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Abstract

The Born–Oppenheimer (BO) approximation defines the concept of the potential energy sur-
face (PES) and molecular geometries. The PES, a high-dimensional function of all atomic
coordinates, is obtained from the electronic Schrödinger equation (SE). Calculating single
points on the PES from ab initio methods is computationally expensive. Therefore, stationary
points, which have a vanishing gradient, are usually of interest. Minima and first-order saddle
points are the most interesting points. A minimum on the PES corresponds to a stable config-
uration or geometry of a molecule, while a first-order saddle point corresponds to a transition
state (TS), which is the maximum of the minimum energy path connecting two minima.

The search for minima, or geometry optimization, and the search for first-order saddle
points, TS search, require quite an amount of ab initio calculations to converge to those points,
starting from an initial guess. For the most part, Cartesian coordinates are used, because they
are easily constructed. However, they are usually highly coupled. For example consider a CH3

end group, which is bound to a rest R. Rotating around the C-R bond requires all 9 Cartesian
coordinates of the CH3 group to move, instead of one coordinate, the angle between R-C-H.
This is inefficient and thus internal coordinates are introduced. They consist of bond lengths,
bond angles, and dihedrals. Once created, they reduce the coupling between the coordinates.
In addition, they are invariant under translation and rotation. This reduces the total amount of
ab intio calculations.

Another way to reduce the amount of ab initio calculations is the idea of a surrogate surface
for the PES. The key idea of a surrogate surface is to use a few points of the PES and fit
the surrogate surface to these points. On the surrogate surface, geometry optimization or TS
search can be performed. These surrogate surfaces are usually linear combinations of basis
functions, for example, polynomials. To get additionally a measure of uncertainty, Gaussian
process regression (GPR) can be used. Here, a linear combination of covariance functions is
calculated to build a surrogate surface. An advantage of GPR is that derivative information,
which is easily obtained from ab initio calculations, can be included to get a better fit to the
PES. This GPR surface is then used for geometry optimization or TS search. Starting with
the initial geometry, the GPR surface is iteratively improved until the convergence criteria are
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fulfilled, which reduces the total amount of ab initio calculations.
Combining GPR and internal coordinates reduces the amount of ab initio calculations fur-

ther. For geometry optimization, there are two ways to combine them. The first approach is to
use the internal coordinates to evaluate the covariance function and to build the GPR surrogate.
The optimization on the GPR surrogate is then performed in internal coordinates and there-
fore, the predicted new geometry is in internal coordinates. Thus, they have to be transformed
back to Cartesian coordinates. This procedure is repeated until the minimum on the PES is
found. The second approach uses the chain rule, where the covariance function is evaluated
in internal coordinates and then “transformed” to Cartesian coordinates to build the GPR sur-
rogate. Thus, the GPR-surrogate surface is in Cartesian coordinates. With this approach, no
back-transformation is required, because the predicted geometry is in Cartesian coordinates.
Both approaches reduce the amount of ab initio calculations compared to standard algorithms.

Finally, GPR and internal coordinates are combined for the TS search. In contrast to
geometry optimization, the second approach drops out due to the additional computational
overhead. Thus, only the first approach remains. To perform a TS search on the GPR surro-
gate a good GPR-Hessian is required. Additional to a dimer rotation to sample points for the
GPR-Hessian, an alternative approach is presented. This approach uses an information-based
acquisition function to sample the points for the GPR-Hessian. However, the back transfor-
mation from internal coordinates to Cartesian coordinates is more prone to error for TS search
compared to geometry optimization. To overcome this problem an alternative way to construct
the internal coordinates, namely only bond length between all atoms, is used.

Overall the thesis shows, that combining GPR and internal coordinates improves the over-
all performance of geometry optimization and TS search based on GPR. The obtained results
outperform standard algorithms.
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Zusammenfassung

Mit Hilfe der Born-Oppenheim-Näherung können die Begriffe der Energiehyperfläche und
der Molekülgeometrie definiert werden. Diese Begriffe sind von zentraler Bedeutung in der
rechnergestützten Chemie. Eine Energiehyperfläche is eine mehrdimensionale Funktion aller
atomaren Koordinaten. Sie wird durch das Lösen der elektronischen Schrödingergleichung be-
stimmt. Da die Berechnung von einzelnen Punkten auf der Energiehyperfläche teuer ist, sind
nur Punkte interessant, deren Ableitungen nach den Koordinaten verschwinden. Die interes-
santesten Punkte sind Minima und Sattelpunkte erster Ordnung. Ein Minimum auf der Ener-
giehyperfläche entspricht einer stabilen Molekülgeometrie und ein Sattelpunkt erster Ordung
einem Übergangszustand.

Beginnend mit einer Anfangsgeometrie braucht eine Geometrieoptimierung oder eine
Übergangszustandssuche viele Berechunung von ab-initio-Rechnungen um zu stationären
Punkten zu konvergieren. Meistens werden dabei kartesische Koordinaten verwendet, da sie
einfach zu erzeugen sind. Allerdings sind Kartesische Koordinaten untereinander stark gekop-
pelt. Das kann man zum Beispiel an der Rotation einer CH3-Gruppe um eine Bindung erken-
nen. Anstatt nur die Bindung zu rotieren, müssen alle 9 Koordinaten der CH3-Gruppe bewegt
werden. Das ist ineffizient und wird durch Verwendung von internen Koordinaten behoben.
Die internen Koordinaten bestehen aus Bindungslängen, Bindungswinkel und Diederwinkeln,
welche die Kopplung zwischen den Koordinaten verringert. Zusätzlich sind diese unveränder-
lich bezüglich einer Parallelverschiebung und einer Drehung des Moleküls.

Weiterhin kann man Ersatzflächen der Energiehyperfläche verwenden. Diese verwenden
wenige Punkte der Energiehyperfläche um diese dann durch Ausgleichsrechungen als Line-
arkombination von Basisfunktionen darzustellen um dann auf diesen Ersatzflächen eine Geo-
metrieoptimierung oder Übergangszustandssuche durchzuführen. Um zusätzlich ein MaSS für
die Unsicherheit zu bekommen, wird Gaußprozessregression verwendet. Dabei werden Line-
arkombinationen von Kovarianzfunktionen verwendet. Ein weiterer Vorteil der Gaußprozess-
regression ist, dass Informationen über die Ableitung mit eingebaut werden können. Das liefert
eine bessere Ersatzfläche für die Energiehyperfläche. Somit kann diese Ersatzfläche, die mit
Hilfe von Gaußprozessregression bestimmt wurde, für die Geometrieoptimierung und Über-
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gangszustandssuche verwendet werden. Dafür braucht man eine Anfangsgeometrie. Itereativ
wird dann die Ersatzfläche verbessert bis ein stationärer Punkt auf der Energiehyperfläche ge-
funden wurde.

Interne Koordinaten und Gaußprozessregression können dann kombiniert werden. Für
Geometrieoptimierung gibt es zwei Möglichkeiten. Die erste berechnet die Kovarianz in in-
ternenen Koordinaten und bekommt dann eine Gaußprozessregressionersatzfläche in internen
Koordinaten. Eine Geometrieoptimierung auf der Ersatzfläche liefert eine Vorhersage in in-
ternen Koordinaten, die zurück in kartesiche Koordinaten transformiert werden muss. Dies
wird solange wiederhohlt, bis ein Minimum auf der Energiehyperfläche gefunden wurde. Der
zweite Weg wertet die Kovarianzfunktion ebenfalls in internen Koordianten aus, verwendet
die Kettenregel um eine “Transformation “in kartesiche Koordinaten zu bekommen. Daher ist
die Ersatzfläche in kartesischen Koordinaten. Eine Geometrieoptimierung auf dieser Ersatzflä-
che liefert dann eine Vohersage in kartesischen Koordinaten. Hierbei wird die Rücktransfor-
mation umgangen. Beide Methoden verringern die Gesammtzahl an ab-intio Rechnungen im
Vergleich zu Standardoptimierern.

Schließlich wird Gaußprozessregression mit internen Koordinaten für die Übergangszu-
standssuche verknüpft. Im Gegensatz zur Geometrieoptimierung, kann der zweite Ansatz nicht
verwendet werden, da zusätzliche Rechenzeit benötigt wird. Daher bleibt nur der erste Ansatz
übrig. Die Hessematrix der Gaußprozessersatzfläche muss gut genug sein um auf der Ersatzflä-
che eine Übergangszustandssuche auszuführen. Zusätzlich zur Dimerroation um gute Punkte
auszuwählen, wird eine alternativer Ansatz verwendet. Dieser Ansatz nutzt eine Erwerbsfunk-
tion auf Basis der Informationstheorie um gute Punkte auszuwählen. Nachdem genug Punkte
gesammelt wurden, kann eine Übergangszustandssuche auf der Gaußprozessersatzfläche statt
finden. Die vorhergesagten Geometrien sind in internen Koordinaten und müssen zurücktrans-
formiert werden. Diese Rücktransformation ist allerdings im Gegensatz zur Geometrieopti-
mierung fehleranfällig. Um das zu beheben kann man die internen Koordinaten nur aus Bin-
dungslängen bestimmen.

Am Ende zeigt in dieser Arbeit, dass die Kombination von Gaußprozessregresion und in-
ternen Koordinate die Ergebnisse der Geometrieoptimierung und Übergangszustandssuche auf
der Basis der Gaußprozessregression deutlich verbessert. Die erhaltenen Ergebnisse sind bes-
ser als Standardalgorithmen.
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Chapter 1 Introduction

1 Introduction

In computational chemistry, one of the fundamental tasks is the explanation and prediction
of chemical phenomena, like the investigation of a reaction mechanism. On the fundamental
level, the solution of the Schrödinger equation (SE) [2] explains all phenomena. However, the
SE is a partial differential equation and thus is difficult to solve, if more than two particles
are present. For example, there is an analytic solution to the hydrogen atom and hydrogen-
like atoms, e.g. He+. Another example is the dihydrogen cation, H+

2 , that can be solved
analytically because there is no electron-electron interaction present [3]. Thus, approximations
have to be introduced. Thus with the Born–Oppenheimer (BO) approximation [4] the time-
independent SE is simplified. There, only the electronic part of the SE is solved, because
the motion of nuclei is decoupled from the electron movement. The mass difference between
nuclei and electrons by over three orders of magnitude justifies this approximation. Within the
BO approximation, the solution of the electronic SE for a specific position of the nuclei leads
to the potential energy surface (PES) and thus the concept of molecular geometry. A detailed
explanation of BO approximation and the PES is given in chapter 2.

However, even with the BO approximation, the solution of the electronic SE is still expen-
sive. Thus, the focus lies on stationary points of the PES. Stationary points have a vanishing
gradient, i.e. the derivatives of the energy with respect to all nuclear coordinates are zero. The
two most interesting stationary points on the PES are minima and first-order saddle points. A
minimum of the PES corresponds to a stable configuration or geometry of a molecule, which
can be found in the real physical world. First-order saddle points correspond to transition
states (TS). A TS is the highest point of the minimum energy path or reaction path, which
connects two minima on the PES. According to transition state theory (TST), the TS can be
used to calculate reaction rates [5].

There are three factors, that can influence the performance of finding stationary points.
The choice of the optimization algorithm, either for geometry optimization or TS search, is
the first factor. Basic algorithms, how to find stationary points on the PES, are presented in
chapter 3. There, minimization and saddle point search algorithms are explained briefly.

The next important factor is the choice of coordinates. Up to now geometry optimization
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Chapter 1 Introduction

and TS search are performed in Cartesian coordinates. In Cartesian coordinates, a molecule
is uniquely defined. However, a molecule can be rotated or translated, then the Cartesian
coordinates will change, but the energy of the molecule will be the same. To fix this problem
internal coordinates to describe the molecule are introduced in chapter 4. The 3Nat Cartesian
coordinates, where Nat is the number of atoms, are mapped into a 3Nat − 6 dimensional space.
The molecules can be described by bond length, bond angles, and dihedrals [6, 7]. This set
of internal coordinates leads to a non-redundant set of coordinates Since the gradient and
eventually, the Hessian has to be transformed into internal coordinates, the chain rule has to
be applied [8]. To reduce the redundancy, the delocalized internal coordinates are introduced
[9]. However, the transformation is not linear and the matrix containing the derivatives of the
Cartesian coordinates with respect to internal coordinates is rectangular. Therefore, no direct
matrix inversion can be used and a pseudo-inverse has to be used. Having transformed the
gradient and eventually, the Hessian transformed properly, a reduction of the total amount of
energy evaluations from ab initio programs can be achieved. In chapter 4 also difficulties for
the back-transformation from internal coordinates to Cartesian coordinates are explained.

The third factor, that influences the optimization procedure is the quality of the obtained
energies and gradients from the ab initio program. The computational cost for one gradient
and one energy evaluation is comparable. However, the Hessian calculation is much more
expensive. These calculations are the bottleneck of optimization, and thus the goal is to reduce
the total amount of these calculations.

Machine learning (ML) techniques, like Gaussian process regression (GPR) [10] are
widely used in computational chemistry [11–14]. They have been applied for example to
geometry optimization [15–18] or TS search [19–25], where GPR as ML technique is used.
However, reinforcement learning with Markow decision processes is used, too [26]. To get a
better understanding GPR is explained in chapter 5. GPR is used to fit the data obtained from
the ab initio calculations to get a surrogate surface of the PES. Then the minimum or saddle
point is located there, followed by a next ab initio calculation. Since GPR can approximate the
function with few training points. Therefore, GPR is useful for geometry optimization and TS
search, where only one training point, in the beginning, is available.

The main part of the thesis was the development of methods to combine GPR and internal
coordinates, as described in part II, "Algorithms Based on Gaussian Process Regression in
Internal Coordinates". In chapter 6 the results of combining GPR and internal coordinates for
geometry optimization are presented. First, a general introduction to how geometry optimiza-
tion based on GPR works, based on earlier works by Denzel et al. [15]. The inputs for the
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Introduction

GPR are the coordinates of a molecule, while the labels or outputs are energies and gradients.
This is followed by two approaches, how to combine GPR with internal coordinates. For the
first approach, the GPR-surrogate is built in internal coordinates and thus predictions are in
internal coordinates. The second approach transforms the internal coordinates via chain rule
to Cartesian coordinates. Thus a GPR surrogate in Cartesian is obtained, where predictions are
then in Cartesian coordinates. In this chapter, ways to improve geometry optimization based
on GPR are presented. However, they do not give better results than using the minimum on
the GPR surrogate as a prediction.

The two approaches for combining GPR and internal coordinates for geometry optimiza-
tion might lead to the conclusion to extend both methods for TS search. However, the addi-
tional computational overhead for the second approach is too high. Therefore, the focus relies
on the first approach. This is presented in chapter 7. In contrast to geometry optimization, TS
search is more complicated and requires usually the Hessian or at least a good approximation.
Using only energies and gradients, a way to sample training points to describe the Hessian is
required. In addition to a dimer rotation on the GPR surrogate, an information-based selection
scheme is developed.
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Chapter 2 Basics of Quantum Chemistry

2 Basics of Quantum Chemistry

In this chapter, the basics of quantum chemistry are reviewed. Beginning with the molecular
Hamiltonian, the approximation of Born–Oppenheimer (BO) [4] is introduced. This is done in
section 2.1. The derivation follows Jensen [27].

With this approximation, the potential energy surface (PES) can be constructed. Exploring
the PES leads to stationary points, which have a physical meaning. The PES is introduced in
section 2.2.

2.1 The Born–Oppenheimer Approximation

The time-independent Schrödinger equation is

ĤΨ(x, t) = EΨ(x, t) (2.1)

or in Bra-Ket notation:
Ĥ |Ψ〉 = E |Ψ〉 (2.2)

It is described by the Hamilton operator, which has for point particles the form

Ĥ = T̂ + V̂ . (2.3)

which contains the kinetic energy operator T̂ and the potential energy operator V̂ . The kinetic
operator is p̂2k

2mk
for particle k with mass mk, where p̂k,l = 1

i
∂

∂xk,l
, in atomic units, is the

momentum operator acting on the l-th dimension of particle k. A molecular system contains
Nat nuclei with position RK , K = 1, · · · , Nat and n electrons with position ri, i = 1, · · · , n.
The interaction between all particles is the Coulomb interaction, in atomic units, V (r) = q1q2

r
,

where r is the distance between particle 1 and 2, and q1 is the charge of particle 1 and q2 of
particle 2.

Then the total molecular Hamiltonian Ĥ consists of the kinetic energy of the nuclei T̂N and
electrons T̂e, as well as the interaction between the nuclei V̂KK , the electrons V̂ee and between
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nuclei and electrons V̂eK and can be written in atomic units:

Ĥ = −
Nat∑
K=1

∇2
K

2mK︸ ︷︷ ︸
T̂N

−
n∑

i=1

∇2
i,e

2︸ ︷︷ ︸
T̂e

+
∑
K 6=M

ZKZM

|RK −RM |︸ ︷︷ ︸
V̂KK

+
∑
i 6=j

1

|ri − rj|︸ ︷︷ ︸
V̂ee

−
∑
i,K

ZK

|RK − ri|︸ ︷︷ ︸
V̂Ke

.
(2.4)

The coordinates of the nuclei K are RK with mass mK and the position of the electron i is
ri. The charge of the nuclei is given as ZK . Due to the mass difference between electrons and
protons, me/mp ∼ 10−4, heremp is the mass of a single proton andme the mass of an electron
, the coupling between the motion of nuclei and electrons can be neglected.

Mass polarization should be added because the motion of the center of mass and the inter-
nal motion cannot be separated if more than two particles are present. However, this term is
neglected here.

The electronic Hamiltonian only depends parametric on the position of the nuclei (through
V̂Ke and V̂KK), but not on the momenta, i.e. derivatives with respect to Cartesian coordinates.

Ĥel(R, r, ∂r) = Ĥ − T̂N . (2.5)

where R = (R1, · · · ,RNat) is the position of the nuclei and r = (r1, · · · , rn) are the coordi-
nates of the electrons. Thus, the time-independent electronic SE is

Ĥel(R)Ψi(R, r) = Ei(R)Ψi(R, r) (2.6)

The total wave function can be constructed as linear combinations of φi(R) and solutions of
the electronic SE Ψi(r,R)

Ψtot(r,R) =
∞∑
i=1

φi(R)Ψi(r,R) (2.7)

This can be inserted in the complete SE and the following equation is obtained:

ĤΨtot =
∞∑
i=1

(T̂N + Ĥe)φi(R)Ψi(r,R) = Etot

∞∑
i=1

φi(R)Ψi(r,R) (2.8)

Since Ĥe only acts on the electronic wave function, using the definition of the kinetic energy

8
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operator for the nuclei T̂N = ∇2
N = −

Nat∑
K=1

∇2
K/(2mK) leads to

∞∑
i=1

∇2
N [Ψi(r,R)φi(R)] + φi(R)

[
ĤeΨi(r,R)

]
= Etot

∞∑
i=1

φi(R)Ψi(r,R) (2.9)

If the product rule is applied twice and using eq. (2.6), the following equation is obtained

∞∑
i=1

Ψi(r,R)∇2
Nφi(R) + 2(∇KΨi(r,R))(∇Kφi(R))

+φi(R)∇2
NΨi(r,R) + φi(R)Ei(R)Ψi(r,R)

= Etot

∞∑
i=1

φi(R)Ψi(r,R)

(2.10)

Since Ψi(r,R) are orthonormal, multiplying by Ψj(r,R)? and integrating over the electronic
coordinates leads to

∇2
Nφj(R)+Ej(R)+

∞∑
j=1

2 〈Ψj|∇K |Ψi〉∇Kφi(R)+
〈
Ψi|∇2

N |Ψi

〉
φi(R) = Etotφj(R) (2.11)

Here, the bra-ket notation is used. This includes two non-adiabatic correction terms. In the
adiabatic approximation all coupling terms are neglected (only terms with i = j remain).
Then, the following equation is obtained:

(
∇2

N + Ej(R) +
〈
Ψj|∇2

N |Ψj

〉)
φj(R) = Etotφj(R) (2.12)

In the Born–Oppenheimer approximation the term 〈Ψj|∇2
N |Ψj〉 is neglected and the electronic

energy act as a potential energy

(T̂N + Ej(R))φj(R) = Etotφj(R) (2.13)

and the nuclei move on the potential energy surface (PES), which are solutions of the electronic
SE.

9
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2.2 The Potential Energy Surface

The Energy expression in eq. 2.6 E(R) is called the potential energy surface (PES) describing
the energy of every atom over all possible positions. In Cartesian coordinates R ∈ R3Nat the
PES is a 3Nat-dimensional surface, where Nat is the total number of atoms. Each structure is
defined by this vector R, where

R = (X1, Y1, Z1, X2, Y2, Z2, · · · , XNat , YNat , ZNat) (2.14)

Here, (XK , YK , ZK) are the Cartesian coordinates of the atomK. Using Cartesian coordinates
uniquely defines a molecule, i.e. a collection of atoms. However, the origin can be chosen
arbitrarily. The dimensionality can be reduced by removing translation and rotation.

The energy E(R) does not change upon a translation u, i.e. E(R + u) = E(R). This
reduces the degree of freedom by three. Additionally a rotation about the x,y or z axes does
not change E(R). Let U be a rotation, U ∈ O(3), then applying this rotation does not change
the energyE(R), i.e. E(UR) = E(R). Therefore, the total degrees of freedom for a molecule
is 3Nat − 6.

The coordinates of a molecule can be transformed into so-called internal coordinates. How
this is done exactly, is presented in chapter 4. Then the PES can be written as E(Q), where Q

is a set of internal coordinates, that are rotational and translational invariant.
The visualization and calculation of a complete PES for most molecules are hard to achieve

due to the high-dimensional surface. Therefore, only stationary points of the PES, i.e. points
with ∇RE(R) = 0, are of special interest. This includes local minima, which correspond to
stable geometries of the molecule. Additional saddle points are of interest, especially first-
order saddle points because they correspond to a maximum of lowest energy paths connecting
two minima. Thus they are relevant for the concept of a transition state, which will be briefly
discussed in the next section. A complete calculation of the PES provides all information of
all chemical structures and pathways connecting them.
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3 Standard Optimization Algorithms

In this chapter different algorithms to find stationary points of the potential energy surface
(PES) are discussed. Stationary points require a vanishing gradient, i.e. ∇f(x) = 0. The
most interesting points are the minima of the PES, which correspond to stable geometries of
molecules. This is often called geometry optimization or minimization, which will be dealt
with in section 3.1. The other stationary points of interest are first-order saddle points, which
correspond to transition states. Two algorithms are presented in section 3.2, how to find those
points.

A function f : G ⊂ Rd → R is in ξ = (x1, · · · , xd) ∈ G differentiable. If f has at the
point ξ the partial derivatives ∂f

∂xi
, i = 1, · · · , d, then

g = grad f(ξ) =


∂f(ξ)
∂x1
...

∂f(ξ)
∂xd

 (3.1)

is the gradient of f at the point ξ.
The gradient indicates the direction of strongest increase of f . If the direction is turned

around, the direction of the gradient is the strongest decent of f . Taylor’s theorem can be
applied around a point x0, if f is two times differentiable:

f(x0 + h) = f(x0) + f ′(x0)h+
1

2

d∑
i,j=1

∂2f(x0)

∂xi∂xj
hihj +O(h3) (3.2)
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3.1 Minimization

In general, an optimizer tries to find min
x∈G

f(x), or max
x∈G

f(x) of a function f : Rd → R. Usually

G is a subset of the real vector space, i.e. G ⊂ Rd.
The function f has a local minimum in ξ ∈ G respectively a local maximum if there exists

a neighborhood U of ξ with:

∀x ∈ U ∩G : f(x) ≥ f(ξ) respectively f(x) ≤ f(ξ) (3.3)

Note, that functions don’t have to have minima and maxima. Now it’s time to introduce a
necessary criterion for extrema. If f has a local extremum then grad f(ξ) = 0. If grad f(ξ) =
0, then ξ is called a critical point of f . Note that edge points can be local extrema without
being critical points and critical points are not necessarily local extrema. To get a sufficient
criterion for local extrema the Hessian is introduced:

H(x) =


∂f(x)

∂x2
1

· · · · · · ∂2f(x)
∂xd∂x1

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2∂x2

· · ·
... . . .

∂f(x)
∂x1∂xd

· · · · · · ∂2f(x)

∂x2
d

 (3.4)

IfH(ξ) is positive definite respectively negative definite then ξ is a local minimum respectively
maximum. If H is indefinite, then ξ is no local extremum, but rather a saddle point. With this
definition eq. (3.2) can be rewritten

f(x0 + h) = f(x0) + g>h+
1

2
h>Hh+O(h3) (3.5)

A numerical way to get to extrema is Newton’s method. In general, Newton’s method tries
to find a root of a function f(x) = 0, where (f1, · · · , fd)> : G ⊂ Rd → Rd and leads to the
system of equations

f1(x1, · · · , xd) = 0

...

fd(x1, · · · , xd) = 0

(3.6)
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The idea is to use the Newtons sequence

xn+1 = xn − f ′(xn)
−1f(x) (3.7)

If f is differentiable then xn → ξ, and therefore f(xn) → f(ξ). Using the gradient g with the
derivative, the Hessian H, the Newton Step is defined as

xn+1 = xn −H(xn)
−1g(xn) (3.8)

Since the Hessian is usually expensive the calculate, approximations the the scale of the gra-
dient has to be done. In the following steepest decent, the conjugate gradient method and
the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [28–32] algorithms are
shortly explained. They are called quasi-Newton methods, because they try to approximate
the inverse Hessian.

3.1.1 Steepest Decent

Steepest decent is attributed to Augustin-Louis Cauchy in the year 1847 [33]. The iterative
steepest decent or gradient descent calculates its step as

xn+1 − xn = −αn∇f(xn) (3.9)

where αn is a scaling of the step length and ∇f(xn) is the gradient. The negative gradient
direction is, where the function decreases fastest. The scaling αn is, for example, obtained by
line search, where the function h(αn) := f(xn − αn∇f(xn)) is minimized.

3.1.2 Conjugate Gradient

The conjugate gradient [34] improves the method mentioned above. It starts with a steepest
decent step:

s0 = ∆x0 = −∇f(x0) (3.10)

After the first iteration the following steps for one iteration is performed where sn is the con-
jugate direction:

1. Calculate the steepest decent direction: ∆xn = −∇f(xn)

2. Compute γn, according to one of the following formulas.
13
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• FletcherReeves [35]:

γFR
n =

∆x>
n∆xn

∆x>
n−1∆xn−1

(3.11)

• PolakRibière: [36]

γPR
n =

∆x>
n (∆xn −∆xn−1)

∆x>
n−1∆xn−1

(3.12)

• Hestenes-Stiefel [34]

γHS
n =

∆x>
n (∆xn −∆xn−1)

−s>n−1(∆xn −∆xn−1)
(3.13)

• DaiYuan [37]

γDY
n =

∆x>
n∆xn

−s>n−1(∆xn −∆xn−1)
(3.14)

3. Calculate the conjugate direction: sn = ∆xn + γnsn−1

4. Perform a line search to get βn

5. Calculate new coordinates xn+1 = xn + βnsn

A line search tries to find a satisfactory step along the direction sn. This is done by minimizing
h(βn) = f(xn + βnsn) with respect to βn, i.e. by solving h′(βn) = 0.

3.1.3 L-BFGS

To get a better quasi-Newton method, the L-BFGS algorithm was developed. It tries to solve
the linear system of equation

Bnsn = −∇f(xn) (3.15)

But instead of using the Hessian H, it is updated at each iteration step. The update of the
Hessian is chosen to grantee that the Hessian remains a positive definite. The update equation
from Bn to Bn+1 is

Bn+1 = Bn +
gng

>
n

g>
n sn

− Bnsns
>
nB

>
n

s>nBnsn
(3.16)

where gn = ∇f(xn+1) −∇f(xn) and sn = xn+1 − xn Starting with the initial guess x0 and
an approximate B0, which is usually the identity matrix, the algorithm is as follows:

1. obtain sn from eq 3.15.
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2. Optionally a line search to find a good step size can be performed

3. Get a new gradient ∇f(xn+1).

4. Update the Hessian as in eq 3.16

This is repeated until the convergence criteria are full filled. Instead of solving the eq. 3.15,
the inverse can be updated. This is done by

B−1
n+1 = B−1

n +

(
s>ngn + g>

nB
−1
n gn

) (
sns

>
n

)
(s>ngn)

2 − B>
ngns

>
n + sng

>
nB

−1
n

sngn

(3.17)

Since the update provides a positive definite approximation of the Hessian, this can lead to
problems if a point is to far away from the minimum.

The extension limited memory BFGS (L-BFGS) [32] stores m number of Broyden–
Fletcher–Goldfarb–Shanno (BFGS) corrections. In the first m iterations it is identical to
the regular BFGS. If n > m the inverse B−1

n is obtained via m updates of B0, where the
information of the previous m updates are used. The pairs {gi, si}ni=n−l are stored, with
l = min (n,m− 1). Note, that B−1

n is not formed explicitly, but with previous, up to m,
values of gi and si:

B−1
n+1 =

(
V>

n · · ·V>
n−l

)
B−1

0 (Vk−l · · ·Vn)

+ ρn−l

(
V>

n · · ·V>
n−l+1

)
sn−ls

>
n−l (Vk−l+1 · · ·Vn)

+ ρn−l+1

(
V>

n · · ·V>
n−l+2

)
sn−l+1s

>
n−l+1 (Vn−l+2 · · ·Vn)

...

+ ρnsns
>
n

(3.18)

where ρ = 1
g>
n sn

and Vn = I− ρngns
>
n .
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3.2 Saddle Point Search

Stationary points, which are more complicated to find, are saddle points of ith-order, 0 <

i ≤ d. They are defined via the eigenvalues of their Hessian: A saddle point of ith-order has
i negative eigenvalues and d − i positive eigenvalues. Usually, the search for saddle points
requires the full Hessian to calculate, but for i = 1 an approximation can be used, which
only requires the calculation of the gradient. This method is called the dimer method and is
discussed in the next section, section 3.2.1. An algorithm to find a first-order saddle point with
full Hessian available is the partitioned rational function optimization (P-RFO) algorithm and
is discussed in section section 3.2.2.

3.2.1 Dimer Method

The dimer method was originally introduced by Henkelmann and Jónsson [38]. A dimer con-
sists of two close lying endpoints x1 and x2, which have a common midpoint R. The distance
between both endpoints is 2R. The endpoints can be defined by

x1 = R+RN and x2 = R−RN (3.19)

Here, N is a unit vector in the direction of the dimer, i.e.

N =
x1 −R

R
=

R− x2

R
(3.20)

with |N| = 1. An schematic representation of a dimer can be seen in fig. 3.1 The saddle
point search via the dimer method involves two steps, first a rotation in the direction of the
eigenvector corresponding to the lowest eigenvalue, i.e. in the direction of lowest curvature and
a translation of the mid point towards a saddle point. In the first step the dimer is rotated around
the midpoint. The curvature along the dimer axes can be calculated by the exact Hessian, or if
not known or to expensive, via a finite difference approach

CN = N>HN ≈ −(g1 − g2) ·N
2R

≈ E1 + E2 − 2E0

R2
(3.21)

where g1 is the gradient at x1 and g2 at x2. The total dimer energy is E = E1 + E2. The
plane in which the rotation takes place is spanned by N and a unit vector Θ, which has to be
determined, that is orthogonal to the dimer axis N, i.e. N · Θ = 0. The optimal direction is
the maximum overlap between Θ and the eigenvector corresponding to the lowest eigenvalue.
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x1

x2

R

R

N

g1

g0

g2

Figure 3.1: Dimer with endpoints xi and the mid point R. The distance between one endpoint
and the midpoint is R, and N is a unit vector in the direction of the dimer. The gradients are
labeled by gi.
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This is done by minimizing

FR = −(g1 − g2) + ((g1 − g2) ·N)N (3.22)

then the dimer aligns along the eigenmode corresponding to the lowest eigenvalue of the Hes-
sian. Kästner et al [39] uses the gradient at the dimer midpoint and at one endpoint, rather the
gradients for both endpoints, i.e.

FR = −2 (g1 − g0) + 2 ((g1 − g0) ·N)N (3.23)

Then the curvature becomes
CN =

(g1 − g0) ·N
R

(3.24)

The optimal rotation angle is obtained by minimizing the curvature, i.e minimizing CN . The
angle can be estimated without gradient evaluation by [40]

φ1 = −1

2
arctan

∂CN

∂φ

2|CN |
(3.25)

Finally the optimal rotation angle is [40]

φmin =
1

2
arctan

b1
a1

(3.26)

with

b1 =
1

2

∂CN

∂φ

∣∣∣∣
φ=0

a1 =
CN |φ=0 − Cn|φ=φ1

+ b1 sin(2φ1)

1− cos(2φ1)

(3.27)

which are obtained by assuming a local quadratic PES [40].
After the direction is align with the minimal mode, a translation is done and the force

Ft = −g0 + 2(g0 ·N)N (3.28)

is followed. g0 is the gradient of the dimer midpoint. Rotation and translation are repeated
until the convergence criteria are fulfilled. The main advantage here is, that no analytic hessian
is required. This makes the dimer method applicable to large dimensional systems.
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3.2.2 P-RFO

The P-RFO algorithm was introduced by Cerjan and Miller [41] and was improved Baker
[42]. The Newton step from eq 3.8 is rewritten in terms of the eigenvectors vi and there
corresponding eigenvalues λi

∆x = −
d∑

i=1

v>
i gvi

λi
(3.29)

Banerjee et. al [43] showed that this step is directed in the opposite direction of the gradient
along eigenvectors with positive eigenvalue and along the gradient with negative eigenvalue.
Being on the right position of the potential energy surface, meaning one negative eigenvalue
and all others positive, this is a good step. However the position on the PES does not have this
required eigenvalue structure. Cerjan and Miller [41] used a simple modification to search for
stationary points with required eigenvalue structure. They introduced a shift parameter β on
the i-th eigenvalue

∆x = −
d∑

i=1

v>
i gvi

λi − β
(3.30)

Based on Banerjee et. al [43] a rotational approximation is used

f(x+ h)− f(x) ≈
g>h+ 1

2
h>Hh

1 + h>Sh
(3.31)

The matrix S ∈ Rd×d is symmetric and is used for scaling. If the condition ∇hf = 0 is used,
an eigenvalue equation is obtained [42](

H g

g> 0

)(
h

1

)
= β

(
S 0

0 1

)(
h

1

)
(3.32)

This is an equation of d+ 1 dimension and can be expanded into [42]

(H− βS)h+ g = 0

g>h = β
(3.33)

β can then be calculated from the following equation

d∑
i=1

(
v>
i g
)2

β − λi
= β (3.34)
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Separating the Rational functional optimization matrix can be split in two parts, one for the
eigenvector to be maximized and d − 1 to be minimized leads to two smaller optimization
matrices and can be treated separately [40]. To do so two separate shift parameter βp and βd
are used. The step is therefore

∆x =
d∑

i=1

∆xi, ∆xk =
v>
k gvk

λk − βp
, ∆xi,i 6=k =

v>
i gvi

λi − βd
(3.35)

where eigenmode k corresponds to the lowest eigenvalue.
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4 Internal Coordinates

In this chapter, the description of internal coordinates is introduced. Cartesian coordinates
are usually highly coupled. This means, that for example rotating a CH3-group by a certain
angle requires all four atoms, and therefore 9 Cartesian coordinates move, instead of one single
coordinate. Another aspect is the translation and rotational invariance of molecules. Therefore,
not the full set of 3Nat (Cartesian) coordinates is required. Here,Nat is the number of atoms. In
the following, internal coordinates to reduce the coupling between coordinates and reduction
to 3Nat − 6 coordinates are explained. For linear molecules, the internal coordinates consist of
3Nat − 5 coordinates. However, in this chapter, non-linear molecules are considered.

In section 4.1 how a so-called connection scheme is set up to build the primitive internal
coordinates. These primitives consist of bond length, bond angles, and dihedrals. An alterna-
tive set is the total connection scheme, where every atom is connected to every other one.

Next, in section 4.2, the relation between Cartesian coordinates and internal coordinates
is discussed. This is followed by the delocalization of the primitives in section 4.3 to get
the 3Nat − 6 degrees of freedom. Then in section 4.4 the iterative back transformation is
introduced, followed by a discussion about its failure. Finally, in section 4.5 a general scheme,
how geometry optimization in internal coordinates is performed, is presented.

All the energies, forces (gradients), coordinates, etc. are in atomic units.
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4.1 Primitve Internal Coordinates

First, the so-called primitive internal coordinates have to be constructed [6, 44]. But before
they can be constructed a connection scheme has to be calculated. Therefore from each atom,
the distance is calculated to each other atom and if the distance to a certain atom is below a
threshold, they are considered connected [9]. The criteria for the connection is if the square
of the inter-atomic distance is less than 1.25 times the square of the sum of the corresponding
covalent atomic radii. The covalent radius describes the size of an atom taking part in a bond.
In general, the sum of two covalent radii should be the bond length.

The covalent radius of atom A is rA and the for atom B rB, then the sum of both covalent
radii is rAB = rA + rB. the squared distance between A and B is sAB = (xA − xB)

2 +

(yA − yB)
2 + (zA − zB)

2. Then a connection is made if

sAB ≤ 1.25× r2AB (4.1)

The covalent radius of an atom depends on its type. The following covalent radii are used in
DL-FIND [9, 45]

• i ≤ 2: rAB = 1 (for atoms H and He)

• i ≤ 10: rAB = 1.6 (for Li,· · · , Ne)

• i ≤ 18: rAB = 2 (for Na, · · · , Ar)

• i ≤ 36: rAB = 3 (for K, · · · , Kr)

• i ≤ 54: rAB = 4 (for Rb, · · · , Xe)

• i > 54 : rAB = 5 ( Cs, · · · )

where i is the nucleus charge, i.e. the atomic number.
Sometimes this procedure can lead to isolated fragments. To counter this problem, missing

connections can be inserted by the following. Starting with the first atom, a path connecting
the nearest neighbor atoms is generated. If a connection of this path is not yet in the connec-
tivity list, it is added [9]. Once this is done, the actual primitive internal coordinates can be
calculated. They consist of bond length, bond angles, and dihedrals. They can be seen in fig.
4.1.
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The bond length is the distance between two connected atoms with coordinates xn and xm

and is calculated as:

qr = |xn − xm| =

√√√√ 3∑
i=1

(xn,i − xm,i)
2 (4.2)

The bond length is symmetric and therefore the bond length between atom 1 and atom 2 is the
same as the bond length of atom 2 with atom 1.

Atom 1 Atom 2

qr

Atom 1

Atom 2

Atom 3

qa

Atom 1

Atom 2 Atom 3

Atom 4

Figure 4.1: Primitive internal coordinates, on the left bond lengths, in the middle bond angles,
and on the right dihedrals.

Between three connected atoms with coordinates xn, xm and xl a bond angle around atom
xm can be calculated

qa = arccos
(xn − xm) (xl − xm)

|xn − xm| |xl − xm|
(4.3)

If the bonding angle is almost linear (> 175◦ or < 5◦) it drops out. There are two cases,
where this angle is replaced. If the central atom of this angle is connected to two atoms, the
bonding angle is replaced by two Cartesian coordinates of the central atom, which are the most
orthogonal to the line of the other two atoms. The other case is if the central atom is connected
to more than two atoms and is the center of a planar system. Then, one of these angles is
replaced by an improper dihedral, which means the remaining atom of the other angle is taken
as the final atom. Improper dihedrals are defined by a central atom 4, which is connected to
atoms 1, 2, and 3. However, the four atoms are not connected in a row. Consider that atoms
1,4,3 are connected, as well as atoms 1,4,2 and atoms 2,4,3, i.e atom 2 is not connected to atom
3 or atom 1. They would rise to three angles. If this system is planar, one of these angles is
dropped out, e.g. the angle between atoms 1,4,2. Then this angle is replaced by the dihedral,
see below, formed for example by atoms 1,4,3,2.

If four atoms are connected the dihedral can be calculated. It is the angle between the plane
spanned by atoms 1,2,3 and the plane spanned by atoms 2,3,4. The dihedral is then calculated
as

qd = arccos
(u×w) (v ×w)

|u×w| |v ×w|
(4.4)
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Figure 4.2: Methanol represented as normal molecule via the connectivity calculation on the
left and in the total connection scheme on the right.

with the following vectors

u =
xn − xm

|xn − xm|
(4.5)

v =
xk − xl

|xk − xl|
(4.6)

w =
xl − xm

|xl − xm|
(4.7)

where xn are the coordinates of atom 1, xm of atom 2, xl of atom 3 and xk of atom 4. All cal-
culated primitive internal coordinates calculated from bond lengths, bond angles, and dihedrals
form the coordinates q ∈ RM , with M being the number of primitive internal coordinates.

An alternative way to construct primitive internal coordinates is the total connection
scheme. Thereby, all atoms are connected and only the bond length from eq. (4.2) is used
to calculate the primitives. An example can be seen in fig. 4.2, where on the left is the connec-
tion scheme for length, angles, and dihedral and on the right for the total connection scheme.
This will in general generate more internal coordinates than the other set of primitive inter-
nal coordinates. If primitive internal coordinates are mentioned in the following, they refer to
both, the connectivity list with bond length, bond angles, and dihedrals, as well as the total
connection scheme.
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4.2 Relation to Cartesian Coordinates

Small displacements of the internal coordinates ∆q can be related to small displacements of
Cartesian coordinates ∆x via the so called B-matrix [46]

∆q = B∆x (4.8)

Therefore, the B-matrix is defined as (if the displacements are infinitesimal):

Bij =
∂qi
∂xj

(4.9)

The B-matrix contains the partial derivative of all primitive internal coordinates with respect
to the Cartesian coordinates. If M is the number of primitive internal coordinates, then B ∈
RM×3N . Usually, M is much larger than 3N .

Because internal coordinates are applied to optimization problems and transition state
search, the gradient and the Hessian have to be transformed accordingly. Applying the chain
rule the Cartesian gradient is related to the internal gradient by

∇xE(x) = B>∇qE(q(x)) (4.10)

and the Hessian
Hx = B>HqB+C (4.11)

with

Ckl =
M∑
i=1

(∇qE(q))i
∂2qi
∂xk∂xl

(4.12)

The transformation of the Hessian requires therefore the second derivatives of the primitive
internal coordinates with respect to the Cartesian coordinates.

To transform the Cartesian gradient to primitive internal coordinates, the B-matrix has
to be inverted. However, this matrix is usually rectangular since, in general, M 6= 3Nat the
number of primitive internal coordinates is larger than the number of Cartesian coordinates.
Hence, the generalized inverse of a rectangular matrix has to be used.

Generalized inverses are classified and defined upon following conditions [47]:

• AAgA = A

• AgAAg = Ag
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• (AAg)> = AAg

• (AgA)> = AgA

Here, A ∈ Rn×m is a general rectangular matrix. If Ag ∈ Rm×n fulfills the first condition it is
a generalized inverse of A, if the first two are fulfilled, then it is called a reflexive generalized
inverse. If all four conditions are fulfilled, it is called a pseudo-inverse and is denoted as A+

and is known as Moore-Pensrose-inverse [48, 49]. Note, when A is a regular matrix, i.e. a
square matrix, that has an inverse, then Ag = A−1 and is uniquely defined. A computationally
efficient way to calculate the pseudo-inverse is the singular value decomposition (singular
value decomposition (SVD)) of A: A = UΣV >, then the pseudo inverse is A+ = V Σ+U>.
The pseudo-inverse of the rectangular diagonal matrix Σ is obtained by taking the reciprocal
value of the non-zero elements on the diagonal, while the other entries remain zero. Then the
matrix is transposed to obtain Σ+.

Using this pseudo inverse B+ the gradient and Hessian can be transformed as the follow-
ing:

∇qE(q(x)) =
(
B>)+ ∇xE(x) (4.13)

Hq =
(
B>)+ (Hx −C)B+ (4.14)
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4.3 Delocalized Internal Coordinates

Up to now, the primitive internal coordinates are redundant. They have to be reduced to 3N−6

coordinates. In order to do so the G-matrix [46] can be calculated

G = BB> ∈ RM×M (4.15)

The diagonalization of G leads to m = 3Nat − 6 eigenvectors with positive eigenvalues and
M −m eigenvectors with eigenvalues equal to zero. The non-zero eigenvectors can be written
in the matrix U ∈ RM×m. This matrix can be used to calculate 3Nat − 6 non-redundant
coordinates

Q = U>q (4.16)

as well as transforming the B-matrix in delocalized internal coordinates [9, 50]

B̃ = U>B ∈ Rm×3Nat (4.17)

With the matrix B̃, the delocalized internal coordinates (DLC) can be defined

Q = B̃x (4.18)

This matrix is rectangular and therefore no inverse can be calculated. However, this is required
to transform the Cartesian gradient into a delocalized non-redundant gradient. The definition
of the pseudo inverse of the previous section can be used analogously. Here, B̃> ∈ R3Nat×m

has linear independent columns. Therefore B̃B̃> is a regular matrix and thus invertible. Then,
the pseudo inverse can be calculated by using the inverse of G̃ = B̃B̃> (which is a symmetric
matrix). [

B̃>
]+

=
[
B̃B̃>

]−1

B̃ = G̃−1B̃ (4.19)

This pseudo inverse is a left inverse, since[
B̃>
]+

B̃> =
[
B̃B̃>

]−1

B̃B̃> = G̃−1G̃ = I ∈ Rm×m (4.20)

Using this pseudo inverse, the gradient can be transformed

∇QE(Q) =
[
B̃>
]+

∇xE(x) = G̃−1B̃∇xE(x) (4.21)
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and analogously the Hessian

HQ =
[
B̃>
]+

(Hx −C)

{[
B̃>
]+}>

= G̃−1B̃ (Hx −C) B̃>G̃−1 (4.22)
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4.4 Iterative Back Transformation

Since the transformation from Cartesian coordinates to internal coordinates is non-linear, there
is, in general, no unique back transformation after an optimization step. The finite displace-
ment as in eq. (4.8) is used for the displacements ∆Q of the delocalized internal coordinates
(DLC) and the Cartesian displacements ∆X:

∆Q = B̃∆X (4.23)

This can be used as an iterative back transformation [6, 9]

xk+1 = xk + B̃+ (Q−Qk) , (4.24)

where Q is the new geometry in internal coordinates after an optimization step. xk is started
(k = 1) with the old Cartesian coordinates.Qk are the internal coordinates corresponding to
the Cartesian coordinates Xk. To calculate the inverse of B̃ the generalized inverse of the
G-matrix can be used.

B̃+ =
(
G̃−1B̃

)>
= B̃>G̃−1 (4.25)

While the matrix U> is kept throughout this process, the matrix B̃ and G̃ are recalculated for
every new Cartesian xk in the iterative procedure from eq. (4.24). Throughout this procedure,
the Cartesian coordinates are updated until the difference between Q and Qk is small enough.

The primitives are not generated in every step and G is not diagonalized in every opti-
mization step, because this would be too expensive [9]. Therefore G̃ is only in the beginning
diagonal, but it is reported that the performance does not significantly suffer as long as G

does not become singular [9]. This means that two different coordinate breakdowns can occur.
The G can become linear dependent or the primitives can lie out of their allowed range. In
the DLC code, a linear dependence is recognized by a poor convergence of the back transfor-
mation [9, 45]. Only a dihedral flip of 360◦ is checked for the movement out of the allowed
range for the primitives. If a back transformation fails, the step is rejected and the optimizer is
restarted by calculating a new set of internal coordinates.

For each failure of the back transformation, a cyclic failure gauge is incremented by 1000,
which is initially set to zero. If the next back transformations are successful, every time it is
divided by two [9]. The program is terminated with an error "Residue conversion error" [45],
if the cyclic failure gauge is equal to or above 2000.
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4.5 Geometry Optimization in Internal Coordinates – Gen-
eral Scheme

In general geometry optimization (either minimization or saddle point search) in internal coor-
dinates follows the scheme, which can be seen in fig. 4.3. Starting with the initial geometry the
connectivity is constructed and the primitive internal coordinates are calculated. This includes
the calculation of bond lengths, bond angles, and dihedrals. If the total connection scheme
is chosen, no connectivity is created. However, all distances are used as primitive internal
coordinates. In the next step, the delocalization of the primitives is calculated to generate the
non-redundant set of coordinates. Then the Ab-initio Cartesian gradient is calculated. If the
gradient is already below the convergence criteria, the optimization is converged. This is gen-
erally not true, so the coordinates and gradients are transformed into non-redundant internal
coordinates. Then the optimization step (either for minimization or saddle point search) is
performed. The new geometry is iteratively transformed back to new Cartesian coordinates.
With this new geometry, a new gradient is calculated and the whole process is repeated until
the convergence criteria are fulfilled.
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Initial geometry

Generate connectivity

Create primitive internals

Deolocalization

Cartesian coordinates
+ Ab initio

Cartesian gradient
converged?

Transformation to internals

Optimization step
qi+1 = f(qi,∇qE)

New geometry

Backtransformation

Completed
yes

no

Figure 4.3: Schematic representation for a general geometry optimization in delocalized in-
ternal coordinates.
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5 Gaussian Process Regression

Gaussian process regression (GPR) is a widely used machine learning tool [10]. In general,
Gaussian process (GP)s are stochastic processes. Stochastic processes are a collection of ran-
dom variables, which are indexed by a mathematical set. [51]. Since GPs are treated ana-
lytically they are relatively simple to handle. Classification and regression, are the two main
problems for supervised learning. While classification deals with discrete labels, regression
has continuous quantities.

In this chapter, the basics of GPR are presented. GPR is a Bayesian machine learning
technique, thus Bayes theorem is applied to obtain the necessary equations for GPR. Therefore,
the basics of probability theory are introduced in section 5.1. With this knowledge, how to use
GPs for regression is shown in section 5.2. There are two ways to interpret GPR. First, GP can
be thought of as a generalization of Gaussian distribution to functions. Thus inference takes
place in the space of functions, this is the function-space view. The other equivalent view is the
weight-space view, which might be more accessible. As seen in this section, free parameters
are left. Those parameters are optimized and thus the GP is trained. This will be explained in
section 5.3.

Since GPR provides, as a Bayesian method, a measure for uncertainty. This measure can
be used in information theory. Thus in section 5.4, the basics of entropy and information are
formulated.
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5.1 Fundamentals of Probability Theory

A set Ω is called sample space. Any subset of Ω is an event. This is well-defined for discrete
sample spaces. A probability space (Ω, P ), consisting of the sample space Ω and a function
P , is defined on the power set of Ω into the real space with the following properties [52–54]

1. P (A) ≥ 0, A ⊂ Ω

2. P (Ω) = 1

3. P

(
∞∑
j=1

Aj

)
=

∞∑
j=1

P (Aj) for pairwise disjoint sets Aj

This function is called probability measure, or simply probability distribution on Ω. P (A) is
the probability of the event A. In a real random experiment, not everything is known before-
hand. Therefore the results of sub-experiments might depend on the previous experiment. This
leads to the definition of conditional probability. If A,B ⊂ Ω with P (B) > 0 then

P (A|B) :=
P (A ∩B)

P (B)
(5.1)

is the conditional probability of A under the hypothesis or condition B [52]. This defines a

conditional distribution under B. If A1, A2, · · · are pairwise disjoint events with
∞∑
j=1

Aj = Ω a

decomposition of Ω. Then for the event B holds

P (B) =
∞∑
j=1

P (Aj)P (B|Aj) (5.2)

This is the law of total probability. With the help of this law, the theorem of Bayes is obtained
[55]

P (Ak|B) =
P (Ak)P (B|Ak)

∞∑
j=1

P (Aj)P (B|Aj)
=
P (Ak)P (B|Ak)

P (B)
(5.3)

where P (B) > 0. More on Bayes’ theorem is treated later. If P (A ∩ B) = P (A)P (B) for
two events, then they are called independent regards P .
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5.1.1 Random Variables and Parameters of Distributions

A mappingX : Ω → Ω′ is called a Ω′ random variable. If Ω′ = Rd X is called a d-dimensional
random vector, and for Ω′ = R it is simply called random variable [54].

The expectation value of a random variable X exists if∑
ω∈Ω

|X(ω)|P (ω) <∞ (5.4)

In that case
E[X] :=

∑
ω∈Ω

X(ω)P (ω) (5.5)

the expectation value of X . This can be transformed into

E[X] =
∑
x∈R

xP (X = x) (5.6)

The message here is that the expectation value is only dependent on the distribution of X and
not the probability space. If E[X2] exists then

V[X] := E(X − E[X])2 (5.7)

is the variance of X and
σX :=

√
V[X] (5.8)

the standard deviation of X . For calculation usage, the variance can be written as

V[X] = E[X2]− (E[X])2. (5.9)

If X and Y are random variables on the same probability space and both variances exist, then

Cov(X,Y ) := E[(X − EX)(Y − EY )] (5.10)

is the covariance between X and Y If Cov = 0 then X and Y are uncorrelated.
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Figure 5.1: Probability for an infection with HIV if a positive test result occurs with the a
priori probability of being sick q.

5.1.2 Bayes’ Theorem

If there are two events A and B then the a posteriori probability, the conditional probability of
A under B is

P (A|B) =
P (B|A)P (A)

P (B)
(5.11)

Let’s consider an example: The interpretation of medical tests. In a medical test false
positive as well as false negative results can occur. A false positive result for a certain disease
is a false positive diagnosis despite being healthy. If a test result is negative, although the
person is sick, is called a false negative. The sensitivity of a test is the probability pse that
a sick person is detected as a person being sick. The probability psp is the specificity, which
means that a healthy person is detected as a healthy person. A very simple assumption is
made. pse and psp are equal for every person. As an example lets consider the ELISA-test for
HIV [56], there pse = psp = 0.998.

Now a person has made a test for this disease and got a positive result. What is the
probability of actually having AIDS? This is dependent on the a priori probability of the
person being sick and is q. Then Bayes’s theorem gives the result. The sample space is
Ω = {(0, 0), (0, 1), (1, 0), (1, 1)}

The first entry is whether the person has the disease (1) or not(0). The second component is
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the result of the test, positive (1) or negative (0). To calculate the probability of being sick un-
der a positive test, then K = {(1, 0), (1, 1)} is the event of being sick and N = {(1, 0), (0, 0)}
the event of a negative test result. Then the assumptions lead to P (K) = q, the probability
of being sick, P (N c|K) = pse, which is the probability of a positive (not negative) test under
the person being sick (the sensitivity) and P (N |KC) = psp is the probability of a negative test
under a healthy (not sick) person (the specificity). Applying Bayes theorem leads to

P (K|NC) =
P (K)P (NC|K)

P (NC|K) + P (KC)P (NC|KC)
(5.12)

Since Kc is the complement of being sick (healthy) P (KC) = 1 − q. p(N c|Kc) is the
probability of a positive test (complement to negative test) under a healthy (non-sick) person
and is, therefore, the complement to the specificity and p(N c|Kc) = 1 − psp. Then eq. (5.12)
can be written as

P (K|NC) =
q · pse

q · pse + (1− q) · (1− psp)
(5.13)

For the ELISA-test [56] the dependence of the probability on the risk of being sick q is shown
in fig. 5.1.

5.1.3 Generalization to Continuous Probability Spaces

To generalize the above-mentioned definitions, measure theory must be applied. Since most
distributions handled here are Gaussian (see later), everything is well-defined. There is no
need to go into detail. If the reader is interested, a book about probability and measure theory
can be found here [57]. The main result is, that only "good" subsets of the whole sample space
A ⊂ Ω can be used. Therefore, the focus is only on distributions, where the probability density
exits. Then the generalization of the expectation value is, if∫

A

|x|p(x) dx <∞ (5.14)

exists, then

EX =

∫
xp(x) dx (5.15)

is the expectation value of the random variable X .
The joint probability of the random variables X1, · · · , XN have the joint probability

p(X1, · · · , XN) = p(X). If the random vector X is partitioned into XA and XB, where A
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and B are disjoint sets and their union is X then their probability is p(XA, XB). Then the
marginal probability of XA is [57]

p(XA) =

∫
p(XA, XB) dXB (5.16)

The random variables are called independent if the joint distribution is equal to the products
of marginal probabilities.

The conditional probability function is [57]

p(XA|XB) =
p(XA, XB)

p(XB)
(5.17)

If XA and XB are independent, the n the marginal probability is equal to the conditional
probability, i.e. p(XA) = p(XA|XB).

5.1.4 The Multivariate Gaussian Distribution

In this section, an example of a continuous random variable is presented, which is the Gaussian
distribution. A random variable is Gaussian distributed with X ∼ N (µ, σ2) and is fully
defined by its mean µ and variance σ2. The probability density is given

p(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(5.18)

A plot for different σ2 can be seen in fig. 5.2. There three values for the variance σ2 are
shown. This can be generalized for a random vector X ∈ Rd Then the multivariate Gaussian
distribution is defined by its mean vector m and the covariance matrix K ∈ Rd×d and is written
as X ∼ N (m,K). In the non-degenerate case, the probability density is given by

p(x) =
1

(2π)d/2 |K|1/2
exp

(
−(x−m)>K−1(x−m)

2

)
(5.19)

In fig. 5.3 an example of the two-dimensional Gaussian distribution is shown. On the top, the
covariance matrix is diagonal, thus there is no correlation between x and y. On the bottom, the
covariance is not diagonal and thus has correlations between x and y.
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Figure 5.2: Probability density function for Gaussian distributions with different variance.

If x and y are jointly Gaussian random vectors, i.e.[
x

y

]
= N

([
µx

µy

]
,

(
A C

C> B

))
, (5.20)

then the marginal distribution of x is

x ∼ N (µx, A) (5.21)

and the conditional distribution of x given y is

x|y ∼ N (µx + CB−1
(
y − µy

)
, A− CB−1C>) (5.22)

The derivation of this equation can be seen in [58].
If a product of two Gaussians is made, then another Gaussian is obtained. However, this
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Figure 5.3: Probability density of the two dimensional Gaussian distribution. On the top the
covariance is diagonal, on the bottom a general covariance matrix is used.
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Gaussian is un-normalized [10].

N (x|a, A)N (x|b, B) = N (x|c, C)

with c = C
(
A−1a+B−1

)
and C =

(
A−1 +B−1

)−1
(5.23)
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5.2 Gaussian Process Regression

There are two equivalent derivations of how to obtain the posterior distribution including the
new mean and covariance function. The first one is the weight-space view and the second is
the function-space view, where inference is directly in function space. The derivations of this
section are based on [10].

5.2.1 Weight-Space View

In this section, the weight space view to interpret Gaussian process regression is reviewed.
Therefore the linear model, where the outputs are a linear combination of the inputs, is intro-
duced. This might not be a good model if there is no good linear relation between the inputs
and outputs. In the beginning, the Bayesian treatment of this model will be applied to get a pos-
terior distribution of the target or outputs given the input values. By projecting the inputs into a
so-called "feature space" and applying the "kernel trick" an improvement is obtained. LetM be
the number of training points, then the training set is D = {(xn, yn)|n = 1, · · ·M}. xn ∈ Rd

are the real input vectors of dimension d and yn are the scalar outputs, or the dependent vari-
able. Summarizing the input vectors, they can be written as a matrix X = {xn}Mn=1 ∈ Rd×n.
The target values can be written as y ∈ Rn. Then the training set is D = {X,y}. The point
of interest is now to obtain a conditional distribution of the outputs given the inputs and not
model the input distribution. In the linear model, the function is a linear combination of the
inputs

f(x) = x>ω =
d∑

i=1

ωixi. (5.24)

Since the function values can only be observed with Gaussian noise, the observations or targets
are

yn = f(x) + εn (5.25)

Assuming this noise is an independent, identically distributed (i.i.d.) Gaussian distribution

εn ∼ N (0, σ2) (5.26)
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With this noise the probability density of the observation given the parameters, which can be
factorized due to the independence assumption and the fact that εn = yn − x>

nω︸︷︷︸
f(xn)

, is

p(y|ω, X) =
M∏
n=1

p(yn|ω,xn) =
M∏
n=1

1√
2πσ2

exp

(
−(yn − x>

nω)2

2σ2

)
(5.27)

=
1

(2πσ2)M/2
exp

(
−|y −X>ω|2

2σ2

)
= N (X>ω, σ2I) (5.28)

To apply Bayes’ theorem a prior for the parameters is required, that is having a belief or
knowledge about the parameters before looking at the observations). The assumption is, that
the parameters are multivariate Gaussian distributed with zero mean vector and covariance
matrix Σ, this is

ω ∼ N (0,Σ) (5.29)

Now the posterior distribution can be calculated

p(ω|y, X) =
1

Z
exp

(
− 1

2σ2

(
y −X>ω

)> (
y −X>ω

))
exp

(
−1

2
ω>Σ−1ω

)
(5.30)

=
1

Z
exp

(
−1

2

(
1

σ2

(
y −X>ω

)> (
y −X>ω

)
+ ω>Σ−1ω

))
(5.31)

=
1

Z
exp

(
−1

2

(
1

σ2

(
y2 − yX>ω − ω>Xy + ω>XX>ω

)
+ ω>Σ−1ω

))
(5.32)

where
(
X>ω

)>
= ω>X is used. Z is a normalization constant, which does not depend on ω.

Introducing A =
(

1
σ2XX

> +Σ−1
)

and using A = A>, becauseXX> is a symmetric matrix,
Σ is symmetric by definition and the sum of two symmetric matrices leads to a symmetric
matrix.

p(ω|y, X) =
1

Z
exp

(
−1

2

(
ω>Aω − 1

σ2
ω>Xy − 1

σ2
yX>ω +

y2

σ2

))
(5.33)

Now AA−1 = I can be inserted

p(ω|y, X) =
1

Z
exp

(
−1

2

(
ω>Aω − ω>A

(
1

σ2
A−1Xy

)
−
(
A−1

σ2
Xy

)>

Aω +
y2

σ2

))
(5.34)
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Introducing m = 1
σ2A

−1Xy leads to

p(ω|y, X) =
1

Z
exp

(
−1

2

(
ω>Aω − ω>Am−m>Aω +

y2

σ2

))
(5.35)

Since the last term does not depend on ω and introducing 0 = m>Am−m>Am, these terms
can be moved into the normalizaiton constant Z and then

p(ω|y, X) =
1

z
exp

(
−1

2
(ω −m)>K (ω −m)

)
(5.36)

Thus the posterior is a Gaussian with mean m and covariance matrix K−1:

p(ω|y, X) ∼ N (m =
1

σ2
A−1Xy, A−1) (5.37)

whereA = σ−2
n XX>+Σ−1. Averaging over all possible parameters weighted by the posterior

distribution is needed to make predictions. Thus, the predictive distribution of f? := f(x?) at
x? is received by the average of the outputs for all possible (linear) models with respect to the
posterior, calculated above

p(f?|x?, X,y) =

∫
p(f?|x?,ω)p(ω|X,y) = N (σ−2

n x>
? A

−1Xy,x>
? A

−1x?) (5.38)

which is again a Gaussian distribution.
Up to now, only a linear model was considered. However, this suffers from limited expres-

siveness. To overcome this problem, the inputs are projected into a high-dimensional feature
space using basis functions. The linear model is then applied in the feature space and not in
the input space. If these functions for projection are fixed, i.e. independent of ω, the model
is linear in the parameters and all the calculated distributions are analytically tractable. The
answer for choosing the basis function is the GP formalism. Therefore, the basis function. are
given for now.

Introducing the function φ(x), that maps from the d-dimensional input space into a N -
dimensional feature space, leads to the following linear model

f(x) = φ(x)>ω (5.39)

The matrix Φ(X) is now the columns ofφ(x) for all training points. Replacing Φ(X) for X in
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the predictive distribution eq. (5.38) leads to

f?|x?, X,y ∼ N (σ−2
n )φ(x?)

>A−1Φ(X)y, φ(x?)
>A−1φ(x?) (5.40)

with A = σ−2
n Φ(X)Φ(X)> + Σ−1. To make predicion the inversion of matrix A is required,

which is not feasible if N is large. Thus, eq. (5.40) is rewritten, the derivation can be seen
in [10],

f?|x?, X,y ∼ N (φ>
? ΣΦ

(
K+ σ2I

)−1
y, φ>

? Σφ? − φ>
? ΣΦ

(
K+ σ2I

)−1
ΦΣφ?) (5.41)

where K = Φ>ΣΦ. This time, a n × n matrix has to be inverted and is useful if n < N .
Therefore, the predictive mean is

E[f |x, X,y] = φ(x)>ΣΦ(X)
(
K+ σ2I

)−1
y (5.42)

and the variance of the predictive distribution eq. (5.41) is

V[f |x, X,y] = φ(x)>Σφ(x)− φ(x)>ΣΦ(X)
(
K+ σ2I

)−1
Φ(X)>Σφ(x) (5.43)

For a given basis set, predictions can now be made. By projecting into feature space, the linear
Bayesian model can be used for regression through eq. (5.42).

Note, that always terms like Φ>ΣΦ, φ>
? ΣΦ and φ>

? Σφ? occur. Thus, term of the form
φ(x)>Σφ(x′) are entries of these matrices. This can be used to define k(x,x′) = φ(x)Σφ(x′),
which is a inner product. k will later be called covariance function or kernel. Since Σ is
positive definit, Σ1/2 can be defined, for example with SVD. Using the definition ψ(x) =

Σ1/2φ(x) a inner product representation is obtained, i.e. k(x,x′) = ψ(x) · ψ(x′). This is
called the kernel trick. Then the input space can be lifted into feature space by replacing these
inner products by k(x,x′).

5.2.2 Function-Space View

Alternatively to achieve identical results inference can be considered in function space. In this
case, GPs are used. Therefore, the following definition is used [10]

A Gaussian process is a collection of random variables, where finite subsets have joint
Gaussian distribution.

Similar to Gaussian distribution, a GP is defined by a mean functionm(x) and a covariance
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Figure 5.4: The red line is the mean function from eq. (5.56) for the underlying function, the
black line. Five training points are used, these are the red dots. The red shaded area is the
mean function plus/minus the standard deviation
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function k(xn,xm) of a process f(x):

m(x) = E[f(x)] (5.44)

k(xn,xm) = E [(f(xn −m(xn)(f(xm −m(xm)] (5.45)

and is noted as
f(x) ∼ GP(m(x, k(xn,xm)) (5.46)

For simplicity, in the following the mean is set to zero, i.e. m = 0.
From the definition of a GP, where a collection of random variables are mentioned, a certain

consistency is required. This is the marginalization property. Thus, if (y1, y2) ∼ N (µ,Σ) are
specified by the GP then y1 ∼ N (µ1,Σ11) is specified too. Hereby Σ11 is the corresponding
submatrix of Σ according to eq. (5.21).

An example is the Bayesian liner model f(x) = Φ(x)>ω, where ω ∼ N (0,Σ) is the prior.
Then the mean and covariance function are

E[f(x)] = φ(x)E[ω] = 0

E[f(x), f(x′)] = φ(x)>E[ωω>]φ(x′) = φ(x)>Σφ(x′)
(5.47)
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Then f(x) and f(x′) are jointly Gaussian with zero mean and covariance φ(x)>Σφ(x′). As
can be seen, the covariance function specifies the covariance between pairs of random variables

cov(f(xn), f(xm)) = k(xn,xm) (5.48)

and thus the covariance between the outputs is a function of the inputs. Specifying the covari-
ance function implies a distribution over functions.

First, consider the special case of noise-free observations, i.e. yn = fn and therefore
{(xn, fn)|n = 1, · · · ,M} is known. According to the prior,[

f

f?

]
∼ N

(
0,

[
K(X,X) K(X,X?)

K(X?, X) K(X?, X?)

])
(5.49)

is the joint distribution between training outputs f and test outputs f?, where M training points
and M? test points are included. K(X,X?) ∈ RM×M? is the covariance between all pairs of
test and training points. Similar K(X,X) ∈ RM×M , K(X?, X) ∈ RM?×M and K(X?, X?) ∈
RM?×M? are defined as the covariance between all pairs of training points, between all training
and test points and between all test points. To obtain the posterior distribution, the prior has
to be restricted to only those functions, which match the observations. This corresponds to
conditioning the joint Gaussian prior to the observations.

f?|X?, X, f ∼ N
(
K(X?, X)K(X,X)−1f ,

K(X?, X?)−K(X?, X)K(X,X)−1K(X,X?)
) (5.50)

The function values are then obtained by evaluating the mean and covariance function form
the joint posterior distribution.

A more realistic model is, that function values can only be observed through noise, i.e.
y = f(x) + ε. If the noise is independent, identical distributed Gaussian ε with variance σ2

M ,
the prior is obtained

cov(yn, ym) = k(xn,xm) + σ2
Mδnm or covy = K(X,X) + σ2

MI (5.51)

With this noise term, the distribution of observed target values and function values at the test
points is [

y

f?

]
∼ N

(
0,

[
K(X,X) + σ2

MI K(X,X?)

K(X?, X) K(X?, X?)

])
(5.52)
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The conditional distribution is the predictive distribution of Gaussian process regression

f?|X?, X,y ∼ N
(
f̄?, cov(f?)

)
(5.53)

with

f̄? = E[f?|X?, X,y] = K(X?, X)
(
K(X,X) + σ2I

)−1
y

cov(f?) = K(X?, X?)−K(X?, X)
(
K(X,X) + σ2I

)−1
K(X,X?)

(5.54)

Identifying K(A,B) = Φ(A)>ΣΦ(B) with A,B either X? or X the same result from
eq. (5.41) is obtained.

If only one test x is present, then k? is introduced as the vector between this test point and
all training points. With this notation, eq. (5.54) can be written as

f̄ = E[f(x)] = k>
?

(
K + σ2I

)−1
y

V[f(x)] = k(x,x)− x>
?

(
K + σ2I

)−1
k?

(5.55)

The mean is a linear combination of the observations, which can also be written as a linear
combination of covariance functions

E[f(x)] =
M∑
n=1

αnk(x,xn) (5.56)

where α = (α1, · · · , αM)> is the solution of the linear system of equations α (K + σ2I) = y.
The variance in eq. (5.55) depends on the inputs but not on the observations, which is a

property of Gaussian distributions. The left term in the variance eq. (5.55) is the prior co-
variance evaluated at the test points. From that term a positive term, x>

? (K + σ2I)
−1

k?, is
subtracted, which is the information, the observations give about the function.

An example of the predicted mean can be seen in fig. 5.4. There, the mean from eq. (5.56)
is calculated from data of an underlying function, shown as a black line. Five training points
are used. In addition in the red-shaded area the mean plus/minus the standard deviation

√
V is

plotted.

5.2.3 Covariance Function

The covariance function k is an essential part of GPs. They encode assumptions made about
the function to learn from. If input points are close together, they usually have similar target or
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observation values. This similarity is defined by the covariance matrix of the GP. Any function
of xn and xm is a valid covariance function if it is positive semi-definite. A covariance function
k is stationary if is a function of xn−xm, i.e. k(xn,xm) = k(xn−xm) [10]. Thus it is invariant
under translation in the input space. If the covariance function k depends only on the distance
r = |xn − xm|, then it is called an isotropic covariance function [10]. k(r) is then also called
a radial basis function.

For a given set {xn|n = 1, · · · ,M} the Gram matrix or covariance matrix K can be cal-
culated with entries Knm = k(xn,xm). If K ∈ RM×M . satisfies v>Kv ≥ 0 ∀v ∈ Rm, then
this matrix is called positive semi-definite. A symmetric matrix is positive semi- definite if all
the eigenvalues are larger or equal to zero and positive definite if they are only positive and
non-zero. Covariance functions must be, by definition, positive semi-definite. The definition
of positive semi-definiteness for matrices can be generalized for covariance function [10]∫

k(xn,xm)f(xn)f(xm) dxn dxm ≥ 0 ∀f ∈ L2(RM). (5.57)

In the following two examples of covariance functions will be presented namely the
squared exponential and the Matérn covariance function. They are both plotted in fig. 5.5.

Squared Exponential Covariance Function

The squared exponential function is defined as [10]

kSE(r) = σ2
f exp

(
− r2

2`2

)
, (5.58)

where ` is the characteristic length scale. The parameter σf is a scaling parameter. Since
this covariance function is infinitely differentiable, the Gaussian process with this covariance
function is very smooth. The squared exponential is one of the most widely used covariance
functions used. Stein [59] suggested, that the squared exponential might not be so good for
physical properties and that the Matérn covariance function works better.

Matérn Covariance Function

The classes of the Matérn covariance functions is give by [60]

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν

Kν

(√
2νr

`

)
(5.59)
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with ν, ` > 0 parameters and Kν is a modified Bessel function [61]. For ν → ∞ the squared
exponential is obtained. The Gaussian process for the Matérn covariance function is k-times
differentiable if ν > k. [10]. Using ν = p+ 1/2 leads to simple Matérn covariance functions,
the general expression is then, derived from [61],

kν=p+1/2(r) = exp

(
−
√
2νr

`

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

`

)p−i

(5.60)

The most common used are ν = 1/2, ν = 3/2 and ν = 5/2. They are then given as [10]

kv=1/2(r) = σ2
f exp

(
−r
`

)
(5.61)

kv=3/2(r) = σ2
f

(
1 +

√
3r

`

)
exp

(
−
√
3r

`

)
(5.62)

kM(r) = kv=5/2(r) = σ2
f

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√
5r

`

)
(5.63)

5.2.4 Including Derivative Information

The ab initio programs to calculate the PES, for which the GPR is used as a surrogate surface,
usually provide not only the function value (Energy) but also the gradient. Therefor the ob-

served targets are y =
(
f(x1), · · · f(xM), ∂f(x1)

∂x1,1
, · · · ∂f(xM )

∂xM,d

)>
. Since the partial derivative of

f(x) is a linear operation, this can be included in GPR, see Solak et al. [62]. The corresponding
covariance entries can be calculated by

cov
(
f(xn),

∂f(xm)

∂xm,k

)
=
∂k(xn,xm)

∂xm,k

cov
(
∂f(xn)

∂xn,l
,
∂f(xm)

∂xm,k

)
=
∂2k(xn,xm)

∂xn,l∂xm,k

(5.64)

They are included by calculating derivatives of the covariance function. This leads to an ex-
tension of the covariance matrix:

K =

(
k(xn,xm) ∇xnk(xn,xm)

∇xmk(xn,xm)
∂2k(xn,xm)
∂xn∂xm

)
(5.65)
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Figure 5.5: The squared exponential and the Matérn 5/2 covariance function plotted for nor-
malized r/`.
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The predictive mean function then is

f(x) =
M∑
n=1

αnk(x,xn) +
M∑
n=1

d∑
i=1

βn,i
∂k(x,xn)

∂xn,i
(5.66)

where the weights ω = (α1, · · ·αM , β1,1, · · · βM,d)
> are obtained from solving ω =

(K+ σ2I)
−1

y. Here, separate noises are used, i.e. σ = (σe, σg), where σe is the noise
for the energy or function targets and σg for the gradient targets. The variance becomes

V(x) = k(x,x)−
M∑
n=1

α̃nk(x,xn)−
M∑
n=1

d∑
i=1

β̃n,i
∂k(x,xn)

∂xn,i
(5.67)

where the weights are

ω̃ =
(
α̃1, · · · , α̃M , β̃1,1, · · · β̃M,d

)>
. (5.68)

These are obtained by solving (K+ σ2I) ω̃ = k. with the vector k calculated as

k =

(
k(x,x1), · · · , k(x,xM),

∂k(x,x1)

∂x1,1
, · · · , ∂k(x,xM)

∂xM,d

)>

(5.69)
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5.3 Training of a Gaussian Process

As previously seen there are at least three hyperparameters involved covariance function: The
length scale `, the noise σ2, and the scaling of the covariance function σ2

f . Because σf does
not change the mean function, this is neglected here. However, it can have a scaling effect
on the variance and is relevant for the dimension of the posterior mean and variance. The
hyperparameters are combined in Θ = (`, σ2).

In general, only vague information about the free hyperparameters Θ is known. There-
fore, having methods is essential to address the model selection problem, in this case, the
choice of the hyperparameters. Thus the selection of the covariance function and the choice
of its parameters is often called the training of a GP. This is done based on the training data,
where inference about the hyperparameters of the covariance function is made. Therefore, the
Bayesian model selection is chosen, where the explicit dependence on the hyperparameters is
included [10].

p(ω|y, X,Θ) =
p(y|X,ω)p(ω|Θ)

p(y|X,Θ)
(5.70)

where the normalizing constant is independent of the parameters and is called the marginal
likelihood

p(y|X,Θ) =

∫
p(y|X,ω)p(ω|Θ) dω (5.71)

This includes a trade-off between model fit and model complexity. Simple models only ac-
count for a limited range of the target values, while complex models account for a wider range
of data sets. The marginal likelihood tends to favor the least complex model, which explains
the data.

The eq. (5.71) can be calculated and the logarithm of the marginal likelihood is given
by [10]

log p(y|X,Θ) = −1

2
y>Kyy − 1

2
log |Ky| −

M

2
log(2π) (5.72)

where Ky = K + σ2I is the covariance matrix for the noisy targets y. Here the marginal
likelihood is explicitly conditioned on the hyperparameters Θ and is the marginalization over
latent functions. The first term is the only term depending on the observed targets, the data fit
−1

2
y>Kyy. −1

2
log |Ky| is the complex penalty term, which only depends on the covariance

function and the inputs. The last term is a normalization term. Usually, the more data the more
peaked the marginal likelihood is. For a small number of training points, it is rather shallow,
because little data are observed. If there are more data, the complex penalty term becomes
more severe. Note, that the marginal likelihood can have multiple local optima and every one
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corresponds to an interpretation of the data.
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5.4 Information Theory and Entropy

In this section, the concepts of entropy in information theory is given.
The entropy S[p(x] of a distribution p measures the uncertainty within the distribution, or

a measure of surprise in the distribution. It is defined as [63]

S[p(x] = −
∫
p(x) log p(x) dx (5.73)

For a one dimensional Gaussian distribution with mean µ and variance σ2, the entropy is

S[N (µ, σ2)] = −
∞∫

−∞

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
log

exp
(
− (x−µ)2

2σ2

)
√
2πσ2

 , dx

=
1

2
log(2πσ2) +

1

2

∞∫
−∞

(x− µ)2

2σ2

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx

=
1

2

(
log(2πσ2) + 1

)
=

1

2
log(2πeσ2)

(5.74)

The relative entropy Kullback-Leibler (KL) divergence KL(p||q) is defined between two
distributions p(x) and q(x) as [64, 65]

KL(p||q) =
∫
p(x) log

p(x)

q(x)
dx (5.75)

For a Gaussian distribution q(x) = N (µ, σ2) the KL divergence is

KL(p||q) =
∫

(x− µ)2

2σ2
p(x) dx+

1

2
log(2πeσ2) +

∫
p(x) log p(x) dx (5.76)

The optimal q can be obtained by differentiating eq. (5.76) with respect to µ and σ2 and setting
the derivatives to zero. If the first two moments matches between p and q, the optimal p is
obtained [10].

55



Gaussian Process Regression

5.4.1 Conditional Entropy

Consider the random variables X and Y . They have the joint probability density function
p(x, y). Then the conditional differential entropy is defined as [66]

S[X|Y ] := −
∫
p(x, y) log (p(x|y)) dx dy (5.77)

There is a chain rule for the conditional entropy [66]

S[X|Y ] = S[X,Y ]− S[X] (5.78)

where the joint entropy S[X, Y ] is defined as [66]

S[X,Y ] = −
∫
p(x, y) log p(x, y) dx dy. (5.79)

The conditional entropy and the joint entropy have a connection to the mutual information.

5.4.2 Mutual Information

The mutual information measures the dependence between two variables, i.e. it specified the
information obtained from one random variable by observing the other. Thus it measures
the information, that x and y share. It is defined by the KL divergence between the joint
distribution of x and y, p(x, y) and the marginal distributions p(x) and p(y) [66]

I(x; y) = KL(p(x, y)||p(x)p(y) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dx dy (5.80)

Moreover, the mutual information is symmetric [66], i.e. I(x; y) = I(y;x)

With these definitions the mutual information eq. (5.80) can be written as

I(X;Y ) = S[X]− S[X|Y ]

= S[Y ]− S[Y |X]

= S[X] + S[Y ]− S[X,Y ]

= S[X,Y ]− S[X|Y ]− S[Y |X]

(5.81)

where S[X] and S[Y ] are the marginal entropies. A Ven-diagram in fig. 5.6 shows this re-
lationship between the entropies of random variable X and Y and the mutual information.
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Figure 5.6: Relation between entropies and mutual information.
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6 Geometry Optimization Based on
Gaussian Process Regression in In-
ternal Coordinates

The first part of this chapter, i.e. section 6.1 and section 6.2, is based on "Daniel Born and
Johannes Ks̈tner. Geometry optimization in internal coordinates based on gaussian process
regression: Comparison of two approaches. Journal of Chemical Theory and Computation,
17(9):59555967, 2021.".

At the beginning of section 6.1, a general introduction to geometry optimization based on
Gaussian process regression (GPR) is given. The training data consist of the geometries of the
molecules x as input and energies E(x) and gradients ∇E(x) of the geometries as observa-
tions or labels. In the last part of section 6.1, the combination of GPR based optimization and
the benefits of internal coordinates is described.

After explaining the details of the algorithm the performance is tested on 31 test systems
containing 30 small molecules and one rhodium complex, containing 78 atoms. These results
are presented in section 6.2. In addition the influence of the hyperparameters on the opti-
mization process, especially the length scale ` and the gradient noise σg, is investigated in
section 6.2.2.

In addition two ways that could in principle improve the minimization process will be dis-
cussed in section 6.3, namely expected improvement and probability of improvement.where
the main ideas are from [67]. While the first one does not require a predefined target for opti-
mization, the second way has an adjustable parameter. The expected improvement is inherently
a global search method. However, the probability of improvement, thanks to its adjustable pa-
rameter, can be adapted for global and local minimum search. In the end, both ways showed
no improvement compared to pure internal 1 or internal 2.
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6.1 Geometry Optimization Based on Gaussian process re-
gression

Before performing an optimization, the convergence criteria for an algorithm have to be de-
fined. Therefore, the standard criteria of DL-FIND [45] are used, which use a single value η.
It is used to define values for the optimization step, the maximum step entry, the gradient norm
and the maximum entry of gradient, which all have to fall below a certain value. Those criteria
are in atomic units

max
i

∂E

∂xi
< ηmax_g := η (6.1)

|∇E|√
d

< ηnorm_g :=
2

3
η (6.2)

max
i
si < ηmax_s := 4η (6.3)

|s|√
d
< ηnorm_s :=

8

3
η, (6.4)

where s is the step, i.e. the difference of old positions and new positions, d the dimension of
the system. The system is converged if all four criteria are fulfilled. In general, DL-FIND [45]
has an addition energy convergence criterion. However, the energy criterion is not used for
geometry optimization based on GPR.

In general, a surrogate surface for the PES is used to reduce the total number of calculations
of the PES and an optimization is performed on the surrogate surface, instead of the PES.
Here, the surrogate surface for the PES is constructed using Gaussian process regression. The
general GPR surrogate for M training points is

E(x) =
M∑
n=1

αnk(x,xn) +
M∑
n=1

d∑
i=1

βn,i
∂k(x,xn)

∂xn,i
+ Ē (6.5)

with a constant prior mean Ē and d = 3Nat. Here, Nat is the number of atoms. The gradient is
a linear combination of derivatives of the covariance function:

∂E(x)

∂xk
=

M∑
n=1

αn
∂k(x,xn)

∂xk
+

M∑
n=1

d∑
i=1

βn,i
∂2k(x,xn)

∂xk∂xn,i
(6.6)

and is used for the search algorithm to find a minimum on the surrogate surface.
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The posterior mean function approaches the prior mean Ē from eq. (6.5) at large distances
to the training points. Here the mean is chosen to be constant and much higher than the energy
observations to restrict the algorithm in reasonable regions around the training points. The
prior mean is, like in [15],

Ē = max
n

En + 10. (6.7)

The prior mean was optimized as hyperparameter by Raggi et al. [18] and obtained the same
result as in eq. (6.7). Geometry optimization based on GPR is trained on small number of
data, in contrast to general machine learning algorithms, where thousands of training points
are used. Therefore, the prior mean is chosen empirically because no energy mean can be
computed from the training data.

A scheme for the basic algorithm is shown in fig. 6.1. At the beginning of the optimization
procedure only a single training point, the starting geometry x1 ∈ Rd, d = 3Nat in Cartesian
coordinates with Nat the number of atoms, with its energy E1 = E(x1) and gradient ∇x1E1,
is used. The prior mean according to eq. (6.7) is Ê = E1 + 10. The surrogate surface for one
training point is

E(x) = − 10

1 + σ2
e

k(x,x1) +
1

c+ σ2
g

d∑
i=1

∂E1

∂x1,i

∂k(x,x1)

∂x1,i
.+ (E1 + 10) (6.8)

where the solution of the linear system is simple because a diagonal matrix is given. This is
only valid for a isotropic covariance function, which here is the case. An isotropic covariance
function only depends on the distance between the training points, i.e. |xn − xm|. The cal-
culated weights are α1 = −10

1+σ2
e

and β1,i = 1
c+σ2

g

∂E1

∂x1,i
. The factor c is a constant for isotropic

covariance functions and depends only on `. In the case of the used Matérn covariance function
c = 5

3`2
.

The next step is now to find a minimum on this calculated surrogate surface, which is done
by the standard L-BFGS [28–32] algorithm (this is called a micro-iteration in fig. 6.1). This
minimum found on the surrogate surface is used as a prediction for a new geometry. With that
geometry, new energy and gradient are calculated from the ab initio program, like DFT. A new
surrogate surface is built, now including two training points. This iterative process is repeated
until the convergence criteria are fulfilled (macro iteration).

In this last paragraph of this section a short summary of the described algorithm for ge-
ometry optimization based on GPR is given. The optimization begins with an initial guess
of the structure of the molecule close to an assumed minimum. With the calculated energy
E1 and gradient ∇E1 as, probably noisy, observation and the starting geometry x1 as input a
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Figure 6.1: General scheme of geometry optimization using Gaussian process regression.
Reprinted (adapted) with permission from [1]. Copyright 2021 American Chemical Society.

GPR-surface with a single training point is built. On the GPR-surface a minimization using
L-BFGS, indicated as f(xi,∇xE) in fig. 6.1 for the step on the GPR-surface, is performed
and the new obtained minimum of the GPR-surface xmin

1 . This is called a micro iteration. For
this new geometry new energy and gradient are calculated by the external ab-initio program.
After each calculation convergence test is performed. The whole procedure is repeated until
the convergence criteria are fulfilled.

6.1.1 Overshooting

To accelerate the optimization process a technique called overshooting, introduced by Denzel
and Kästner [15], is used. This procedure is also applied when using internal coordinates.
Therefore, overshooting is briefly explained. The angle between the last two training points
and the predicted new minimum xmin

n is defined as

γn =
(xn−1 − xn−2) ·

(
xmin
n − xn−1

)
|xn−1 − xn−2| |xmin

n − xn−1|
. (6.9)

If γn > 0.9 then the initial step sn = xmin
n − xn−1 is scaled up to obtain the next optimization

step
snew
n = λ(γn)sn (6.10)
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The scaling factor is calculated as

λ(γn) = 1 + (λmax − 1)

(
γn − 0.9

1− 0.9

)4

. (6.11)

The scaling factor λmax is chosen to avoid large overshooting close to the actual minimum of
the PES. Then the maximum overshooting factor is limited by

λmax =
(
1 + tanh(β2 − 1)

) λ̃max − 1

2
+ 1 (6.12)

where

β =
max

n
(xn − xn−1)

ηmax s

(6.13)

This factor describes how close the optimization is to convergence. No scaling occurs when
β ≤ 1. λ̃max is set to 5 at the beginning and is increased by 5% if overshooting occurs more
than once, meaning if γn > 0.9 twice or more.

Some dimensions converge faster than others because only one length scale ` is used in-
stead of one length scale for each dimension. Therefore separate dimension overshooting is
introduced, also by Denzel and Kästner [15], where the assumption is to treat every dimension
separately. If there is a monotone change over the last 20 steps, one dimensional GPR to repre-
sent this single coordinate is built. The training points for those GPRs are the number of steps
along the optimization procedure. Equidistant training points are used and the interpolation is
the value of the coordinate of the respective step. The minimum or maximum of these GPRs
is used as good guesses for the dimension, where the real minimum of the PES lies. Here the
coupling between the coordinates is neglected, which is achievable for internal coordinates,
but not for Cartesian coordinates. To counteract this for Cartesian coordinates, the separate
dimension overshooting is only done every 20 steps.

Separate dimension overshooting is only applied, if the scaling would be higher than the
scaling factor for overshooting and the convergence criteria for the maximum entry of the step
are not fulfilled.

6.1.2 GPR Optimization in Internal Coordinates

In this section, two approaches to combine geometry optimization based on GPR and internal
coordinates from chapter 4 is presented.

In internal 1 all training points and their gradients are transformed into internal coordinates.
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Figure 6.2: GPR-optimization in internal coordinates for method 1. Reprinted (adapted) with
permission from [1]. Copyright 2021 American Chemical Society.

Initial geometry

Ab-Initio
energy+gradient

Test for
Conver-
gence

Transformation to internals

Build GPR-surface Backtransformation

Energy/Gradient on GPR

converged
on GPR?

Prediction for new geometry
Optimization step
xi+1 = f(qi,∇xE)

Transformation to internals

Completed

Microiterations:
Minization on GPR surface

yes no

no

yes

Figure 6.3: GPR-Optimization in internal coordinates for method 2. Reprinted (adapted) with
permission from [1]. Copyright 2021 American Chemical Society.
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This means in eq. (6.5) the Cartesian coordinates x are replaced by the delocalized internal
coordinates q with dimension d = Ni = 3Nat − 6. The resulting surrogate surface is then

E(q) =
M∑
n=1

αnk(q,qn) +
M∑
n=1

Ni∑
i=1

βn,i
∂k(q,qn)

∂qn,i
+ Ē (6.14)

with the following variance

V[q] = k(q,q)−
M∑
n=1

α̃nk(q,qn)−
M∑
n=1

Ni∑
i=1

β̃n,i
∂k(q,qn)

∂qn,i
(6.15)

The weights ω̃ =
(
α̃1, · · · , α̃n, β̃1,1, · · · , β̃M,Ni

)>
are calculated as in eq. (5.68).

The whole optimization procedure for internal 1 on the surrogate surface is done com-
pletely in internal coordinates. As a consequence, the prediction for the new geometry, where
the energy and gradient are calculated, is in internal coordinates. However, the calculation
of the new energy and gradient requires Cartesian coordinates. Therefore the iterative back
transformation in eq. (4.24) has to be applied to obtain Cartesian coordinates corresponding to
the predicted internal coordinates. The newly obtained gradient by ab initio methods is again
transformed in internal coordinates and a new surrogate surface is built. This is repeated until
the convergence criteria are fulfilled. If the back transformation fails, which happens when
the G-matrix, introduced in section 4.3, becomes singular, a new set of internal coordinates
is constructed. The previously constructed surrogate surface is then used as new prior mean
Ē = Eold(q). This case did not appear in the tested systems but is a general backup if a
back-transformation failure occurs. A flow chart of this algorithm is shown in fig. 6.2.

The overshooting procedure from section 6.1.1 is used for internal 1. Here the angle is
calculated using the internal coordinates.

For internal 2 only the coordinates are transformed into internal coordinates, while the gra-
dient remains unchanged in Cartesian coordinates. The evaluation of the covariance function
is done in internal coordinates, the derivatives of the covariance function are "transformed"
into Cartesian, which simply means applying the chain rule. Therefore, the entries for the
covariance matrix K are

k(q(xn),q(xm)) = k(qn,qm) (6.16)

∂k(q(xn),q(xm))

∂xn,k
=

Ni∑
i=1

∂k(qn,qm)

∂qn,i

∂qn,i
∂xn,k

(6.17)
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and similar for derivatives with respect to training pointm. The entry for the second derivatives
(which are needed for including derivative information) is

∂2k(q(xn),q(xm))

∂xn,k∂xm,l

=

Ni∑
i=1

Ni∑
j=1

∂qn,i
∂xn,k

∂2k(qn,qm)

∂qn,i∂qm,j

∂qm,j

∂xm,l

+

Ni∑
i=1

∂2qn,i
∂xn,k∂xm,l

∂k(qn,qm)

∂qn,i︸ ︷︷ ︸
=0

(6.18)
The last term cancels because, for different training points, the second derivative of the internal
coordinates with respect to different Cartesian coordinates is zero due to the independence of
the training points. Since an isotropic covariance function is used, the first derivative is zero
if qn = qm (the only term the derivative of the B-matrix is not zero). The derivatives of the
covariance function can also be written in matrix form

∇xnk(q(xn),q(xm)) = U>Bn∇qnk(qn,qm) (6.19)

∇2
xn
k(q(xn),q(xm)) = U>Bn∇2

qk(qn,qm)B
>
mU (6.20)

Using these definitions the surrogate surface for the PES is

E(q(x)) =
M∑
n=1

αnk(q(x),q(xn)) +
M∑
n=1

Nx∑
i=1

βn,i

Ni∑
j=1

∂k(q,qn)

∂qn,j

∂qn,j
∂xn,i

+ Ē (6.21)

and its gradient can be calculated as

∂E(q(x))

∂xk
=

M∑
n=1

αn

Ni∑
i=1

∂k(q,qn)

∂qi

∂qi
∂xk

+
M∑
n=1

Nx∑
i=1

βn,i

Ni∑
j=1

Ni∑
l=1

∂qj
∂xk

∂2k(q,qn)

∂qj∂qn,l

∂qn,l
∂xn,i

(6.22)

where Nx = 3Nat. The basis of the calculated covariance matrix is necessarily incomplete due
to the transformation from a 3Nat − 6 to 3Nat dimensional space. The remaining six gradient
components are zero and therefore the whole covariance matrix becomes singular. This means
that a necessary large gradient noise σg has to be added to the diagonal elements to allow the
Cholesky decomposition to work properly. The variance V also has to be transformed properly

V[q(x)] = k(q(x),q(x))−
M∑
n=1

α̃nk(q,qn)−
M∑
n=1

Nx∑
i=1

β̃n,i

Ni∑
j=1

∂k(q,qn)

∂qn,j

∂qn,j
∂xn,i

(6.23)
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where the vector k from eq. (5.69) also requires a transformation

k =

(
k(q,q1), · · · , k(q,qM),

Ni∑
i=1

∂k(q,q1)

∂q1,i

∂q1,i
∂x1,1

, · · · ,
Ni∑
i=1

∂k(q,qM)

∂qM,i

∂qM,i

∂xM,Nx

)>

.

(6.24)
The micro iterations are performed in Cartesian coordinates and after each step, the new

Cartesian coordinates have to be transformed into internal coordinates. After the convergence
criteria for the geometry optimization on the surrogate surface are fulfilled the predicted ge-
ometry for the macro iteration is in Cartesian coordinates. Therefore, no iterative back trans-
formation has to be applied. A flow chart for the algorithm of internal 2 is shown in fig. 6.3.

The overshooting procedure described in section 6.1.1 is applied for internal 2 too. How-
ever, in contrast to internal 1, the angle is calculated using Cartesian coordinates, because the
prediction for the new geometry is also in Cartesian coordinates.

The convergence critera for the optimization on the GPR surrogate is, if the norm of the
gradient evaluated on the GPR is smaller than 10−7Eh/a0 or the step length is smaller than
10−7 a0 or a maximum number of 1000 steps is reached. These criteria are used for both
methods. The used Matérn covariance function, see eq. (5.63), has a scaling factor σ2

f , which
is set to one for GPR internal 1 and internal 2. For both methods the step length on the GPR
surface during the micro iteration is restricted only, if V[q] > 10−4. In that case, the step is
restricted to a maximum of 10−2 a0. To prevent a too large step on the real PES due to large
overshooting, a maximum step length as an adjustable parameter is used. In this case, the
maximum step is restricted to 0.5 a0.
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Table 6.1: Statistical data for the box plot in fig. 6.6 with different optimization coordi-
nate combinations. Reprinted (adapted) with permission from [1]. Copyright 2021 American
Chemical Society.

Optimizer L-BFGS GPR
Coordinate System Cartesian internal Cartesian internal 1 internal 2
first quartile (Q1) 11.0 7.5 9.0 7.0 7.5
median 17.0 10.0 15.0 9.0 9.0
third quartile (Q3) 38.5 23.0 33.5 21.5 24.0
mean 32.8 20.3 26.7 16.4 19.3

6.2 Results

The geometry optimization algorithms were tested on a test set of 30 small molecules and
a large rhodium complex. All energy and gradients were calculated on DFT level with
BP86 [68] [69] as functional and def2-SVP [70] as a basis set. These calculations were done
in TURBOMOLE [71] with ChemShell [72] as the interface to DL-FIND [45]. The conver-
gence criteria in DL-FIND were set to the default values, meaning η from eq. (6.2) is set to
4.5 · 10−4Eh/a0. Then the criteria are 4.5 · 10−4Eh/a0 for the change of the largest gradient
component, 3 · 10−4Eh/a0 for the change of the root mean square of the gradient. The maxi-
mum step was set to 1.8 · 10−3 a0 and the root mean square step length was set to 1.2 · 10−3 a0.

6.2.1 Efficiency of The Optimizer

The molecules used for the tests are shown in fig. 6.4 and fig. 6.5. The rhodium complex
was originally investigated by Kirchhof et al. [73]. The distribution of the number of steps
that different optimization algorithms rquire to reach convergence is shown in fig. 6.6. The
GPR optimizer is compared to the standard optimizer of DL-FIND, the L-BFGS optimizer.
Additionally, Cartesian coordinates are compared to internal coordinates. They are compared
by their required number of steps until convergence. Each of those steps needs one calculation
of energy and gradient from the external program. The respective number of steps can be
found in table 6.2 and fig. 6.7 as a visualization. The box plot from fig. 6.6 is used to illustrate
the distribution of the number of steps. In that plot, the red bar represents the median, which
separates 50% of the number of steps above the median, 50% are below. It cuts the data set
in half. Therefore it is also called the second quartile (Q2). The lower black bar is the first
quartile Q1, which splits the 25% of the lowest data from the 75% highest values. The upper
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Figure 6.4: 30 molecules used as the test set. The color code is: Oxygen red, nitrogen blue,
carbon gray, sulfur yellow, fluorine light red, silicon orange and hydrogen white. Reprinted
(adapted) with permission from [1]. Copyright 2021 American Chemical Society.
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Figure 6.5: Rhodium complex as a large test molecule. The rhodium atom in the center is in
light red, the color code for the other atoms is the same as in fig. 6.4. Reprinted (adapted) with
permission from [1]. Copyright 2021 American Chemical Society.
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Figure 6.6: Performance of L-BFGS and GPR in Cartesian (Cart) and internal coordinates
(int). Reprinted (adapted) with permission from [1]. Copyright 2021 American Chemical
Society.
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Figure 6.7: Bar plot of results with the total amount of steps required for convergence.
Reprinted (adapted) with permission from [1]. Copyright 2021 American Chemical Society.

bar is the third quartile Q3, meaning 75% of the data lies below this point. The interquartile
range IQR = Q3 − Q1 is used to indicate outliers. An outlier above the third quartile is
identified if the number of steps is above Q3 + 1.5IQR. Similarly, there are no outliers for the
low number of steps. The outliers are represented as blue circles. The (arithmetic) mean is
the red diamond. The upper whisker is the highest black line and is 1.5 times the IQR above
the third quartile. The lowest black line is the lower whisker and is defined as 1.5 times below
the first quartile. However, since there are no outliers for low number of steps, it is the lowest
number of steps. The values for the quartiles and the mean are given in table 6.1.

The efficiency of both optimizers, GPR and L-BFGS, is increased if internal coordinates
are used instead of Cartesian coordinates. The median for L-BFGS internal coordinates is
reduced from 17 to 10, which is 41%, while the mean is reduced by 38%, from 32.8 to 20.3.
The median is more stable towards outliers and is therefore used for comparison. The first
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quartile is reduced by 32%, meaning from 11 to 7.5, and the third quartile is reduced from
38.5 to 23, or 40%. In addition, the total amount of steps for all systems is reduced from 1017
in Cartesian coordinates to 629, this is also 38%. For the GPR optimizer internal coordinates
reduce the median number of steps from 15 to 9, or 40%. The first quartile is for both internal
methods reduced by 22% or from 9 to 7 for internal 1 and 7.5 for internal 2,respectively. The
mean is reduced from 26.7 to 16.4 for GPR internal 1 and to 19.3 for GPR internal 2. That
is by 39% and 28%,respectively. The third quartile is reduced by 36% for internal 1 from
33.5 to 21.5, and for internal 2 it is reduced by 28% down to 24. Comparing the total number
of steps, GPR internal 1 reduces the required steps from 829 to 510, that is 38%, while GPR
internal 2 reduces the steps to 597 or by 28%. Comparing GPR internal 1 with internal 2, the
first quartile is reduced by 7%, the median is the same, and the third quartile is reduced by
10%. The mean and the total number of steps are reduced by 15%, if using GPR internal 1
compared to GPR internal 2.

Having no differences between the first and second quartiles, GPR internal 1 and 2 perform
equally well for small molecules. The difference however increases for the total number of
steps, the third quartile, and the mean number of steps, which indicates that GPR internal 1
performs, in general, better for larger molecules. This can also be seen in the differences in
each statistical value comparing GPR internal 1 and GPR internal 2. Consequently, molecules
that require few steps to converge, which are usually small molecules, internal 1 and internal
2 perform similarly. This can also be seen that the first quartile is almost the same (7 vs. 7.5)
and the median is the same. Differences arise for larger molecules as can be seen in the third
quartile and the mean.

Comparing the median between all methods, GPR in internal coordinates performs best
compared to all the other combinations of optimizers and coordinates, especially for large
molecules. The largest molecule is the rhodium complex, which consists of 78 Atoms. This
means a 234-dimensional PES in Cartesian coordinates and a 228-dimensional PES has to
be optimized in internal coordinates. For all combinations of optimizer and coordinates, this
results in the highest point in fig. 6.6. L-BFGS in Cartesian coordinates requires 141 energy
and gradient evaluations, or steps. In internal coordinates, the L-BFGS optimizer still requires
120 steps. Only the GPR optimizer can significantly reduce the number of required steps.
In Cartesian coordinates, 83 steps are needed. Internal 1 requires the least amount of steps,
namely 60 steps, while internal 2 still requires 82 steps. Thus GPR internal 1 performs best
for large molecules. Concluding GPR internal 1 is the most efficient method.

In some test cases, there are huge differences between internal 1 and internal 2. The system
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Table 6.2: Number of steps for each system shown in fig. 6.4 and the rhodium complex from
fig. 6.5. Additionally the total amount of steps was calculated. The energy difference to L-
BFGS in Cartesian coordinates is shown in parentheses and are given in Hartree. Reprinted
(adapted) with permission from [1]. Copyright 2021 American Chemical Society

Optimizer L-BFGS GPR
Coordinate System Cartesian internal Cartesian internal 1 internal 2
1 Water 7 6 (2.3 · 10−9) 7 (1.5 · 10−8) 6 (2.1 · 10−9) 5 (3.6 · 10−9)
2 Ammonia 7 6 (7.2 · 10−8) 8 (7.1 · 10−8) 7 (7.5 · 10−8) 7 (7.5 · 10−8)
3 Ethane 9 6 (3.3 · 10−8) 8 (6.4 · 10−8) 6 (2.6 · 10−9) 6 (2.7 · 10−9)
4 Acetylene 7 6 (5.7 · 10−10) 8 (4.4 · 10−9) 6 (5.4 ·10−10) 5 (4.8 ·10−10)
5 Allene 10 6 (6.3 · 10−9) 8 (1.8 · 10−8) 4 (1.1 · 10−7) 5 (1.6 · 10−8)
6 Hydroxysulfane 15 15 (1.2 · 10−7) 13 (4.5 ·10−7) 13 (1.7 ·10−7) 14 (6.9 ·10−8)
7 Benzene 6 5 (1.1 · 10−9) 8 (1.9 · 10−7) 6 (1.1 · 10−9) 5 (1.1 · 10−9)
8 Methylamine 29 22 (3.1 · 10−7) 25 (3.0 ·10−7) 22 (3.4 ·10−7) 25 (3.6 ·10−7)
9 Ethanol 14 10 (3.6 · 10−7) 15 (2.3 ·10−7) 8 (2.4 · 10−7) 8 (2.5 · 10−7)
10 Acetone 17 12 (5.1 · 10−8) 17 (3.1 ·10−9) 10 (1.4 ·10−8) 10 (1.5 ·10−8)
11 Disilyl-ether 12 13 (5.7 · 10−6) 9 (3.1 · 10−7) 10 (5.7 ·10−6) 8 (5.6 · 10−6)
12 1,3,5-Trisilacyyclohexane 30 26 (3.5 · 10−8) 21 (1.0 ·10−5) 18 (1.1 ·10−7) 18 (1.3 ·10−7)
13 Benzaldehyde 23 8 (7.6 · 10−7) 17 (8.6 ·10−6) 8 (7.6 · 10−7) 9 (6.9 · 10−7)
14 1,3-Difluorobenzene 12 7 (8.7 · 10−7) 11 (6.2 ·10−7) 7 (2.8 · 10−7) 8 (2.9 · 10−8)
15 1,3,5-Trifluorobenzene 8 8 (4.9 · 10−9) 9 (4.2 · 10−9) 7 (5.3 · 10−8) 8 (1.6 · 10−7)
16 Neopentane 8 6 (9.1 · 10−8) 7 (4.6 · 10−8) 5 (8.7 · 10−7) 4 (8.7 · 10−7)
17 Furan 14 8 (8.4 · 10−7) 11 (2.1 ·10−6) 8 (2.5 · 10−7) 8 (2.5 · 10−7)
18 Napthalene 16 8 (2.5 · 10−7) 10 (6.5 ·10−7) 7 (9.6 · 10−8) 7 (1.4 · 10−7)
19 1,5-Difluoronaphtalene 17 8 (1.3 · 10−7) 13 (1.2 ·10−6) 8 (4.9 · 10−6) 9 (2.2 · 10−7)
20 2-Hydroxybicyclopentane 38 28 (8.6 · 10−7) 34 (9.4 ·10−8) 23 (2.3 ·10−6) 25 (2.9 ·10−6)
21 ACHTAR10 41 23 (2.5 · 10−6) 41 (1.7 ·10−7) 21 (2.9 ·10−6) 21 (5.7 ·10−7)
22 ACANIL01 34 10 (3.4 · 10−7) 33 (2.6 ·10−7) 11 (2.5 ·10−7) 15 (2.5 ·10−7)
23 Benzidine 85 47 (3.5 · 10−7) 39 (1.2 ·10−4) 37 (9.6 ·10−8) 48 (1.4 ·10−7)
24 Pterin 51 23 (3.3 · 10−6) 38 (2.6 ·10−6) 19 (4.9 ·10−6) 23 (5.2 ·10−6)
25 Difuropyrazine 20 10 (6.2 · 10−8) 15 (2.0 ·10−6) 8 (6.1 · 10−8) 8 (7.6 · 10−8)
26 Mesityl-oxide 89 59 (7.7 · 10−4) 99 (3.3 ·10−5) 49 (3.8 ·10−6) 81 (1.1 ·10−6)
27 Histidine 112 57 (6.9 · 10−6) 99 (3.3 ·10−5) 52 (8.9 ·10−6) 52 (8.6 ·10−6)
28 Dimethylpentane 39 18 (1.3 · 10−5) 20 (3.3 ·10−5) 27 (2.5 ·10−5) 28 (2.5 ·10−5)
29 Caffeine 32 13 (3.5 · 10−7) 29 (9.2 ·10−7) 9 (3.4 · 10−7) 12 (3.7 ·10−7)
30 Menthone 74 35 (4.5 · 10−7) 74 (2.4 ·10−7) 28 (8.7 ·10−7) 33 (2.7 ·10−6)
31 Rhodium complex 141 120 (7.2 ·10−5) 83 (2.4 ·10−4) 60 (2.3 ·10−5) 82 (4.0 ·10−5)
total number of steps 1017 629 829 510 597
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with the most difference is system 26, where internal 1 requires 49 steps, while internal 2
requires almost the double amount of steps, namely 81 steps. Also in systems 23 and 31 a
difference can be observed, however not as significant. The reason lies in the overshooting
procedure from section 6.1.1. The overshooting uses the angle of the latest three training
points. Since the GPR surface for internal 2 is in Cartesian coordinates, in contrast to internal
1, which is in internal coordinates, at different steps during the optimization overshooting is
performed. This can lead, like in those three cases, to a different number of steps.

In addition, the energy difference for all methods is compared to L-BFGS in Cartesian
coordinates to indicate, if the same minimum is found. The respective results are shown in
table 6.2. The difference is for most systems equal or below 10−6Eh. For two systems only
an energy difference of 10−4Eh has been found. The first one is system 26, mesityl-oxide
for L-BFGS in internal coordinates. This system did not converge to a minimum, instead, it
converged to a first-order saddle point. The other system is benzidine (23) for the GPR in
Cartesian coordinates, which converged to a slightly different minimum. In all other cases, the
same minimum was found for all methods.

In principle, a comparison to Meyer and Hauser [74] is possible for internal 2, because they
also investigated this method for the 30 molecules in fig. 6.4. In contrast to this work, they
used Hartree-Fock with STO-3G basis set as the respective level of theory. In this work DFT
was used. They also used the same starting geometry like in this work, except for systems 8,
23, 24, and 26. These were here slightly distorted because the optimizer found always a saddle
point due to symmetry reasons. If we compare all but these four molecules, they require
395 steps for delocalized internal coordinates. Internal 2 in this work required fewer steps, i.e.
338. This difference can result from a different set of primitive internal coordinates, a different
covariance function (they used the squared exponential), or a different ab-initio method.

6.2.2 Influence of The Hyperparameters

The performance of the GPR optimizer is potentially influenced by two hyperparameters, the
length scale ` and the noise parameter σ. One way to choose them is to optimize the marginal
likelihood in eq. (5.72) Since the optimization of log p, and its derivative is computationally
quite expensive, a different approach is chosen, which will be explained in the following.
In fig. 6.8 the dependence of log p on ` and σg is plotted, for both methods internal 1 and
internal 2 for the furan system. fig. 6.8 on the top shows the dependence for internal 1, while
the dependence for internal 2 is shown in fig. 6.8 on the bottom. In these plots, six training
points are included. The hyperparameters are quite decoupled and treating them separately is
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Figure 6.8: Heat maps of the marginal likelihood log p in dependence of the length scale ` and
the gradient noise σg, internal 1 on the top and internal 2 on the bottom. Reprinted (adapted)
with permission from [1]. Copyright 2021 American Chemical Society.
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justified.
First, the dependence of the log marginal likelihood log p on the length scale ` is discussed.

Therefore it is plotted in fig. 6.11 for the molecule ethanol. In fig. 6.11 it is shown on the top
for internal 1 and in fig. 6.11 on the bottom for internal 2. Looking at the plots the peak for
internal 1 is more peaked compared to internal 2. The maximum for internal 1 is at ` = 8.5 a0,
while for internal 2, a shallow maximum at ` = 10.5 a0 can be observed. This fact results
in a lesser dependence on the length scale for internal 2. Other systems show similar results.
For example furan and the largest system, the rhodium complex, can be seen in fig. 6.10 and
fig. 6.9. However, the maximum is at larger values of `. The maximum value of ` is between
10.5 a0 and 13 a0. Including more training data, i.e. with an increasing number of steps, the
length scale with the highest log p becomes smaller. The reason behind this is, that with more
training data at more similar geometries the training points are more correlated, resulting in
a lower length scale. This is used to get an appropriate length scale without an expensive
optimization of log p. In the beginning a fixed length scale of ` = 13 a0 is chosen. Every time
during the optimization ` is reduced by approximately 5% if the norm of the gradient of the
previous ab-initio calculation is lower than the current one. Particularly, 1/`2 is increased by
10%, which is a decrease of ` by 4.65%. This approach decreases the total number of steps.
For example, system 31 requires 143 steps if a fixed length scale of ` = 13 a0 is used. With
the automatically adapted length scale, only 60 steps are required. The proposed approach
leads to a too large length scale for small systems like water. However, they anyway need a
small number of optimization steps. Since the goal of the optimization algorithms are large,
realistic molecules, like system 31, this approach works very well without choosing every time
the length scale manually.

An alternative way to optimize the length scale is to calculate values for log p at three
different values of ` and find a maximum from a quadratic or a GPR fit, without calculating
the expensive derivative of log p. In fig. 6.12 an example of this method is demonstrated. As
can be seen, the GPR fit fits quite well the true log p function around the area of the maximum
function value. This method for computing the optimal hyperparameters can be applied for
example for a system that is much further away from a minimum than in our tests. This could
also be used for molecules where the maximum is not as flat as in the test systems investigated
here.

The dimension of the energy and the gradient are different, i.e. the energy is measured in
Hartree Eh, the gradient as energy per length, Eh/a0. Therefore the separation of the noise
parameter σ can be split into one for the energy σe and one for the gradient σg. Then the
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Figure 6.9: The logarithm of the marginal likelihood log p depended on the lengthscale for
the rhodium complex for internal 1(left) and internal 2 (right). The number of training points,
TP in the plot, refers to the number of steps.
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Figure 6.10: The dependece of the logratihm of the marginal likelihood on the length scale `
for the furan molecule. Internal 1 is shown on the left, internal 2 on the right. The number of
training points, TP in the plot, refers to the number of steps.
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Figure 6.11: The logarithm of the marginal likelihood log p is plotted against the length scale
`, for internal 1 (top) and for internal 2 (bottom). The number of steps, M in the plot, refers
to the number of training points. For this plot the molecule ethanol was used. Reprinted with
permission from [1]. Copyright 2021 American Chemical Society.
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Figure 6.12: Optimizing log p with three points. As can be seen GPR fits better to the true
log marginal likelihood than a quadratic fit.
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Figure 6.13: The logarithm of the marginal likelihood log p plotted against the gradient noise
σg for internal 1(top) and internal 2 (bottom). The gradient noise is plotted in a logarithmic
scale. The molecule used for this plot is ethanol. Reprinted (adapted) with permission from [1].
Copyright 2021 American Chemical Society.
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Figure 6.14: The logarithm of the marginal likelihood is plotted against the gradient noise,
like in fig. 6.13. The molecule used in this plot is furan. The number of training points, TP in
the plot, refers to the number of steps.
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scaled unit matrix σI in eq. (5.55) is replaced with a diagonal matrix. The first M entries
contain the noise for the energy, the remaining entries are filled with the noise for the gradient.
While the energy noise parameter is set to 10−7Eh, the gradient noise is variable. For both
methods the marginal likelihood log p is plotted in fig. 6.13 for ethanol and in fig. 6.14 for
the molecule furan. Both systems result in a similar plot for both methods. For internal 1
the marginal likelihood log p is independent of the gradient noise σg, if σg < 10−4Eh/a0.
For larger values, there are some differences between the molecules ethanol and furan. If the
number of steps, i.e. training points, is below 7 there is a small maximum of log p, which
disappears at seven training points. In contrast for ethanol, the maximum remains for seven
training points. Consequently all values below 10−4Eh/a0 can be chosen for method 1. The
marginal likelihood log p in contrast looks different. They are shown in fig. 6.13 for ethanol
and fig. 6.14 for furan. As can be seen in the plots, at a certain small noise parameter the
marginal likelihood drops steeply. Therefore a distinct maximum can be found at around
σg ≈ 10−6Eh/a0, for both systems ethanol and furan. At a low number of training points for
ethanol (three in that case) a second lower maximum at around σg ≈ 10−3Eh/a0 appears. In
contrast to ethanol, where this maximum disappears for a higher number of training points,
furan shows a second maximum for more than five training points. This lower maximum is
also roughly at σg ≈ 10−3Eh/a0. Since this maximum is either always smaller than the higher
maximum at lower noise parameters or disappears at a higher amount of training points, this
maximum can be ignored. Therefore the noise parameter for both methods is set to a constant
value. For method 1 σg = 10−7Eh/a0 is chosen and σg = 10−6Eh/a0 for method 2.

The steep decrease for small values of σg for method 2 is probably caused by the coordinate
transformation, i.e. the chain rule. The 3N − 6 dimensional internal gradient is transformed
into the 3N dimensional Cartesian gradient. This can be seen easily when looking at the
sub-matrix ∂2k(xm,xn)

∂xm∂xn
of K from eq. (5.65). In matrix form, the transformation is written as

∇2
xk(xn,xm) = B̃>

n ∇2
qk(qn,qm)B̃m (6.25)

with ∇2
xk(xn,xm) ∈ R3N×3N , ∇2

qk(qn,qm) ∈ R3N−6×3N−6 and B̃ ∈ R3N−6×3N . The remain-
ing six components correspond to translation and rotation. As the energy is invariant with re-
spect to rotation and translation, these compounds are equal to zero. Therefore the sub-matrix
is a singular matrix. However, this would lead to difficulties in the Cholesky decomposition.
Therefore, a sufficiently large noise parameter for the gradient σg has to be added. If it is too
small the Cholesky decomposition will become unstable resulting in a decrease of log p. This
can be avoided by using suitable values for σg.
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Figure 6.15: The logarithm of the marginal likelihood log p plotted against the gradient noise
σg for different scfconv. scfconv refers to different converegence criteria for the self-consistent
field (SCF) cycles in TURBOMOLE. The method is internal 1 and the molecule is furan.
Reprinted (adapted) with permission from [1]. Copyright 2021 American Chemical Society.

86



Chapter 6 Geometry Optimization Based on GPR in Internal Coordinates

Since σg can be interpreted as the noise of the gradient, it should depend on the level of
theory as well as the SCF convergence behavior in the underlying DFT program. On the one
hand, TURBOMOLE is known for still having good convergence of the SCF cycles for low
noise values. On the other hand, GPR can deal with quite high noise levels, because they are
directly incorporated as noise parameters. Therefore it can deal with less ideal ab initio pro-
grams. The Turbomole parameter scfconv, which indicates that SCF cycles are converged until
two consecutive energies differ by less than 10−scfconv Eh, is used to show the consequences of
higher noise in the gradient. Using different scfconv values for the SCF cycles, the corre-
sponding log p are plotted against σg. For internal 1 and the molecule furan, this is shown in
fig. 6.15. The maximum of log p shifts to higher values for lower values of scfconv, where the
lowest value is achieved for scfconv = 2 at σg = 10−2Eh/a0. If the noise parameter σg is
chosen correctly, the geometry optimization still converges for scfconv = 3. Approximately
the same number of steps is required. This demonstrates the stability of the optimizer at high
noise levels of the gradient. This can be useful for more difficult electronic structure methods,
which have noise in the gradient, such as solvation methods.

For a different number of training points, the marginal likelihood plotted against the noise
parameter of the gradient is shown for different scfconv in fig. 6.16 for internal 1 and internal
2 in fig. 6.17. The molecule is furan. As can be seen in fig. 6.16a, where scfconv = 2 for
internal 1, the noise is pretty good detected by the marginal likelihood. The maximum value
for the gradient noise is σg ≈ 10−2 and remains the same for different number of training
points. Going to scfconv = 3, which is the plot in fig. 6.16b, the maximum of the marginal
likelihood is at σg = 10−3. Up to now, the maximum value for the marginal likelihood seems
to correspond to the value set for scfconv. However, setting scfconv = 4 seems to contradict,
because the maximum now is slightly higher at σg ≈ 10−3, the same as for scfconv = 3.

Increasing the scfconv value to 5 in fig. 6.16d shows a shift to lower noise values. For three
respectively five training points a gradient noise σg ≤ 10−3, can be chosen showing that the
GPR can handle scfconv = 5 quite well. Increasing the number of training points to 7 results
in a clear maximum at σg = 10−5. If scfconv = 6, as shown in fig. 6.16e the result is almost
the same as for scfconv = 8 in fig. 6.16f, which has already been discussed. This clearly
shows that lower convergence criteria for the scf cycle in TURBOMOLE can be handled by
GPR internal 1 quite well. This can be useful for systems, which converge for smaller scfconv
values but not for tighter values and still lead to good geometry optimization results.

The logarithm of marginal likelihood log p dependent on the gradient noise σg for different
scfconv values for internal 2 can be seen in fig. 6.17. As can be seen in fig. 6.17a for scfconv
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Figure 6.16: The logarithm of the marginal likelihood log p is plotted over the gradient noise
σg for different scfconv criteria in TURBOMOLE for internal 1 and different number of train-
ing points. The molecule used is furan. The number of training points, TP in the plot, refers to
the number of steps.
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= 2, the resulting plots for different training points is similar to internal 1. This is also the
case for scfconv = 3, as shown in fig. 6.17b. The first differences between internal 1 and
2 arise for scfconv = 4, which can be seen in fig. 6.17c. For three training points there is
already a steep decrease of the marginal likelihood at σg ≈ 10−6 indicating the instability of
the Cholesky decomposition for too low noise values for internal 2. Increasing the number of
training points to five, and seven results in a maximum at σg ≈ 10−4, which corresponds to the
value for scfconv.

At scfconv = 5, the steep decrease at ≈ 10−6 appears for all training points. For a lower
number of training points, a similar result is obtained as for scfconv = 8, which has been
discussed before. For five training points, a maximum at σg ≈ 104 can be seen. Increasing the
convergence criteria in TURBOMOLE to scfconv = 6, shown in fig. 6.17e, leads to a similar
result as for scfconv = 8. This shows that, as for internal 1, internal 2 can handle higher noise
in the gradient quite well, and adapting the gradient noise σg approximately to the scfconv
value can lead to good results in geometry optimization.
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Figure 6.17: Different plots for the scfconv of TURBOMOLE of the logarithm of the marginal
likelihood depend on the gradient noise σg for internal 2. The molecule is furan. The number
of training points, TP in the plot, refers to the number of steps.
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6.3 Ideas for Improving Geometry Optimization Based on
Gaussian Process Regression

Several algorithms to speed up the geometry optimization were also tested. They have in
common that they belong to the class of active learning methods. For these approaches the
next training point is selected according to an acquisition function. Two examples of acquisi-
tion functions will be presented in the following. The first one is the expected improvement
expected improvement (EI) and the other is the probability of improvement probability of im-
provement (POI). Both acquisition functions did not improve the overall performance of the
optimizer.

6.3.1 Expected Improvement

The expected improvement EI calculates how much improvement can be expected if a specific
point would be added. The idea was introduced by Schonlau et al. [75] and Sasena [76]. Let’s
define Y (x) as a random variable, which models the uncertainty of a function value at a certain
point x. This random variable is assumed to be normally distributed with mean and variance
from the posterior of a GP. Let fmin be the current best minimum, then an improvement ξ is
achieved if Y (x) = fmin − ξ. The probability density is then given as

p(x) =
1√

2πσ2(x)
exp

(
−(fmin − ξ − µ(x))2

2σ2(x)

)
(6.26)

The EI is simply the expectation value of this distribution regarding I . This means the EI is
obtained by integrating the above expression

E[ξ] =
∞∫
0

ξ√
2πσ2(x)

exp

(
−(fmin − ξ − µ(x))2

2σ2(x)

)
dξ (6.27)

Substituting x = fmin−ξ−µ
σ

leads to

−∞∫
fmin−µ

σ

σx− (fmin − µ)√
2π

exp

(
−x

2

2

)
dx (6.28)
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By using
b∫
a

f(x) dx = −
a∫
b

f(x) dx and setting u = fmin−µ
σ

this can be written as

−
u∫

−∞

σx√
2π

exp

(
−x2

2

)
dx+ σu

u∫
−∞

exp
(

−x2

2

)
√
2π

dx (6.29)

Since d
dx

exp
(
−x2

2

)
= −x exp

(
−x2

2

)
, the left side can be easily evaluated as

−
u∫

−∞

σx√
2π

exp

(
−x2

2

)
dx = σϕ(u), (6.30)

where ϕ(u) is the density function of a normal distribution. The right side can be expressed as
the cumulative density function Φ

σu

u∫
−∞

exp
(

−x2

2

)
√
2π

dx = σu(Φ(u)− Φ(−∞)) = σuΦ(u) (6.31)

In total, the EI is
E[ξ] = σ(x) (uΦ(u) + ϕ(u)) . (6.32)

To maximize the EI the derivative with respect to x can be used for a quasi-Newton optimizer.
The derivative is obtained by applying the product rule and the chain rule

∂E[ξ](x)
∂xk

=
∂σ(x)

∂xk
u(x)Φ(u(x)) + σ(x)

∂u(x)

∂xk
Φ(u(x))

+ σ(x)u(x)
∂Φ(u)

∂u

∂u

∂xk
+
∂σ(x)

∂xk
ϕ(u) + σ(x)

∂ϕ

∂u

∂u

∂xk

(6.33)

Since σ =
√
V of the GP posterior, the first derivative term is written as

∂σ(x)

∂xk
=
∂V[x]
∂xk

1

2
√

V[x]
. (6.34)

The next derivative term is

∂u(x)

∂xk
=
∂V[x]
∂xk

m(x)− fmin

V3/2[x]
− ∂m(x)

∂xk

1√
V[x]

(6.35)
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which is also required for using the chain rule. The next relevant derivatives are ∂Φ(u)
∂u

=

ϕ(u) and ∂ϕ(u)
∂u

= −uϕ(u). Plugging all those derivative parts together leads to the following
expression

∂E[ξ](x)
∂xk

=
∂V[x]
∂xk

ϕ(u)

2
√

V[x]
− ∂m(x)

∂xk
Φ(u). (6.36)

In fig. 6.18 an example is shown for the one-dimensional test function

f(x) =
(
−x2 + x+ 1

)2 − cos(x). (6.37)

Starting with 5 training points, it requires 5 iterations to converge to the minimum. In step 1
the EI has the maximum closer to the real minimum, compared to the minimum of the GPR
surface. The green cross in fig. 6.18 shows the maximum position of the EI function. Adding
this point to the GPR-surface as new training point results in an EI function whose value is
smaller compared to step 1. This shows that the improvement of further points is not as good
as previously. Again the maximum of the EI lies closer to the real minimum, compared to the
GPR minimum. In the third step, the EI gets again smaller, indicating that the real minimum is
pretty close. This time the maximum of the EI is near the real minimum. In step 4 the values
for the EI seem to be zero everywhere, however, there is still a small maximum, that gives
small improvement regards a minimum. Using this training point, the GPR-surface minimum
corresponds to the real minimum of the function. Also, the function is pretty good described
and interpolated around the minimum by the GPR surface.

In contrast to the probability of improvement POI, this acquisition function does not need
a specific improvement (the T value for the POI). In addition, the EI has a stopping rule.
When the EI is less than some small positive number, then one can stop the optimization. Both
methods, the EI and the POI, use the variance of the GPR to force the exploration of regions
with few sample points, i.e. where the variance is high. However, these methods treat the
variance as if it would be correct, which is not always the case.

6.3.2 Probability of Improvement

The goal is to maximize the probability of improvement (POI) regards some target T to select
iterative new points. The model of the uncertainty of the function value is realized by a random
variable Y (x) with mean µ(x) and variance σ2(x). The current best function value is the
minimum fmin. Then the value for improvement is some number T < fmin. The probability of
improving is then P (Y (x) ≤ T). By assuming that y(x) is normally distributed, the POI is
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Figure 6.18: EI for the minimum search. The blue dots in each plot correspond to the up
to then included training points with which the GPR was constructed. The grey cross is the
maximum of the expected improvement and used as a training point, where the real function
is evaluated next. In the last plot it is the found minimum of the function.
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given

P (Y (x) ≤ T) = Φ

(
T− µ(x)

σ(x)

)
, (6.38)

where Φ is the cumulative density function of a normal distribution. This idea was introduced
by Kushner [77] for one dimension and improved by Perttunen [78], Elder [79] and Mockus
[80] to higher dimension. The standard error in the region, where more and more points around
the current best points are sampled, becomes small. Therefore, T−µ(x)

σ(x)
is negative, because T

is usually smaller then µ(x). As a result, the POI is very small. At some point this probability
is so small, the algorithm is forced to search in areas, where the standard error is higher, i.e. in
regions that have been sampled not so well.

The derivative can be simply calculated by applying the chain rule:

∂P (Y (x) ≤ T)

∂xk
=
∂Φ(u)

∂u

∂u

∂xk
= ϕ(u)

(
µ(x)− T

2V[x]3/2
∂V[x]
∂xk

− ∂µ(x)

∂xk

1√
V[x]

)
. (6.39)

The task is now to select an improvement T. An easy requirement is, that T < fmin below
the current best-evaluated function value. Using the GPR surrogate minimum value smin, a
value for T can be constructed as follows Jones [67]

T = smin − α (fmax − fmin) (6.40)

where α is an adaptable value. Intuitively, choosing large values for α will lead to a more
global search, while small values will force the algorithm to search more locally. An idea
would be to start with a medium to large value of α, for example, α = 0.25, and then steadily
decrease the value to enforce a more local search. An example of how the POI selects the next
points to evaluate is shown in fig. 6.19

Looking at the first step, three maxima of the acquisition function can be seen. If the
highest maximum is selected, the right direction is chosen. Adding this maximum to the
GPR-surface results in the second step in an acquisition function with only one maximum.
The POI at that point is also lower indicating that only a small improvement of the surrogate
surface will occur. In the third step, no maximum in the acquisition function can be seen,
however numerically there is a maximum. In the fourth step, the complete acquisition function
is almost zero, indicating that locally there are no improvements possible regards a minimum.
And indeed the minimum of the GPR surface corresponds to the minimum of the real function.
In contrast to the EI, the GPR surface around the minimum is somewhat better described. This
is the advantage of the POI to describe the surrounding of the minimum better if the correct
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Figure 6.19: Probability of improvement for the minimum search. The blue dots in each plot
are the training points for constructing the GPR. The grey cross is the maximum of the POI
used as a point where the function should be evalueated next.
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target is chosen. In general, this is difficult to choose a correct value for α, and therefore
sampling with different α can be advantageous.

6.3.3 Results and Discussion

EI and POI are tested for the 30 molecules from fig. 6.4. In table 6.3 the number of steps for
those two methods is listed. They were again tested for internal 1 and internal 2. For internal
1 it can be easily seen that the required number of steps are similar to using local optimization
on on the surrogate surface with overshooting, except for system 23, 26, 27, 28, and 30.
There, no convergence after 100 steps could be achieved. These are the systems that already
required more steps compared to the other systems without any acquisition function. The
reason lies in the global search character of the EI algorithm. If it does not find a minimum in
the beginning, like for the other systems, the algorithm tries to explore the PES more globally
to find a minimum. Using more steps would probably lead to convergence, but for a different
minimum (and probably lower minimum) than without using EI.

The α-value in the target T for the POI was set to zero. This means that the probability
is maximized regards the local minimum of the GPR surface. The reason for this value for
α lies in the locality of the minimum search, only local minima are of interest, because a
global optimization would be too expansive for large molecules, which have a large number
of minima. That is different from the EI, which is essentially for global optimization. With
both algorithms, a global search would be theoretically possible. For the POI larger α-values
would allow this. As can be seen from table 6.3 internal 1 and internal 2 perform similarly,
however for both, EI and POI, the results are either the same or a bit worse compared to those
obtained wihtout them. The reason is the minimum of the surrogate surface is already a good
prediction regards minimization and therefore mostly similar results can be obtained.

Subtracting the number of steps for the rhodium complex in table 6.2, a 450 total number
of steps are required for internal 1, compared to internal 1 with thePOI, which required 481
steps. This means that internal 1 is a bit better when the POI has not been used.

If the convergence criteria are not fulfilled after 100 steps for EI the number of steps is set
to 100. Internal 1 with EI required 750 steps, while internal 2 required 858.

The POI required in total 521 steps, compared to 515 steps for pure internal 2. The differ-
ence here is only 6 steps, meaning that the POI for internal 2 performs better than for internal
1.

A possibility to improve at least the POI could be to choose different values for α for the
target T . This would lead on the one hand to a more global search, and on the other hand, if
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Table 6.3: The number of steps for EI and POI as acquisition functions are compared between
internal 1 and internal 2. nc means, the algorithm did not converged after 100 steps.

Acquisition function Expected Improvement Probability of Improvement
Coordinate System internal 1 internal 2 internal 1 internal 2
1 Water 6 5 6 5
2 Ammonia 7 8 7 7
3 Ethane 6 6 6 6
4 Acetylene 6 5 6 5
5 Allene 4 5 4 5
6 Hydroxysulfane 13 13 13 12
7 Benzene 6 5 6 5
8 Methylamine 24 22 22 27
9 Ethanol 8 8 8 8
10 Acetone 10 10 10 10
11 Disilyl-ether 10 9 10 9
12 1,3,5-Trisilacyyclohexane 22 nc 18 18
13 Benzaldehyde 8 9 8 9
14 1,3-Difluorobenzene 7 8 7 8
15 1,3,5-Trifluorobenzene 7 8 7 8
16 Neopentane 5 4 5 4
17 Furan 8 8 8 8
18 Napthalene 7 7 7 7
19 1,5-Difluoronaphtalene 8 9 8 9
20 2-Hydroxybicyclopentane 23 25 23 25
21 ACHTAR10 18 22 18 21
22 ACANIL01 13 20 13 17
23 Benzidine nc nc 43 45
24 Pterin 17 22 19 23
25 Difuropyrazine 8 8 8 8
26 Mesityl-oxide nc nc 76 75
27 Histidine nc nc 55 62
28 Dimethylpentane nc nc 15 23
29 Caffeine 9 12 11 12
30 Menthone nc nc 32 40
total number of steps 750 858 481 521
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close to a minimum, a more local search.
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6.4 Conclusion

GPR optimization in internal coordinates reduces the number of steps compared to Cartesian
coordinates for both internal 1 and internal 2. The number of required energy and gradient
evaluations of the external ab-initio program are similar for both methods. The main difference
between the two methods is the iterative back transformation. While internal 1 does require
the back transformation for each ab initio calculation, internal 2 does not require it. The back
transformation can fail for special geometries of molecules, which are not treated safely by the
primitive internal coordinates to generate the delocalized internal coordinates. Most problems
arise for linearly connected atoms since they cannot be described as a single angle. Usually,
three or fewer linearly connected atoms can be treated quite safely by the algorithm. However,
four and more linearly connected atoms cause problems, but these molecules are rather rare in
practice.

Internal 2 produces more computational costs than internal 1 because the covariance matrix
is transformed from internal to Cartesian coordinates in each micro-iteration. This can be seen
for example in system 27 (histidine) where internal 1 needs 14.2 s for all GPR operations.
Internal 2 requires 133.1 s on an Intel Core i5-4590. In total, internal 2 is more robust compared
to internal 1, while internal 1 is in general faster.

The hyperparameters relevant for geometry optimization in internal coordinates for GPR
are the length scale ` and the gradient noise σg. Since they can be treated separately, both
were investigated independently of each other. The length scale is fixed at ` = 13 a0 for
both methods and is adapted throughout the optimization procedure. The noise parameter for
the gradient is somehow different for both methods. For internal 1 everything below σg ≤
10−4Eh/a0 is well suited, and σg = 10−7Eh/a0 was chosen, because the noise parameter also
acts as a regularization and allows a numerically stable Cholesky decomposition.

Internal 2, however, required a higher noise. Here, a clear maximum of the marginal
likelihood could be observed at σg = 10−6Eh/a = and is, therefore, chosen as gradient noise.
The reason for this behavior lies in the transformation from a 3N − 6-dimensional gradient to
a 3N -dimensional Cartesian gradient.

Additionally, the dependence of the gradient noise on different convergence criteria of the
SCF cycles of TURBOMOLE is investigated. Here, the maximum of the marginal likelihood
shifts to higher gradient noise values for lower convergence criteria. This is useful for the
GPR-optimizer because it can handle more noise in the ab initio program by adapting the
noise parameter. At the convergence criteria of scfconv=3 still, the same amount of steps
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are required for the convergence of the optimizer. This demonstrates the robustness of the
optimizer.

To reduce the required number of steps, two other methods were tested. Both methods use
an acquisition function to find the next point. The first acquisition function is the EI. It uses
a random variable to model the uncertainty of the function value, i.e. the observations, in this
case, the energy from the ab initio program. Then the expectation for an improvement ξ was
calculated.

The other acquisition function is the POI. It also uses a random variable with mean and
variance of the posterior of a Gaussian process. In contrast to the EI, a target T has to be
specified. The random variable is a Gaussian distribution and, therefore, with the target T
the probability to be better than the target can be calculated and in the end, maximized. The
target here was chosen for local optimization. In total, the results of internal 1 and 2 without
any acquisition function were similar or better compared to using an acquisition function. The
main reason is that in geometry optimization no global minimum is searched for, but a local
minimum. Using the minimum of the GPR surface in combination with overshooting leads in
general to better results compared to an algorithm, that is designed for global optimization.

In summary, two methods for combining internal coordinates with GPR to find a local
minimum of the PES has been presented. Internal 1 uses a GPR surrogate surface in internal
coordinates and internal 2 in Cartesian coordinates. The GPR covariance function is in both
methods calculated in internal coordinates. They show similar results and both are better than
Cartesian coordinates. In addition, a simple approach for the hyperparameter optimization is
introduced. There was no significant improvement when an acquisition function was used to
improve the optimization procedure. EI and POI are more relevant for global optimization.
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7 Transition State Search using Gaussian
Process Regression

In this chapter, the transition state search by using a GPR-surrogate surface is extended to in-
ternal coordinates. The transition state (TS) is the surface separating two minima. The lowest
point is a first-order saddle point. In contrast to GPR-minimization, only internal method 1 will
be applied. The reason is, that the method internal 2 is too expensive to use because additional
matrix-matrix multiplications occur. This will be discussed in the next section 7.1. In addition,
the problems of internal 1 are discussed, mainly the unstable back-transformation. An attempt
to overcome this problem is to use an acquisition function, namely predictive entropy search-
ing, originally used for optimization [81]. Predictive entropy search is extended to be useful
for transition state search, by incorporating the corresponding constraint for saddle points of
first order. This will be discussed in section 7.1.2. In the end, the result for transition state
search based on Gaussian process regression in internal coordinates (GPRTS internal) and the
transition state search based on predictive entropy search in internal coordinates (GPRTS-PES)
will be compared in section 7.2. In this section, the choice of hyperparameters is discussed too.
Predictive entropy search leads to similar or slightly better results than purely using internal 1.
All quantities in this chapter are in atomic units, unless mentioned otherwise.
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7.1 GPR-Transition-State Search

In this section, the transition state search based on GPR is explained. It is abbreviated as
Gaussian process regression for transition state search (GPRTS). Since the Hessian of the
posterior mean function of the GPR can easily be calculated, P-RFO [42], as explained in
section 3.2.2, is the method of choice on the GPR-surrogate surface. Since P-RFO requires
a qualitative good Hessian, at least in the direction of the eigenvector corresponding to the
lowest eigenvalue, two approaches are presented in the next sections.

In the next section, section 7.1.1, a detailed description of the algorithm is presented, while
in section 7.1.2 an alternative approach to sample points is given.

If enough points are sampled, both approaches use the same technique to find a saddle
point of first order on the GPR-surrogate surface.

The same convergence criteria as in section 6.1 are used. However, there is an additional
criterion for the change in energy in Hartree

∆E < ηE :=
η

450
. (7.1)

The prior mean from eq. (6.7) is set to

Ē =
1

M

M∑
n=1

En, (7.2)

which is the mean of the observed energies, which is also used by Denzel et al. [22].

7.1.1 GPR-TS in Internal Coordinates

Method 2 from section 6.1.2 suggests extending it to transition state search. Therefore the
evaluation of the Hessian on the surrogate surface is required. To calculate the second deriva-
tive ∂2E(q(x))

∂xk∂xl
, the first derivative requires the term, that is canceled out in eq. (6.18). Then the
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Hessian of the GPR surrogate is

∂2E(q(x))

∂xk∂xl
=

M∑
n=1

αn

[
Ni∑
i=1

Ni∑
j=1

∂qi
∂xk

∂2k(q,qn)

∂qi∂qj

∂qj
∂xl

+

Ni∑
i=1

∂k(q,qn)

∂qi

∂2qi
∂xk∂xl

]

+
M∑
n=1

Nx∑
i=1

βn,i

[
Ni∑
j=1

Ni∑
r=1

∂2qj
∂xk∂xl

∂k(q,qn)

∂qj∂qn,r

∂qn,r
∂xn,i

+

Ni∑
j=1

Ni∑
r=1

Ni∑
t=1

∂qt
∂xk

∂qj
∂xl

∂qn,r
∂xn,i

∂3k(q,qn)

∂qj∂qt∂qn,r

+

Ni∑
j=1

Ni∑
r=1

∂qj
∂xl

∂2k(q,qn)

∂qj∂qn,r

∂2qn,r
∂xk∂xn,i

+

Ni∑
j=1

Ni∑
r=1

∂qr
∂xk

∂2k(q,qn)

∂qr∂qn,r

∂2qn,j
∂xl∂xn,i

+
��������������Ni∑
j=1

∂k(q,qn)

∂qn,j

∂3qn,j
∂xk∂xl∂xn,i

]

(7.3)

The last term including the third derivative of the internal coordinates q with respect to the
Cartesian coordinates x drops out because of the independence of the training points and the
symmetry of the covariance function. However, the second derivative of the internal coordi-
nates with respect to the Cartesian coordinates has to be calculated. In addition, there are more
matrix-matrix multiplications for each calculation of the Hessian, making it impractical to use
this approach for transition-state search. At least five summation loops are necessary for the
calculation of the Hessian, including at least six loops for the second derivatives of the internal
coordinates with respect to the Cartesian coordinates, for one single Hessian evaluation on the
GPR surface. This leaves only method internal 1 as a possibility to include internal coordinates
for the GPR-based transition-state search.

The Hessian for internal 1 can be calculated using

∂2E(q)

∂qk∂ql
=

M∑
n=1

αn
∂k(q,qn)

∂qk∂ql
+

M∑
n=1

Ni∑
i=1

βn,i
∂3k(q,qn)

∂qk∂ql∂qn,l
, (7.4)

which can be used for transition state search via P-RFO on the GPR-surface.
To have a good Hessian required for P-RFO, first, a rotation of a dimer has to be performed

to align the Hessian in the correct direction. Since the evaluation of the Hessian with only one
training point is zero, a random point is selected, whereas in [22] the point x1 +R/

√
Nx · 1 in
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Cartesian coordinates is used, where x1 is the intitial Cartesian geometry and Nx = 3Nat.
Now, q1 is the initial geometry in internal coordinates and d = Ni is the dimension of the

internal coordinates. With this random point and its energy and gradient a new GPR surface
is built. Then a dimer is constructed using the first training point, q1, as the dimer midpoint
qmid and the random point, qrand, as the dimer endpoint qend. Their distance is R. Here, R is
set to R = 0.5 a0. This dimer is then rotated, see section 3.2.1 for details, by calculating the
Hessian at qmid and aligning the dimer in the direction of the lowest eigenvalue of the Hessian,
i.e. performing a rotation in the direction of the corresponding eigenvector. Thus, the new
endpoint q′

end is obtained through

q′
end = qmid +

R

|v|
v (7.5)

where v is the eigenvector of the Hessian evaluated at qmid, which corresponds to the lowest
eigenvalue.

Then this new endpoint is selected as a new training point, where energy and gradient have
to be evaluated. These rotations are repeated until the convergence criterion for the rotation is
fulfilled. Therefore the cosine of the angle

cos(γ) =

∣∣∣∣(qend − qmid) · (q′
end − qmid)

R2

∣∣∣∣ (7.6)

is calculated, with qmid the midpoint, qend the new endpoint after rotation, q′
end the old endpoint

and R the dimer length. For the first rotation, the convergence criterion is cos(γ) > 1 −
10−4 and all other rotations are converged when cos(γ) > 1 − 10−3. After the rotation is
converged, the Hessian, at least in the direction of the lowest eigenvalue, is good enough for
a translation on the GPR surface using P-RFO. Then the dimer is translated via P-RFO to this
new saddle point guess from the GPR surface. Afterwards, energy and gradient are calculated,
repeating this procedure until the global convergence criteria are fulfilled. If no convergence
occurred after d5

√
g

6Ni
e translations, where g is the maximum size of the covariance matrix,

as implemented in dl-find [22, 45], a rotation is performed again, until the dimer rotation
converges again and a translation on the GPR-surface can be performed again. Overshooting
is performed too, however only after a translation, and no separate dimension overshooting is
applied because only the direction is relevant.

In contrast to the minimization internal 1, the back transformation causes trouble for the
transition state search. Thus an alternative approach is presented in the next section, sec-
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tion 7.1.2, to handle this problem.

7.1.2 Predictive Entropy Search – GPRTS-PES

Instead of using a dimer rotation to get an accurate Hessian, here an alternative approach is
presented. The idea is to gain as much information about the Hessian as possible with the least
amount of training points. The main idea is to adapt the predictive entropy search, which was
originally used for optimization processes [81]. In this section, a detailed description of how
to use it for transition state search is given.

The entropy search, proposed by Henning and Schuler [82], uses an information-based ac-
quisition function, based on earlier information theoretic suggestions [83]. It tries to maximize
information about the functions’ optimum (either minimum or maximum)

αES = S [p(x?|D)]− Ep(y|D,x) {S [p(x?|D ∪ {x, y})]} (7.7)

The left term is the posterior’s entropy with respect to the current data D of the maximizer
or minimizer x?. This is a constant for all values x. The right term describes the same en-
tropy, however under expectation, because all values of y = f(x) are considered. This means
maximizing αES is minimizing the posterior entropy after the new observation {x, y}. The
problem is, eq. (7.7) is hard to compute, because first of all p(x?|D ∪ {x, y} has to be eval-
uated for all values of y and x. Secondly, the entropy terms have no closed form, therefore
there is no guarantee, that the posterior over the optimal value has an analytic form. However,
Hernández-Lobato et al. [81] rewrote this equation

αES(x) = S [p(x?|D)]− Ep(y|D,x) {S [p(x?|D ∪ {x, y}]}

= S [p(y|D,x)]− Ep(x?|D) {S [p(y|D,x,x?)]}

= αPES(x)

(7.8)

To reformulate this equation, the concept of mutual information, introduced in section 5.4.2
has to be used [84]. The mutual information between x? and a random variable Y is

I(x?, Y ) = S[x?]− S[x?|Y ]

= S[x?]−
∫
p(y)S[x?|Y = y] dy

= S[x?]− Ey[S[x?|Y = y]]

(7.9)
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If the distribution of y is p(y|D,x) and for x? is p(x?|D), eq. (7.7) is obtained. Since the
mutual information is symmetric, the following reformulation can be made

I(x?, Y ) = I(y,x?)

= S[Y ]− S[Y |x?]

= S[Y ]−
∫
p(x)S[Y |x? = x] dx

= S[Y ]− Ex? [S[Y |x?]]

(7.10)

with the distributions on x? and y this leads to

S[p(y|D,x)]− Ep(x?|D[S[p(y|D,x?,x)]] (7.11)

The key idea is to maximize the information about the transition state (or in the original
papers maximum/minimum) x?, which has the posterior distribution p(x?|D), i.e. select a
new point that minimizes the uncertainty of the model. The current information is expressed
in terms of the negative differential entropy, see eq. (5.73), of this distribution. Therefore,
the point xn+1 is selected, which maximizes the expected reduction in this quantity. Thus,
Henning and Schuler [82] introduced an acquisition function

α(x) = S [p(x?|D)]− Ep(y|D,x) {S [p(x?|D ∪ {x, y})]} (7.12)

where S[p(x)] is the differential entropy from eq. (5.73). The left term is the entropy of the
transition state with respect to the current data, for any point x this is a constant. The right
term is the same posterior entropy, however under expectation, because all possible y are
considered. In summary, the maximum of the acquisition function minimizes the entropy of
the posterior after a new observation {y,x}. However, there are two difficulties:

1. p(x?|D ∪ {x, y}) has to be evaluated for different x and y.

2. the entropy calculations are not analytically.

To counter these difficulties Hernández-Lobato et al. [81] reformulated the acquisition function
in eq. (7.10), where p(y|D,x,x?) is the posterior predictive distribution for y given the data
and x?.

In other words: conditioning on x? pushes the posterior distribution up in the location of
x? and down in regions away from x?. Notice, that both terms are entropies of predictive
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distributions, which are analytically tractable or easier to approximate. The first term is the
posterior marginal for f(x), i.e.:

S[p(y|D,x)] = 1

2
log
(
2πe

(
V[x] + σ2

n

))
(7.13)

where the noise σ2
n has to be added, because y are noisy observations. e is Euler’s number. The

variance V[x] is from eq. (5.67). The term Ep(x?|D)[S[p(y|D,x?,x)]] has to be approximated.
The expectation are taken by averaging over samples of xi

? drawn from p(x?|D). However,
only collecting data with respect to the initial geometry is relevant in this case, so only one
value, the starting geometry, has to be taken. The derivation of the following algorithm is
based on [81].

The Calculation of The Predictive Entropy Search

Now, the entropy S[p(y|D,x,x?)] is approximated. Therefore, the distribution of this expres-
sion can be written as

p(y|D,x,x?) =

∫
p(y|f(x)p(f(x)|D,x?) df(x) (7.14)

The distribution p(f(x)|D,x?) is the posterior on f(x) given the data and the location of
the transition state of f , x?. If the likelihood p(y|f(x)) is Gaussian, p(f(x)|D) is analyti-
cal because it is the predictive distribution of a GP, see eq. (5.41). However, constraints on
x? are introduced and thus these constraints make p(f(x)|D,x?) intractable. The following
constraints are introduced: x? should be a transition state, i.e. the Hessian at x? has one neg-
ative eigenvalues, while the others are positive. In addition, a diagonal Hessian is assumed to
simplify the constraint for a transition state. Then the constraints are:

C1. ∇f(x?) = 0 and ∇2
i>jf(x?) = 0

C2. ∇2
iif(x?) =

< 0, i = 1

> 0, i 6= 1
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The Constraint C1

The constraints are introduced into p(f |D) to approximate p(f |D,x?). Therefore, the two
random variables c and z are introduced

z =
(
∇2

iif(x?)
)

c =

 y

∇f(x?)

∇2
i>jf(x?)

 (7.15)

To include constraint C1 the data are conditioned on "observation" ∇f(x?) = 0 and
∇2

i>jf(x?) = 0. The random variable c enforces C1. With the input x and x?, the covari-

ance matrix KPES is constructed, which contains the covariance evaluated on the vector

(
z

c

)
.

Those parts of KPES, which depend on y, have to add the noise of the observed energy and
gradients. The covariance matrix consists of three sub-matrices Kz, Kzc and Kc. Thus, K can
be written as

KPES =

(
Kz Kzc

K>
zc Kc

)
∈ R[2d+nk+d·(d−1)/2]×[2d+nk+d·(d−1)/2] (7.16)

where d is the dimension of the system, i.e. d = Ni and nk is the size of the covariance matrix
from eq. (5.65). These sub-matrices are calculated as follows:

Kz =
(

cov
(
∇2

iif(x?,∇2
jjf(x?)

))
=
∂4k(x?,x?)

∂2x?i∂
2x?j

∈ Rd×d (7.17)

Kc =

 cov(y,y) cov(y,∇f(x?)) cov(y,∇2
i>jf(x?))

cov(∇f(x?),y) cov(∇f(x?),∇f(x?)) cov(∇f(x?),∇2
i>jf(x?))

cov(∇k>lf(x?),y) cov(∇k>lf(x?),∇f(x?)) cov(∇k>lf(x?),∇i>jf(x?))


(7.18)

and

Kzc = cov(z, c) =
(

cov(∇2
iif(x?,y) cov(∇2

iif(x?,∇f(x?)) cov(∇2
iif(x?,∇2

i>jf(x?))
)

(7.19)
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The individual covariances are computed as in eq. (5.64). With the conditioning on the ob-
served values of c, the first constraint can be included into

p(z|D,C1) = p(z|c) = N (z|m0,V0) (7.20)

Since both are Gaussian, the conditioning of two Gaussian are given as in eq. (5.22), and the
resulting distribution is Gaussian with mean

m0 = KzcK
−1
c c (7.21)

and covariance matrix
V0 = Kz −KzcK

−1
c K>

zc (7.22)

Calculating Constraint C2 using Expectation Propagation

To incorporate constraint C2 a technique called Expectation Propagation (EP) [85] is used.
The final algorithm is similar to Gaussian process regression for classification [10].

The second constraint is included as a product of one Gaussian and d non-Gaussian factors

p(z|D,C1,C2) ∼ N (z|m0,V0)
d∏

i=1

ti(zi) (7.23)

This is applying Bayes’ rule, where p(z|D,C1,C2) is the posterior, p(z|c) = p(z|D,C1) the

prior and
d∏

i=1

ti(zi) =
d∏

i=1

p(C2|zi) the likelihood. Since the likelihood is not Gaussian, it makes

the integration of the normalization, the marginalization of the likelihood, intractable. In the
expectation propagation (EP) framework, the likelihood is approximated by local likelihoods,
which are Gaussian functions in zi:

t̃i(zi) = N (zi; µ̃i, σ̃
2
i ) (7.24)

Then the product of the local is a multivariate Gaussian

d∏
i=1

t̃i(zi) = N (z|µ̃, Σ̃) (7.25)

where µ̃ is a vector of µ̃i and Σ̃ is diagonal with Σ̃ii = σ2
i . Now p(z|D,C1,C2) is approximate
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by a single multivariate Gaussian q(z), i.e.

q(z) = N (z|µ,Σ) ∼ N(z|m0,V0)
d∏

i=1

N (zi; m̃i, σ̃
2
i ) (7.26)

which is parameterized, and comes from eq. (5.23), with mean

µ = Σ
(
Σ̃

−1
µ̃+V−1

0 m0

)
, (7.27)

and the covariance matrix
Σ =

(
Σ̃

−1
+V−1

0

)−1

. (7.28)

In other words µ̃, Σ̃ are the local likelihood approximations and µ,Σ are the approximated
posterior parameters. The first idea would be to minimize the Kullback-Leibler divergence
eq. (5.75) between the real posterior and its approximation: KL (p(z|D,C1,C2)||q(z)). How-
ever, direct minimization is intractable, instead each t̃i is updated sequentially. This is done by
the following four steps:

1. Approximate the posterior by leaving out t̃i to form a marginal cavity distribution.

2. Get the marginal by combining cavity distribution with exact likelihood.

3. Approximate the non-Gaussian marginal by a Gaussian.

4. Compute the t̃i in such a way, that the posterior has the properties from 3.

These four steps are then repeated until convergence is reached. Therefore, the approximated
posterior for zi contains:

1. prior p(z|c)

2. local approximation t̃j with i 6= j

3. exact likelihood for the case i, ti(zi) =

χ(zi < 0), i = 1

χ(zi > 0), i 6= i

Here χT (x) is the indicator function and is defined as

χT (x) :=

1, ifx ∈ T

0, ifx /∈ T.
(7.29)
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The parameters of t̃i are chosen such that the marginal posterior is as accurate as possible.
Combining the prior and the local likelihood leads to

q−i(zi) ∼
∫
p(z|c) =

∏
i 6=j

t̃j(zi) dzi (7.30)

This is the combination of the prior and d − 1 approximations, where the approximate like-
lihood i is removed from the approximated posterior. Then q(zi) = N (zi|µi, σ

2
i ) is obtained

from eq. (7.27) and eq. (7.28) by applying eq. (5.21). Since this contains one approximate too
many,namely t̃i, this factor has to be removed by dividing it by t̃i to get the cavity distribution

q−i(zi) ∼
q(zi)

t̃i(zi)
= N (zi|µ−i, σ

2
−i) (7.31)

with mean and variance

µ−i = σ2
−i

(
µi

σ2
i

− µ̃i

σ̃2
i

)
σ2
−i =

1
1
σ2 − 1

σ̃2
i

(7.32)

Next, the new un-normalized Gaussian which approximates the product of the cavity distribu-
tion and the exact likelihood has to be found

q̂(zi) ∼ q−i(zi)ti(zi) (7.33)

If q(x) is a Gaussian distribution, then from eq. (5.76) follows that the distribution q(x) which
minimizes KL(p(x)||q(x)) needs to match the first and second moment of p(x).

To calculate the moments of eq. (7.33) the normalization constant

Ẑi =

∫
q−i(zi)t(zi) dzi =

∫
N (zi|µ−i, σ

2
−i)ti(zi) dzi (7.34)

can be used. There are two cases for i, namely i = 1 and i 6= 1 and thus two calculations
have to be performed to obtain the first two moments. However, they are similar in concept
and differ only slightly. Therefore, only the first case i = 1 is handled in detail. The changes,
which have to be made, to obtain the moments for the second case, are mentioned after the
derivations of the moments for the first case.
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Calculation of The First and Second Moment

In the following, i is equal to one, i.e. i = 1. First, the normalization constant is calculated
directly

Ẑi =

∞∫
−∞

exp
(
− (zi−µ−i)

2

2σ2
−i

)
√

2πσ2
−i

χ(zi < 0) dzi =
1√
2πσ2

−i

0∫
−∞

exp

(
−(zi − µ−i)

2σ2
−i

)
dzi (7.35)

Substituting x = zi−µ−i

σ−i
and setting α = −µ−i

σ−i
leads then to

Ẑi =

α∫
−∞

1√
2π

exp

(
−x

2

2

)
dx = Φ(α) (7.36)

A similar result is obtained for the case i 6= 1, just setting α = µ−i

σ−i
, and Ẑi = Φ(α) has the

same form.
To obtain an expression for the first moment, the derivative of Z−i with respect to µ−i is

calculated as

∂Ẑi

∂µ−i

=
1√
2πσ2

−i

0∫
−∞

∂

∂µ−i

exp

(
−(zi − µ−i)

2

2σ2
−1

)
dzi

=
1√

2πσ2
−1

0∫
−∞

zi − µ−i

σ2
−1

exp

(
−(zi − µ−1)

2

2σ2
−1

)
dzi

=

0∫
−∞

ziσ
−2
−i√

2πσ2
−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi︸ ︷︷ ︸

=
Ẑ−i

σ2
−i

Eq̂ [zi]

−
0∫

−∞

µ−iσ
−2
−1√

2πσ2
−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi︸ ︷︷ ︸

=
µ−i

σ2
−i

Ẑ−i

=
Ẑ−iEq̂[zi]

σ2
−i

− µ−i

σ2
−i

Ẑ−i =
Ẑ−i

σ2
−i

µ̂i −
µ−i

σ2
−i

Ẑ−i.

(7.37)

This leads to the expression for the first moment

Eq̂[zi] = µ̂i = µ−i + σ2
−i

1

Z−i

∂Ẑ−i

∂µ−i

. (7.38)
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Further, the derivative of Ẑ−i from eq. (7.37) is calculated to obtain the mean of eq. (7.38):

∂Ẑi

∂µ−i

=
1√
2πσ2

−i

0∫
−∞

zi − µ−i

σ2
−1

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

=
1

σ−i

α∫
−∞

x√
2π

exp

(
−x

2

2

)
dx = −ϕ(α)

σ−i

(7.39)

Inserting eq. (7.39) into eq. (7.38) results in

µi = µ−i + σ−i
ϕ(α)

Φ(α)
. (7.40)
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For the second moment the derivative of Ẑ−i with respect to σ2
−i has to be calculated

∂Ẑ−i

∂σ2
−i

=
∂

∂σ2
−i

1√
2πσ2

−i

0∫
−∞

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

+
1√
2πσ2

−i

0∫
−∞

∂

∂σ2
−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

= − 1

2σ2
−i

0∫
−∞

1√
2πσ2

−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi︸ ︷︷ ︸

=Ẑ−i

+
1

2σ4
−i

0∫
−∞

(zi − µ−i)
2√

2πσ2
−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

= − Ẑ−i

2σ2
−i

+
1

2σ4
−i

0∫
−∞

z2i√
2πσ2

−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

+
1

2σ4
−i

0∫
−∞

2µ−izi√
2πσ2

−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

+
1

2σ4
−i

0∫
−∞

µ2
−i√

2πσ2
−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

= − Ẑ−i

2σ2
−i

+
Ẑ−i

2σ4
−i

Eq̂[z
2
i ]−

µ−iẐ−i

σ4
−i

Eq̂[zi] +
µ2
−iẐ−i

2σ4
−i

(7.41)

Reshaping for the second moment and inserting eq. (7.38) for the first moment leads to

Eq̂[z
2
i ] = σ2

−i + µ2
−i −

2σ2
−iµ−i

Ẑ−i

∂Ẑ−i

∂µ−i

+
2σ4

−i

Ẑ−i

∂Ẑ−i

∂σ2
−i

(7.42)
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This can be used, again with eq. (7.38) for the first moment, to calculate the variance

Vq̂[zi] = Eq̂[z
2
i ]− Eq̂[zi]

2 = σ2
−i + µ2

−i −
2σ2

−iµ−i

Ẑ−i

∂Ẑ−i

∂µ−i

+
2σ4

−i

Ẑ−i

∂Ẑ−i

∂σ2
−i

− µ2
−i +

2σ2
−iµ−i

Ẑ−i

∂Ẑ−i

∂µ−i

−
σ4
−i

Ẑ2
−i

(
∂Ẑ−i

∂µ−i

)2

= σ2
−i − σ4

−i

 1

Ẑ2
−i

(
∂Ẑ−i

∂µ−i

)2

− 2

Ẑ−i

∂Ẑ−i

∂σ2
−i


(7.43)

Having an expression for the variance, the derivative of Ẑ−i with respect to σ2
−i needs to be

calculated

∂Ẑ−i

∂σ2
−i

= − 1

2σ2
−i

Φ(α) +
1

2σ4
−i

0∫
−∞

(zi − µ−i)
2√

2πσ2
−i

exp

(
−(zi − µ−i)

2

2σ2
−i

)
dzi

= − 1

2σ2
−i

Φ(α) +
1

2σ2
−i

α∫
−∞

x2√
2π

exp

(
−x

2

2

)
dx

= − 1

2σ2
−1

Φ(α) +
1

2σ2
−i

[
1

2
erf
(
x√
2

)
− x√

2π
exp

(
−x

2

2

)]α
−∞

= − 1

2σ2
−i

Φ(α) +
1

2σ2
−i

(
1

2
erf
(
α√
2

)
− αϕ(α) +

1

2

)
= − 1

2σ2
−i

Φ(α) +
1

2σ2
−i

Φ(α)− α

2σ2
−i

ϕ(α) = − α

2σ2
−i

ϕ(α)

(7.44)

This is now inserted into eq. (7.38):

µ̂i = µ−i − σ−i
ϕ(α)

Φ(α)
(7.45)

and into eq. (7.43)

σ̂2
i = σ2

−i

(
1− ϕ(α)

Φ(α)

[
ϕ(α)

Φ(α)
+ α

])
(7.46)

With these calculated moments, the contribution of the cavity distribution can be removed and
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the parameters of the approximation t̃i can be calculated with the following equation

µ̃i = σ̃2
i

(
µ̂i

σ̂2
i

− µ−i

σ2
−i

)
(7.47)

σ̃i
2 =

1
1
σ̂2
i
− 1

σ2
−i

(7.48)

First, the variance of t̃i is calculated

σ̃2
i =

[
1

Vq̂

− 1

σ2
−i

]−1

=

 1

σ2
−i

(
1− ϕ(α)

Φ(α)

[
ϕ(α)
Φ(α)

+ α
]) − 1

σ2
−i

−1

= σ2
−i

1
ϕ(α)
Φ(α)

[
ϕ(α)
Φ(α)

+ α
] =

σ2
−i

ϕ(α)
Φ(α)

[
ϕ(α)
Φ(α)

+ α
] − σ2

−i = a−1 − σ2
−i

(7.49)

where a−1 = ϕ(α)
Φ(α)

[
ϕ(α)
Φ(α)

+ α
]
σ−2
−i . Then same result is obtaind for i 6= 1, but with α = µ−i

σ−i
.

Then the mean can be calculated

µ̃i = σ̃2
i

(
µ̂i

σ̂2
i

− µ−i

σ2
−i

)

=
σ2
−i

(
1− ϕ(α)

Φ(α)

[
ϕ(α)
Φ(α)

+ α
])

ϕ(α)
Φ(α)

[
ϕ(α)
Φ(α)

+ α
] µ−i − σ−i

ϕ(α)
Φ(α)

− µ−i

(
1− ϕ(α)

Φ(α)

[
ϕ(α)
Φ(α)

+ α
])

σ2
−i

(
1− ϕ(α)

Φ(α)

[
ϕ(α)
Φ(α)

+ α
])

=

ϕ(α)
Φ(α)

(
−µ−i + σ−i

(
ϕ(α)
Φ(α)

+ α
))

ϕ(α)
Φ(α)

[
ϕ(α)
Φ(α)

+ α
] = µ−i −

σ−i

ϕ(α)
Φ(α)

+ α
= µ−i + b−1

(7.50)

with b−1 = −
(

ϕ(α)
Φ(α)

+ α
)
σ−1
−i . A similar result can be obtained for i 6= 1. The only difference

is

b−1 =

ϕ(α)
Φ(α)

+ α

σ−i

(7.51)

and α = µ−i

σ−i
. The rest remains the same.
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Making Predictions Based on C1 and C2

To make prediction about f(x) with some input x the vector f =

(
f(x)

f(x?)

)
is introduced. The

distribution for this vector given the constraints C1 and C2 is expressed as

p(f |D,C1,C2) ≈
∫
p(f |z, c)q(z) dz = N (f |µfΣf ) (7.52)

Here, f is assumed to be independent of C2 given z. Therefore, the integral is over a product
of two Gaussians. By introducing the following covariances

K† = cov

(
f ,

(
z

c

))
(7.53)

Kf = cov (f , f) (7.54)

the posterior of the above is Gaussian distribution with mean

µf = K†

(
KPES + W̃

)−1
(
c

µ̃

)
(7.55)

and covariance
Σf = Kf −K†

(
KPES + W̃

)−1

K>
† (7.56)

where W̃ is a diagonal matrix

W̃ =

(
0 0

0 Σ̃

)
(7.57)

because Σ̃ is a diagonal matrix.
The first entry of eq. (7.56) corresponds to the marginal variance of f(x) and is used as

variance in the Gaussian approximation of p(f(x)|D,x?). Only the variance is needed because
the entropy of a Gaussian is not dependent on the first moment. Therefore the following
notation is introduced:

V[x|x?] = [Σf ]11 . (7.58)
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The Full Acquisition Function

With eq. (7.58) the left entropy term in eq. (7.10) can be calculated with eq. (7.58), which is
the variance of a Gaussian

S[p(y|D,x,x?)] =
1

2
log
[
2πe

(
V[x|x?] + σ2

e

)]
(7.59)

Now the complete acquisition function from eq. (7.10) is

α(x) =
1

2
log
(
V[x] + σ2

e

)
− 1

2
log
(
V[x|x?] + σ2

e

)
=

1

2
log

(
V[x] + σ2

e

V[x|x?] + σ2
e

)
(7.60)

The Implementation of the Acquisition Function

Due to numerical stability, care has to be taken when implementing the EP factors and calcu-
lating the predictive variance in eq. (7.58). Although σ̃2

i → ∞ is possible, everything remains
well defined, which corresponds to ignoring the corresponding likelihood. Therefore, new
parameters for numerical stability have to be introduced.

τ̃i = σ̃−2
i , S̃ = diag(τ̃), ν̃ = S̃µ̃, τ−i = σ−2

−i , ν−i = τ−iµi (7.61)

rather than σ̃i, µ̃, σ2
−i, µ−i. The important matrix is now

A = I+ S̃1/2V0S̃
1/2 (7.62)

Every expression involving A−1 can be efficiently calculated via Cholesky decomposition.
Then the parameters for the eq. (7.26) can be computed as

Σ =
(
S̃ +V0

)−1

= V0 −V0

(
S̃+V0

)−1

V0

= V0 −V0

(
S̃+ S̃−1/2 (A− I) S̃−1/2

)−1

V0

= V0 −V0

(
S̃−1/2AS̃−1/2

)−1

V0

= V0 −V0S̃
1/2A−1S̃1/2V0

(7.63)

120



Chapter 7 Transition State Search using Gaussian Process Regression

After calculating the update for the side parameters, these new parameters have to be taken
into account for eq. (7.25). Thus, the inverse new covariance matrix is

Σ−1
new = V−1

0 + S̃old +
(
τ̃ new
i − τ̃ old

i

)
eie

>
i (7.64)

Using the Woodburry identity [86] the new covariance is computed as

Σnew = Σold − τ̃ new
i − τ̃ old

i

1 + (τ̃ new
i − τ̃ old

i ) Σold
ii

sis
>
i (7.65)

where si is the i-th column vector of Σold. The new mean can then be calculated from
eq. (7.27). The pseudo-code can be shown in listing 7.1.

Listing 7.1: Pseudocode for EP factors.

do whi le ( not conve rged ) :
do i =1 , d

t _ b a r ( i ) = 1 / v [ i ] [ i ] − t i l d e _ t [ i ]
v_ba r [ i ] = m/ v [ i ] [ i ] − t i l d e _ v [ i ]
c a l l s u b r o u t i n e c a l c u l a t e _ m o m e n t s ( Var_q , E_q )
d e l t a _ t a u = 1 / Var_q − t _ b a r [ i ] − t i l d e _ t [ i ]
t i l d e _ t [ i ] = t i l d e _ t [ i ]+ d e l t a _ t a u
t i l d e _ v [ i ] = E_q / Var_q − v_bar [ i ]
v = v − 1 / ( 1 / d e l t a _ t a u −v [ i ] [ i ] ) * s [ i ]* s _ t [ i ]
m= V*( t i l d e _ t [ i ] / t i l d e _ v [ i ] ) + V_0_ inve r se *m_0

enddo
L= Cholesky (A) ! A:= I_n +S _ h a l f *K* S _ h a l f

R= L _ t r a n s p o s e \ S _ h a l f *K
V = V_0− R _ t r a n s p o s e *R
m = V* t i l d e _ t + V* V_0_ inve r se *m_0

enddo

Before continuing, the Woodburry-identity [86] has to be introduced:

[
Z + UWV >]−1

= Z−1 − Z−1U
(
W−1 + V >Z−1U

)−1
V >Z−1 (7.66)
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This looks similar to
[
K+ W̃

]−1

. In order to calculate W̃, the vector

U =

(
0

Id

)
(7.67)

is introduced, where d+ d(d− 1)/2 + nk zeros are included. Then with the help of eq. (7.66)
and eq. (7.61) can be written as[

KPES +US̃−1U>
]−1

= K−1
PES −K−1

PESU
[
S̃+U>K−1

PESU
]−1

U>K−1
PES (7.68)

With this equation, the problem σ̃2
i → ∞ can be avoided. Therefore, eq. (7.56) can be rewritten

as
Σf = kf − k†

(
K−1

PESk
>
† −CK−1

PESk
>
†
)

(7.69)

where C is calculated as

C = K−1
PESU

(
S̃+U>K−1

PESU
)−1

U> (7.70)

Every occurrence of the type a−1b can be efficiently solved by Cholesky decomposition. That
is the reason why the matrix C is introduced to avoid the direct inversion of KPES in eq. (7.68).

7.1.3 The GPRTS Algorithm

Starting with an initial geometry, probably close to a real transition state, the energy and gra-
dient of this configuration are calculated. The gradient and the initial geometry are then trans-
formed into internal coordinates, which are used to build the GPR surrogate surface. Since
only one training point, when trained on energy and gradients, gives a poor prediction for the
Hessian, a second point has to be selected. The Hessian for the initial geometry is zero and
thus no a transition state search starting from this point is possible on the surrogate surface.
Selecting the next point is done randomly. Therefore, d = Ni random values are drawn from a
standard Gaussian distribution. The resulting vector is then scaled up to the dimer length, for
both internal and Gaussian process regression for transition state search based on predictive
entropy search (GPRTS-PES). This random point is transformed back to Cartesian coordinates
and new energy and gradient are calculated. Then, the GPR surface is built with two points.

To describe the Hessian around the initial geometry as accurately as possible, new points
are selected according to a dimer rotation (GPR internal) or maximize the acquisition function
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eq. (7.60). For GPR internal, where the dimer is initially built from the initial geometry as
the midpoint and the random point as the endpoint, the dimer rotation from section 3.2.1 is
performed. GPRTS-PES uses the maximum of the acquisition function, which is then scaled
up (or down) to the dimer length. The new geometry is again back transformed to get new
energy and gradient. The dimer rotation for GPR internal is converged if the cosine of the
angle from eq. (7.6) is larger than 1 − 10−3. While for GPRTS-PES the Hessian is accurate
enough if the change in the eigenvalues of the Hessian is smaller than 10−3. If both point
selection methods are converged, a translation on the surrogate surface to find a saddle point is
performed. This is done by the P-RFO algorithm from section 3.2.2. The P-RFO is sopped on
the surrogate either if two times the maximum step is reached, the variance of starting point
plus step is smaller than 10−4 or if P-RFO is converged with eigenvalue smaller than zero and
the gradient equal or below 10−2 · η, where η is from eq. (6.2). This is then the prediction for
the new geometry and is transformed back to again get a new energy and gradient.

The translation via P-RFO is repeated either if the global convergence criteria are fulfilled
or d5√g/(6d)e, where g is the covariance matrix size, translations occurred. In the last case
again either the dimer is rotated or the acquisition function eq. (7.60) is maximized, this time
with respect to the latest point after the translation. The whole procedure is then repeated
until the global convergence criteria are fulfilled. A schematic representation of the described
algorithm for GPRTS-PES is shown in fig. 7.1.
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Figure 7.1: Schematic representation of the algorithm for transition-state search using GPR
and predictive entropy search. This scheme can be also used for GPRTS internal, just replace
the maximization of the acquisition function α(x) by a dimer rotation on the GPR surface and
adapt the convergence criterion for the rotation.
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7.2 Results

Before using a real-world example, a two-dimensional toy problem to demonstrate how the
GPRTS-PES algorithm works is presented in section 7.2.1.

Afterwards, the transition state search algorithms presented beforehand, or search for a
saddle point of first order, are tested for 24 molecules and compared to the dimer method.
The energy and gradients were evaluated on the DFT level with BP86 [68] [69] as functional
and def2-SVP as basis set [70]. The dispersion correction was used [87]. As the underlying
DFT program TURBOMOLE [71] was used interfaced to DL-FIND via ChemShell [72]. The
default convergence criteria from DL-FIND were used, as for the GPR minimizer, see sec-
tion 6.2. Additionally, an energy convergence criterion is used from eq. (7.1). The results are
shown in section 7.2.2.

Finally, the hyperparameters are investigated in section 7.2.3. There, the independence of
the marginal likelihood from length scale ` and the gradient noise σg is shown. Thus, the two
hyperparameters are investigated separately.

7.2.1 Two-Dimensional Test-System

To demonstrate the GPRTS-PES algorithm a two-dimensional test system was chosen. The
functional form is

f(x, y) = −20 exp

[
−x

2 + y2

5
√
2

]
− exp

[
1

2
(cos(2πx) + cos(2πy))

]
+ e+ 20 (7.71)

This is the so-called Ackley function [88] [89]. In the square [−1, 1]2 the function is plotted in
fig. 7.2. The Ackley function has a lot of stationary points, i.e. ∇f(x, y) = 0. Thus it is a well
suited test function to find the nearest saddle point.

As a starting point xstart = (0.66666666, 0.2) was chosen indicated with a bold ? in fig. 7.2,
which lies close to the nearest saddle point xts = (0.62641, 0.0). GPRTS-PES requires 11 total
function evaluations, where 7 are for the translation. This means with the starting point and the
randomly selected point, two maximizations of the acquisition function α(x, y) are required.

The plot of α(x, y) for two training points can be seen in fig. 7.3, where for better vis-
ibility the area was zoomed in between the interval [0.5, 0.7] × [0.15, 0.25]. There are two
maxima, both pointing to two near saddle points. The nearest one, xts, has a slightly larger
value of α(x, y). If optimized properly, this point is selected as the maximum of the acquisition
function. Then this direction is upscaled to the maximum dimer length.

125



Chapter 7 Transition State Search using Gaussian Process Regression

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

f(x
,y

)

Figure 7.2: Two-dimensional test system, where the ? indicates the starting point for a transi-
tion state search.
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Figure 7.3: The acquisition function α(x, y) plotted with two training points for the Ackley
function plotted in fig. 7.2. For better visibility zoomed in.
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GPRTS in contrast required in total 18 function evaluations to reach the saddle point, from
which 12 are for translation. Thus, three dimer rotations on the GPR surrogate are necessary.
Therefore 12 translations are necessary to converge to the saddle point. This leads to the
following conclusion:

• GPRTS-PES requires fewer sample points, here one, to describe the Hessian at least in
the direction of the saddle point better than GPRTS.

• The Hessian is more accurately described by GPRTS-PES, resulting in fewer function
evaluations compared to GPRTS.

Overall the two dimensional test case indicates a slightly better preformance of GPRTS-
PES compared to GPRTS.

7.2.2 Efficiency

The baker test set [8] has been used for testing the transition state search algorithm. However,
system 15 from that test set is removed, because the dlc code [9] in dl-find [45] can not create
internal coordinates for this molecule. The starting geometries of the molecules used are shown
in fig. 7.4. The GPR transition state search is compared to the dimer method implemented in
dl-find [39]. As for the GPR minimizer, a box plot to represent the distribution of required
energy and gradient evaluation is used and is shown in fig. 7.5. Since the GPR in internal
coordinates and GPRTS-PES perform significantly better than the other optimizer/coordinate
system combinations, a separate box plot is shown in fig. 7.6 to allow a better comparison
between GPRTS internal and GPRTS-PES. In contrast to the minimization, the number of
energy and gradient evaluations instead of the number of steps is compared. The reason lies
within the way the dimer method handles steps and energy/gradient evaluation. For the dimer
method, only translations are considered as a step. The number of energy/gradient evaluations
is listed in table 7.2.

The statistical data for fig. 7.5 and fig. 7.6 are shown in table 7.1. In the box plots fig. 7.5
and fig. 7.6 the orange bar is the median. Outliers above the third quartile are identified if the
amount of energy and gradient evaluations is above Q3+1.5 · IQR and are represented as blue
circles. The red diamond is the (arithmetic) mean. The quartiles, outliers, and the mean are
defined as in the GPR minimization case from section 6.2.1.

Both saddle point search algorithms, GPR and dimer reduce the amount of energy and gra-
dient calculations if the Cartesian coordinates are replaced by internal coordinates. However,

128



Chapter 7 Transition State Search using Gaussian Process Regression

Figure 7.4: The 24 molecules used as the test set. Oxygen is red, nitrogen blue, hydrogen
white, sulfur yellow, fluorine light red and carbon on grey.
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Figure 7.5: Performance of the dimer method and the GPR for transition state search in Carte-
sian (Cart) and internal coordinates.
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Figure 7.6: Performance of GPRTS internal and GPRTS-PES, zoomed in from fig. 7.5.
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this time, in contrast to geometry optimization, the internal coordinates introduce problems.
Especially the back transformation is more prone to errors. Therefore, an asterisk in table 7.2
indicates the alternative use of the total connection scheme instead of the connection scheme,
which uses the bond distance for creation. The total connection scheme is less prone to errors
because they do not have dihedrals, which are the main cause of back-transformation failure.
However, planar molecules cannot be used within the total connection framework. Having the
total connection scheme as a backup eliminates the problems of the back transformation for
GPR internal and GPRTS-PES. However, the dimer method for system 22, and system 23 is
still not possible to bypass the back transformation failure. Additionally, the dimer method
in internal coordinates does not converge for systems 7, 9, and 11. The GPR transition state
search in Cartesian coordinates does not converge for systems 7 and 15. The SCF cycle for
system 20 of the dimer method in Cartesian coordinates does not converge. Thus, a com-
parison of the total amount of energy evaluations, in contrast to geometry optimization is not
possible. However, when these systems are taken out, a statistical comparison via box plot is
still possible.

The median for the dimer method when using internal coordinates instead of Cartesian
coordinates is reduced from 74 to 51, this is by 31.1% and the mean is reduced by 49.7% from
117 down to 58.8. Again, as for geometry optimization, the median is taken for comparison.
The first quartile is reduced from 57 to 38.5, 31.1%, and the third quartile is reduced by 49.7%

from 155 to 78. For the GPR transition state algorithms, GPR internal and GPRTS-PES, the
median is reduced to 28.5 respectively 25, or by 61.5% respectively by 66.2%. The first
quartile for GPR internal is reduced by 63.4% from 56 to 20.5 and for GPRTS-PES to 21.5 by
61.5%. For GPR internal the third quartile is reduced from 155 to 33.3 by 78.5%. GPRTS-
PES reduces the third quartile to 34.5 by 77.7%. The mean is reduced from 117 to 32.3 for
GPR internal and to 34.5 for GPRTS-PES, which is by 72.4% respectively by 73.8%.

Comparing GPR internal and GPRTS-PES, the first quartile is 4.6% lower for GPR in-
ternal, and the third quartile is 3.5% lower. However, the median and the mean are 12.3%

respectively 5.3% lower for GPRTS-PES than GPR internal. Since all systems for these two
methods converged, a comparison of the total amount of energy and gradient evaluations is
possible. GPR internal requires in total 776 energy and gradient evaluations, while GPRT-
PES requires 735 energy and gradient calculations, which is a difference of 5.3%.

While the first and third quartile is lower for GPR internal, the mean and median are better
for GPRTS-PES. This indicates GPRTS-PES has smaller outliers compared to GRP internal.
The number of energy evaluations is close together for GPRTS-PES, while GPR internal has
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Table 7.1: Statistical data for the box plot in fig. 7.5 with different optimization coordinate
combinations.

Optimizer dimer GPR
Coordinate System Cartesian internal Cartesian internal GPRTS-PES
first quartile (Q1) 56 38.5 28.3 20.5 21.5
median 74 51 40 28.5 25
third quartile (Q3) 155 78 67.5 33.3 34.5
mean 117 58.8 67.6 32.3 30.6

a more spread distribution. In contrast to geometry optimization, where a lower dimension
needs usually fewer steps to converge, transition state search is more complicated. Therefore,
low dimensional systems like system 23, which has d = 11, require 73 energy calculations for
GPRTS-PES. In contrast system 9 with d = 42 requires 57 energy evaluations. In addition,
the systems with symmetries, like the planar system 10, lead to difficulties for both GPR
algorithms in internal coordinates. The less symmetry a molecule has, the better the internal
coordinates work. Especially the total connection scheme can be used in these cases. The total
connection scheme is more stable towards the back transformation and thus preferable over the
normal dlc code and is also more useful when a bond is destroyed or formed, which is likely
in transition state search.

If the median is compared between all methods, GPRTS-PES performs best. However, the
computational cost is increased, due to the additional covariance matrix calculations. Since
the Cholesky decomposition scales with O(d3) and the covariance matrix KPES scales with di-
mension d2 the overall additional cost is in the order of O(d6). However, only in the beginning
points are sampled. Thus, the number of training points can be neglected, when the dimension
is high compared to the number of training points. It is feasible to sample the points, because
only a few points are required, even for higher dimensions. This leads to a good Hessian,
which describes at least the first eigenvalue good enough.

Additionally, the energy difference compared to the dimer method in Cartesian coordinates
is calculated, to indicate whether the same transition state has been found. However, for system
20, where the scf cycle for the dimer method did not converge, the energy is compared to the
GPR in Cartesian coordinates. These differences are listed in table 7.3 together with the lowest
eigenvalue of the Hessian at the found transition state. Most systems have the same lowest
eigenvalue, up to a difference of 10−4Eh/a

2
0. In this case the system has also the energy

difference of 10−6Eh or lower. However,some systems have different lowest eigenvalues and
higher energy differences. They are listed in the following
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Table 7.2: Number of energy evaluations for each system shown in fig. 7.4. Additionally,
the total amount of energy evaluations for GPR internal and GPRTS-PES was calculated. The
asterisk ? indicates the use of the total connection scheme. If the system did not converge after
500 energy evaluations, this is indicated by nc. scf means, the underlying ab intio program did
not converge. dlc refers to a failure of the internal coordinates code.

Optimizer Dimer GPR
Coordinate System Cartesian internal Cartesian internal GPRTS-PES
1 53 34 26 13? 14?

2 74 35 23 21 16
3 35 38 42 16 20
4 199 115? 26 14 17
5 69 69? 42 28 22?

6 96 79 77 32 26?

7 221 nc nc 50 36
8 79 48? 41 29? 24?

9 187 nc 94 71? 57?

10 302 51 193 92 66
11 444 nc 94 35 32
12 50 40? 29 24? 20?

13 63 39 54 22 23?

14 79 82 39 34? 25?

15 71 77 nc 33 25?

16 111 76 104 33 34
17 123 87 71 33 29
18 190 47 27 19 22
19 65 67 29 61 40?

20 scf 79 121 25 22
21 45 23 22 25 28
22 41 dlc 28 16 44
23 59 dlc 47 31 73
24 35 32 37 19 20
total number of steps – – – 776 735
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Table 7.3: The lowest eigenvalue of the Hessian in Eh/a
2
0 at the found transition state and

energy difference in Hartree compared to dimer in Cartesian coordinates.

Dimer GPR
Cartesian internal Cartesian internal GPRTS-PES

1 -0.04393 -0.04390 9.2 · 10−8 -0.04394 4.5 · 10−8 -0.04393 2.5 · 10−7 -0.04393 4.5 · 10−7

2 -0.01811 -0.01806 1.3 · 10−7 -0.01814 3.0 · 10−7 -0.01791 7.0 · 10−6 -0.01813 1.4 · 10−7

3 -0.12069 -0.12064 2.0 · 10−7 -0.12066 7.8 · 10−7 -0.12066 6.1 · 10−7 -0.12065 3.8 · 10−7

4 -0.01321 -0.01320 2.8 · 10−7 -0.13344 5.1 · 10−2 -0.13342 5.1 · 10−2 -0.13341 5.1 · 10−2

5 -0.3114 -0.03123 9.1 · 10−7 -0.3123 1.2 · 10−6 -0.3121 1.2 · 10−6 -0.3121 1.0 · 10−6

6 -0.00322 -0.00325 8.8 · 10−7 -0.00324 1.0 · 10−6 -0.00326 5.4 · 10−7 -0.00325 2.6 · 10−7

7 -0.01309 – – -0.00957 9.5 · 10−3 -0.01301 1.0 · 10−6

8 -0.02066 -0.02061 1.6 · 10−6 -0.02067 1.0 · 10−7 -0.02067 1.2 · 10−8 -0.02067 4.4 · 10−8

9 -0.00623 – -0.00624 3.8 · 10−6 -0.00623 3.0 · 10−6 -0.00623 4.0 · 10−6

10 -0.01064 -0.01064 8.2 · 10−7 -0.01064 1.0 · 10−6 -0.01077 1.0 · 10−4 -0.00257 5.6 · 10−3

11 -0.04196 – 0.00000 1.2 · 10−1 -0.00145 1.1 · 10−1 -0.00145 1.0 · 10−1

12 -0.13308 -0.13244 2.6 · 10−8 -0.13297 9.1 · 10−7 -0.13298 8.2 · 10−7 -0.13303 7.0 · 10−7

13 -0.10651 -0.10652 7.6 · 10−7 -0.10647 5.8 · 10−8 -0.10647 1.3 · 10−7 -0.10650 2.3 · 10−7

14 -0.14452 -0.14466 8.2 · 10−7 -0.14433 3.3 · 10−6 -0.14435 1.3 · 10−6 -0.14436 1.2 · 10−6

15 -0.03975 -0.03972 3.3 · 10−7 – -0.03974 7.0 · 10−7 -0.03979 2.8 · 10−7

16 -0.00633 -0.00642 1.2 · 10−6 -0.00636 2.0 · 10−6 -0.00633 7.5 · 10−7 -0.00636 1.3 · 10−6

17 -0.04024 -0.04025 2.5 · 10−7 -0.04025 4.4 · 10−6 -0.04020 1.4 · 10−6 -0.04026 2.0 · 10−6

18 -0.00199 -0.00199 1.3 · 10−7 -0.00199 1.6 · 10−8 -0.00199 1.2 · 10−7 -0.00199 2.2 · 10−8

19 ?? -0.03411 2.6 · 10−6 -0.03411 2.7 · 10−6 -0.03411 7.1 · 10−5 -0.03411 2.9 · 10−6

20 – -0.00213 8.0 · 10−7 -0.00212 -0.00213 7.9 · 10−7 -0.00213 8.1 · 10−7

21 ?? ?? 5.4 · 10−8 ?? 5.2 · 10−7 1.2 · 10−3 1.2 · 10−3

22 -0.08485 – -0.08484 2.9 · 10−7 -0.08485 1.5 · 10−8 -0.08485 6.2 · 10−8

23 -0.13585 – -0.13586 1.7 · 10−7 -0.13585 3.5 · 10−9 -0.13585 1.3 · 10−7

24 -0.12665 -0.12666 6.9 · 10−7 -0.08361 1.4 · 10−2 -0.12663 8.9 · 10−7 -0.12663 8.6 · 10−7

• System 4: The dimer method in Cartesian coordinates found a different transition state
compared to all other methods. This explains the differences in the energy of about
10−2Eh and the different lowest eigenvalue.

• System 7: GPR internal has a different transition state compared to the Cartesian dimer
and GPRTS-PES.

• System 10: GPR internal and GPRTS-PES found a different transition state than the
other methods.

• System 11: GPR internal and GPRTS-PES found a different transition state. GPR in
Cartesian coordinates converged to a minimum instead of a transition state.

• System 21: Only GPR internal and GPRTS-PES found a saddle of first order, while the
dimer method in both coordinate systems and GPR in Cartesian converged to a saddle
point of second order. They have two negative eigenvalues of the Hessian.

• System 24: GPR in Cartesian converged to a different transition state.

7.2.3 Hyperparameters

As for the GPR for geometry optimization, two hyperparameters can influence on the perfor-
mance, namely the length scale ` and the gradient noise parameter σg. In fig. 7.7 the depen-
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dence of log p on the length scale ` and the gradient noise σg is shown for system 6 for GPR
internal. On the top, it is shown for the total connection scheme, and on the bottom for the
normal dlc connection scheme. In fig. 7.8 the same properties and the same system are plotted
for GPRTS-PES. The number of training points included for these plots is six. As can be seen
on these plots, the length scale and the gradient noise are somewhat decoupled and can thus
be treated separately.

Comparing the logarithm of the marginal likelihood for the total connection scheme and
the normal dlc connectivity for GPR internal in fig. 7.7, the difference between them is a slight
shift of the maximum to a higher length scale for dlc, roughly 2 a0. The qualitative likelihood
remains similar. The most significant change is the negative log p values for length scales
above 17.5 a0.

Qualitatively the same result is achieved for log p for GPRTS-PES, where again a slight
shift to higher length scales is preferred for the length scale. In the following first the length
scale dependence of the log marginal likelihood will be discussed, followed by the discussion
of the gradient noise σg.

Length Scale

The length scale dependence log p(`) is shown in fig. 7.9 for GPR internal, again for tc on the
top and dlc on the bottom. System 6 was used again. The maximum for dlc is more peaked
and lies at ` ≈ 11 a0, while the maximum for tc is at ` ≈ 12.5 a0. Increasing the number
of training points, in this case from 6 to 8 to 10, does not significantly change the maximum
position, only the log p value increases for both connection schemes. Thus, a constant length
scale for the GPR internal is justified. Since the other systems showed a similar result a
constant ` = 13 a0 is chosen, and, in contrast to GPR geometry optimization, is not changed
throughout the transition state search. The length scale for the total connection scheme is
usually larger, because this scheme uses all atoms to connect, resulting in larger coordinates
that are recognized by the marginal likelihood.

Looking at the length scale dependence for GPRTS-PES a similar result is found and is
shown in fig. 7.10. For the tc case, qualitatively the same result is achieved as for GPR internal.
The maximum is more shallow compared to dlc and is at ` ≈ 12 a0. Again, the position
of the maximum does not change significantly with the number of training points, just like
before. However, for GPRTS-PES with the dlc scheme, there are some differences. First, the
maximum is at a slightly lower position, namely at ` ≈ 10 a0, and remains constant for a
different number of training points. In contrast to GPR internal, there is a steep decrease in the
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Figure 7.7: Heat map of the logarithm of the marginal likelihood log p depending on the
length scale ` and the gradient noise σg for GPR internal for total connection scheme (tc) on
the top and dlc on the bottom.
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Figure 7.8: Heat map of the logarithm of the marginal likelihood log p depending on the
length scale ` and the gradient noise σg for GPRTS-PES, for tc on the top and dlc on the
bottom.
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Figure 7.9: The logarithm of marginal likelihood log p depending on the length scale ` for
GPRTS internal, on the top tc and on the bottom dlc. The number of training points is indicated
with M .
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likelihood for larger length scales, indicating that smaller length scales are preferred. Thus,
the length scale is fixed at ` = 13 a0 for GPRTS-PES (both tc and dlc) too.

An alternative way to select the length scale for the dlc case for GPR internal and GPRTS-
PES is to calculate the distances between all dlc coordinates and use the maximum distance
between these coordinates as the length scale. When using this approach the results do not
defer significantly from the constant length scale ` = 13 a0. However, this approach is not
feasible for tc, because the distances between the internal coordinates are much larger due to
every atom being connected to every atom and thus leads to too large length scales, which can
worsen the result by increasing the number of energy evaluations.

Gradient Noise Parameter

Just like for geometry optimization, the noise parameter σ can be split into one for the energy
σe and one for the gradient σg. The noise parameter for the energy is set to σe = 10−7Eh, like
for geometry optimization. Therefore, only the gradient noise is investigated. For GPR internal
log p(σg) is plotted in fig. 7.11 for tc on top and dlc on the bottom. In fig. 7.12 log p(σg) is
shown for GPRTS-PES for tc on the top and dlc on the bottom.

For GPR internal, both tc and dlc, the marginal likelihood is independent of the gradient
noise for σg < 10−4 Eh/a0, which is the same result as for geometry optimization. One
difference is, that for a smaller number of training points, i.e. M = 6 the marginal likelihood
is already independent of the gradient noise, if σg < 10−3 Eh/a0.

When looking at the gradient noise for GPRTS-PES in fig. 7.12, there are some small
differences between tc and dlc. While the marginal likelihood for tc is already independent of
the gradient noise, for σg < 5 · 10−2 Eh/a0, for dlc the independence is if σg < 5 · 10−3 Eh/a0.
Therefore, the marginal likelihood is independent over a larger area of the gradient noise.

Qualitatively for small noise parameters, the marginal likelihood for both methods does not
depend on the gradient noise. Thus, the gradient noise for both methods was set to σg = 10−7

Eh/a0, just like for GPR internal 1 for geometry optimization.
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Figure 7.10: The logarithm of the marginal likelihood log p depending on the length scale `
for GPRTS-PES. tc is shown on the top, dlc on the bottom. The number of training points is
indicated with M .
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Figure 7.11: The logarithm of the marginal likelihood log p depending on the gradient noise
σg for GPRTS internal. The total connection scheme is on the top, dlc on the bottom.
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Figure 7.12: The marginal likelihood log p depending on the gradient noise σg for GPRTS
PES. On the top, the total connection scheme is shown, on the bottom dlc.
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7.3 Conclusion

The transition state search in internal coordinates based on Gaussian process regression re-
duces the total amount of energy and gradient evaluations, for both methods GPRTS internal
and GPRTS-PES, compared to Cartesian coordinates. GPRTS-PES performs slightly better
than GPRTS internal. In contrast to internal 2 for geometry optimization, this approach to
avoid the iterative back transformation is not feasible, because the additional matrix-matrix
multiplications for the Hessian evaluation on the GPR surrogate surface introduce too much
overhead. Therefore both methods introduced here require a back transformation of the pre-
diction in internal coordinates to Cartesian coordinates. However, the back transformation is
prone to failure especially for transition state search, in contrast to geometry optimization.

Most problems arise for systems, where bond breaking and formation play a role, which
is more likely for transition state search than geometry optimization. Sometimes more than
one molecule is involved in a transition state search, which also introduces problems to the
dlc code. In these cases the total connection scheme is more stable, because there are no
dihedrals included, which is usually the reason for a back transformation failure. However,
just using the total connection scheme does not solve this problem entirely. First, the dimer
method, for example, in internal coordinates has still problems with the back transformation
for two systems. Second, the total connection scheme cannot be applied to planar and linear
molecules. Both GPRTS methods seem to solve this problem when using the total connection
scheme as an alternative to dlc.

GPRTS internal is computationally less expensive compared to GPRTS-PES because the
sampling with the acquisition function requires more computational cost than the dimer ro-
tation on the GPR surrogate surface for GPRTS internal. Comparing the total computational
time of all GPR calculations, GPRTS internal requires 34.9 s on an Intel Xeon Silver 4214R
CPU, while GPRTS-PES requires 29.2 s. However, GPRTS-PES uses 22.5% of CPU time
in total, and GPRTS internal only 9%. The advantage of GPRTS-PES is, that it reduces the
total amount of energy evaluation, for this system, to a lower number compared to GPRTS
internal. GPRTS-PES requires in general fewer samples to correctly describe the Hessian for
a translation step than GPRTS internal. Thus, it is justified to use the increased computational
cost introduced by maximizing the acquisition function. Since the implementation uses no
parallelization of the code, a certain speed-up can be expected for the maximization of the
acquisition function for GPRTS-PES.

There are possible improvements to overall improve the performance of GPRTS-PES. One
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option would be to draw samples from the distribution p(x?|D) to cover a larger variety of
x? as transition states to sample, like in [81]. This would allow not only to detect the correct
direction of the transition state on the real potential energy surface but rather have a sufficient
length of the next point to improve the overall behavior of the algorithm. However, this would
introduce additional computational cost. Another possibility would be, to use the acquisition
function after each translation step to select a possible better guess than the P-RFO on the GPR
surrogate surface. This again would introduce additional computational cost.

Additionally, there is room for improvement for the internal coordinates. The total con-
nection scheme could be expanded by not only calculating all distances but also calculating all
angles between three atoms. This would allow more flexibility to the internal coordinates and
not introduce the susceptibility to errors caused by the dihedral angles. It would not require
recalculating the primitive internal coordinates, after bond breaking and/or bond formation.

The length scale ` and the noise parameter for the gradient σg are the relevant hyperparam-
eters for a transition state search. As could be shown, they can be treated separately, because
they are independent of each other. The length scale is fixed to ` = 13 a0 and is kept constant,
in contrast to geometry optimization based on GPR. All noise parameters with σg < 10−4

Eh/a0 are well suited for GPRTS internal and GPRTS-PES. Thus σg = 10−7 Eh/a0 is chosen
as the noise parameter, which also acts as regularization for the Cholesky decomposition for
numerical stability.

In summary, there are two ways presented, how to select training points to describe the
Hessian as accurately as possible for the transition state search on the GPR surface in inter-
nal coordinates. The first way, GPR internal, selects the points by simply aligning a dimer to
the eigenvector corresponding to the lowest eigenvalue. The other way, GPRTS-PES, uses an
acquisition function, which is maximized to sample the next points. Introducing also the total
connection scheme, both ways seem to handle the susceptibility of errors of the back trans-
formation well. GPRTS-PES seems to perform a bit better than GPRTS internal but requires
additional CPU time. All in all, GPR with the use of the total connection scheme is advanta-
geous for a transition state search, compared to the standard dimer method. However, if the
system is planar or linear, the dlc can still be used, because in those cases no total connection
scheme can be calculated.
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8 Final Discussion and Outlook

In this thesis, two algorithms were presented to combine GPR and internal coordinates, one
for geometry optimization, and the other for TS search. For geometry optimization, two ap-
proaches were presented. Both of them evaluate the covariance function in internal coordi-
nates. However, GPR internal 1 builds the GPR surface in internal coordinates, while GPR
internal 2 uses the chain rule to build the GPR surface in Cartesian coordinates. GPR internal
2 is not extended to TS search due to the high computational overhead, instead, another ap-
proach of using an acquisition function was presented, see section 7.1.2. In both algorithms,
the combination of GPR and internal coordinates performs better than the standard algorithms.
They significantly reduce the total amount of energy evaluations.

The main drawback in internal coordinates is the iterative back-transformation. While it
did not show any problems for geometry optimization, it is prone to errors for TS search. In
addition, for geometry optimization, an alternative was presented, namely GPR internal 2. To
a certain degree, this problem can be solved by using the total connection scheme to construct
the primitive internal coordinates, see section 4.1.

The hyperparameters were obtained heuristically. The marginal likelihood was calculated
for a test system and a nearby maximum of for this test system was chosen. Since the un-
derlying ab initio program causes only little noise, the lowest possible value for the gradient
noise was chosen, that still allows a stable Cholesky decomposition. The length scale for the
geometry optimization is chosen fixed at the beginning and dynamically reduces towards con-
vergence. However, in the TS search, the length scale over the whole optimization procedure
is kept constant. These ways to choose the length scale performed best. In addition, there is
no expensive maximization of the marginal likelihood required.

GPR internal 2 can be compared to Meyer et al. [74], at least those molecules with the
same starting geometry. The implementation here seems to perform better compared to their
work. The other approach, GPR internal 1 can be compared to Raggi et al. [18]. Their imple-
mentation of Kriging, which is essentially GPR, seems to perform better than this work. The
main reason might be, that they use d length scale parameters, where d is the dimension of the
system. Their length scales are determined by a surrogate model Hessian, where they use the
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i-th eigenvalue of that Hessian to obtain the i-th length scale parameter. Systems 8, 23, 24,
and 26 were excluded, they need 218 steps in total, while this work required 314 steps in total.
Using correctly adapted length scales for each dimension, seem to perform better compared to
a single length scale parameter, especially for larger molecules.

A comparison of GPRTS internal and GPRTS-PES can be done with the work of Galván
et al. [25]. They use again a surrogate model Hessian to obtain length scale parameters for
each dimension. They outperform this work. Using different length scales for each dimension
seems to work significantly better compared to one length scale parameter. The reason might
be, that for TS search in two different subspaces, an optimization is performed, i.e a max-
imization in one dimension and a minimization in all other dimensions. Thus implementing
the Matérn covariance function for all dimensions could decrease further the number of energy
evaluations.

The recent usage of automatic differentiation in ML [90] can be used to accelerate the
calculation of the derivatives of the GPR and thus reduce the computational time of a single
GPR step. This is especially useful for GPR internal 2, here a lot of derivatives have to be
calculated due to the chain rule. Applying automatic differentiation would also allow internal
2 to be useful for TS search since the computational overhead would become negligible. It
would also speed up the optimization of the acquisition function for GPRTS-PES because the
number of expensive derivatives would be replaced by automatic derivatives.

Overall the GPR optimizers in internal coordinates seem to perform better than any other
optimizer/coordinate system combination. Therefore, the GPR optimizers in internal coordi-
nates can be used to achieve faster search for stationary points and save time for other calcu-
lations. In addition, the GPR seems to perform more stable in internal coordinates, than other
optimizers.
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