
A2 (((ab)g)°Ppo) mo ( X, fu(ab)>~
ug[l,m]
This proves Claim 2.2.
Claim 3.1. The assertion By(id,,) is true for m € Zxg .
Proof of Claim 3.1. From Example 6.9 (i) we know that for k = (ki)ig[1,m] € (Zz0)*"™ we have
(idm)[x) = idsk , where we abbreviate 3k := ( >, kl>

i€[1,m]

So for I = (li)ie[1,m] € (Z=0)*™ and 7 = (7i)ie[1,m] € (Z=0)*™ and for f; € Po(li,r;) for i € [1,m] we

have
(B 5) o Gitpmoe) = (B, 1) (i) "0)
i€[1,m] i€[1,m]
= ( NPO fl) “Po (idPo,ET)
i€[1,m]
c2
(2) ( 7>o fi)
i€[1,m]
(C=2) (1d730 2;) ( .P fl)
i€[1,m]
= ((idst)®po) -7>0< 7;0 fiidm>
1€[1,m]
= ((idgg )™ po) 'Po( X, fiidm>-
i€[1,m]
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This shows that Bo(id,,) is true for m € Z>( and proves Claim 3.1.

Claim 3.2. Let (1,2) € Symg(2,2) be the transposition. The assertion By((1,2)) is true if and only
of po satisfies condition (sol).

Proof of Claim 3.2. From Example 6.9 (ii) we know that (1,2)((x, k)] = Skaky fOr k1, k2 € Z20 -
So Bo((1,2)) holds if and only if for l1,l9,71, 72 € Z=o and f1 € Po(l1,r1) and fo € Py(l2, 72) we have
( X, fi) Po (1 2)[r1.r)) PP0) = ((1,2)11,.201) " P0) Py ( X, fit 12)
i€[1,2] j€[1,2]

i.e. if and only if

(fLB&py f2) Py (s75rP0) = (5731,P0) Py (f2 &Py f1)
for ly,1la, 71,79 € Z>0 and fi € Po(l1,r1) and fo € Py(la, r2), which is equivalent to condition (sol).
This proves Claim 3.2.
Claim 3.3. The assertion Bo(um,) is true for all m € Zxg if and only if pg satisfies condition (s02).
Proof of Claim 3.3. From Example 6.9 (iii) we know that (tm)[k,)] = hmk, for k1 € Zzo.

So for m € Zx¢ the assertion Bo(uy,) is true if and only if for l1, 7 € Z=o and f1 € Py(l1,71) we have

( Xy, fi) Po () ir))™p0) = () 12)*p0) -7 ( X, fﬂ*“”)

i€[1,1] je[1,m]
i.e. if and only if

o =
J1py (heh e p0) = (hyyy Po) Py Pt

for l1,r1 € Z=p and f; € Po(l1,71), which is equivalent to condition (802).
This proves Claim 3.3.
Now we can show (1) and (2).

Ad (1). First note that if Bg(a) is true for all m,n € Zso and all a € Mapy(m,n) such that a
is bijective, then in particular By((1,2)) is true for the transposition (1,2) € Mapy(2,2). So by
Claim 3.2, the condition (sol) is satisfied.

Now suppose that pg satisfies condition (sol) from Definition 6.3. Let m,n € Zxo and a € Mapy(m,n)
such that a is bijective. So m = n.

The map a is the composite of elementary transpositions, so there exist s € Z>g, i1,...,is € [1,m—1]
such that

a = (i1,i1 + 1) - (ig, 92 + 1) -« (is,5 + 1)
= (ids, -1 X (1,2) ®idsm—s,—1) - (idip—1 (1, 2) Kidpm—ip—1) - - - (ids,—1 X (1,2) Kidy—i,—1)-

By Claim 3.1 and Claim 3.2 we know that Bg(id;) is true for j € Z>o and that Bo((1,2)) is true.
By Claim 1.2, the assertion Bo(id;;—1 X (1,2) X idm—i;—1) is true for j € [1,s]. By Claim 2.2, the
assertion Bg(a) is true. This shows (1).

Ad (2). First note that if Bo(a) is true for all m,n € Z=( and all a € Mapy(m,n), then in particular
Bo((1,2)) and Bo(um) for m € Zxo are true. By Claim 3.2, the condition (sol) is satisfied since
Bo((1,2)) is true and by Claim 3.3, the condition (s02) is satisfied since Bo (g, ) is true for m € Z=g .
So in particular (P, po) is a set-operad; cf. Definition 6.3.
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Now suppose that pg satisfies the conditions (sol) and (so2) from Definition 6.3.

Reordering 1, m], we see that there exist a monotone map amon € Mapy(m,n) and a bijective map
anij € Mapy(m,m) such that apij - Gmon = a.

There exist ji,...,Jn € [0,m] such that
Gmon = Hj; "':ujn;

cf. Remark 4.30. By Claim 3.3, the assertion Bo(pu;,) is true for i € [1,n]. So by Claim 1.2, the
assertion Bo(amen) is true.

By (1) we know that Bo(awi) is true. Hence by Claim 2.2, By(a) is also true. O

Remark 6.11. It would also be sufficient to ask Bg(ug) = Bo(e) and Bg(uz) = Bo(u) to be true
instead of Bo(un,) for all m € Zs( since for m > 3 every u,, can be written as a composite and
product of ys = p and id; . Then by Claim 1.2 and Claim 2.2 from the proof of Lemma 6.10, Bo ()
is also true.

Lemma 6.12. Let Py be a set-preoperad and let pg : Symy” —> Py be a morphism of set-preoperads.
Consider the following condition (log).

(log) We have (siﬁm,po) (=M =(Ef) - (sffn,po) € Po(m +m',n+n') for mn,m',n' € Z=g
and f € Po(m,n), f' € Po(m!,n').

Furthermore, for m € Z=q and a € Symy(m,m) consider the following assertion B(a).

]~3(a): For li,ri € Z=o and fi € Po(li,ri) for i€ [1,m] and I := (li)ie[1,m] > 7 := (Ti)ie[1,m] we have

< fi) - (a([)fipo) = (a([’lﬁ’p(J) : < fja> ’
ie =

[1,m]

Then the morphism of set-preoperads po satisfies (log) if and only if B(a) is true for all m € Zsg
and all a € Symy(m,m).

Proof. This holds since in the proof of Lemma 6.10 (1) the morphism of set-preoperads py has only
been applied to bijective maps. O

6.2 Morphisms and suboperads of set-operads

Definition 6.13. Let Py = (P}, po), Qo = (95, o) be set-operads. A morphism ¢o : Py — Qo

of set-operads is given by a morphism ¢f © : Py — Qf'° of set-preoperads such that poof = qo
ppre w0 Qpre
0 0
op
Map,,

Whether we use g or wgre to denote it depends on whether we are in the context of set-operads or
set-preoperads.

Note that the source of ¢} is P§™°, whereas the source of g is ( Mapg’ P, ). Similarly, the

target of ¢f ® is QF, whereas the target of ¢g is ( Mapg” 9, ). This prevents us from formally

equating ¢f © and ¢ -
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Example 6.14. Let Py = (P}, pg) be a set-operad. The identity morphism idp, : Py —> Py is
given by idpPl:)e = idpgre L prre e,

Definition 6.15. Let Py = (P{™,po), Qo = (9§, q0) and Ry = (R, vo) be set-operads. Let
0: Po— Qo and 9y : Qo —> Ro be morphisms of set-operads, that is, we have the following
commutative diagram.

pre pre
® %o
pre 0 pre pre
P QO 7?’0
qo
k T /
op

Map,,

The composition g is given by the composition @f “¢)8™ of morphisms of set-preoperads; cf.

Definition 2.18 (2).
This defines a morphism ¢yt of set-operads since po(ph ¥h ) = (Powh UE < = qoy =

Definition 6.16. Let Py = (PJ™, po) be a set-operad. A set-operad Qp = (9}, qo) is called a
set-suboperad of Py if QF © < PJ'° is a set-subpreoperad and if Im(pg) € OF © and qo = po‘Qg )

Remark 6.17. Let Py = (PJ™, po) be a set-operad. Suppose given a set-subpreoperad 7o < Py™°
such that Im(po) € 7o . Then (7o, pg‘ ) is a set-suboperad of Py .

Definition 6.18. Let [ be aset. Let Py = (Pgre,po) be a set-operad. Let Qp; = (Qgrf,lﬂo‘go’i) c Py

pre

N .
be a set-suboperad for i € I. Then () Qq; := (ﬂ Qgrf,po ier > is a set-suboperad of Py since
i€l el

N 826 c PJ™ is a set-subpreoperad by Lemma 2.31 and since Im(pg) <

iel c (m Qoﬂ-) _ ﬂ Qpre.

el el

Definition 6.19. Let Py = (P§"°,po) be a set-operad. Let X € PJ™® be a biindexed subset. We
define the set-suboperad of Py generated by X by

pre . . .
0.i for ¢ € I implies

op<X> = ﬂ {Qo : Qp is a set-suboperad of Py with X < Qgre}.

Lemma 6.20. Let Py = (Pgre,po) be a set-operad and let X € Ppre be a bitndexed subset. Then we
have

oreopl X W Im(po) ) = (0p<X>>pre

Equivalently, writing this as an equation of set-operads, we have

preopl X UIm(po) >
) = (XD

(e X O Tm(p0) ), b0

T

Proof. Note that for a set-subpreoperad Ty € P we have that (7o, p0|TO) is a set-suboperad of Pgy

if and only if Im(pg) € 7o . So we have

(X vlIm(pg)) ﬂ {76 7o is a set-subpreoperad of PJ™¢ with X U Im(pg) < 76}
= ﬂ {Tg : To is a set-subpreoperad of Py with X € 75 and Im(po) S To}

preop

= ﬂ {Qgre : (Qgre,po‘ggre) is a set-suboperad of Py with X € ngre}
= (ﬂ {QO : Qq is a set-suboperad of Py with X < Qgre})pre

()
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6.3 Algebras over set-operads
Definition 6.21. Let Py = (PJ™°,po) be a set-operad. A Py-algebra (X, go) is a set X together
with a morphism gg : Py —> ENDy(X) of set-operads.

pre
Qo

Py —— ENDg(X)Pre
Po T /
Mapg?

6.4 Linear operads

Definition 6.22. A linear operad (P,p) over R is given by a linear preoperad (Py,[X], -) over R and
a morphism of linear preoperads p : Sym°® — P such that (lo) holds.

(lo) We have (s,7 ) - (fEf) = (f'&f)- (s,5,0) € P(m +m/,n+n') for m,n,m’,n’ € Zzo and
feP(m,n), f'e P(m',n).

For brevity, we refer to the linear operad (P, p) simply by P. We then denote by PP* the underlying
linear preoperad of P.
So we have P = (PP p) for the morphism of linear preoperads p : Sym°® — P belonging to P.

Whenever necessary, the multiplication in PP™ is written (Xlppre) or simply ([xlp) and the composition
is written (-pere) or simply (-p). Moreover, we usually denote the identity elements of PP™ by id,,
or idp ,, for m € Zg .

Example 6.23. Let V be an R-module. Recall the morphism ¢ : Sym°® — End(V') of linear
preoperads that maps an element a°® € Symg”(m, m) to a®Pe € End(V)(m, m) defined by

(M ®...0un)(a%e) =1v1,®...® Vna

for v1,...,v, € V; cf. Definition 2.64.
Then END(V) := (End(V), ¢) is a linear operad.

In order to show that this is true first note that for m,m’ € Z=o and vy, ..., Vmim’ € V we have

(V1 ® -+ ® Vi) (51 e) = o @ ®Vngmiys, ) = V1 @ O Ui @ UL Q... @ Uy -

Now let m,n,m’,n’ € Zsp and f € End(V)(m,n), € Endo(V)(m/,n’). Then for vy, ..., vppm €V
we have
(01® -+ @) (50,00 (FOF)) = (1@ .. @V @ Vmi1 @ . @ Vam) (538,,0)) (f @ f)

= (U1 Q. QU QU ® ... Quw) (f® f)
= (V11 ®-. ®Um’+m)f®(vl®"'®vm’)f,

( MO .. QU)W 41® .- ® VUt 4m) f) sffn,e

= (1®. OV @V 41 ® . @ Vrim) (' ® f)) (577 ¢)

=1 ®...®Um'im) ((fl@f) ' (SZ{)”IQ)) '

Hence we have (s mm,e) (fRfMH=U'Rf) (s nn,e)
This shows that END(V) = (End(V),e) is a linear operad. We have END(V)P*® = End(V).
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Example 6.24. We have the linear operad SYM®P := (Sym®P, idgymer) where
idgymer : Sym? — Sym°P

is the identity morphism.

For m,n € Z>o, a map a € Mapy(m,n) and a tuple k = (k;)se[1,,) With k; € Zx for i € [1,n] recall

o[ 3 k)= [ 2 )

je[1,m] i€[1,n]

cf. Definition 6.8.

Similar to the characterization of set-operads given in Lemma 6.10 we are now going to
state an equivalent characterization of linear operads.

Lemma 6.25. Let (P,[X,-) be a linear preoperad over R and let p : Sym°® — P be a morphism of
linear preoperads over R. For m € Zxo and a € Symg(m,m) consider the following assertion B(a).

B(a): For l;,r; € Zzo and f; € P(li,7;) for i € [1,m] and for I = (li)ie[1,m] and r = (7i)ie[1,m] we

have
fi] - (aofp) = (aolpp) : fia | -
‘ [7] 1] '
te[1,m] je[1,m]
Then (P,p) is a linear operad if and only if B(a) holds for all for m € Z=¢ and a € Symy(m,m).

Proof. First recall that we can view P as a set-preoperad and p‘s » : Symg” — P as a morphism

of set-preoperads; cf. Remarks 2.10 and 2.17. Since for m € Z>0 and f°P € Symg"(m,m) we
have fPp = f"pp‘symop, the morphism of set-preoperads p‘symop satisfies the condition (log) from
0 0

Lemma 6.12 if and only if the morphism of linear preoperads p : Sym°®® — P satisfies the condition
(lo).

Hence by Lemma 6.12, the morphism of linear preoperads p : Sym°® — P satisfies the condition
(lo) if and only if for all m € Z=¢ and all a € Symy(m,m) and for l;,r; € Z=o and f; € P(l;,r;) for
i € [1,m] and for | = (I;)ie[1,m) and 7 = (7i);e[1,m] We have

( R fz) (6lpmie) = (08l ( = fm) |
i€[1,m] je[1,m]
i.e. if and only if we have

(2,1 ()= ) (2,

for all m € Zzo and all a € Symg(m,m) for l;,r; € Z=o and f; € P(l;,r;) for i € [1,m] and for
I = (li)ie[1,m] and 7 = (79)je1,m], i-e. if and only if the assertion B(a) is true for all m € Zx¢ and all
a € Symgy(m,m). O

Remark 6.26. Let Py = (P}, po) be a set-operad. Let Qy € Py be a set-subpreoperad such that
Im(po‘symop) c Qqu, that is, for m € Z=q we have
0

{aPpo : a®® € SymyP(m, m)} € Qo(m,m).

Then (RQo, R(po‘sg;mop)) is a linear operad.
0
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Proof. First note that Im(po‘symop) C Qg ensures that we can define the morphism of linear preop-
0

erads R(po‘sg;mgp) : Sym°? — RQy.

We have to show that (RQO, R(po‘sg;mop» satisfies condition (lo).
0

Let m,n,m',n' € Zzp and £ := > s f € RQo(m,n), &= > 7“ [ € RQo(m/,n'). Since
feQo(m,n) 1'eQo(m/ "’)
Po is a set-operad and since Qp S PJ'¢ is a set-subpreoperad, we have, using the definition of

Q
R(po‘s;mgp)a Of (RQO) and ('RQO)7

(57 e (R (polonor)) ) “rao (€Bras €) = (530,00 Ry ( e )Tf?’ 7 (f Hay f))
€Qo(m,n
7'€Qo(m ')
= r ( /F‘O Qo (f Xlo, f,))
fer(mn
f’er(m' n/)
= 7/ ( Tgm/po “Po (f'Po f,))
feQO(mn
f’er(m’ n/)
= / ( f .'Po “Po (SZ?TLIPO))
fer(mn
f’eQO(m’ n/)
= rerty | (f Ko, f an,p
fer(mn Fry ( 0 ( , O))
f’er(m' n/)
= ( > el (f Ro, f )) "RQo (,/P0)
feQo(m,n)
f/eQO(m,7nl)

— (¢ By €) -ros (570 (B(oloer)) )
O

Remark 6.27. Let Py = (P)", po) be a set-operad. Then P} is a set-subpreoperad of P with
Im( po‘symop < PJ°. So by Remark 6.26 we have the linear operad
0

(8P, BpolF ) = (RPE®. Rlolgynir)-

6.5 Morphisms and suboperads of linear operads

Definition 6.28. Let P = (PP, p), Q = (QP™, q) be linear operads. A morphism ¢ : P — Q of
linear operads is given by a morphism @P™ : PP*® — QP of linear preoperads such that peP™ = q.

re
P

‘ppre Qpre
x /
Sym®P

Whether we use ¢ or ¢P™ to denote it depends on whether we are in the context of linear operads
or linear preoperads.

Note that the source of pP™ is PP whereas the source of ¢ is (SymOp —Pop ) Similarly, the

target of ©P'® is QP whereas the target of ¢ is ( Sym®°P 1.9 ) This prevents us from formally
equating P and ¢.
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Example 6.29. Let P = (PP*,p) be a linear operad. The identity morphism idp : P — P is
given by id® = idppre : PP —s PPIC,

Definition 6.30. Let P = (PP, p), Q = (QF° q) and R = (RP™,t) be linear operads. Let
p: P — Q and ¢ : @ — R be morphisms of linear operads, that is, we have the following
commutative diagram.

ppre PP Qpre TRpre
\ Tq /
Sym®P

The composition @ is given by the composition PP of morphisms of linear preoperads; cf.
Definition 2.18 (2).

This defines a morphism ¢ of linear operads since p(@P™)P™) = (pP™)YPre = qipP™e = .

Definition 6.31. Let P = (PP, p) be a linear operad. A linear operad Q = (QP™, q) is called a
linear suboperad of P if QP™ < PP ig a linear subpreoperad and if Im(p) € QP™ and q = p‘Qp .

Remark 6.32. Let P = (PP™, p) be a linear operad. Suppose given a linear subpreoperad 7 < PP
such that Im(p) < 7. Then (7, p‘T) is a linear suboperad of P.

Definition 6.33. Let I be a set. Let P = (PP™,p) be a linear operad. Let Q; = (QV,p Qi) cP

pre
be a linear suboperad for i € I. Then () Q; := ( Q. p

el el

Definition 6.34. Let P = (PP*,p) be a linear operad. Let X < PP™ be a biindexed subset. We
define the linear suboperad of P generated by X by

el ) is a linear suboperad of P.

ol X ) 1= ﬂ {Q: Q is a linear suboperad of P with X < QP*}.

Lemma 6.35. Let P = (PP™,p) be a linear operad and let X € PP™ be a biindexed subset. Then
we have

e X 0Tm(p)y = (L, (X))

Equivalently, writing this as an equation of linear operads, we have

(pre0p<X ulm(p)), p Pf80p<XUIm(P)>)

= LX)

Proof. This can be proven in the same way as the analogous assertion for set-operads in
Lemma 6.20. O

6.6 Algebras over linear operads

Definition 6.36. Let P = (PP™,p) be a linear operad. A P-algebra (V,p) is an R-module V
together with a morphism g : P — END(V') of linear operads.

ppre Qpre; END(V)pre

|

Sym®°P
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7 The set-operad ASS; and the linear operad ASS

7.1 Sorted pullbacks

In order to define the set-operad ASSy we first will have to define the sorted pullback of maps.
Recall that a map is called isotone if it is monotone and bijective.

Furthermore, note that given a commutative diagram

[1,s] —%[1,1]

b

[17 k] T> [1,%]
of maps, where s,k,I,n € Z=q, then for i € [1,1] we have that ((a=!(i))§ S a~'(ig) since for
j € a~'(i) we have (jg)a = j(ag) = (ja)g = ig.

Definition 7.1. A commutative diagram

[1,s] —%[1,1]

| b
ig) .
i)

-1
of maps, where s, k,l,n € Z~g, is called a sorted pullback if a and & are monotone and if §‘2—1E is

isotone for i € [1,1].
We will indicate this by writing
[L,s] = [1,1]
|
g g
[1, k] “a [1,7]
and we will also often say that the tuple ([1, s], g, a) is a sorted pullback of a and g.
Lemma 7.2. Let k,l,n € Z=o and let a : [1,k] —> [1,n] be a monotone map and g : [1,1] — [1,n]
be a map. Consider the standard pullback (S, g,a) of a and g; ¢f. Lemma 1.29.

S —2 5 1,1]

|

g g

[17k] T>[17n]
So we have S = {(i,7) € [1,k] x [1,1] : ia = jg} and

g: S — |1, k] a: S —[L,1]
(i,5) i (i,5) = J.

Then (1) and (2) hold.

a™'(j9)
a=1(j)

(1) There exists exactly one linear order on S such that a is monotone and § 1s monotone for
j €[1,1]. This order is the colexicographic order, i.e. for (i,7), (i',5') € S we have (i,7) < (i, j')

if and only if j < j' or (j =j" and i <i').
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_1E3)) is isotone for j € |1,1] with respect to the linear order from (1).

(2)

Proof. Ad (1). Existence. We endow S with the colexicographic order.

Then (i,7) < (¢/,7") implies (4,j)a = 7 < j' = (i, j')a, hence a is monotone.
Now suppose given j € [1,1].

Then for (i, ), (i, ) € a='(j) with (i,5) < (i,5) we have i < i’. Hence we have

a=1(i -1
Dl o

al(j) -

=(,))g=1i<i=(.55=(73l;

So g g

a -
._1,%y 1s monotone.
a=1(j)

Uniqueness. Now assume that (<) is a linear order on S such that @ is monotone and g|§_1gf;’)

is
monotone for j € [1,1].

We have to show that for (i, 7), (¢, j') € S we have that (4,7) < (¢/,7") implies (4, 7) < (7, 7). Then,
since (<) and (<) are both linear orders, they have to be the same.

So suppose given (i,7),(',5') € S with (4,7) < (¢, 7). Then, since @ is monotone with respect to
(<), we have j = (i,j)a < (', j")a = j'.

i9)

Now if j = j', then we have (i,7), (i',7) € @ (j). So since j € [1,1] and since g\”f,l (j) s monotone

DEp < e ==t

So (i,7) < (¢, 7') implies j7 < j/, and if j = j' then it implies ¢ < ¢', hence (7,) < (7, 7).

with respect to (X), we have i = (i,7)g = (i,7)g

79

Ad (2). Suppose given j € [1,1]. By 7 a;EJ};?) is bijective since (S, g,a) is a
pullback of a and g. By (1), i _1§j‘)q) is isotone. O

Remark 7.3. A sorted pullback as defined in Definition 7.1 is in particular a pullback of sets;
cf. Definition 1.26.

Proof. Suppose given k,l,n € Zxo and maps a : [1,k] — [1,n] and ¢ : [1,{]] — [1,n]. Let
—1/s
([1,s],g,a) be a sorted pullback of a and g, cf. Definition 7.1. So in particular Q‘Z_IEZ‘;J) is bijective

for i € [1,1]. By Lemma 1.32, this implies that ([1,s], g, a) is a pullback of a and g. O

Lemma 7.4. Letk,l,n € Z>o. Leta: [1,k] — [1,n] be a monotone map. Let g : [1,1] —> [1,n] be
a map. There exists a uniquely determined s € Z=q and uniquely determined maps a : [1,s] — [1,1]
and §:[1,s] — [1, k] such that

(L, s]F [1.1]
| b
[1, k] —— [1,n].

Proof. Ezistence. Recall the standard pullback (S, g, a) of a and g; cf. Definition 1.29. In Lemma 7.2

—1y
we showed that @ is monotone and g\zfigf) is isotone for j € [1,1] with respect to the colexicographic
order (<) on S. The map

p:S—[1,]5]]

r—|{ye Sy <all
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is strictly monotone, since for x1, s9 € S with 21 < x9 we have {ye S:y < a1} c {ye S:y < xa},
hence z1p < x9¢. Since |S| = |[1,|S]]|, the map ¢ is isotone. This implies that ¢! : [1,]S]] — S
is also isotone.

lg and § := ¢~ 3.

[1, 5]

Now define s :=|S| and @ := ¢~

[1,k] ——=[1,7n]

Then we have ag = ¢~ lag = ¢~ '§a = ga and a is monotone as the composite of monotone maps.

Now suppose given j € [1,I]. Suppose given i,i/ € a~!(j) with i < 4. Then we have
(ip)a=ia=j=1ia= (¢ ')a, hence ip ' i’ € a*(j). Moreover, since ¢! is isotone, we
have i@t < i'p L.

Now by construction we have

a~1(j N S N R T ¢ NS Nl ¢ 1y~ ~ A (G
iglo (1) = ig = (95 = (e Al < (e DAl ) = (NG =g = 18[1.
—1/
hence Q‘Z,l(;i’) is strictly monotone.
—1/ -
So what remains to show is that g\g_lgﬁ) is surjective.
—1/.:
Suppose given i € a~'(jg). We have to show that there exists m € a~'(j) such that mg|g_18§7) = 1.
—1/
But by Lemma 7.2 (2) there exists z € S with € a !(j) such that zg 2*18‘?) = xg = i. By
defining m := xp € [1,s], we get ma = (zp)p~'a = xa = j, hence we have m € a~'(j) and
17 —1/
mg 2_18)9) =mg = (zp)p 1§ = 2§ = i. This shows that § 2_18)9) is surjective.

1/
Hence §|Z_18.)g) is isotone for j € [1,1].

Uniqueness. Suppose given the following sorted pullbacks.

[1, 5] %~ [1,1] [1,s"] -2 [1,1]
47 b
[1, k] ——=[1, 7] [1, k] ——[1,n]

Then, since (S,g,a) as well as ([1,s],9’,a’) and ([1,5"],4",a") are pullbacks of a and g, there

exist uniquely determined bijective maps ¢’ : [1,s'] — S and ¢" : [1, "] — S such that ¢'a = a,

V'g=4¢,¢"a=a"and ¥"g = §"; cf. Remark 7.3 and Remark 1.27. In particular, s’ = s” = s := |S|.

U a
s S——[11
9 gl ig

So we have the following diagram.




Note that since for x = (z1,22) € S we have za = w2 and zg = =1, for u € [1,s] we have
wp' = (ug’,ud’) and uy” = (ug”, ua").
Suppose given u,v € [1,s] with v < v. Since @’ is monotone we have ua’ < va'.

Case 1. If ua’ < va' then we have uyp’ = (ug’,ud’) < (vg',va’) = v’

Case 2. If ua' = va' =: j then we have j € [1,1] and u,v € @' 1(j) with v < v. Since §’ Z,,l(]jtq))
71 . 71 .
is isotone, hence in particular monotone, we have ug = ug’ Z,_l((jjg)) < vg Z,_l((]]tq)) = vg’, hence

) = (ug, ud) < (v, vd') = vy

This shows that ¢’ : [1,s] — S is monotone. Since ¢’ is bijective, it is an isotone map. In the
same way we see that ¢” : [1,s] — S is isotone. So we have two isotone maps ¢, " : [1,s] — S,
so they have to be the same.

Hence we have @’ =¢"a =+¢'a=a"and §" ="g=4"'g=¢.

This shows that s, @ and § are uniquely determined. O

Now we will need some properties for the sorted pullback.

Lemma 7.5. Suppose given
[L,1] —[1.s] =~ [1,1]
I
g 9 9

Then the quadrangle ([1,t],[1,m],[1,1],[1,n]) is also a sorted pullback.
Proof. We need to verify that [1,1¢], bi and § satisfy the following conditions.

e We have i)dg = §ba.
e The map bé is monotone.

(ba)~*(jg)

e For j € [1,] the map § (Zg)*l(j) is isotone.

We have that ([1, s], @, g) is a sorted pullback of @ and g and that ([1,¢], b, é) is a sorted pullback of
b and §. By Remark 7.3 this implies that (|1, s], a, g) is a pullback of a and g and that ([1,¢],0, g)
is a pullback of b and g.

By Lemma 1.37, ([1,¢], Bd,ﬁ) is a pullback of ba and g.

So from Lemma 1.32, we know that [1,¢], ba and § satisfy the following conditions.

e We have Bdg = ﬁba.

(ba)~*(ig)

e For jE [1,1] the map .57 (ZZ)*I(j)

is bijective.
(ba)~" (49)
(ba)=1(5)

First note that ba is monotone as the composite of monotone maps.

So it remains to show that ba is monotone and that §

ZZ is monotone for j € [1,1].

Now suppose given j € [1,1].
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Suppose given 4,4’ € (ba)~1(j), that is, iba = iba = j, and suppose i < i’. We have to show that

21(ba) "1 (ig) _
Igay-10) ~

Q»

L
ig <i'

)1 (ig)
9 (ba)=1 ()

Since b is monotone, we have two possible cases: either ib = i'b or ib < i'b.

Case ib = i'b =: 1 € [1 5] Then we have 4,7’ € b~ 1(r). Since ([1,],4,b) is a sorted pullback of b

and g, Eri) is isotone. This implies
b 1(rg) gabT 1(rg) A
i = S Ulrgy =19

Case ib < ©'b. Still we have (ib)a = (i'b)a = j, hence ib,i'b € a~'(j). Since ([1,s],§,a) is a sorted
—1/.:
pullback of a and g, we know that Q‘Z,lgi’ ) is isotone. This implies that

P 7 Sy a1aTi( WX
()b = (iD)g = @D)af; () < (D)3l

Now since b is monotone we have to have ig < 7'g.

ba)~1(jg)
(b) )

Lemma 7.6. Suppose given

is monotone. O

(1] —~ [1,m]
|

h h

[1,s] —[1,]]
I

g g

[1,k] ——[1,n].

Then the quadrangle ([1,t],[1, k], [1,m], [1,n]) is also a sorted pullback.

Proof. We need to verify that [1,1¢], a and hg satisfy the following conditions.

e We have éhg = ﬁga.

e @ 1S a monotone map.

o (hg)‘ng;lg) is isotone for j € [1,m].

First note that we have ahg = hag = hga, since ([1,¢], h, é) is a sorted pullback of @ and h and since
([1,s],g,a) is a sorted pullback of g and a.

Furthermore, @ is monotone since ([1,t], h, @) is a sorted pullback of @ and h.

Finally, for j € [1,m] we have

2 v (Ghe) _ <“ tTl(J'h)) (A a_l((jh)g))
h)sagy = Mlamry ) Wlamagn ™) -
Since ([1,t], h, ) is a sorted pullback of & and h, we know that h‘ ( )) is isotone. Since (|1, s], g, a)
is a sorted pullback of g and a and since jh € [1,1], ,15(2};)@ is isotone.
So (ﬁg) nggg) is isotone as the composite of isotone maps. O
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Finally, we will see that multiplying sorted pullbacks via (Mapo) yields a sorted pullback.
Lemma 7.7. Suppose given sorted pullbacks

[1.5] ? [1.1] [1,5] : [1.7]
éi ig and ﬁ’i lg’
[1, k] —[1,7] [1 K] —[L1,n].

Then we have the sorted pullback

[Ls+s] 2% 1,041
gy’ g9’
[1, k+k:’] [1n+n]

where (X)) := (KiMap,); ¢f Definition 2.57.
So informally, stacking two sorted pullbacks yields a sorted pullback.

Proof. We have to verify that [1,s + s'], X1 ¢’ and a X &’ satisfy the following conditions.

o We have (a®d')(9X¢') = (§XJ)(aRa’).
e The map a[xX1a’ is monotone.

e For je[1,l+1'] the map (gg’)\gggg:gggg'” is isotone.

Since Map, is a set-preoperad; cf. Definition 2.57 and since ([1, s], g, a) is a sorted pullback of a and
g and since ([1, 5], ¢’,a’) is a sorted pullback of ¢’ and ¢’, we have

A A 2) ;. A A A 2) /. A A A

(amd) - (90g) "= (@ 9) R (@ -¢) = G- ® (7 o) "= (GEG) - (@Ed).
Furthermore, since Assg is a set-subpreoperad of Map; cf. Definition 2.58, the maps a [X] o’ and
a[x]a’ are monotone as the product of monotone maps.

NnN—1¢. /
Suppose given j € [1,1 +1']. Consider (§X¢") (?L},g,l%gg )

Strict monotonicity. Suppose given i,4' € (axla’) (), that is, i(aXa') = j = ¢’ (axJa’), and suppose
i <i'. By the definition of (XJ), either 4,4’ € [1,s] or 4,4’ € [s + 1, s + §]; cf. Definition 2.57.

—1/.
Case 1: 4,7 € [1,s]. Then ia = i(d.&’) = j=i{'@ma') = a, so i,i' € a~1(j). Since g\g,lgf) is

a i) g

oy =79=70GR7).

isotone, we have i(§[X1§') = ig = zg‘a 1 Jg) <

Case 2: i,i' € [s + 1,5 + §']. Then (z—s)a +l=ilaxa) =j=4d(@axa) = (i’ —s)a +1, so

i_ s,i' _se ( ) (j N l) and j — L€ [1 l’] Since ( ) Ez’gjgj:l;)g)

is isotone, we have

()M ((G-Dg")

U 3)(@)((1/) 1(j—1) + k
a')~1t l
=)@yl
= —s)g +k



(aRa’)~(i(9Xg"))

So (X §) (ama’)=1(4)

is strictly monotone for j € [1,1 4 I].

Surjectivity. Suppose given = € (aXa') '(j(g X ¢')), that is, z(a X a') = j(¢g X g'). Again we only
have the possibilities (z € [1,k] and j € [1,]) or (z € [k + 1L,k + k'] and j € [l + 1,1 + U']); cf.
Definition 2.57.

Case 1: x € [1,k] and j € [1,1]. Then we have za = z(a X d') = j(¢XK ¢') = jg € [1,n], hence

"(59) ‘

'(9)

Moreover, since y € [1,s] we have y(a X a') = ya = j, hence y € (axa') (). So we have
NN—1¢,: X /

y(ggl) (ala’) " (i(9Xg"))

(axa’)=1(j) =y(GXJ) =yg = .
Case 2: v € [k+ 1,k + k'] and j € [l + 1,1 + I']. Then we have x — k € (a’)~((j — 1)¢’) since
nN—1 : ’
(x—k)d' +n = z(aRd") = j(gKg") = (j—1)g' +n. Since j—1 € [1,1'], we know that (§") nggflg‘j:l;)g)
(a)~NG-Dg) _ . _
@G-y LTk

rea1(jg). Since §|Z: is isotone, there exists y € a~1(j) < [1, s] such that yg = y§|2:18.“;7) = 1.

is isotone. So there exists y € (&') " 1(j — 1) < [1,s] such that y§' = y(§")
ya =3 — L
Now let z := y+s € [s+1,s+5]. Then z(aXla') = (z—s)d'+1 =ya'+1 = (j—1)+1l =j € [I+1,1+],
hence z € (axa')~1(j). So we have

(a®a’) ' (i(gRg")) _ z(

2(g¥9) (65a)-1() Kg)=(z—-5)§+k=yi+k=(@—k)+k=nux.

NaY

(aBa) " (i(9Eg)
@Ra) ()

(aXa)~1(i(gXg")
(apa’)~(5)

This shows that (§Xg")

is surjective.

Altogether, (§X19") is isotone. O

We will now consider a special case of a sorted pullback.

Lemma 7.8. Let k,l,n € Z=o. Let g : [1,l]] — [1,n] be a map and a : [1,k] — [1,n] be a
monotone map. We have the sorted pullbacks

id;

[1, K] —% [1, 0] (1,0 =2 1,1
Q) idki ™ iidn and (ii) gl : ig
[Lk]T)[lan] [1777“]?[17”]»

where we abbreviate idy := idmap, k , idn 1= idMap,,n ond id; 1= idpap,,i -

Proof. Ad (i). The map a is monotone. The map idg ‘Z:ig)ld”) = id,-1(5) is isotone for j € [1,n].
=17+ .
Ad (ii). The map id; is monotone. The map g ijﬁlg)g) = gm?} is isotone for i € [1,1]. O
1

Lemma 7.9. Let k,n,t € Z=qo. Leta: [1,k] — [1,n] be a monotone map and let g : [1,t] —> [1,n]
be a map. We can write
a = a1 Kassg - - - Klassg an =: Q;
1€[1,n]

)

where we omit the inder “Assy” and where a; = ), € Asso(l;, 1) with l; := |a (i)| € Zso is the
unique monotone map [1,1;] — [1,1] for i € [1,n]; c¢f. Definition 4.29 and Remark 4.30. We have

>, l; =k. Definel := (li)ie[l,n] € (Zzo)*™.
i€[1,n]
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Then we have the following sorted pullback.

Jel1,t]
12 1] [1,1]
JelLt] =
[1, k] - [1,7n],

where gy is defined as in Definition 6.8.

Proof. We have to verify that [1, >, ljg], gpy and a4 satisty the following conditions (1), (2)
and (3). Je[1,t] je[L,4]

(1) We have ( ajg>g = g a-
gel1,]

(2) The map ajg is monotone.
Jje[L,t]
‘a‘l(wg)
—1
ajs) (2)

Jel[L,t]

(3) The map gy is isotone for x € [1,t].

During this proof we will write (x]) and (-) for multiplication and composition in Map, and (Xlop)
and (-op) for multiplication and composition in Mapg”. Recall that Ass) is a set-subpreoperad of
Mapy, ; cf. Definition 2.58.

Ad (1). Define 7 = (73)ieq1,n] = (li)ie[1,n] = | € (Zz0)*" and I=(1,...,1) € (Z=0)*". So we have
l; = 1 and a$® € Map(P(l;, 7;) for i € [1,n]. Since (MapgP, idygaper) is a set-operad, by Lemma 6.10

we ha,vfi
op
( Ex Z))
[ 1771

op
= (g[~])Op ‘op ( ]ajg)

je[1,¢

op
= (( ajg) '9[2]>
Jje[1,t] e
6.9 (iv) (( ajg> -g) .
Jje[1.t]

Hence we have gpj - a = ( ajg> - g, which shows (1).
Jje[1,t]

Ad (2). The map ajq is monotone since a4 is a monotone map for j € [1,m].
je1,t]
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Ad (3). Suppose given x € [1,t]. Consider g[l]‘“_l(xg) B

ajs) (@)

Jell,t]

First note that we can write

< ajg)_l(ac) = [( Z ljg) +1, 2 ljg]

je[1,4] je[la—1] jell,z]
ag=( Do) @)= X u)+1. Y u]
i€[1,n] i€[1,xzg—1] i€[1,zg]

it suffices to show strict monotonicity.

Since |a~(2g)| = g = |( 5 az0) ()]

Jje[1,t]

~1
Given u € ( ajg) (x), we can write u = ( > ljg) + @ in a unique way, where @ € [1, ;4]
Jel1,t] je[l,z—1]
Then we have lg* = (ljg) jeq1,4) and u = (:r,ﬂ)gol;}k ; cf. Definition 1.18.

This means that we have

a"(zg)
ug - =ug
m\(. o) @
jeli = u(Pig* - gy Pr )

= ((z,u)p rg*)(‘)olg g er )
= (=, @) (g <Pz "
= (

wg,U)
(5 e
[1,29—1]

—1
Now suppose given u, v € ( ajg) (z) and suppose u < v.
JjelLt]

Write u = ( > ljg> + @ and v = < > ljg) + v where 4,0 € [1,l;4]. Since u < v, we have
je[lz—1] je[lz—1]
u < U. So we have
a~!(zg)

ugm\( ) N

gelntl = ( 2 l@') +a

i€[1,zg—1]
< ( Z li) + v
i€[1,zg—1]
=90
~!(zg)
=v -
0 5 0,) "0
Jjel1,t]
This shows that g[l]‘a_l(wg) _, is strictly monotone. O

ajg) ()

Je[L,t]

7.2 The set-operad ASS,
Definition 7.10. Define the set-preoperad ASS'™® as follows. For m, n € Z=q the set ASSy“(m,n)

consists of tuples (f,a) where k € Zso, where f : [1,k] — [1,m] is a map and where
a:[1,k] — [1,n] is a monotone map. We will also write f\a := (f,a) € ASSE “(m,n).
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Pictorially we have for example

U= W N —

Z7z

N U W N —

? € ASSE™(5,7).
Recall that a Xlass, @’ = @ XMap, @ for a € Asso(m,n), a’ € Asso(m’,n’) and m,n, m’,n’ € Z>o.
Define

(X) := (ASSS“ )+ ASSY(m, n) x ASSE™(m/, n’) — ASSE(m +m/,n +n’)

(f\a, fI\CL/) [— (f Mapo fl) \ (CL Asso a/)
= (f Mapo fl) \ (CL Mapo a/)

T W N =

for m,n,m',n’' € Z=y.

The composition is defined using the sorted pullback: Given m,n,p € Zx¢ and f\ a € ASSy“(m,n),

g\be ASSy“(n,p) and k,l € Zx¢ such that f: [1,k] — [1,m], a : [1,k] — [1,n] and such that
g:[L,]] — [1,n],b: [l,l] —> [1,p], then by Lemma 7.4 there exists a uniquely determined
s € Zxo and uniquely determined maps a : [1,s] — [1,!] and g : [1,s] — [1, k] such that

[L.s] —*~[L,1]
éi - ig
[1, k] —5= 1, 7]
is a sorted pullback.
So define
(f\a) - (g\b) == (f\a) "agspre (9\b) := (9 Map, £) \ (@ Map, b) = (3/)\ (ab),

where ab is a monotone map since both a and b are monotone. We have

(18]
P

[1, k] [1.7]

NV AN

[1,m]
For m € Z~ define id,, := idAssgre,m := idMapg,m \ 1dAsso,m

Now we have to show that this actually defines a set-preoperad.

Ad (ml). Let m,n,m/,n',m" n" € Zzo and f\a € ASSy (m,n), f'\a' € ASSy“(m/,n’) and
"\ a" € ASS§(m”,n"). Then we have

(F\a) B (f\a)) B (f"\a") = ((f Bmap, )\ (@ Fass, a')) & (f"\a")

= ((f RMap, J') Bap, [7) \ (0 Kass, @) Kass, @)
= (f Bnap, (f Bnap, 1)\ (@ Hass, (0’ Hass, a”))
= (f\a) & ((f Bap, ")\ (¢ Hass, @)
= (\a) B ((f\) R (f"\a")).

135



Hence the multiplication is associative.
Ad (m2). Let m,n € Zso and f\a € ASS§(m,n). Let k € Z>¢ such that f : [1,k] — [1,m],
a:[1,k] — [1,n]. Then

(f\a)Xido = (f \ @) B (idmapy.0 \ idAsso,0)
= (f KMap, idMap,,0) \ (@ Kasso 1dAsso,0)
= f\a
= (idMapy,0 BMap, f) \ (idAss,0 Kass, @)
= (idMapy,0 \ idAsse,0) X (f\ @)
= idoXI(f \ a).
This shows that idg is neutral with respect to multiplication.

Ad (cl). Let m,n,p € Zzo and f\a € ASS)(m,n), g\be ASSE“(n,p), h\c € ASSy(p, ¢)P*°. That

is, we have
. [1, k] [1,1] [1,7]
/ X[l ]/ X[l ]/ \[1 |
m , N P 4

for some k,l,r € Z=g .

Comnsider
[1, 2]

PN
AN, //\\\

VAV avasy

Then by Lemma 7.6 the quadrangle ([1, z], [1, k], [1, ], [1,n]) is a sorted pullback and by Lemma 7.5
the quadrangle ([1, 2], [1, s], [1,7], [1,p]) is a sorted pullback.

So we have

((f\a) - (g\b)) - (h\c) =

This shows that the composition is associative.

Ad (c2): Let m,n € Zso and f\a € ASSy “(m,n). Let k € Zs( such that f : [1,k] — [1,m] and
a:[l,k] — [1,n]. We have to show that

(f\a) ) (idMap,n \ idMap,n) ; f\a ; (idMap,m \ idMap,m) : (f\a) .
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By Lemma 7.8 we have the following sorted pullbacks.

[1, k] ——[1,n] [1 k] 22 1 k]
ldI\/Iapo,k: ldl\ﬂapo,n f f
[1,k] ——[1,n] [1,m] —[1,m]
a ldl\IapO m
So we have
[1, k]
idl\[a}zy A \
[1, k] [1,n]
/ \dMapy wjapoﬁ"
[1,m] [1,7] [1,7]
and
[1, k]
/ /% \dliiapo k
[1,m] [1, k]
idMapO,m ldl\lmpo m f X
[1,m] [1,m] [1,n].

Hence we have

(f\a) . (idMapO,n \ idMapO,n) = (idMapO,k f) \ (a idMapO,n) = f\a
(idMapo,m \ idl\/Iapo,M) : (f\a) = (fidMapo,m) \ (idMapo,k a)) = f\a.

This shows (c2).

Ad (mcl). Let m,n,p,m’,n’,p' € Zzo and f\a € ASS) (m,n), f'\a € ASSo(m’,n’)P*® and
g\be ASS{ (n,p), ¢ \V' € ASS (0, p'). Let k,I,k',I' € Z»( such that

gt 1] 1, 4] (1,7]
SN N L N / N

[1,m] [1,n] [1, p] [1,m] [1,7] [1.9],

We have to show that
(B (F\a)) - ((9\BE (G \Y)) = ((f\a)- (9\B) B ((f'\ @) - (g \ D).

From Lemma 7.7 we know that stacking sorted pullbacks yields a sorted pullback, that is, given

[1,] [1,]
SN e \
[1, K] [1.1] and / [1, K] [1,7] |
NN SN TN
[1,m] [1,7] [1, p] [1,m] [1, 7] [1, 2],
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we obtain
[1,5+ ']

g Mapo gl &

[,k + K] [1,1+ 1]

’
g 1\/[ap0 g

fI\/IapO fl bAsso b’

’
a Asso a

[1,m + m/] [1,n + n'] [1,p+ 7]

So we have

(F\a)B(F\d)) - ((g\b) R (g'\V))

(( .Map0 (a XlAssy @ I)) ((g Mapo g,) \ (b XAsso b,))
((g .Mapo )(f Bvap, 1))\ ((@ Xass, @) (b Kassy b))
((af .Mapo Jr )) \ ((ab) Mass, (a'0"))

(@) (@h) m ((9'F)\ (@)
((f\a) g\b )& ((f \d') - (g"\1")).

Ad (mc2). Let m € Zxo . By induction on m > 0 we see that

idp = iduapgm \ idAssom

= (idir™)\ (14250")

= (idMapg,m—1 BMap, idMapy,1) \ (idAsse,m—1 Basso idAsso,1)
(idMapg,m—1 \ idAsso,m—1) B (idMapy,1 \ idAsso,1)
i wid,
idm

ind.

This completes the proof that ASSJ™ is a set-preoperad.

Remark 7.11. Note that Lemma 7.8 implies that given m,n,p,k,l € Z=¢ and f € Mapy(k, m),
g € Mapg(l, k), a € Asso(k,n), b € Asso(l,p) and c € Asso(n, p), then we have

(f\ 1dasso.k) - (9\0) = (9.)\ (idasso 1 ) = (9f)\ b
(f\a) - (idntapyr \¢) = (idnapy.k )\ (ac) = [\ (ac).

Definition 7.12. Define the biindexed map ag = (ag(m, n))mn=0 : Mapy® —> ASSH as follows.
For m,n € Z>¢ let

ap(m,n) : Mapg” (m,n) — ASS§™(m,n)
fop — f\ idAsso,n

Lemma 7.13. The biindexed map ap : Map)” —> ASSH™ ; ¢f. Definition 7.12, is a morphism of
set-preoperads.

Proof. First let m,n,m’,n’ € Z=¢ and let f°P € Mapo®(m,n) and f'°P € Mapc®(m/,n’). We have
> 0 0

(fP Bntapge ['P)ao = (f Bap, f')

= (f BMap, f')\ idassonn’

= (f BMap, £)\ (idasso,n Hlasso idAsso,n)
S\ idasso,n) B (f\ idasson’)

fopao) < (f"°Pag).

/ °Pag

AAAA
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For the second property let m,n,p € Zxo and let f°P € Mapg'(m,n) and g € Map;®(n,p). By
Remark 7.11 we have

(fopOO) : (gopao) = f\ idAsso,n) ' (g\ idAsso,p)

Qf) \ idASSoJD
= (g Map, f)Pao

O

Lemma 7.14. We have the set-operad ASSy := (ASSy*,a0); ¢f. Definitions 7.10 and 7.12 and
Definition 6.3.

Proof. Since ag : Mapg” — ASS{™ is a morphism of set-preoperads we have to verify the conditions
(sol) and (so02); cf. Definition 6.3.

Ad (sol). Let m,n,m/,n’ € Zzo and f\a € ASSy (m,n), f'\a’ € ASSE“(m/,n’). Let k, k' € Z=g
such that f: [1,k] — [1,m], a: [1,k] — [L1,n], f’: [1, k'] — [1,m/] and & : [1, k'] — [1,n/].

We have to show that
(spyr80) - ((F\@) B (f"\d)) = ((F\a)B(f\a))- (Sprs@0)-
By Remark 7.11 we have

(ngmlao) . ((f\a) (f’\a/)) = (Sm7ml\ idASSD)erm,) . ((f RMap, f/) \ (@ Rassg a/))
= ((f Mapo fl)sm,m’) \ (CL Asso al).

Claim. We have the following diagram.

[1,k+ K]
St AN

’
a Asso a

[1,k" + k] [1,n+n]

fl I\Aapo f a Asso a sn,n’ ldAsso,n+n’

[1,m +m] [1,n + n] [1,m + 7]

Proof of the Claim. Since Assy is a set-subpreoperad of Map, we have
(CL Asso al)sn,n’ = Sk,k’(a/ ASS() a)

by Lemma 6.6. Moreover, a Xlass, ¢’ is monotone as a product of monotone maps. So it remains to
(a‘/ Asso a)il(jsn,n/)

(aBacs, @')=1(5) is isotone for j € [1,n + n'].
S8(Q

show that sy, 3/
So suppose given j € [I,n + n’]. Suppose given i,i’ € (a Kags a’)"'(j), that is, we have
i(aXass ') = 7 = ' (aXass @'), and suppose i < 7'.

By the definition of (Klass,) either i,i’ € [1,k] or i,4' € [k + 1,k + k']; cf. Definitions 2.57 and 2.58.
If i,i" € [1, k], then we have

(CL, Asso a)_l (jsn,n’)
(a Asso a,)7 ! (])

((Ll Asso a‘)_l (jsn,n’)

. . . / Y o o
’LSng/‘(aASSO a)-1(5) =1Spp =1+ kK<i+k =i Sktk! =1 Sk,k"
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If 4,7 € [k + 1,k + '], then we have

(al Asso a)_l (jsn,n’)

(al Asso a)_l (anynl)
(aAsso al)il(‘j) ’

. . -7 -/ -/
— Z‘Sk‘,k/ =17 — k <1 — kj =1 Sk,k/ =1 Sk’k/‘(aAssO (Z/)il(j)

isk,k"

(a’l ASSQ a)71 (jsn,n/)

This shows that Sk’kl|(aAssa,)_l(j)

is strictly monotone.

Now let i € (a' Kass @) " (jispn), that is, i(a’ Kass @) = jspn. We have to show that there exists
z€[1,k+ k] with 2 € (a Kass @) 71(4) such that zsg g = i.

Define x := isp7 ;. Then by Lemma 6.6 we have
! o 1 . ! _ . _ . .d _ .
a:(a Xlasso a) = 'Lsk’,k(a Xlassy @ ) = Z(a XlAsso a)sn’,n = J8nn/Sn/;n = J WMapy,n+n’ = J,
N1/
s0 2 € (aXKass, @) 1(5).

(a’ DAssg ) (G ) . .. .
n—1 Smon = TSk K = Z(Sk’,ksk,k’) = ZIdMap k! = L
(aBdassg ')~ (7) 0

Moreover, we have sy, j/

(CL, Asso a)71 (jsn,n’)
(aBassy a') 1)

This completes the proof of the Claim.

So 8k,k'| is surjective.

So we have
((fl\a/) (f\a)) ' (S(;fn,a()) = ((f .Mapo (al Asso (L)) ' (Sn,n’\ idASSO,n+n’)
7l (Sk K f .Mapo f)) \ (a Xasso CL,)
((f .MaLpO )Sm m’) \ (a XlAssg al)
(sprmr80) - ((FA@) B (f'\ ).

Ad (s02). Let m,n € Zxo and f\a € ASS “(m,n). Let k € Z=¢ such that f: [1,k] — [1,m] and
a:[l,k] — [1,n]. Let l € Z=o. We have to show that

o <1 ! o
(%) (h5,00) - (f\ @) = (f\a) - (B a0)-
By Remark 7.11 we know that

(hZI;HQO) ’ (f\a)l = (hl,m\ idAsso,lm) ’ (fMapOl\aAssol)
— (fl\/IapOlhl m) \aASSOl.

Now consider the right hand side of (x).
Claim. We have the following diagram.

[1,1k]
V A ssol
[1, k] [1,in]
/ \ y idAssgin
[1,m] [1,n] [1,in]

Proof of the Claim. Since Assy € Map, is a set-subpreoperad and since (Mapg",idyjaper) is &

set-operad, we have aAssolhlm = aMﬂpolhlﬁn = hya; cf. Lemma 6.7.
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Moreover, a®4s! is a monotone map, since a is monotone.

ail(jhl,n)

_ is isotone for j € [1,In].
(o)) j€e[l,in]

So we have to show that hl,k|

So suppose given j € [1,In].
Recall that we can write j = jn + j in a unique way, where j € [0,1 — 1] and j € [1,n].

Strict monotonicity. Let u,v € (a®40))~1(j) and suppose u < v. Write u = uk + % and v = vk + 0,
w,v € [0,1 —1] and @, 7 € [1,k]. Now since u,v € (a®40!)~1(5) we have

ua +un = uaAssol = ] = vaPassol = 5 + wn
and since j, 7 are uniquely determined, we have u = 7 = v. Now since u < v this implies u < .
So we have

ail(jhl,n)

a”(jhin)
uhl7 ‘ l (aASSOl)il(j).

(a,ASSOl)il(j) = (@k + ﬂ)hl,k: =u<v= (yk + ﬁ)hl,k = Uhl7k‘

—1/.
This shows that hhk‘? (jh:)’;l))_l( : is strictly monotone.
a SS J

Surjectivity. Let y € a '(jhn) = a 1(j) € [1, k]

_ —1(;
We have to show that there exists x € (aAssol) 1(j) such that xhl,k‘(z ghl’;L))l =zxhip =y.
a=As0") - (j)
_ —1¢;
Let x:=y —i—l'k:. Then we have za®assol = ya+jn=j+jn=j and xhlvk‘a (7hi,n) =xh, =y.

(aAssOl) 71(.7')

ail(jhl,n)

This shows that hl’k|(aAssol)*1(j)

is surjective and completes the proof of the Claim.

We now have

(f\a) ' (h?};ao) = (f\CL) : (hl,n\ idAsso,ln) = (hngf) \QASSOZ.

Now since (Mapgp,idMapgp) is a set-operad by Lemma 6.7, we have hy;f = fEMarolp; . Hence we
have

(f\a) - (hihao) = (hygf)\aPsso! = (fBNarolpy )\ ¥l = (B7P ag) - (f\ @)
Il

Definition 7.15. We define the morphism &y = (oto(m,n))mn=0 : Assy —> ASSH of set-
preoperads as follows. For m,n € Z~o we let

oo(m, n) : Assg(m,n) —> ASSH(m,n)
a = idMapg,m \ @
In order to show that this in fact is a morphism of set-preoperads, first note that for m € Z~y we
have idAgsg,m X0 = idMap()’m \ idAssg,m = 1dASSy,m -
Moreover, for m,n,m’,n' € Z=y and a € Assy(m,n) and a’ € Assyg(m’,n’) we have
(a Dass, al)‘xﬂ = idl\/lapo,erm’ \ (@ Xass, a’)
= (idMapmm Mapo idMapO,m’) \ (CL XlAsso al)
= (idMapmm \a) (idMapo,m’ \a/)
= aXy CL/(X() .
Furthermore, for m,n, k € Z=o and a € Assy(m,n) and b € Assy(n, k) we have

(CL *Assg b)(XO = idMapO,m \(a *Assg b) 7é1 (idMapO,m \(I) : (idMapO,n \b) =axg - bxg .
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7.3 Associative monoids and ASSy-algebras

Proposition 7.16. Let X be a set and let ¥o : ASSy —> ENDy(X) be a morphism of set-operads.
So X is an ASSqy-algebra.

pre

ASSP® 20 Endy(X)
o
Mapg”
Define px := (ido \p)¥3™ and ex := (idg \e)¥y", where we abbreviate idy, := idmapy,m for
m € Zzo. Then (X, pux,ex) is an (associative) monoid.
Proof. We have the following commutative diagram.
Assg

pre
l oWy
oo
pPre

ASSH™® —= Endo(X)
aoT /
¢

Mapg”
So (X, xo¥{) is an Assg-algebra. Furthermore, we have py = (idy \ )T = p(xo¥§) and
ex = (idg \e) ¥ = e(xo¥h™).
So according to Proposition 5.3, (X, ux,ex) is an (associative) monoid. O

We aim to show the converse statement that every (associative) monoid can be turned

into an ASSp-algebra. Instead of showing this directly we will give a more general
statement.

Lemma 7.17. Let To = (7)., to) be a set-operad. Let 19 : Ass) —> To~ be a morphism of

set-preoperads. Then there exists a uniquely determined morphism 75" : ASSE™® — T of set-
preoperads such that the following diagram commutes.
Assg
xo &
ipbre

ASSp —2 To:

ao

Mapg®

cf. Definition 7.15.

In particular, the commutativity of the lower triangle means that 70" defines a morphism 7o of
set-operads.

We have (f\a)7d™ = (fPto) -7 (aTo) for m,n € Zso and f\a € ASSy“(m,n).
Proof. Uniqueness. First assume that 75" : ASS§'® — 7™ is a morphism of set-preoperads such

that ao7)"® = 79 and ap7)"° = to. Then for f\a € ASS}(m,n), where m,n € Zzo and where
f:[1,k] — [1,m] and a: [1,k] — [1,n] for some k € Z=(, we have

f\CL = (f\ idAsso,k) : (idMapO,k \a);
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cf. Remark 7.11. So we have

(FANa)T™ = ((f\ idasso k)70 ) 7o ((Mapy k \a)75™) = (FP(a075")) 7 (a(0T0)) = (f*Pto) 75 (aT0),

hence such a morphism 7J"° is uniquely determined by ty and 7o.

Existence. We have to show that
7P ASSPIe L, TP
(f\a) — (f*Pto) -5 (a70)
is in fact a morphism of set-preoperads satisfying a7~ = 70 and ap7)"" = to.

First note that given m,n € Zzo and f\a € ASS{“(m,n), say f : [1,k] — [1,m] and
a: [1,k] — [1,n], where k € Zs(, then we have fPty € T7°(m,k) and axg € T3 (k,n), so
in fact (f°Pty) -7, (acxp) € T (m, n).

Furthermore, note that given m € Z~g then we have

ld Apre = (idMap()vm \ idASSOam )T(I)Dre = ( dl‘i/P[)aPo m ) “To (idAssmm TO) = ldﬁ)vm “To 1d%vm = 1d767m :

Suppose given m,n,m’,n’ € Zz¢ and f\a € ASS(m,n), f'\a' € ASSy(m’,n’). Let k, k" € Zxo
be such that f:[1,k] — [1,m], a: [1,k] — [1,n], f’ [,k — [1,m'] and a : [1, K] — [1,7].

We have

((f\ )& (f \a ) o = f.Mapo )\ (a Kassy @ ))Topre
f.MapO OptO) “To ((a .Asso GI)T())

= ((
= ((
((fopto M7, (f'Pto)) -7 ((a70) B (a'70))
((
= ((

f%%0) 15 (a70)) B7 ((f"*Pto) -7 (a'70))
f\a) p“) X7 ((f\a)75"™).

Now suppose given m,n,p € Zsq and f\a € ASSF(m,n), g\b € ASSy“(n,p). Let k,t € Z>( be
such that f: [1,k] — [1,m], a: [1,k] — [1,n], g : [1, t] —> [1,n] and b: [1,{] — [1,p].

Since a is monotone we can write

a = a1 Xassg - - - XAssg On = Qg ,

i€[1,n]

where we omit the index “Assy” and where a; = i, € Asso(l;, 1) with [; = |[a~1(7)| € [0, k] for i € [1,n]

and >, [l; = k; cf. Remark 4.30. Write [ := (l;)ie[1,n] € (Z=0)*" and 7 = (1,...,1) € (Zz0)*".
i€[1,n]

By Lemma 7.9 we have the following sorted pullback.

) t]‘ljg
|13 1| [1,1]
Je[Lt] =
a lg
[1, k] - [1,n]

So by the definition of composition in ASSg we have

(f\a)-(g\b) = (9 f) \ (( “J’g)b)'

Jje[1,t]
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So we have

(- @F" = (A (( B an)e)) "

Je[1,t]

= (™) (g mw)o)n
= () m (o)) - (B as0)m) -7 (om)
= () m (o)) (B (asgm) om (o)
= () (Ze[l e ) 7 ((911)™t0) 5 (b70)
B0 pogy) T((?a) ) 7 (6%0) -7 (b70)
= (%) 7 (am) -7 (9°7%) -75 (b70)
= (N7 7 (g\b)7g -

We have now shown that 70" is in fact a morphism of set-preoperads.

Since by construction f°Pag Tpre (f\ idasso.n) 7y = (f°Pto) 15 id7g,n = fPto for m,n € Zx( and

J°P € Mapg®(m, n), we have ap7)"™ = t9. So 79 : ASSO —> Tp is a morphism of set-operads.
Moreover, we have acp?)~ = (idMapg,m \a)7™ = idyym 7 (at0) = arp for m,n € Zso and
a € Asso(m,n). Hence ard™ = 79. O

We can now use this to show that an (associative) monoid X can be turned into an
ASSp-algebra.

Proposition 7.18. Let (X, ux,ex) be a monoid.

Then there exists a morphism of set-operads o : ASSy —> END((X) such that px = (idg \ p) U5
and ex = (idg \e) V™, where again we abbreviate idy, := idnap,m for m € Zz .

In particular, (X, W) is an ASSy-algebra.
Proof. By Proposition 5.4, we can turn X into an Assg-algebra using the morphism of set-preoperads
1o : Assy) — Endo(X) that satisfies px = ppp and ex = et .

Then by Lemma 7.17, there exists a uniquely determined morphism ¥y : ASSy — ENDg(X) of
set-operads such that the following diagram commutes.

Assg

\L x
X0
El'\Ilpre

ASSP™® —— Endo(X)

@ T /
op

The morphism Uy satisfies (f\a)¥§° = (fPeo) - (athy) for m,n € Zzp and f\a € ASS)“(m,n).
So (X, Wy) is an ASSy-algebra.
We have (idz \M)‘I’Sre = /L(XO\I/gre = /M/Jo = ux and (ido \&‘)\I/gre = 8060\118re = €¢0 =E&X . 0
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7.4 The linear operad ASS

Definition 7.19. Recall the set-preoperad ASSE™; cf. Definition 7.10. Define the set-subpreoperad
ASSgre’b1J < ASSH™ as follows. For m,n € Zx let

ASSE P () = {f\ae ASSy“(m,n) : [1,m] J, [1,m] is a bijective map}.

We have to show that ASSEN”bij is closed under multiplication and composition of ASS§™ and that
idagspre m € ASSE™ P (m, m) for m € Zx; cf. Lemma 2.27.

First note that for m € Zs¢ we have idASSgrem — deapo’m \ idasso.m € ASSgre,bg(m7m)’ since
idMap,,m 18 a bijective map.

Now since Sym, € Mapy, is a set-subpreoperad, we know that f Xhap, f' € Symg(m +m',m +m’)
for m,m’ € Z=o and f € Symy(m,m), f’ € Symy(m', m’); cf. Lemma 2.27.

So for m,n,m’,n’ € Z=p and f\a€ ASSBre’bij(m, n), f'\a € ASSSre’bij(m', n') we have

(F\@) Hass, (F\a') = (f Bhtap, [)\ (0 Bassy @) € ASSE™(mm -, + ),
since f Kap, f' is a bijective map.

Now suppose given m,n, k € Z=o and f\a € ASST"*™(m, n), g\b e ASSP™"(n, k). Consider the
following diagram.
[1, 5]

SN

PV

So ([1,s],g,a) is a sorted pullback of a and ¢g. By Lemma 7.3, we know that ([1,s],g,a) is in
particular a pullback of a and g. Since g is bijective, by Lemma 1.35 (iii), the map ¢ is also bijective.
So we have

(f\a) -ass (9\b) = (9F)\ (ab) € ASSF*(m, k),

since gf is bijective as the composite of bijective maps.

This completes the proof that ASSEre’bij is a set-subpreoperad of ASS{™.

Definition 7.20. We define the linear operad ASS := (ASSP™, a) as follows.
e Let ASSP™ := RASSY™P.

pre,bij
e Let a:= (aU‘ASS ) : Sym° — ASSPre.

Note that since we have Im(ao|q, op) S ASSP™PU by Remark 6.26 this is in fact a linear operad.
Symyg 0
Recall that this definition means the following.

e We have ASSP™(m,n) := RASSS“”]Oij (m,n) for m,n € Z=g.

e We have idASS,m = idASSo,m for m € Z>0 .
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e Suppose given m,n,m’,n’ € Z.

Then for > re & € ASSP™(m, n) and > re & € ASSP(m/, n') we have
£eASSE™ P (m,n) ¢'eASSE P (m! nf)

( > T §> Xlass ( > T 5') = > re i (€ Mass, £)-
€eASSE™ P (m ) €'eASSET P (m nf) €eASSE™ P (m,n)
€'eASSy P (m/ )

e Suppose given m,n, k € Z=g .

Then for > re £ € ASSP*(m,n) and > sy X € ASSP™(n, k) we have
€eASSE™ P (m,n) XEASSE™ P (k)
< > 5) "ASS ( D sy X) = D resy(€assy x)-
€eASSE™ P (m,n) XEASSE™ P (k) £eASSE™ P (m )

XEASSP P (k)

e For m € Zzp and >, ¢ f°P € Sym®P(m, m) we have
feSymg(m,m)

( 2 ?"ff"p)a: 2 (e = Y (f\ idassom).

feSymg(m,m) feSymgy(m,m) feSymg(m,m)

Definition 7.21. Recall the morphism of set-preoperads o : Assg —> ASSH™; cf. Definition 7.15.
For m,n € Zzo and a € Asso(m,n) we have axg = idnapy,m \@ € ASSSre’b”(
SS;O)re,bij

m,n), hence the
restriction ocg‘A : Assg —> ASSSre’bij is well-defined, so it is a morphism of set-preoperads.

Assgre,bij >

So we can define the morphism of linear preoperads o := R(oco‘ : Ass — ASSPre,

7.5 Associative algebras and ASS-algebras

Proposition 7.22. Let V' be an R-module and let ¥ : ASS — END(V') be a morphism of linear
operads.

ASSPre e End(V)
\ /
Sym°P
That is, (V, W) is an ASS-algebra.

Define py := (id2 \ p)UP™ € End(V')(2,1) and ey := (idp \ e)UP™ € End(V)(0, 1), where we abbre-
viate idy, = idMap,,m formeZsg.

Then (V, uy,ev) is an associative R-algebra.

Proof. We have the following commutative diagram.

Ass
04

ASSPre 275 End(V)

|

Sym°P
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So aWP® : Ass — END(V)P*® = End(V) is a morphism of linear preoperads satisfying
w(ocWPre) = (idg \ p) WP = py and e(a¥P™) = (idg \ &) PP = gy .

So (V,aWP™) is an Ass-algebra. By Proposition 5.6 we know that (V,uy,ey) is an associative
R-algebra. O

Lemma 7.23. Let T = (T,t) be a linear operad. Let 7 : Ass — TP™ be a morphism of linear
preoperads. Then there exists a uniquely determined morphism 7P . ASSP™ — TP of linear
preoperads such that the following diagram commutes.

Ass

cf. Definition 7.21.

In particular, the commutativity of the lower triangle means that TP defines a morphism 7 of linear
operads.

We have (f\ a)7P*® = (f°Pt) -7 (a1) for fl\a€e ASSSM’]Oij (m,n) and m,n € Z=g .

Proof. Uniqueness. Let 7P™ : ASSP™ — TP be a morphism of linear preoperads such that
P = 7 and a7P" = t. Then for m,n € Z=g and f\a € ASSE™" (m, n), where f : [1,m] — [1,m]
and a : [1,m] — [1,n], we have

(FAN@)TP = ((f\ idpm) - (idm \ @) 7P = ((fPa)-(ac)) 7P = (fPaiP") 7 (aa7P™®) = (1) -7 (a7).
So such a morphism of linear preoperads 7P is uniquely determined by t and 7.

Ezistence. To define 7P™ : ASSP™ — TP it suffices to define its restriction to ASSSre’bij as a
morphism of set-preoperads; cf. Remark 2.23. So let

(fANa)TP = (f°PY) -1 (a7)
for fl\ae ASSgre’bij (m,n) and m,n € Zxq .

First note that for m,n € Z=g and f\a € ASSIOW’]Dij (m,n) we have f°Pte T (m,m) and at € T (m,n),
so (fPt) -1 (a7) € T(m,n).

Furthermore, note that for m € Z~(y we have
id,, 7P = (idMapo,m \ idAsso,m )7~_pre = ( d;\)/r[)ap m ) T (idAsso,m T) = idT,m T idT,m = idT,m .
Suppose given m, n,m’,n’ € Z=q and f\a € ASSE™(m,n), f'\d’ € ASSE™"(1m/ n’). We have

((f\a) (f’\a’))fp“* = ((f BMap, [)\ (@ Hass, @) 7P

S Bsym, /') \ (a Kass, a’)) 7P

£ Bsym, £1)°t) -7 ((a Kass, a')7)
TP Bsymer [/P)8) -7 (@ Bass, a)7)
foPH) BT (f’ PY) -1 ((m) IT (a’ﬂ)
(f°pt) -7 (ar)) &7 ((f°PY) -7 (a'T))
FAa)TP R (f\a')7Pre.

NN N

~—~~
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Now suppose given m,n,p € Zxo and f\a € ASSSre’bij (m,n), g\b e ASSSW’bij (n,p). So we have
f[l,m]—[1,m],a:[l,m] — [1,n], g:[1l,n] — [1,n] and b: [1,n] — [1,p].

Since a is monotone we can write
a:alAsso -~-Ass0 Qp = Qg ,
i€[1,n]

?

where we omit the index “Assy” and where a; = ;, € Assg(l;, 1) where [; € [0, m] for i € [1,n] and
2. li=m; cf. Remark 4.30. Write | = (Ii)ie[1,n] € (Z20)™" and 7 = (1,...,1) € (Zz0)™".

i€[1,n]

By Lemma 7.9 we have the following sorted pullback.

Qjg

Je[1,n]

[ 3 o] [1.7]

[Ln] F
g1 l kg

[1,m] [1,n]

pre,bij
S0

So by the definition of composition in AS we have

(F\a) - (9\0) = () (( ']ajg)b);

cf. Definition 7.10. So we have

(@ = () (( B aw)r))eee

This shows that 7P is in fact a morphism of linear preoperads.

Since by construction fParP™ = (f\ idassy,m)7P*® = (fPt) -7 id7,,m = fPt for m € Zxp and
J°P € SymgP(m,m), we have a7P*® = t. So 7 : ASS — T is a morphism of linear operads.

Moreover, note that we have aa7P™ = (idmap,,m \@)7P = id7m -7(a7) = a7 for m,n € Z=( and
a € Asso(m,n). Hence a7P™ = 7. O

Proposition 7.24. Let (V, uy,ey) be an associative R-algebra.

Then there exists a morphism of linear operads ¥ : ASS — END(V') such that py = (ida \ p) ¥P™
and ey = (idg \ ) ¥Pre.

So (V, V) is an ASS-algebra.
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Proof. By Proposition 5.7 there exists the morphism of linear preoperads ¢ : Ass — End(V') that
satisfies py = pp and ey = e1h. So (V, 1)) is an Ass-algebra.

Then by Lemma 7.23, there exists a uniquely determined morphism ¥ : ASS — END(V) of linear
operads such that the following diagram commutes.

Ass

| L

AssPre 2 End(v)

|

Mapg”
The morphism VU satisfies (f\ a)UP™ = (fPe) - (arp) for m,n € Z=¢ and f\a € ASSSIAe’bij (m,n).

So (V,¥) is an ASS-algebra. Furthermore, we have (idz \ p)UP™ = pax¥P*® = pp = py and
(idp \ e)UP® = e WP = g1p = ey . O
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8 The linear operad BIALG

Our aim in this chapter will be to define a linear operad BIALG with the property that
BIALG-algebras are R-bialgebras.

Definition 8.1. Recall the set-operad ASSy = (ASS™, ag); cf. Definitions 7.10 and 7.12. We
define the linear operad BIALG := (BIALGP™,b) as follows. We let BIALGP™ := RASS{™ and
b:= R(ao‘symop) : Sym®? — BIALGP*. This is a linear operad by Remark 6.27.

0

Recall that this definition means that we have BIALG(m,n) = R ASSy(m,n) for m,n € Z=op and
that for m € Zzo and f°P € Symg”(m,m) we have fPb = f°Pag = f\ idassy,m. Furthermore, recall
that this means that multiplication and composition in BIALG work as follows.

e Form,n,m’,n’ € Z=o and > re¢&eBIALG(m,n), Y. ru& € BIALG(m',n') we
have £eASSo(m,n) €€ ASSo(m’,n’)

( D e 5) XBraLc ( e 5') = ), rerh (EMass, £).
£eASSo(m,n) &'eASSo(m/,n') £eASSo(m,n)
&'eASSo(m/,n')

e For m,n,p € Z~( and Y. re&e BIALG(m,n), >, Sy x € BIALG(n,p) we have
£eASSq(m,n) X€ASSo(n,p)

( Do f) “BIALG ( D sy X) = D1 resy (€ass, X).

£eASSp(m,n) XEASSo(n,p) £eASSo(m,n)
X€ASSo(n,p)

Remark 8.2. Recall the linear operad ASS = (ASSP™ a); cf. Definition 7.20. Note that
re,bij re
ASS < BIALG is a linear suboperad with a = R(ao‘ASS8 J) b‘ASSp .

SymgP

Both ASS and BIALG arise from ASSyp. The linear preoperad BIALGP™ consists of formal linear
combinations of elements from ASSH™, whereas in ASSP™ we only allow formal linear combinations
of fractions from ASSE™ with bijective denominators.

Proposition 8.3. Let V be an R-module. Suppose given a morphism of linear operads
O : BIALG — END(V),
that is, (V,0) is a BIALG-algebra.

BIALGP™ o End(V)
[, /
Sym®°P
Define

py = (ide \ p)©P* € End(V)(2,1)
ey = (idp \ £)©P" € End(V)(0, 1)
Ay = (p\ id2)OP™ € End(V)(1,2)
v = (e ido) 67 € End(V)(1, 0),

where we abbreviate idy, := idyap,,m = idAssg,m for m € Zxg .

Then V is an R bialgebra with multiplication py, unit ey, comultiplication Ay and counit ny;
cf. |4, Definition 4.1.3].
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Proof. During this proof we will denote by (X)) and (-) the multiplication and composition in BIALG
and in ASSy.

Recall that we have (1 KMap, 1d1) Map, # = (1d1 XiMap, /) Map, H> (€ KMap, 1d1) “Map, # = id1 and
(id1 BIMap, €)-Mapy#¢ = id1 . Furthermore, recall the morphism of set-preoperads &g : Assg —> ASS{™
that maps a € Asso(m,n) to id,, \ a € ASSp(m,n) for m,n € Z=q; cf. Definition 7.15.

So since © is a morphism of linear operads and since xg is a morphism of set-preoprads, we have

(pv ®@idy)py = ((idg \ p)OP™ @ (id; \ id1)OP™) ‘Exp (idg \ 1) OP™
(ida \ ) B (idy \ idy)) - (ido \ p)) ©P™
oo s, id1 &o) - potg) O
1t Ritap, 1d1) Map, 1) Xo) OP™
(id1 Rapy ) “Map, #)0%0) OP™
id; o X ppexg) - u(xo) opre
idp \ id1) & (id2 \ p)) - (ida \ p)) O
id; \ idy)OP"* ® (ids \u)@pre) -gnD (idg \ p)OP*e

(
((
(n
((
((
(
((
(

idy @ py ) v

= (
(
(
(
(
(
(
((
((
(«

(ev ®@idy)uy = ((ido \€)OP™ @ (idy \ id1)OP™) -gnp (id2 \ £)OP™
= ((eaxp ®idy o) uoco)@pre
= (((¢ ®Map, 1d1) “Map, 1) X0 ) OP"
id; o) OP*®
1
(idy ®ey)py = ((id; \ id1)OP™ ® (idg \E)@pre) ‘gD (idg \ p)©P*®

((
((1d1 oo Xleng) - uao)@pre
(«(

re
id (X .Mapo "Mapy M )OCO) oP
@pre

1d1 OC())
d1 \ ldl)@pre

= idy .

(
= (
( d1 \ ldl)@pre
(
(i

This shows that (V, uy,ey) is an associative R-algebra.

Moreover, since © is a morphism of linear operads and since ag : Mapy” — ASSy is a morphism of
set-preoperads, we have

Av(idy ® Ay) = (1) id2)OP -pxp (i1 \ idy)OP @ (41, idy)OP™)
1P ag - (id2P ap [ 1P ag) ) OP™

1P Maper (1d5F Rviaper 11P) ) ag ) OP™

(id1 BMap 14) “Map, #)°Pdo) OP

14 B\ ap, 1d1) “Map, )P a0) OP

1P Mapgp (17 Bypapgr 1d77))ag) OF'

MOpao 1Pag ®id7? ag)) OP*

= (1) 1d2)0P pp () id2)OP ® (id, \ id;)OP")
= Ay(Ay ®idy)

= (
(
(
(
(«
=
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and

Av(?]v ® idv) = (,u\ id2)®pre ‘END ((E\ ido)@pre ® (id1 \ idl)@pre)

= (1°Pag - (ePag BidsP ap) ) O™
= (1 “Mapgr (€ Rhpappr id57))ag) OF™
= (((5 XMap, id1) Map, N)OpaO)@pre
= (id}" ao) O
= (idy \ idy)©P*®
= idy

Av(idv ®77v) (,u\ idg)@pre *END ((idl \ idl)@pre ® (6\ ido)@pre)
p1Pag - (id;* ag X %ag) ) OP*

= (
(1P pape (5P By gapere®)) o) O
(

pre

((id1 X .Map(J "Mapy ) an)@

(id}® ag)©P™
(id; \ idy)©P"™°
=1id

V.

This shows that (V, Ay, ny) is a coassociative R-coalgebra.

In order to complete the proof that (V,uy, ey, Ay,ny) is a bialgebra, we have to show that the
following compatibility conditions (i) — (iv) are satisfied.

(i) We have
v BND Ay = (Ay @ Ay) -gxp (idy @ 7v ®@idy) -ExnD (v @ py),

where 7y € END(V')(2,2) is the linear map defined by

v V® o y®2

VRWH— wRU
for v,we V.
(ii) We have py -gxp v = nv @1y
(iii)) We have ey -gnp Ay = ey Qey .

(iV) We have €V "END NV = idR .

Ad (1). Consider the transposition (1,2) € Sym(2,2). Since © is a morphism of linear operads, we

have
((1,2)\ id2)OP™ = (1,2)°PbOP™ = (1,2)%e.

Moreover, we know that (1,2)°Pe € END(V')(2,2) is the map

(1,2)Pe: V®2 ., &2

VR W F— w &R v;
cf. Example 2.66. So we have
((1,2)\ id)OP™ = (1,2)Pe = 71/ .
We have to show that

1y END Ay L (Ay ® Ay) -gnp (dy ® 7v ®1idy) -Enp (py ® py).
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On the one hand we have

pv -END Ay = (id2 \ p)OP™ -pNp (1 id2)OP™
= ((id2 \ ) - (p\ 1d2))©

On the other hand we have

(Av ® Ay) “exp (idy @ 7v ®idv) “EnD (v @ pv)
= (((p\ id2) B (i id2)) - ((id1 \ id1) B ((1,2) \ id2) B (idy \ idy)) - ((id2 \ p) B (id2 \ 1)) O

So since OF™ is a morphism of linear preoperads it suffices to show that

(ida \ o) - (1 ida) = (2 id2) B\ ida))-((ichy \ id1)B((1,2) \ id)(icy \ ich))-((idla \ p)B(ida \ 1)-
Let f € Mapy(4,2) be the map defined by 1f =1,2f =2,3f=1,4f = 2.

—
/2

Claim. We have the following sorted pullback.

=W N =

H .l\IapO 1]
_

[1,4] [1,2]

fl - lu
[1,2] ——[1,1]

Proof of the Claim. First note that we have f -Map, #, (1 KMap, 1) Map, 4 € Mapg(4,1) = {pa};
cf. Definition 4.29. So the maps have to be the same and the diagram commutes. Furthermore,
# XMap, # 18 monotone as the product of monotone maps.

(1) _ ~1(2u) [1,2] :
Finally, f ‘ (1 Ertang 1)1 (1) = f ‘ and f ‘ (1 Ertang 1)~ (2) =f ‘[37 4 are isotone.

This proves the Claim.

So we have 10
(ido \ ) - (u\ ida) "= (fid2) \ (1 Bvtap, 1) id2) = £\ (1 Etap, 12)-
On the other hand, by Remark 7.11 we have

((\ id2) B (p\ ida)) - ((ids \ idy) B ((1,2)\ id2) & (idy \ idy)) - ((id2 \ p) & (id2 \ 1))
= ((M XMap, )\ id4) : ((1d1 .Mapo(lv 2) XIMap, idy) \ 1d4) ) (1d4 \ (1 XMap, N))
= (((id1 BEap, (1, 2) BMap, 1d1) “Map, (1 Eviap, #)) \ ida ) - (ida \ (1 Eap, 1))
= ((id1 Btap, (1, 2) Bap, id1) Map, (4 BMap, ££)) \ (1t Bntap, 1)-

So it suffices to show that

!

(ldl Map0(17 2) Mapo 1dl) ‘Mapg (:U' Mapo M) = f

We have
1((1d1 .Mapo(ly 2) .Mapo ldl) ‘Map, (M Mapo ,LL)) 1(# .Mapo ) lu=1=1f
2((1d1 .Mapo(la 2) .Mapo 1d1) "Map, (M Mapo N)) 3(# .Map0 ) lp+1=2=2f
3((1d1 .Mapo(]-a 2) .Mapo ldl) ‘Mapg (M Mapo M)) Q(N .Mapo ) =2n=1= 3f
4((ldl .Mapo(ly 2) .Mapo ldl) "Map, (M Map(J M)) 4(H .Mapo ) 2M +1=2= 4f
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W

This shows that compatibility condition (i) is satisfied.
Ad (ii). We have to show that

((ida \ ) - (¢ id0))OP™ = py -mxp v = v @y = (¢ ido) B (¢ \ ido)) OP™.
So it suffices to show that
(idz \ 1) - (= ido) = (¢ ido) B (< \ o).
Claim. We have the following sorted pullback.
[1,0] —2 [1,0]

[17 2] T> [17 1]

Proof of the Claim. First note that (¢XIMap, €) “Map, £, 1o -Map,€ € Mapy(0,1) = {e}, so the diagram
commutes. Furthermore, the map idy is monotone.

1/
Finally, (¢ Rap, )| ) is isotone for i [1,0] = @.
idg ™ (4)
This completes the proof of the Claim.

So we have
(id2 \ 1) (\ ido) "2” ((Etapy &) Mapo id2 ) \ (ido “Mapy ido) = (eRap, €) \ ido = (€ ido) H (e ido).

This shows that compatibility condition (ii) is satisfied.
Ad (iii). We have to show that

((ido \e) - (p\ idg))@pre = ey ‘END Av L ey RQey = ((ido \e) X (idg \5))@pre.
So it suffices to show that
(ido \ &) - 1\, ide) = (ido \ &) B (ido \2).
Claim. We have the following sorted pullback.

€ I\Iapo €

[1,0] [1,2]
idol F iu
[1,0] [1,1]

Proof of the Claim. Again ido -Map,€; (EXMap, &) Map, 4t € Map(0, 1) = {}, so the diagram commutes.
Moreover, € [XIMap, € is monotone as the product of monotone maps.

Z(;i) c)-1(;) 18 isotone for i € [1,2], since (¢ Rmap, €) *(i) = [1,0] and
apq

e~ ip) = e71(1) = [1,0] for i € [1,2].

Finally, the map ido |
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This completes the proof of the Claim.

So we have
(ido \ &)~ (10 id2) "= (ido “Map, ido) \ ((Bapy €) Mapy id2)) = ido \ (eFhapy€) = (ido \ €)H(ido \ &).

This shows that compatibility condition (iii) is satisfied.
Ad (iv). We have to show that

((ido \&) - (¢ \ ido))OP™ = ey -gnD 1V L idg = (idg \ ido)OP"®,
So it suffices to show that '
(ido \8) . (6\ ldo) = ido \ ido .
Claim. We have the following sorted pullback.

[1,0] —2~[1,0]

idol . i
[1,0] — [1,1]

Proof of the Claim. The diagram is commutative. Furthermore, the map idg is monotone. Finally,

. e~ 1(ie) . . . _
idg ‘idgl(i) is isotone for i € [1,0] = @.
This completes the proof of the Claim.

So we have 10
(ido \6) . (E\ ido) = (ido "Map, ido) \ (ido *Mapy ido) = idg \ ido .
This shows that compatibility condition (iv) is satisfied
This completes the proof that (V, uy, ey, Ay, ny) is a bialgebra. O
Question 8.4. Is a bialgebra a BIALG-algebra?

That is, given a bialgebra (V, uy,ev, Ay, nyv), we ask if it is possible to define a morphism of linear
operads © : BIALG — END(V) such that py = (ide \ p)OP™, ey = (idp \ &)OP™ as well as
Ay = (p\ id2)OP™ and ny = (e idg)OP"e.
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9 The set-operad COM, and the linear operad COM

Our aim in this chapter will be to define a linear operad COM with the property that for
an R-module V| giving a morphism of linear operads COM — END(V) is equivalent
to giving the structure of a commutative R-algebra on V.

9.1 Construction of the set-operad COM,

Recall the disjoint union of sets and maps; cf. Definitions 1.13 and 1.14. Suppose given sets X, X'.
Then
XuX={1z):xe X} u{(2,2):2" € X'}.

Suppose given sets X, Y, X', Y and maps f: X — Y and f': X' — Y’. Then
fuf:XuX —YuyYy

<i,z>H{(?’zf) =1
(t,zf") ifi=2.

Definition 9.1. Define
& :={[1,m] : me Zxo}

and for k > 0 recursively define

S ={XuX XxX": X X"e&Yu&
Ery1 :={Y : there exists X € &, such that Y < X}.

Note that we have &, € &1 for k € Z-o. Finally, define

£ = U (‘:k

kEZ;o
Remark 9.2. The set &£ has the following properties.
(1) Given X, X' € &, then, since & € &;41 for i € Zxq, there exists k € Z=( such that X, X' € & .
Then we have X U X', X x X' €& | € Eq1. Hence X X', X x X' € &,

(2) Given X € £ and Y € X. Then there exists k € Zzo with X € & < &,,,. So we have
Y e&ky1, hence Y e £.

(3) Given X,Y,Z € £ and given maps f : X — Z and g : Y —> Z, then recall the standard
pullback (S, g, f) of f and g, where S = {(z,y) € X xY : xf = yg}; cf. Lemma 1.29. By (1)
we have X x Y € € and since S € X x Y, we have S € € by (2).

(4) All elements of £ are finite sets.

For n € Zzo and a tuple k = (k;i)jep1,n) With k; € Zzo for i € [1,n] recall the bijective map
Ok [1, >, k‘l] — || [1,k;]; cf. Definition 1.18.

1€[1,n] i€[1,n]
Definition 9.3. We define the set-preoperad COME™ as follows.

First consider the set

C(m,n) := {(f,a) : there exists X € £ such that [1,m] J x 9 [1,n]}
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for m,n € Z=o. Now define an equivalence relation (~) on the biindexed set C = (C(m, n))m n>0

as follows. Let X, X €& myne Lz, [1,m] Jox [1,n] and [1,m] J x —di[l,n]. Then
(f,a) ~ (f,a) if and only if there exists a bijective map u : X —> X such that uf = f and wa = a.

We denote the equivalence class of (f,a) € C' with respect to (~) by f\a and define
COM{™“(m,n) := C((T’)n) = {f\a:3X € € such that [1,m] J x 9, [1,n]}

for m,n € Zg .
The multiplication in COM}™ is given by

(X) := (Mcom,) : COMY™(m,n) x COM{™“(m/,n') — COM}™“(m + m/,n + n')

(£ F0) — ((F 0 et )\ (a0 a)eil )
=: (f\a)Bcom, (f'\a)

for m,n,m',n’' € Z=y.

Multiplication can be illustrated as follows.

XuX
[1,m] w[1,m] [1,n] u[1,7n]
P m,m?) l 2 Zi“’(nln')
[1,m +m/] [1,n+n]

Composition is defined using the pullback (x) below, letting
(+) == (‘comp) : COME™(m,n) x COM§“(n,p) — COMY™(m, p)
(f\a, g\b) — (gf\ab) =: (f\a) -com, (9\b)

for m,n,p € Z=o, where [1,m] J x4 [1,n] and [1,n] <= X SN [1,p] and where

(%) Pp—t .y
)"k
X —=[1n]

is a pullback, arbitrarily chosen. Composition can be illustrated as follows.

P
Xy/\xy
VNG N
[1,m] [1,7] [1,p]

The identity elements are id,, := idCOMgrgm := idMapy,m \ 1dMapy,m for m € Z=q .
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We now have to verify that this defines a set-preoperad.

First we will show that the multiplication map is well-defined.

Suppose given m,n,m/,n’ € Z=o and X, X, X', X’ € £. Suppose given [1,m] Jox e, [1,n] and
[1,m] L x 2, [1,n] such that f\a = f\ @ and suppose given [1,m/] Ioxr e [1,7] and
[1,m] I x4 [1,7'] such that f'\a' = f’\ This means that there exist bijective maps
w: X :—> X and v/ : X’ —> X’ such that uf = f, ua = a, v f = f and v'd' = a'.
Since u L' : X U X' — X U X' is a bijective map we have

(Fo Pog )\ (@0 D)p0)

1.

((uf U u’f’)go(;rlL’m,)) \ ((ua U u’a’)cp(;}n,))
((w o a)(f U ) ) \ (@)@ a)e) )
((F 0 et )\ (s a)erl ).

Do
[l
=

i

Hence the multiplication map is well-defined.

Now we will show that the composition map is well-defined.

Let m,n,p€ Z=p, X,X,Y,Y € & and let [1,m] Jox [1,n] and [1,m] J x4, [1,n] such

that f\a = f\a@and [1,n] <Y SN [1,p] and [1,n] Sy N—b> [1,p] such that g\b zg\l; This
means that there exist bijective maps v : X — X and v : Y — Y such that uf = f, va = q,
vg = ¢ and vb = b.

Consider the following commutative diagram.

Qv

7

Including the identity map id[; ;) = idMmap,,n, this translates to the following commutative diagram.

Y g [1,7n]

ISI))

!

X id[l,'n,]




By applying Lemma 1.28 (2 ) to (u,v, 1d[1 n]); we know that there exists a unique bijective map
w: P —> P such that wj = gu and wa = av. Hence we have

@5\ (@) = (Guf)\ (@vb) = (wgf)\ (wab) = (3)\ (ab).
This shows that the composition map is well-defined.

Hence the claimed image of (f\ a, ¢\ b) under the composition map is independent from the choice
of representative of their equivalence classes and, letting u = idx and v = idy , also from the choice
of a pullback in (x).

Ad (ml). Suppose given m,n,m’,n’ m ,n' € Z>0, X, X', X" € £ and [1,m] S ox [1,n],
[1,m] <= X" % [1,n/] and [1,m"] <— X" 25 [1,n"].
We have to show that

(F\)B )R \a") = (F\a)B((F\d)R(f"\a")).
We have

(F\a)B(f \a ) & (f"\a")

(f go(m o\ @sd)erl )R ()

(((f (m m,)) o f”)w(_niﬂn m/ )) \ ((((a Ua )So(nln/)) o a/,)80(711+n n//))
((

— fuf)uf”)(so(mm)uld[lmff])so(m+m )\ (@) 0 a") (o0 i) eg o n)-

a) X
(
= (

In the same way we get

(F\a) B ((f"\a) R (f"\a"))
((f (f f”))(ld 1,m] U‘P(m m//))@(wll m! +m//)) \ ((a L (al L a”))(id[l,n] ‘—“P(_ygl’nn))(;@(_nl’nqnu))-

pre

So by the definition of the equivalence relation defining COM "~ it suffices to show that there exists
a bijective map 4 : X u (X' u X") — (X u X’) u X’ such that

A((f u fl) o f”) (90(_7,1%7”/) o id[Lm”])SO(erm m"y = (f (f f”))(ld 1,m] ‘—“P(m m//))‘P(Wll m/+m")

~ — . ' —
F((awa) u a”)(SO(nl,nr) o 1d[1,n”]) (n1+n ) (au(d ua ))(ld[l n] ‘—‘So(n n’/))so(nl’n/Jrn”) .

Consider the following diagram; cf. Definition 1.16.

Xux oxr—Iert [1,m] u[1,m/] U [1,m"] vt 1 m+ m!,m]
V(X,x'»x"l 7([1,m],[1,m']>,[1,m"]l T‘P(_Wll_*_m/)’m//
(X uX')u X" R (Y N 2 WY I — [L,m +m'] U [1,m"]
(f‘—‘f )‘—‘f QO(m’m,)\_l ld[l,m”]

By Lemma 1.17 the first quadrangle in the diagram commutes and by Lemma 1.20 the second
quadrangle commutes. This shows that

Y, x),x0 (U ) 0 P gy 2 1) P gy = (F 0 F 0 )00t -
By replacing (f, f', f") by (a,d’,a") we see that

fy(X7X/)7Xu((a U a') L a”)(cp(fnvn,) widy) e, (n+n oy = (au a U a")go(;in,m,,) .
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Furthermore, consider the following diagram.

Xux oxr—Iert [1,m] u[1,m/] u [1,m"] vt 1ym+ ! m]
’Yx,(x',x'wi 7[1,m],([1,m'],[1,m"]>l Tw;f(m,+m,,)
XU (X' 0w X" [1,m] u ([1,m] u [1,m"]) [1,m] U [1,m +m"]
f\_l(fll_lf”) id[la'”] - s0(7}1,’,777,”)

By Lemma 1.17 the first quadrangle in the diagram commutes and by Lemma 1.20 the second
quadrangle commutes. This shows that

’YX,(X',X")(f u (f u f") (idm, '—“P(_nly,mﬂ))‘P(_n}L,mwm") =(fufu f”)<P(_W1L,mr7mn)

and by replacing (f, ', f") by (a,d’,a"”) we see that

’YX7(X/’X”) (a L (a' L a”))(idn l_Kp(_nll,n”))(p(_nl,n/Jrn") = (CL L1 a, (] al’)@aim,ﬂ’) .

So define 7 := 7)_(}(X’,X”)7(X,X’),X” X u(X'uX") — (X uX')u X" This is a bijective map.
We have
FF 0 )0 F )Py 10 P
= 7}}(){/7)(//)7()(7)(/)7)(//((f [ fl) L fll)(sp(ryll7m/) U id[Lm//])QO(;’ll_i_m,’m,,)
= 7;(}(X’,X”) (f o f/ U f”)so(;,ll,m/’m//)
- -1 1
= (f o (f/ o f”))(ld[l,m] ugp(m’,m”))gp(m,m’—km”)
’?((G L a') L a”)((p(_nl,n') [ id[Ln”])@(_nJrn/’n//)
= ’Y)_(,I(X’,X”)’Y(X,X’),X"((a o al) U a’”)(ip(_nlml/) o id[17n”])§0(_n+n/7n//)
= 'Y)_(,I(X',X")(a ua U a”)gp(_n{n,m,,)
. -1 ~1
= ((I Ll (a/ [ CL”))(ld[ljn] I_I("D(n’7n”))(’0(n,n'+n”) .

This completes the proof that the multiplication ([X]) is associative.

Ad (m2). Suppose given m,n € Zxq and [1,m| Lox - [1,n]. We have to show that

!

(£\ @) B (idpapy,0 \ idmapy.0) = f = (idnapg.0 \ id0apg.0) B (f\a).

We have (f\a) (idMapO,O \ idNIap()vO) = ((f L idMa‘p()?O)SO(_ﬂ}L,O)) \ ((a L idMapO,O)SO(_TiO))

Recall the bijective map uy : Z u[1,0] — Z, (1,2) — z for a set Z; cf. Lemma 1.24. Furthermore,
recall that in the case of intervals we have

-1
UlL,m] = Pm,0)

for me Z=yg .

Hence we have

(f\a) X (idMapy,0 \ idMapy0) = ((fu idMame)(P(_WlL’o)) \ ((a v idMapO,O)(P(_n{o))

= ((f uidmapy,0)u,m)) \ ((@ W idMapy,0)u[1n))
1.24(if)

=" (uxf)\(uxa)
= fla

—
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On the other hand recall the map vy : [1,0] u Z — Z, (2,2) — z for a set Z; cf. Lemma 1.24 and

that in the case of intervals we have
o1
Ylt,m] = Po,m)

forme Zsg .

Thus we have

(idMap(),U \ idMapO,U) (f\a)

((idMapg,0 L f) @ (20 m)) \ ((idmapy,0 ua)gp@%n))
((idMap,,0 Uf)v 1,m]) \ ((idMapy,0 1@)v[1,n))
(vx f)\ (vxa)

f\a.

1.2

[

iii)

Ad (cl). Suppose given m,n,p,q € Z=o and [1,m] Jox o [1,n], [1,n] <Y SN [1,p] and
[1,p] Lz [1,¢]. Consider the following diagram.

AN
S T
SN,
[1,m] [1,7] [1,] [1,4]
So (S, g, a) is a pullback of a and g, (T, h, 5) is a pullback of b and h and (R, ;L
a

and h. Then by Lemma 1.37, (R, hg, é) is a pullback of @ and hg and (R, h,
and h. So by the definition of composition in COM{™ we have

((f\a)-(g\b)) - (h\c) =

a) is a pullback of
)

b) is a pullback of ab

This shows that the composition (-) is associative.
Ad (c2). Suppose given m,n € Zxq and [1,m] Jx 9, [1,n]. By Corollary 1.34 we know that

idx

X —%>[1,n] X X
idxi I~ iidu,n] and fl ™ lf
X —%>11,n] [1,m] ——[1,m]

are pullbacks. Hence we have

(f\a)- (idMapo,n \ idMapO,n) = (idx f)\ (aidMapo,n) = (f\a)
(idMapO,m \ idMapO,m) : (f\a) = (f idMapO,m)\(idX a) = (f\a)
1 f

Ad (mcl). Suppose given m,n, p,m’,n’,p' € Z=g and [1,m] <— X -2 [1,n], [1,n] <Y LN [1,p],

[1,m] <L X% [1,0/] and [1,7] <= v 25 [1,p].
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Consider the following diagrams.

Z A
g N a g N a'
/ \ i / \ y
/ \ / \ f a 7 v
[1,m] [1,7] [L.p] [1,m] [1,7] [1,7]

So (Z,§,a) is a pullback of a and g and (Z’,§’,d’) is a pullback of ¢’ and ¢’ and we have

(f\a)-(g\b) = gf\ab
(f'\a) - (g"\b) = g'f"\a't
By Lemma 1.38 we know that (ZuZ’,gug’,aua’) is a pullback of auia’ and gug’. By Lemma 1.36,

(ZuZ' gug,aua')is also a pullback of (au a')go(_nln,) and (g u g')gp(_nln,) since gp(_nln,) is injective.
So we have the following diagram.

Zuz

bub’

[1,p] w1, p]

—1
4 Pp,p")

[1,m + m/] [1,n + n'] [1,p+ 7]

So since by Lemma 1.24 (i) we have (g u ¢ )(fu f)=gfu g f and (aud')(bud) =abua't!, we
have

(F\a)®(f\a)) - ((g\b) B (¢ \b'))
(fuf) so(mm N\ (e d)ein) - (9w d)eq )\ (ud)ey )

S e\ (@s )b s)ert,)
gf‘—‘gf) (mm)\((abuab') (p))

= (9f\ab) = (9" f"\a'?)

= ((F\a) - (g\D) B ((f'\ ) - (¢'\ V).

Ad (mc2). Suppose given m € Z=q . We have to show that

((
(g
((

1
(idMapO,m \ idMapO,m) = (1dMap0 1 \ 1dMapO, )m

We prove this via induction on m > 0. In the case m = 0 this is the definition. So let m > 1 and
suppose that we already know (idnapy,m-—1 \ idMapg,m-—1) = (idMap,,1 \ 1dMap071)(m 1. Then we
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have

(idnapy,t \ idMapy, )™ = (iduapy,1 \ idntapy, )™ ) B (idMapy,1 \ idntap,1)
(idMapO,m 1 \ idMapO m— 1) ] (idMapo,l \ idMapo,l)
( ldMapO7 -14 1dMapD, )QO(m 1 1)) \ ((idMapmm*l . idMapo,l)so(in}L—l,l))
= ( (id [1,m—1]u[1 1])90(,,1_1,1)) \ ((1d[1,m—1]u[1,1])(10(:71_171))a
where id[; ;;,—1].(1,1] is the identity map on the disjoint union [1,m — 1] u [1,1].

The map (id[l,m—l]u[lﬂ])‘P(_n}hl,l) :[1,m — 1] u[1,1] — [1, m] is bijective. So we have

idm = idMapO,m \ idMavam
= (((id[l,mfl]u[l,l])‘p(_rz}hl,l)) idMapg,m ) \ (((id[l,mfl]u[171])(P(_n1*171))) idMap“’m)
= ((id[l,m—l]u[l,l])90(_75—1,1)) \ ((id[l,m—l]\_1[1,1])()0(_7;171,1))

= (idMapg,1 \ idMapoJ)m

This proves (mc2) and completes the proof that COMY'™ is a set-preoperad.

Remark 9.4. We sometimes refer to f\a € COM{™(m,n) as a fraction. Then ezpanding by a
bijective map u : X — X for some X € £ yields the same fraction uf\ua = f\ a.

Remark 9.5.

ldk g b

(i) Let X € € and let m,k,n € Z>o. Let [1,m] «— [1,k] — [1,k] and [1,k] «— X — [1,n],

where we abbreviate idy := idmap, k- Then we have

(f\idg) - (g\b) = (gf)\b.

(ii) Let X € € and let m,n,p € Z=o. Let [1,m] g ox 9 [1,n] and [1,n] <= dn

where we abbreviate idy, := idMap,,n - Then we have

(f\a)- (idn \b) = f\ (ab).

[1,n] — [1,p],

(i) Let m,n,m’,n’ € Z=o and let f € Mapy(m,n), f' € Mapy(m’,n’). Then we have
f BMapy [1 = @(mmny (f 0 f’)so(;in/) :

Proof. Ad (i). By Corollary 1.34 we have the following diagram.

X
g AN\ 1dx
AN
[1,m] [1, k] [1,7]

So we have (f\ idg) - (9\b) = (9/)\ (idx b) = (9./)\b-
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Ad (ii). By Corollary 1.34 we have the following diagram.

idy;x\x
X [1,n]
f a  idn b
[1,m] [1,nf/ \LP]

So we have (f\a)-(idx \b) = (id,, f)\ (ab) = f\ (ad).
Ad (iii). For i € [1, m + m'] we have

if i e [1,m]

. no )i
Z(fklapof)_{(i_m)fl+n if i € [m+1,m+m'];

cf. Definition 2.57. On the other hand we have

. / —1 ( 72)( )So_nlnf) leE [17m]
Wm0 P00y = {( 2,i— )(fuf)s%n ifie[m+1,m+m]
(1 ,Zf) ) if i e [1,m]
(2, (i — ) )gp(nn,) ifie[m+1,m+m]

(if if i e [1,m]

(it—m)f' +n ifie[m+1,m+m]
for i e [1,m 4+ m']. So (f KMap, f') = ¢ (m,mn) (f L f) nn,) d
Definition 9.6. We define the biindexed map ¢o = (co(m,n))m n=0 : Mapgw — COMS™ by

co(m, n) : Mapg® (m,n) — COM}™(m, n)
fop L f\ idMapO,n
for m,n € Zg .

Lemma 9.7. The biindezed map ¢ : Mapg® —> COMY'™ is a morphism of set-preoperads.

Proof. First let m € Z=o. We have idyg,per 1, = (idMap,,m)°” and hence

. o . . .
(1dMap0,m) Pep = 1dMap0,m \ 1dMapO,m = id, .

Now suppose given m,n,m’,n’ € Zzo and f°P € Mapy’(m,n) and f'°P € Mapy®(m/,n’), that is,
f:[l,n] — [1,m] and f’: [1,n'] — [1,m/] are maps. We have
2.13

Bt
9.5 (ii)

foP Mapgp frev (f XIMap, fryep

((p(n n’) "Mapg (f (] fl) "Mapy @(ni’m/))Op
= (Qp(nn (f o f)(p(mm )op.

We also know that

idMapO,nJrn’ = idMapO,n Mapo idl\lapo,n’

= O(n,n’) (idMapO,n U idMapo,n’)(p(;in/)-

164



So since @, ) 1s a bijective map we have

(f° Mapgp f"P)eo = (SD(” ”')(f - f/)so(ini,m’)) \ (¢(”:”')(idMapoﬂ = idMaPOv”/)sp(jin’))
= ((fu f! )‘P(m m’) )\((idMapo,n o idMapO,n’)SD(;inr))

- (f\ 1dMap0,n) (f/\ idMapO,n’)
= fPco A f'Pcy.

Finally, suppose given m,n,p € Z=q and f°P € Map,®(m,n) and g°® € Mapy®(n, p), that is,
f:[l,n] — [1,m] and g : [1,p] — [1,n] are maps. By Remark 9.5 (i) we have

I\ 1dMapO n) - (g\ idl\/lapo,p>
gf)\ ldMapo,p
gf)%Pco

fop Mapo p)CU :

O (o)
fPco - g%Pco =

(
= (
= (
= (

Lemma 9.8. We have the set-operad COMy := (COMJ™, ¢o).

Proof. Ad (sol). Suppose given m,n,m’',n’ € Zso. Suppose given f\a € COM}“(m,n) and

f'\a € COM™(m/,n'), where [1,m] Jox [1,n] and [1,m/] Ioxr 4 [1,n] and X, X' € &.

We have to show that

(%) (s o) - (M) R (F'\a)) = (f'\a) & (F\a)) - (537, c0).
By Remark 9.5 (i) we have
(52 o) - (PN B \D)) = e\ idstapgmnt) - (F 0 P9\ (@ 0 Yo7 )

((f f) mm/)sm m’) \ (( )(p(nl,n'))'

In order to calculate the right hand side of (x), define the map

oYy YuY —Y' LYy
(Ly) — (2,9)
(2,9) — (L)
for sets Y, Y.

Claim 1. Suppose given k, k' € Z=o, Y, Y' € £ and maps g : Y —> [1,k] and ¢’ : Y/ —> [1,k']. We
have the following pullback.

(9‘—‘91)90_1 ’
YoV — 5 1k + K]

: i
Oy,y! Sk,k!

Y'uyYy

1L,K +k
(6292 1y [ |
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Proof of Claim 1. First note that the diagram is commutative, since for y € Y we have

(Ly)ovy (9" v 9)ep = (29" v a)ep
= (2,99)9 1)
=k +yg

(L9 U )P shr = (LY9P St
= (Y9) sk
=k +yg

and for 4’ € Y’ we have

(2,5)ovy (9" 0 9)g 4y = (Ly)g" L )G
= (Ly'9 ) i
=y'q
(2,99 0 9 sir = (2.5'9) 0 sk
= (k+y'g)srw
=(k+y'g) -k
o
=Yg.
Now oy ys and sj s are bijective maps. So by Lemma 1.33 the commutative diagram is a pullback.
K b g
This completes the proof of Claim 1.
Applying Claim 1 to a : X —> [1,n] and o’ : X' — [1,n/] yields the folllowing diagram.

XuXx

UVAW@ZJHI)

X'uX [1,n +n/]

f/‘—‘f W(m m) ldMapO n+n’
(d'ua (’D(n )

[1,m' +m] [1,n +n] [1,n +n/]

So we have
(MABED) - (P0) = (0 Gk \ (@ Do) - (e \ idatapnsn)
= (UX X’ f/ U f Sp(m/ m)) \ ((a U a,)‘P(:Iln/))
(¢

Clai:m 1 / 1
wrg, g 2T 2 (marySman') \ (00 @) p)

= (spmwc0) - (F\)B(f'\d)).
This shows (sol).

Ad (s02). Suppose given m,n,k € Z=o and f\a € COMy(m,n), where [1,m] S ox [1,n] and

X € £. We have to show that
(%) (BP c0) - (f\ ) = (f\a) - (AP o).

Define s; := m for i € [1,k] and t; := n for i € [1,k]. Then let s := (s;)ie[1 4] € (Z=0)**,
ti= (ti)iepu € (Zz0)"".
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First we will show that (f\ a)¥* < (f* o7\ (aFe ).
We will show this via induction on k& > 0. If k: = O then we have s =t = () € (Z=0)*". So we have
(f\a)® =idy and f‘—‘ogp() = idMap,,0 and a 90() = idMap,,0 , hence
(f\a)® = idy = idmapy.0 \ iduape,0 = (f0)\ (a0 ().
Assume now that k > 1 and that we already know that (f\ a)®*—1) = (f‘—‘(kfl)cpg_l) \ (au<k*1)¢f_1)
for 8 = (si)ie[1,1—1) € (Z20)**=1) and £ = (ti)ier,e—1] € (Zz0)* =D,
Recall the bijective map i x : Xk 5 x2(k=1) | X cf. Definition 1.21. We have
(P = (FoEt-VR m(Aa)
((frEDp NN (@D 1)) & (f\a)
( fu(k 1)()05 ) f) (k 1 mm)) \ (((au(k—l)wgl) o a)so(i(llf—l)n,n))
(WX (P2 Do) U DG tymamy) \ (rx (@ F Vo) La)og iy, )
U
((

||u> |

Yeox (f2ED f)(% U i) 2k ymmy) \ (k@2 FD La) (07t 0idn) 1))
£ fuk’Yk 'uid m)P(( ((k 1)m, m))) \ ((‘IUk’Yk,[l,n])(Sogl = idn)@((k_l)nm)))
1

llto

= (! >\<aukso; )
Now by Remark 9.5 (i) we have
(Bxbc0) - (FN@ = (B \ idnapy em) - (F 05 )\ (a0 )
= (F* 0 hem) \ (0™ e, ).
In order to calculate the right hand side of (x%) we define the map
my 1Y —Y
(y)—y
foraset Y and [ € Zxg .

Claim 2. Suppose given p,l € Z=o, Y € £ and amap g : Y — [1,p]. Let r; := p for i € [1,]] and
7= (T)ien,) € (Z=0)*!. We have the following pullback.

ul, —1
Yl_,l g Pr [1,lp]

~
m,yl hip

Y 7 [1, 7]

Proof of Claim 2. Note that for (i,7) € [1,p]“! we have
(i, )7 hip = (= Dp+ iy = = (i)
hence we have the following commutative diagram.

-1
[17p]ul - [17 lp]

"z,[l,p]l lhlm



Since ¢! and id[y ) are bijective, this is a pullback by Lemma 1.33.
So by Lemma 1.37 it suffices to show that we have the following pullback.

ul

Yul 9 [1’p]ul
T
m,y m,[1,p]

Y [1,p]

First note that for (i,y) € Y2 we have

)9 ) = (o yg)mp g = v9 = (G, y)myg,
hence the diagram commutes.

(( J)nl [1, p])
(=57 (5:9)

(4)} and g=H((@ )mpp) = 97 ()-
€ (g""~1(4,7) such that

Now suppose given (i, j) € [1,p]~!. We have to show that 7,y | is bijective.
Note that (9°)7'(i,4) = {(i,y) 1y € g~
y)e

Injectivity. Suppose given (i,vy), (i,

%, . ~1((ij
(4,y) my\g (( 227;)[11’) = (i, )my ?gul()(—fzzl]j)[mp‘
Then we have
v =y = G “l(>( Jzzma)lp) @y ”lY\ 42 J(ZHJ)D = (i my =y

g (69 [1,p1)
(9D~ (i.9)
Surjectivity. Suppose given y € g~ (i, /)m 1)) = g *(j). We have (i,y)g=" = (i,yg) = (i, ), so
(i,y) € (9~")7"(i,j) and

This shows that 7y is injective.

((m)m,u,p] )

gy iy ™ = vy =y

(6, ),y

9~ (@) p)
(90~ (@)
This completes the proof of Claim 2.

This shows that 7][7y| is surjective.

Recall that we have defined s = (s;)ieq1,6],t = (ti)ie[i,h] € (Z=0)** with s; = m and t; = n for
€ [1,k].

Applying Claim 2 to the map a: X — [1,n] and k € Zo we get the following diagram

Xl_lk
nk%/\y:“%l
X [1,kn]
/ a hk n ldl\lmpo kn
[1,m] [1,7] [1, k)
So we have . _
(f\a)- (hhe) = (f\a) - (hun\ idntapy,kn)
= (mx)\(aFerh)
Claim 2 Lk -1 LUk, —1
(kb ) (0.
So the left hand side and the right hand side of (#x) coincide.
This shows (s02) and completes the proof that COMy = (COM'™, ¢p) is a set-operad. O
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Remark 9.9. Let m,n, k,m’,n' k' € Z=o and let f € Mapy(k, m), a € Mapy(k,n), f' € Mapg(k’,m’)
and a' € Mapy(k',n"). So we have f\a € COME*“(m,n) and f'\a' € COME™“(m/,n').

Then we have

(f\a) (fl\a/) = (f XIMap, fl) \ (a XIMap, al)'
Proof. We have

NNQBEFN\G) = ((fufepmm) \((@ud)e )
= (@) (F U ) \ (@i (@ 1 @) )
LD Bhtapy )\ (@ Batapy @).
O

Lemma 9.10. Define the biindezed map k' © = (K (m,n))mns0 : ASSHC —> COME™ as follows.
For m,n e Zxg let

kb (m,n) : ASSH(m,n) — COMY™(m,n)
flar— f\a.

Then kg : ASSg — COMy is a morphism of set-operads.

Proof. First note that for m € Z-y we have

: pre __ - . pre _ . . . . .
1dASSO,m Koy = (ldMapO,m \ ldAsso,m) Ko = 1dMapO,m \ 1dAsso,m = ldMapOJn \ 1dMap0,m = 1dCOMo,m

Suppose given m,n,m’,n' € Z=o and f\a € ASSy(m,n), f'\da € ASSy(m/,n'). Let k, k' € Z=q
such that
[1, k]

[1, %]
f/ X and / \
[1vm] [1,71] [1,m

Then we have

((f\a)Bass, (f'\a))k™ = ((f Bap, )\ (@ Bass, a')) kG
= (f KMap, f) \ (@ MMap, @ ,))Kgre
(
(

f Bap, )\ (@ MMap, @)
f\a) Koom, (f\a').

9.9

Now suppose given m,n,p € Zzo and f\a € ASSy“(m,n) and g\b e ASS“(n,p). Let k,l € Zx
such that

[1.7]
/ \ and y \1
[1,m] ] [1,7] [1.p].

Let (|1, s], g, @) be the sorted pullback of a and g; cf. Definition 7.1. By Remark 7.3 this is a pullback
of @ and g. So we have

((f\ a) *AsS, (g\b)) pre _ (gf\ab) pre
=gf\ab
= (f\a) -com, (g\b).
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This shows that k' © is a morphism of set-preoperads. It remains to show that we have the following
commutative diagram.

pre

ASSpe & CoMP'™

Mapgp

But for m,n € Zs( and f°P € Mapg®(m, n) we have

f0p00 Kgre = (f\ idAsso,n)Kgre = f\ idAsso,n = f\ idMapO,n = fOpCO-

Hence ag Kgre = ¢p and the diagram commutes. ]

9.2 Commutative monoids and COMj-algebras

We will now see that given a COMjy-algebra (S, ®p), then S can be turned into a com-
mutative monoid and that, given a commutative monoid (S, ug,es), then there exists
a morphism of set-operads ®; : COMy —> ENDg(S) with pg = (ide \p)®f° and
es = (idp \&)®5™, yielding a COMjy-algebra (S, ®g).

During §9.2 we will denote by id,, for m € Z~ the identity elements in Map, and Assy and by ([X])
and (-) the multiplication and composition in Map, and Assg .

Proposition 9.11. Let S be a set and let &g : COMy —> END(S) be a morphism of set-operads,
that is, (S, ®o) is a COMy-algebra.

Define pg := (idg \ p)®§ : %2 — §*1 = S and eg := (idp \e)®5 : {()} = 5** — &S.

Then (S, us,es) is a commutative monoid.

Proof. We have the following commutative diagram of set-preoperads.

pre pre

K [0
ASSP® —% = COMp™ —— Endy(S)

T e AT

Map”

So ko®g : ASSy — END((S) is a morphism of set-operads. This means that (S, kq®g) is an
ASSp-algebra.

By Proposition 7.16, the set S is an associative monoid when equipped with multiplication
(ida \ ) (<5°0E") = (idz \ j)OF"® = pus and unit (idy \ &) (<50E™) = (idg \ £) 0L = e

Note that ((1,2)\ id2)®§° = ((1,2)Pco) Py = (1,2)°Pep € End(5)(2,2) is the map

T §%2 — §%2

(s,8) — (¢, 5);
cf. Example 2.63. In COMy, expansion by the transposition (1,2) : [1,2] — [1, 2] yields
(1,2)\ g = (1, 2)(1L,2)\ (1, 2)p) = ida \ p;

cf. Definition 9.3 and Remark 9.4.
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So by the definition of composition in COMy we have

Tsps = ((1,2)\ id2) ("™ *mnd, (id2 \ 1) 25"
= ((1, )\1d2 -coM, (ide \ 1)) @™
= ((id2(1,2))\ (id2 p)) 27"
= ((172)\M)‘1>me
= (idg \ p) Py
= ps
So (S, us,eg) is a commutative monoid. O

Lemma 9.12. Let m,n € Z=o and let a : [1,m] — [1,n] and t : [1,m] — [1,m] be maps such
that t is bijective and both a and ta are monotone.

Then we have ta = a.

Proof. Assume that there exists i € [1, m] such that ita # ia.

Case 1: ita < ia. Since ta is monotone we have j(ta) < i(ta) < ia for j € [1,4]. Since ¢ is bijective,
the restricted map

[1,i] — {z € [1,m] : xa < ia}
jr— gt
is injective. Since a is monotone, we have {z € [1,m] : za < ia} € [1,i— 1]. So we have an injective
map [1,i] — {z € [1,m] : za < ia} S [1,i— 1], a contradiction.

Case 2: ita > ia. Since ta is monotone we have j(ta) > i(ta) > ia for j € [i,m]. Since t is bijective,
the restricted map

[¢,m] — {z € [1,m] : za > ia}
j— gt
is injective. Since a is monotone, we have {x € [1,m] : za > ia} € [i+ 1, m]. So we have an injective

map [1,i] — {z € [1,m] : za > ia} S [i + 1,m|, a contradiction. O

Lemma 9.13. Let Ay S ASSY be a set-subpreoperad such that ASSSre’bij c Ag. Let Ty be a set-
preoperad and let o : Ao —> To be a morphism of set-preoperads such that (ida \ p)70 = ((1,2)\ 1)70

Then we have (s\ )10 = (id; \ )70 for l € Z=o and s € Symgy(l,1).

Proof. We prove this via induction on [ = 0
If I = 0, then we have Sym;(0,0) = {idp}, so there is nothing to show.

Now let I > 1 and suppose that the statement is true for r € [1,I — 1]. Let s: [1,I] — [1,{] be a
bijective map. Let ¢ € [1,1 + 1] be maximal with the property that js = j for j € [1,7 — 1].

Case 1: © =1+ 1. Then s = id; and there is nothing to show.

Case 2: i € [2,1]. Note that by the choice of i and since s is injective, we know that is > 4. Since
js =jfor je[l,i—1] we can write s = id;—; [XI§ for a bijective map §: [1,l—i+1] — [1,I—i+1].
So by induction we have (§\ p—i+1)70 = (idj—i+1 \ fi—i+1)70 -
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So we have

(s\m)ro = ((idi—1X3) \Mz)To
= ((idi—1 ®3)\ ((idi—1 B pu—i+ 1)) 70
& (((idi—1 ®3) \ (ids—1 B p—i1)) -Asso (ids \ 1)) 70
= (((idi=1 \ idi—1) Rass, (5\ t—i+1)) -ass, (idi \ p)) 70
= ((idi—1 \ idi—1)70 B75 (3\ pu—it1)70) -7 (idi \ pta) 70
(i \ idin)7o B (idimien \ pu—is1)70) 7o (idi \ i) 70
= (((di—1 \ idi—1) Bassy (idi—is1 \ fi—it1)) -Ass, (ids \ 1)) 70
= (((idi—1 ®idj—is1) \ (idi—1 B p—i1)) -asso (idi \ 1)) 70
2 (idy \ (i1 B p—i) 1)) 70

= (i \ ) 10
Case 3: i = 1. Let j := 157! > 1. Consider the set of inversions of s.
inv(s) := {(u,v) € [1,1] x [1,1] : u < v and us > vs}

We proceed via induction on |inv(s)|.
For uw € [1,j — 1] we have (u, j) € inv(s), since u < j and us > 1 = js.

Define the bijective map ¢ := id;_oX(1,2) Kid;—; = (j — 1, ) € Symg(l,1). So t* = id;. We have

j2B(1,2) Kid;5)\ (id; 2 K p R id—j)) 70
j—2 \ idj—2) B ((1,2)\ 1) Rass, (idi—; \ id;—;)) 70
2\ idj—2) 7o &7 ((1,2) \ p) 70 By (idi—; \ idi—;) 70

(t\ (idj o HpRidi—j))70 = ((id;
(id;
Jj—
idj—2 \ idj—2) 70 X7 (id2 \ p) 70 K7 (ids—; \ idi—;) 7o
(id;
(id;

((
= ((
(id

(id

((d;-2 \ id; 2) Kass, (ida \ 1) Bass, (di—; \ idi—;))70
= ((idj_2 ®ide Kid;—;) \ (idj—2 H p K id;—;)) 70

(1dl\ idj_o X p X id;— J))T()

Hence we have

(t\p)ro = (¢
7.11 (

\ ((idj—2 ®@p B idi—j) pi-1)) 10

t\ (idj 2 B pEid—j)) -ass, (idim1 \ pu—1))70
= (¢ \(lda 2D p R idi—j)) 70 75 (idi—1 \ pu—1) 70

= (id; \ (idj 2K pXid;—j)) 70 75 (idi—1 \ pr—1) 70
(id; \ (idj—2 W p K idi—;)) ass, (idi—1 \ t—1))70
idy \ ((idj—2 X p Xid;—;) 1)) 7o

= (id; \ ) 70

ol
711 (

Note that we may alternatively apply Case 2 only if j = 3
Note that ts : [1,I] — [1,1] is a bijective map and that we have inv(ts) = inv(s)\{(j — 1, 7)}, hence
|inv(ts)| < |inv(s)|.
If ¢s falls under Case 1 or Case 2, we have already shown that (ts\ p)70 = (id; \ )70

If ts falls under Case 3, then we have (ts\ ;)70 = (id; \ )70 by induction on the number of
inversions.
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So we have
(s\p)mo = (*s\w) 70
((ts\ idy) -asso (E\ )70
(ts\ idy) 70 75 (£\ pu) 70
(ts\ idy) 70 75 (ids \ ) 70
= ((ts\ idy) -ass, (id; \ )70
(ts\ ) 7o
(idy \ ) 70 -
O
Lemma 9.14. Let (To,t9) be a set-operad and 19 : ASSy —> Ty be a morphism of set-operads

satisfying (ida \ )75 = ((1,2) \ )78 Then there exists a unique morphism of set-operads Ty such
that KoTo = 70-

ASS) =~ 7,
Kol ~
T0
COM,

Proof. First note that for m,n € Zxo and f\a € COM™(m,n), where [1,m] Jox 9, [1,7n] for

some finite set X € &, there exists a bijective map s : [1,|X|] — X such that sa is a monotone
map.

Uniqueness. Let m,n € Zxo and f\a € COM}“(m,n), where [1,m] I x 2 [1,n] for some
finite set X € £. Let s: [1,]|X]|] — X be a bijective map such that sa is monotone. Then we have
sf\sa € ASS§(m,n). Given a morphism 7 : COMy — Ty of set-operads satisfying o7y = 79,
then we have
(s£\50) 7" = (s \ sa)RET" = (sf\s@)7"™ = (F\)7",

so such a morphism of set-operads 7y is uniquely determined by the requirement kg7g = 79 .
Ezistence. Let m,n € Zxo and let f\a € COM}®(m,n), where X € £ is a finite set, f : X —> [1,m]
and a : X — [1,n]. Let s: [1,|X]|] — X be a bijective map such that sa is a monotone map.
Define 7y by

(f\a)Ty™ = (sf\sa)y".
First we have to show that this is well-defined.

Let 5 : [1,|X|]] — X also be a map such that 3a is monotone. Then define ¢t := §s~'. So

t:[1,|X|] — [1,|X]] is a bijective map.
Now define f':=sf : [1,|X]|] — [1,m] and &' := sa : [1,|X]] — [1,n].

Then we have §f = tsf = tf’ and Sa = tsa = ta’. So we have a bijective map ¢ : [1,|X|] — [1,]X]]
such that both o’ = sa and ta’ = Sa are monotone. So by Lemma 9.12 we know that

3a =td = d = sa.
We have to show that
(NG = (s \sa)m™® = (3£ \ 5a)75"™ = (tf\a)75"™.

Since ta’ = a/, we know that (a’71(j))t = a’71(j) for j € [1,n]. Therefore, if we write

/
a = [y ASSO v Asso Ky,

173



where [j := |a’71(j)| = 0 and 4y, is the unique monotone map 4y, : [1,1;] — [1,1] for j € [1,n]; cf.
Remark 4.30, then we can write
=1 Mapo cee Mapo ln
where ¢; : [1,1;] — [1,1;] is a bijective map for j € [1,n]. Moreover, we have >, 1; = |X].
j€[Ln]
Since 70" : ASS{'® — T4 is a morphism of set-preoperads and ASSgre’]Oij < ASSJ is a set-
subpreoperad, we can apply Lemma 9.13. So for j € [1,n] we have (t;\ p;)75"" = (idy, \,ul )T

So we have
(EfN )T TR (1 idx) s, (E\ @)™

= (f\idx)7y o (t\a) g
= (\idx)" 7w (R RE) \ (g, & B )70
= (\idx)rd" e (B \ py) Bass, - - - Basso (tn \p,)) 10
= ("\idix)7" 7 (G \ )78 B - B (b \ )70 )
2 id ) (G \ )78 B - B (s, \ 1, )70)
= (F\Nidx)rd" e ((dyy \ ) Bass, - - - Bass, (di, \p2,)) 70
= (\idx)" 7 ((dy K. Bidg, )\ (uy B B, )76
= (f'\idxP7 7 (djx \a)g
= ((f"\idx) -ass, (idjx| \a)) 75"
=)

We have now shown that given maps f: X — [1,m], a: X — [1,n] and maps s : [1,|X|] — X
and 5 : [1,]|X|] — X such that both sa and Sa are monotone we have

(sf\sa)mg™ = (5f\8a)7g"",

hence the image of f\ a does not depend on the choice of s.

Suppose given f\a,f\& € COM}™(m, n), where X, X € € and where [1,m] Jox 9, [1,n] and

[1,m] J x4 [1,n] such that f\a = f\a. That is, there exists a bijective map u : X — X
such that uf = f and ua = a. Let s : [1,|X|] — X be a bijective map such that sa is monotone
and let 5 : [1,|X|] — X be a bijective map such that 3@ is monotone. But then both (3u)a = 5a
and sa are monotone, so we have

(sf\sa)73" = ((Bu)f\ BGu)a)7y" = (3] \3a)7y".

Hence the image of f\ a does not depend on the choice of f, a and s.

Now we have to show that 7y is in fact a morphism of set-operads. For £ = f\a € COM}“(m,n)
there exists £ € ASSE™(m,n) such that k)™ = ¢, since we may take £ = sf \ sa for some bijective
map s such that sa is monotone.

Suppose given m,n,m’,n’ € Z=g and £ € COMY™(m, n), & € COMY™(m/,n’). Let £ € ASSP™(m, n)

174



such that £kB™ = ¢ and let £ € ASSE™(m/, n') such that £'k5™ = ¢'. Hence we have

(678") By (€'75") = (Ex§™75™) a7 (€'65™75")
= (&™) B (€187)
= (£ Mass, &)75"°
= (¢ IAss0 E)(kE ")
= (£xB"™ Room, &'k§) 70"
= (¢ Kcom, §)7 -
Now suppose given m,n,p € Zzo and & € COMgy(m,n), n € COMqy(n,p). Let fe ASSy(m,n) such
that £kb™ = ¢ and let 7j € ASSy(n, p) such that 75" = 7. We have
(£70) 75 (n70) = (€koT0) *75 (AKoTo)
= (§70) 75 (170)
é ASSo M0
é: Ass, 1) (KoTo)

~ Y~

= (£ko -COM, TK0)To
= (& -com, M)70 -

This shows that ﬂ%’ " is a morphism of set-preoperads. Furthermore, since kg and 7y are morphisms
of set-operads, we have agkf’© = ¢o and ap7)"* = to. So we have

Ty =apky Ty =apTy . =to.
Hence 79 : COMg — 7Ty is a morphism of set-operads. O

We can now use this to show that a commutative monoid can be turned into a COMjyp-algebra.

Proposition 9.15. Let (S, us,es) be a commutative (and associative) monoid. Then there exists
a morphism ®y : COMy — ENDy(S) of set-operads such that (S,®¢) is a COMy-algebra with
ps = (ida \ p)®§ and eg = (idg \ &) @F™ .

Proof. Since S is in particular an associative monoid, by Proposition 7.18 we get a morphism
Wy : ASS) — END(S) of set-operads such that (S, ¥) is an ASS¢-algebra with pg = (idg \ p)¥H™
and eg = (idp \ e)¥H. We already know that ((1,2)\ id2) ¥ = (1,2)°Pe is the map
Tg: 82 — §%2
(s,t) —> (,5);
cf. Example 2.63. Since (S, pug,eg) is a commutative monoid, we have Tsus = ug , hence
((1,2)\ ) T5"™ = (((1,2)\ id2) con (ida \ ) TG

= ((1,2)\ id2) U™ ‘Ena, (ida \ )T

= TSHS

= Hs

= (ida \ j)) W5,
Hence by Lemma 9.14 there exists a uniquely determined morphism of set-operads

dg := Uy : COMy — END(S)

such that kg®g = ¥g.

Hence (S, ®p) is a COMg-algebra with pg = (ide \ p) U5 = (ide \ p)k§ “@h° = (idy \ ) @5 and
es = (ido \ &) TP = (idp \ &) kPP = (idy \ &) BE™® 0
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9.3 The linear operad COM

We aim to define a linear operad COM such that COM-algebras are commutative R-
algebras. This is developed in parallel to §9.1 and §9.2 on COMy and COMy-algebras.
Some repetitions occur, which seemed hard to avoid.

Definition 9.16. We define the set-preoperad COMgre’bij < COM}™ as follows. For m,n € Zx let

COMP™ U (m, n) := {f\a € COME™(m,n) : f is a bijective map} .

We have to show that COMgm’bij < COM{™ is a set-subpreoperad.
First note that COME™™ (m, n) € COME™(m, n) for m,n € Zxg .

Suppose given m,n,m',n’ € Z=o and f\a € COMgre’bij(m, n), f'\ad € COMgre’bij(m',n'), where

[1,m] Jox o [1,7] and [1,m ] A (LN [1,n] and where X, X' € £ are finite sets and f, f’
are bijective maps.

Then we have (/\a) B (/'\a?) = (( & ). )\ (0 0 @)y € COMEPiom 4 4 ),
since (f u f’ )90(77}0 ) is bijective as the disjoint union and composite of bijective maps.

Now suppose given m,n,k € Zso and f\a € COMgre’bij(m, n), g\b € COMgre’bij(n,k), where

[1,m] L ox 9 [1,7] and [1,n] <2~ Y BN [1,k] and where X,Y € £ are finite sets and f, g are
bijective maps.

Let (P, g,a) be a pullback of a and g. Since g is bijective, so is § by Lemma 1.35. So we have

AN
NN

[1,m] [1,7] [1, k],

hence (f\a)-(g\b) = gf\abe COMSTB’bij (m, k), since gf is bijective as the composite of bijective
maps.

Definition 9.17. We define the linear operad COM = (COMP™ ¢) as follows.
e Let COMP™ := RCOMP™"H,

pre,bij
e Let c:= (cO‘COM ) : Sym° — COMP™®,

Note that since we have Im(co‘symop) c COMgre’bij, by Remark 6.26 this is in fact a linear operad.
0
Recall that this definition means the following.

e We have COMP™(m, n) = R COME™™ (m, n) for m,n € Z=g .

e We have idCOM,m = idCOMO,m for me Z>0 .
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e Suppose given m,n,m’,n’ € Z=g.

Then for > re £ € COM(m,n) and > re € € COM(m/, n') we have
£eCOMP™ P (1. n) ¢'eCOME™ Pl (1m/ /)
( > 5) Xcowm ( o 5’) = > rere(€Boom, £).

£eCOMYY (m,n) £eCOMY (m/,n’) £eCOMY (m,n)

¢'eCOMP (m/ ,n’)

e Suppose given m,n, k € Z=q .
Then for > re £ € COM(m,n) and >, spne COM(n, k) we have

£eCOMEY (m,n) neCOMPY (n, k)
( Do 5) “COM ( sy 77) = D1 resy (€comyn)-
£eCOMYY (m,n) neCOMb (n, k) £eCOMYY (m,n)

neCOMY (n k)

e For m e Zz( and > rr f°P € Sym°P(m, m) we have
feSymgP (m,m)

( 3 rffop)cz S (P =Y () idyapm):

f€SymgP(m,m) f€SymgP(m,m) J€SymgP(m,m)

Definition 9.18. Recall the morphism of set-operads kg : ASSy — COMp; cf. Lemma 9.10.
Since (f\a)k8™® € COME™™(m, n) for m,n € Z=g and f\a € ASST™™ (m, n) we may define the
morphism of linear operads k : ASS — COM by

COMPrePl
KPTC = R(Kgre‘ 0 )

pre,bij
ASSE

9.4 Commutative algebras and COM-algebras

Proposition 9.19. Let V be an R-module and let ® : COM — END(V) be a morphism of
linear operads, that is, (V,®) is a COM-algebra. Define py := (ida \ p)®P* € End(V)(2,1) and
ey := (idp \ e)®P™ € END(V)(0,1). Then (V,puv,ev) is a commutative R-algebra.

Proof. We have the following commutative diagram of linear preoperads.

ASsPre < comPre 225 End(V)
\ Tc /
Sym®°P

So k® : ASS — END(V) is a morphism of linear operads. Hence (V, k®) is an ASS-algebra.

By Proposition 7.22, the R-module V' is an associative algebra when equipped with multiplication
(idg \ p)(kPre®@Pre) = (idg \ ) PP™ = py and unit (idg \ €) (kPTePP™) = (idy \ )PP = gy .

Note that ((1,2)\ ida)PP™ = ((1,2)°Pc)PP™ = (1,2)°Pe € End(V)(2,2) is the map defined by

v V® L y®?

VRWH— wQRU
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for v,w € V; cf. Example 2.66. In COM, expansion by the transposition (1,2) : [1,2] — [1,2]
yields

(1,2)\ = ((1,2)(1,2)\ (1, 2)p) = ida \ g3
cf. Definition 9.3 and Remark 9.4. So by the definition of composition in COM we have

vy = ((1 2)\ id2) ®P™ ‘End, (idz \ p) @™
(((1,2)\ id2) -com (idg \ p)) @P*

((172)\M)‘I’pre

= (id2 \ p)@r™

= pv -

Hence (V, py,ev) is a commutative algebra. O

Lemma 9.20. Let (T,t) be a linear operad and let T : ASS —> T be a morphism of linear operads
satisfying (ide \ p)7P™ = ((1,2)\ p)7P™. Then there exists a unique morphism of linear operads
7:COM — T such that xT = T.

ASS——=T

9%

COM

Proof. For f\ae€ COMgre’bij, where f : X — [1,m], a : X —> [1, n] for some set X and m,n € Zxg
there exists a bijective map s : [1,|X|] — X such that sa is a monotone map.

Uniqueness. Let m,n € Zsp and X be a set, f : X — [I,m], a : X —> [1,n] such that
fla € COMgre’bij(m, n) and let s : [1,|X|] — X be a bijective map such that sa = a. Then
we have sf\ sa € ASSgre’bij (m,n). Given a morphism 7 : COM — T of linear operads satisfying
KT = 7, then we have

(Sf\SG)TPFe = (sf\sa) gPrezpre _ (Sf\sa)f'pre _ (f\a)%pre,
so such a morphism 7 is uniquely determined by the requirement k7 = 7.

Ezistence. Let f\a € COME™i(m n), let m,n € Zso and X be a set, f : X —> [1,m] and
a: X — [1,n] and let s : [1,|X]|] — X be a bijective map such that sa is a monotone map.
Define 7 by

(f\a)TP™ = (sf\ sa)T"

and the usual linear extension on COMP™® = RCOMSre’bij. First we have to show that this is
well-defined.

Let § : [1,|X|]] — X also be a map such that 3a is monotone. Then define ¢t := §s~!. So

t:[1,]X|] — [1,]X]] is a bijective map. Now define f':= sf and o’ := sa.

Then we have §f = tsf = tf’ and Sa = tsa = ta’. So we have a bijective map ¢ : [1,|X|] — [1,]X]]
such that both @’ = sa and ta’ = Sa are monotone. So by Lemma 9.12 we know that

sa =ta =a = sa.
We have to show that
(f'\d)7TP™ = (sf \ sa)TP™ = (5f\ 83a)TP™ = (tf'\d")rP".
Since ta’ = a’, we know that (a’~1(j))t = o'~ 1(j) for j € [1,n]. Therefore, if we write

;
a = [y Asso cee Asso M, 5
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where I; = |a'71(j)| = 0 and gy, is the unique monotone map [1,1;] — [1,1] for j € [1,n]; cf.
Remark 4.30, then we can write
l=1 Mapo cee Mapo ln

where ¢; : [1,1;] — [1,1;] is a bijective map for j € [1,n]. Moreover, we have >, 1; = |X].

i€[1,n]

Note that we can view ASSP™ and TP™ as set-preoperads and 7P*¢ : ASSP™ — TP as a morphism
of set-preoperads; cf. Remark 2.10. Since ASSSre’le c RASSSM’]D1J , we can apply Lemma 9.13.

So for j € [1,n] we have (¢;\ ;)7 = (idy; \ puy; ) 7P

So we have

(tf\a)rPe T2 (@' id)xg) -ass (E\ @) T
= (f'\idx|) TP 7 (t\a')TPe
= (f\idx)™ 7 (B BE)\ (B B ,))
= (F\idx)7P e (81 \ piy) Rass - - - Rass (B \ pi, ) 70"
= (f'\ idyx) 7P e (B \ ) TP Ry B (B \ g, ) TP)
(N g e (G \ )T By By (i, \ pu, )7V
= (f'\idyx) 7P - ((idy, \puy) Rass - - - Bass (idy, \ ) 70"
= (f'\idyx) TP e ((idy, ®. . &idg,) \ (g, B B g, ) 707
= (f'\idx)rP 7 (idjx) \a') 7P
= ((f"\idjx)) -ass (idjx| \ a'))7P™e
(a)ree.

We have now shown that given maps f: X — [1,m], a: X — [1,n] and maps s : [1,|X|] — X
and 5 : [1,]|X]|] — X such that both sa and Sa are monotone we have

(sf\sa)TP*® = (5f\ Sa)TP*¢,
hence the image of f\ a does not depend on the choice of s.
Let f\a, f\ae COME™™(m,n), [1,m] <= X —% [1,n] and [1,m] L X %, [1,n] such that
f\a = f\a, that is, there exists a bijective map u : X — X such that uf = f and ua = a. Let
s : [1,]X|] — X be a bijective map such that sa is monotone and let § : [1,]|X]|] — X be a

bijective map such that $a is monotone. But then both 5a = (5u)a and sa are monotone maps from
[1,]X]] to [1,n], so we have

(sf\sa)T® = ((5u) £\ (5u)a)TP™ = (5f\ 5a)rP"°.
Hence 7P is well-defined.

Now we have to show that 7P in fact defines a morphism of linear operads 7 : COM — 7. Note
that given £ € COMP*®(m,n), then there exists £ € ASSP™(m, n) such that {kP™ = &.

Suppose given m,n,m’,n’ € Z=o and £ € COMP*(m,n), & € COMP™(m/,n’). Let £ € ASSP™(m, n)
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such that £k = € and let & € ASSP*(m/,n’) such that £k = &. Hence we have

(é-,]—_pre) 7_ (5/7—_pre) pre,]—_pre) 7_ (é/ Kpre7—_pre)
) By (€77°)
€ Rass £)70
Rass &) (KPe7P)

g pre =) KoM él Kpre)i_pre

£ Kcowm &)7Pe.

(3
= (¢
= (¢
= (¢
= (&
= (

Now suppose given m,n,p € Zzo and £ € COMP*(m,n), n € COMP*(n, p). Let e ASSP*(m,n)
such that £kP® = & and let 7 € ASSP™(n, p) such that 7kP™ = n. We have

(E7P7) -7 (7P™°) = (EKPTOFP™®) o (AKPTOFP™)
= (§&77) -7 (77P"°)

= (€ -ass HPO) TP

= (£ -ags 0) (KPTO7P™)
(€K™ on 7KDY

= (£ -com ).

o~~~ o~ o~ o~

This shows that 7P is a morphism of linear preoperads. Furthermore, since k and 7 are morphisms
of linear operads, we have akP™ = ¢ and arP™ = {. So we have

7P = akPreTPe = 7P = .
Hence 7 : COM — 7T is a morphism of linear operads. O

We can now use this to show that a commutative R-algebra can be turned into a COM-algebra.

Proposition 9.21. Let (V, uy,ey) be a commutative (and associative) R-algebra. Then there exists
a morphism of linear operads ® : COM — END(V) such that (V,®) is a COM-algebra with

(id2 \ p)@P™ = py and (idg \ e) PP = ey .

Proof. Since V in particular is an associative R-algebra, by Proposition 7.24 we get a morphism of
linear operads ¥ : ASS — END(V') such that (V, V) is an ASS-algebra with py = (idg \ p)UP*®
and ey = (idg \ ) ¥Pre.

Note that ((1,2)\ ida) WP = (1,2)°Pe is the map defined by

TV : ye2 ., 2

VRWEH— wQRU

for v,w € V; cf. Example 2.66. Since (V, uy,ey) is a commutative R-algebra, we have myuy = py ,
hence

((1,2)\ TP = (((1,2)\ 1) -ass (idz \ p)) TP
— ((1,2)\ ida) WP g (ids \ o) P
= TV v
= pv
= (idy \ j)) WP,
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Hence by Lemma 9.20 there exists a uniquely determined morphism of linear operads
® := V¥ : COM — END(V)

such that k¥ = .

Hence (V,®) is a COM-algebra with (ida \ ) ®P™® = (id2 \ p)kP*PP™ = (idg \ )PP = py and
(idg \ &)®P™ = (idg \ )kPr®P™ = (idy \ e)WP™ = ¢y, . O
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10 The linear operad LIE

Definition 10.1. Recall the linear operad ASS = (ASSP™, a) over R; cf. Definition 7.20. Let
Ai=1iday \ e — (1,2)\ p € ASSP*(2,2),

where (1,2) € Symg(2,2) is the transposition, p is the unique element in Assg(2,1) and where we
abbreviate ids := idMap,,2 - We define the linear suboperad LIE of ASS as follows; cf. Definition 6.34
and Lemma 6.35.

LIE:= ().

Recall that LIE being a linear suboperad means that Im(a) € LIEP™ and that LIE = (LIEP™, ) is

a linear operad, where [ = a‘LIEPm : Sym®? — LIEP'®; cf. Definition 6.31.

Proposition 10.2. Suppose 2 € U(R), so 2 is invertible in R. Let V be an R-module and let
A : LIE — END(V') be a morphism of linear operads. So (V,A) is a LIE-algebra.

LIEP™ AP End(V)

A

Sym°®P
Define Ay 1= AAP™ = ((ida \ ) — ((1,2) \ 1)) AP™ € End(V)(2,1) and define the bilinear map

[—,=]:VxV >V
(v,w) —> [v,w] = (VO W)Ay .

Then (V,[—,=]) is a Lie algebra over R; cf. [2, Definition 1.1].

Proof. During this proof we denote by (X]) and (-) the multiplication and composition in Map, . We
have to show the following.

!

(1) For u,v,w eV we have [u, [v,w]] + [v, |w,u]] + [w, [u,v]] = 0.

(2) For v eV we have [v,v] 2 0.

Ad (1). Suppose given u,v,w € V. We have
[u, [v,w]] = (W@ [v,w)Av = (L® (V@ W)A)Av = (u®v @ w)((idy ®AV)Av),
hence

[o,[w,u]] = (v @ w ®u)((idy @M )A) = (4@ v @ w)((1,2,3)°Pe)((idy @Av)AV)
[, [u,0]] = (0 @ u@v)((idy @M )AY) = (u® v @ w)((L,3,2)°Pe)((idy ®A)AV);

cf. Definition 2.64. So we have to show that
(idyes +(1,2,3)e + (1,3,2)°¢) ((idy @Av)Av) = Opnaqvy -
We have
idyes +(1,2,3)%Pe + (1, 3,2)Pe = id3” IAP™ + (1,2, 3)PIAP™ + (1, 3, 2)PIAPT®

= (ids \ id3) AP™ + ((1,2,3)\ id3)AP™ + ((1,3,2)\ ids) AP
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and

((idy @A) Av) = (idpm1 AP @ AAP®) (AAP™)
= ((idLig,1 KILIEA) -LIE A) AP,

So since A is a morphism of linear operads, it suffices to show that

((idg \ idg) + ((1, 2,3)\ idg) + ((1, 3, 2)\ idg)) ‘LIE (idLIE,l LIE)\) “LIE A ; OLIE -

Using the definition of multiplication and composition in ASSg and ASS; cf. Definitions 7.10 and 7.20,
we obtain

(idpie1 HLIEA) LIE A
= ((id1 \ id1) Bore ((id2 \ p) = ((1,2)\ ) -Lie ((id2 \ ) — ((1,2)\ )
(idy \ idy) Bass ((id2 \ p) — ((1,2)\ ) -ass ((id2 \ ) = ((1,2)\ )

= (
(((dy \ id1) Bass, (id2 \p)) — ((d1 \ idy) Bass, ((1,2)\p))) -ass ((id2 \ ) = ((1,2)\ )
((id3 \ (id1 B p)) = ((di ®(1,2)\ (idi ®p))) -ass ((d2 \p) = ((1,2)\ )
= ((ids \ (id1 B 1)) -ass, (id2 \ p)) — ((ids \ (idi Hp) -ass, ((1,2)\ p))

— (((d1 B(1, ) -ass, (id \ 1)) + (((ldll(l 2)\ (idi ® 1)) ~ass, ((1,2)\ 1)
= ((id3 \ (id1 B p)) -ass, (id2 \p)) = ((ids \ (id1 & ) -ass, ((1,2)\ 1))
— ((2,3)\ (idi ®p)) -ass, (id2 \ @) + ((2,3)\ (id1 & ) -ass, ((1,2)\ 1)),

where (2,3) = id; XI(1,2) € Symy(3, 3).

= ~—

)\ (id1 B

_— \A
N—

By Remark 7.11 we know that

(ids \ (id1 K1) ~ass, (id2 \ p) = ids \ ((id1 K p)p) = ids \ p
((2,3)\ (id1 & 1)) -ass, (id2 \ p) = (2,3)\ ((d1 R p)p) = (2,3)\ 3,

where ps = (idiXp) - p = (uXidy) - 4 is the unique element in Assy(3,1).
Claim. We have the following sorted pullback.

[1,3] 2 1, 2)

(1,2,3)i = l(1,2)

[1,3] g, 112

Proof of the Claim. Note that
1(pXidi)(1,2) =2 = 1(1, 2, 3)(id; X p)

2(u®idy)(1,2) = 2 = 2(1,2,3)(id, X p)
3(pEidi)(1,2) = 1 = 3(1,2, 3)(id; X ).

So the diagram is commutative. Moreover, u [x]id; is monotone. Finally, the restricted maps

J((E000.2) NE (23]
(1,2,3)] iy 1) (1,2,3)] giay 10y = (1523
(ldllu) 1(2(1,2)) _ (1dlﬂ)_1(1) [1 1]
(1,2,3) ‘(,mldl) 1(2) (1,2,3) ‘(uidl)*l(Q) (1,2,3) ‘[3 3]

are isotone.

This proves the Claim.
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So by the definition of composition in ASSg in Definition 7.10, we have

(id3 \ (idy B ) -asso ((1,2)\ ) = ((1,2,3)id3) \ ((u Rid1)p) = (1,2,3) \ 3
((2,3)\ (id1 K p)) -asso ((1,2) \p) = ((1, 3)(2,3))\((Mid1)u) = (1,3)\ 3.

So we have

(idLe,1 MLeA) ‘e A = (ids \ u3) — ((1,2,3) \ p3) — ((2,3) \ p3) + ((1,3) \ u3)-

Altogether, by the defintion of (-ass) and (-ass,) and by Remark 7.11, we have

((id3 \ ids) + ((1,2,3)\ ids) + ((1,3,2)\ id3)) ‘vie (idrie,1 RueA) ‘L A
= ((ids \ id3) + ((1,2,3)\ ids) + ((1,3,2) \ id3))
‘ass ((ds \ p3) — ((1,2,3)\ p3) — ((2,3)\ u3) + ((1,3) \ u3)
= (ids \ p3) — ((1,2,3)\ p3) — ((2,3) \ u3) + ((1,3) \ p3)
+((1,2,3) \ pa) — (((1,2,3)(1,2,3)) \ p3) — (((2,3)(1,2,3)) \ pu3) + (((1,3)(1,2,3)) \ 3)
(2
)

+((1,3,2) \ ) — (((1,2,3)(1,3,2)) \ 3) — (((2,3)(1,3,2)) \ u3) + (((1,3)(1,3,2)) \ u3)

= (ids \ p3) — ((1,2,3) \ p3) — ((2,3) \ p3) + ((1,3) \ i3
+((1,2,3) \p3) — ((1,3,2) \ p3) — ((1,2) \ p3) + ((2,3) \ )
+((1,3,2) \ pg) — (ids \ p3) — ((1,3) \ pu3) + ((1,2) \ p3)

= Oass

= OLe .

This completes the proof of (1).
Ad (2). Suppose given v € V. Note that

v@v = (v®v)((1,2)%Pe) = (v ®v)((1,2)°PIAP*) = (v®v)((1,2)\ ida ) AP™.

So we have
[v,9] = (v®uv)Ay

= (v®w)((id2 \u ((1,2)\ p))APre
= (v®v)(((1,2)\ id2 ) AP -gxp ((id2 \M) ((1,2)\ p)) APre
= (v®v)(((1 2) \ld2) e ((id2 \ 1) — ((1,2)\ p)) ) AP
= (v®v)(((1,2 \ld2) ass ((id2 \ ) = ((1,2)\ p))) AP
= (v®v)((((1,2)\ id2) -ass, (id2 \ p)) — ((( 2)\ id2) ass, ((1,2)\ p)))AP™
2 weu)(((1L2)\W) - ((1,2)(1,2)\ ) AP
= weV)(((1.2)\n) — (ide \ ) AP
= —(v®v)((id2 \M ((1,2)\ p))Apre
= —(v®v)Ay
= —|v,v].

So 2[v,v] = 0 and since 2 € U(R) we have [v,v] = 0.

This completes the proof of (2). O
Remark 10.3. Note that we may not drop the condition 2 € U(R). If 2 ¢ U(R), the last step
in the proof of Proposition 10.2 may fail. For instance, suppose R = o, the finite field with two
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elements, and suppose V = Fa @ F2 =  (z)®,(y). Then we can define the Fa-bilinear map
[—,=]: V®V — V by

[x,$] =Y
[z,y] == [y,2] :=0
[y, y] := 0.

So [V, g, Yyl =0and [V,V] S g y).

So for u,v,w € V we have [u, [v, w]] = 0, since [v,w] € ,(y). So in particular
[u, [v, w]] + [v, [w, u]] + [w, [u,v]] =0

for u,v,weV.

Moreover, for v,w € V' we have [v, w] = [w,v], hence [v, w] + [w,v] = 0.

So V = Fy @Fs satisfies condition (1) for a Lie algebra and satisfies [v, w] + [w,v] = 0 for v,w e V,
but does not satisty condition (2) for a Lie algebra since [z, z] =y # 0.

In particular, we can not conclude from 2[v,v] = 0 that [v,v] = 0 for v € V, as was needed in the
proof of Proposition 10.2.

Question 10.4. Is a Lie algebra a LIE-algebra?

That is, we ask if, given a Lie algebra (V,[—,=]), there exists a morphism A : LIE — END(V)
such that (v ® w) (AAP™) = [v,w] for v,we V.

Remark 10.5. Suppose given a morphism of linear operads ¥ : ASS — END(V), i.e. suppose given
an ASS-algebra (V, V). By Lemma 7.22, (V, uy,ey) is an associative R-algebra with multiplication
py = (idg \ p) WP and unit ey = (idg \ e)UP™. Moreover, we already know that for v,w € V we
have

(v@w)(((1,2)\ ) ¥*®) = (wv)py ;

cf. the proof of Proposition 9.21. The restriction \II‘LIE : LIE — END(V) is a morphism of linear
operads, since LIE € ASS is a linear suboperad. Hence (V, \I'|LIE) is a LIE-algebra.

We define the bilinear map [—, =] : V&2 — V as in Proposition 10.2, i.e. for v,w € V we let

[v, 0] := (V@ w)(ATP[ ) = (v@w) (((id2 \ 1) — ((1,2)\ ) T 1) -
For v,w € V we have

()\\Ilpre‘LIE

(ATP)

((Gd2 \ ) = ((1,2)\ p)) P™)
((da \ ) TP = ((1,2) \ ) TP*°)
py — (0 @w)(((1,2)\ p)TP™)

py — (w@uv)uy .

[v,w] = (v@®w
=(v®uw
=(v®uw
=(v@uw
=(v@uw

(

=(vQ@w

~— O~ e N~ o N

So (V,[—, =]) is the commutator Lie algebra of the associative algebra (V, uy,ey).

Note that given a LIE-algebra (V,A), that is, given a morphism A : LIE — END(V) of linear
operads, we do not know whether there exists a morphism ¥ : ASS — END(V') of linear operads
with A = \IJ‘LIE‘
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Zusammenfassung

In der vorliegenden Arbeit werden Operaden vorgestellt und einige Beispiele behandelt. Der ver-
wendete Operadenbegriff weicht dabei vom Begriff einer Operade in der Literatur ab. Klassische
Operaden, wie zum Beispiel von May (cf. [13, Definition 1.1]) definiert, tauchen in dieser Arbeit
in &hnlicher Form unter dem Begriff ,absolute Operaden“ auf; cf. §3. Gleichzeitig sind die in §6
definierten linearen Operaden eng verwandt mit den von S. Mac Lane 1963 eingefiihrten PROPs
(Abkiirzung fir “product and permutation category”; cf. [8, §6]), was auch der Grund dafiir ist, dass
der Titel dieser Arbeit “Operads in the sense of Mac Lane” lautet.

Prioperaden

Eine erste Version der Operaden sind die Prioperaden. Eine Prioperade in Mengen ist im Wesent-
lichen eine strikte monoidale Kategorie mit Z-q als Menge der Objekte. Genauer gesagt ist eine
Préoperade in Mengen (Py,[x], -) gegeben durch eine biindizierte Menge Py = (Po(m, n))m n>0, mit
einer assoziativen Multiplikation, gegeben durch Multiplikationsabbildungen

(X)) : Po(m,n) x P(m',n') — Po(m +m/,n +n'),
und einer assoziativen Komposition, gegeben durch Kompositionsabbildungen
() : PO(ma TL) x P(TL, k) - PO(m> k)?

sowie Identitaten id,, € Po(m,m) fiir alle m, wobei noch bestimmte Kompatibilitdtsbedingungen
erfiillt sind; cf. Definition 2.6.

Eine lineare Prioperade (P,[x),-) (iiber R) ist fast genauso definiert, mit dem Unterschied, dass
P(m,n) stets ein R-Modul ist und dass die Multiplikations- und Kompositionsabbildungen

(X) : P(m,n) @ P(m',n') — P(m +m/,n+n')
() : P(m,n) ® P(n, k) — P(m, k)

stets R-linear sein miissen.

Es konnen dann grundlegende algebraische Strukturen in den Pri#operaden definiert und unter-
sucht werden. Zum Beispiel ist ein Morphismus von Prioperaden eine biindizierte Abbildung (im
R-linearen Fall von R-linearen Abbildungen), die mit der Struktur der Operade vertréglich ist, al-
so mit Multiplikation und Komposition vertauscht und Identititen auf Identitdten abbildet. Des
Weiteren werden Teilpradoperaden und Faktorprioperaden definiert.

Elementare Beispiele sind die Praoperade Map,, in Mengen, die aus Abbildungen f : [1,m] — [1,n]
zwischen endlichen ganzzahligen Intervallen besteht, sowie ihre Teilprdoperaden Assg, bestehend aus
monotonen Abbildungen, und Sym, , bestehend aus bijektiven Abbildungen. Durch das Bilden freier
R-Moduln und durch lineares Fortsetzen der Multiplikations- und Kompositionsabbildungen ergeben
sich auferdem die lineare Prioperade Map und ihre linearen Teilprioperaden Ass und Sym.

Fiir eine Menge X kann zudem die Prioperade Endy(X) definiert werden, die alle Abbildungen
[ XX — X" enthiilt, ausgestattet mit dem kartesischen Produkt von Abbildungen als Multi-
plikation und der iiblichen Komposition von Abbildungen als Komposition.

In gleicher Weise kann fiir einen R-Modul V eine lineare Praoperade End(V') definiert werden, die
R-lineare Abbildungen f : V®" —s V®" enthilt, ausgestattet mit dem Tensorprodukt von Abbil-
dungen als Multiplikation und der gewdhnlichen Komposition von Abbildungen als Komposition.
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Durch Einschrankung auf P(m,1) fiir m € Z>o geht aus einer linearen Préoperade eine nicht-
symmetrische Operade im klassischen Sinne (zum Beispiel bei May, cf. [13]) hervor, bei uns ,absolute
Operade” genannt.

In §4 wird fiir eine biindizierte Menge X = (X (m, n))m n>o eine freie Praoperade Freeg(X) definiert,
bestehend aus Aquivalenzklassen von Wortern, deren Buchstaben Elemente aus X sind, die kiinstlich
mit Identitdten multipliziert werden. Des Weiteren definieren wir Prasentationen von Préoperaden
und finden eine Présentation fiir die Praoperade Assg und fiir die lineare Préaoperade Ass.

Theorem (cf. Theorem 4.32, Theorem 4.33). Es ist

Asso — _ (& 0| (aRid)j, (idiRa)a), ((diREé)f, idy ), (( Rid)a, idy ) )
Ass < | (& | (pRid)a— (idi B )a), ((idi Ké)a —idy ), (¢ Kidi)a —idy) ),

wobei 1 auf p, das eindeutig bestimmte Element von Assg(2, 1), und € auf ¢, das eindeutig bestimmte
Element von Assg(0, 1), abgebildet wird.

Fiir eine Praoperade Py in Mengen ist eine Py-Algebra gegeben durch ein Tupel (X, gg), wobei X
eine Menge und gy : Py — Endy(X) ein Morphismus von Prdoperaden in Mengen ist. Fiir eine
lineare Praoperade P ist eine P-Algebra gegeben durch ein Tupel (V) 0), wobei V' ein R-Modul und
0: P —> End(V) ein Morphismus von linearen Préoperaden ist.

Wir zeigen dann, dass Assg-Algebren zu (assoziativen) Monoiden korrespondieren. Das heift einer-
seits kann bei gegebener Assp-Algebra (X, 1) eine Multiplikationsabbildung px : X x X — X
und eine Einsabbildung ex : {()} = X*% — X so definiert werden, dass (X, ux,ex) ein Monoid
ist, andererseits kann zu einem Monoid (X, ux,ex) ein Morphismus von Préoperaden angegeben
werden, der diese Konstruktion umkehrt.

In dhnlicher Weise zeigen wir, dass Ass-Algebren zu assoziativen R-Algebren korrespondieren.

Da sich dieses Resultat nicht in naheliegender Weise auf kommutative Monoide ausdehnen lésst,
werden Operaden eingefiihrt.

Operaden

Eine Operade Py = (P}, po) in Mengen besteht aus einer Prioperade in Mengen PJ™ und einem
Morphismus von Prioperaden pg : Mapg® — PJ™ so, dass gewisse Kompatibilitdtsbedingungen mit
den Bildern ausgewihlter Elemente von Map® erfiillt sind; cf. Definition 6.3. Ein Morphismus von
Operaden in Mengen ¢ : Py —> Qp ist dann gegeben durch einen Morphismus ¢f © : QF ¢ — QfF'°

von Préoperaden, der vertriglich ist mit den zu Py und Qpy gehérenden Strukturmorphismen.

pre

%Yo

A

MaupgID

pre
PO

Qgre

So kann zum Beispiel fiir eine Menge X die Prédoperade Endg(X) zu einer Operade in Mengen
ENDy(X) = (Endg(X), ¢g) gemacht werden.

Fiir eine Oprade Py in Mengen ist eine Py-Algebra dann gegeben durch ein Tupel (X, gg), wobei X
eine Menge und gg : Py — END(X) ein Morphismus von Operaden in Mengen ist.

Eine lineare Operade P = (PP™ p) besteht aus einer linearen Préoperade PP™ und einem Mor-
phismus von Prioperaden p : Sym®® — PP g0 dass Multiplikation und Komposition in PP in
geeigneter Weise vertriglich sind mit den Bildern vorgegebener bijektiver Abbildungen unter p; cf.
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Definition 6.22. Ein Morphismus von linearen Operaden ¢ : P — Q ist dann gegeben durch einen
Morphismus P : PP'® — QP yon linearen Praoperaden, der vertriglich ist mit den zu P und Q
gehorenden Strukturmorphismen.

Wir kénnen so, dhnlich wie im Mengen-Fall, fir einen R-Modul V' aus der linearen Préoperade
End(V) eine lineare Operade END(V) = (End(V),e¢) definieren. Fiir eine lineare Operade P ist
dann eine P-Algebra gegeben durch ein Tupel (V, ), wobei V' ein R-Modul und g : P — END(V)
ein Morphismus von linearen Operaden ist.

In den Kapiteln 7 — 10 werden einige Beispiele behandelt.

Die Operade ASSy in Mengen besteht aus Tupeln der Form f\ a, meist als Bruch bezeichnet, mit
einem Element a aus Assy im Zdhler und einem Element f aus Map, im Nenner. Die Strukturab-
bildung ap : Mapg” — ASS{™ bildet f°P € Mapg"(m,n) auf den Bruch f\ idassyn ab.

Theorem (cf. Proposition 7.16 und Proposition 7.18). ASSy-Algebren korrespondieren zu assozia-
tiven Monoiden.

Die Operade COMj in Mengen besteht, dhnlich wie ASSy , aus Briichen von Abbildungen. Allerdings

ist ein Bruch f\ a in COMj eine Aquivalenzklasse eines Tupels (f,a), wobei [1,m] N QRUN [1,n]

fiir eine endliche Menge X. Briiche konnen hier mit bijektiven Abbildungen erweitert werden. Die
Strukturabbildung ¢y : Mapy” — COMY™ bildet ein Element f°P € Mapy®(m,n) auf den Bruch

S\ idMap,,n ab.

Theorem (cf. Proposition 9.11 und Proposition 9.15). COMy-Algebren korrespondieren zu kommu-
tativen Monoiden.

Um diese Operaden in Mengen nun zu linearen Operaden zu erweitern, schrinken wir diese auf
Briiche mit bijektiven Nennern ein. Das liefert die Teilprioperaden in Mengen ASSgre’bIJ < ASSH™

und COMSre’bij < COM{™. Durch lineare Fortsetzung erhalten wir die linearen Operaden

Asspre,bij
Symg ))

COM = (COMprea ) : (R COMpre ,bij R( O‘CON[pre bl-‘))

ASS = (ASSP™, ) := (RASSE"", R(ao]

Theorem (cf. Proposition 7.22 und Proposition 7.24). ASS-Algebren korrespondieren zu assoziati-
ven Algebren.

Theorem (cf. Proposition 9.19 und Proposition 9.21). COM-Algebren korrespondieren zu kommu-
tativen Algebren.

Schrianken wir ASSSre nicht auf bijektive Nenner ein, so erhalten wir die lineare Operade
BIALG = (BIALGP™,b) := (RASSy™, R(aolg,, 00))-
0

Es ist ASS € BIALG eine lineare Teiloperade.

Proposition (cf. Proposition 8.3). Sei (V,0) eine BIALG-Algebra. Dann ist (V, uy,ev, Ay, ny)
eine Bialgebra mit

Multiplikation — py  := (idg \ p)OP™ € End(V)(2, 1)
Eins ey := (ido \€)OP* € End(V)(0,1)
Komultiplikation Ay := (p\ id2)©P™ € End(V)(1,2)
Koeins 7y := () idp)OP™ € End(V)(1,0).

Die Tatsache, dass ASS € BIALG eine Teiloperade ist, ist hier in der Tatsache wiederzufinden, dass
eine Bialgebra insbesondere eine assoziative Algebra ist.
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Das letzte Beispiel ist die lineare Operade LIE. Diese ist die von dem Element
Ai=1idy \ p— (1,2)\ p € ASSP™(2,1)

erzeugte Teiloperade von ASS, wobei (1,2) € Sym(2,2) die Transposition ist.

Proposition (cf. Proposition 10.2). Sei nun 2 € U(R) vorausgesetzt. Sei (V,A) eine LIE-Algebra.
Dann ist (V,[—, =]) eine Liealgebra mit Licklammer definiert durch

[v,w] = (v @ w) ()\Apre)

fir v,we V.

Jede assoziative Algebra (V, py,ey) kann zu einer ASS-Algebra (V, V) gemacht werden. Da nach
Definition LIE € ASS eine lineare Teiloperade ist, erhalten wir durch Einschrinkung eine LIE-
Algebra (V,\IJ‘LIEpre). Die daraus entstehende Liealgebra (V,[—,=]) ist genau die Kommutator-
Liealgebra zur assoziativen Algebra (V, uy, ey ).

Allerdings muss ein Morphismus von linearen Operaden A : LIE — END(V) nicht unbedingt
Einschrankung eines Morphismus ¥ : ASS — END(V) linearer Operaden sein. Dies entspricht
der bekannten Tatsache, dass nicht jede Lielagebra die Kommutator-Liealgebra einer assoziativen
Algebra ist.

Offen bleibt die Frage, ob die Konstruktionen fiir BIALG und LIE auch umgekehrt werden kénnen,
das heiftt, ob zu einer gegebenen Bialgebra (V) uy, ey, Ay, ny) ein zugehdriger Morphismus linearer
Operaden © : BIALG — END(V) existiert und ob zu einer gegebenen Liealgebra (V,[—, =]) stets
ein zugehoriger Morphismus A : LIE — END(V) linearer Operaden existiert.

Ebenso unbeantwortet bleibt die Frage nach einer freien Operade FREE(X) und folglich nach Présen-
tationen fiir die behandelten Operaden, was im Falle von BIALG und LIE auch bei der Konstruktion
obiger zugehdoriger Morphismen helfen wiirde.
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