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Abstract

This thesis presents the construction and optimization of a scanning tunneling microscope
which is then used to study tunneling processes into magnetic impurities in a superconductor-
superconductor junction under microwave irradiation.

We start with the construction of a scanning tunneling microscope (STM) operating at a base
temperature of 0.56K using a Joule-Thomson 3He cycle. We apply a number of modifications,
most notably the addition of powder filters at the (cold) scan head, to reduce the width of the
Josephson effect from 96µV to 12µV. This width is closely related to the energy resolution
and we conclude that this setup can compete with state-of-the-art mK-STMs when it comes to
energy resolution.

Magnetic impurities on superconductors lead to single levels inside the superconducting gap –
so called Yu-Shiba-Rusinov (YSR) states. We study the system of YSR states on a vanadium tip
in contact with a superconducting V(100) surface. We expose this system to microwaves in the
range of 60 to 90GHz by means of an external antenna. We observe the emergence of a family of
peaks which is not predicted by Tien-Gordon theory. We account for these peaks by considering
the fact that tunneling into YSR states must preserve parity. It is therefore a two-step process
where the YSR state is first excited by the tunneling electron and then subsequently relaxes.
With the help of microwaves, we enable a second process. Here, the microwaves excite the YSR
state and its relaxation can be observed. This process is not possible without microwaves and
we label the family of peaks originating from this process excited state tunneling. Accessing
the excited state of YSR states is a first step towards manipulation of YSR states by microwave
driving.

We corroborate the experimental observations with theoretical modelling based on a Green’s
functions approach. We observe that the full approach reproduces the features seen in the
experimental data. A simplified model covers the main physics on a qualitative level. This
model includes a threshold which needs to be overcome to excite the YSR state with microwaves.
Additionally, we find that the resonant nature of this tunneling process necessitates higher-order
calculations. In particular, the lowest order approximation breaks down at conductances two
orders of magnitude lower compared to the situation without microwaves. This implies that
microwave-assisted tunneling into YSR states could be a useful platform for studying higher
order processes.

Overall this thesis presents a technological improvement which makes it possible to resolve
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a hitherto unseen microwave-assisted tunneling process into YSR states. This process excites
the YSR state and is therefore a basis for the manipulation of YSR states using microwaves.
Our analysis reveals the necessity of a higher-order Green’s functions approach to describe the
observed resonances quantitatively.
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Zusammenfassung

Diese Dissertation präsentiert die Konstruktion und die Optimierung eines Rastertunnelmikros-
kops, das dann benutzt wird, um Tunnelprozesse in magnetische Störstellen in einem Supraleiter-
Supraleiter Tunnelkontakt unter Mikrowelleneinstrahlung zu untersuchen.

Wir beginnen mit der Konstruktion eines Rastertunnelmikroskops (RTM), das bei einer Basis-
temperatur von 0.56K mit einem 3He-Zyklus arbeitet. Wir nehmen eine Reihe von Änderungen
vor, allen voran die Aufnahme von Pulver-Filtern am (kalten) Scankopf, um die Breite des
Josephson Effects von 96µV auf 12µV zu reduzieren. Die Breite hängt mit der Energieauflösung
eng zusammen und wir schlussfolgern, dass dieses System in Bezug auf Energieauflösung mit
state-of-the-art mK-RTMs konkurrieren kann.

Magnetische Störstellen auf Supraleitern führen zu einzelnen Energieniveaus in der supraleiten-
den Lücke, so genannte Yu-Shiba-Rusinov (YSR) Zustände. Wir untersuchen das System von
YSR Zuständen auf einer Vanadium Spitze, die im Kontakt mit einer supraleitenden V(100)
Oberfläche steht. Wir setzen das System Mikrowellen im Bereich von 60 bis 90GHz mit Hilfe
einer externen Antenne aus. Wir beobachten, dass sich eine Reihe von Peaks bildet, die nicht
von der Tien-Gordon Theorie vorhergesagt werden. Wir erklären diese Peaks mit Hilfe der
Tatsache, dass Tunneln in YSR Zustände die Parität erhalten muss. Es handelt sich daher um
einen zweischrittigen Prozess, bei dem der YSR Zustand zuerst von einem tunnelden Elektron
angeregt wird und danach relaxiert. Mit Hilfe der Mikrowellen realisieren wir einen zweiten
Prozess. Hier regen die Mikrowellen den Zustand an und seine Relaxation kann beobachtet
werden. Dieser Prozess ist ohne Mikrowellen nicht möglich und wir bezeichnen die Peaks,
die zu diesem Prozess gehören, Tunneln in den angeregten Zustand. Die Ansteuerung des
angeregten YSR Zustandes ist ein erster Schritt in die Richtung der Manipulation von YSR
Zuständen mit Mikrowellen.

Wir untermauern die experimentellen Beobachtungen mit theoretischen Modellierungen, die
auf Green’s Funktionen basieren. Wir beobachten, dass der volle Ansatz das experimentelle
Verhalten reproduziert. Ein vereinfachtes Modell beschreibt die physikalischen Vorgänge auf
einer qualitativen Ebene. Dieses Model umfasst eine Schwelle, die überschritten werden
muss, um den YSR Zustand mit Mikrowellen anzuregen. Zusätzlich erkennen wir, dass die
resonante Natur dieses Tunnelprozesses Berechnungen zu höherer Ordnung erfordert. Genauer
gesagt bricht die Näherung zu niedrigster Ordnung bei einer Leitfähigkeit zusammen, die zwei
Größenordnungen kleiner ist im Vergleich zu einer Situation ohne Mikrowellen. Dies bedeutet,
dass Mikrowellen-assistiertes Tunneln in YSR Zustände ein nützliches System zur Untersuchung
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von Prozessen höherer Ordnung sein könnte.

Insgesamt stellt diese Arbeit eine technologische Verbesserung vor, die es ermöglicht, einen
bisher noch nicht beobachteten Mikrowellen-assistierten Tunnelprozess in YSR Zustände aufzu-
lösen. Dieser Prozess regt den YSR Zustand an und ist daher ein Ausgangspunkt für die
Manipulation von YSR Zuständen mit Mikrowellen. Unsere Analyse zeigt auf, dass Green’s
Funktionen von höherer Ordnung notwendig sind, um die beobachteten Resonanzen quantitativ
zu beschreiben.
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1
Introduction

Energy is one of the most fundamental concepts not only in physics, but throughout quantitative
science in general. Whenever a process happens, it can be described in terms of the potential to
do work, i.e. energy. This may range from the scale of 3M⊙c

2 = 5 × 1047 J (as in the case of
gravitational waves released by the merging of two black holes [1] – here M⊙ is the solar mass and
c the speed of light) to as little as h×1420MHz= 6µeV (as in the case in the hyperfine transition
of the hydrogen atom [2] – here h is Planck’s constant). Indeed, when speaking about quantized
energy transfer – namely transitions between single levels, there is immediately a technological
interest, namely the quest for qubits. With data storage becoming increasingly important in the
modern world, the miniaturization of information storage is a rapidly growing area of research.
The lowest limit to this would be storing information in a single state. Such qubits have already
been demonstrated in various systems such as electron donors in semiconductors [3] or quantum
dots [4]. One of the most versatile techniques in this context is scanning tunneling microscopy
(STM) [5]. It offers the ability to image single atoms, manipulate them [6] and most importantly,
probe them using bias voltage spectroscopy. Looking at it in terms of energy, there has been a
constant effort to improve the energy resolution, reaching down to 9µeV [7], which brings us to
the lower end of the energy scale previously mentioned.

It is precisely at this bottom of the energy scale where the work of this thesis was carried out.
In the first part, we present how we arrived there – how we obtained an energy resolution of
12µeV. To do so, one has to keep in mind that if one wants to investigate phenomena with small
energies, the thermal energy kBT can become a nuisance and any of these experiments requires
cooling. Now the dilution refrigerator has been available since the 1960s [8] and with laser
cooling, researchers have even achieved µK temperatures in atomic gases [9], even though in
that case temperature only refers to the thermal energy of a small number of atoms. Cooling an
entire STM is challenging and it took several decades for the appearance of the first mK-STMs
[10–12]. In addition to that, electronic noise poses another major challenge to high-resolution
measurements, requiring sophisticated filtering and grounding strategies [7, 13, 14]. Various
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Chapter 1. Introduction

improvements have been suggested and here we implement metal powder filters [15] (amongst
other improvements) and achieve an energy resolution of 12µeV, demonstrating firstly that the
current mK machines are not nearly at the limit in terms of energy resolution and secondly, that
such energy resolutions are possible even for pure 3He systems.

The most famous phenomenon associated with low temperatures is superconductivity. Aside
from the benefits which a dissipationless current can hold, the tunneling of Cooper pairs between
two superconductors, i.e. the Josephson effect, opens a rich area of research applications,
ranging from detection devices (superconducting quantum interference device – SQUID) [16]
to a definition of the voltage standard [17]. Josephson junctions have already lived up to their
promise for coherent manipulation, leading to so-called ”phase qubits” [18, 19]. Keeping in
mind such advantages that superconductivity holds for the study of quantum phenomena, we
chose to work with impurities on YSR for the second and main part of this thesis. YSR states are
localized states due to magnetic adatoms on a superconductor. The magnetic moment can break
a Cooper pair, leading to sub-gap states. Because there are no quasiparticles inside the gap,
the level is protected, making it an ideal candidate for the study of two-level physics. Knowing
that one of the requirements for qubit operations set forth by DiVincenzo [20] is manipulation,
we use microwaves to interact with YSR states, or more precisely to interact with the tunneling
process into YSR states. We find that microwaves can interact with an Andreev process to excite
the YSR state. In particular, we see two families of processes – one where the YSR state is
excited by the tunneling process and then relaxes by interaction with the microwave field – and
another one where the microwave field excites the YSR state which then subsequently relaxes by
tunneling across the junction. This second process, which we call excited state tunneling, could
be used as a starting point for pump probe schemes to truly control the YSR state in a coherent
manner. Apart from this outlook on control of quantum sates, the study of YSR states under
microwave irradiation is insightful from a perspective of resonance. Resonant phenomena have
in common that if the driving is tuned to a natural frequency of the system, a strongly non-linear
response is seen [21, 22]. Here, the resonant driving of the YSR states leads to a breakdown of
simple models which consider just the lowest order Andreev reflections. We find that for driven
YSR-superconductor junctions, a full Green’s function approach is necessary at conductances
two orders of magnitude lower than in the case of the undriven system. This implies that
the modeling of similar work [23] should be treated with care. Drawing a connection to the
beginning, this work can be seen from an energy perspective. We explore techniques to improve
our energy resolution, then probe our system in a regime where the microwave energy matches an
energy scale in the system and both are larger than the thermal energy, i.e. ℏω ∼ Esystem > kBT .

This thesis follows a traditional structure. It starts by laying out the key theories relevant for
this work. Most importantly, it introduces the technique of scanning tunneling microscopy
and presents a brief overview of the different extensions to this technique. Then, we present
Green’s functions as a tool to describe tunneling processes in STM and give and overview of

2



Chapter 1. Introduction

superconductivity, in particular in the context of STM. Being closely connected to superconduc-
tivity, YSR states are the natural next section of the thesis. We conclude the theory chapter
with a study of microwave-assisted tunneling as well as higher order tunneling processes. The
second chapter is a record of the experimental setup which was constructed in the scope of this
thesis. We focus on the design of the scan head, the choice of material for electrical connections
and the vibration isolation. Chapter 4 demonstrates the effect of these strategies and shows data
obtained after the installation of the powder filters. It contains data illustrating how the width
of the Josephson effect reduces with these improvements. With this high energy resolution,
we study YSR states under microwave irradiation in Chapter 5. We find anomalous peaks and
present a simplified theory to explain this family of peaks as a microwave-enabled excitation
of the YSR state with subsequent resonant relaxation. The penultimate chapter is devoted
to an analysis of the validity of various models and simplifications to understand that higher
order processes become relevant at low transparencies (τ < 10−3) under microwave irradiation.
Finally, we summarize this work and give an outlook for future endeavors.
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2
Theoretical Background

This chapter provides the background knowledge needed to understand the ensuing chapters. The
first two sections cover scanning tunneling microscopy, giving both a mathematical description
and presenting some of the main extensions to STM which have been developed. Given
that higher order tunneling processes play an important role in this work, this chapter also
reviews a Green’s function approach for describing the tunneling current. This approach is then
used to give a mathematical account of superconductivity and Yu-Shiba-Rusinov (YSR) states.
This foundation is particularly relevant for Chapters 5 and 6. Finally, we give an account of
microwave-assisted tunneling and introduce higher order phenomena such as the Josephson effect
and multiple Andreev reflections which are key for understanding the work about the energy
resolution (Chapter 4) and the analysis of the conductance dependence of microwave-assisted
tunneling (Chapter 6), respectively.
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Chapter 2. Theoretical Background

2.1 Introduction to Scanning Tunneling Microscopy

2.1.1 Tunneling Effect

Figure 2.1: Schematic of the 1D Schrödinger equation. (a) shows the solution
with a potential step V1 = 2E and (b) with a return to a potential V2 = −3E

after length L.

Consider a time-independent Schrödinger equation with a step-like potential of height V0 = 2E

as shown in Figure 2.1(a). Here Ψ is the wavefunction, E the energy, m the mass of the particle
and Θ(x) the Heaviside step function:(

− ℏ2

2m

∂2

∂x2
+ V0Θ(x)

)
Ψ = EΨ (2.1)

There are oscillatory solutions with wave vectors k =
√

2mE
ℏ2 for x < 0 and there is an

exponential decay with decay constant κ =
√

2mE
ℏ2 for x ≥ 0. This means that there is non-zero

probability to find the particle in the classically forbidden region x ≥ 0.

If we now reduce the barrier to V2 < E for some x > L, the particle can again propagate in the
region x > L as shown in Figure 2.1(b). This transfer through the forbidden region is called
tunneling because the particle can cross the barrier of V0 without having sufficient energy to
overcome it classically. Another important observation from this simple problem is the fact
that the wavefunction in the classically forbidden region decays exponentially, meaning that the
amplitude in the region x > L is exponentially sensitive to variations in the barrier length L.
More precisely, if we define an incoming wavefunction for x < 0 as ψinc(x) = Aeikx (where
A is a normalization factor) and a transmitted wavefunction ψtrans(x) = Ateik1x, then it turns
out that the transmission probability T = |t|2 (in the case of κL ≪ 1 where κ =

√
2m(V0−E)

ℏ2 )
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evolves as [24]:
T ∝ e−2κL (2.2)

Now in real physical systems, there are two quantities which determine the height of the barriers:
firstly the work functionW = −EF −eϕ, which measures how much energy is needed to take an
electron from the metal into vacuum (the Fermi level EF ), and secondly the electrical potential
ϕ between the two materials, which determines the relative offset of the two Fermi levels. For
most materials, the work function is of O(eV) [25], which means that κ−1 = O(Å). This means
that the tunneling current is sensitive to variations in the barrier width on the Å scale.

2.1.2 Concept of a Scanning Tunneling Microscope

A scanning tunneling microscope (STM) exploits this tunneling effect. A schematic drawing is
shown in Figure 2.2. A sharp tip is brought in tunnel contact with a sample. Then to measure
a current, a bias voltage is applied between the tip and the sample. Based on this current, a
feedback loop helps to find the correct position to reach a certain setpoint current. With this
feedback loop active, the tip is then moved along x and y, allowing us to record the topography
of the sample. Through the exponential dependence of the tunneling current on the distance,
it is possible to achieve a vertical resolution on the order of 10 pm, which means that atomic
resolution is possible. In contrast to other microscopy techniques, the resolution is much higher
because there is no wavelength limitation as in light or electron microscopes. Additionally there
are no lenses because there is no beam to focus, thereby eliminating another source of noise that
is present in other microscopy techniques.

Figure 2.2: Schematic of a scanning tunneling microscope. The tip can be
positioned using a piezoelectric tube. The position is found using a feedback
loop between the current and the z-position.
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2.1.3 Mathematical Description

A more rigorous approach is needed to describe the tunneling current quantitatively. Real
materials have energy levels over a wide range of energies- i.e. density of states.

This can be treated within Bardeen’s tunneling formalism [26]. This approach takes the
unperturbed wavefunctions of tipΨL,m (with HamiltonianHL) and sampleΨR,m (with Hamiltonian
HR). If we now consider a particle that is in state |ΨL,n⟩ initially, then the presence of the sample
is a perturbation. If the total Hamiltonian is H , then the perturbation H − HR will introduce
solutions of the form:

Ψ(t) = ΨL,n(0)e
−iEnt/ℏ +

∑
m

amn(t)ΨR,me
−iEmt/ℏ (2.3)

Importantly, the matrix element Mmn = ⟨ΨL,m|H − HR |ΨR,n⟩ comes up in the calculation
of time-dependent perturbation theory. Without presenting the detailed steps here, looking at
equation 2.3, one can see that the sum over states in the sample leads to a density of states
and that the coefficients a(t) would be proportional to this matrix element and therefore decay
exponentially with the width of the barrier. From this starting point, a formula for the tunneling
current can be derived [27], where we set the Fermi levels to zero. Here ρL and ρR are densities
of states, M is the matrix element and f(E) is the Fermi function:

I(V ) =
4πe

ℏ

∫ ∞

−∞
[f(E − eV )− f(E)] ρL(E − eV )ρR(E)|M |2dE (2.4)

In other words, the tunneling current is a convolution of tip and sample density of states. If one
is known, sweeping the bias voltage can give information about the other. Figure 2.3 illustrates
this equation. The bias voltage shifts the Fermi levels relative to each other, allowing electrons
to tunnel from an occupied to an unoccupied state. At finite temperatures, the Fermi level is
smeared out by a width kBT .

Figure 2.3: Illustration of the equation for tunneling. Tip and sample density
of states are convolved with a thermal broadening.

7



Chapter 2. Theoretical Background

An extension to this theory is the Tersoff-Hamann formula [28] which considers the geometric
shape of the tip.

Now instead of the current, if we wish to access the density of states, we need to measure the
derivative of the current, i.e. the conductance, directly. Here an AC modulation technique is
helpful. A small modulation in the bias voltage V (t) = V0+V1cos(ωt) induces a time dependent
current:

I(V ) = I(V0) +

(
dI

dV

)
V0

V1cos(ωt) +O(V 2
1 ) (2.5)

Demodulating with a signal of the same frequency, we see that the demodulated current is
to first order proportional to dI

dV
. This is the most common technique to find the differential

conductance. The amplitude of the lock-in can introduce additional noise [29]. In fact, if we
consider the measurement of the demodulated current I(V )cos(ωt) averaged over one period
T = 2π/ω, we find, by substituting ν = V1cos(ωt) and integrating by parts:

1

T

∫ T

0

I(V (t))cos(ωt)dt =

∫ V1

−V1

I(V0 + ν)
νdν/(πV1)√
V 2
1 − ν2

=

∫ V1

−V1

I ′(V0 + ν)

√
V 2
1 − ν2

πV1
dν (2.6)

This means that the true differential conductance I ′(V0) is convolved with the semicircular
broadening function specified above.

2.1.4 Technical Challenges

The technique of STM inherently poses several challenges. Firstly, to measure features on
the order of O (100 pm), the vibrations need to be sufficiently low. More precisely, current
state-of-the-art laboratories are built to achieve RMS velocities below 1 nm/s [30]. This requires
multi-stage vibration strategies including passive dampers such as concrete blocks, air cushions
and springs, as well as active dampers. Secondly, a sharp tip leads to high electric fields which
could ionize any nitrogen/oxygen molecules. This means that some insulating medium must be
chosen, which is usually ultra-high vacuum (UHV). Apart from that, UHV opens the possibility
to prepare and keep atomically clean surfaces. Finally, to measure currents on the order of
O (10 pA), high amplification and a low noise environment are required.

Once these requirements are met, STM opens the possibility to study a plethora of physical
phenomena at the atomic scale. The next section presents some highlights of these recent
developments.

2.2 Recent Advances in Scanning Tunneling Microscopy

Since its invention, the technique of STM has seen several improvements and extensions. If
one considers the basic setup in figure 2.2, each of the components can be modified. Figure 2.4
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presents some main extensions.

Figure 2.4: Schematic of the different variations in STM. Examples of different
sample systems, tip systems, external conditions and detection schemes are
shown.

Firstly, the question is: what systems can we study? The first STM image was taken on the
semiconductor silicon [5] and most work is carried out on clean metal surfaces [31]. With
the advent of better preparation techniques, the deposition of molecules, islands, atoms or
insulators is possible, each of which has enabled new routes of investigation. Firstly, the ability
to manipulate single atoms allows STMs to engineer structures atom by atom, with the most
famous example being the quantum corral [6]. Islands are closely related to proximity effects.
For example, it is speculated that monolayers of CrBr3 on NbSe2 might host so-called Majorana
bound states at the edge [32]. Molecules on conductors [33] enabled the study of the Kondo
effect [34] which arises from the interaction of magnetic moments with conduction electrons.
Even larger molecules like glycans can also be imaged with STM [35] combined with more
sophisticated deposition techniques. Lastly, insulators such as NaCl [36] or MgO [37] help to
study charging processes or can reduce the decoherence due to electrons from the substrate.

The other part of the tunnel junction, i.e. the tip, can also be changed to study new phenomena.
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Ferromagnetic tips are spin-polarized, opening the possibility to investigate magnetic and spin
properties of the sample, such as skyrmions [38]. To measure spin properties in the zero-field
limit, antiferromagnetic tips such as MnNi [39] are useful. Apart from that, superconducting tips
enable the study of numerous effects related to superconductivity, such as Andreev reflections
[40] or the Tedrow-Meservey effect [41, 42]. Finally, several functionalizations of tips are
possible, for example with Yu-Shiba-Rusinov states [43] or with ESR sensitive apices [44].

With a given set of tip and sample system, various physical or chemical properties can be
analyzed. The most conventional tools are topographic maps, where the surface is rastered
in constant current or constant height mode. Yet already these can be used to gain structural
information, for example to study the effect of a hydrogen evolution reaction in the presence
of polymers on Au(111) [45]. Another key tool for STM is the measurement of differential
conductance (dI/dV ). This can give information about the density of states. In combination with
rastering, the so-called grid spectroscopy can be used to map the spatial extent of spectroscopic
features as for example edge modes [46]. Not only the signal itself, but also the noise can give
information about the underlying processes. For instance, the quantization of charge carriers
leads to Poissonian noise at small current, so-called shot noise [47]. This has been used to
extract the number of charge carriers involved in one tunneling event [48]. Another experiment
where noise can be useful is stochastic resonance [49]. Here, the way in which the system
synchronizes with the external drive can give information about its dynamic properties. Apart
from electronic properties, photonic properties like luminescence [50] have been explored using
photon detectors. This has lead to advances in the study of excitons [51], which are electron-hole
bound states in a solid state material. Pump probe schemes have opened the avenue towards
switching of magnets [52] and measuring the lifetime of systems directly [53].

Finally, one can vary the external conditions to drive the system and study its behaviour. For
example, magnetic fields induce a Zeeman splitting which can be measured in the dI/dV
[42]. Temperature is usually a source of decoherence. Therefore temperature-dependent
measurements can help with studying phenomena which are sensitive to temperature such
as the Kondo effect [54]. Fast signals can be used to study the dynamics of systems. With
THz sources, it is possible to study dynamics on the picosecond time scale [55, 56]. Recently,
optical pulses enabled sub-femtosecond resolution in STM measurements [57], thereby making
it possible to track electron motion in molecules [58]. Finally, microwaves are a tool to excite
systems such as for example single TiH molecules in ESR-STM [44].

The list of available methods and systems is steadily growing, making STM a key technique for
understanding phenomena at the atomic scale – ranging from fields such as superconductivity
to biomolecules.
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2.3 Green’s Functions and the Tunneling Current

Bradeen’s formula (equation 2.4) is a good first approximation to calculate the tunneling current.
However, in several cases, an extension of this formula is needed to model the experimental
data. In particular for many-body phenomena, Green’s functions turn out to be more useful.
Therefore, this chapter presents a short overview of the Green’s function treatment of tunneling.
If treated rigorously, the problem of tunneling becomes mathematically challenging as we are
dealing with a non-equilibrium situation where current is flowing from one electrode to the other
at finite temperatures. This includes Green’s functions and the Keldysh formalism [59]. As
Green’s functions are an essential tool for understanding the theory of YSR states, this chapter
focuses on Green’s functions while leaving the Keldysh formalism as bonus reading. This
section largely follows the derivation presented by Cuevas and Scheer [60].

Consider a system where two electrodes are coupled by a hopping t. The Hamiltonian then
reads:

H = HL +HR +
∑
σ

tc†LσcRσ + h.c. (2.7)

Now the time-dependent current is simply the change in charge on one of the electrodes:

I (τ) = −e d

dτ

∑
σ

⟨c†Rσ (τ) cRσ (τ)⟩ (2.8)

We wish to calculate the expectation value of the current and can use Ehrenfest’s theorem:
d
dτ
⟨A⟩ = 1

iℏ⟨[A,H]⟩+ ⟨∂A
∂τ
⟩. This gives the general expression for the current because ⟨∂A

∂τ
⟩ = 0

in the steady state:

I (τ) =
ie

ℏ
⟨
[
c†Rσ (τ) cRσ (τ) , H

]
⟩ = −ie

ℏ
⟨tc†Lσ (τ) cRσ (τ)− h.c.⟩ (2.9)

At this point, it is useful to draw a connection to Green’s functions. The Green’s function is
defined as the propagator of the Schrödinger equation (where a small imaginary part has been
added to the energy to choose the contour):

[E ± iη −H (x)]Gr,a (x− x′) = δ (x− x′) (2.10)

By Fourier-transforming, one obtains:

Gr,a (E) = [E ± iη −H]−1 (2.11)

Now this Green’s function seems like a complicated mathematical construct, but it captures the
underlying physics of the system. This is because it is the response of the system to a perturbation
in terms of a δ-function, thereby covering all possible responses. One important physical
property of the Green’s function can be derived from the identity 1

E±iη
= P (1/E) ∓ δ(E),

where P denotes the principal value. This leads to the density of states:

ρ(E) = − 1

π
Im(Gr(E)) (2.12)
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By assuming that the tunneling term HT is a perturbation, one finds Dyson’s equation:

Gr,a (E) = gr,a (E) + gr,a (E)HTG
r,a (E) (2.13)

where gr,a (E) = [E ± iη − (HL +HR)]
−1 is the unperturbed Green’s function and the term

HT can be generalized to the self-energy Σ. Now usually one knows the left and right Green’s
function and wishes to avoid a Green’s function describing the whole system. Therefore it
is customary to project onto the levels of the left (right) electrode, for example by saying:
GLR = ⟨L|G|R⟩

This can now be related to tunneling current in the following way. In the Keldysh formalism,
one can define [60]:

G+−
LR (τ, τ ′) = i⟨c†Lσ (τ) cRσ (τ)⟩ (2.14)

From this expression, we see immediately that Green’s functions and the tunneling current are
closely linked. We can write:

I =
4πt

ℏ

∫ ∞

−∞
dE
[
G+−

RL (E)−G+−
LR (E)

]
(2.15)

Additionally, the recursive nature of Dyson’s equation means that the current has different
contributions of increasing order in the tunneling t, which correspond to higher order tunneling
processes. Now the non-equilibrium Green’s function includes the Fermi function: G+−

LR (E) =

[Ga
LR (E)−Gr

LR (E)] f (E).

2.4 Electronic transport in STM

In STM, like in other non-equilibrium experiments, electrons are transferred from one electrode
through a barrier into another electrode. This means that many results from electronic transport
theory become relevant to STM.

Consider a similar situation as in subsection 2.1.3, where there is a left and a right electrode. If
these electrodes are now connected by one transport channel, then the current is the product of
the number of charges with their velocity times the transmission probability [61]:

I = nevT =

∫
[f(E + eV )− f(E)]N(E)v(E)T (E)dE (2.16)

HereN(E) is density of states per unit length, i.e.L
∫
N(E)dE = 2 k

2π/L
such thatN(E) = 1

π
∂k
∂E

.
Now the velocity is also v(E) = 1

ℏ
∂E
∂k

, so that we find for the current:

I =

∫
(f(E + eV )− f(E))

e

πℏ
T (E)dE (2.17)

For small temperatures, the difference in Fermi functions is just a rectangle of width eV . This
gives the famous Landauer formula for the conductance G, where we have replaced T by a sum
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over transmission channels Ti:

G =
2e2

h

∑
i

Ti (2.18)

The key interpretation is that there is a quantum of conductance G0 = 2e2

h
for each transport

channel. This is also relevant for STM to quantify how close the tip is to the sample.
Instead of specifying a setpoint current, it is often more helpful to convert this into the
transparency/transmission τ which measures the ratio of the experimental conductance (in
the normal state for superconductors, i.e., at voltages greater than the gap, |eV | ≫ 2∆) to the
quantum of conductance:

GN = τG0 (2.19)

The quantization of charge leads to so-called called shot noise. To understand the origin of
shot noise, consider a derivation based on transmission through a barrier [47]. Considering
the forward current of one channel with one spin species with occupation probability f , the net
forward expectation value is ⟨nfwd⟩ = fT . Now, the occupation can be zero or one, resulting in
⟨n2

fwd⟩fT . Therefore, we find for the variance of the occupation number:

⟨(nfwd − ⟨nfwd⟩)2⟩ = fT (1− fT ) (2.20)

Integrating over the energy, this gives the noise in terms of the Fermi function:

Sfwd = 2
G0

2

∫
Tf(E)[1− f(E)]dE (2.21)

Using equation 2.17, one finds Schottky’s result for the noise in the regime where T ≪ 1:

Sfwd = 2e⟨Ifwd⟩ (2.22)

It should be noted that the noise at higher transmission becomes sub-poissonian due to the
correction term in equation 2.21. This deviation from the Poissonian value is called the Fano
factor which is defined as:

F =
S

2e⟨I⟩
(2.23)

The shot noise is strongly sensitive to the number of charge carriers involved in the tunneling
process. Therefore, a generalization of equation 2.21 in the context of Andreev reflections (see
section 2.10) is [62]:

S = 2G0

∫
dE

 ∞∑
n=1

n2Rn −

(
∞∑
n=1

nRn

)2
 (2.24)

Here n is the number of times a quasiparticle crosses a barrier and Rn is the probability for
such a process. Depending on which processes are allowed, this equation predicts the formation
of steps in the shot noise as a function of bias voltage across a superconductor-superconductor
junction.
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2.5 Superconductivity

2.5.1 Macroscopic Description

In some materials, the resistivity drops to zero below a certain temperature (the critical
temperature TC). This phenomenon is called superconductivity. Superconductors are perfect
diamagnets which means that they expel magnetic fields such that the magnetic field inside a
superconductor is always zero, i.e. B = 0. This phenomenon is called the Meissner effect. The
superconducting phase transition can be understood in terms of a phenomenological approach,
namely the Landau expansion of the free energy in terms of an order parameter:

f = α|ψ|2 + 1

2
β|ψ|4 (2.25)

Now as α changes sign, the minimum of the free energy changes from ψ = 0 to |ψ| =√
−α/β. While this model can be applied to several different phase transitions, in the context

of superconductivity, ψ would be the wavefunction of the superconducting condensate, α is a
temperature-dependent parameter, α = α0(T −TC) and β is a constant. An extension including
the magnetic field is the Ginzburg-Landau theory. The free energy is [63]:

f = α|ψ|2 + 1

2
β|ψ|4 + 1

2m∗ |(−iℏ∇− 2eA)ψ|2 + 1

2µ0

B2 (2.26)

Here A is the magnetic vector potential and B the magnetic field. Now there are two parameters
which can be measured experimentally: the coherence length ξ and the penetration depth λ.
These relate to the parameters α and β in the following way:

ξ =

√
ℏ2

4m∗|α|
(2.27)

λ =

√
m∗β

4µ0e2|α|
(2.28)

Here the coherence length is a natural decay length of the wavefunction ψ and the penetration
depth is the natural length of the magnetic vector potential. The ratio κ = λ/ξ is a criterion
to distinguish between type-I (κ < 1/

√
2) and type-II (κ > 1/

√
2) superconductors. While

type-I superconductors lose superconductivity globally when a magnetic field is applied, type-II
superconductors form normal conducting vortices [64].

2.5.2 Microscopic Description

These macroscopic properties can be understood in terms of the formation of Cooper pairs.
Normally, electrons experience a Coulomb repulsion, but phonons can cause electrons to pair up.

14



Chapter 2. Theoretical Background

The mathematical microscopic description is BCS theory [65]. By assuming a phonon-mediated
attractive potential, one arrives at:

H =
∑
kσ

ξkc
†
kσckσ +

1

N

∑
kk′σσ′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑ (2.29)

By introducing a gap parameter ∆k = − 1
N

∑
k′ Vkk′⟨c−k′↓ck↑⟩, one can find the mean field

Hamiltonian:
H =

∑
kσ

ξkc
†
kσckσ +

∑
k

(
∆kc

†
k↑c

†
−k↓ + h.c.

)
(2.30)

This Hamiltonian can be written in terms of a Nambu basis Ψk =
(
ck↑, c

†
−k↓

)T
:

H =
∑
k

Ψ†
k

(
ξk ∆k

∆∗
k −ξk

)
Ψk (2.31)

This Hamiltonian is diagonalized by a superposition of electrons and holes, the so-called
Bogoliubov quasiparticles with energyE =

√
ξ2k − |∆k|2. The quasiparticles are superpostions

of holes and electrons, i.e.:

ck↑ = u∗kγk↑ + vkγ
†
−k↓ (2.32)

c†−k↓ = ukγ
†
−k↓ − v∗kγk↑ (2.33)

Here the factors uk and vk satisfy the condition |uk|2+ |vk|2 = 1 such that γk↑ are still fermionic
particles.

The Green’s function of a BCS superconductor can be written in the Nambu basis:

Gr,a
k (E) =

1

(E ± iη)2 − ξ2k − |∆k|2

(
E + ξk ∆∗

k

∆k E − ξk

)
(2.34)

Summing over momentum states NL3

(2π)3

∫
dk3, using the residue theorem and assuming that ∆ is

constant, we find the Green’s function in terms of the normal density of states ρ0:

Gr,a (E) =
−πρ0√
∆2 − E2

(
E ∆

∆ E

)
(2.35)

With the knowledge of the previous section, the density of states is just the imaginary part of
the Green’s function, giving both electron and hole density of states at positive and negative
energies, as expected. Sometimes a broadening parameter η is introduced to account for finite
lifetimes of quasiparticles [66]. The new equation for the density of states reads:

ρ(E) = ρ0Re

[
E + iη√

(E + iη)2 −∆2

]
(2.36)

A key result of BCS theory is a prediction for the critical temperature [24]:

∆ = 1.76kBTC (2.37)
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While this formula gives an accurate estimate for some elemental superconductors, it does not
have predictive power for more complicated superconducting materials such as compounds.

Figure 2.5(a) shows the density of states for different values of η. For higher η, the coherence
peaks become smaller and the gap is more filled. Panel (b) shows the effect of changing the
superconducting gap ∆ at constant η.

Figure 2.5: Plots of the BCS density of states. (a) Density of states at different
values of η. (b) Density of states at different values of ∆ where η = 0.05∆0.
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To model the tunneling between two superconductors at lowest order, we can resort to Equation
2.4. Figure 2.6(a) shows the current dependence of a superconductor-superconductor junction
at different temperatures. Both sides of the tunnel junction are gapped, such that there is no
current for |eV | < 2∆ at zero temperatures. At finite temperatures, there are thermally excited
quasiparticles, leading to a small current within the gap which is suppressed by a Boltzmann
factor e−∆/kBT . Panel (b) shows the corresponding differential conductance. The coherence
peaks at ±2∆/e which become sharper at lower temperature are a characteristic feature of SIS
junctions in STM. Again, the peak at zero bias voltage is due to thermal excitations.

Figure 2.6: dI/dV of superconductor-superconductor tunneling. (a) Lowest
order superconductor- superconductor tunneling current for η = 0.02∆ at
variable temperature. (b) Differential conductance at the same conditions.

There are different types of superconductors in practice. In the previous subsection, we
have already distinguished between type-I and type-II superconductors. Other classes of
superconductors, as for example cuprates [67], iron based superconductors [68] or heavy fermion
superconductors [69] cannot be described by BCS theory and often the crystal structure leads to
some anisotropy in the superconducting properties. Superconductors where ∆ is not constant
(e.g. d-wave superconductors [70]) do not show the characteristic gap in STM measurements.
Integrating over different values of∆(k) ∝ cos(kx)−cos(ky)means that there is no zero-current
region as in the case of s-wave superconductors. This has been observed experimentally on
BSCCO for example [71].

Electrons are fermionic which means that the overall wavefunction Ψ = ΨspinΨspace must have
odd parity. For conventional singlet-pairing Ψspin is odd, such that Ψspace must be even. This
would imply that p-wave superconductors are forbidden. Under special circumstances, Cooper
pairs form triplets, resulting in so-called p-wave superconductors [72].
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2.6 Yu-Shiba-Rusinov States

2.6.1 Basic Theory of YSR States

Shiba-Kondo Model

It is well known that magnetic fields can quench superconductivity globally. This raises the
question how a magnetic impurity placed on a superconductor will interact with the surrounding
Cooper pairs and possibly break them. Here, we focus on impurities on s-wave superconductors.
This problem was first addressed by Yu, Shiba and Rusinov [73–75]. The starting point for
the study of an impurity on a superconductor is the inclusion of an interaction between a
superconductor and the impurity due to potential scattering (spin independent) of strength
V δ(r) and exchange scattering JSσzδ(r) [74, 76]:

Himp =
∑
σ

(V − JSσ)c†RσcRσ (2.38)

With the normal density of states ρ0, one can introduce the paramters:

α = πρ0JS (2.39)

β = πρ0V (2.40)

Here α measures the coupling to the substrate and does not break electron-hole symmetry. The
parameter β makes the electron and hole part of the resulting Green’s function different. Based
on Dyson’s equation, the following formula can be derived for the energy of the YSR bound
state [76]:

ϵ = ∆
1− α2 − β2√

(1− α2 + β2) + 4α2
(2.41)

This reduces to ϵ = ∆1−α2

1+α2 for the case of β = 0.

Anderson Impurity Model

Another related model is the Anderson Impurity Model [77]. It assumes that the localized
energy state which has excitations of energy ϵd and a Coulomb repulsion of strength U , giving
the Hamiltonian:

H = HBCS +Himp +Hhop (2.42)

Here, HBCS is the Hamiltonian of the superconducting substrate, coupled to the impurity by
Hhop =

∑
dk Vdkc

†
kσcdσ +h.c., where c†kσ creates an electron in the substrate and c†dσ creates one

in the impurity. The impurity itself has the Hamiltonian:

Himp =
∑
σ

ϵdσc
†
dσcdσ + Udnd↑nd↓ (2.43)

18



Chapter 2. Theoretical Background

A full solution requires a numerical renormalization group approach [78, 79]. However, in
certain limitis, an analytical solution is possible, giving insight into the underlying physics. One
common approximation is the mean-field approach with U = ϵd +

Ud

2
(⟨nd↑⟩+ ⟨nd↓⟩).

Next, one has to consider an exchange interaction J , allowing us to rewrite the Hamiltonian as
[80]:

Himp = U(n↑ + n↓) + J(n↑ − n↓) (2.44)

At this point, the combination of superconductivity and spin-dependent scattering results in
4 × 4 matrices. If we use σi as the Pauli matrices in spin space and τj as the Pauli matrices in
electron-hole space, we can re-write the Hamiltonian as:

Himp = U(σ0 ⊗ τ3) + J(σ3 ⊗ τ0) (2.45)

To calculate the Green’s function of the impurity dressed with the superconductor, the starting
point is Dyson’s equation, equation 2.13, where we use i and S as indices for the impurity and
the substrate, respectively:

Gii = gii + giiHhopGSi (2.46)

GSi = gSSHhopGii (2.47)

This gives:
Gii =

(
1− |tS|2giigSS

)−1
gii (2.48)

where tS is the hopping in Hhop which can be expressed as a rate ΓS using the substrate density
of states nS such that ΓS = |tS|2nS. Now all the other parts of the total Hamiltonian are
spin-symmetric, which means that the spin part of the Green’s function is diagonal. Finally, the
Green’s function is [81]:

G(E) =
ΓSEσ0 + ((E − J)σ0 + Uσ3)

√
∆2 − E2 + ΓS∆σ1

((E − J)2 − U2 − Γ2
S)
√
∆2 − E2 + 2JΓSE

(2.49)

From this, the density of states can be calculated using equation. Moreover, the energy of the
YSR peak can be determined from the divergence of the denominator in the Green’s function.
In the regime where E ≪ J,ΓS , one finds [80]:

ϵ = ±∆
J2 − U2 − Γ2

S√
(Γ2

S + (J − U)2)(Γ2
S + (J + U)2)

(2.50)
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Figure 2.7: Schematic of the Anderson Impurity Model. (a) Schematic of the
mathematical terms. (b) Calculated density of states with (parameters in meV)
∆ = 1, η = 0.02, ΓS = 100, J = 75, U = 20.

Figure 2.7(a) shows a schematic of the terms involved in the Anderson impurity model. Panel
(b) shows the electron and hole parts of the density of states for the parameters specified in
the caption. The two peaks corresponding to the YSR states are the most prominent feature.
Outside the gap, |eV | > ∆, there is a non-zero density of states as expected for a superconducting
substrate. However, the BCS peaks are suppressed due to the presence of the YSR state.

Figure 2.8: Calculated dI/dV of BCS-YSR tunneling. (a) Schematic of the
mathematical terms. (b) Calculated dI/dV with (parameters in meV) ∆ = 1,
η = 0.02, ΓS = 100, J = 75, U = 20.

In this work, YSR states are probed using a superconducting tip. This means that the peaks at
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energy ϵ are located at positions ±(∆S+ ϵ) in the dI/dV spectrum. The peaks are a convolution
of the BCS density of states with the YSR density of states which means that the shape of the
peak is largely determined by the (usually broader) BCS state in the tip. To model a YSR state
on the tip, we simply change the parameters Γt and Γs as shown in Figure 2.8(a) which shows the
junction and the parameters. If Γt ≫ Γs, this would imply that the impurity is on the tip and vice
versa for an impurity on the sample. Panel (b) shows the resulting dI/dV spectrum calculated
with the Anderson impurity model. As in the case of superconductor-superconductor tunneling,
there are thermal peaks at non-zero temperature. The spectral weight of these YSR states is
suppressed by a Boltzmann factor e−ϵ/(kBT ). Particularly for low energy YSR states, this thermal
contribution can be significant. It should be noted that the asymmetry of the thermal states is
flipped with respect to the ground states. Figure 2.9(a) shows this result which has already been
reported in the literature [76]. The normal electron peak (at positive bias voltage, labelled en) is
higher which means that its thermal counterpart et appears at negative bias voltage. Likewise,
the smaller hole peak hn leads to an even smaller thermal hole peak ht at positive bias voltage.
As shown in panel (b), this effect becomes more pronounced with higher temperature.

Figure 2.9: Calculated temperature-dependent YSR-BCS spectra. (a) dI/dV
spectra at different temperatures. (b) Calculated Fermi function at these
temperatures. The parameters are (in meV): ∆ = 1, η = 0.01, ΓS = 100,
J = 75, U = 20.

For real YSR states, there is usually a superposition of the BCS channels with a YSR channel.
This superposition of channels is considered in Chapter 5.
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2.6.2 Relation of YSR states to Quantum dots

Quantum dots (QD) are systems where a gate constricts the charge in a region such that there
are single electron levels [82]. This means that QD operate in a regime which is very similar
to STM. In addition to that, both QD and YSR states host isolated single levels. This means
that a good understanding of QD physics can be beneficial for experiments on YSR states. In
practice, quantum dots are created by confining electrons to a narrow region, for example using
GaAs/AlGaAs heterostructures [83].

Figure 2.10: Schematic of a quantum dot. The dot is placed between two
electrodes such that electrons can tunnel across the dot.

Figure 2.10 shows the basic design of a quantum dot. There are two electrodes which are
coupled to the quantum dot region. The Fermi level of the dot region can be controlled with
a gate voltage Vg. Now if one electron tries to travel across the dot, it experiences a Coulomb
repulsion which has to be overcome. If the charging energy is large compared to the thermal
energy, EC = e2

2C
≫ kBT , then the conductance will show peaks as a function of gate voltage

each time the occupation of the dot changes fromN toN +1. This effect is called the Coulomb
blockade [84]. To draw a connection to STM, charging effects are also relevant here. However,
there is no Coulomb blockade in the conventional sense because of phase fluctuations [85]. This
is called dynamical Coulomb blockade. Apart from that, the observation of a 0 − π transition
which has been observed in quantum dots [86], has recently also been seen in STM [87].
Moreover, while Figure 2.10 bears significant resemblance to the Anderson impurity model (see
Figure 2.8), it should be noted that the regime where tL ∼ tR can easily be realised in quantum
dots, whereas in STM, this is an extreme scenario where the tip is almost in point contact with
the sample. Finally, ideas such as Cooper pair splitting [88] or spin qubits [89, 90] could inspire
experiments conducted with YSR states. Overall quantum dots and YSR states in STM can be
used to study very similar phenomena and the two fields are closely linked.
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2.6.3 Recent Experiments on YSR States

In the context of STM, there are two methods of inducing YSR states: one is by depositing
atoms/molecules on a superconductor and the other is using intrinsic impurities themselves.
Table 2.1 shows a non-exhaustive list of different sample systems which have been investigated.

Table 2.1: List of systems showing YSR states in STM measurements. We list
the substrate and the adatom species.

Substrate Source of YSR states Reference
Nb(110) Mn,Gd,Cr,Fe,Co,V [91–93]
Pb(111) Mn,FeP,MnPc [76, 94–96]
Pb(110) Fe [97]
Pb on Si(111) Mn,Cr [98]
V(100) intrinsic [43, 99]
FeTe0.55Se0.45 Fe [100]
NbSe2 CoPc,MnPc [46, 101]
NbSe2 intrinsic due to Fe doping [102]
βBi2Pd Cr [103]
Bi on Nb(110) Gd [104]
Ta(100) Fe [105, 106]
Re(0001) Fe,Mn,Co [107]

With this long list of candidate systems, various properties of YSR states have been studied.
Firstly, it is important to study the coupling strength J , which has been done by analyzing the
peak position of the YSR state relative to the size of the superconducting gap ∆ [91]. Creating
dimers by placing a second atom next to the adatom leads to variations in the YSR energy. This
can either be done by changing the atom species [98] and/or the distance of the dimer atoms
[104]. Another tuning parameter is the tip-sample distance. By tuning this distance and thus
the atomic force exerted by the tip, the coupling can be varied. Then it is possible to explore the
quantum phase transition between the screened and unscreened spin state [81, 94]. Figure 2.11
shows a schematic of the transition between the weak and strong coupling regime.
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Figure 2.11: Schematic of a quantum phase transition of a YSR state. With
increasing coupling J , the spin can be screened leading to a different parity in
the ground state.

Other works have studied the tunneling regimes between superconductors and YSR states, i.e.,
how the tunneling processes into YSR states depend on conductance. There is a consensus about
three regimes [43, 76]:

1. Linear regime

2. Sublinear regime

3. Andreev regime

In the linear regime, the tunneling rate is low such that the YSR state can always relax
and the current scales with conductance [76]. In the sublinear regime, resonant Andreev
processes are suppressed, but the tunneling rate is comparable to the relaxation rate of the
YSR state such that the YSR state makes a bottleneck and the current scales sublinearly with
conductance. This transition gives information about the lifetime of YSR states. Finally, at high
enough conductances, resonant Andreev processes become relevant and lead to a superlinear
dependence. For the case of YSR-YSR tunneling there are even more regimes and the extracted
lifetime was estimated to be 48 ns for intrinsic impurities on V(100) at 10mK [43].

These regimes immediately pose the question about how many charges are tunneling. This
question has been tackled by a study of the shot noise [108], though an analysis is complex due
to the simultaneous presence of Andreev reflections and quasiparticle tunneling.

Naturally, at higher conductances, the Josephson effect will become visible. The influence of
YSR states on the Josephson effect is the subject of several investigations, providing information
about the local variations of the order parameter [97] or the interference with the BCS channel
across the quantum phase transition [87].

Another aspect of YSR states is their spin polarization. Spin polarized tips could be used to
probe this feature and first attempts of doing so have been reported [100, 105]. Similarly, tips
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functionalized with YSR states gave insight about the spin selection rules for tunneling between
YSR states [99].

Exposing asymmetric YSR states to microwaves below 40GHz [96] has lead to the observation
of deviations from Tien-Gordon theory. This was explained in terms of different electron and
hole parts in the tunneling processes involving the YSR state.

To summarize, currently the energy of YSR states and their conductance has been studied
extensively. Other tools such as spin-polarized tips, atom manipulation or shot noise spectroscopy
are in the development. Additionally, first indirect estimates of the lifetime of YSR states have
been made [43, 76, 108]. These are yet to be confirmed by pump-probe schemes. While there
are studies on the interaction of microwaves with YSR states, the coherent manipulation of YSR
states is yet to be seen.

2.6.4 Majorana Bound States

One feature that distinguishes quantum computing from classical computing is the existence of
entangled states such as |Ψ⟩ = 1√

2
(|0⟩+ |1⟩). Therefore it is important to discover systems that

enable such entanglement operations. This is the main motivator for Majorana bound states.
A Majorana fermion [109] is its own antiparticle, i.e. γ = γ†. This means that these particles
could host a variety of interesting phenomena such as non-Abelian statistics [110]. In solid
state physics, it has been speculated that chains on a p-wave superconductor could host similar
Majorana modes [111]. The main difference to YSR states is that these Majorana bound states
come in pairs (at both ends of a chain, for example) and give rise to zero-bias conductance peaks
with their conductance quantized to G0 = 2e2

h
[112]. While such zero-bias peaks have been

reported in STM [113] as well as in nanowires [114], the demonstration of their topological
properties has hitherto been elusive.

2.7 The Phase in Tunnel Junctions

This section is primarily based on the results presented by Ingold and Nazarov [115].

Going back to equation 2.7, we should introduce a phase parameter which accounts for the fact
that the phases between the two electrodes might differ, i.e t → teiϕ. This accounts for the
fact that the time-dependent wave functions on the left and right side may not be synchronized.
For a normal conductor, one may define the phase difference in terms of the bias voltage V (t)

between the two electrodes:
ϕ(t) =

e

ℏ

∫ t

−∞
V (τ)dτ (2.51)
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By considering a simple L− C circuit, the energy E = 1
2
CV 2 + 1

2
LI2 becomes:

H =
Q2

2C
+

ℏ2

2e2L
(ϕ− eV t/ℏ)2 (2.52)

In analogy to the simple harmonic oscillator H = p2/2m+ kx2/2m, the charge and phase can
be converted into operators and become conjugate variables:

[Q, ϕ] = ie (2.53)

This is sometimes referred to as second quantization or quantization of charge and it becomes
particularly relevant in small junctions like quantum dots or STM. Now in general, the perfect
LC circuit will experience some dissipation due to the environment, which dictates the behavior
of the phase fluctuations. It is useful to define a P (E) function which is the Fourier transform
of these phase fluctuations J(t) = ⟨[ϕ(t)− ϕ(0)]ϕ(0)⟩:

P (E) =
1

2πℏ

∫ ∞

−∞
eJ(t)+iEt/ℏdt (2.54)

After some calculations, one finds that the basic tunneling formula 2.4 is modified by the
inclusion of the P (E)-function which introduces a broadening. The forward tunneling rate Γ→

is then:

Γ→(V ) =
1

e2RT

∫ ∞

−∞

∫ ∞

−∞
f(E−eV )[1−f(E ′)]ρL(E−eV )ρR(E

′)P (E−E ′)dE ′dE (2.55)

Here RT is the tunneling resistance which can be rewritten in terms of the conductance as
RT = (τG0)

−1. In the case of kBT ≪ e2/(2C), and no environmental impedance, the
P (E)-function is a δ-function and Equation 2.55 becomes Bardeen’s formula.

This P (E) function has various mathematical properties. For example, it satisfies the detailed
balance:

P (−E) = e−E/(kBT )P (E) (2.56)

This means that a particle tunneling across the junction is more likely to give energy to the
environment than gaining energy from the environment. More precisely, it can only gain
energy coming from thermal excitation of the environment. Furthermore, it is a probability
density function, which means

∫∞
−∞ P (E)dE = 1. Its expectation value is the charging energy,

⟨E⟩ = e2

2C
. This means that on average, a particle loses this charging energy to the environment.

Its physical interpretation is that it induces a broadening due to interaction with the environment.
It becomes relevant in experimental setups where the instrumental noise has been reduced such
that these effects becomes important.

The P (E) approach is flexible because all possible environments (with total impedance ZT (ω))
can be encoded in the P (E) function through J(t) based on the fluctuation-dissipation relation:

J(t) = G0

∫ ∞

0

dω

ω
ReZT(ω)

(
coth(

ℏω
2kBT

)[cos(ωt)− 1]− isin(ωt)

)
(2.57)
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Now for STM, there is a junction capacitance CJ and all the other environmental factors can be
summarized in an impedance Z(ω), such that a common model for the impedance in STM is
[13]:

ZT =
1

iωCJ + Z−1(ω)
(2.58)

Starting with equation 2.51, we can also consider a sinusoidal driving voltage. This then gives
the following relation:

ℏ
∂ϕ

∂t
= eVDC + eVACsin (ωt) (2.59)

As we have seen, the phase is subject to strong fluctuations. It is therefore more accurate to
write:

ϕ(t) =
eVDCt

ℏ
− eVACcos(ωt)

ℏω
+ ϕ̃(t) + ϕ0 (2.60)

Here ϕ̃(t) are the fluctuations which have been treated in this section and the AC drive is the
subjection of the next section.

2.8 Microwave-Assisted Tunneling

As seen in the previous section, an AC voltage can lead to a modulation in the phase. This has a
characteristic effect on the tunneling current as first reported by Tien and Gordon [116]. Upon
integrating equation 2.59 and inserting the result in Ψ = Ψ0e

−iEt/ℏ+iϕ, one can use the identity
eiAsin(α) =

∑
n Jn(A)e

inα, where Jn is the n-th order bessel function of the first kind and we
have introduced the dimensionless amplitude α = eVAC

ℏω . This then gives a modified density of
states in the presence of microwaves:

ρMW(E) =
∑
n

J2
n(α)ρ(E + nℏω) (2.61)

Plugging this term into the Bardeen expression for the tunneling current, one finds that the
tunneling current can be expressed in terms of the original tunneling current in the following
way:

I(V, α) =
∑
n

J2
n(α)I(V + nℏω/e, 0) (2.62)

The physical interpretation of this equation is as follows: the tunneling electron interacts with
the microwave field, allowing it to absorb or emit quanta of ℏω. Classically, the maximum
available energy is VDC + VAC, such that the maximum number of quanta absorbed/emitted is
eVAC

ℏω . As it is a quantum effect, this transition is not sharp, but there is some tail of density of
states decaying beyond this threshold. Figure 2.12 shows an example of equation 2.62 applied
to a Gaussian peak.
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Figure 2.12: Model conductance map generated with the Tien-Gordon
equation. The classical line VAC = VDC is shown in white. It can be seen that
there is a tail of density of states outside the region enclosed by the white lines.

The Tien-Gordon equation can readily be inverted by taking the Fourier transformation. To
simplify the notation, we write equation 2.62 as:

g(x) =
∑
n

J2
n(α)f(x− n) (2.63)

Taking the Fourier transform, the shift along x becomes a phase shift which can be factored out.
We can then find the following equation to calculate the original spectrum (without MW) from
a spectrum with microwaves:

f(x) =
1

2π

∫ ∞

−∞

g̃(k)eikx∑
n e

−iknJ2
n(α)

dk (2.64)

Here, k is a conjugate variable to the voltage and g̃(k) is the Fourier transform defined by:

g̃(k) =

∫ ∞

−∞
g(x)e−ikxdx (2.65)

In practice, this back-transform only works accurately when (i) the spectrum has sufficiently
low noise, (ii) the dimensionless amplitude α is accurately known and (iii) there are no higher
order processes in the spectrum. This is because Tien-Gordon theory is only valid within the
tunneling approximation [116]. Figure 2.13 illustrates the inversion of the Tien-Gordon equation
in practice. We start with a superconductor-superconductor spectrum measured with a vanadium
tip on a V(100) surface at 0.56K. The dI/dV spectrum shows the two characteristic BCS peaks
as seen in panel (a). Once we apply the microwaves, replicas form at multiples of ℏω/e as
seen in panel (b). We then apply a Fourier transform (panel (c)) which can then be inverted
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(panel (d)). While this back-transformation reproduces the two salient features, i.e. the peaks,
the calculated spectrum is very noisy, indicating that high quality data along with good filtering
during the Fourier transformation are required.

Figure 2.13: Illustration of the inversion of the Tien-Gordon equation. (a) shows
an original superconductor-superconductor spectrum measured on V(100)
with a vanadium tip at a setpoint of 500pA and a bias voltage of 3mV. (b)
shows the corresponding spectrum when microwaves at 85.6GHz are applied.
(c) shows the Fourier transformation of (b) and (d) shows the calculated
back-transformation.

The Josephson effect has to be treated separately; it turns out [117] that an equivalent equation
can be derived, except with the replacement e → 2e due to the presence of cooper pairs. More
generally, it has been shown that for a transfer of m charges, replicas will form at multiples of
ℏω
me

[118], but the simple Tien-Gordon theory (even with that replacement) breaks down due to
interference processes [119].

2.9 The Josephson Effect

One of the most prominent features associated with superconductivity is the Josephson effect
[120, 121]. In the context of planar architectures, where the phase is well-defined, one finds
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that there is a current which is related to the phase difference ϕ between two superconductors
coupled by a tunneling barrier:

I = ICsin(ϕ) (2.66)

It is the current due to transfer of Cooper pairs and as such a second order process. In real
systems, a tunnel contact always has a capacitive element and possibly also a resistive component
associated to it. Therefore, one of the most common models to understand Josephson junctions
is the resistively and capacitively shunted Josephson junction (RCSJ), as shown in Figure 4.6(a).
The new equation for the total current is the sum over all the elements:

Itot =
V

R
+ CV̇ + ICsin(ϕ) (2.67)

Using Gor’kov’s relation between phase and voltage, i.e. 2eV = ℏϕ̇, one finds an equation of
motion for the phase. It turns out that depending on the capacitance, a washboard potential
as shown in panel (b) forms, meaning that current can only flow above a threshold current IC,
namely when the washboard potential has no local minima. Panel (c) shows a typical I − V

curve in the under-damped regime where there is no hysteresis.

Figure 2.14: Schematic explaining the Josephson effect. (a) shows thed. circuit
of the RCSJ model, (b) shows the washboard potential for different current
biases and (c) shows the Josephson effect in the under-damped regime.

The relation between the gap ∆ and the critical current IC was derived by Ambegaokar and
Baratoff [122] with homonymous equation:

ICRN =
π∆

2e
tanh

(
∆

kBT

)
(2.68)

Now in the simplest case we can express the normal state resistance RN in terms of the
transparency and the quantum of conductance: RN = (τG0)

−1. This means that equation
2.68 at low temperatures kBT ≪ ∆ simplifies to: IC = ∆τ πe

h
. In STMs, tunneling is charge

dominated, and the Josephson effect manifests itself as a feature located at zero bias voltage [123,
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124]. A simple model for such phase diffusive Josephson junctions is the following equation
[125] (first derived by Ivanchenko and Zilberman [126]):

I(V ) = I0
V/Vp

1 + (V/Vp)
2 (2.69)

Here Vp is a measure of the width of the Josephson effect.

A more rigorous treatment involves P (E)-theory. Based on the observations from Section 2.7,
it is possible to derive an equation for the Josephson effect. One has to keep in mind that a
tunnel junction is a tunneling resistance and a capacitance at the same time, making the STM
effectively a low pass filter [127]. Assuming that the junction interacts with the environment,
various expressions can be derived depending on the geometry of the tip. A key result from
P (E)-theory is [115]:

IS(V ) =
πeE2

J

ℏ
(P (2eV )− P (−2eV )) (2.70)

Here the Josephson energy EJ can in the simplest case be defined as EJ = Φ0IC
2π

= 1
4
∆τ . As

stated before, the P (E)-function describes the effect of sources of decoherence.

2.10 (Multiple) Andreev Reflections

Another phenomenon that becomes apparent at high conductances is the appearance of Andreev
reflections. As an illustration, consider a normal electrode (L, left) coupled to a superconductor
(R, right). Then the tunneling current can be calculated using the Green’s function formalism
[60]. The current has several contributions, I = I1 + I2 + I3 + I4 + IA. The terms are [128]:

I1 ∝ t2
∫ ∞

−∞
dE
∣∣1 + tGr

RL,11(E)
∣∣2 ρLL,11(E − eV )ρRR,11(E + eV )×

×[f(E − eV )− f(E)] (2.71)

I2 ∝ t2
∫ ∞

−∞
dE × Re

[
tGa

LR,21(E)(1 + tGr
RL,11(E))

]
×

×ρLL,11(E − eV )ρRR,11(E + eV )[f(E − eV )− f(E)] (2.72)

I3 ∝ t4
∫ ∞

−∞
dE |GRL,12(E)|2 ρLL,11(E − eV )ρRR,22(E + eV )×

×[f(E − eV )− f(E)] (2.73)

IA ∝ t4
∫ ∞

−∞
dE |GRR,12(E)|2 ρLL,11(E − eV )ρLL,22(E + eV )×

×[f(E − eV )− f(E + eV )] (2.74)

We focus on the term IA. This equation can be understood intuitively. We multiply the
electron density of states in the left electrode (ρLL,11) with the hole density of states in the
left electrode (ρLL,22) and take the probability of an electron turning into a hole in the right
electrode (|GRR,12(E)|2). In other words, an electron is reflected as a hole, which is called an
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Andreev reflection. In this work, the left electrode is usually also superconducting, allowing for
multiple Andreev reflections (MARs). For the remainder of this chapter, we therefore focus on
SIS junctions.

Figure 2.15(a) shows a first order Andreev reflection which occurs at a bias voltage of V = ∆/e.
This is because the whole energy difference between initial and final state is 2∆, but it is divided
into two sections. This process would scale as ∝ τ 2. Then next higher Andreev reflection is
a double reflection as shown in panel (b). Likewise, the process involving a double reflection
contains three charge transfers and scales as ∝ τ 3 etc.

Figure 2.15: Schematic MARs between two superconductors. (a) shows the
first order Andreev reflection, (b) a second order AR and (c) a third order AR.

Figure 2.16: Modelling of Andreev reflections. (a) Normalized current in a
SC-SC junction at different conductances. (b) Normalized dI/dV . The data
was produced using a code by Juan Carlos Cuevas with parameters∆ = 1meV,
η = 0.5µeV, T = 0.01K.
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In STM, Andreev reflections can be seen in superconductor-superconductor tunneling. Figure
2.16 shows how the current evolves as a function of conductance according to a Green’s function
calculation. This does not show the Josephson effect because the code only shows QP tunneling,
whereas the Josephson effect is the tunneling of Cooper pairs. This difference in the particle
which is tunneling is an important distinction between Andreev reflections and the Josephson
effect. The feature that is most prominent at low conductances is the coherence peak at eV = 2∆

as shown in panels (a) and (b). At higher conductances, multiple Andreev reflections become
relevant and contribute to the current. Therefore the step at eV = 2∆ is smeared out at higher
conductances, leading to a broader and lower coherence peak. Once an Andreev reflection is
possible, i.e. eV ≥ 2∆

n
for n ≥ 2, there is a new contribution to the current, leading to a step

in the current as seen in panel (a). We normalize the current to the conductance τ . One would
expect that for large bias voltages, the normalized currents at different conductances would be
identical. However, the presence of Andreev reflections leads to an excess current which can
clearly be seen in panel (a). This excess current has important consequences for the analysis
of experimental spectra. Naively, one would think that the normal state conductance is just the
setpoint current divided by the bias voltage, i.e. GN = Iset

Vbias
. However, a more precise estimate

of the conductance is the slope of the I − V curve, i.e. GN =
(
dI
dV

)
V≫2∆

. We use the latter
approach for calculating conductances for the remainder of this thesis.

Figure 2.17(a) shows data measured on a V(100) surface with a superconducting tip at 0.56K.
The spectra were normalized to the normal state conductance. The peaks at ±1.4mV= ±2∆

are the coherence peaks. The normalized height of the coherence peaks drops as expected,
while the (higher order) subgap features grow with increasing conductance. The peak around
zero bias voltage is the Josephson effect which is expected to grow as ∝ τ 2. The actual Andreev
reflections at 2∆/2 and 2∆/3 are expected to grow as ∝ τ 2 and ∝ τ 3, respectively. In panel (b),
we plot the peak height (the mean of the left and right peak height) as a function of conductance.
We add dotted (dashed) lines to the plot, which show the expected ∝ τ 2 (∝ τ 3) behavior.
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Figure 2.17: Andreev reflections in a SC-SC junction. (a) shows the normalized
differential conductance of Andreev reflections measured at 0.56K with a bias
voltage of 3mV. (b) shows the evolution of the peaks in (a), where dotted lines
have a slope of 2 and the dashed line has a slope of 3.
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Andreev reflections on both electrodes allow the formation of an Andreev bound state. This
subgap state arises purely from Andreev reflections and not – as in the case of YSR states – from
some magnetic impurity. Figure 2.18(a) shows a schematic of this bound state and panel (b)
shows the energy-phase relation at various conductances, which satisfies the following equation
in terms of the phase difference ϕ between the two electrodes:

EB = ∆
√

1− τsin2(ϕ/2) (2.75)

Figure 2.18: Andreev bound state. (a) Schematic of the trapping of
quasiparticles due to Andreev reflections. (b) Energy-phase relation of the
corresponding bound state.

For higher conductances, the gap between the two branches of EB becomes smaller because
Andreev reflections are more likely. Such Andreev bound states have been seen in nanodevices
as for example graphene-based Josephson junctions [129]. Equation 2.75 desrcibes an energy
in terms of the phase. However in STM, tunneling is phase-incoherent, such that it is useful to
consider the Fourier components of E(ϕ):

E(ϕ) =
∞∑
−∞

Eme
imϕ (2.76)

As can be seen from the commutator in equation 2.53, the term eimϕ is a charge transfer operator.
Then each component Em corresponds to the transfer of 2m charges. Now the current can be
calculated from the following relation [130]:

I(ϕ) =
2e

ℏ
∂E

∂ϕ
(2.77)

If we apply this equation to Equation 2.75, we find the first Josephson relation (equation 2.66)
for τ ≪ 1.
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A treatment of higher order terms in the context of P (E) theory gives a modified equation for
the Josephson effect [131]:

I(V ) =
2π

ℏ

∞∑
m=1

2me|Em|2 [Pm(2meV )− Pm(−2meV )] (2.78)

Here Pm(E) is a modified P (E) function, where the phase correlation gains a prefactor of m2.
This equation is an extension of the result shown in equation 2.70.
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Experimental Setup

Having introduced the basic principles of STM, this chapter now shows the implementation of
these principles. We provide detailed information about the design of the scan head as well as
the electrical connections to explain how the present energy resolution has been achieved. A key
tool in this work is an external microwave antenna along with elaborate filtering strategies; we
illustrate how this antenna was incorporated in the experimental setup. This is followed by an
explanation of the cooling principle and the strategies for vibration isolation. In the end, there
is an outlook on how higher frequency radiation sources might be included in the STM.

3.1 Basic Layout

The setup is shown in Figure 3.1. The whole assembly sits on active and passive dampers. The
sample can be moved inside the preparation chamber using a manipulator. With the sputter gun
and the high voltage filament on the manipulator, we prepare the sample in situ. Then we can
transfer it to the STM without breaking the vacuum. The STM is located inside the cryostat
which sits on the chamber. Using a wobble stick, the radiation shields may be opened from the
side. The electrical feedthroughs are on the top flange of the cryostat. They are then fixed on
the pump line interstage before reaching the rack with the measurement controllers (not shown
in this figure). To minimise losses in the intensity, the high frequency modules are placed just
30 cm above the top flange.
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Figure 3.1: 3D drawing of the whole experimental setup. The STM head is
located inside the cryostat. All the electrical feedthroughs are located on the
top plate.

3.2 Design of the Scan Head

There are various designs for STM heads. All of these designs include a coarse motor, a
piezoelectric scanner and some transfer mechanism for the tip and the sample. In this work,
we use a scan head design which has already been implemented in the mK-STM at MPI-FKF
Stuttgart [10]. The outer shape is a truncated cone for optimal stiffness [132]. This design uses
a banana plug for the tip which is directly inserted into the piezo tube. The material is a lead
zirconate titanate (PZT) , giving a scan range of approximately (x, y, z) = (1000, 1000, 250) nm.
The piezo tube sits on the coarse motor (Attocube ANPz50).

There is an M20 thread where the sample holder is screwed in. One important difference
compared to conventional designs is that ceramics were avoided altogether. All the outer
conductors are directly grounded on the STM head. Secondly, instead of a homebuilt coaxial
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spring contact, which might have impedance mismatches, we use commercial parts (Fixtest
FK661 and FK652). We test these and find good mechanical reliability. The final new feature
is a hole for the MW antenna which will be the subject of the next section. Figure 3.2 shows a
3D image of the junction including the MW antenna.

Figure 3.2: 3D drawing of the tunnel junction. The surrounding bronze body
is omitted for clarity.

Importantly, the piezo tube should have the z-piezo facing away from the tip (and the x-y piezo
closer to the tip). In the first version, we oriented the piezo tube as shown in 3.2 which resulted
in significant crosstalk between the z-piezo and the current signal. This crosstalk is greatly
reduced as we flipped this piezoelectric tube upside down. Figure 3.3 shows the two versions.

Figure 3.3: Two versions for the orientation of the piezoelectric scanner. In (a)
the z electrode is at the top, resulting in significant crosstalk. In (b) the x,y
electrodes are at the top. This configuration has low noise and has been used
throughout this thesis.
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3.3 Electrical Connections

Figure 3.4: Schematic of the measurement lines for the tunneling current. The
SPM controller provides a voltage which passes first through a voltage divider
and then is filtered by a commercial π-filter (Api Technologies 1289-004). After
passing through an inductance, the signal is amplified by a commercial I − V

converter (FEMTO). Finally the signal passes through another low-pass filter
before being read out by the SPM controller.

In figure 3.4, we present the basic filtering techniques used in the experimental setup before the
improvements. Starting from the voltage sent by the NANONIS software, the bias voltage is
divided by a 1 : 100 voltage divider. This helps reduce the input noise by a factor of 100. The
voltage divider and a commercial π-filter (Api Technologies 1289-004) are incorporated into a
low noise housing. Using SMA cables, the bias signal is transferred to 4.2K stage, where it
passes through a superconducting coaxial cable. The resulting tunneling current passes through
a 1µH inductance at the top flange before reaching the I − V converter with 109 amplification.
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Figure 3.5: Schematic of the cables and thermalization used inside the cryostat.
The bias and current line are coaxial SMA cables and switch to superconducting
coaxial cables at the base of the helium bath. All the flexible cables are
thermalized with bobbins or double-ended adapters.

The specific thermalization strategy and choice of the material for each of the signal lines
are shown in figure 3.5. In particular, each line is thermalized at each of the stages of the
cryostat. Wherever possible, bobbins are used and the wires are glued around the bobbin using
non-conductive epoxy (EpoTek H77) or PTFE tape. For semirigid cables, we thermalize the
cables using SMA double ended adapters or copper strands which are glued to the outer shield
of the cable using conductive epoxy (EpoTeK H20E). We chose EpoTek H20E for the conductive
epoxy due to its high thermal conductivity and low curing time, allowing us to repair cables
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in situ. The current and bias lines are implemented as SMA cables (Stormflex 047) and then
superconducting semirigid cables are used (Coax Co., Ltd SC-119/50-NbTi-NbTi). This ensures
that the setup remains suitable for potential high-frequency pump-probe measurements. The
z-piezo line is similar, except that it uses a lower frequency coaxial cable (elspec MK5001)
in the normal conducting part. All the other lines are constantan twisted pair (CMD-Direct
02-32-068). The thickness of the constantan is 110µm and the resistance 66Ω/m. Constantan
(like Manganin) has low thermal conductivity and is therefore ideal for lines which do not carry
high currents/ frequencies. A PEEK mesh is used to ensure mechanical robustness and for ease
of handling. Regarding the coarse motion (in this case), the stick-slip motion will only operate
properly when the frequency is sufficiently high. Therefore copper wires (�90µm, CMD-Direct
02-32-067) are used down to the 4.2K stage and then SC-alloy wires (�100µm, CMD-Direct
02-32-066) are employed. The wiring for the antenna is described separately in Section 3.4.

Figure 3.6: Cross-section of the interface. (a) shows the spring contacts used
for coaxial and twisted pair cables in color. (b) shows the same cross-section in
color.

The STM head can be disconnected readily by virtue of coaxial spring contacts as shown in
Figure 3.6. Panel (a) shows the implementation of these contacts. For the coaxial lines, we use
a commercial spring contacts (Fixtest FK661 and FK652). In this part, both the inner and the
outer conductor have spring with a range of motion of roughly 3mm. In the present design, we
aim for a compression of about 1mm. The part FK661 has SMB contacts. To connect to the
electrodes inside the scan head, we employ SMB connectors. For the connection to the contact
plate, we exploit the fact that the non-springy counterpart FK652 can be mounted inside an
MCX connector. Thus we can immediately mount this part (shown in grey in panel (a)) into the
powder filter which sits at the base of the contact plate. This design is also flexible in case one
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wishes to remove the powder filter for high frequency measurements. The powder filter holder
can just be screwed out and replaced by a double-ended female adapter of MCX. As the parts for
he coaxial assembly are made out of brass, the STM head is not bakeable. For the twisted pair
line, we use the screw-in π-filters (Api-Technologies 1289-004) to connect to home-built spring
contacts as seen in Figure 3.6(a). With these two designs, the scan head can be disconnected
from the contact plate (see panel (b)) in less than one minute, allowing for efficient and reliable
maintenance.
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3.4 Microwave Antenna

This section is based on paper # 3 of the publication list.

Figure 3.7: Design of the E-Band antenna. (a) shows the antenna mounted on
the scan head. (b) is a 3D drawing of the antenna holder. The launcher (Anritsu
W1-103F) makes contact to the chip with the antenna. (c) shows the dimensions
of the antenna on the chip. Adapted from Drost et al [133].

The special feature of this STM is the inclusion of an E-band (60 − 90GHz) antenna. This
antenna is incorporated in the scan head as shown in Figure 3.7(a). While it is still possible
to use cables for this frequency, most components will either rely on waveguides (WR12) or
chips with appropriately small dimensions. In previous work [133, 134], a bow-tie antenna has
been designed to match the desired frequency range. This has the advantage that the regular
current and bias lines may still use low-pass filtering – compared to other work where the high
frequency is applied directly through the tip. Future work could include a log-spiral antenna

44



Chapter 3. Experimental Setup

or log-periodic antenna with higher bandwidth [135]. There are currently no commercially
available vacuum feedthroughs for this range which means that we resort to a a feedthrough
which is only specified up to 65GHz (KMCO KPC185FFHA). We use between-series adapters
(CentricfRF C8186 1.0mm male to 1.85mm female) on both ends of the feedthrough to connect to
the high frequency cables. These adapters are made of stainless steel and therefore compatible
with ultrahigh vacuum. As shown in figure 3.8(a), the losses are comparable to the losses
of a 1mm adapter (Anritsu 33WFWF50). We conclude that while the feedthrough KMCO
KPC185FFHA is not specified up to 90GHz, it can still be used for this range in practice. The
transmission was measured using the setup shown in panel (b). The generator provides the low
frequency signal (10 − 15GHz) via an SMA cable. This signal passes through an extension
module which multiplies the incoming frequency by six, reaching 60− 90GHz. After passing
through an attenuator, the signal is sent through the adapter to be tested. We use a de-multiplier
to divide the frequency of the signal by six such that it can be measured by a signal analyzer.

Figure 3.8: Comparison of the two commercial adapters. (a) is a plot of the
transmission of the 1.0mm (Anritsu 33WFWF50) and the 1.85mm adapter
(KMCO KPC185FFHA). The absolute value of the attenuation inlcudes the
attenuation from the two wires connecting two the adapters. These are not
exchanged within this measurement as shown in (b).

Figure 3.9(a) shows a view into the scan head with the antenna dismounted. Due to lack in
flexibility, only copper strands may be used to thermalize the semi-rigid cable as shown in Figure
3.9(b). This picture also shows how the cables leading to the antenna are installed. Panel (c) is
a schematic of the overall cable plan from the generator to the junction. As in the transmission
test, we use the extension module (Virgnia Diodes WR12SGX) to multiply the frequency of the
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generator by a factor of six. The attenuator can be used to set the RF amplitude as the extension
module supplies a constant output of typically 13 dBm. These two modules are connected by
a WR12 waveguide which can be assumed to have negligible losses. From the attenuator, we
use a flexible cable (Stormflex 047, 35 cm long) to connect to the flange. Inside the cryostat,
we resort to copper semirigid cables. We bend the semirigid copper cable in a spiral to give
some room for thermal expansion. Once at the 4.2K stage, there is a female-female adapter
(Anritsu 33WFWF50) to make a transition to a superconducting semirigid cable made out of
NbTi. This cable still needs to be thermalized as losses in the adapters could lead to significant
heat-up. In the final section, we connect to the antenna with a short section of flexible cable. In
the design of this cryostat, the length of normal conducting semirigid (SR) cable is 75 cm, the
superconducting SR cable is 16 cm long, and flexible cable 10 cm.

Figure 3.9: Cabling to the antenna. (a) is a picture of the scan head with the
antenna dismounted. (b) shows the cabling leading to the antenna. (c) is a
schematic of the high frequency connections. The adapters at the cryostat and
4.2K stage are specified in section 3.3.

3.5 Design of the 3He Cryostat

The technical details of cryogenic systems can be quite intricate. This chapter just focuses on
the main components. For a more rigorous review, the reader may consider a review of different
refrigeration techniques [136].

Temperatures down to 4.2K can be reached using liquid helium. Below that, more refined
cooling processes are required. The most common technique to reach 1K is the use of evaporative
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cooling. Liquid helium drops into a pot through a narrow orifice, where it evaporates and the
cooling power is simply the latent heat of evaporation times the mass flow. This cooling is
not indefinite – according to the Arrhenius equation p ∝ exp (−L/kBT ) [136], i.e. the vapor
pressure drops very rapidly at lower temperatures, which means that less helium evaporates. To
reach temperatures below 1K, one has to resort to 3He. 3He is a rare isotope which is usually
a by-product of nuclear reactions. It is fermionic as opposed to 4He and therefore has higher
vapor pressure, which means that lower temperatures can be achieved. With 4He, temperatures
down to 1.0K are realistic, whereas with pure 3He temperatures down to 0.24K [137] have been
reported.

The present system relies on Joule-Thomson refrigeration, which works as follows: when the
3He is throttled through the orifice and expands, the enthalpy H = U + pV remains constant
(ignoring heat exchangers for simplicity). This leads to the definition of the Joule-Thomson
coefficient as [136]:

µH =

(
∂T

∂p

)
H

(3.1)

This coefficient is negative for 3He at 4.2K, so the temperature of the gas drops and it starts
cooling the JT pot. After some time, the temperature drops below the boiling point of 3He and
the 3He becomes fluid. From this point onwards, evaporative cooling is possible, leading to an
increased cooling power.

To reach even lower temperatures, a dilution refrigerator is needed. This technique is not
considered here. Table 3.1 lists some of the physical properties of the two varieties of helium
[138].

Table 3.1: Comparison of the properties of 3He and 4He. We list the vapour
pressure, the boiling point at 1 atm and the entropy at 2K.

Description Property 4He 3He
Vapor pressure at 1K pvap,1K (mbar) 0.16 11.8

Boiling point at 1 atm Tboil,1 atm (K) 4.2 3.2

Entropy at2K S2K (J/mol) 1.2 13.0

Latent heat at 1K L1K (J/mol) 80.2 37.5

These physical properties necessitate some technical considerations for realizing the principle
of evaporative cooling in practice. Firstly, the high pressure line is required to be extremely thin
(about 0.1mm) in diameter to achieve the target flow rate of 3He. 4He becomes superfluid (also
called the He-II phase, which is separated from the normal liquid He-I phase by the λ-line) at
2.17K [138] and can therefore creep up into the capillary. This means that the orifice must be
designed as sharp as possible.
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Figure 3.10: Schematic of the two modes of cryostat operation. (a) shows the
closed cycle operation with 3He. (b) shows the open cycle configuration for use
with 4He. In both cases, the gas switch may be used for initial cooling of the
JT pot. Cooling shields, valves for gas handling and the STM head are not
depicted.

The principle of operation in the present system is shown in Figure 3.10. Panel (a) shows the
mode of operation using 3He. The lines carrying the 3He pass through the 4He bath, thereby
thermalizing to 4.2K. A combination of scroll pump and compressor drives the cycle. The
scroll pump (Edwards nXDS10i) pumps on the Joule-Thomson (JT) pot through a thick tube.
When 3He is condensed, the pressure created by the scroll pump is 10−1 mbar. However, more
important than the final pressure is the mass flow rate out of the JT pot. To maximise this, we
use tubing with higher diameter to avoid any bottlenecks in the flow. In operation mode with
4 ℓ of 3He, the high pressure line carries about 1.3 bar, which is achieved using a compressor.
The gas then passes through a liquid nitrogen trap to avoid contaminations (not shown here)
before being passed through the capillary leading to the JT pot. The high pressure line is inside
the pump line to increase the cooling efficiency by heat exchange from the exiting (cold) gas to
the incoming (warm) gas. This is illustrated by the thermal bridge drawn in Figure 3.10. For
optimized heat transfer to the JT pot (also called Kapitza resistance [139]), there is also a copper
mesh at the base of the JT pot. The system may also be operated with 4He, either in closed cycle
(as in panel (a)) or in open cycle (as in panel (b)). In the open cycle configuration, the gas is
supplied by a gas cylinder with 99.9999% purity 4He. In this case it is possible to measure the
gas throughput at the outlet, which is 13mℓ/min at an inlet pressure of 2 bar 4He. In the closed
cycle configuration, it is also possible to determine the gas throughput by closing a valve to the
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scroll pump and then measuring the rate ∆p
∆t

at which the pressure in the closed space increases.
Since the volume V is known, the flow rate can be determined from Q = V ∆p

∆t×1 atm .

In practice, the helium which is condensed in the JT pot can easily evaporate, for example when
a sample is transferred into the cryostat. In that case, we use a gas-gap switch (see Figure 3.10)
which we heat using a resistor. This switch contains a charcoal pump. Above 12K, the helium
starts desorbing from the pump, and the gas makes a thermal connection from the helium tank to
the JT pot. Once the JT pot is at 4.2K, the gas-gap switch can be opened and the condensation
begins (duration of 30min for 4He, 3 h for 3He in the present system).

3.6 Vibration Isolation

For measuring topographies as well as bias voltage spectroscopies, a good stability of the tunnel
junction is critical. Vibrations can be caused by rotating parts such as pumps, by sound, or by
moving people in the building, just to name a few examples. Once the measurement system
is perturbed by some external vibration, depending on the response function of the internal
parts, certain frequencies might resonate with little damping, resulting in vibrations which are
detrimental to low-noise measurements. Therefore, most vibration strategies are three-fold:
Firstly, the system is decoupled from external sources. This starts by working in a low noise
environment. While there are laboratories with huge concrete blocks, the present experiment
just uses its own weight for inertia. It is placed inside a sound-proof box and high-quality
measurements are performed on weekends when both electrical and mechanical noise due to
daily activity in the institute is minimal. In the system here, there is one set of active dampers
plus one set of passive dampers. Additionally, the pumps for the gas handling system have been
located in a different room to reduce the coupling via sound. Finally, the pumps in the helium
return line can couple back to the cryostat causing noise. To eliminate this source of noise, we
installed a regulator valve keeping the pressure in the cryostat constant. Secondly, we aim to
make the resonance frequencies as high as possible by making the system stiff. Therefore we
implement a custom three-pillar design. The whole inner cryostat has three pillars all the way
down to the scan head. This should be contrasted with traditional designs where the thermal
plates are all mounted to one central rod. In some systems it is necessary to pump on the liquid
nitrogen to freeze it and avoid the bubbling. In this system, we do not see a sizeable difference
in the spectrum. Most likely this is because the heat load on the nitrogen tank is relatively low
and the consumption rate of liquid nitrogen is just 0.23 ℓ/h.

Now for the vibration isolation of the main setup, consider a block of mass m sitting on an
air cushion (of heat capacity ratio γ) of area A and height z0 with pressure p0. For adiabatic
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compressions, the natural frequency for small perturbations is:

ω0 =

√
γp0A

mz0
(3.2)

This means that the weight should be maximised. With the weight of the present system being
about 1.5 t, there is no need for additional weights. On top of that, there are active dampers
to counteract external driving. They lead to additional noise at higher frequencies in the noise
spectrum there to compensate for the low frequency noise. Figure 3.11 shows a comparison of
the vibration spectra as the sensor block is placed on the lab floor, the active dampers or the
passive dampers.

Figure 3.11: Vibration spectra of different damping stages. The spectra
without dampers shows large spectral weight at low frequencies. The active
dampers filter out these low frequency and the best performance is achieved by
a combination of active and passive dampers.

3.7 Outlook: New light sources

While the present microwave range (60− 90GHz) is already sufficient to study the excitation of
YSR states, higher frequency radiation is required for phenomena with larger energy scales, as
for example the quenching of superconductors. Therefore, this outlook presents one possibility
of achieving this, which is the use of Josephson Junction arrays [140, 141]. The chips studied
in this section have been supplied by Oliver Kieler (PTB Braunschweig).

The present experiments have all been carried out using commercial microwave sources.
However, this requires that the generator be placed outside the UHV system which can lead
to long cabling distances. It would be beneficial to have the source as close as possible to the
sample to minimise losses. To do so, we envision a source at the 4.2K stage which makes use
of the Josephson effect in the following way: on a chip, there are several thousands of small
junctions in series. An AC driving voltage leads to a step in the current whenever V = nℏω

2e
,
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which are so-called Shapiro steps [142]. By adjusting the DC current to the n-th order Shapiro
step, we can selectively multiply the incoming radiation by a factor of n.

Figure 3.12: Design of the josephson junction array. (a) is a schematic and
(b) is a photograph of the holder where the array is mounted. (c) shows the
characteristic IV-curve measured at 4.2K.

To pick up the radiation, we use a 1.0mm launcher (Anritsu W1-103F) as shown in Figure
3.12(a) and (b). The current and voltage is controlled via pads at the side of the chip. These
in turn are connected to the pads of a chip carrier which has been cut to fit beneath the chip.
The connection is made by bond wires. From the chip carrier, we make a connection to a
sub-D9 adapter made of PEEK. The holder is made of bronze, such that the whole assembly is
UHV-compatible.

Figure 3.12(c) shows initial data obtained in a current-biased measurement. As there are 9000

junctions on a chip, the voltage drop is 9000 times higher. To achieve an I−V curve as sharp as
shown here, superconducting twisted pair wires are used to connect the sub-D9 jack to the top of
the dip stick. The whole assembly can then be dipped in a liquid helium dewar. For application
as a microwave source for the STM, we envision placing this assembly at the 4.2K stage. This
means that the distance between the high frequency radiation source and the junction is less than
20 cm, thereby reducing losses due to long cables.
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While the previous chapter already covered some improvements, the present chapter will provide
a comparison of the filtering strategies, focusing in particular on the inclusion of metal powder
filters at the scan head. We study the Josephson effect to provide a quantitative comparison to
other state-of-the-art machines.

4.1 Cold Filters

The basic equation of the cut-off frequency for a π-filter with capacitance L and inductance C
is [143]:

fc =
1

2π
√
LC

(4.1)

However, real inductors have a parasitic capacitance (due to coupling between the turns in the
coil) [144], which means thatπ-filters can become transparent at high frequencies. To circumvent
this issue, cold filters have been suggested [15]. The grains of the powder surrounding the line
lead to Ohmic damping of the skin-effect current at high frequencies. Other designs for low
temperature filtering have been suggested, for example filters based on printed circuit boards
(PCBs) or lossy coaxial/capillary filters [145].

In the scope of this thesis, we constructed powder filters as shown in Figure 4.1. We start by
mixing non-conductive epoxy (EpoTek H77) with bronze powder (spherical, 38µm diameter)
in a weight ratio of 1:2. We then cast this epoxy-powder mixture into a cylinder. Even though
the core has high metal content, it is still non-conductive. Then we wind insulated copper wire
(0.1mm diameter, 2m length) around this core and connect it to SMA adapters. Next, we place
this assembly inside a bronze cylinder and fill the space with epoxy or an epoxy/powder mixture.
Finally we close off the cylinder to the outer conductor of the SMA connector using conductive
epoxy (EpoTek H20E). Optionally, we place discoidal capacitors inside the SMA plugs to further
increase the attenuation at high frequencies.
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Figure 4.1(a) shows the attenuation curves of the filters, once in red with capacitors and no
powder on the outside, once with powder on both sides (green) and once with powder only on
the inside (blue). The capacitors turn this filter into a π-filter which is very effective. In all three
curves, there are resonances which have also been seen in literature [15], especially for copper
powder as opposed to stainless steel powder. These resonances are most likely due to resonance
in the wavelength with the grain size. The measurements were conducted at room temperature.
Panel (b) shows a picture of the fully assembled filter (top) and the inner core (bottom). The
length of the filter is roughly 6 cm.

Figure 4.1: Transmission of homebuilt powder filters. (a) shows the
transmission at room temperature and (b) is a photograph of the finished filter
and the inner core.

After this proof-of-principle, we purchase commercial powder filters provided by Basel Precision
Instruments. These filters are based on exactly the same principle except that conductive silver
epoxy is used to cast the cores [146]. This has the advantage of ensuring high metal content but
also poses a risk due to shorts with the wire.

We aim not only to filter the coaxial signal lines, but also the twisted pair wires going into
the scan head, i.e. the coarse motor and the x-y motion. We use commercial screw-in filters
(Api-Technologies 1289-004) which can be mounted on the housing around the junction. This
has the advantage that the insulator of the in-built capacitor acts as a ceramic. In previous
designs, a ceramic was required to insulate the wires carrying some signal from the grounded
housing. To ensure proper performance of the commercial filters, we measured the attenuation
at different temperatures. As seen in Figure 4.2(a), there is a loss in performance at lower
temperature. This is likely due to a change in capacitance with temperature. However, even at
4.2K, the filters show an attenuation of more than 20 dB above 10MHz, which is acceptable for
this experiment. Figure 4.2(b) shows the housing of the filters when used at ambient conditions.
The assembly is placed inside a home-made copper housing to ensure a low-noise environment.
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A cable can be installed at the screw seen in the picture, giving low resistance to ground. The
part shown at the bottom is the screw-in filter.

Figure 4.2: Transmission of commercial π-filters at low temperatures. (a)
shows the curves measured at different temperatures and (b) is a picture of the
housing and the screw-in filter (Api Technologies 1289-004).

Figure 4.3 illustrates the new low-noise setup. In comparison to the previous setup, there are
two main differences. Firstly, we use another amplifier (Basel Precision Instruments IF3602).
Apart from that, we use powder filters (Basel Precision Instruments MFT100Cu2.5Ag) at the
scan head to filter the bias voltage, current and z-piezo line.
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Figure 4.3: Schematic of the improved setup. The SPM controller provides a
voltage which is filtered first by a voltage divider and then by a commercial
π-filter (Api Technologies 1289-004) as well as a commercial powder filter
(Basel Precision Instruments MFT100Cu2.5Ag). After passing through another
powder filter and then an inductance, the signal is amplified by a commercial
I−V converter (Basel Precision Instruments IF3602). Finally the signal passes
through another low-pass filter before being read out by the SPM controller.

4.2 Noise Reduction Strategies

STM measures currents on the order of pA. This means that any ground loops could easily
falsify the measurement. In this experiment, we implement a star-like grounding strategy: there
is a copper plate on the top of the cryostat which connects to the ground of the institute. All
the devices connected to the setup are floating and receive their ground from this plate. To
ensure that this is possible, we use isolation transformers such that all the devices required
during measurement do not introduce ground loops. Additionally, the high and low pressure
3He lines are insulated electrically by using plastic KF or Swagelok 6mm connections. Another
component influencing the energy resolution is the I − V converter. We replace our amplifier
(FEMTO) with a recently developed amplifier (Basel Precision Instruments IF3602).

Apart from the Josephson effect, which is presented in the next section, the frequency spectrum
of the current gives a good idea about the noise present in the system. When the tip is withdrawn,
mainly electrical noise is picked up, whereas when the tip is in contact, also factors such as
quality of the tunnel junction and z-stability are important. Figure 4.4 shows a typical noise
spectrum. Panel (a) shows the performance of the old setup which shows a very low baseline
of about 7 fA/

√
Hz when the tip is withdrawn. When the tip is in contact, the spectrum is
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largely affected by the quality of the tunneling contact which may either be due to an unstable
tip or vibrations in the z-direction. At a setpoint current of 100 pA, we find a power spectral
density which is on average at 100 fA/

√
Hz. In contrast to that, panel (b) shows the noise spectra

when the powder filter and the new amplifier are inlcuded. The baseline has now increased to
14 fA/

√
Hz, which might sound surprising at first. However, it should be noted that this is due to

having an increased capacitance at the input of the I − V converter. When the tip is in contact,
the noise spectrum is similar to the spectrum measured without the filters, indicating that the
z-stability did not change. In conclusion, we see that the noise spectra do not fully capture the
improvement in energy resolution. The next section presents a more reliable indicator, namely
the Josephson effect.

Figure 4.4: Power spectral density of the setup (a) before and (b) after the
improvements. The blue lines show the spectrum when the tip is withdrawn
and the red lines show it when the tip is in contact at a setpoint of 100pA. The
spectra in (a) were measured with the FEMTO amplifier and in (b) with Basel
Precision Instruments IF3602.

4.3 Josephson Effect Data

As seen in section 2.9, the Josephson effect is a direct measure of the P (E) function, or to put
it more generally, it is extremely sensitive to external electronic noise. Therefore the Josephson
effect can be used to benchmark the performance of a measurement setup. There are three main
indicators which can be used: firstly the peak separation, secondly the peak height and thirdly
the prominence of resonances.

We measured the Josephson effect during the various stages of optimization. As described in
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section 2.9, the Josephson effect is a second order process, meaning that it can only be seen at
high conductances. We do not apply any lock-in modulation to avoid any broadening effects.
Figure 4.5(a) shows the Josephson effect measured before the improvements including the cold
filters and panel (b) shows the Josephson effect after the improvements. The width drops from
96µV to 12µV, which is an improvement by a factor of eight.

Figure 4.5: Josephson effect (a) before and (b) after improvements. The data
was measured at a setpoint of 8nA and a voltage of 3mV. The width changes
from 96µV to 12µV, as illustrated in (c).
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Figure 4.6: Josephson effect as a function of conductance. The data was
measured at a bias voltage of 3mV without lock-in modulation. (a) shows
a zoom in onto the region around 0 V of (b). (c) presents the peak height
(measured from the maximum current of each curve in panel (a)) as a function
of current along with a quadratic fit.

Figure 4.6(a) displays I−V curves at different setpoint currents. The curves show characteristic
resonances (for example around 120µV), indicating that the measurement is so sensitive to
external conditions that factors like the geometry of the tip and how it interacts with the
environment become relevant [7, 13]. Panel (b) shows a zoom-out of panel (b) to illustrate
that the normal state conductance is increasing linearly. From the quadratic dependence of the
peaks in the Josephson effect in Figure 4.6(c) we know that the observed feature is indeed a
second order process. To put these results into context, current state-of-the-art machines achieve
a width of 24µV (Stuttgart [13]), 9µV (Maryland [7]) and ∼ 14µV (Madrid [14]). However,
these machines operate at mK temperatures, whereas the present system is at 0.56K, uses an
old version of NANONIS, namely RC4, and is located on the 4th floor. This indicates that there
is still room for improvement in other machines and that the limit of energy resolution is not yet
reached. Additionally, the observed resonances in the Josephson effect indicate that a broader
tip could lead to a further reduction of the width of the Josephson effect, as reported in similar

58



Chapter 4. Energy Resolution of the New Setup

work [13]. Finally being able to observe the Josephson effect at lower conductances means that
this energy resolution will be beneficial for measurements of the Josephson effect with YSR
states because high currents can easily destroy YSR states.

4.4 Height of Coherence Peaks

Another indicator of the performance of a setup is the sharpness of features in the dI/dV
spectrum, as for example the coherence peaks of a SIS junction. Of course, the coherence
peak have an innate broadening such that the width of coherence peaks is not as reliable of an
indicator of noise as the Josephson effect. Figure 4.7(a) shows the spectra taken with a vanadium
tip on a vanadium surface at 0.56K. The broadening due to lock-in becomes negligible below an
amplitude of 20µV. We observe that the coherence peak is increased by a factor of 16 compared
to the normal conducting region. Panel (b) shows one of the peaks to illustrate the width of
the coherence peaks typically seen in our experiments, which is 70µV. In a YSR-BCS junction,
we expect a smaller width, as the YSR peak is basically a δ-function. In panel (b) we show a
spectrum measured at a lock-in amplitude of 20µV. Once we zoom in onto the YSR peak (see
panel(d)), we can see width of 40µV in the spectrum.
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Figure 4.7: Superconductor- superconductor spectra. The setpoint current is
100pA and the voltage 3mV. The Lock-in frequency is 781Hz (a) shows the
normalized conductance at different lock-in amplitudes. (b) shows a zoom-in
onto the coherence peak to illustrate the width. (c) shows a YSR-BCS spectrum
measured at a setpoint current of 500pA, a bias voltage of 5mV and a lock-in
amplitude of 20µV. (d) is a zoom-in of the same spectrum.

4.5 Outlook

This chapter presented improvements which included cold powder filters at the scan head, leading
to an improvement in the width of the Josephson effect from 96µV to 12µV. This brings the
energy resolution of this machine in the region of some of the best low-noise STMs in the world
operating at mK temperatures. If these machines were to be equipped with the modifications
proposed here, this could push the limits of energy resolution possible with STM. In future,
technical improvements such as amplifiers or even better decoupling from external noise sources
could lead to further advances in the energy resolution of STMs. At some point, the only limiting
factor would be the interaction with the environment as in the context of P (E)-theory.

With this new energy resolution in the Josephson effect, we propose to re-visit the microwave-
assisted study of the Josephson effect that has been reported so far [96, 119]. The enhanced
sharpness would mean that lower setpoint currents are required. Therefore, the relative height
of the Josephson effect compared to multiple Andreev reflections could be made very high by
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choosing a lower setpoint current. This would then imply that there are fewer peaks within the
gaps such that replicas of the Josephson effect can be tracked more accurately.
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5
Microwave Excitation of YSR States

The results of this chapter will be published in paper # 1 of the publication list.

In this chapter, we will firstly present the system to be studied, i.e. YSR states on a vanadium
tip in contact with a V(100) surface. We present methods for obtaining this system and for
characterizing the transfer function, i.e. the frequency dependent transmission of the cabling
and the antenna. Then we present the findings, most notably the appearance of anomalous
peaks. We proceed to model these results using a full Green’s function approach and find good
agreement. We then develop a simplified approach based on the lowest order approximation of
the Green’s function approach to gain an intuitive understanding of the underlying processes.
With this knowledge we are finally able to disentangle the two families of tunneling processes.

5.1 YSR states on a Vanadium tip

Vanadium is notoriously difficult to clean as it has a number of impurities including oxygen,
carbon and sulphur [31, 147, 148]. Such impurities can give rise to YSR states. Additionally, we
have observed that by continuously dipping the tip, a plethora of YSR states can be generated.
The energy of the resulting states is highly variable, which means it can be matched to the
input frequency of the microwave setup, thereby making vanadium an ideal system for studying
resonant phenomena where energies need to be matched. Furthermore, having the YSR state
on the tip avoids problems such as drift in the x-y direction. In fact, recent work [43] has
suggested to use a YSR tip as a tool to measure a number of different phenomena. Here we
restrict ourselves to a YSR tip in contact with a superconducting sample.
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5.2 Sample and Tip Preparation

We clean the V(100) crystal by repeated cylces of sputtering in with Ar ions and annealing
to 700◦C. While preparation at higher temperatures lead to a flat surface, the relatively low
preparation temperature leads to a surface dominated by oxygen reconstruction, leading to
square terraces of typical height 180 pm. Figure 5.1(a) shows a typical scan taken at a setpoint
current of 100 pA and a bias voltage of 3mV. The oxygen reconstruction in panel (b) can only be
seen with a very sharp tip. The bright spots in the topography could be oxygen vacancies [149].
However, it is the subject of further studies to find out if and how the topography correlated with
YSR states being present in the sample.

Figure 5.1: Topographies of a V(100) surface. The maps were taken at a bias
voltage of 3 mV and a setpoint of 100 pA. A quadratic background has been
subtracted for better visibility. Panel (a) shows the general appearance of the
terraces. In Panel (b), the oxygen reconstruction can be seen.

We use Vanadium tips cut from 99.98% purity Vanadium wire of 0.25mm diameter. We obtain
a superconducting tip by field emission on a clean surface at 40V and currents of 20µA. The
YSR tip is produced by iteratively dipping the tip as shown in Figure 5.2. It typically takes about
1000 dips to find a YSR state with sufficient intensity. Some YSR states are very unstable and
spontaneously disappear, particularly at high currents. To select the most stable YSR states, the
algorithm routinely checks whether the state survives at high conductances and under microwave
irradiation.
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Figure 5.2: Algorithm for generating a YSR state on the tip. The tip is moved
between a dipping spot and a measurement spot. Before terminating, the
algorithm checks the stability of the YSR state at higher conductances.

YSR states in vanadium vary in energy and intensity as can be seen in Figure 5.3. This should be
contrasted with other work (e.g. Mn on Pb(111) [76]), where the YSR state is always at the same
energy. Possibly, the large variance in YSR energy in vanadium is due to different configurations
of vanadium atoms and oxygen vacancies. There are YSR states with a strong BCS channel
(see Figure 5.3(e)), but for the purposes of this work, we try to keep the BCS channel as small
as possible. This means that spectra like in Figure 5.3(d) are desirable to see purely the effect
of superconductor-YSR tunneling without the influence of the superconductor-superconductor
tunneling. Finally, it has been observed that YSR states on vanadium sometimes move with
transparency due to a change in the impurity-substrate coupling – sometimes even across a
quantum phase transition (QPT) [87]. In this work, the focus lies on the interaction of YSR
states with microwaves, such that we select YSR states which do not move with transparency.

64



Chapter 5. Microwave Excitation of YSR States

Figure 5.3: Normalized dI/dV curves of various YSR states. YSR states differ
in energy and intensity. Panel (f) has a YSR state so close to zero such that the
excited state is thermally occupied, giving rise to two extra peaks.

5.3 Observation of Anomalous Peaks

Given that we have a stable YSR state, one immediate questions is whether – and if so, how
– the microwaves can drive the YSR state. Previous experimental work [96] and theoretical
work [23] has shown that at conductances around τ ∼ 10−2, there are significant deviations
from Tien-Gordon theory (see Section 2.8 for the basic theory). This led to the observation
of asymmetric peaks which were accounted for by considering Andreev processes through the
YSR state. Here, we re-visit this experiment and perform experiments at constant frequency
where we sweep the dimensionless microwave amplitude α = eVac

ℏω . In comparison to previous
experiments, we have two advantages: firstly the improved energy resolution, leading to sharper
peaks, and secondly the fact that YSR states on vanadium have a wide range of energies. This
means that we can tune the YSR energy to our frequency range to explore possible resonances.

We start with a continuous wave application of microwaves and sweep the dimensionless
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amplitude. As expected from Tien-Gordon theory, higher order replicas are accessible with
increasing α and we can illustrate these findings in a false color plot of the conductance.
A striking feature is the appearance of anomalous peaks which are not covered by standard
Tien-Gordon theory [116]. Figure 5.4(a) shows this finding. We compare this with basic
Tien-Gordon theory, which should hold in the tunneling regime only. We take the spectrum
without microwaves (α = 0) and then apply the Tien-Gordon equation (equation 2.62) to this
spectrum to create a false color plot of the dI/dV as shown in Figure 5.4(b). From now on, we
refer to the peaks not predicted by Tien-Gordon theory (panel (b)) as anomalous peaks. Later
we will show that these peaks correspond to a tunneling process which excites the YSR state.

Figure 5.4: False color plots of spectra as a function of MW intensity at 61GHz.
(a) shows the data and (b) shows the expectation when Tien-Gordon theory is
applied on the α = 0 spectrum of figure (a). The setpoint was 500pA and the
voltage 3 mV.

To prove that this effect is reproducible, we measure another conductance map at 89.2GHz. The
replicas move because the frequency has changed. But the anomalous peaks are still present.
Combined with the fact that we observe additional peaks also for other YSR states, we can
conclude that the peaks reported here are real and not some artifact of the measurement.
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Figure 5.5: False color plots of spectra as a function of MW intensity at
89.2GHz. (a) shows the data and (b) shows the expectation when Tien-Gordon
theory is applied on the α = 0 spectrum of figure (a). The setpoint was 500pA
and the voltage 3 mV.

5.4 Frequency-Dependent Measurements

To identify the origin of the anomalous peaks seen in Section 5.3, we conduct frequency-dependent
measurements. For a given n-th order replica of a feature at E0, its position evolves according
to the following equation if we assume single quasiparticle tunneling:

E = E0 + nℏω (5.1)

That means that frequency-dependent maps can be used to trace zero-order replicas by identifying
vertical lines. In this section, we apply this method to the microwave-assisted tunneling into YSR
states. First we present how we can keep the RF amplitude constant using a transfer function.
Secondly, we present the results and observe that there are precisely two families of processes.

5.4.1 Transfer Function

Especially for high-frequency cabling, the transmission is strongly dependent on the frequency
of the signal. This requires a careful determination of the transmission at each frequency before
running a frequency-dependent measurement.

The transfer function can be measured on any non-linear feature in the dI/dV -curve using the
rectification of the RF signal [53].
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Depending on the width of the feature compared to the microwave frequency, there are two
methods of determining the transfer function. Firstly, for the regime where the feature in the
system is much large than the microwave energy, i.e. ∆Esystem ≫ ℏω, Tien-Gordon theory
converges to a classical description. As seen in equation 2.6 for the broadening due to lock-in
modulation, the resulting dI/dV curve is smeared out with the inverse semicircular distribution,
allowing to deduce the voltage at the junction VAC from the change in the gradient of a non-linear
feature [150].

Figure 5.6: Illustration of the transfer function feedback algorithm. (a) is a
diagram of the algorithm and (b) shows the peaks measured during this process.
The peaks are offset for better visibility. The bias voltage is 3mV with a lock-in
modulation of 70µV and the setpoint current is 100pA

In the present experiment, the microwave frequency is large compared to the typical width of
features, i.e. ℏω ≫ ∆Esystem. This means that the height of replicas can be used to extract the
AC voltage at the junction, simply by inverting J2

n(
eVAC

ℏω ) for the n-th order replica. During the
preparation of YSR states, the surface is superconducting for most of the time. This means that
sharp peaks (coherence peaks or YSR states) are available. With the width being about 50µV,
the overlap between replicas is very low because the frequency range 60− 90GHz corresponds
to a voltage range of 248− 372µV. The inversion of a Bessel function J0(α) is only possible in
the range where J0(α) is one-to-one (where c = J0(α) has only one solution), i.e. for low AC
amplitudes. To ensure that this condition is met, we adopt a feedback mechanism as shown in
Figure 5.6(a). Starting at maximum attenuation (70 dB here), we reduce the attenuation in steps
of typically 3 dB and measure a quick spectrum of the peak each time. The algorithm stops once
the peaks drops below a set threshold (80% here) and then we can invert J2

0 (α) to determine
the amplitude. Panel (b) shows five successive peaks measured during this process. We apply a
large lock-in modulation of 70µV to artifically broaden the peaks and thus avoid drift effects in
the bias voltage and improve the signal-to-noise ratio. To calculate the actual loss, we reference
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the AC voltage at the junction to the input voltage. The maximal available voltage is the value
of VAC at 0 dB attenuation. Figure 5.7 displays the result of measurements taken ten days apart.
The transfer function does not change significantly. However, for a precise measurement, the
transfer function should be measured immediately before the measurement.

Figure 5.7: Plots of the transfer function. (a) shows the calculated loss in dB
referened to the input power of 16dBm and (b) shows the maximum available
AC voltage at the junction.

5.4.2 Constant Amplitude Sweeps

To perform constant amplitude sweeps, we first create a YSR state, then measure the transfer
function and immediately after that conduct the measurement to keep the effect of variations in
the transfer function to a minimum. We limit the attenuation (see setup in ) to 12 dB to avoid
excessive heat up of the junction, leading to an unstable tunneling contact.

Figure 5.8(a) shows the result of this measurement. We identify vertical lines (corresponding
to the zeroth order replica) at ±1.04mV and ±0.41mV and indicate them by a line connecting
panels (a) and (b). Panel (b) shows where replicas of these two zeroth order lines are expected.
This simple assumption that there are two families of peaks each withEn = E0+nℏω reproduces
all the features seen in panel (a). Panel (c) shows the original spectrum (without microwave
irradiation) where the anomalous peaks have been added by hand at the corresponding positions.
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Figure 5.8: Frequency dependent RF spectra. (a) Shows the data measured at
a setpoint current of 500pA, bias voltage of 3 mV and constant dimensionless
amplitude α = 3.0. (b) shows the two families giving rise to the data in (a). (c)
shows the spectrum without microwaves (in blue) and Gaussian peaks added at
the zeroth order replica (in red).

Based on this data, we draw two conclusions:

1. There is a process which creates replicas of a peak which is not seen in the spectrum
without microwaves.

2. Since the replicas evolve as ℏω (as opposed to ℏω/2), it must be one quasiparticle tunneling
or successive incoherent tunneling events.

The next subsection develops a physical picture which explains the origin of these two families.
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5.4.3 Physical Picture

Figure 5.9: YSR spectra with microwaves. Blue dashed lines have a spacing
of ℏω

e
and indicate where we expect peaks from Tien-Gordon theory. The red

dashed lines (also spaced by ℏω
e

) indicate the anomalous peaks.

As in the frequency-dependent measurement, we can now select three slices of the map in Figure
5.4 and color-code the individual peaks, located at:

• eV = ±(∆ + ϵ)± ℏω (blue)

• eV = ±(∆− ϵ)± ℏω (red)

To understand the origin of the different peaks seen in Figure 5.9, we present schematics of the
underlying tunneling processes in Figure 5.10.
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Figure 5.10: Schematic of the ground state and excited state tunneling processes.
(a) shows tunneling without microwaves, where the excited YSR state can
either relax by another tunneling event (indicated by 3 ) or into the continuum
(indicated by 3’ ). (b) and (c) show how energy quanta can be absorbed during
the relaxation process. (d) shows a forbidden process where the excited state is
in resonance. With microwaves, this process is allowed, as shown in (e) and (f).

Any tunneling process involves the transfer of at least one charge from on occupied to an
unoccupied state. The elementary excitations of a superconductor, i.e. Bogoliubov quasiparticles
(QP), are gapped. This means that to align the occupied YSR state on the tip with the unoccupied
coherence peak of the sample, we have to shift the chemical potential. We do this by applying
a bias voltage of eV = ∆ + ϵ as shown in Figure 5.10(a). To understand the mechanism of
YSR-BCS tunnling, we divide the process into three steps, which we illustrate using the density
of states picture. While quasiparticles are a superposition of electrons and holes, this picture
is still adequate with some basic precautions. In the first step (process 1 ), an electron tunnels
across, leading to a splitting of a Cooper pair (process 2 ), which leaves the YSR state excited.
The excess QP can then relax to the continuum (process 3’ ) or also tunnel across the junction
(process 3 ). This process leads to a peak indicated by a blue arrow in panel (a). At low
transparencies, the relaxation into the continuum (process 3’ ) dominates, whereas at higher
conductances, the main contribution to the current comes from process 3 . In Chapter 6, we
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will demonstrate that the present experiments are carried out in a regime where process 3 is
dominant.

The process involving a second tunneling event (process 3 ) can be described as a resonant
Andreev process [80, 96, 151] because two charges are transferred through a real level. In
contrast to that, Andreev reflections are subgap processes through a virtual level [40].

Once we switch on the microwaves, the basic tunneling events remain unchanged, except that the
microwave field can lead to absorption/emission of quanta of ℏω during the tunneling process,
as indicated by the wavy arrows in Figure 5.10(e). If quanta are absorbed during process 1 (see
panel (c) for example), peaks appear at eV = ±(∆+ ϵ) + nℏω, as indicated by the dashed blue
lines in Figure 5.9. The position of the replica in Figure 5.10(c) is determined by the number of
energy quanta absorbed or emitted in process 1 . They appear at eV = ±(∆+ ϵ) + nℏω in the
spectrum, where n is an integer. The exchange of energy quanta during process 3 renormalizes
the peak height, but does not shift the peak position in the spectrum. Other than that, the process
is analogous to the tunneling without microwaves (i.e. Figure 5.10(a)). In the following, we refer
to this family of peaks as ground state tunneling.

There is another process where the YSR state is excited and can then relax to the coherence
peak of the sample. This process is shown in Figure 5.10(d). This process would occur at a bias
voltage of eV = ∆− ϵ, for example due to thermal excitation. However in this experiment, the
Boltzmann factor exp (− ϵ

kBT
) for a YSR state of energy ϵ = 280µV at a temperature of 0.56K

is just 0.03% and thermal excitation is strongly suppressed. Instead, we make this process
possible by microwave excitation as shown in Figure 5.10(e). If the electron absorbs enough
quanta (process 1 ) to reach the continuum, it can initiate a process where the relaxation 3 is in
resonance with the coherence peak of the sample. If quanta are absorbed during process 3 (see
panel (f) for example), this leads to the family of peaks marked by the red dashed lines in Figure
5.9, at bias voltages eV = ±(∆− ϵ) + nℏω. All the peaks of this family have in common that
the excited state is in resonance with the coherence peak modulo an integer number of energy
quanta ℏω, prompting us to call these processes excited state tunneling (EST).

It should be noted that the observation of a new family of peaks is entirely due to the way
tunneling with YSR states works. For example, in similar experiments with free electrons [152]
or superconducting point contacts [153], this effect cannot be seen. Additionally, one would
require a microwave frequency ℏω > ∆ + ϵ to excite the YSR state on its own. The tunneling
junction makes an excitation possible below this threshold.

To draw a connection to related work [23, 80, 96], we note that an electron travelling forwards
is equivalent to an hole tunneling backwards. This equivalence is shown in Figure 5.11 and in
the end, these are just two different representations of the same picture. We choose the electron
picture here to emphasize the sequential nature of this tunneling process.
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Figure 5.11: Comparison of the electron and Andreev picture. (a) represents
the process as two electrons tunneling forwards, whereas in (b), one hole is
reflected as an electron.

5.5 Derivation of a Modified Tien-Gordon Equation

5.5.1 Full Green’s Function Approach

We follow the approach presented by Cuevas et al [154] which relies on a full Green’s function
theory. In particular, this theory calculates the Fourier components Imn , where:

I(t) =
∑
n,m

Imn exp [i (nϕ0 + 2neV t/ℏ+mωt)] , (5.2)

These components can be calculated from a T -matrix approach, where terms like T̂
a
kl
RL,ij satisfy

a set of algebraic equations. Here T̂ kl
nm(E) ≡ T̂ (E + neV + kℏω,E +meV + lℏωr), R and L

denote the right and left electrode and the index a (r) refers to the advanced (retarded) Green’s
function. This then gives [154]:
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+−
k

L,i T̂
a
km
LR,in − T̂

r
0k
RL,0iĝ
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(5.3)

This can be extended to a YSR state simply by changing the Green’s function of one of the
electrodes. However, the parameters must be carefully chosen to match the experimental
conditions. Too low microwave energy, too low lifetime or commensurate frequencies could
lead to the anomalous peaks being overlooked. One key consideration for the peak shape
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is the competition between Gaussian broadening and Dynes broadening [66]. We include
the broadening parameter σ as a phenomenological parameter to model external noise which
according to the central limit theorem can be approximated by a Gaussian distribution [155]:

fσ(V ) =
1√
2πσ2

e−
1
2

V 2

σ2 (5.4)

In contrast to that, the Dynes parameter η is related to the lifetime of quasiparticles [66].
Figure 5.12(a) shows the effect of increasing the Dynes parameter η while keeping the Gaussian
broadening constant. It can be seen that at higher η the peak becomes more asymmetric.
Therefore, if we try to compensate for the higher η by reducing the Gaussian broadening σ as
shown in panel (b), we see two main differences in the peaks:

1. The shoulder at low bias voltage is more pronounced for high η.

2. The dip with negative differential conductance is stronger at high η if we choose σ to
match the peak height in the positive differential conductance.

Based on these two observations, the shape of the peak measured in experiment gives information
about the relation of η and σ, whereas the width is the result of a combination of η and σ.

Figure 5.12: Comparison of Gaussian and Dynes broadening. The parameters
are (in meV): ∆L = 0.724, ∆R = 0.59, J = 75.5, U = 0, ΓR = 100,
ΓL = 0.04, ηR = 10−4. (a) is a spectrum without Gaussian broadening. (b)
shows the same results convolved with a Gaussian chosen such that all three
spectra have the same peak height.

In general, we first fit the spectrum without microwaves to determine the key parameters (see
Section 6.1 for a detailed description). Based on that, the spectrum under microwave irradiation
can be calculated without introducing any new parameters if the dimensionless amplitude α is
known. Figure 5.13(a) shows such a spectrum for a YSR state. We can define the transmission
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as the sum of the transmission through the YSR channel τYSR and the BCS channel τBCS. Using
the parameters J , ΓS , ΓT from the Anderson impurity model and a percentage p we can write
[81]:

τ = τYSR + τBCS = p
4ΓSΓT

(ΓS + ΓT)2 + J2
+ (1− p)

4ΓSΓT

(ΓS + ΓT)2
(5.5)

In the data presented here, p = 0.88. We apply regular Tien-Gordon theory to the coherence
peak of the BCS channel. For higher conductances, this approximation breaks down due to
Andreev reflections between the superconductors and Andreev reflections from the YSR state
to the superconductor and then into the BCS channel of the tip. Figure 5.13(b) compares the
model with the data when the microwave is switched on and shows excellent agreement.

Figure 5.13: Fitting using the full approach. The parameters are (in meV)
∆L = 0.73, ∆R = 0.59, J = 75.5, U = 0, ΓS = 100, ηL,R = 10−4,
σGauss = 12.5 × 10−3 with conductances: τYSR = 1.7 × 10−3, τBCS =

3.7 × 10−4. (a) shows the spectrum without microwaves. (b) shows the
spectrum with microwaves at amplitude α = 2.3 and frequency 60.05GHz.

Once the correct parameters are determined, we can also model the microwave-dependent data
presented in section 5.3. It should be noted that false color plots can easily hide deviations in
the color scale such that individual spectra as in Figure 5.13 give a better estimate of the quality
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of the fit. Once these fits are available, the dimensionless amplitude α may be varied to create
a false color plot. Figure 5.14(a) shows experimental data measured at a setpoint current of
500 pA and a bias voltage of 5mV. We sweep the microwave amplitude α while keeping the
frequency constant at f = 60.45GHz. Panel (b) shows the fit using the full model. All the
replicas seen in experiment are reproduced by the model.

Figure 5.14: Fitting of amplitude-dependent maps. The parameters are:
∆L = 0.73, ∆R = 0.59, J = 75.5, U = 0, ΓS = 100, ηL,R = 10−4,
σGauss = 12.5 × 10−3 with conductance τYSR = 1.0 × 10−3. (a) displays
the experimental data measured at a setpoint of 5mV and 500pA . (b) shows
the simulated false color plot.

Finally, we can also model the frequency-dependent measurements. Figure 5.15(a) shows
another set of data with frequency dependent measurements where we kept the microwave
amplitude constant at α = 2.8 by compensating for the transfer function. Panel (b) shows the
corresponding modeling using the Green’s function code to first order. All the replicas seen in
experiment are reproduced, albeit with slightly different peak amplitudes. Panel (c) shows the
harp-like arrangement of the peak positions and panel (d) shows the original spectrum (without
microwaves) with EST peaks at ∆− ϵ added by hand.
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Figure 5.15: Modelling the frequency-dependent measurements. (a) shows the
experimental data measured at a setpoint of 500pA and bias voltage of 3mV
with constant RF amplitude set to α = 2.8. (b) shows the corresponding fit.
The parameters are: ∆L = 0.73, ∆R = 0.59, J = 75.5, U = 0, ΓS = 100,
ηL,R = 10−4,σGauss = 12.5×10−3 with conductance τYSR = 1.7×10−3.
(c) shows the expected location of the peaks and (d) shows the spectrum without
microwave with added EST peaks in red.

In summary, we see that the Green’s function approach predicts the formation of anomalous
peaks as observed in section 5.3. In particular, the model can be used to fit individual spectra,
amplitude-dependent maps, or frequency-dependent maps.

78



Chapter 5. Microwave Excitation of YSR States

5.5.2 Simplified Model

Frequently, the full theory is not required and it turns out that the key properties of the
experimental results are covered by a lowest order approximation. Starting from the lowest
order term for the Andreev current, we can make further approximations to quantify the physical
picture developed in subsection 5.4.3.

Consider the following equation which has been derived from the full theory [154] by Juan
Carlos Cuevas. Here IAR refers to the term corresponding to the Andreev process and Γe,h are
hole and electron parts of the density of states:

IAR ≈ 2e

h

∑
k,l

J2
k (α)J

2
l (α)×

∫ ∞

−∞

Γe(E − eV − kℏω) Γh(E + eV + lℏω)
(E − ϵ)2 + η2S

×

× [f(E − eV − kℏω)− f(E + eV + lℏω)] dE. (5.6)

In the following, we will derive a simplified model to highlight the roles of the replicas in step
1 and step 3 of ground state and excited state tunneling (see Figure 5.10). We simplify the
tunneling and focus on the interplay of the Bessel functions and exchange of energy quanta.
We start with equation 5.6. In the case of long-lived YSR states, i.e. very small ηS , we can
approximate the Lorentzian of the YSR state by a Dirac delta-function 1

(E−ϵ)2+η2S
≈ π

ηS
δ(E− ϵ).

This step solves the integral in equation 5.6 and the Andreev current becomes:

IAR ≈ e

ℏηS

∑
k,l

J2
k (α)J

2
l (α)Γe(ϵ− eV − kℏωr) Γh(ϵ+ eV + lℏωr)

× [f(ϵ− eV − kℏωr)− f(ϵ+ eV + lℏωr)] (5.7)

Each tunneling rate Γe,h has two peaks at ±∆, such that we have a total of four peaks in the
spectrum. To separate out these peaks, we use the Heaviside step function θ(E) to define
Γ±

e,h(E) = θ(±E)Γe,h(E) so that we can split Γe,h(E) into:

Γe,h(E) = Γ+
e,h(E) + Γ−

e,h(E). (5.8)

Without microwaves, the four principal peaks correspond to two ground state and two excited
state tunneling peaks at eV = ±(∆ + ϵ) and eV = ±(∆− ϵ), respectively. The derivations for
all of these four peaks are very similar, so that in the following we derive the behavior for one
peak, which can be easily extended to the other peaks.

Derivation for the Excited State Tunneling Electron Peak

These peaks are located at bias voltages of eV = −(∆− ϵ)−kℏωr, i.e. at the bias voltage where
Γ+

e (E) is resonant. We assume that kBT ≪ ϵ, such that the Fermi function can be approximated
by a step function. In order to observe this peak, the following conditions have to be fulfilled:
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1. The tunneling rate Γ+
e (E) is resonant, i.e. eV = −(∆− ϵ)− kℏωr

2. The other tunneling rate Γh(E) is nonzero, i.e. |ϵ+ eV + lℏωr| > ∆.

3. The difference in Fermi functions is nonzero, i.e. |f(ϵ−eV−kℏωr)−f(ϵ+eV+lℏωr)| = 1.

Combining the first condition with the other two conditions yields:

k >
2ϵ

ℏωr

+ l (5.9)

Owing to the second condition, we approximate Γh(E) by a constant, i.e. ⟨Γh⟩ = Γh(E ≫ ∆).
Applying these conditions to equation 5.7, we find for the excited state electron tunneling current:

Iex,e(V ) = − e

ℏηS

∞∑
l=−∞

∑
k> 2ϵ

ℏωr
+l

J2
k (α) J

2
l (α) Γ

+
e (ϵ− eV − kℏωr)⟨Γh⟩ (5.10)

In analogy to the Tien-Gordon model, we define a bare tunneling current which does not involve
the modulation by the microwaves I0ex,e(V ) = − e

ηsℏ⟨Γh⟩Γ+
e (ϵ− eV ). Equation 5.10 simplifies

to:
Iex,e(V ) =

∑
k

w(α, k)J2
k (α)I

0
ex,e(V + kℏωr/e), (5.11)

where we have defined the weight function w(α, k) as:

w(α, k) =
∑

m>m0−k

J2
m(α) (5.12)

and where m0 =
⌈
2ϵ
ℏω

⌉
, where ⌈⌉ is the ceiling function (⌈x⌉ is defined as x rounded to the next

larger integer). The weight function does not change the position nor the number of the replicas.
It only modifies the amplitude of the peak. This nicely explains the appearance of replica at
integer multiples of ℏω/e instead of ℏω/2e. The weight function also introduces a threshold
through the condition m > m0 − k, which means that m0 quanta of ℏω have to be absorbed
from the microwave in order to excite the YSR state. The leading edge of the weight function
determining the onset of the peak as function of microwave intensity is given by the lowest order
Bessel function J2

m0−k(α). This means in particular that the bare tunneling current I0ex,e(V ) as
defined above cannot be observed when the microwave is turned off.

80



Chapter 5. Microwave Excitation of YSR States

Simplified Tunneling Equations for Ground State and Excited State Tunneling

We can straightforwardly extend the above derivation for all four peaks. We find for the bare
tunneling currents:

I0ex,e(V ) = − e

ηsℏ
Γ+
e (ϵ− eV ) ⟨Γh⟩, (5.13)

I0ex,h(V ) = +
e

ηsℏ
⟨Γe⟩Γ+

h (ϵ+ eV ) , (5.14)

I0gr,e(V ) = +
e

ηsℏ
Γ−
e (ϵ− eV ) ⟨Γh⟩, (5.15)

I0gr,h(V ) = − e

ηsℏ
⟨Γe⟩Γ−

h (ϵ+ eV ) , (5.16)

where the first index (gr,ex) refers to ground state and excited state tunneling and the second
index (e,h) refers to electron and hole tunneling, respectively. From these bare tunneling
currents, which have one peak each, we find the following equations to calculate the spectra with
microwaves:

Iex,e(V ) ≈
∑
k

w(α, k)J2
k (α)I

0
ex,e(V + kℏωr/e), (5.17)

Iex,h(V ) ≈
∑
k

w(α, k)J2
k (α)I

0
ex,h(V − kℏωr/e), (5.18)

Igr,e(V ) ≈
∑
k

w̃(α, k)J2
k (α)I

0
gr,e(V − kℏωr/e), (5.19)

Igr,h(V ) ≈
∑
k

w̃(α, k)J2
k (α)I

0
gr,h(V + kℏωr/e), (5.20)

where the weight functions are defined as:

w(α, k) =
∑

m≥m0−k

J2
m(α) (5.21)

w̃(α, k) =
∑

m≥−m0−k

J2
m(α). (5.22)

where m0 =
⌈

2ϵ
ℏωr

⌉
is the minimum number of quanta needed to excite the YSR state.

Interestingly, we find that for ground state tunneling the weight function w̃(α, k) does not
impose a threshold for the activation of the tunneling process, because the condition m ≥ −m0

(for k = 0) always includes the zeroth order Bessel function, such that resonant Andreev
processes are always possible without microwaves as has been discussed before [76].

Figure 5.16 illustrates how this modelling can be performed in practice:

1. Take the base spectrum and add peaks at ±(∆− ϵ) (panel (a)).

2. Apply the Tien-Gordon equation to this spectrum. Inside the grey region, there are replicas
which are forbidden because of the weight function (panel (b)).
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3. Apply the appropriate weight function for each of the peaks. The color map now looks
very similar to the experiment (panel (c)).

4. Different contributions can now be disentangled and color coded (panel (d)).

Figure 5.16: Illustration of the algorithm related to the modified TG equation.
(a) shows the original spectrum (blue) with peaks at ∆ − ϵ added by hand
(red). (b) shows the TG spectrum without the weight function and (c) shows the
spectrum when the weight function is included. (d) shows the data in black and
the contribution due to ground state tunneling (blue) as well as the contribution
from excited state tunneling (red – labelled EST).

The leading edge of the threshold function is in general defined by the first Bessel function in the
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sum (equation 5.21), i.e. Jm0(α), leading to the grey region shown in Figure 5.17. In panel (a),
we show a calculation based on the simplified model. We pick three slices, namely n = −1, 0, 1

and compare this modelling with the experimental data shown in Figure 5.4. Panel (b) shows
the corresponding weight function w(α, n). Panel (c) shows firstly the bare Tien-Gordon result
without the weight function (i.e. Figure 5.16(b)) in a grey dashed lines. Once the weight
function is included (grey solid line), there is excellent agreement with the experimental data.
In particular, if we consider the n = 1 line, we see that the expected peak is cut off right in the
middle due to the threshold function.

Figure 5.17: Analysis of the evolution of excited state tunneling with the
dimensionless amplitude α. (a) shows a color coded fan calculated with the
simplified model. For color coding, the sign of the excited state tunneling peaks
has been inverted. (b) shows the weight function for n = −1, 0, 1. (c) shows
the data at selected bias voltages in (a) along with the expected TG behavior
(grey dashed) and the TG behavior including a weight function (grey solid).

We conclude this chapter by presenting the experimental data once again in Figure 5.18(a). Panel
(b) shows the simulation using the simplified model. For visibility, we color code the replicas
corresponding to excited state tunneling in red and the replicas of ground state tunneling in blue.
The weight function imposes an additional constraint which is most visible in the region marked
in grey. The staircase marks the amplitude where enough microwave quanta can be observed to
make excited state tunneling possible. As with normal Tien-Gordon theory [116], this cut-off is
not sharp, indicating, as elucidated in Section 2.8, that we are dealing with a quantum process
and there is a smooth decay into the classically forbidden region.
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Figure 5.18: Color coding of experimental data. (a) presents the data measured
at 61GHz and (b) shows the simplified modeling with the region where the
threshold function is active being marked in grey.

5.6 Outlook

This chapter presented the observation of a family of peaks seen in microwave-assisted tunneling
in a YSR-BCS junction. We developed a simple physical picture explaining the process which
we label as excited state tunneling in terms of a two-electron process. In this process, the
microwaves excite the YSR state to the continuum and its relaxation is in resonance.

The height of the peaks corresponding to excited state tunneling is strongly dependent on the
lifetime of the YSR state. The following chapter analyzes the dependence on the conductance
τ and the lifetime ∝ η−1 in detail. However, such an analysis can only give information about
the associated lifetimes indirectly. Pulse schemes would provide a direct measurement of this
process. As a first attempt, we apply pulses to a YSR state using the in-built pulse function of
the signal generator. We expect that for some critical pulse length τc, which has the same order
of magnitude as the lifetime of the YSR state, the system should behave differently, similar to
experiments on stochastic resonance [49], where a synchronization of the system with the drive
leads to an increase in current. For long pulse times τ ≫ τc, the YSR state can relax many times
within one cycle, which means that effectively, the resulting spectrum is a superposition of the
spectra when the microwaves are on and when the microwaves are off. The overall spectrum is
just the sum, i.e. if the pulse period is T and the time the microwave is switched on is τ , then
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the resulting spectrum is just the classical result:

I ′pulse(V ) =
τ

T
I ′MWon(V ) +

T − τ

T
I ′MWoff(V ) (5.23)

Here, I ′MWon(V ) and I ′MWoff(V ) are the spectra obtained when the microwaves are switched on
or off, respectively, in continuous wave mode. On the other hand, when τ ≪ τc, the system
has no time to relax and the resulting spectrum will just be the spectrum without microwaves.
Finally, when the pulse length is comparable to the lifetime of the YSR state – or more precisely,
one tunneling cycle of the YSR state – then one might expect some synchronization effects,
although the exact details will be the subject of further experimental and theoretical studies.

In experiment, the frequency extension module limits the pulse duration to a minimum of 140 ns.
Below that, it acts as a filter and no radiation is transmitted to the junction. Figure 5.19 shows
the measurement and this minimal pulse duration. First we measure the curves with microwaves
off (blue line) and microwaves on (red line). Then we apply the pulses (green line). We see that
the result obeys exactly the relationship in equation 5.23, which means that the pulses are still
too long, i.e., that the lifetime of the YSR state is likely lower than 140 ns. We aim to find new
methods of applying shorter pulses to possibly tune the pulse length to the lifetime of the YSR
state.
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Figure 5.19: Spectra with pulsed microwaves. The curves are offset vertically
for clarity. The blue spectrum shows a YSR state on the tip without microwaves.
The red spectrum shows the measurement at 85GHz and α = 3. The green
line shows the result of pulsing the microwaves with a period of 280ns and a
length of 140ns. The black lines shows the sum of the blue and red line divided
by two.

Apart from just pulsing the microwave signal, true pump-probe schemes [53] could be used to
directly measure the lifetime of YSR states. This is the subject of further projects.
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6
Modeling the Conductance Dependence

The results of this chapter will be published in paper # 1 of the publication list.

Having presented experimental data, mostly at constant transparency τ , the next logical step is to
analyse how these observations vary with conductance. This is particularly important because in
the modelling, we portray excited state tunneling (EST) as a two-electron process. This means
that the height of the EST peaks should grow with the square of the conductance. We start by
examining the effect of the lifetime on the height of peaks in the spectrum and find that EST
peaks are particularly pronounced for long lifetimes. Then we compare various approximations
with the full code to estimate at which transparencies τ these approximations are valid. Finally
we show conductance-dependent data with corresponding fits and conclude that the early onset
of resonances in microwave-assisted tunneling leads to a complex evolution of the peak heights,
which needs to be treated with the full model.

6.1 Model and Parameters

The model for microwave-assisted tunneling has been developed by Juan Carlos Cuevas who
also provided the FORTRAN code for the calculations presented here. The model is based on the
theory of subsection 5.5.1. As a technical detail, the coupling is placed into a renormalization of
the tunneling element. This gives a recursive algorithm calculating the higher order contributions
step by step. The main parameters are presented in Figure 6.1(a).
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Figure 6.1: Extraction of the parameters for the model. (a) shows a sketch of
the key parameters. (b) shows from which feature in an experimental spectrum
these may be obtained.

To model an experimental spectrum without microwaves, we first fix the parameters directly
accessible in experiment:

1. The temperature T is accessible from the thermometer reading, which was 0.56K for all
the experiments in the scope of this work.

2. The sum of the gaps ∆L +∆R can be extracted from the location of the coherence peaks
in the spectrum. By considering possible thermal peaks, the individual values can also be
identified. For example if a thermally excited YSR peak is seen, then we know that ∆R is
just halfway between the normal and thermal peak.

3. Once the gap is known, the YSR energy can be calculated from Epeak = ∆L + ϵ. From
this, the parameter J can be extracted.

4. Finally, the parameter U can be found by looking at the asymmetry of the YSR peaks. For
large U , adjustments in J need to be made to keep the YSR energy ϵ constant.

5. The coupling ΓL can be extracted by matching the transmission τ to the experimental
transmission, which we extract from the slope of the I−V curve in the normal conducting
region. We keep ΓS = 100meV constant, as this is just a scaling factor for the other
parameters [81].

Once the microwaves are switched on, no extra parameters are needed in theory. This is because
the microwave frequency is an input in the experiment and the dimensionless amplitude can be
calculated from the transfer function. In practice it is sometimes necessary to consider α as a fit
parameter due to changes in the transfer function.

We add the Gaussian broadening by hand after performing the calculations. Strictly speaking,
the multiple Andreev reflections should be treated in the context of P (E)-theory. As this
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is not part of the present theory, for the scope of this work, we subsume all external noise
effects under a Gaussian broadening. It should be noted that the Gaussian broadening and
the Dynes broadening are not the same (see Section 5.5.2). While the Gaussian broadening
does not change the underlying physics and is a measure of the experimental broadening, the
Dynes parameter contains information about the lifetime of quasiparticles. Figure 6.2(a) shows
a spectrum calculated for different values of η and panel (b) shows the evolution of the peaks.
It should be noted that this plot should be treated with care. It seems counter-intuitive that the
ground state tunneling (GST) peak height should drop with decreasing η. This is because the
Gaussian broadening is kept constant, leading to a smearing out of the sharp peaks. The main
conclusion from this analysis is that the relative height of GST and excited state tunneling (EST)
peaks can be tuned by changing η, i.e. the lifetime.

Figure 6.2: Dependence of peaks on the lifetime of the YSR state. The
parameters are (in meV): ∆L = 0.724, ∆R = 0.59, J = 75.5, U = 0,
ΓR = 100,ηL = 10−4,σGauss = 12.5×10−3. The frequency is60.05GHz,
α = 2.4 and τ = 1.7× 10−3. (a) shows different spectra at different lifetime
of the YSR state ηR. (b) shows the corresponding peak heights for normal and
excited state tunneling.

6.2 Validity of the Models

In the Dyson equation, one has to define a cut-off in the recursive scheme at some point. This
cut-off essentially determines the maximum order of the processes that are being considered.
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For example, consider the Taylor expansion:

I(τ) = I1τ +
1

2
I2τ

2 +
1

6
I3τ

3 +O(τ 4) (6.1)

Now for example the first and second order term become comparable when τc = O(2I1/I2).
However, if I2 contains some term which can be resonant, then this resonance will lead to a
reduction in the cut-off transparency τc. This means that as soon as resonances are involved, the
approximations tend to fail at lower transparencies.

We observe this behaviour in the modelling of YSR states under microwave irradiation. Here
we compare three models:

1. Full Green’s functions code (black)

2. Green’s function code to first order (blue)

3. Regularized Andreev approximation (red)

For the first order approximation we stop the code at n = ±1. Specifically, this means that the
transfer coefficients in equation 5.3 are only calculated to first order in the recursive relation
[154]. Finally, the regularized code is the expression in equation 5.6 with corrections in the
denominator. The full equations, which have been derived by Juan Carlos Cuevas, read:

I(reg)qp ≈ 4eπ2|t|2

h

∑
k J

2
k (α)

∞∫
−∞

dE

 ρt(E + eV + kℏω)ρimp,1(E)∣∣1− |t|2J2
k (α)(g

a
k
L,−1)11(g

a
0
R,0)11

∣∣2 ×

× [f(E − eV + lℏω)− f(E)]−

−
ρt(E + eV + kℏω)ρimp,2(E)∣∣1− |t|2J2

k (α)(g
a
k
L,1)22(g

a
0
R,0)22

∣∣2 [f(E + eV + lℏω)− f(E)]

 (6.2)

I
(reg)
AR ≈ 8eπ2|t|4

h

∑
k,l J

2
k (α)J

2
l (α)

∞∫
−∞

dE ×

× ρt(E − eV + kℏω) ρt(E + eV + lℏω) |(gR)12(E)|2∣∣ [1− |t|2J2
k (α)(g

a
k
L,−1)11(g

a
0
R,0)11

] [
1− |t|2J2

l (α)(g
a
l
L,1)22(g

a
0
R,0)22

] ∣∣2 ×

× [f(E − eV + kℏω)− f(E + eV + lℏω)] . (6.3)

Here ρimp,i(E) = (1/π)Im
{
(g

a
0
R,0)ii

}
(i = 1, 2) and [ρimp(E) = ρimp,1(E) + ρimp,2(−E)]. The

term I
(reg)
AR was obtained by picking out just the resonant term from all the two-particle processes.
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To assess the agreement of model A referenced to model B with functions fA(x) and fB(x), we
evaluate the mean squared deviation referenced to the mean squared deviation from zero:

χ2 =

∫
(fB(x)− fB(x))

2dx/(

∫
(fB(x))

2dx) (6.4)

We start by plotting the evolution of the spectrum without microwaves as a function of
conductance in Figure 6.3(a). We normalized every spectrum by the conductance. For each
spectrum, we calculated the deviation referenced to the full Green’s function code and plot this
in panel (b). The regularized Andreev model deviates by more than 5% from the full calculation
at a transparency of τc,AR = 4 × 10−2, whereas the deviations of the first order code become
relevant at τc,1st = 10−1.

Figure 6.3: Evolution of calculated spectra with conductance. (a) shows
example spectra at four conductances. (b) illustrates the deviation of the two
models from the full model. The parameters are (in meV): ∆L = 0.73,
∆R = 0.59, J = 75.3, U = 0, ΓR = 100, ηR = 6 × 10−4, ηL = 10−4,
σGauss = 12.5 × 10−3.

In contrast to that, once the microwaves are included, the three models become inconsistent
much faster. Figure 6.4(a) shows four spectra calculated at different conductances. At the highest
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conductance, the regularized Andreev model shows deviations in peak height, amplitude and
even position. This means that the interference of higher order processes is crucial to describe
the spectrum under microwave irradiation. Panel (b) shows the deviations which start about two
orders of magnitude sooner.

Figure 6.4: Evolution of calculated microwave spectra with conductance. (a)
shows example spectra at four conductances. (b) illustrates the deviation of the
two models from the full model. The parameters are (in meV): ∆L = 0.73,
∆R = 0.59, J = 75.3, U = 0, ΓR = 100, ηR = 6 × 10−4, ηL = 10−4,
σGauss = 12.5 × 10−3. The frequency is 60.05GHz, α = 2.2.

The comparison of the behaviour with and without microwaves leads to an important conclusion
for the experimental data. Firstly, for measurements without microwaves, the three models
remain consistent up to τ = 4× 10−2 which, for a bias voltage of 4mV, corresponds to roughly
12 nA. This means that for typical setpoint currents of O(100 pA), higher order contributions
are not relevant. In contrast to that, the regularized Andreev model with microwaves shows
significant disagreement already at τc,AR,MW = 5 × 10−4, corresponding to roughly 150 pA.
This means that for typical measurements with microwaves and YSR states, a higher order
Green’s function approach is necessary. The resonances due to interaction with the quanta ℏω
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lead to a failure of the lowest order approximation.

6.3 Peak Evolution with Conductance

In Chapter 5, we have already introduced the simplified model. While it provides a good
understanding for the underlying physics, it is a strong approximation and cannot be used for
fitting. However, it is possible to determine the transparencies at which the model breaks down.
This is the subject of this chapter. Consider an expression for the current where we assume that
we can apply a Taylor expansion in the conductance:

I(τ) = I1τ +
1

2
I2τ

2 +
1

6
I3τ

3 +O(τ 4) (6.5)

It is tempting to claim that I1 would be due to quasiparticle tunneling, I2 due to a first order
Andreev reflection, etc. If that were true, one would expect a transition from the linear to a
quadratic regime etc. However, it is important to keep in mind that there is also a second order
QP term for example [128]. This means that different contributions cannot be disentangled
based on their dependence on the conductance. It is precisely for this reason that we see the
complex evolution of the peak height in experiment. We measure microwave spectra at various
transparencies while keeping the RF amplitude constant to α = 2.4. We do this by changing
the setpoint current from 40 pA to 4 nA. The parameter α = 2.4 is chosen to facilitate the
analysis of the peak height. Usually the EST peaks are smaller than the GST peaks. We chose
this microwave amplitude to ensure that there are two EST peaks which are maximal. Figure
6.5(a) shows the spectra normalized by the conductance. Some of the peaks will be due to
ground state tunneling (GST) and some of the peaks due to excited state tunneling (EST). The
red (blue) line between the two panels shows the GST (EST) which we will analyze in detail in
the following section. Figure 6.5(b) shows the corresponding modeling using the full Green’s
function code. The parameters were chosen such that the low-conductance spectra match. We
see that in experiment, all the peaks reduce with conductance. The only difference between GST
and EST is that the normalized EST peaks do not drop as fast with increasing conductance. In
the simulation, the normalized EST peaks actually increase with conductance, reflecting the fact
that a second order process (scaling as τ 2) gives the main contribution to EST. The normalized
GST peaks drop with conductance due to Andreev reflections.
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Figure 6.5: Evolution of experimental spectra with conductance. (a) shows the
experimental spectra measured at a bias voltage of 3mV and current setpoints
ranging from 40pA to 4nA. (b) shows the corresponding modelling. The
parameters are (in meV) ∆L = 0.724, ∆R = 0.59, J = 75.5, U = 0,
ΓR = 100, ηL,R = 10−4, σGauss = 12.5 × 10−3. The frequency is
60.05GHz, α = 2.4.

Figure 6.6 illustrates the peak evolution of the spectra labelled by red and blue lines connecting
the panels in Figure 6.5. We show grey dashed lines to give a comparison to a fully linear process
(i.e. dI/dVpeak ∝ τ ). Panel (a) shows the experimental data. Both families of peaks show first
a linear evolution going then to sub-linear behaviour at high conductance. The simulation in
panel (b) shows that the peaks corresponding to ground state tunneling are already sublinear. In
contrast to that, the the EST peaks first grow in a superlinear fashion and then eventually become
sublinear too.
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Figure 6.6: Evolution of peak height with conductance. (a) shows the peak
height found in experiment at the positions marked in Figure 6.5. (b) illustrates
theoretical peak evolution of these same peaks. The parameters are (in meV)
∆L = 0.724, ∆R = 0.59, J = 75.5, U = 0, ΓR = 100, ηL,R = 10−4,
σGauss = 12.5 × 10−3. The frequency is 60.05GHz, α = 2.4.

The simplified model in section 5.5.2 describes excited state tunneling as a two-electron process.
This raises the natural question why in Figure 6.6, we do not see a quadratic dependence, neither
in experiment nor in the simulation. There are several reasons for this:

1. Even the second order model has to include a regularization in the denominator due to
higher order processes, thereby clouding the pure ∝ τ 2 dependence.

2. The resonance of this process means that higher order contributions become relevant
much earlier as seen in Figure 6.4. The lowest measured transparency in experiment is
τ = 1.4× 10−4, which is already in the regime where the simple model breaks down and
higher order processes need to be considered.

3. It should be noted that the peaks are not infinitely sharp. The overlap makes an analysis of
the conductance dependence even harder. For example, consider the peak at ±1.06mV in
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Figure 6.5, which is EST. However, there is a significant contribution from the GST peak
nearby.

6.4 Outlook

We have examined the validity of the models under microwaves and seen that the resonances
necessitate the inclusion of higher order processes for experimentally realistic parameters. This
leads to a complex evolution of the peak height. Future work could extend the range of
experimental transparencies by working on YSR states with smaller BCS channel and longer
integration times. Currents down to 10 pA (corresponding to τ = 4×10−5 at 3mV bias voltage)
would be realistic. This would then allow to study the superlinear dependence of the excited
state tunneling predicted in the model in more depth. While there has been work exploring
conductances down to 10−9G0 [43], it should be noted that microwaves lead to a reduction in
spectral weight of the main peaks, meaning that it is not possible to go that low in transmission
for microwave-assisted tunneling.
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This thesis is devoted to the study of energy scales in scanning tunneling microscopy. One key
requirement for such experiments is a sufficiently high energy resolution. Therefore, the first
part of this work had the objective to develop a system where the influence of the various sources
of noise would be minimised. In particular, we presented the construction of a setup operating
at 0.56K by means of a 3He cryostat. This temperature corresponds to a thermal energy of
kB ∼ 50µeV. This is well below the microwave energy ℏω which we apply to the junction with
an external microwave antenna in the band of 60−90GHz. By means of various improvements,
most notably the inclusion of cold powder filters at the scan head, we achieved a width in the
Josephson effect of 12µV. Now the width of the Josephson effect is strongly dependent on the
electronic noise of a system, so that we conclude that cold powder filters led to a significant
reduction of the electronic noise. This is in spite of the fact that the system is located in a building
not optimized for such low noise measurements. The observed energy resolution is relevant
for two reasons. Firstly it proves that powder filters installed at the scan head are a powerful
tool for reducing the electronic noise in STM. Additionally this result serves as a guidance for
optimizing the performance in machines to be built in the future by providing proof-of-principle
for techniques novel to STM such as the use of superconducting coaxial cables, customized I−V
converters or the use of screw-in filters as interface into the scan head. With this state-of-the-art
energy resolution, the width of features in a spectrum is greatly reduced, allowing to distinguish
peaks which are very close to each other. More precisely, the observed width of YSR states
in contact with a superconductor was seen to be just 40µV. With this improvement applied to
systems at mK temperatures, one can only speculate about the energy resolution possible there.
This would open new paths of research as for example the study of nuclear spins. With an
improved energy resolution, one could perform DC measurements in a magnetic field and detect
the splitting of energy levels simply by sweeping the bias voltage. Finally, the narrow Josephson
effect is a useful foundation for exploring phenomena in the field of Josephson physics. In
particular the periodic microwave drive might lead to so-called Andreev-Floquet states which
have been predicted theoretically [156] and first attempts in planar junctions have been made
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[129].

The second part of the thesis exploited the improved energy resolution to study how YSR states
behave under microwave irradiation. The target system was a V(100) surface which was probed
with a YSR-functionalized vanadium tip. These YSR states typically lead to two main peaks in a
differential conductance spectrum. Once microwaves are applied, Tien-Gordon theory predicts
the formation of replicas offset by multiples of ℏω/e along the voltage axis [116]. We observed
a series of anomalous peaks appearing at bias voltages eV = ∆ − ϵ ± nℏω, where ∆ is the
superconducting gap, ϵ the energy of the YSR state and ℏω the microwave energy. We labelled
this family of peaks excited state tunneling as opposed to ground state tunneling which gives
rise to peaks at eV = ∆ + ϵ ± nℏω. The anomalous peaks originate from a second order
Andreev process, where the first electron absorbs a sufficient number of quanta to excite the
YSR state and the excited YSR state then resonantly relaxes. This process is only possible due
to the combination of the tunnel contact with microwave irradiation and the peaks can clearly
be told apart owing to the improved energy resolution. This makes the present setup an ideal
candidate for studying the excitation of YSR states. We derive a simplified model which relies on
a threshold function to describe quantitatively the threshold for exciting YSR states and thereby
enabling the tunnel process leading to the anomalous peaks. The fact that it is possible to set the
bias voltage and microwave parameters such that an excitation process is in resonance means
that we can excite the YSR state in a CW mode. Furthermore, sweeping the frequency allowed
us to track down these two processes. This method makes it possible to study resonances on the
frequency axis, thereby giving improved resolution. A natural next step would be an extension
to pump-probe measurements which ideally would enable us to controllably excite the state and
then deduce the lifetime of the YSR states. Another route of research could be the study of shot
noise under microwave irradiation, with a MHz amplifier which has already been used in other
work [48, 108].

The final section of the thesis was about the analysis of the experimental data using a full Green’s
function approach. Firstly, we found that a full approach gives excellent quantitative agreement
with the data, indicating that it is a powerful and reliable tool to describe the microwave excitation
of YSR states. By comparing several approximations in the model, we found that the resonant
nature of the excited state tunneling process makes the full model deviate from the lowest order
approximation at much lower transparencies (τ = 10−4) than in the model without microwaves
(τ = 10−2), implying that proposed approximations [23] should be viewed critically. Apart from
that, this early onset of resonances explains why the conductance dependence of experimental
spectra cannot be divided into regimes of powers of transparency τn. This has important
implications for future experiments, for example shot noise measurements. In such experiments,
the Fano factor, i.e. the ratio of noise to the current, is determined as a function of the applied
bias voltage. Depending on which processes are possible, this Fano factor deviates from the
classical result F = 1. Our analysis implies that such Fano factors would then have to be
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analysed using a full approach [62]. Finally, from the intensity of EST peaks with respect to
GST peaks, we deduce a rough estimate of the lower limit of the lifetimes of the YSR states,
which is ℏ/Γ > 40 ns. This is in line with previously reported work (48 ns at 10mK [43]).
Overall this fitting provides another indirect method of estimating the lifetime of YSR states –
with the advantage that this can be done at much lower conductances than in other methods.
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