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Abstract

When a continuous symmetry is spontaneously broken, collective modes emerge. Usually, their spectrum
is dominated by the low-energy physics of massless Goldstone modes. Superconductors, that break U(1)

symmetry, are different. Here, the Goldstone boson is gapped out due to the Anderson-Higgs mechanism.
The superconducting condensate can therefore host a zoo of massive collective excitations that are stable

for lack of a gapless decay channel. The most prominent of them is the Higgs mode. Spectroscopy of
collective modes can serve as a probe to reveal the nature of the superconducting state.

In this thesis, we study the signatures of collective modes in nonlinear optical experiments. We explore
the theoretical description of a new spectroscopic excitation scheme. We show how impurity scattering sig-
nificantly enhances the optical Higgs mode response. We apply group theoretical methods to multi-order-
parameter theories and investigate microscopic signatures of coupled modes in third harmonic generation
experiments. We study the phenomenology and collective mode spectrum of an exotic system of twisted
cuprate bilayers that supports topological superconductivity. Finally, we propose a novel device implemen-
tation of the superconducting diode effect.

These results contribute to the emerging field of collective mode spectroscopy.
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Zusammenfassung

Die spontane Symmetriebrechung ist das grundlegende Konzept einer breiten Klasse von Materialphasen.
Diese Phasen können durch einen lokalen Ordnungsparameter charakterisiert werden, der auf die spontane
Brechung einer Symmetrie hinweist. Spontan bedeutet in diesem Kontext, dass der quantenmechanische
Grundzustand eine bestimmte Symmetrie verletzt, obwohl die zugrunde liegenden physikalischen Bewe-
gungsgleichungen symmetrisch sind.

Zu den Beispielen spontaner Symmetriebrechung gehören Kristallisation, bei der die kontinuierliche
Translationssymmetrie gebrochen wird, Ferromagnetismus mit gebrochener Spin-Rotations-Symmetrie SU(2)
und Suprafluidität und Supraleitung, mit gebrochener U(1) Symmetrie. Nach dem Goldstone Theorem ga-
rantiert die Brechung jeder kontinuierlichen Symmetrie die Existenz einer masselosen bosonischen Anre-
gung. Im Falle von Kristallen und Suprafluiden ist dies das Phonon, bei Magneten das sogenannte Magnon.

Zusätzlich zu den Goldstone-Bosonen können spontan Symmetrie-gebrochene Phasen massereiche bo-
sonische Anregungen beherbergen. Ihr Phasenraum wird jedoch stark von Zerfallskanälen zu den Goldstone-
Moden mit niedrigeren Energien dominiert. Daher sind massereiche kollektive Anregungen in der Regel
instabil.

Die Supraleitung stellt einen besonderen Fall dar. Der komplexe Supraleitungs-Ordnungsparameter be-
schreibt ein geladenes Kondensat von Elektronen. Daher koppelt der Ordnungsparameter an das elektroma-
gnetische Eichfeld. Die spontan gebrochene U(1)-Symmetrie ist Teil der größeren lokalen Eichsymmetrie.
Als solche stellt sie keine eigentliche Symmetrie dar, sondern eine Eichredundanz. Folglich beherbergen
Supraleiter keine masselosen Goldstone-Moden.

Die energetisch tiefst-liegende Anregung in einem Supraleiter ist daher eine massive kollektive Mode
des supraleitenden Kondensats. In einigen Fällen können solche Anregungen aufgrund der Abwesenheit der
Goldstone Zerfallskanäle stabil und langlebig sein.

Die bekannteste kollektive supraleitende Mode ist die Higgs Mode. Sie verkörpert Amplitudenfluktua-
tionen des supraleitenden Ordnungsparameters und tritt in jeder theoretischen Beschreibung eines Supra-
leiters auf, unabhängig von der Anzahl der supraleitenden Ordnungsparameter. In komplexeren Theorien
mit n Ordnungsparametern, treten 2n � 1 kollektive Moden auf. Zu diesen gehören Leggett und Bardasis-
Schrieffer Moden, welche Phasenfluktuation der komplexen Ordnungsparameter beschreiben.

Kollektive Anregungen des supraleitenden Kondensats liegen im THz-Bereich und können mit nicht-
linearen THz-spektroskopischen Methoden experimentell untersucht werden.

Die vorliegende Dissertation wendet einen diagrammatischen Quasi-Gleichgewichts-Formalismus an,
der zeitlich aufgelöste Observablen störungstheoretisch berechnet, um spektroskopische Experimente zu
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modellieren.
Die Hauptansätze für THz-Anregungen bestehen aus zwei Methoden. Für erste werden supraleitende

Materialien in einem Pump-Probe-Setup beleuchtet, wobei eine Anregung der Higgs-Mode durch einen
kurzen Pump-Laserpuls erfolgt, und die optische Leitfähigkeit des Supraleiters nach einer variablen Zeit-
verzögerung mit einem Probe-Puls sondiert wird. In einem zweiten Experimenttyp werden kollektive Moden
durch einen multizyklischen THz-Puls mit einer wohldefinierten Trägerfrequenz angeregt, was zu einer re-
sonanten Erzeugung der dritten Harmonischen im transmittierten oder reflektierten Puls führt. Die Messung
der Intensität der generierten dritten Harmonischen gibt Aufschluss über das Spektrum kollektiver Moden.

In dieser Dissertation wird eine neue experimentelle Plattform theoretisch analysiert, bei welcher eine
Abfolge von einem optischen Pump-Puls und einem multizyklischen THz-Puls angewandt wird. Hierbei wir
die Generierung der dritten Harmonischen in einem gepumpten Zustand untersucht. Es wird dargestellt, wie
Signaturen von kollektiven Moden in 2D-spektroskopischen Diagrammen untersucht werden können.

Supraleitende Theorien mit mehreren Ordnungsparametern beherbergen eine Vielfalt kollektiver Mo-
den. Die Struktur solcher Theorien ist stark von Symmetrien der zugrundeliegenden mikroskopischen Kris-
tallstrukturen diktiert und kann mithilfe gruppentheoretischer Methoden analysiert werden. Insbesondere
gehören Ordnungsparameter zu irreduziblen Darstellungen einer Punktgruppe. Die Analyse aller irredu-
ziblen Darstellungen einer Symmetriegruppe ist daher aufschlussgebend für alle möglichen Ordnungspa-
rameter in einem Supraleiter. Mikroskopisch können Multi-Ordnungsparameter entweder Supraleitung in
mehreren Bändern beschreiben oder Kondensation von mehreren Symmetriekanälen innerhalb eines Ban-
des.

In dieser Dissertation werden verschiedene Konsequenzen von Multi-Ordnungsparameter-Strukturen
beleuchtet. Es wird die Auswirkung der Präsenz mehrerer gekoppelter Ordnungsparameter auf die Gene-
rierung der dritten Harmonischen in nichtlinearen THz-Experimenten untersucht. Hierbei wir gezeigt, dass
die Messung der elektromagnetischen Phasenverschiebung des reflektierten oder transmittierten THz-Pulses
Informationen über das kollektive Modenspektrum enthalten kann. Eine interessante Anwendung besteht in
dem Fall, dass neben der optisch aktiven Higgs-Mode eine weitere optisch inaktive kollektive Mode exis-
tiert. Solange diese beiden Moden miteinander gekoppelt sind, kann die Spektroskopie der Higgs Mode
Aufschluss über die Resonanz-Struktur der nicht-sichtbaren Mode geben. In diesem Sinne kann die Higgs-
Mode prinzipiell als spektroskopische Sonde fungieren.

Weiterhin wird der Einfluss von nicht-magnetischen Störstellen in einem Zweiband-Supraleiter auf das
Spektrum der kollektiven Moden untersucht. Es wird gezeigt, dass Störstellen die elektromagnetische Ant-
wort der Higgs-Mode in der nichtlinearen optischen Leitfähigkeit drastisch verstärken, während das optische
Verhalten der Leggett-Mode unabhängig von der Störstellenkonzentration ist.

In den Vergangenen Jahren hat die Einführung von verdrehten Doppel-Lagen von 2D Materialien einen
neuen Ansatzpunkt zur Untersuchung von Materialeigenschaften insbesondere im Hinblick auf Supraleit-
fähigkeit eröffnet. Üblicherweise beruhen diese Eigenschaften auf Bandstruktur-Effekten. Bei einer Ver-
drehung der beiden Atomlagen um einen sogenannten magischen Winkel von 1.1� entsteht im Falle von
Graphen ein Flachband, in dem elektronische Korrelationen von dominierender Bedeutung sind. Im Zu-
ge der Entwicklung des Feldes der Twistronik (aus twist und Elektronik) wurde kürzlich die Auswirkung
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der Verdrehung von supraleitenden Doppellagen untersucht. Hierbei wurde gezeigt, dass zwei um 45� ver-
drehte Cuprat-Monolagen spontan die Zeitumkehr-Symmetrie brechen und einen topologischen supraleiten-
den Grundzustand realisieren. Dieser Effekt beruht nicht auf Korrelationseffektiven, sondern allein auf der
Symmetrie der Ordnungsparameter der individuellen Monolagen. In dieser Dissertation wird die spontane
Symmetriebrechung von verdrehten Cuprat-Bi-Lagen gruppentheoretisch erklärt. Zudem wird das Spektrum
kollektiver Moden berechnet und ein realistisches mikroskopisches Model untersucht, das eine inkohärente
Kopplungen der beiden Monolagen voraussetzt.

Im letzten Teil dieser Arbeit wird ein neuartiger supraleitender Josephson-Schaltkreis vorgeschlagen,
der den supraleitenden Diodeneffekt realisiert. Der supraleitende Diodeneffekt tritt auf, wenn der maximale
Tunnelstrom zwischen zwei Supraleitern eines Josephson-Kontakts von der Polarität abhängt. Der Dioden-
effekt wurde in verdrehten Cuprat-Doppellagen und einer Vielzahl von Materialien gemessen.

Während aktuelle experimentelle und theoretische Umsetzungen des Diodeneffekts auf komplexen Ma-
terialplattformen beruhen, kann das hier beschriebene Gerät mithilfe industrieller supraleitender Materialien
und skalierbarer Halbleiterfertigungstechnologien fabriziert werden.
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Lay Summary

We investigate the signatures of collective modes of superconductors in nonlinear optical experiments. Su-
perconductors are materials that expel magnetic fields and have zero electrical resistance. They are charac-
terized by macroscopic coherence of the quantum mechanical phase and an excitation gap in their electronic
spectrum. Collective modes lead to oscillations of the superconducting excitation gap and the quantum
phase. The most ubiquitous collective excitation is the Higgs mode.

The study of superconducting collective modes reveals information about fundamental properties of
superconductors. In this thesis, we theoretically introduce a new spectroscopic platform to measure the
collective excitation spectrum. We demonstrate that experimental signatures of the Higgs mode are strongly
enhanced by impurities in a material. Further, the collective excitations of a stack of two atomically thin
superconducting films that are twisted relative to each other are examined. This stacked structure can be used
to engineer a novel electronic device, called a superconducting diode, whose properties and implementation
we study in detail.

The results in this thesis contribute to the emerging field of superconducting collective mode spec-
troscopy.
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Chapter 1

Introduction

Spontaneous symmetry breaking lies at the heart of a wide range of physical phenomena. It is the underlying
concept that defines many phases of matter. These phases can be characterized by a local order parameter
that becomes finite at a phase transition, indicating the spontaneous breakdown of a symmetry.

Among the examples of spontaneous symmetry breaking are crystallization, where continuous transla-
tional symmetry is broken down to discrete translations; ferromagnetism, where spin-rotational symmetry
SU(2) is broken; superfluidity and superconductivity where the system spontaneously breaks U(1). A spon-
taneously symmetry-broken phase hosts gapless collective excitations. This is guaranteed by the Goldstone
theorem which states that there is one massless bosonic particle for each continuous broken symmetry. In
the case of crystals and superfluids, this is the phonon. For magnets, one obtains magnons.

In addition to the Goldstone bosons, spontaneously broken phases might also host massive bosonic
excitations. However, their phase space is strongly dominated by decay channels to the Goldstone modes at
lower energies. Therefore, massive collective excitations are usually unstable.

Superconductivity is different. The superconducting order parameter describes a charged condensate of
electrons. Therefore, the order parameter couples to the electromagnetic gauge field. The spontaneously
broken U(1) symmetry, it turns out, is actually part of the larger local gauge symmetry. As such, it does not
constitute a real symmetry but merely reflects gauge redundancy. As a consequence, superconductors do not
host a Goldstone mode. From a different viewpoint, the superconducting Goldstone mode is absorbed by
the gauge field, which in turn becomes massive. This is the so-called Anderson Higgs mechanism, a central
paradigm of superconductivity [8, 9, 64].

We see that superconductivity is a unique case. Superconductors allow for massive collective excitations
that are stable due to the lack of a massless Goldstone decay channel. One such massive excitation is the
Higgs mode. It corresponds to quantized amplitude excitations of the order parameter. Unfortunately,
its energy coincides with the onset of the fermionic single-particle excitation continuum. In a twist of
fate, not the Goldstone mode, but decay into fermionic quasiparticle excitations make the Higgs mode
strongly overdamped. Nevertheless, the Higgs mode has attracted remarkable theoretical and experimental
interest [145]. Considerable effort has been invested in studying its signatures in nonlinear optical response
experiments [37, 54, 80, 81, 86, 103, 104, 163]. The Higgs mode is a central theme in this thesis.

In more complicated superconducting systems, where multiple complex order parameters are needed to
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describe the phase transition, additional collective modes arise. They correspond to various combinations
of amplitude and phase fluctuations of the order parameters. The Leggett mode [91] or Bardasis-Schrieffer
mode [18], for example, correspond to relative phase fluctuations in two-order-parameter superconductors.
Notably, these additional collective modes can indeed exist below the single-particle continuum, where they
constitute long-lived and stable bosonic excitations.

The study of collective modes can reveal properties of the superconducting condensate, such as the
pairing symmetry [139]. Recent progress in studying the collective mode spectrum, along with the contents
of this thesis, can therefore be contextualized to contribute to the advancement of the emerging field of
Higgs and collective mode spectroscopy.

This thesis is organized as follows. In the remainder of this chapter, we introduce the phenomenology
of superconductors within the Landau-Ginzburg framework of phase transitions of a single-component or-
der parameter. In chapter 2 we generalize this to the case of multi-component order parameters. Here, we
will see how the lattice symmetries of a microscopic crystal manifest itself in the structure of the Landau-
Ginzburg theory. In chapter 3, we turn to a fully microscopic derivation of superconductivity from a path
integral. We show that the superconducting order parameters of the Landau-Ginzburg theory can be identi-
fied with bosonic Hubbard-Stratonovich fields of the path integral. We derive the structure of the nonlinear
optical susceptibility, that fully specifies the nonlinear optical response. In chapter 4, we outline how the
results of THz spectroscopic experiments can be understood within the microscopic framework. These
spectroscopic techniques comprise THz pump-probe spectroscopy, third harmonic generation, and a novel
scheme that we call quench-drive spectroscopy.

In chapter 5, we study the effects of impurities on a two-band superconductor, relevant for MgB2. Here,
we introduce the Leggett mode for the first time. Higgs, Bardasis-Schrieffer, and competing charge density
fluctuations are studied in chapter 6 where we emphasize their optical phase response in third-harmonic
generation (THG) experiments.

In chapter 7 we analyze the effect of incoherent interlayer tunneling in twisted-cuprate bilayer samples
that have been proposed to constitute the first known example of a high-Tc topological superconductor.
We additionally examine the collective mode spectrum and propose that in-gap collective excitations could
provide a signature of the topological phase transition.

Finally, in chapter 8, we leave the realm of collective fluctuations. We show that even the classically
treated superconducting groundstate can give rise to novel concepts: the superconducting diode effect.

We conclude in chapter 9.

1.1 Superconductivity
The phenomenology of superconductivity can certainly be counted as one of the marvelous gifts of physics.
In 1911 Onnes discovered that the electrical resistance of mercury vanishes below a temperature of 4.2 K

[79]. This discovery came to the surprise of the theoretical community. While it was speculated that the
electrical resistance of metals might tend towards zero into the zero Kelvin limit, no one had anticipated
that the electrical resistance would vanish at a finite critical temperature Tc. Soon, different materials were
discovered to become superconducting at low temperatures, such as lead, niobium, or, more recently, magne-
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Figure 1.1: The free energy of a Landau-Ginzburg free energy of a complex order parameter above,
at, and below the critical temperature Tc of the superconducting phase transition.

sium diboride (MgB2) [117]. In 1933 it was discovered by Meissner that metals in the superconducting state
expel magnetic fields [108]. The Meissner effect today serves as the main criterion of superconductivity.

The first successful theoretical description in terms of a phenomenological model in the general frame-
work of phase transitions was put forward by Landau and Ginzburg [53]. Here, a striking difference between
the superconducting state and the normal state is apparent: Whereas regular current flow in metals arises
from quasiparticle excitations and necessarily invokes a resistance parameter due to impurity scattering,
supercurrent flow is of different nature. It relies on the deformation of the phase of a macroscopic order
parameter and is ballistic in the sense that it lacks a resistance parameter.

In 1957 a microscopic description of superconductivity was introduced by Bardeen, Cooper, Schrieffer
(BCS) [19]. Their so-called BCS theory was later shown to reproduce the Landau-Ginzburg description as
a limit case. In the microscopic description, the phase related to current flow can be seen to correspond to
macroscopic coherence of paired electrons. In contrast to resistive current flow in regular conductors, it was
shown by Anderson that the superconducting phenomenology is insensitive to impurity scattering [6].

In this chapter we will focus on the phenomenological description due to Landau and Ginzburg. In
chapter 3 we will discuss the microscopic viewpoint.

1.2 Landau-Ginzburg formalism of spontaneous symmetry breaking
Within the Landau-Ginzburg framework, the free energy in the vicinity of the metal-superconductor phase
transition is given in terms of a phenomenological complex order parameter  (x) as

F [ ] = ↵| |2 + �| |4 + |r |2 . (1.1)

Here, ↵,�, can in principle be viewed as experimental fit parameters. For the free energy to have a global
minimum, it is taken that � > 0 and  > 0. These coefficients can be negative, in which case higher order
terms must be considered to ensure stability of the theory. Without loss of generality, we will choose  = 1.

Close to Tc we may expand ↵ = ↵̃(T � Tc). In the homogeneous state,  (r) =  , the free energy is
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then minimized at

 eq =

8
<

:
0 T � Tc

p
�↵̃(T � Tc)/2� ei✓0 T < Tc

. (1.2)

We see that the amplitude of the order vanishes above Tc and then continuously develops a finite amplitude
below Tc. This is characteristic of a second order phase transition.

A sketch of the free energy above, at, and below the critical temperature is shown in Fig. 1.1. At the
critical temperature, the free energy is lacking a quadratic component. The potential ’bowl’ becomes flat
and admits fluctuations of the order parameter with vanishing cost in energy and a corresponding diverging
correlation length. Below Tc, the free energy assumes the form a ’Mexican hat’ with a range of minima
along its rim. These minima are related by a U(1) phase. When the order parameter selects one of these
point as its groundstate, U(1) symmetry will be broken. This is the well-known mechanism of spontaneous
symmetry breaking within the Landau-Ginzburg framework.

1.2.1 Collective fluctuations and the Anderson-Higgs mechanism

Let us select the minimum ✓0 = 0 for the order parameter and expand the free energy in small fluctuations
of the amplitude h(r) and the phase ✓(r) according to

 = ( eq + h(r))ei✓(r) . (1.3)

We also introduce the electromagnetic vector potential A by gauging the theory according to r ! r �
2ieA, where 2e is the charge of the order parameter. The free energy becomes

F = mh2 +  (r + i (2eA � r✓)) ( eq + h) (r � i(2eA � r✓)) ( eq + h) (1.4)

Here, we have defined the mass of the amplitude fluctuations as m =
⇣
↵+ 6� ( eq)2

⌘
= 2|↵|. The ampli-

tude fluctuations around the condensation point  eq of the superconducting order parameter are referred to
as ’Higgs mode’ in the literature, in analogy to the elementary Higgs particle in high-energy physics.

In the particle-physics context, the Higgs field was postulated as a necessary ingredient to generate
a mass for the otherwise massless Z0, W+, and W� bosons. We will motivate that something similar
happens in the condensed matter context. For a detailed overview of the similarities and differences of the
Higgs mode in condensed matter and particle physics, see Appendix. A.

First, note that in Eq. (1.4) the phase ✓ appears only in the gauge invariant combination 2eA � r✓.
This indicates that the phase ✓ is not a physical degree of freedom but merely a consequence of gauge
redundancy. This is the striking difference between superfluidity and superconductivity. In the uncharged
case of the superfluid, the phase ✓ represents the Goldstone particle. It is gapless since no mass term of the
form m✓✓2 exists. For a charged superconductor, we can remove the phase by choosing a specific gauge. If
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we do so, we find for the free energy

F = mh2 + (rh)2 + (2e eq)2 A2 + 8e2 eqA2h . (1.5)

Importantly, we note the presence of the term (2e eq)2 A2. This is a mass term for the photon. Conden-
sation of the order parameter has generated a photon mass. This is a manifestation of the Anderson-Higgs
mechanism.

Another interesting consequence arises from Eq. 1.5. The lowest order coupling between the Higgs
mode and the electromagnetic field is of the non-linear form hA2, i.e., the Higgs mode only couples nonlin-
early to light. This abstract result illustrates one of the main challenges in measuring experimental signatures
of the Higgs mode. Since it does not couple linearly to electromagnetic fields, it can only be detected by
non-linear spectroscopic techniques.

1.2.2 Meissner effect

The mass term of the photon has an important consequence: the Meissner effect. Intuitively, there will
be a finite energy cost on the scale of the mass-gap for the photon to have finite probability of staying
inside a superconducting material. Thus, it is energetically favored for photons to be expelled from the
superconductor.

We can formalize this concept within the Landau-Ginzburg formalism. Together with the usual kinetic
term for the field A, the electromagnetic part of the free energy reads

FEM = �1

2
(@iAj@iAj � @iAj@jAi) + 8e2 eqA2 . (1.6)

We assume that our gauge supports @iAi = 0 and derive the Euler Lagrange equations @F

@Ai
� @j

@F

@(@jAi)
as

r2A = 2(2e eq)2A . (1.7)

Taking the curl on both sides, this yields the familiar London model as an equation for the magnetic field,

r2B = ��2B . (1.8)

Solutions to this differential equation always decay exponentially within the penetration depth � = 1/2
p

2e eq.
As a physical consequence, magnetic fields only penetrate a thin layer of � at the surface of a superconductor
and are otherwise expelled. A superconductor is a perfect diamagnet.

1.2.3 Supercurrent flow

The current induced in a superconductor by an applied electromagnetic field can be obtained as a functional
derivative of the gauge-invariant free energy (1.4) according to

j = � �F
�A

= ⇢s(r✓ � 2eA) (1.9)
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Figure 1.2: Phase winding of 2⇡ of the superconducting order parameter for (a) a ring geometry and
(b) a vortex defect. The phase ✓(r) of the superconducting order parameter is shown as a false-
color plot. If the contour � is deep enough inside the superconductor, the flux through the area
spanned by � will be quantized to �0.

where we have this time neglected Higgs fluctuations, h = 0, and ⇢s = 2e ( eq)2 is the superfluid stiff-
ness. Conceptually, this expression is very different from current flow in a regular conductor. Whereas a
metallic current is linearly related to the electrical field via the conductivity tensor, here we have a direct
relation to the electromagnetic vector potential. While conventional current originates from particle excita-
tion, where scattering processes are important, supercurrent corresponds to a gauge invariant deformation
of the superconducting phase of the macroscopic order parameter.

As a consequence of the Meissner effect, supercurrent is a surface phenomenon, i.e. superflow is only
present within a layer � of the surface.

1.2.4 Flux quantization

A remarkable consequence of supercurrent flow connected to spontaneous U(1) symmetry breaking is the
quantization of magnetic flux. As we learned, magnetic flux is expelled due to the Meissner effect. Magnetic
fields may, however, penetrate a physical hole inside a superconducting ring, as given for example in the
ring geometry sketched in Fig. 1.2(a).

The superconducting ring will only carry a current within the penetration depth � of its surface. Deep in
the bulk, we have j = 0, and it follows from Eq. (1.9) that

r✓ = 2eA . (1.10)

We now integrate this expression around a closed loop, indicated by a dashed white line in Fig. 1.2(a). The
integration path is assumed to be deep in the bulk. Then, we get

2⇡n = 2e

I

�

A · dl = 2e

Z
(r ⇥ A) · d� =

2⇡

�0
�� . (1.11)

where we have defined the superconducting flux quantum 2⇡/2e, and �� is the magnetic flux threaded

6



Figure 1.3: A superconducting ring that is interrupted by a weak link across which the phase jumps by
'.

through the contour �. We see that phase continuity demands that the magnetic flux through the integration
contour is quantized in units of �0, i.e. �� = n�0, where the phase winds n times along the integration
path. Naturally, Eq. (1.11) only holds for loops � along which the supercurrent vanishes. If we consider a
loop that crosses within � of the boundary of the ring, its flux will no longer be quantized.

Microscopically, flux quantization is achieved by circulating surface currents that adjust in just the right
way to an externally applied flux, to always achieve quantization. It is intuitive that flux through a ring
may not be quantized if the ring is too thin such that it cannot support enough supercurrent to generate the
necessary induced flux contribution.

In certain superconductors, it is not even necessary to create a physical hole to pierce magnetic flux
through it. Type-II superconductors can support vortex anomalies, exemplary sketched in Fig. 1.2(b). Vor-
tices are points of vanishing order parameter around which the superconducting phase winds n times. Con-
ceptually, a vanishing order parameter is equivalent to a physical hole in a superconductor. Flux quantization
therefore applies to vortices, and they carry a flux of n�0.

1.2.5 Flux quantization in a Josephson junction

When the superconducting ring is interrupted by a small gap, a Josephson junction may be formed. This
scenario is sketched in Fig. 1.3. Across the junction, the superconducting phase can discontinuously jump
by a value '. Integrating Eq. (1.10) again along a loop, we now have

2⇡n = �'+
2⇡

�0

Z r2

r1

A · dl = �'+

✓
2⇡

�0

Z r1

r2

A · dl � 2⇡

�0

Z r1

r2

A · dl
◆

+
2⇡

�0

Z r2

r1

A · dl

= �'� 2⇡

�0

Z r1

r2

A · dl +
2⇡

�0
� = �'⇤ +

2⇡

�0
� . (1.12)

In the last step, we have defined the gauge invariant phase '⇤. We see that the flux is not necessarily
quantized anymore. Instead, the phase jump across the junction is determined by the winding number n and
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the magnetic flux,

'⇤ = �2⇡n +
2⇡

�0
� . (1.13)
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Chapter 2

Landau-Ginzburg phenomenology meets
group theory

The simple picture of spontaneous symmetry breaking at a second order phase transition so far was restricted
to a theory with a single complex order parameter  . In this chapter, we will generalize it to the case of
a multi-component order parameter ⌘i. We will show that the point group symmetries of the underlying
crystal play a vital role in determining the form of the free energy.

For now, we will not be concerned with the microscopic origin that necessitates such multicomponent
structure. As we shall see in the following chapters, these different components can either correspond to
different bands (Ch. 5) or different symmetry channels within a band (Ch. 6). A two-component order
parameter will also be necessary to capture the physics of twisted cuprate bilayers that will be introduced in
Ch. 7.

We will show that complex multicomponent Landau-Ginzburg theories give rise to a flurry of non-trivial
phenomena, among them spontaneous time-reversal symmetry breaking, linear light-coupling to collective
modes, and magnetic flux fractionalization.

2.1 Multi-component order parameters
A general expression of the free energy as a function of a multi-component order parameter ⌘i is given by

F [⌘, ⌘⇤i ] = ↵ij⌘
⇤

i ⌘j + �ijkl⌘
⇤

i ⌘
⇤

j ⌘k⌘l + Rijk⌘
⇤

i @j⌘k + Kijkl@i⌘
⇤

j@k⌘l . (2.1)

This equation can be significantly simplified by considering symmetry properties of the underlying material,
formalized by the methods group theory. In the following discussion, we summarize main results of the
group theoretical analysis applied in the literature [12, 76].

The free energy of the superconductor must be invariant under the symmetry group

G = Gp ⇥ SU(2) ⇥ U(1) ⇥ T , (2.2)

where Gp is the point group of the crystal lattice unit cell, SU(2) is the rotational group of the spin of the
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order parameter, U(1) is the group of global phase transformation of the complex order parameter, and T is
the two-element group of time reversal.

In this chapter, we will only consider singlet pairing states, i.e. the order parameter only transforms
under the trivial 1d singlet irrep of SU(2) and the spin part can effectively be ignored. For the remaining
structure of the group G, the order parameter then transforms under representations according to

⌘i ! Rij(g)ei'Tn⌘j , (2.3)

where R is a matrix representation of the group element g 2 Gp, ' is the U(1) phase, and time reversal acts
as T : ⌘i ! ⌘⇤

i
, and n = 0, 1. We note that the representation R(g) is generally reducible.

The requirement of invariance of the free energy under these transformations constrains the allowed
terms in Eq. (2.1). U(1) symmetry demands that all terms include equal numbers of ⌘i and ⌘⇤

i
. Time

reversal imposes, e.g., that ↵ij = ↵⇤

ji
. In the following we will focus on the restrictions imposed by the

point group Gp, which for the quadratic terms are

R†

ia
(g)↵abRbj(g) = ↵ij (2.4)

for every g 2 Gp. Hence, the matrix ↵ij commutes with representations of all group elements. According
to Schur’s lemma, ↵ij can therefore be diagonalized into blocks of constants ↵i times the unit matrix 1ni of
size ni:

↵ij =

0

BB@

↵11n1

↵21n2

. . .

1

CCA =
M

i

↵i1ni (2.5)

Each block corresponds to an irreducible representation (irrep) of the point group. The dimensionality of
the irrep sets the size ni of the block.

We assume that we have performed transformation to a new basis  i = Uij⌘j that diagonalizes the
matrix ↵ij into the form (2.5). The sign of the coefficients ↵i determine the shape of the Free energy for
an individual order parameter. For negative ↵i, one obtains a Mexican hat potential, while the potential is
parabolic for ↵i > 0. Above Tc, all ↵i are positive numbers. Upon lowering the temperature to Tc, a first of
the ↵i will become negative and its corresponding order parameters will condense. Close to Tc, the physics
of the superconducting phase transition is therefore encoded by block i alone and we may discard all other
order parameters. Note that the dimensionality of an irrep is at most n = 5 for any crystallographic point
group. For the point group D4h, relevant for the cuprates, irreps are at most two-dimensional. The block i

is therefore at most of size 5 ⇥ 5 (or 2 ⇥ 2 for the cuprates). By considering the point group of a system, we
see that a complicated Landau-Ginzburg theory with potentially hundreds of order parameters can always
be distilled into an effective theory with at most a handful degrees of freedom.

Upon lowering the temperature, other ↵i-blocks may become negative and additional order parameters
will condense. However, few such successive superconducting phase transitions have been observed. A
specific example of two successive phase transitions will be discussed in Ch. 7 for the cased of twisted
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D4h Basis functions E 2C4 C2 2C 0

2 2C 00

2 i 2S4 �h 2�v 2�d
A1g 1 1 1 1 1 1 1 1 1 1 1
A2g xy(x2 � y2) 1 1 1 -1 -1 1 1 1 -1 -1
B1g x2 � y2 1 -1 1 1 -1 1 -1 1 1 -1
B2g xy 1 -1 1 -1 1 1 -1 1 -1 1
Eg (xz, yz) 2 0 -2 0 0 2 0 -2 0 0

A1u xyz(x2 � y2) 1 1 1 1 1 -1 -1 -1 -1 -1
A2u z 1 1 1 -1 -1 -1 -1 -1 1 1
B1u z(x2 � y2) 1 -1 1 1 -1 -1 1 -1 -1 1
B2u xyz 1 -1 1 -1 1 -1 1 -1 1 -1
Eu (x, y) 2 0 -2 0 0 -2 0 2 0 0

Table 2.1: Character table of the point group D4h

cuprate bilayers.
In the following, we will focus on the point group D4h whose character table is listed in Tab. 2.1. The

only gerade irrep that is two-dimensional is Eg. Under this representation, the free energy is given by

F [ , ⇤

i ] = ↵ ⇤

i  i + �̃ijkl 
⇤

i  
⇤

j k l + R̃ijk 
⇤

i @j k + K̃ijkl@i 
⇤

j@k l , (2.6)

where the indices run from i = 1, 2. The �̃ijkl transform as

�̃ijkl !
⇣
R

Eg

ia

⌘
⇤
⇣
R

Eg

jb

⌘
⇤

R
Eg

kc
R

Eg

ld
�̃abcd . (2.7)

In more compact notation the �̃ transform under the direct product representation

(Eg ⌦ Eg)
⇤ ⌦ Eg ⌦ Eg . (2.8)

Direct products are generally reducible, i.e. Eg ⌦ Eg = A1g � A2g � B1g � B2g. Since Eg is a real irrep, we
have E⇤

g = Eg and find

(Eg ⌦ Eg)
⇤ ⌦ Eg ⌦ Eg = 4A1g � 4A2g � 4B1g � 4B2g (2.9)

For the �̃-term to be invariant under the point group symmetry, it must transform under the trivial represen-
tation A1g. According to Eq. (2.9) four A1g irreps are contained in the direct product. Thus, the �̃ tensor
with 24 = 16 components can be reduced to N = 4 invariant components.

The invariant subspaces of the tensor �̃ are found from

�̃⇤
ijkl

= ⇧
(A1g)
ijkl,abcd

�̃abcd . (2.10)
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where

⇧
(A1g)
ijkl,abcd

=
X

h2Gp

Rijkl,abcd(h) (2.11)

is the projection operator of the A1g subspace and we have denoted R as the reducible product representation

Rijkl,abcd(h) = [Eg(h)]
ia

[Eg(h)]
jb

[Eg(h)]
kc

[Eg(h)]
ld

. (2.12)

Let us interpret the product representation as matrices R↵�(h) by introducing the combined indices ↵ =

(ijkl) and � = (abcd). It is clear that ⇧↵� is indeed a projection operator, because

R(h0)⇧ = R(h0)
X

h2Gp

R(h) =
X

h2Gp

R(h0h) =
X

h2Gp

R(h) = ⇧ , (2.13)

since for a group hGp = Gp. The rank of ⇧↵� must be rank(⇧) = N = 4, equal to the dimension of the
invariant subspace. We separate the four invariants by finding the four independent row-vectors v(n) of ⇧
using Gaussian elimination, where n = 1, . . . , N . Then, the individual invariants are given by

�̃⇤(n)↵ = ⇧
(A1g)
↵� v(n)� �̃� . (2.14)

Explicitly, the four invariants for the D4h case are

 ⇤

1 
⇤

1 1 1 +  ⇤

2 
⇤

2 2 2

 ⇤

1 
⇤

2 2 1 +  ⇤

2 
⇤

1 1 2

 ⇤

1 
⇤

2 1 2 +  ⇤

2 
⇤

1 2 1

 ⇤

1 
⇤

1 2 2 +  ⇤

2 
⇤

2 1 1 . (2.15)

The second and third turn out to be identical, because the  i commute. Consequently, we obtain a stationary
free energy with only three parameters at fourth order,

F = ↵
�
| 1|2 + | 2|2

�
+ �1

�
| 1|4 + | 2|4

�
+ �2| 1|2| 2|2 + �3

�
( ⇤

1)
2 2

2 + ( ⇤

2)
2 2

1

�
. (2.16)

2.1.1 Spontaneous T -breaking

Let us find the minima of (2.16). By symmetry, one must have

 1 = | eq|ei✓1

 2 = | eq|ei✓2 , (2.17)

where both order parameters have the same amplitude and can only differ by a phase. The overall phase
does not change the free energy, and the problem reduces to finding the phase difference ' = ✓1 � ✓2. Only
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the last term in Eq. (2.16) depends on ' and we get

F ['] = 2�3| eq|4 cos 2'+ const. (2.18)

For �3 > 0, the free energy is minimized at either of ' = ⇡/2 or ' = �⇡/2. These two minima are related
to each other by time reversal, since

T : ' ! �' . (2.19)

The groundstate will spontaneously select one of the two minima in the thermodynamic limit and sponta-
neously break T . We see that the two order parameters develop a phase difference of ei⇡/2. In the Eg irrep
of D4h this is referred to as dxz + idyz superconductivity.

In the case � < 0, Eq. (2.18) is minimized at ' = 0 or ⇡. None of these choices breaks T , since each
map to themselves under the time-reversal operation (2.19).

2.1.2 Collective modes

Collective modes correspond to fluctuations of the order parameter around the equilibrium configuration
 eq

i
=  eq and ✓eq1 � ✓eq2 = 0, ±⇡/2 where we parametrize the order parameter as

 i = ( eq

i
+ hi) exp (i(✓eq

i
+ ✓i)) . (2.20)

We find the eigenmodes by expanding the free energy in the small fluctuations xi = {h1, h2, ✓1, ✓2} up to
quadratic order,

F = F0 +
1

2
xiMijxj , where M =

@2

@xi@xj

F
��
x=0

. (2.21)

The linear terms in xi are absent since we are expanding around a minimum of the free energy. The matrix
M is explicitly

M =

0

BBBB@

8( eq)4�1 4( eq)4(�2 � 2|�3|) 0 0

4( eq)4(�2 � 2|�3|) 8( eq)4�1 0 0

0 0 0 0

0 0 0 8|�3|( eq)4

1

CCCCA
. (2.22)

The eigenvectors of M are (0, 0, 1, 1), (1, 1, 0, 0), (1, �1, 0, 0), (0, 0, 1, �1). These give the eigenmodes

✓ = ✓1 + ✓2

h+ = (h1 + h2) /
p

2

h� = (h1 � h2) /
p

2

' = ✓1 � ✓2 (2.23)
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The Goldstone mode ✓ has zero eigenvalue as expected, and the other eigenvalues are

m+ = 4( eq)4 (2�1 + �2 � 2|�3|)

m� = 4( eq)4 (2�1 � �2 + 2|�3|)

m' = 8( eq)4|�3| , (2.24)

yielding the free energy

F = F0 +
1

2
m+h2

+ +
1

2
m�h2

� +
1

2
m''

2 . (2.25)

Note that for |�3| < �2/2 one has m� < m+. Microscopically, one finds that m+ can usually be identified
with the quasiparticle excitation gap. Then, for |�3| < �2/2 the anti-symmetric Higgs mode h� will be a
subgap excitation.

2.1.3 Linear coupling of light to collective modes

We next study the lowest order gradient term in the free energy Eq. (2.6) which is R̃ijk ⇤

i
@j k. Presence of

this term has been shown to lead to a linear coupling of light to collective modes of relative phase oscillations
of the order parameters in two-dimensional irreps [78]. This can be understood by considering a term of the
form

ri 
⇤

1(@i � 2ieAi) 2 + c.c. (2.26)

where we have gauged the theory using @i ! @i � 2ieAi. We express the fields  i as amplitude and phase
fluctuations

 1 = ( eq

1 + h1)e
i(✓+'/2)

 2 = ( eq

2 + h2)e
i(✓�'/2) (2.27)

around the equilibrium point ( eq

1 , eq

2 ). Inserting this into (2.26), and expanding the fluctuations hi,' to
first order, we obtain the terms

�2ei riAi ( 
eq

1 h2 +  eq

2 h1 � i eq

1  
eq

2 ') + c.c. . (2.28)

The equation above would imply that light can couple linearly to both amplitude fluctuations hi and the rela-
tive phase mode '. However, close to the Fermi energy, particle-hole symmetry is usually a good symmetry
in superconductors since the density of states is nearly constant on the energy scale of the superconducting
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gap. Particle hole symmetry acts as

P :

2e ! �2e

hi ! hi

' ! �'
(2.29)

and only leaves the term 4e Re[ri]Ai 
eq

1  
eq

2 ' invariant. Thus, any linear coupling to the Higgs mode is
strongly suppressed by particle hole symmetry while coupling to the phase mode is permitted.

We conclude that signatures of collective phase fluctuations can already be observable in the linear re-
sponse regime for certain materials that are described by two-component Landau-Ginzburg theories. Specif-
ically, this could be manifest as a subgap peak in the linear optical conductivity for fully gapped supercon-
ductors [78]. No such observation, however, has been made to date.

Let us deploy the methods of group theory to illustrate how point group symmetries may affect the linear
phase mode coupling. We consider the case of the Eg irrep of D4h. The spatial derivative transforms under
Eu � A2u. Then, R̃ transforms under the direct product

Eu ⌦ (Eu � A2u) ⌦ Eu = A1u � A2u � B1u � B2u � 4Eu (2.30)

which does not contain the trivial A1g irrep. Thus, it holds R̃ijk = 0, i.e., R̃ is symmetry forbidden and no
linear coupling of light to collective modes exists.

More intuitively, the term R̃ will always transform under a product of odd numbers of ungerade irreps,
and thus the product representation can only contain ungerade irreps and never the trivial irrep A1g. It is
therefore necessary to turn to systems without inversion symmetry. One example of a point group without
inversion symmetry will be studied in the next section. Another possible avenue is the point group D3h that
is relevant for single or odd-layer NbSe2 which has attracted recent interest as part of the transition metal
dichalcogenide family [60, 172].

2.2 The point group D4d

D4d Basis functions E 2S8 2C4 2(S8)3 C2 4C 0

2 4�d
A1 1 1 1 1 1 1 1 1
A2 z

�
(x2 � y2)2 � 4x2y2

�
1 1 1 1 1 -1 -1

B1 (x2 � y2)2 � 4x2y2 1 -1 1 -1 1 1 -1
B2 z 1 -1 1 -1 1 -1 1
E1 (x, y) 2

p
2 0 -

p
2 -2 0 0

E2 (x2 � y2, xy) 2 0 -2 0 2 0 0
E3 (xz, yz) 2 -

p
2 0

p
2 -2 0 0

Table 2.2: Character table of the point group D4d

Now that we have introduced the group theoretical procedures to derivate all symmetry-allowed terms of
the Landau-Ginzburg potential for a specific point group, let us consider another example: the point group
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Figure 2.1: Illustration of C 0

2 rotations and �d mirror planes of the point group D4d of symmetry
operations of twisted cuprates. Top and bottom cuprate layers and depicted as green and black
squares. Red lines indicate C 0

2-rotation axes in between cuprate layers. Blue lines indicate cross-
sections of mirror planes �d.

D4d. This point group will be relevant in Ch. 7, where we will see that it reflects the symmetry group of
twisted cuprate bilayers.

The character table of D4d is listed in Tab. 2.2. The group is of order 16. It has an abelian subgroup S8,
where the element S8 = C8�h is composed of a 2⇡/8-rotation around the z-axis and a horizontal xy mirror
plane reflection. The 8-fold rotational symmetry implies that D4d is not a crystallographic point group. It
can, however, still be relevant for quasicrystals and molecules. Indeed, twisted cuprate bilayers are known
to realize a quasicrystal at the critical twist angle of ⇡/4 [28].

Additionally, D4d contains four in-plane C 0

2 rotations and four vertical mirror planes �d which are
illustrated in Fig. 2.1.

From the basis functions in character table 2.2 it is apparent that E2 is the only irrep of D4d that possesses
d-wave character in the xy-plane. This motivates us to adopt E2 as the single viable choice to describe
twisted cuprates, since cuprates in bulk form or as individual layers are known to be d-wave superconductors.
We note that cuprates are usually described by a single-component Landau-Ginzburg theory with the order
parameter transforming as B1g or B2g in the group D4h. This is in stark contrast to twisted cuprates, which
necessarily need to be described by two order parameters transforming as E2 in D4d.

It is straightforward to construct the product representations of the tensors �̃, R̃, K̃ of the general ex-
pression (2.6). The results are listed in Tab. 2.3 next to the decomposition of the product representations
into A1 invariants. Using the projection operator method, we explicitly find the free energy as

F = ↵
�
| 1|2 + | 2|2

�
+ �1

�
| 1|4 + | 2|4

�
+ �2| 1|2| 2|2 + �3

�
( ⇤

1)
2 2

2 + ( ⇤

2)
2 2

1

�

+ (r( ⇤

1@z 1 �  ⇤

2@z 2) + c.c.) + 1
�
|@z 1|2 + |@z 2|2

�

+ 2
�
|@x 1|2 + |@x 2|2 + |@y 1|2 + |@y 2|2

�
. (2.31)

The term  ⇤

1@z 1 �  ⇤

2@z 2 could in principle give rise to linear coupling of electromagnetic fields to
the Higgs mode. However, it is not invariant under particle hole symmetry, P :  i !  ⇤

i
, @i ! @i, and
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D4d Product representation # of A1 irreps # of invariants

�̃ijkl E2 ⌦ E2 ⌦ E2 ⌦ E2 4 3
R̃ijk E2 ⌦ (B2 � E1) ⌦ E2 1 1
K̃ijkl (B2 � E1) ⌦ E2 ⌦ (B2 � E1) ⌦ E2 3 2

Table 2.3: Invariant components of quartic and gradient tensors of the free energy where order parame-
ter transforms as E2 of D4d. The number of invariants can be less than the A1 content, if invariants
vanish due to commutation structure of order parameters and derivatives.

should be strongly suppressed.

2.2.1 Transition splitting

D4 Basis functions E 2C4 C2 2C 0

2 2C 00

2

A1 1 1 1 1 1 1
A2 z 1 1 1 -1 -1
B1 x2 � y2 1 -1 1 1 -1
B2 xy 1 -1 1 -1 1
E1 (x, y) 2 0 -2 0 0

Table 2.4: Character table of the point group D4.

Under a deformation that lowers the symmetry from D4d to D4, the 2d irrep E2 would split into two
one-dimensional irreps

E2 ! B1 � B2 . (2.32)

The characters of D4 are listed in Tab. 2.4. In the D4d symmetric case, there can only be a single super-
conducting phase transition. Upon lowering the symmetry do D4, two Tc transition temperatures should be
measurable, corresponding to the irreps B1 and B2.

2.2.2 Fractional flux quantization

In Sec. 1.2.4, we derived that magnetic flux, piercing through a hole in a superconductor, is necessarily quan-
tized as a consequence of phase continuity. Here, we will apply the same concept to the two-dimensional E2

order parameter of D4d. For simplicity, let us consider an electromagnetic vector potential in the xy-plane,
A = (Ax, Ay). From the derivative of the free energy (2.31), the supercurrent in the xy-plane is given by

j = ⇢s(r✓1 � 2eA) + ⇢s(r✓2 � 2eA) (2.33)

where ⇢s = 8e22 ( eq)2. As in the 1d case, we consider the superconducting ring geometry of Fig. 1.2. In
the bulk of a superconductor, j = 0, and it holds that

r✓1 + r✓2 = 4eA . (2.34)
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Integrating this expression around a loop, we obtain, in analogy to Eq. (1.11),

2⇡(n1 + n2) = 4e

I
A · dl = 4e

Z
(r ⇥ A) · d� =

4⇡

�0
� . (2.35)

Thus, for n1 and n2 windings of the superconducting phases ✓1 and ✓2, we find that the flux must be
quantized to

� =
n1 + n2

2
�0 . (2.36)

Remarkably, when n1 + n2 is odd, the flux is half quantized. Half-quantization is only possible when the
two order parameters have different winding numbers. These configurations correspond to local minima
in the free energy which, for a single vortex, have an extensive energy cost due to the Josephson coupling
term �3

�
( ⇤

1)
2 2

2 + ( ⇤

2)
2 2

1) . As such, a single fractional flux quantization is exponentially suppressed in
system size and half-quantized vortex pairs attract each other to favor a fully-quantized boundstate at low
temperatures.

18



Chapter 3

Path integral formulation of
superconductivity

The Landau-Ginzburg formalism provides an excellent phenomenological description of superconductivity.
It does, however, lack a microscopic justification. We will provide this justification in the present chapter
where we will derive the Landau-Ginzburg theory starting from the general interacting single band Hamil-
tonian

H =
X

k,�=#"

⇠kc†k�ck� +
X

k1k2k3

Vk1k2k3c
†

k1"
c†k2#

ck3#ck1+k2�k3" . (3.1)

Here, ⇠k = ✏k � µ is the microscopic bandstructure. The interacting potential Vk1k2k3 is often phonon
mediated but can have diverse physical origins. Both ⇠k and Vk1k2k3 reflect the point group symmetries of
the microscopic crystal lattice.

3.1 Hubbard-Stratonovich channels
A first approximation consists of restricting the sum over the ki to a smaller subspace of the parameter space.
We do that by introducing the momentum variable q which is understood to be summed only over the small
region |q| ⌧ 1/a, where a is the lattice constant. Next, we arrange the four operators of the interacting term
into pairs of two, whereby each pair creates a net-momentum of ±q. Three such pairings exist:

X

k1k2k3

Vk1k2k3c
†

k1"
c†k2#

ck3#ck1+k2�k3" =
X

kk0q

Vk+q,�k,�k0 c†k+q"c
†

�k#c�k0#ck0+q"

+
X

kk0q

Vk+q,k0�q,k0 c†k+q"ck"c
†

k0�q#ck0# �
X

kk0q

Vk+q,k0�q,k c†k+q"ck#c
†

k0�q#ck0" (3.2)

These three terms are referred to as Cooper channel, density channel, and exchange channel, respectively.
We have diagrammatically summarized them in Fig. 3.1. Under our assumption of small q, all three channels
evaluate the potential Vk1k2k3 in mostly different regions of (k1,k2,k3)-parameter space and one may safely
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Figure 3.1: Diagrammatic representation of the Cooper, density, and exchange channel in Eq. (3.2).

neglect the small overlap.
The three channels have principally different effects on the physics of the model. The density channel

can lead to a Mott-gap and renormalizes the chemical potential, while the exchange channel is related to
magnetic phenomena. The Cooper channel leads to BCS-superconductivity. Which and how many of these
channels are relevant depends on the underlying material and is encoded into the form of the interacting
potential Vk1k2k3 . Here, we will be concerned with generic superconducting systems where the Cooper
channel is the only relevant interacting term.

To make progress in studying the Cooper channel, we neglect the q dependence of the pairing function
and factorize it into the form

Vk+q,�k,�k0 ⇡ �
X

i

V (i)f (i)
k f (i)

k0 (3.3)

Here, the index i runs over irreducible representations of the underlying point group of the crystal lattice and
the f (i)

k are the corresponding basis functions. For the case of the cuprates the basis functions were listed
in character table 2.1 of Ch. 2. Since cuprates are known to be d-wave superconductors, the relevant basis
functions are f

(B1g)
k = cos kx � cos ky and f

(B1g)
k = sin kx sin ky.

We next choose the imaginary time coherent state partition function [3] as a method of perturbation
theory that we will outline in the following. In this formalism, the partition function Z is given by the path
integral

Z =

Z
D(c†c)e�S with S =

Z
�

0
d⌧

 
X

k�

c†k�@⌧ ck� + H
!

, (3.4)

Here, ⌧ is the imaginary time variable that is integrated from 0 to � = 1/T , where T is the temperature.
Note that we are working in units where natural constants are set to kb = ~ = 1. The fermionic fields c, c†

are now treated as anticommuting Grassmann functions.
The interacting term in the Hamiltonian H can be decoupled by means of the Hubbard Stratonovich
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transformation

exp

 Z
d⌧
X

V (i)

 
X

k

f (i)
k c†k+q"c

†

�k#

! 
X

k0

f (i)
k0 c�k0#ck0+q"

!!

=

Z
D( ̄i i) exp

0

@�
Z

d⌧
X

qi

"
| i(q)|2 /V (i) �

X

k

⇣
 i (q) f (i)

k c†k+q"c
†

�k# +  ̄i (q) f (i)
k c�k#ck+q"

⌘#
1

A

(3.5)

3.2 Microscopic derivation of Landau-Ginzburg theory
Introducing the Nambu-basis  k =

⇣
ck", c†

�k#

⌘
, we rewrite the decoupled action as

S[c†c,  ̄ ] =
X

iq⌦n

| i(q,⌦n)|2 /V (i) �
X

kk0

Z
d⌧ †

k(!n)G�1(kq,!n,⌦m) k+q(!n + ⌦m) , (3.6)

where the Green’s function is defined as

G�1(kq,!n,⌦m) = G�1
0 (k,!n)�q,0�⌦m,0 � ⌃ (kq,⌦m)

G�1
0 (k,!n) = i!n � ⇠k�3

⌃ (kq,⌦m) = �
X

i

f (i)
k

�
 i(q,⌦n)�+ +  ̄i(q,⌦n)��

�
. (3.7)

Here, we have introduced �± = (�x ± i�y)/2 with Pauli matrices �i. The !n = (2n+1)⇡/� are fermionic
Matsubara frequencies, and the ⌦n = 2⇡n/� are bosonic. G0 is the unperturbed Green’s function in the
normal, non-superconducting state and ⌃ is usually referred to as the self-energy.

One notes that Eq. (3.6) is quadratic in the Grassmann fields. Thus, the fermionic path integral can be
performed by means of Gaussian integration. The new action is

S[ ̄ ] =
X

iq⌦n

| i(q,⌦n)|2 /V (i) � Tr ln
⇥
�G�1

⇤
. (3.8)

We next expand the logarithm according to

Tr ln
�
�G�1

�
= Tr ln

�
�G�1

0 (1 � G0⌃)
�

= Tr ln
�
�G�1

0

�
� Tr

1X

n=1

1

n
(G0⌃)n . (3.9)

Considering terms up to fourth order in the self-energy, we obtain

S[ ̄ ] =
X

iq⌦n

| i(q,⌦n)|2 /V (i) � Tr ln
⇥
�G�1

0

⇤
+

1

2
Tr [G0⌃G0⌃] +

1

4
Tr [G0⌃G0⌃G0⌃G0⌃] . (3.10)

We note that terms of odd order in ⌃ vanish, which is reminiscent of the U(1)-symmetry of the model.
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Figure 3.2: Diagrammatic representation of the terms Tr(G0⌃)n for (a) n = 2 and (b) n = 4.

The multiplication inside the trace should be understood as matrix multiplication, where momenta k, q and
Matsubara sums !n,⌦m are interpreted as matrix degrees of freedom. For example, for the second order
term, n = 2, on finds explicitly

Tr [G0⌃G0⌃] ⌘ Tr [G0(k,!n)⌃(q,⌦n)G0(k+ q,!n + ⌦m)⌃(�q, �⌦n)] . (3.11)

and sums over k, q,!n,⌦m are implied. These expressions are more elegantly represented diagrammatically
in Fig. 3.2. Here, the Green’s functions G0(k,!n) are drawn as straight black lines. The overall cyclic
structure of the trace is apparent in the circular topology of diagrams. The fields  (q,⌦m) are represented
as blue-dashed lines that inject momentum q and energy ⌦m.

To connect the present derivation to the Landau-Ginzburg formalism of the previous chapter, we restrict
ourselves to the stationary state q = ⌦m = 0. Here, we have

S[ ̄ ] = �Tr ln
⇥
�G�1

0

⇤
+
X

ij

↵ij ̄i j +
X

ijkl

�̃ijkl ̄i ̄j k l . (3.12)

with

↵ij = �ij/V (i) + Tr
h
G0(k,!n)f (i)

k ��G0(k,!n)f (j)
k �+

i

�̃ijkl = Tr
h
G0f

(i)
k ��G0f

(j)
k ��G0f

(k)
k �+G0f

(l)
k �+

i

+ Tr
h
G0f

(i)
k ��G0f

(k)
k �+G0f

(j)
k ��G0f

(l)
k �+

i
. (3.13)

Equation (3.12) exactly matches Eq. (2.6) of the previous chapter. We have therefore provided a microscopic
derivation of the coefficients ↵, �̃ for the case of a single-band model.

3.2.1 Symmetry considerations

Let us expand on the connection of the microscopic model to the group theoretical considerations of the
previous chapter. Consider first the case of a single order parameter. In that case f (i)

k = fk and the tensors
↵ij = ↵ and �ijkl = � become simple numbers. In this case the order parameter can only transform
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under a one-dimensional irrep. In the microscopic model, the invariance of the action can always be verified
explicitly by transforming the individual components G0 and fk in the definition (3.13). In the 1d-irrep
case this is obvious, since the fk at most undergo a sign change under a symmetry transformation and all
coefficients contain even orders of fk. It is straightforward to see that G0 is invariant under all symmetry
transformations in the single-band case, as well.

For a higher-dimensional irreps, all V (i) corresponding to that irrep must be equal to ensure ↵ii = ↵.
The off-diagonal components aij , i 6= j vanish as expected, since

P
k f (i)

k f (j)
k = 0, i 6= j. The �̃ijkl can

now be explicitly seen to transform like the object f (i)
k f (j)

k f (k)
k f (l)

k which transforms under a direct product
representation, as defined in Eq. (2.7).

3.3 BCS equation
In Sec. 3.2 we presented a microscopic derivation of the free energy potential. Now we shall be interested
not in the full shape of the potential itself, but in the energetically optimal order parameter configuration.

To this end, we perform a variation of the action Eq. (3.8) with respect to the order parameter in the
stationary limit, q = ⌦m = 0. We find

0 =
�

@ ̄i

S[ ̄ ]

����
 i! 

eq
i

=
1

V (i)
 eq

i
� �

@ ̄i

Tr

�G

�

@ ̄i

G�1

� ����
 i! 

eq
i

. (3.14)

Evaluating the derivative and the trace, we get

 eq

i
= V (i)

X

k,!n

 eq

i
f (i)
k f (i)

k

E2
k + !2

n

(3.15)

with Ek =

r
⇠2 +

���f (i)
k  eq

i

���
2
. Explicitly performing the Matsubara sum, we obtain the BCS equation

 eq

i
= V (i)

X

k

 eq

i
f (i)
k f (i)

k

2Ek
tanh�Ek/2 (3.16)

as the stationary saddle point of the action. The BCS equation is usually solved self-consistently for  eq

i
.

3.4 Saddle point fluctuations
For the following discussion, we will restrict ourselves to a single order parameter that transforms under a
1d irrep. We would like to expand the action around the mean field saddle point. To this end, we introduce
the small amplitude deviation�(⌧, r) from the equilibrium configuration  eq and the phase ✓(⌧, r),

 (⌧, r) = ( eq +�(⌧, r))ei✓(⌧,r)

 ̄(⌧, r) = ( eq +�(⌧, r))e�i✓(⌧,r) . (3.17)
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Separation of the order parameter into amplitude and phase fluctuations requires treatment of the path in-
tegral in real space. For an intuitive understanding, let us revisit the Hubbard Stratonovich decoupling
introduced in the beginning of this chapter, but this time we adopt a real space perspective. In real space,
one usually deals with some type of Coulomb interaction, e.g.,

P
rr0 V (r � r0)c†r"c

†

r0#cr0#cr". We proceed
by factorizing the potential in a gradient expansion,

X

rr0

V (r � r0)c†r"c
†

r0#cr0#cr" = �
X

r↵

V (i,↵)

✓
c†r"

@↵

@r↵
i

c†r#

◆

| {z }
HS: †(r)

cr#
@↵

@r↵
i

cr" . (3.18)

This step is reminiscent of Eq. (3.3) where we factorized the interaction potential in k-space. Next, the
quartic term is decoupled using a Hubbard-Stratonovich transformation, analogous to Eq. (3.5). We get

X

r

 †(r)cr#
X

↵

V (i,↵) @
↵

@r↵
i| {z }

f�ir

cr" =
X

r

 †(r)cr#f�ircr" , (3.19)

where we recover the symmetry function fk with k ! �ir. With this insight, we can now intuitively
understand the symmetry of pairing in real space. For s-wave pairing, we have fk = 1 ! f�ir = 1.
Inserting this into Eq. (3.18), we obtain an onsite interaction. For d-wave symmetry we have fk = k2

x�k2
y !

f�ir = �@2x+@2y . If we discretize the derivative, this appears as an attractive nearest-neighbor pairing along
y and a repulsive nearest-neighbor interaction along x.

We can now express the Green’s function in real space. If we also introduce the electromagnetic gauge
fields �,A, this yields

G�1 =

 
�@⌧ � e�(⌧, r) � ⇠�ir�eA(⌧,r) ( eq +�(⌧, r))ei✓(⌧,r)f�ir

( eq +�(⌧, r))e�i✓(⌧,r)fir �@⌧ + e�(⌧, r) + ⇠ir�eA(⌧,r)

!
. (3.20)

Next, it will be convenient to make the transformation

V = exp(i✓(⌧, r)�3/2) (3.21)

to separate the amplitude and phase degrees of freedom of the Hubbard Stratonovich field. We are allowed
to perform such a transformation, since we are integrating over the Nambu basis vectors  in the effective
action which results in the cyclic trace (cf. Eq. 3.8),

Tr ln
⇥
�G�1

i

⇤
= Tr ln

h
�G�1V V †

i
= Tr ln

h
�V †G�1V

i
= Tr ln

h
�G̃�1

i
. (3.22)
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The transformed Green’s function is

G̃�1 =

 
�@⌧ � i@⌧✓ � e�(⌧, r) � ⇠�ir+r✓�eA(⌧,r) ( eq +�(⌧, r))f�ir

( eq +�(⌧, r))fir �@⌧ + i@⌧✓ + e�(⌧, r) + ⇠ir+r✓�eA(⌧,r)

!
.

(3.23)

We note that for non-s-wave symmetries, f�ir 6= 1, there should be additional r✓ terms, stemming from
f�ir acting on the transformation V . These terms, however, can be shown to be safely neglected [22].

The Green’s function in Eq. (3.23) is manifestly gauge invariant, since the electromagnetic potentials
only occur in the gauge invariant combinations i@⌧✓ + e�, r✓ � eA.

Next, we perform a series of approximations. First, we assume an electrical field that only varies in
time, such that � = 0 and A(⌧, r) = A(⌧). Time-varying, spatially uniform fields are strictly speaking
not allowed by Maxwell’s equations. We should thus think of this as an approximation which holds when
field is mostly uniform on the relevant scale of the lattice spacing [50]. Put differently, we are neglecting the
photon momentum. Second, we expand the band dispersion in order of A,

⇠k�eA = ⇠k � e
@⇠k
@ki

Ai +
e2

2

@2⇠k
@kikj

A2
ij�3 . (3.24)

We transform our Green’s function back to momentum space, and again separate G̃�1 into the stationary
part G�1

0 and the fluctuating part ⌃:

G̃�1(kq,!n⌦m) = G�1
0 (k,!n)�q,0�⌦m,0 � ⌃ (kq,⌦m)

G�1
0 (k,!n) = i!n � ⇠k�3 +  eqfk�1

⌃(kq,⌦m) = �fk�(q,⌦m)�1 +
⌦m

2
✓(q,⌦m)�3 � e

@⇠k
@ki

Ai(⌦m) + e2
1

2

@2⇠k
@kikj

A2
ij(⌦m)�3 .

(3.25)

Integrating over the fermionic Grassmann fields, we obtain the bosonic action

S[�, ✓,A] =
X

iq⌦n

| eq +�(q,⌦n)|2 /V � Tr ln
�
�G�1

0

�
+ Tr

1X

n=1

1

n
(G0⌃)n . (3.26)

Our strategy in the perturbation expansion of the action S[�, ✓,A] will be the following: We will expand
the action up to fourth order in the electromagnetic field A and up to quadratic order in the collective fields
�, ✓. Then it is possible to perform the path integration over the quadratic modes by Gaussian integration.
The resulting effective action S[A] will only depend on the electromagnetic fields. We readily obtain the
expectation value of the current operator as

j(t) = � �

@A
S[A] . (3.27)

Terms in the expanded action S[�, ✓,A] up to quadratic order in the collective fields are represented by
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Figure 3.3: Diagrams of first and second order in the collective modes �, ✓. Diagrams (a+b) cancel
out, since no linear fluctuations are possible around a saddle point. Diagram (c) vanishes. Dia-
grams (d-f) define the propagators of the collective mode.

diagrams in Figs. 3.3. Fig. 3.7 shows mixing terms between collective fields and A and Fig. 3.5 shows the
remaining A-dependent terms.

3.4.1 The Higgs propagator

Let us now study the individual diagrams. Figure 3.3(a,d) correspond to the expansion of the term

| eq +�(q,⌦n)|2 /V .

The linear term  eq�/V in Fig. 3.3(a) is canceled out by 3.3(b), since

(a)+(b) =2 eq�(q = 0,⌦n = 0)/V +
X

k!n

Tr [G0(k,!n)�1] fk�(q = 0,⌦m = 0) (3.28)

=2
X

k

 eqfkfk
2Ek

tanh(�Ek/2)�(0) +
X

k!n

2 eqfkfk
(i!n)2 � E2

k

tanh(�Ek/2)�(0) = 0 , (3.29)

after evaluation of the Matsubara sum. Here, we have made use of the gap equation (3.16) to replace the
term 2 eq�/V . Cancellation of the linear terms is, of course, expected since we are expanding the action
around the saddle point. Correspondingly, the linear ✓-term, diagram 3.3(c), vanishes as well.

In the following it will be convenient to introduce the susceptibilities Xij and their momentum average
�ij ,

Xij(k, q,⌦m) =
X

!n

Tr [G0(k,!n)�iG0(k + q,!n + ⌦m)�j ] (3.30)

�ij(⌦m) =
X

k

Xij(k, q = 0,⌦m) . (3.31)
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They correspond to fermionic bubbles that only differ in their vertices �i,�j . Explicitly evaluating the
Matsubara sum, one has

X11(k, q = 0,⌦m) = � 4

Ek

⇠2k
4E2

k � (i⌦m)2
(3.32)

X33(k, q = 0,⌦m) = � 4

Ek

f2
k ( eq)2

4E2
k � (i⌦m)2

(3.33)

X13(k, q = 0,⌦m) =
4

Ek

⇠kfk eq

4E2
k � (i⌦m)2

. (3.34)

Using these definitions, Fig. 3.3(d-e) yield

Fig. 3.3 (d)+(e) = �(q,⌦m)
⇥
V �1�q,0 + �11(q,⌦m)

⇤
�(�q, �⌦m)

⌘ 1

2
�(q,⌦m)H�1(q,⌦m)�(�q, �⌦m) . (3.35)

Here, H is the retarded Higgs propagator. The propagator can also be thought to originate from an RPA
summation, which becomes apparent when we expand it as the geometric series

H =
⇥
V �1 + �11

⇤�1
= V

1X

n=0

(��11V )n . (3.36)

Explicitly, one finds for the Higgs propagator at finite momentum q,

H�1(q,⌦m) =
X

k

Ek + Ek+q

2EkEk+q

fkfk+q ( eq)2 + E2
k + E2

k+q + EkEk+q � ⇠k⇠k+q + ⌦2
m

(Ek + Ek+q)
2 + ⌦2

m

(3.37)

where we have used the approximate gap equation

V �1 =
1

2

X

⌦m

 
1

E2
k + ⌦2

m

+
1

E2
k+q + ⌦2

m

!
=

Ek + Ek+q

4EkEk+q
. (3.38)

To order O(q2) and for a circular Fermi-surface and an s-wave gap, fk = 1, one can approximate this as

H =
1

N0

q
(2 eq)2 � !2

(2 eq)2 � !2 + v2
F
q2

1

sin�1 (|!/2 eq|)
, (3.39)

where we have performed the analytical continuation i⌦m ! ! + i⌘ [151]. The infinitesimal constant ⌘ is
omitted for clarity. A plot of the absolute, real, and imaginary part of Higgs propagator is shown in Fig. 3.4.
The energy spectrum of the Higgs mode is apparent as a peak in |H|.

We notice that H is different from a usual propagating mode where one would expect a �-peak in the
spectral function, which is given by the imaginary part of the retarded propagator, �ImH . Instead, both
the imaginary and real part undergo a sign change at the mode resonance. In fact, a closer look at Eq. (3.4)
reveals that H does not possess a simple pole as would be the case for a regular bosonic particle. Instead, it
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Figure 3.4: Absolute, real, and imaginary part of the Higgs propagator.

has a square-root divergence at ! = 2 eq for q = 0 [33].
This peculiar analytic structure physically arises due to quasi-particle damping. The mode resonance

is located at 2 eq, where it coincides with the onset of the quasiparticle continuum. As such, it can decay
into quasiparticles and is strongly overdamped. While the Higgs mode does not constitute a stable bosonic
excitation, its presence may still lead to signatures in the optical response, as we shall see.

3.4.2 Phase mode and phase-Higgs coupling

The phase field ✓ always occurs in conjunction with the factor ⌦m/2. For readability, we will absorb this
factor into the new variable ✓̃(⌦m) = ✓(⌦m)⌦m/2. This redefinition corresponds to a change of the path
integral measure. In this convention, the phase mode propagator in Fig. 3.3(f) is simply given by ��1

33 .
The phase mode may also couple to the Higgs mode, via the coupling term �13�✓ in Fig. 3.3(g). Note

that, according to Eq. (3.34), �13 is odd in ⇠k. Presence of the Higgs-phase coupling therefore relies on an
asymmetric distribution of states below and above the Fermi-surface, i.e. breaking of particle-hole symmetry
P

k ⇠k 6= 0. In general, this coupling term is strongly suppressed.
As we noted in Ch. 1, the phase mode does not constitute a physical mode. We will see later that its

contribution is intimately connected to the electromagnetic contribution in diagram 3.5(c) and should not be
viewed independently.

3.4.3 Bare electromagnetic response

Figure 3.5 shows the diagrammatic expansion in the electromagnetic vector potential A. They are composed
of two different vertices: The paramagnetic vertex @i⇠kAi �0 and the diamagnetic vertex @i@j⇠kAiAj �3.
For zero external photon momentum, we find that all diagrams with paramagnetic vertices vanish identically,
i.e. diagrams 3.5(a,d,e) are zero.
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Figure 3.5: Terms in the action that are quadratic (a-b) and cubic (c-e) in the electric fields. Odd-order
terms vanish due to inversion symmetry, k ! �k.

The only quartic diagram that we need to consider is 3.5(c). It is given by the expression

K0
ij,kl

(⌦m) =
X

k

@⇠k
@ki@kj

@⇠k
@kk@kl

X33(k, q = 0,⌦m) . (3.40)

Coupling terms between light and collective modes are shown in Fig. 3.6. Again, only diamagnetic diagrams
(c, d) are non-zero. They are given, respectively, by

ij,H(⌦m) =
X

k

@⇠k
@ki@kj

fkX31(k, q = 0,⌦m) (3.41)

ij,3(⌦m) =
X

k

@⇠k
@ki@kj

X33(k, q = 0,⌦m) . (3.42)

Putting everything together, we obtain the action for collective modes, coupling terms, and the electric
fields,

S[�, ✓̃,A] =
X

⌦m

 
�(⌦m)

✓̃(⌦m)

! 
H�1 �13

�13 �33
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!
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⌦m,ij
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⇣
ij,H(⌦m) ij,3(⌦m)
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✓̃(�⌦m)

!

+
X

⌦m

A2
ij(⌦m)K0

ij,kl
(⌦m)A2

kl
(�⌦m) . (3.43)

Here, sums over the ijkl are implied and A2
ij

(⌦m) =
P

⌦l
Ai(⌦m � ⌦l)Aj(⌦l) is a convolution of Ai and

Aj in Matsubara space, stemming from the fact that is is a product term in imaginary time. Finally, we
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Figure 3.6: Diagrammatic representation of light-Higgs coupling (a-c) and light-phase mode coupling
(d-f).

perform the Gaussian path integral over�, ✓ and obtain the effective action after analytical continuation.

S[A] =

Z
d!
⇣
ij,H ij,3

⌘ H�1 �13

�13 �33

!�1 
ij,H

ij,3

!
A2

ij(!)A2
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(�!) +

Z
d!K0

ij,kl
A2

ijA
2
kl

=

Z
d!Kij,kl(!)A2

ij(!)A2
kl

(�!) . (3.44)

In the last equality, we have defined the electromagnetic kernel Kij,kl that encodes all information of the
nonlinear response,

Kij,kl =
�
KH

ij,kl
+ KD

ij,kl

�

KD

ij,kl
= K0

ij,kl
�
ij,3jk,3
�33

KH

ij,kl
= �

(ij,H � ij,3�13/�33)(kl,H � kl,3�13/�33)

H � �2
13/�33

. (3.45)

We have separated the kernel into the density response KD and the Higgs response KH . From here, we can
obtain the expectation value of the current operator as a functional derivative

ji(t) =
�

�Ai(t)
ln Z[A] = � �

�Ai(t)
S[A] . (3.46)
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The expression in Fourier space can be derived from the chain rule of functional derivation,

�S[A]

�Ãi(!)
=

�

�Ãi(!)
S[FT [Ã]] =

Z
dt
�S[A]

�Ai(t)

�FT �1[Ãi](t)

�Ã(!)

= �
Z

dtji(t)e
�i!t = �ji(�!) , (3.47)

where we have denoted the Fourier transform Ã(!) = FT [A](!) =
R

d!

2⇡A(t)ei!t by a tilde and A = A(t).
Explicitly performing the functional derivative of the quartic part of the action gives the final result

ji(!) =

Z
d!0Aj(! � !0)Kij,kl(!

0)A2
kl

(!0) . (3.48)

3.4.4 The nonlinear optical kernel

The nonlinear optical kernel can also be derived as a functional derivative of the partition function

Kij,kl(!) =
�2

@A2
ij
(!)A2

kl
(�!)

ln Z
��
A=0 .

(3.49)

In canonical formulation, it is therefore given by the retarded two-point correlation function

Kij,kl(t � t0) = �i✓(t � t0)h
⇥
⇢ij(t), ⇢kl(t

0)
⇤
i (3.50)

where

⇢ij =
X

k�

@2

@ki@kj
⇠k c†k�ck� (3.51)

is an effective density operator.

Gauge invariance and the continuum limit

Let us examine the explicit form of the kernel in Eq. (3.45) a bit closer. First, we consider the continuum
limit. For a parabolic band dispersion, the diamagnetic vertex function becomes

@2

@ki@kj
⇠k =

1

2m
�ij . (3.52)

Thus, the light coupling susceptibilities simplify to

K0
ij,kl

= �ij�kl�33

K0
ij,H = �ij�13

K0
ij,3 = �ij�33 . (3.53)
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Figure 3.7: Diagrammatic representation of the nonlinear optical kernel in the particle-hole symmetric
limit.

Inserting this into the expression for the full kernel (3.45), we find that nonlinear response vanishes com-
pletely, Kij,kl = 0. This result is expected from gauge invariance. In the continuum limit, the two point
correlator in Eq. (3.51) reduces to the two-point correlation function of particle number fluctuations since
⇢ij = �ij

1
2mN̂ with N̂ =

P
k� c†k�ck�. For a single band model, such fluctuations are forbidden due to

particle number conservation and the optical response vanishes.
We emphasize that this result relies on renormalization of the kernel by the collective phase field ✓. Had

we not incorporated the effect of the phase mode, we would have obtained finite density-density fluctuations,
which is a wrong result. The phase mode and electromagnetic vector potential must always be considered
together since they are related by a gauge transformation.

The vanishing of the complete nonlinear response in the continuum limit reveals a common thread in
the study of the Higgs mode. The non-linear response, and especially the Higgs response, is quite delicate
in the sense that it vanishes in certain limits.

In Ch. 5 we will see that this situation can change in the case of multiband superconductors. Here,
particle number fluctuations in one band can be compensated by another band, such that the nonlinear kernel
need not vanish. This can yield a finite collective mode response even in the continuum limit. Additionally,
we will see in Ch. 5 that effects of impurities change the above picture entirely. In this case, paramagnetic
vertices no longer vanish and the Higgs mode contribution to the nonlinear response can become substantial.

Particle-hole symmetry

As we already noted, the susceptibility �13 vanishes in the presence of particle-hole symmetry. In this case,
the density and Higgs contributions simplify to

KD

ij,kl
= K0

ij,kl
�
ij,3jk,3
�33

KH

ij,kl
= �

ij,Hkl,H
H

. (3.54)

These terms correspond to a bare quasiparticle response Fig. 3.5(c) and renormalizations by the phase and
Higgs propagator, shown in Fig. 3.7.
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Figure 3.8: Frequency dependence (a) of Higgs kernel (b) density kernel. Both show a peak at 2 eq.
We have used ⌘ = 0.1 eq. (c) Plot of the meanfield gap  eq as a function of band filling. (d)
Ratio of absolute value of Higgs and density Kernel evaluated at the peak position ! = 2 eq.

Collective Higgs versus non-collective density contribution

The nonlinear kernel in Eq. (3.45) is composed of two contributions: density fluctuations from quasiparticle
excitations KD and fluctuations of the Higgs mode KH . A plot of these two contributions is shown in
Fig. 3.8(a-b) for a bandstructure on the square lattice of the form ⇠k = �2t(cos kx + cos ky) � µ and an
s-wave gap fk = 1. Both contributions yield a very similar spectrum, with a broad peak centered around
2 eq. Since both contributions have the same resonance structure, it is impossible to disentangle them.

It is, however, worthwhile to examine the relative magnitude of the respective contributions. The relative
contribution of Higgs and quasiparticle density fluctuations has first been investigated in Ref. [34]. Here,
we reproduce their results by plotting the quantity

|KH(! = 2 eq)|
|KD(! = 2 eq)| , (3.55)

evaluated at the resonance peak position. The results are shown in Fig. 3.8(d) as a function of chemical po-
tential µ for selected pairing strengths V . We find that the Higgs contribution is almost always subdominant.
It becomes relevant only for strong pairing V = 2.5t and chemical potential close to the band edge. Note
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that the superconducting gap  eq is strongly reduced close to the band edge as shown in panel (c).

3.5 Pseudospin formalism
An alternative to the diagrammatic treatment of the BCS Hamiltonian is given by the Anderson pseudospin
model. This constitutes a very compact formulation of the problem that is amenable to numerical simulation.
This new approach relies on the introduction of Anderson’s pseudospins [7].

sik =
1

2
 †

k�i k , (3.56)

where  k are the Nambu spinors. The operator sk is not an actual spin operator. Instead, it may be thought
of as a Bloch vector in a two level system of particle and hole excitations in momentum space. The operator
satisfies the spin-1/2 SU(2) algebra

[sik, sjk0 ] = i"ijlslk�k,k0 . (3.57)

With this, the BCS meanfield Hamiltonian represents an effective spin in a pseudo-magnetic field bk,

H =
X

k

bk · sk , (3.58)

where

bk =
�
�2 0fk, 2 00fk, 2⇠k

�
. (3.59)

The equation of motion,

@thsiki = �ih[sik, H]i = �ih[sik, sjk0bjk0 ]i = ✏ijlbjkhslki = bk ⇥ hski , (3.60)

describes precession of the pseudospins in the field bk at each point k. Thus far, all pseudospins at momen-
tum points k are independent. Coupling is induced via the BCS gap equation

 = V
X

k

fkhc�k#ck"i = V
X

k

fkhs1k � is2ki , (3.61)

which results in collective motion of the pseudospins. The set of equations (3.60-3.61) must be solved self-
consistently. Motion of the pseudospins affects the superconducting order parameter, which in turn modifies
the pseudo-magnetic field.
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In equilibrium, the groundstate is given by

s1k =
 eqfk
2Ek

tanh
�
�Ek/2

�

s2k = 0

s3k = � ⇠k
2Ek

tanh
�
�Ek/2

�
. (3.62)

At zero temperature the spins simply anti-align with the pseudo-magnetic field bk, and each spin is normal-
ized to |sk| = 1/2. At finite temperature the length of the vector is reduced by the thermal tanh factor,
resulting in a state that is no longer pure.

Let us assume that the pseudospins have been displaced from their equilibrium position. In the absence
of collective motion, i.e. when the self-consistent condition (3.61) is ignored, they will precess around the
bk-vectors with frequency !k = |bk| = 2Ek. Around |k| ⇠ kF , one has Ek & 2 eq which will be
the dominantly visible frequency upon averaging over momentum space. This explains the quasiparticle
contributions to observables in the nonlinear response with the characteristic frequency 2 eq in the s-wave
case.

3.5.1 Two-point correlation functions in the pseudospin model

The pseudo-spin model can be used to numerically compute retarded two-point correlation functions in the
time-domain. To do so, we add the perturbation

bk ! bk + ⌘�ka(t � t0)b
0

k
, (3.63)

where a(t) = 1
p

2⇡⌧2
exp

�
�t2/(2⌧2)

�
and ⌘ ! 0 is a small constant.

The numerical solution hski(t) to the differential equation (3.60) will then be of the form

hski(t) = hsi0 � i⌘

Z
dt0✓(t � t0)

⌧"
sk(t), a(t0 � t0)

X

k0

�k0sk0(t0) · b0k0

#�

0

+ O(⌘2) , (3.64)

where we have expressed the expectation value with respect to the unperturbed Hamiltonian bk as h. . . i0.
In the limit ⌧ ! 0, one has a(t) = �(t) and we can obtain the expression

lim
⌘,⌧!0

1

⌘
(hski(t) � hski0) = �i✓(t � t0)

X

ik0

�k0b0
ik0h[sk(t), sik0(t0)]i0 . (3.65)

Since hski0 simply corresponds to the equilibrium value of the pseudospin, the retarded two-point correla-
tion function of the form �i✓(t � t0)h[sik(t), sjk0(t0)]i can readily be extracted.

Explicitly, setting �k = @k@l⇠k and bk = (0, 0, 1), we reproduce the optical kernel as in the diagram-
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matic case:

lim
⌘,⌧!0

1

⌘

X

k

@i@j⇠k (hs3ki(t) � hs3ki0) = �i✓(t � t0)h[⇢ij(t), ⇢kl(t0)]i = Kij,kl(t � t0) . (3.66)

This derivation underlines the well-known fact that the pseudospin model is identical to the diagrammatic
description in the limit of weak perturbations, i.e. ⌘ ! 0. Indeed, the pseudospin model also permits an
analytical solution which reproduces our results of the previous section [156].
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Chapter 4

Higgs and collective mode spectroscopy

Collective excitations of the superconducting condensate are in the millielectronvolt range, on the scale
of the superconducting gap 2 eq. Thus, they can be probed using THz spectroscopic techniques. Recent
developments in ultrafast Terahertz spectroscopy have led to a surge in interest to study collective excitations
in non-equilibrium superconductors both in theory [87–89, 123, 139, 156] and experiment [37, 54, 80, 81,
86, 103, 104, 163], where first experimental signatures of the Higgs mode have been reported for various
materials [37, 103, 104].

While the development of high intensity THz light sources is challenging in itself [66], the field of
THz spectroscopy bears a significant advantage over visible or infrared light sources. THz frequencies are
low enough that they allow for measurement of both the amplitude and phase of the light via electro-optic
sampling (EOS) [92, 171].

The main THz excitation schemes consist of two approaches. First, samples are illuminated in a pump-
probe setup where an excitation of the Higgs mode by a single-cycle THz pump appears as an oscillation
of the probe response as a function of pump-probe delay [103]. In a second type of experiment, referred to
as Third Harmonic Generation (THG), the Higgs mode is resonantly driven by an intense multi-cycle pulse
that yields an electrical field component of three times the incident frequency in the reflected or transmitted
beam [37, 86, 104].

In this chapter, we will sketch the fundamental theoretical framework to model pump-probe and third
harmonic generation experiments conducted in the context of collective mode spectroscopy. We will show
how phase sensitivity of EOS protocols is the key driver of pump-probe studies. Concepts of pump-probe
and THG spectroscopy introduced in Secs. 4.1-4.3 are widely applied and generally well understood [160].
Sec. 4.4 is adapted from Ref. [129] of the author of this thesis and motivated by an experimental platform
first introduced by the Kaiser group at Max-Planck-Institute Stuttgart, where both a single-cycle pump pulse
and a multi-cycle drive pulse are used to study cuprate thin films in a 2d time-resolved study [82].
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4.1 Nonlinear THz spectroscopy
In the previous chapter we derived the expression

ji(!) =

Z
d!0Aj(! � !0)Kij,kl(!

0)A2
kl

(!0) . (4.1)

for the supercurrent on the surface of a superconductor as a nonlinear response to an electromagnetic field.
The induced current, in turn, is linearly related to the transmitted electromagnetic radiation in thin films or
the reflected signal in bulk samples [46].

The nonlinear kernel Kij,kl encodes all information about elementary excitation in the system that affect
the optical response. Specifically, we saw in Ch. 3 that quasiparticle density and Higgs fluctuations can lead
to a peak at their characteristic frequency ! = 2 eq. Other superconducting modes, such as Leggett or
Bardasis-Schrieffer excitations or, combinations of amplitude and phase modes will yield additional peaked
structures at their excitation energies [54, 113, 151].

The tensorial structure of the nonlinear kernel Kij,kl can give further insight into the collective modes
that can be probed by polarization dependent measurements [35]. In this chapter, we will assume an identical
polarization for all light sources, such that we can find a basis in which the tensor Kij,kl = K reduces to a
single invariant and the current is described by

j(!) =

Z
d!0A(! � !0)K(!0)A2(!0) . (4.2)

An immediate consequence of Eq. (4.2) is that the frequency !0 of the kernel K(!0) is correlated with the
frequency of the squared vector potential A2(!0). This is a direct manifestation of the quadratic nature of
the coupling of light to collective modes. We emphasize that A2(!0) is defined as the Fourier transform of
the squared electromagnetic vector potential A(t)2 (note the order of the parentheses and square). As such,
A2(!0) =

R
d!00A(!0 � !00)A(!00) is given by a self-convolution. A plot of |A(!0)| and |A2(!0)| is shown

in Fig. 4.1 for a Gaussian pulse of the form

A0 cos(⌦t + �) e�t
2
/2⌧2 (4.3)

with carrier frequency ⌦ and pulse duration ⌧ . Left and right panels show the cases of a short quench pulse
⌧  1/⌫ and multi-cycle drive ⌧ � 1/⌫, respectively. Here, ⌫ is the resonance frequency of the collective
mode of interest. The spectrum of A is peaked around the carrier frequency ±⌦ (red curve), whereas the
spectrum of A2 is peaked around 0, ±2⌦. The two peaks are the consequence of Difference Frequency
Generation (DFG) and Sum Frequency Generation (SFG) in a nonlinear two-photon process. The DFG and
SFG peak width are given by the scale 1/⌧ .

To excite a collective mode, the power spectrum of A2 must overlap with the resonance peaks of the
collective modes in the nonlinear kernel K. In the quench scenario, this condition as always satisfied, since
the DFG peak is of width ⌫ and therefore guaranteed to have finite overlap with the mode resonance at ⌫,
irrespective of the position 2⌦ of the SFG peak. In contrast, a careful tuning of the carrier frequency ⌦ to
the resonance condition 2⌦ = ⌫ is necessary in the drive scenario.
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Figure 4.1: Power spectrum of the electrical field (red) and the squared electric field (green) for a
broadband pulse (left) and a narrowband pulse (right). The pulse duration ⌧ needs to be compared
to the time scale of the collective mode 1/⌫, where ⌫ is the collective mode energy. In the case
of the Higgs mode, indicated by a blue arrow, ⌫ = 2 eq. The Higgs mode energy coincides with
the onset of the quasiparticle continuum, shown in blue.

4.2 Third Harmonic Generation from collective modes
Let us focus on the case of a narrowband pulse, ⌧ � 1/⌫. In the limit of ⌧ ! 1, one has A(!) ⇠
�(! � ⌦) + �(! + ⌦) and A2(!) ⇠ 2�(!) + �(! � 2⌦) + �(! + 2⌦). Inserting this into expression (4.2),
we find that the induced current only includes components at ±⌦, ±3⌦ where the kernel is evaluated at

j(±3⌦) ⇠K(±2⌦)

j(±⌦) ⇠K(0) + K(±2⌦) . (4.4)

The generation of current with three times the frequency of the incident field is referred to as Third Har-
monic Generation (THG). Most notably, the THG signal is proportional to the nonlinear kernel evaluated
at twice the incident frequency ⌦, i.e., j(3⌦) ⇠ K(2⌦). To map out the functional dependence of the
nonlinear kernel, one therefore must vary the driving frequency ⌦. This, however, is not easily achievable
experimentally. Instead, most current experiments fix the driving frequency ⌦ and instead attempt to shift
the resonance energies contained in K [37, 38, 86, 105]. For a superconducting mode, this is achieved by
varying the temperature in the window [0, TC ]. The clear disadvantages of this method are that (a) knowl-
edge of the temperature dependence of the resonances is required, (b) only modes above 2⌦ are visible, and
(c) thermal broadening effects are substantial.

THG experiments do not rely on measurement of the phase of the transmitted or reflected THz radiation.
However, it has been suggested that the phase response in THz multi-cycle experiments can still contain
useful information [37]. We will further investigate this proposal in Ch. 6.
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4.3 Pump-probe spectroscopy
Within a THz pump-probe setup, two pulses are applied: an intense single-cycle pump pulse, and, after a
time delay �t, a weaker single-cycle probe pulse. We describe this pulse configuration by the total field

A(t) = Apump(t +�t) + Aprobe(t) , (4.5)

where the pump and probe pulse envelopes are assumed to be centered at t = 0. In frequency space, the
time delay �t of the pump results in a phase according to

A(!) = Apump(!)ei!�t + Aprobe(!) . (4.6)

Inserting this into Eq. (4.2) and transforming to the time domain, we obtain

j(t;�t) = Aprobe(t)

Z
d!0ei!

0
tK(!0)A2

pump(!
0)ei!

0�t

+ Apump(t +�t)

Z
d!0ei!

0
tK(!0)A2

pump(!
0)ei!

0�t

+ 2Apump(t +�t)

Z
d!0ei!

0
tK(!0)

Z
d!00Aprobe(!

0 � !00)Apump(!
00)ei!

00�t , (4.7)

where we have only kept terms that are at most linear in the weak probe pulse. In pump-probe experiments,
the current is measured at a specific time tm after the pump, where only the probe pulse is present. Thus,
only the first term Eq. (4.7) contributes. Finally, we make the simplifying assumption that the pump pulse
is sufficiently short, i.e., it is a broadband pulse with Apump(!) ⇠ const on the THz scale of interest. Then,
Eq. (4.7) yields

j(tm;�t) ⇠ Aprobe(tm)K(tm +�t) . (4.8)

Thus, by sweeping the delay time, the functional time-dependence of the nonlinear kernel can be mapped
out. Presence of a collective mode at resonance energy ⌫ will produce a kernel in the time domain that is
oscillatory with frequency ⌫ and the pump-probe signal will show ⌫-oscillations as�t is swept. For the case
of the Higgs mode, ⌫ = 2 eq. These 2 eq oscillations in the pump-probe delay have been first measured in
Ref. [103].

When the measurement is repeated for sufficiently many delay times �t, one can numerically Fourier
transform the experimental data over the parametric variable�t,

j(tm;!�t) ⇠ Aprobe(tm)K(!�t)e
�i!�ttm . (4.9)

In this form, the pump-probe data is directly related to the nonlinear Kernel in frequency space.
We emphasize that measurement of the complex optical kernel K(!�t) relies on the ability to directly

measure time-resolved electric field values using EOS, as opposed to measuring the amplitude information
only.
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Figure 4.2: Experimental THz transmission spectra for thin film LSCO, adapted from [82]. Panel (a)
shows two dimensional plots as a function of time t and quench-drive delay�t. Panel (b) shows
absolute values of the Fourier transform over the time domain. In panel (c) the absolute value of
the 2d Fourier transform over both t and �t is shown. Blue and red circles mark the first and
third harmonic, respectively. Additionally, spectral weight is distributed along side bands marked
by green boxes.

4.4 Quench-drive spectroscopy
Recently, a new experimental protocol has been introduced that resembles aspects of both THG measure-
ments and pump-probe experiments. In this scheme, a sample is first perturbed by a visible 100 fs pulse
and subsequently driven by a multi-cycle THG pulse of 10 ps duration [82]. The transmitted waveform is
sampled as a function of time and pump-probe delay �t. The coordinate system is chosen such that the
multi-cycle driving pulse envelope is always centered at a fixed time t = t0.

A typical two-dimensional dataset from Ref. [82] is presented in Fig. 4.2. Panel (a) shows the data in
the time domain as a function of quench-drive delay �t. Horizontal oscillations at first and third harmonic
frequency of the drive are clearly visible. Here, the fundamental frequency of the drive is ⌦/2⇡ = 0.7 THz.
The first harmonic is strongly suppressed by a 3⌦ bandpass filter to prevent saturation of the detector. The
onset of the visible quench pulse is apparent as a diagonal line after which the THG signal is disturbed.

Panel (b) shows the same dataset after Fourier transform along the t-axis. Only the absolute value of
the Fourier transform is shown. First and third harmonic signals are apparent as horizontal lines. The third
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harmonic is modulated as a function of �t. In addition, a side band below the third harmonic appears that
displays modulations along the x axis.

The clearest representation of the data is obtained in 2d frequency space of (!,!�t), shown in panel (c).
Here !�t is the conjugate variable to the pump-probe delay parameter �t. Again, only the magnitude of
the 2d Fourier-transform is shown. The usual first and third harmonic signals are independent of the optical
pump. Hence, they appear for !�t = 0 and ! = ⌦, 3⌦. The modulations result in two continuous side
bands at = !�t ± ⌦.

Let us apply the nonlinear response formalism to interpret the experimental data. To this end, we rewrite
Eq. (4.2) once more into a different form,

j(!) =

Z 3Y

i=1

d!i �
�
! �

X

i

!i

�
A(!1)K(!2 + !3)A(!2)A(!3) . (4.10)

In this representation, energy conservation is warranted by a �-function constraint: Three photons of fre-
quencies !1,!2,!3 induce a current of frequency !, which is constrained to ! = !1 + !2 + !3. We model
the total electric field again as a sum of multi-cycle drive Ad and visible quench Aq, separated in time by
�t, i.e. A(t) = Aq(t + �t) + Ad(t). In frequency space, this yields A(!) = ei!�tAq(!) + Ad(!). We
insert this into Eq. (4.10):

j(!;�t) =

Z 3Y

i=1

d!i �
�
! �

X

i

!i

�
Ad(!1)K(!2 + !3)Ad(!2)Ad(!3)

+2Aq(!1)K(!2 + !3)Aq(!2)Ad(!3)e
i(!1+!2)�t

+Ad(!1)K(!2 + !3)Aq(!2)Aq(!3)e
i(!2+!3)�t

�
. (4.11)

Here, we have used that the quench-pulse is a visible pulse in the eV-regime: Since we are exclusively
interested in current signals in the THz-regime, only terms with even powers of Aq need to be kept. Two
pulses in the eV-regime can generate a THz contribution by means of a DFG process. Explicitly, since the
quench has a pulse duration of ⌧ = 100 fs, the DFG signal will have a spread of roughly 1/⌧ = 10 THz

and thus constitutes a broadband THz excitation. An odd number of visible pulses, however, will always
generate output photons of visible frequencies in a non-linear process.

Next, we perform a Fourier transform over the parametric variable�t. We find,

j(!;!�t) =

Z
d(�t)e�i!�t�tj(!;�t)

=

Z 3Y

i=1

d!i �
�
! �

X

i

!i

�
�
�
!�t

�
Ad(!1)K(!2 + !3)Ad(!2)Ad(!3)

+ 2�
�
!�t � !1 � !2

�
Aq(!1)K(!�t � !1 + !3)Aq(!2)Ad(!3)

+ 2�
�
!�t � !2 � !3

�
Ad(!1)K(!�t)Aq(!2)Aq(!3)

�
(4.12)
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Figure 4.3: Diagrammatic representation of the three terms in Eq. 4.12. Current j is represented by a
red wiggly line, quench and drive photons are drawn as blue and black wiggly lines, respectively.
The kernel K is represented by a fermionic bubble. Energy conservation demands that the in-
coming three photons frequencies sum to equal the ’outgoing’ current frequency.

The three terms can be diagrammatically represented as in Fig. 4.3. Here, the current is represented by
a red wiggly line, quench and drive photons are drawn as blue and black wiggly lines, respectively. The
kernel is represented by a fermionic bubble, its lowest order contribution, with internal fermionic Matsubara
frequency !n.

Let us finally use the fact that Ad is a narrow band multi-cycle pulse. Inserting

Ad ⇠ Ad,0 [�(! � ⌦) + �(! + ⌦)] ,

we get the expression

j(!;!�t) = �
�
! ⌥ ⌦⌥ ⌦

�
�
�
!�t

�
A3

d,0K(±⌦± ⌦)

+ 2�
�
! � !�t ⌥ ⌦

� Z
d!1 Aq(!1)K(!�t � !1 ± ⌦)Aq(!�t � !1)Ad,0

+ �
�
! ⌥ ⌦� !�t

�
Ad,0K(!�t)A

2
q(!�t) . (4.13)

The first term simply corresponds to a usual THG process described in Sec. 4.3 and yields the ⌦, 3⌦ peaks
on the !�t axis in Fig. 4.2. The remaining two terms are responsible for the side bands along the diagonals
! = !�t ± ⌦. They differ, however, in the distribution of spectral weight along the diagonals which is
set by the nonlinear kernel K. In the presence of a collective mode with resonance energy ⌫, most of the
contribution of the kernel stems from its peaks at ±⌫. The last term in Eq. (4.13) yields to a peak along the
diagonal at !�t = ⌫. The middle term has no such characteristic feature, as the resonance structure encoded
in the kernel K is evaluated at !�t � !1 ± ⌦ = ⌫, which is scrambled by integration over the variable !1.

To validate the discussion above, we numerically study a two-band superconducting Hamiltonian

H0 =
X

ik�

⇠ikc†
ik�cik� +

X

ik

 ic
†

i�k"c
†

ik# + h.c. , (4.14)

where ⇠ik = si
�
k2/2mi � ✏Fi

�
is the parabolic dispersion of the i-th band with Fermi-energy ✏Fi and

electron mass mi. The factor si = ±1 sets the electron or hole character of the band.
We couple this model to an electrical field and rewrite it within the pseudospin formalism as H =
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Figure 4.4: Third-order current j(3) for a two-band superconductor computed within a pseudospin
model. Two-dimensional plots (a) in the time domain t,�t, (b) in the frequency-delay-time
domain !,�t, and (c) 2d frequency domain !,!�t. We have chosen model parameters
�1 = 3 meV, �2 = 7 meV, ✏F,1 = 2.9 eV, ✏F,2 = 0.7 eV, m1 = 0.85me, m2 = 1.38me,
!D = 50 meV, s1 = 1, s2 = �1, loosely reflective of MgB2 [85]. The dimensionless coupling
parameter of the two order parameters is ↵ = 0.2.

P
ik b

i

k · sik, with pseudo-magnetic field bik =
�
�2 0

i
, 2 00

i
, 2⇠ik + e2A2(t)/2m

�
and the gap equation

 i =
X

jk

Vijhsj1k � isj2ki , (4.15)

where the two gaps are coupled by the matrix

Uij =

 
U11 ↵U11

↵U11 U22

!
. (4.16)

As discussed in Ch. 3, a parabolic bandstructure results in vanishing of both Higgs response and density
fluctuations. For finite dimensionless coupling parameter ↵ in the gap equation, the two-band model does,
however, possess a collective Leggett excitation that contributes to the nonlinear optical response even in
the continuum limit [32, 58, 115, 116].
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The numerically evaluated 2d spectrum is shown in Fig. 4.4 for coupling parameter ↵ = 0.2. It indeed
shows the features derived in the nonlinear response formalism. Next to the first and third harmonic signals,
at ! = ⌦, 3⌦ and !�t = 0, the simulation produces two side bands along ! = !�t ± ⌦. Most of their
spectral weight is concentrated around the position !�t = ⌫ which we numerically confirmed as the Leggett
mode energy.

Having understood the composition of 2d spectra in a quench-drive scenario, it is worthwhile to revisit
the experimental results from Fig. 4.2. Specifically, we observe that the experimentally measured sidebands
do not show a clearly peaked signature of a collective mode. Instead, they show a dip at around !/2⇡ =

1.7 THz. This dip, however, is likely an artifact of the transmission function of a bandpass filter employed
in the experiment to reduce the first-harmonic contribution, and cannot be attributed to the form of the
optical kernel K. Indeed, features of the optical kernel should modulate both sidebands as a function of
!�t. Clearly, in Fig. 4.2, the dip of the sidabands is a modulation of the spectrum as function of !.

4.5 Summary
In this chapter we have derived the main phenomenology of nonlinear THz spectroscopy experiments from
the quasi-equilibrium response formalism of Ch. 3. We have shown how collective modes, encoded as
resonance peaks in the nonlinear optical Kernel, are manifested at experimentally recorded THz transmission
or reflection spectra. In the case of Third Harmonic Generation experiments, the THG amplitude is directly
proportional to the nonlinear optical kernel evaluated at K(2⌦), where ⌦ is the carrier frequency of the
incident multi-cycle THz waveform. In pump-probe techniques, and in the new technique of quench-drive
spectroscopy, the analytical structure of the kernel K can be directly accessed by sweeping the pump-probe
delay �t.

The new method of quench-drive spectroscopy may be seen as a precursor to a more general toolset of 2d

spectroscopic techniques on superconducting collective modes. Two-dimensional spectroscopy has proven
to be an important method with wide applications ranging from rovibronic excitations in bio-molecular
systems [61, 74, 111], excitons in semiconductors [40], to magnons in antiferromagnets [96]. However, to
the best of our knowledge, 2d spectroscopy has never been applied to superconducting collective modes.
In fact, only a single experimental 2d spectroscopic study on superconducting materials exists to date [98].
Extension of 2d techniques to the superconducting realm may therefore provide an important new avenue to
investigate the physics of superconductors and may open a new field of 2d Higgs spectroscopy.

Another spectroscopic technique that bears great promise in future studies is the application of time re-
solved angle-resolved photoemission (ARPES) to superconducting collective modes. Momentum- and time
resolved measurement of the superconducting gap out of equilibrium provides detailed information about the
nature of unconventional superconductivity that goes beyond measurement of momentum-averaged quanti-
ties in current pump-probe techniques [26, 138, 168].

Finally, it is promising to leverage the inelastic Raman effect to study superconducting systems out
of equilibrium [134]. Raman spectroscopy is an important technique to study electronic excitations of
superconductors in the THz regime [45]. The Higgs mode and other collective condensate excitations are
known to be Raman active [31, 32]. In yet another approach, there have been efforts to extend Raman
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techniques to the realm of 2d spectroscopy [112, 153].
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Chapter 5

Time-resolved optical conductivity and
Higgs oscillations in two-band dirty
superconductors

Recent studies have emphasized the importance of impurity scattering for the optical Higgs response of
superconductors. In the dirty limit, an additional paramagnetic coupling of light to the superconducting
condensate arises which drastically enhances excitation. So far, most work concentrated on the periodic
driving with light, where the third-harmonic generation (THG) response of the Higgs mode was shown to be
enhanced. In this chapter, we extend this analysis by calculating full temperature and frequency dependence
of THG to better compare the theory with current experimental setups. We additionally calculate the time-
resolved optical conductivity of single- and two-band superconductors in a two-pulse quench-probe setup,
where we find good agreement with existing experimental results. We use the Mattis-Bardeen approach
to incorporate impurity scattering and calculate explicitly the time-evolution of the system. In contrast to
previous work we calculate the response not only within a time-dependent density matrix formalism but also
in a diagrammatic picture derived from an effective action formalism which gives a deeper insight into the
microscopic processes.

5.1 Introduction
When a continuous symmetry is spontaneously broken, collective excitations emerge. In the case of a
superconductor, where the complex order parameter�ei✓ acquires a finite value below a critical temperature
Tc, two bosonic modes appear: the massive Higgs mode and a massless Goldstone mode [124, 162]. They
may be seen as amplitude �� and phase �✓ fluctuations of the complex order parameter in the Mexican hat-
shaped free energy potential. When coupled to a gauge field, the Goldstone mode is shifted to the plasma
frequency by means of the Anderson-Higgs mechanism while the Higgs mode remains a stable gapped
excitation in the Terahertz regime [7].

In a two-band superconductor, two gapped Higgs modes and two phase modes exist. While the global
phase fluctuation occurs again only at energies close to the plasma frequency for a charged condensate, the
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relative phase fluctuation, quantized as the Leggett mode, persists as a gapped excitation at low energies
[91].

Experimental observation of Higgs and Leggett collective modes is difficult. Since these fields are scalar
quantities, no linear coupling to the electromagnetic field exists at zero momentum [124]. Thus, there are
no direct experimental signatures in linear response. Therefore, experiments need to be performed in the
non-linear regime. Here, the challenge is twofold: intense light sources are required but experiments also
must be performed on energy scales mostly within the superconducting gap such that optical excitation of
quasiparticles does not deplete the condensate.

The fact that characteristics of the Higgs mode in superconductors are observable in experiments is not
self-evident. Early theoretical calculations in the clean limit predicted extremely weak experimental signa-
tures that relied on breaking of the particle-hole symmetry. Therefore, the first observations [104] of the
third-harmonic response generated by the Higgs mode was doubted [34] as it should be overlaid by much
stronger charge fluctuations. Only recently, the role of impurities has been appreciated as it drastically en-
hances the coupling of light to the Higgs mode due to an additional paramagnetic coupling absent in the
clean limit [115, 141, 147, 157]. This coupling becomes the dominant contribution even for small disor-
der. It was further shown that impurity scattering yields qualitatively different behavior in the polarization
dependence of the driving pulses [141].

Previous studies on third-harmonic generation with impurities concentrated mostly on the frequency
dependence for fixed temperature [115, 141, 147, 157] or temperature dependence for fixed frequency [147].
Here, we extend the analysis and calculate the full 2d temperature- and frequency-dependent THG signal
which allows to better understand and compare the theory with current experimental setups where only the
temperature can be swept for fixed driving frequency. We also calculate the individual contributions of
density fluctuations, Leggett mode and Higgs mode to the third-harmonic generation response. Our results
support the findings of a recent work, where the third-harmonic response in the two-band superconductor
MgB2 shows a resonance only for the lower gap [86]. This can be understood from the fact that the upper
band is either in the clean limit or that the Fermi surface is very small.

In addition to the investigations of previous work, on the effect of impurities in the periodic driving
scheme, in this chapter, we also explore the excitation with a two-pulse quench-probe scheme. We consider
both one- and two-band superconductors where the bands can be in different impurity regimes. To calcu-
late the time-resolved optical conductivity, we extend the density-matrix approach of [115] to a two-pulse
excitation scheme. Here, the short first pulse acts as a quench, while the second probe pulse with variable
time-delay probes the dynamics of the system.

We incorporate the effect of impurities in our model using the Mattis-Bardeen approximation [106].
This approach constitutes an excellent description for many conventional superconductors at least in the
linear regime [140]. It has also been used in [115] in conjunction with a numerical density matrix approach.

The Mattis-Bardeen approximation should be contrasted with alternative methods of treating impurity
scattering, such as the self-consistent Born-approximation [157] or quasiclassical Green’s function formal-
ism [147]. While the Mattis-Bardeen description affords the most efficient numerical calculations among the
three approaches, it relies on a spherical Fermi surface approximation. As such it cannot resolve the polar-
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ization dependence in optical experiments, for which latter two microscopic methods should be employed.
However, we will show that all three methods yield similar qualitative results in terms of impurity-assisted
activation of the Higgs mode [115, 147, 157].

Compared to the density-matrix approach in [115], we additionally consider a diagrammatic approach
derived from an effective action formalism, where the Mattis-Bardeen ansatz is incorporated by an effective
finite momentum interaction vertex. We show that this diagrammatic approach is equivalent to the density
matrix formalism. There are several advantages of this approach. First, it is analytically tractable and thus
provides a clearer picture of the underlying physics. Second, as the Matsubara sums in the expression can
be analytically evaluated, this approach is computationally more efficient and allows calculations with more
accuracy and greater variation of parameters such as a full 2d temperature and frequency sweep. And finally,
in the diagrammatic approach it is natural to include Coulomb interactions to perform a fully gauge-invariant
calculation.

5.2 Model

5.2.1 Hamiltonian

We consider the BCS multiband Hamiltonian

H0 =
X

ik�

✏ikc†
ik�cik� �

X

ijkk0

Uijc
†

ik"c
†

i�k#cj�k0#cjk0" (5.1)

where ✏ik = si
�
k
2/2mi � ✏Fi

�
is the parabolic dispersion of the i-th band with Fermi-energy ✏Fi and

electron mass mi. The factor si = ± determines electron- or hole-like character of the respective band.
At the mean-field level the interacting term is decoupled in the pairing channel,

X

ik

�ic
†

i�k"c
†

ik# + h.c. , (5.2)

where order parameters�i are self-consistently determined by the BCS gap equation

(5.3)

The order parameters of different bands are mixed by off-diagonal terms in the coupling matrix Uij . In the
present work, we parametrize gap-mixing by a parameter v and define

Uij =

 
U11 vU11

vU11 U22

!
. (5.4)

For given �i and v we can find U11 and U22 such that the gap equation is satisfied.
To model an experimental probe with a laser pulse, we introduce a time-dependent vector potential
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A(t) = A(t) e with polarization vector e by means of minimal coupling,

H1 = �
X

ikk0�

Jikk0 · A c†
ik�cik0� +

X

ik�

sie2

2mi

A
2 c†

ik�cik� , (5.5)

where Jikk0 = hik| epi
mi

|ik0i are intraband transition matrix elements of the current operator. Here, we have
neglected interband excitation, which for materials like MgB2 is strongly suppressed by the separation of
Fermi surfaces in the Brillouin zone. The two terms in H1 corresponds to the paramagnetic and diamagnetc
coupling of the laser field, respectively. The full Hamiltonian is given by H = H0 + H1.

5.2.2 Impurity scattering

In a clean system momentum conservation yields Jikk0 ⇠ �kk0 , or Jikk0 ⇠ �k,k0±q if a photon wavevector
q is considered. In disordered systems, translational invariance is broken, so that transitions between states
of different momenta are allowed. Here, we adopt the approach of Murotani and Shimano [115] and model
the effects of impurities within the Mattis-Bardeen (MB) approximation [106]. Explicitly, impurities enter
through the approximation

h|e · Jikk0 |2iAv =

Z
d⌦k

4⇡

d⌦k0

4⇡
|e · Jikk0 |2 ⇡ (evFi)

2

3Ni(0)
W (✏ik, ✏ik0) , (5.6)

W (✏ik, ✏ik0) =
1

⇡

�i�
✏i|k| � ✏i|k0|

�2
+ �2

i

(5.7)

with Fermi velocity vFi , density of states at the Fermi level Ni(0) and impurity scattering rate �i. Intuitively,
the energy level scale �i, determines the maximum separation of the energy levels, below which impurity
scattering is allowed. These energy scales are related to their characteristic momentum scale by the Fermi
velocity vFi . A derivation of this matrix element is given in Ref. [115].

The Mattis Bardeen approximation is applicable in the regime �i ⌧ ✏Fi for isotropic impurity scattering,
and uniform charge density [106]. These conditions are met for the superconductors considered in the
present chapter, where the dirty limit is already achieved when the impurity scale � is of the order of the
superconducting gap �. For example, for the two-band superconductor MgB2, Ref. [57] experimentally
determined the �i to be 12.4 meV and 85.6 meV, for the two bands, respectively.

We see that impurity scattering broadens the �kk0-distribution into a Lorentzian of width �i centered
at zero momentum transfer. The bandstructure defined by H0 remains unaffected in this approximation.
Instead of broadening the momentum resolution of the bandstructure, one may view impurities as effectively
broadening the momentum of the photon.

While the simplicity of the Mattis-Bardeen approach is appealing, more realistic models of impurities
rely on exact numerical treatment [141] or diagrammatic summation of impurity ladder corrections [147,
157].
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Figure 5.1: Diagrammatic representation of terms in the quadratic effective action S[�i, ✓i,A] in
Eq. (C.14) involving Higgs fields (left column) and phase fields (right column). Bubbles cor-
respond to susceptibilities listed in Eqs. (C.24)-(C.28). The blue (green) dotted lines represent
Higgs (Leggett) propagators, the wavy black line represents the electromagnetic field and the
solid black line the Nambu Greens function. Numbers 0,1,3 at the vertices represent Pauli ma-
trices �0,�1,�3 acting in Nambu space. (a,b) Higgs and phase susceptibilities ��1�1

i
, ��3�3

i
. (c)

Coupling of Higgs modes where vertex is the inverse of Eq. (5.4). (d) Josephson coupling of
phase modes responsible for Leggett mode. The coupling matrix J is defined in Eq. (C.18). (e)
Paramagnetic coupling of Higgs modes with susceptibility ��0�0�1 . (f) Diamagnetic coupling of
phase modes with ��3�3 . Other couplings at Gaussian level vanish in the presence of particle-
hole symmetry.

5.2.3 Effective Action

We first present a perturbative solution of above Hamiltonian by a path-integral formalism in imaginary time
⌧ [22, 35, 143, 161]. The full problem is formally captured by the partition function Z =

R
D(c†c)e�S with

the Euclidean action

S =

Z
�

0
d⌧

 
X

ik�

c†
ik�@⌧ cik� + H

!
. (5.8)

As detailed in Appendix C.1, we decouple the interacting part of H in the pairing channel, introducing col-
lective fields�i(!n) exp (i✓i(!n)). �i and ✓i describe amplitude and phase fluctuations, respectively, of the
superconducting condensate. These collective fluctuations are dependent on time only, i.e. the Hamiltonian
supports only k = 0 excitations of Higgs and phase fields.

Performing the fermionic path integral results in an effective action S[�i, ✓i,A] in bosonic and classical
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Figure 5.2: Diagrammatic representation of density fluctuation contributions in the effective action
S[�i, ✓i,A] Eq. (C.14). Paramagnetic (a) and diamagnetic (b) terms defining the linear response
current j

��
1
. The paramagnetic contribution (a) vanishes in the clean limit. Paramagnetic (c) and

diamagnetic (d) terms contributing to nonlinear current j
��
3
.
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Figure 5.3: RPA summation of collective fields in the effective action. (a) Higgs modes renormalize
paramagnetic non-linear current. Here, blue dashed lines correspond to the coupling matrix U/2.
(b) Phase modes renormalize diamagnetic current. Green dotted lines denote coupling matrix
J�1.

EM fields (see Eq. (C.14)), where now

Z =

Z Y

i

D�iDi✓ie
�S[�i,✓i,A] .

We only keep terms quadratic in collective fields�i, ✓i and to fourth order in A. The resulting terms are di-
agrammatically presented in Fig. 5.1 and Fig. 5.2 and their integral expressions are derived in Appendix C.1.

The diagrammatic representation contains Higgs fields �i(!) (blue-dashed lines), phase fields (green-
dotted lines), and EM fields (wavy lines). Paramagnetic coupling to the photon field corresponds to vertices
with a single photon field line, implying the factor A(!). Diamagnetic vertices with two photon field
lines contribute the term A2(!) =

R
d!0A(! � !0)A(!0). Numeric labels (0, 1, 3) indicate Pauli matrices

�0,�1,�3 in Nambu space where �0 is the identity. Only paramagnetic vertices introduce external momen-
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tum. Solid black lines correspond to mean-field Nambu Green’s functions

G0,i = [i!n � ✏ik�3 +�i�1]
�1 (5.9)

and loops imply a trace over Nambu indices, frequencies, and momenta.
Figs. 5.1 and 5.2 are a complete representation of all terms in the quadratic action in the presence of

particle-hole symmetry and impurities in the MB approximation.
In the clean limit paramagnetic photon lines no longer carry momentum and, as a consequence, diagrams

5.1(e) and 5.2(a) vanish. The inclusion of paramagnetic diagrams with vertices Jikk0 determined by the MB
model is the main difference of the diagrammatic formalism from other literature [32, 34].

Absence of diagram 5.1(e) in the clean limit implies that the Higgs mode does not couple to light without
impurities. However, when a non-parabolicity of the bandstructure is taken into account, a diamagnetic
coupling to the Higgs mode arises, yielding an additional, non-vanishing diagram [34, 115, 156].

We note that paramagnetic and diamagnetic terms do not mix in the present model. Consequently, the
partition function factors into two contributions Z = ZparaZdia. Since only the paramagnetic part is affected
by impurities, and since Zpara does not contain phase contributions, we conclude that only the Higgs mode
and density fluctuations are sensitive to impurity scattering in the MB approximation.

The path integrals over �i, ✓i can be performed exactly at the Gaussian level. This is equivalent to an
RPA renormalization of the density fluctuation terms diagrammatically represented in Fig. 5.3 where the
dashed and dotted lines correspond to coupling matrices Uij/2 and Josephson coupling matrices J�1

ij
, re-

spectively. After Gaussian integration, one is left with S[A(!)], explicitly given in Eq. (C.29). A functional
derivative with respect to A(!) gives the current

j(!) = ��S[A(!)]

�A(�!)
. (5.10)

In the single-band case, the diamagnetic RPA series Fig. 5.3(b) is exactly zero. This results from the
cancellation of the diamagnetic density fluctuation contribution 5.2(d) with the phase mode contribution,
shown in Eq. (C.32) of Appendix C.1. The cancellation is exact in the continuum limit and does not rely
on particle-hole symmetry. For a lattice model, the cancellation is imperfect away from low or large fill-
ing. At half filling, where particle-hole symmetry is exact, the phase mode contribution vanishes and the
diamagnetic current remains finite [34], hence no cancellation occurs.

In the two-band case, the phase supports both a Goldstone mode and the Leggett mode. Here, the
Goldstone contribution cancels the diamagnetic third order current, while the Leggett mode is the remaining
source of the total diamagnetic current.

The present results are insensitive to long-range Coulomb interaction. We show in Appendix C.2 how,
in the presence of particle-hole symmetry, the same expression as in the uncharged case are derived for the
continuum model.
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5.2.4 Density matrix equations of motion

We solve for the time dynamics of above Hamiltonian using a density matrix approach. To this end, we
define the density matrix ⇢ = | 0i h 0|, or, in the basis of Bogoliubov–de Gennes,

 
 1
ik

 2
ik

!
=

 
uik �vik

v⇤
ik uik

! 
cik"

c†
i(�k)#

!
, (5.11)

we have

⇢ =

 
⇢11
ikk0 ⇢12

ikk0

⇢21
ikk0 ⇢22

ikk0

!
=

 
h 1†

ik 
1
ik0i h 1†

ik 
2
ik0i

h 2†
ik 

1
ik0i h 2†

ik 
2
ik0i

!
. (5.12)

The time dependence of ⇢ is given by Heisenberg’s equation of motion,

i@t⇢ = [⇢, H] , (5.13)

where H is the operator H in the BdG basis.
We are interested in computing the dynamics of the current j = �

⌦
�H

�A

↵
= jP + jD, consisting of a

paramagnetic and diamagnetic contribution,

jP =
X

ikk0

Jikk0� hc†
ik�cik0�i , (5.14)

jD = �
X

ik�

sie2

mi

A hc†
ik�cik�i , (5.15)

as well as the dynamics of the superconducting order parameter

�i =
X

jk

Uijhcj(�k)#cjk"i . (5.16)

To apply the MB substitution, we further expand the above equations of motion in orders of A(t). To account
for effects of a THG response, we consider terms up to third order. For materials with a center of inversion
the current only has odd order components j = j

��
0

+ j
��
3

+ . . . and the gap contains even contributions of
A, � = �

��
0
+ ��

��
2
+ . . . .

Finally, we exploit the rotational invariance of our model and perform the integral over angular degrees
of freedom explicitly. Thus, by replacing all momentum summations by an integral

P
k ! Ni(0)

R
d✏ik

R
d⌦k
4⇡ ,

we effectively reduce the model to a one-dimensional system. Note that rotational invariance of our contin-
uum model neglects polarization dependence of observable quantities.

We are left to compute the equations of motion of the first order expectation values, ⇢ikk0
��
1
, and the
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angle-averaged quantities

Rab

i (✏i|k|, ✏i|k0|) =
1

R
d⌦k
4⇡

d⌦k0
4⇡ |Jikk0 · e|2

Z
d⌦k

4⇡

d⌦k0

4⇡
e · Jikk0⇢ab

ikk0
��
3
, (5.17)

rabi (✏i|k|) =

Z
d⌦k
4⇡

⇢ab
ikk

��
2
. (5.18)

We solve them numerically using a Runge-Kutta solver on a discretized energy grid ✏|ki|
of up to 103 points

in the interval [�!D,!D].

5.3 Single-band superconductivity
Motivated by the experiment of Matsunaga et al. [103] we choose parameters � = 1.3 meV, ✏F = 1 eV,
m = 0.78me, s = 1, !D = 20meV that reflect measurements and ab-initio calculations on NbN [14].

5.3.1 Optical conductivity

We begin by computing the optical conductivity in linear response,

�(!) =
j(!)

��
1

i!A(!)
. (5.19)

This can be done in either of two ways. First, by implementing a time-dependent density matrix simulation
with pulse A(t). The numerically evaluated current j(t)

��
1

and the pulse are then Fast-Fourier transformed
and Eq. (5.19) is evaluated. Here, one needs to choose a pulse of sufficient !-bandwidth such that the region
of interest is covered.

The second way involves the functional derivative of the diagrams in Fig. 5.2(a,b) according to Eq. (5.10).
At T = 0 one obtains the expression for the real part

�0(!) =
1

i!

v2
F

3N

Z
d✏d✏0W (✏, ✏0)�00�0�0(✏, ✏0,!) (5.20)

=
1

i!

v2
F
N

3

Z
d✏d✏0W (✏, ✏0)

✓
1 � ✏✏0 +�2

EE0

◆
E + E0

(w + i⌘)2 � (E + E0)2

where E0 =
p
�2 + ✏02, W (✏, ✏0) is the Lorentzian of Eq. (5.7), N the density of states at the Fermi surface,

and ⌘ is an infinitesimal positive constant.
We can understand the analytical structure of �0(!) by inspecting the susceptibility �00�0�0(✏, ✏0,!). For

! < 2� it vanishes exactly. For ! > 2� its structure is shown in Fig. 5.4 for a representative value of
! = 4. We observe two straight spectral lines at ✏0 = ±! + ✏. These features can be understood in the
picture of a particle-hole or hole-particle excitation process, illustrated in Fig. 5.4(a). �00�0�0(✏, ✏0,!) has
non-zero spectral weight at given ✏, ✏0 if an occupied state at ✏ can be excited into a state at ✏0 by a photon of
frequency !. Multiplication of the integrand in Eq. (5.21) with W (✏�✏0) enforces momentum conservation.

In this picture it is easy to see that the total spectral weight �00�0�0(!) =
R

d✏d✏0�00�0�0(✏, ✏0,!) should
be approximately proportional to⇥(!�2�)(!�2�), where⇥ is the Heaviside function. Since W (✏� ✏0)
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Figure 5.4: (a) Schematic of a particle-hole excitation process where the pulse contributes energy !
and momentum k. Red (blue) colors indicate electron (hole) character. (b) The susceptibility
��00�0�0 has finite weight only for ✏, ✏0 corresponding to valid state in an excitation process with
! = 4. Rounded features are a result of the gap 2�. For ! < 2�, �00�0�0 is identically zero
since no optical excitation is not possible. (c) Momentum conservation is enforced by the factor
W (✏� ✏0) in Eq. (5.21).

is constant along contours ✏0 = ±! + ✏, we find the simple analytical approximation

�0(!) / ⇥(! � 2�)(! � 2�)
�

!2 + �2
(5.21)

that holds for ! � 2� in the dirty limit � � �.
In Fig. 5.5 we plot numerically evaluated real and imaginary parts �0(!),�00(!) of the optical conduc-

tivity for various impurity concentrations and temperatures. �0 shows a clear conductivity gap below 2�. In
the clean limit, a pronounced peak is observed above 2�. Exactly at 2�, where single-particle wavefunc-
tions are a perfect mix of electron and hole states, the conductivity always zero. For low amount of impurity
scattering, �/2� ⌧ 1, the conductivity shows a steep increase and peak above 2�. The conductivity peak
grows and shifts to higher ! as � is increased. It then broadens into the characteristic dome shape frequently
observed in experiment [103, 106, 182].

At finite temperatures we additionally observe spectral weight around ! = 0 stemming from thermal
quasiparticle excitations. The condensate �-peak at ^ = 0 is not numerically resolved. The imaginary part
�00 follows a 1/! power law as expected for a superconducting state.

The linear response optical conductivity contains information of the bandstructure only and is unaffected
by collective modes. This can be inferred from the diagrammatic description where all terms in the RPA
renormalization of diagram Fig. 5.2(a) containing k = 0 collective fluctuations vanish exactly. To reveal
the presence of collective modes, we turn to the dynamics of the superconducting order parameter and the
non-linear current j

��
3

and additionally model realistic THz pulses in a pump-probe setting.
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(b)
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(a)

Figure 5.5: Real part �0 and imaginary part �00 of the optical conductivity to first order in the vector
potential A. (a),(b) Impurity scattering rates dependence for fixed temperature T = 4K. (c),(d)
Temperature dependence for fixed scattering rate �/2� = 10. �0 shows a characteristic con-
ductivity gap below TC and both �0, �00 diverge in the static limit. The inset in (d) shows the
temperature dependence of the gap.

5.3.2 Excitation of Higgs mode

We choose the electromagnetic pulse form A(t) = A0 exp
�
�(t � t0)2/2⌧2

�
cos⌦t with coefficients to

match the reported data of Ref. [103]. The resulting waveform is shown in Fig. 5.6(a).
A characteristic property of a pump pulse is its pulse length ⌧ compared to the natural timescale of the

superconductor 1/�. For ⌧ ⌧ 1/� the superconductor is quenched, while it is adiabatically driven in the
opposite limit of ⌧ � 1/�.

The different behavior in the two limits can be intuitively understood within the diagrammatic picture.
Here, the pulse induced change of the order parameter ��(!) is given by the diagram in Fig. 5.7(a) which
has the integral expression

��(!) =
1

2

Z
d!0

X

kk0

|Jkk0 |2 �
�0�0�1(!,!0,k,k0)

��1�1(!) + 2/U
A(!0)A(�! � !0) . (5.22)

Presence of a collective Higgs mode translates into a peak of the kernel K(!) = (��1�1(!) + 2/U)�1 at the
characteristic mode energy !H = 2�. Excitation of the collective mode, however, is only possible if energy
conservation is satisfied, i.e. if A(!0)A(�!H � !0) is finite for some !0. Higgs oscillations are therefore
expected when the Fourier transform of the squared vector potential A2(!) =

R
d!0A(!�!0)A(!0) overlaps
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Figure 5.6: (a) Pulse field E(t) realizing a quench. (b) Spectral composition |A(!)|. The gray shaded
area illustrates the quasi-particle continuum. (c) Spectral composition |A2(!)| = |

R
d!0A(! �

!0)A(!0)| of the second order component A2(t) responsible for excitation of collective modes.
The peak around zero frequency corresponds to a DFG process while the peak at finite 1.2 THz
is a SFG process. (d) Evolution of the magnitude of the order parameter |2�(t)| for impurity
strength varying from �/2� = 0.5 to 20 and Fourier spectrum of the gap oscillations (e). (f)
Relaxation value �1 and amplitude of oscillation show a very similar dependence as a function
of disorder strength which has maximum effect at around � ⇡ �.

with the mode-energy !H . The double-peaked structure of A(!) is shown in Fig. 5.6(c). The first peak,
centered at ! = 0, corresponds to a difference frequency generation process (DFG), while the second peak
at ! = 2⌦ corresponds to a sum frequency generation process (SFG). The resonance frequency of the Higgs
mode, !H , is illustrated by a vertical line. Remaining terms in Eq. (5.22) describe the coupling to light in
presence of impurities and ensure momentum conservation in a virtual two step excitation process.

Let us now consider two limiting cases of the optical pulse width. For�⌧ ⌧ 1, the frequency spectrum
of A2(!) is very broad. The response of ��(!) is then dominated by the sharp resonance peak of K(!)

giving rise to pronounced 2�-oscillations of the superconducting gap in the time domain. Since the DFG
peak is guaranteed to overlap with the Higgs resonance, these oscillations will always be present, indepen-
dent of the frequency of the optical pulse. The SFG process only contributes if the pulse frequency lies in
the vicinity of ⌦ ⇡ �.

In the transient limit, �⌧ � 1, the spectrum of ��(!) is finite only for a narrow region around 2⌦. In
the time-domain, the gap shows forced 2⌦-oscillations which are resonantly enhanced for 2⌦ ⇡ 2�.

Following Matsunaga [103], we choose a pulse with �⌧ = 0.68, closest to the quench scenario, and
perform simulations within the density-matrix formulation. The order parameter responds to the THz pulse
by a marked drop followed by damped oscillations around a new asymptotic value �1 = �(t ! 1) of
frequency 2� = 0.6 THz as displayed in Figs. 5.6(d-e). The drop of the equilibrium gap is captured by the
! = 0 component of ��. Evaluating Eq. (5.22) for ! = 0, one finds that ��0�0�1(! = 0,!0,k,k0) is finite
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Figure 5.7: Diagrammatic representation of (a) ��i(!) and (b) �✓i(!). Double lines correspond to the
RPA summation of Fig. 5.3.

only for !0 > 2�, similar to the discussion in Sec. 5.3.1. Consequently, ��(0) is non-zero only if |A(!)|2

overlaps with the quasiparticle continuum, which is illustrated in Fig. 5.6(b). In physical terms, depletion of
the superconducting order parameter is a consequence of quasiparticle excitation by A(!).

Both the oscillation amplitude and �1 show a strong dependence on the impurity scattering rate and
are peaked at � ⇡ � as shown in Fig. 5.6(f). This is a consequence of momentum conservation. For � ! 0,
Higgs oscillations vanish exactly.

We note that order parameter dynamics are expected to show oscillations of frequency 2�1 and not,
as in our case, 2�(t = 0) [87, 176]. 2�1 oscillations have also been observed in experiment [103]. The
discrepancy can be attributed to the expansion in powers of the pump field A(t) performed in the time-
dependent density matrix formalism. If contributions to �� beyond the second order are considered, the
oscillation frequency of the order parameter should correctly reflect the non-equilibrium value 2�1.

From the diagrammatic point of view this discrepancy arises since calculations are performed within a
quasi-equilibrium framework. Here, we are capturing the nonlinear response of the U(1) symmetry broken
equilibrium ground state. An intense pump pulse is known to weaken this ground state, i.e. it decreases the
gap�. Strictly speaking the experimental nonlinear response is then measured with respect to the weakened
ground state. Our theoretical description does not capture this induced change. It fully loses its validity when
the pump induces a phase transition from the superconducting to the normal state [160]. It is nevertheless
interesting that present day pump probe experiments are performed in a regime where the induced change
of the groundstate only quantitatively affects the nonlinear response. Hence, the quasi-equilibrium effective
action approach has been established as a description not only of THG but also of pump probe experiments
in the literature [160].

5.3.3 Pump-probe spectroscopy

Higher orders of the optical conductivity include contributions of collective modes that smooth out the
absorption edge and add spectral weight inside the conductivity gap. Here, we calculate the non-linear
contribution,

�(!, �tpp) =
j(!)

��
1
+ j(!)

��
3

i!A(!)
, (5.23)

59



Figure 5.8: (a,b) Real and imaginary part of conductivity spectra for swept pump-probe delay �tpp
including the nonlinear contribution in A. (c) Real part of isolated nonlinear Higgs contribution
and (d) Fourier transform showing that frequency of conductivity oscillation is peaked at 2�. (e)
Real part of the nonlinear contribution from density fluctuations and (f) Fourier transform. This
Higgs contribution exceeds the charge density contribution by one order of magnitude.
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in a pump-probe setting of the time-dependent density-matrix formalism.
To this end, we pump the system with an intense pulse of A0 = 0.5 ⇥ 10�8J sC�1 m�1 and, after a

delay �tpp, apply a weak probe pulse. Following experimental schemes [102], we perform two simulations.
First, we simulate both a pump and a probe pulse to compute jpp. In a second simulation we apply the pump
only, obtaining jp. We then compute the optical conductivity from the difference in currents j = jpp � jp.
This ensures that residual contributions of the pump do not affect the optical conductivity.

Figs. 5.8(a-b) show the real and imaginary part of the optical conductivity �(!, �tpp) as a function of
frequency and pump-probe delay. The third-order contribution j

��
3

adds spectral weight to the conductivity
below absorption gap. The conductivity shows clear oscillations in �tpp, as emphasized in Fig. 5.8(c,e)
where only the nonlinear contribution is plotted for the contributions from Higgs and density fluctuations,
respectively. A Fourier transform of these oscillations, shown in Fig. 5.8(d,e), reveals that the oscillation
frequency matches the resonance frequency of the Higgs mode 2�. Additionally, the Higgs signal exceeds
the density fluctuations by one order of magnitude.

Our results show that signatures of the Higgs mode are measurable in the pump-probe response of the
optical conductivity. Yet, to excite the Higgs mode, impurities are crucial. We find that the calculated time-
resolved optical response of a single-band superconductor in the dirty-limit is in good agreement with the
experimentally measured response [103].

5.4 Multi-band superconductivity
We now turn to the case of a two-band superconductor. For concreteness, we focus on the superconducting
state of MgB2. We model the ⇡- and �-bands believed to be responsible for superconductivity by choosing
material parameters �⇡ = 3 meV, �� = 7 meV, ✏F,⇡ = 2.9 eV, ✏F,� = 0.7 eV, m⇡ = 0.85me, m� =

1.38me, !D = 50meV, s⇡ = 1, s� = �1 [85].
Convincing evidence for the two-band character of MgB2 has been found in tunneling measurements

[55, 71] and ARPES [155]. However, optical linear response probes have only revealed signatures of a
superconducting gap in the ⇡-band [77, 86]. A recent work [86] on third harmonic generation presents
strong evidence of a collective Higgs resonance in the ⇡-band, but no collective response in the �-band was
observed.

5.4.1 Optical conductivity

The linear response optical conductivity of multi-band superconductors is additively composed of contri-
butions from the two bands, �(!) = �⇡ + ��, where the band-specific conductivities are determined by a
straightforward generalization of Eq. (5.21). Figures 5.9(a-b) show optical conductivities for various differ-
ent combinations of band impurity concentrations.

Experimental measurements of the optical conductivity of MgB2 below TC show a clear absorption gap
below 2�⇡ and a dome shaped onset above 2�⇡. A second onset at the larger gap ! = 2�� has so far
not been observed. An exemplary experimental measurement of the real and imaginary optical conductivity
from Ref. [44] is shown in Fig. 5.10.
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(b)
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(a)
(           )

(     )

Figure 5.9: (a),(b) Real part �0 of linear response optical conductivity of a two-band superconductor
for various impurity scattering rates at T = 4 K. In panel (a) the impurity of concentration of
the first band is �⇡ = 0.01 meV and the second-band impurity scattering rates are given by the
legend. In panel (b) the legend specifies �⇡ and �� = 0.1 meV. Vertical gray lines indicate the
gap energies 2�⇡, 2��. (c),(d) Plot of �0 and �00 for various temperatures at �1 = 100meV and
�2 = 50 meV. The imaginary part follows a 1/! power-law at small frequencies. (inset) BCS
temperature dependence of the two gaps.

Our simulations reproduce the absence of the �-gap in two different parameter regimes: in the dirty-
clean limit (�⇡ � 2�⇡, �� ⌧ 2��), where only the first gap contributes to �(!), and in the dirty-dirty
limit (�⇡, �� � 2�⇡) shown in Fig. 5.9(c-d). Latter case only shows a weak onset of the �-gap which may
be unnoticeable with experimental noise. The reason of the subdominant contribution of the second gap lies
in the small Fermi surface of the �-band. Explicitly, this can be seen from the prefactor vFiNi in Eq. (5.21).
For our choice of parameters, which include a high estimate of ✏F� , this yields a suppression of the �-gap
conductivity by a factor vF⇡N⇡/vF�N� = 6.6. For a more conservative estimate of ✏F� , the suppression
should be even more pronounced.

5.4.2 Collective modes

Pulse induced changes of the two order parameters�i with i = ⇡,� in the two-band case are given by

��i(!) =
1

2

X

jkk0

H�1
ij

(!)|Jjkk0 |2
Z

d!0��0�0�1
j

(!,!0,k,k0)A(!0)A(�! � !0) , (5.24)
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Figure 5.10: Experimental measurement of real (top) and imaginary (bottom) linear optical conduc-
tivity. Figure is taken from Ref. [44].

where

H =

 
��1�11 + 2U22/ det U �2U12/ det U

�2U21/ det U ��1�12 + 2U11/ det U

!
(5.25)

and where susceptibilities ��0�0�1
i

,��1�1
i

are listed in Appendix C.1. The gaps exhibit two resonances which
are determined by the Higgs propagator. In Fig. 5.11 we show a logarithmic false-color plot of the quantity
| det H|�1, responsible for any divergence, as a function of frequency ! and interband coupling strength v.
As expected, the two resonance energies are at 2�⇡ and 2��, illustrated by solid green horizontal lines.
Resonances are sharp at small v but decrease and broaden in the strong interband coupling regime.

Energy conservation in Eq. (5.24) is established by the factor A(!0)A(�!�!0). Oscillation of the gaps
is therefore only possible for a finite overlap of A2(!) with the resonance frequencies. The matrix structure
of Hij further implies that both gaps will oscillate with all excited modes at finite v.

Dynamics of the phase modes ✓i in the frequency domain are determined by

�✓i(!) =
1

2

X

j

sje2

2mj!2
L�1
ij

(!)��3�3
j

(!)A2(!) . (5.26)

Due to the Anderson-Higgs mechanism only the dynamics of the phase difference �' = �✓⇡ � �✓� is
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ωH1=2Δπ

ωH2=2Δσ

Figure 5.11: Plot of resonance spectrum of Higgs and Leggett modes with logarithmic color scale as a
function of interband coupling parameter v. False-color plot was computed within the effective
action formalism. Solid green line shows the frequency of the Higgs resonances. The solid and
dashed orange lines mark the maximum and width of the Leggett mode. Red diamonds mark the
Leggett oscillation frequencies extracted from a pumped time-dependent density-matrix simu-
lation. The two approaches show excellent agreement.

physical. Inserting Eq. (5.26) yields the expression

�'(!) =
1

4
A2(!)

✓
s⇡
m⇡

� s�
m�

◆
!2 +

8�⇡��v

U�� � v2U⇡⇡

��3�3⇡ + ��3�3�

��3�3⇡ ��3�3�

�
�1

. (5.27)

Solid and dashed orange lines in Fig. 5.11 trace the maximum and full width at half max (FWHM) of
�'(!)/A2(!). Red diamonds are the dominant oscillation frequency of the phase

�'(t) ⇡ ��00
⇡

�⇡

� ��00
�

��

(5.28)

evaluated by computing ��00

i
in a time-dependent density matrix formulation for a broadband optical pulse.

The two methods show excellent agreement. At small coupling the phase exhibits completely undamped
oscillations due to the absence of decay channels. The Leggett frequency !L increases for stronger coupling.
Once its energy reaches the quasiparticle threshold it is increasingly damped, and the resonance broadens.

The present results reproduce the findings of Refs. [32, 116] which were obtained in the clean limit.
This should come as no surprise since impurities do not change the frequency of the collective resonance
within the MB approach and additionally the Leggett mode only couples diamagnetically to electromagnetic
fields.

5.4.3 Pump-probe simulations

We proceed to model the pump-probe response of a two-band superconductor. Analogous to the single-band
case we consider non-linear contributions to the optical conductivity and pump the system with an intense
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Figure 5.12: Time-resolved optical conductivity (c),(h),(m) for three optical pulses that resonantly ex-
cite (a) both Higgs modes, (f) the lower ⇡-band Higgs resonance, and (k) the �-Higgs mode
for an interband coupling strength v = 0.2 in the dirty-dirty limit with �⇡ = 100meV and
�� = 50 meV. (b),(g),(l) show the gap oscillations ��0(t) as a response to the pump pulse
only. (d),(i),(n) show the background subtracted nonlinear optical conductivity. Their Fourier
transforms are shown in panels (e),(j),(o).

pulse. After some time-delay �tpp, the optical conductivity is probed in the linear response regime by a
weak probe pulse.

In Fig. 5.12 we adopt the dirty-dirty limit with �⇡ = 100meV and �� = 50meV as a potential descrip-
tion of MgB2 with v = 0.2 and select various pump pulses shown in the leftmost panels. Gray and dark gray
areas illustrate the onset of the quasiparticle continuum of the two bands. Lower panels show A2(!) where
Higgs resonance frequencies are marked by gray vertical lines. The second column shows the gap dynamics
��i(t) following the pump pulse. The third column shows the real part of the time-resolved non-linear
optical conductivity �0(!, �tpp). Panels (d,k,r) show the isolated nonlinear contribution of the real optical
conductivity.

The first pump has a broad frequency spectrum such that it overlaps with both Higgs resonances. Fol-
lowing the excitation, both gaps oscillate with both frequencies. The overlap of A(!) with the quasiparticle
continuum induces a small drop of ��0. The optical conductivity shows oscillations in the pump-probe delay
�tpp with mostly 2�⇡ and a small 2�� component. We attribute the subdominance of the ���-contribution
to the small �-band Fermi surface.

For a narrowband pulse centered at ! = �⇡ (second row), we observe 2�⇡ oscillations only. Here,
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(a)

(b)

(c)

Figure 5.13: (a) Realistic multicycle pulse of main frequency⌦ fed into time-dependent density matrix
simulation. (b) Simulated third order current j3(t). (c) Next to the original ⌦ component, the
Fourier transform |j3(!)| reveals an additional 3⌦ component.

the pulse A(!) does not overlap with the quasiparticle continuum. As a result, the gap oscillates around its
equilibrium value �1 = �.

When the narrowband pulse is centered around the second Higgs resonance at ! = 2�� (third row), the
gap performs 2�� oscillations only. However, the nonlinear current response is weak and numerically hard
to resolve.

The last three columns of Fig. 5.12 show the Fourier transforms of panels (d),(k),(r) which are further
separated into Higgs, charge density, and Leggett contributions. In all cases the current is dominated by
the Higgs signal which exceeds the density fluctuations by roughly one order of magnitude. The Leggett
frequency for v = 0.2 matches the energy of the lower Higgs modes 2�⇡. It is, however, always small com-
pared to the Higgs and density fluctuations. In panel Fig. 5.12(u) the Leggett contribution nearly vanishes
since there is little overlap of the squared pulse A2(!) with its resonance frequency.

5.4.4 Third harmonic generation

Finally, we simulate the non-linear response of a multiband superconductor in a THG setup within the time-
dependent density matrix framework. We model a realistic multi-cycle pulse of frequency ⌦, exemplary
shown in Fig. 5.13, and compute the third order current j(t)

��
3
. The Fourier transform of j(t)

��
3

reveals a 3⌦

third harmonic (TH) component next to the original first harmonic (FH) peak.
We adopt the dirty-dirty band description of MgB2 with �⇡ = 100meV, �� = 50meV and choose two

different interband coupling strengths, v = 0.05 and v = 0.4. Then, we sweep temperature to investigate the
resonant behaviour of the TH component. We consider three pulses of frequencies ⌦ = 0.5, 0.6, 0.7 THz

and expect the TH component to be resonantly enhanced when 2⌦ = 2�i.
Figs. 5.14(a-b) show the temperature dependence of the BCS gap. Horizontal lines mark pulse frequen-

cies ⌦ used in independent simulations. Resonance conditions are satisfied at intersections with a gap. In
the second row, Figs. 5.14(c-d), the amplitude of the TH peak is found as a function of temperature. In the
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(a) (b)

(c) (d)

(e) (f )

Figure 5.14: (a),(b) Temperature dependence of the BCS gaps at v = 0.05 and v = 0.4. Note that
the T -dependence in the case v = 0.05 for the two-band BCS model does not match the fa-
miliar shape expected for a single band superconductor. Horizontal lines mark the three pulse
frequencies ⌦ = 0.5, 0.6, 0.7 THz. (c),(d) THG current as a function of temperature for three
pulse frequencies ⌦j . We take the THG current as j3(! = 3⌦), i.e. the amplitude of the second
peak in Fig. 5.13(c) and sweep temperature. (e),(f) Decomposition of the THG signal for pulse
of ⌦ = 0.5 THz in Higgs (H), density fluctuation (D) and Leggett (L) contributions. The main
contribution stems from the collective Higgs mode in both the weak coupling (left) and strong
coupling case (right).
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(a) |jH| |jH|(b)

Ω Ω

Figure 5.15: Nonlinear Higgs current as a function of temperature T and frequency ⌦ of a sinusoidal
pulse computed within the effective action formalism (a) for v = 0.05 and (b) for v = 0.4.
Vertical lines represent cuts according to the simulations in Fig. 5.14.

weak coupling case, v = 0.05, the THG signal for the lower two frequencies exhibits a pronounced peak at
the resonance condition for the lower gap. The THG signal peak of the largest frequency is less pronounced,
as this frequency is almost equal to the lower gap for a range of temperatures. We also observe much smaller
peaks at temperatures where pulses are in resonance with the larger �-gap.

In the strong coupling case, v = 0.4, we no longer observe a peak-like resonance for the lower ⇡-band
gap. This can be understood as a result of broadening of the Higgs resonance at large v, shown in Fig. 5.15.
Here, we plot the nonlinear Higgs current as a function of temperature T and frequency ⌦ computed within
the effective action formalism for a sinusoidal excitation. Vertical cuts correspond to the three simulations
of Fig. 5.14. The resonance of the Higgs modes significantly broadens in the strong coupling case v = 0.4.
Thus, the THG signal is already large when driven slightly below the 2�⇡ resonance at T = 0 and no sharp
peak occurs when the temperature is increased. This result is further discussed in Appendix C.4.

The �-gap still induces a sharp resonance peak, albeit small in comparison to the low-temperature signal.
Panels (e),(f) of Fig. 5.14 decompose the THG signal for the ⌦ = 0.5 THz pulse into contributions from

the Higgs mode, density fluctuations, and Leggett mode. The Leggett mode contribution is found numer-
ically by considering only the diamagnetic component of the current jD

��
3
. The density fluctuation contri-

bution is found by forcing ��i = 0 when solving the equations of motion, removing the self-consistency
condition that induces collective modes. In both the weak coupling and large-v case the THG response
is dominated by the Higgs mode. The relative contribution of density fluctuations increases in the strong
interband coupling regime. The Leggett contribution is vanishingly small.

The present results are interesting when compared to the experimental findings of Ref. [86]. Our results
affirm the claim that the THG response is mainly attributed to the Higgs resonance of the ⇡-band. The
small contribution of the �-band Higgs mode and the Leggett mode in our simulation is consistent with
the experiment where no signatures of the Leggett or second Higgs mode were observed. We have further
computed the THG response in the dirty-clean limit where we found nearly identical results, apart from the
absence of the small � resonance peak at temperatures close to TC .

The failure of our theory to produce resonance peaks of the ⇡-Higgs mode at large v suggests that the
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MB approximation might not correctly describe the THG response in the strong coupling limit as assumed
for MgB2 [24, 32]. A recent study has found that incorporating impurities beyond Mattis-Bardeen as random
onsite-energies in a lattice model shows a stronger contribution of density fluctuations [141]. This, however,
is beyond the scope of this chapter.
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Chapter 6

Phase signatures in third-harmonic
response of Higgs and coexisting modes in
superconductors

6.1 Introduction
Experiments to excite the Higgs mode are usually performed in either of two ways. One option is to quench
the system with an ultrafast, single-cycle THz pump pulse to abruptly change the system’s parameter and
bring it out of equilibrium. The order parameter starts to automatically oscillate around its new equilibrium
state with the Higgs mode frequency. This general quench dynamics was theoretically studied for the first
time in [4, 16, 17, 164, 177, 178] and later modeled with realistic light pulses in [87, 123]. Experimentally,
it was measured in a pump-probe geometry, where the probe pulse scans the dynamics of the system with a
variable time-delay after the pump pulse [103].

The second option is to drive the system periodically with a multi-cycle THz pulse at frequency ⌦. This
enforces the order parameter to oscillate with twice the driving frequency 2⌦ due to the quadratic excitation
process [34, 139, 156]. Furthermore, this leads to a third-harmonic generation (THG) process, which can be
measured in the transmitted electric field. Tuning the driving frequency into resonance with the Higgs mode
energy, i.e. 2⌦ = 2�, a resonance peak is visible in the signal. This can be achieved either by varying the
driving frequency or, as it is currently done experimentally, by changing the value of the order parameter
�(T ) by sweeping the temperature T . The resonance can be used as a signature for the collective Higgs
mode as it was demonstrated for the s-wave superconductor NbN [103, 105].

In many materials, more complicated effects may arise resulting from coexisting modes additionally
contributing to the THG signal. Examples include quasiparticle excitations [34], Leggett modes in multiband
systems [58, 115, 116], Josephson-Plasma modes in layered systems [51], Bardasis-Schrieffer modes in
systems with subleading pairing channels [114], coexisting CDW fluctuations [31] or generally phonon and
magnon excitations. Theoretical investigations of such systems with multiple collective modes have become
even more important since THG experiments on several cuprates have recently been performed [37]. There,
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an interesting phase signature indicating an interplay between two modes has been detected but was not
fully understood theoretically. It is therefore important to understand the signatures of Higgs modes in
spectroscopic experiments which can reveal the existence and interplay with other modes.

In this chapter, we therefore take into account the existence of another mode and we investigate the
THG signal for such systems. Hereby, we concentrate on the phase of the 3⌦ oscillations, which was
not discussed theoretically so far. In comparison with a classical driven oscillator, we show that a driven
BCS model contains additional microscopic details in the phase of the signal. Furthermore, we develop a
general concept of antiresonance in a microscopic theory, which is an intrinsic signature for coexisting or
coupled modes. We demonstrate this concept on two example systems, namely a coupling of the Higgs
mode to a charge density wave and secondly a Higgs mode with a coexisting Bardasis-Schrieffer mode.
Here, we propose that analyzing the phase of the THG signal in addition to the amplitude yields additional
information valuable for understanding the interplay of superconductivity and other modes. Hereby, the
nature and the symmetry of the coexisting modes is not important for the interplay mechanism such that our
theory generally applies and can easily be extended to other system like d-wave superconductors.

6.2 Phase signature of a single mode
Before studying the full microscopic quantum mechanical model for superconductors and their collective
modes, let us first consider a simple, well-known classical system. This will allow us to define and observe
the crucial features which are important for the later discussion, and we can compare the similarities and
differences between these systems. Hereby, we investigate classical driven oscillators which represent the
collective modes of the system.

6.2.1 Harmonic oscillator

It is well known that a driven harmonic oscillator has a characteristic amplitude and phase response which
depends on the driving frequency. With the eigenfrequency !0, damping factor �, driving amplitude F0 and
driving frequency ⌦, the equation of motion for the displacement x(t) reads

ẍ(t) + !2
0x(t) + �ẋ(t) = F0 cos(⌦t) . (6.1)

The steady-state solution can be written as x(t) = A cos(⌦t��), where the frequency-dependent amplitude
A and phase � are given by

A(⌦) =
F0p

(!2
0 � ⌦2)2 + �2⌦2

, (6.2a)

�(⌦) = tan�1

✓
�⌦

!2
0 � ⌦2

◆
. (6.2b)

One observes that the amplitude has a resonance peak at ⌦ = !0 which is accompanied by an abrupt phase
change from 0 to ⇡. Thus, the oscillation is in-phase with the driving frequency below the resonance and
lags behind with opposite phase above the resonance.
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Figure 6.1: (a) Amplitude and (b) phase of a driven harmonic oscillator for different damping � ac-
cording to Eq. (6.2) with F0 = 1 and !0 = 1.

The amplitude and phase are plotted in Fig. 6.1 for different damping values �. While for small damping
a pronounced resonance peak is visible in the amplitude, for large damping, the resonance peak is heavily
suppressed and broadened. In contrast, the phase still shows a phase change from 0 to ⇡, even though it
is broadened as well. This means that both amplitude and phase have a signature of the resonance, yet
the phase change signature is more robust against the influence of damping. Hence, in a strongly damped
system with suppressed resonance peak, the eigenmode would still be identifiable via the phase signature.

6.2.2 Ginzburg-Landau model

Let us investigate now whether we can observe such a behavior for THz-driven collective modes in su-
perconductors as well. The oscillator corresponds to a collective mode which is driven by a THz light
field. In the experiment, the driven collective mode is not measured directly. Instead, the induced current
proportional to the transmitted electric field is recorded.

As a first step, we recapitulate the phenomenological Ginzburg-Landau model, where we will consider
amplitude and phase fluctuations [124, 156]. The time-dependent Lagrangian of a superconductor coupled
to a gauge field is given by

L = (Dµ )⇤(Dµ ) � V ( ) � 1

4
Fµ⌫F

µ⌫ , (6.3)

where  is the superconducting order parameter, Dµ = @µ + ieAµ the covariant derivative with the four-
vectors @µ = (@t, �r) and Aµ = (�, �A) and electromagnetic field tensor Fµ⌫ = @µA⌫ � @⌫Aµ in
units where c = 1, with the electric potential � and the electromagnetic vector potential A. In principle,
the Lagrangian could also contain additional linear derivative terms. Yet, we assume perfect particle-hole
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symmetry, such that the time dynamics of a superconductor is described only by a second-order derivative
term [124, 162]. The potential V ( ) = ↵| |2+ �

2 | |4 is the free energy of a superconductor with � > 0 and
↵ = ↵0(T � Tc) such that for T < Tc the potential takes the form of a Mexican hat with the ground state
 0 =

p
�↵/�. We introduce amplitude (Higgs) fluctuations H(r, t) and phase (Goldstone) fluctuations

✓(r, t) via

 (r, t) = ( 0 + H(r, t))ei✓(r,t) , (6.4)

and choose a gauge Aµ ! Aµ + 1
e
@µ✓ and  !  e�i✓. Then, the Lagrangian up to second order in the

fluctuations reads

L = (@µH)(@µH) + 2↵H2 � 1

4
Fµ⌫F

µ⌫ + e2 2
0AµAµ + 2e2 0AµAµH . (6.5)

Hereby, the phase fluctuations are removed from the Lagrangian by the chosen gauge and are implicitly
included in the longitudinal component of the transformed gauge field Aµ which obtains an additional mass
term / AµAµ. This effect is known as the Anderson-Higgs mechanism [8]. In a region close to the transition
temperature, where the influence of normal carriers can be relevant, a low energy density fluctuation can
remain, which is known as the Carlson-Goldman mode [13, 30, 137]. Such a scenario requires a two-fluid
model description and might be interesting to study in future. Calculating the equations of motion for the
Higgs mode H , neglecting spatial fluctuations for q ! 0 and choosing a gauge with � = 0, yields

@2t H(t) � 2↵H(t) = �e2 0A(t)2 . (6.6)

The dynamics of the Higgs oscillations is governed by a harmonic oscillator with frequency !0 =
p

�2↵.
The driving term is quadratic in the vector potential A(t). With a periodic light field A(t) = A0 cos(⌦t),
the system is effectively driven by 2⌦ such that the resonance in the system occurs at 2⌦ = !0. Thus,
on a phenomenological level, the collective Higgs oscillations of a superconductor and its amplitude and
phase signature is described by the classical model discussed in Sec. 6.2.1. The measured transmitted field
is described by the induced current given by [156]

j(t) =
@L
@A

= �2e2 2
0A(t) � 4e2 0A(t)H(t) . (6.7)

A nonlinear third-harmonic component in the current is induced as A(t) · H(t) / cos(3⌦t � �) + . . . The
resonance behavior of the amplitude and phase in the current j(t) is directly given by the Higgs response
H(t).

6.2.3 Microscopic BCS model

While in the phenomenological model the coupling of light to the system contains no further details, in a
microscopic model additional effects with frequency-dependent susceptibilities occur. Furthermore, there
are quasiparticles in the microscopic model which render the Higgs mode less stable due to the additional

73



decay channel.
To address these effects, we proceed to the full microscopic theory using the usual effective action ap-

proach described for example in [3, 34]. We will derive known expressions but reanalyze these concentrating
on the phase structure. The BCS Hamiltonian reads

HBCS(t) =
X

k,�

✏kc†k,�ck,� �
X

k,k0

Vk,k0c†k,"c
†

�k,#c�k0,#ck0,"

+
1

2

X

k,�

X

i,j

@2ij✏kAi(t)Aj(t)c
†

k,�ck,� . (6.8)

Hereby, ✏k = ⇠k � ✏F is the electron dispersion ⇠k measured relative to the Fermi level ✏F and c†k,� or ck,�

the electron creation or annihilation operators. The separable BCS pairing interaction is given by Vk,k0 =

V fkfk0 with pairing strength V and symmetry fk. A coupling to light represented by the vector potential
A(t) is realized by minimal coupling ✏k ! ✏k�A(t). An expansion in powers of A(t) yields the lowest
non-vanishing diamagnetic coupling term shown above, while the linear paramagnetic coupling / @iAi(t)

vanishes due to parity symmetry. In the expression, we have introduced the short-hand notation @2
ij

= @2
kikj

.
Here, we initially neglect long-ranged Coulomb interaction and the coupling to phase fluctuations which is
important in real materials. We will show later in Sec. 6.2.4 that including Coulomb interaction does not
affect the phase signature. The action of the system in imaginary time ⌧ is given by

S =

Z
�

0
d⌧

0

@
X

k,�

c†k,�(⌧)@⌧ ck,�(⌧) + H(⌧)

1

A . (6.9)

We perform a Hubbard-Stratonovich transformation introducing the bosonic field�, with amplitude fluctu-
ations �(t) = �+ ��(t). After integration of fermions, we split the action in a mean-field and fluctuating
part, which we expand up to fourth order in A. For more details about the calculation see Appendix D.1.
The effective action with Matsubara frequencies i!m in fourth order of the vector potential reads

S(4) =
1

2

1

�

X

i!m

��(�i!m)H�1(i!m)��(i!m)

� 2��(�i!m)
X

i,j

�ij

�A2A
2
ij(i!m)

+
X

ijkl

A2
ij(�i!m)�ijkl

A2A2(i!m)A2
kl

(i!m) . (6.10)

Hereby, H�1(i!m) is the inverse Higgs propagator defined as the renormalized pairing interaction V

H�1(i!m) =
2

V
+ ���(i!m) . (6.11)
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The susceptibilities are given by

���(i!m) =
X

k

f2
kX11(k, i!m) , (6.12a)

�ij

�A2(i!m) =
X

k

fk
1

2
@2ij✏k X13(k, i!m) , (6.12b)

�ijkl

A2A2(i!m) =
X

k

1

4
@2ij✏k @

2
kl
✏k X33(k, i!m) (6.12c)

with

X↵�(k, i!m) =
1

�

X

i!n

tr[G0(k, i!n)⌧↵G0(k, i!m + i!n)⌧� ] (6.13)

and the BCS Green’s function G�1
0 = i!m⌧0 � ✏k⌧3 + �k⌧1 where ⌧i are Pauli matrices. The indices �

and A2 in the susceptibilities represent the vertices, i.e., the coupling to the Higgs propagator via fk⌧1 or
the coupling to light via @2

ij
✏k⌧3, respectively. Integrating out the amplitude fluctuations and after analytic

continuation i!m ! ! + i0+ one obtains

S(4) =
1

2

Z
d!
X

ijkl

⇣
�ij

�A2(�!)�kl

�A2(!)H(!) + �ijkl

A2A2(!)
⌘
A2

ij(�!)A2
kl

(!) . (6.14)

There are two contributions in the action, one containing the Higgs oscillations and one the quasiparticle
response [34]. These contributions are shown diagrammatically in Fig. 6.2(a) and (b).

For simplicity, we will only consider linear-polarized light in x-direction, such that we can neglect the
polarization indices in the following. With this, the third-harmonic response is given by

j(3)(3⌦) = � �S(4)

�A(�!)

�����
3⌦

/ �H(2⌦) + �Q(2⌦) (6.15)

with the Higgs (H) and quasiparticle (Q) contribution

�H(!) = ��A2(�!)��A2(!)H(!) , (6.16a)

�Q(!) = �A2A2(!) . (6.16b)

Comparing the response j(3) with the phenomenological Ginzburg-Landau model in Eq. (6.7), we can ob-
serve several differences which modify the response. First, the Higgs propagator H(!) is a more complex
object compared to the steady-state solution in Eq. (6.2) and does not have a simple resonance pole as we
will see. Second, light does not directly couple to the Higgs mode but through the susceptibility ��A2(!).
Third, there is an additional quasiparticle response given by �A2A2(!).

In the following, let us disentangle these effects. Evaluating the Matsubara sum and rewriting the mo-
mentum sum as an integral assuming s-wave symmetry, the Higgs propagator can be analytically evaluated
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(a) (b)

(c) (d)

Figure 6.2: Diagrammatic representation of the effective action in the (a),(b) clean limit according to
Eq. (6.16) and in the (c),(d) dirty limit according to Eq. (6.24). (a) Diamagnetic Higgs excitation.
(b) Diamagnetic quasiparticle excitation. (c) Paramagnetic Higgs excitation. (d) Paramagnetic
quasiparticle excitation. The wiggly lines represent the vector potential A, the solid lines the BCS
Green’s function G0 and the double dashed line the Higgs propagator H . The filled square vertex
corresponds to fk⌧1, the filled circle vertex to @2

ij
✏k⌧3 and the empty circle vertex to @i✏k⌧0.

at T = 0. Concentrating on the pole structure one obtains the well-known result [16, 31, 164, 177, 178]

H(!) / 1p
4�2 � !2

. (6.17)

It does not have a simple pole but a square root term in the denominator. This is in contrast to the solution
of the classical oscillator Eq. (6.2), where a simple pole 1/(!2

0 � ⌦2) occurs for � = 0. It is interesting to
note that this behavior results from the different decay property of the intrinsic Higgs mode compared to the
eigenmode of a classical oscillator. While the eigenmode of a classical oscillator is undamped without addi-
tional damping �, the Higgs mode has a characteristic 1/

p
t decay in the time-domain even without damping

[16, 164, 177, 178]. It can be understood as a decay into quasiparticles as the Higgs mode energy overlaps
with the quasiparticle continuum at 2�. In addition to the obvious consequence of stronger damping, it also
affects the phase response. The square root reduces the ⇡ phase change at the resonance frequency to ⇡/2.
Thus, the driven amplitude oscillation only lags behind a quarter cycle at high frequencies instead of being
completely anti-phase as found in the phenomenological model.

The phase response of the Higgs mode is additionally affected by the susceptibilities �2
�A2 in Eq. (6.16).

However, this is an additive phase contribution that is continuous and slowly varying around the resonance
at 2�. The observation of a phase jump is therefore directly related to the analytical structure of the Higgs
propagator, Eq. (6.17).

Finally, let us examine the quasiparticle response which is actually known to be much larger than the
Higgs response [34]. Evaluating the Matsubara sum of the respective susceptibility and solving the momen-
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Figure 6.3: Intensity (top row) and (normalized to zero) phase (bottom row) of THG response for
Higgs (H), quasiparticles (Q) and total (T). (a),(b) Uncharged BCS model without Coulomb in-
teraction in Eq. (6.16). The Higgs contribution is scaled by 2 · 104 to be visible. (c),(d) BCS
model including Coulomb interaction in Eq. (6.22). The Higgs contribution is scaled by 5 · 103

to be visible. (e),(f) BCS model with impurities using Mattis-Bardeen approach in Eq. (6.24)

tum sum (see Appendix D.1) one obtains for the pole structure

�A2A2(!) / 1p
4�2 � w2

+ . . . (6.18)

The quasiparticle response has the same square root pole structure as the Higgs mode, leading to the same
⇡/2 phase change at the resonance frequency.

In Fig. 6.3(a) and (b) the amplitude and phase of the diamagnetic Higgs and quasiparticle response is
shown using ✏k = �2t(cos kx + cos ky) � µ, t = 10 meV, µ = �10 meV, � = 1 meV and a residual
broadening ! ! ! + i0.05 meV. Hereby, the momentum sums are evaluated numerically on a 2d grid with
2000 ⇥ 2000 points without approximation assuming linearly polarized light in x-direction. Confirming
the analytic study, we can see that phase shows a ⇡/2 phase change at the resonance frequency 2⌦ = 2�.
Above the resonance, a drift is observable to higher values for the quasiparticles and lower values for the
Higgs mode. As it has been emphasized in literature [34], the Higgs mode is much smaller in the clean-limit
BCS theory.
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6.2.4 Influence of Coulomb interaction

As a next step, we discuss the influence of Coulomb interaction given by an additional term in the Hamilto-
nian

Hc =
1

2

X

k,k0,q

X

�,�0

V (q)c†k+q,�ck,�c
†

k0�q,�0ck0,�0 (6.19)

where V (q) is the Coulomb potential. We follow [34] and decouple the Coulomb interaction by means of an
additional Hubbard-Stratonovich transformation introducing the density field ⇢(q, ⌧) = ⇢0 + �⇢(q, ⌧) and
allow amplitude and phase fluctuations in the superconducting order parameter �(⌧) = (�+ H(⌧))ei✓(⌧).
With this, one obtains for the fourth order action

S(4)(��, ✓, �⇢) =
1

2

1

�

X

i!m

"
�>(�i!m)M(i!m)�(i!m) + �>(�i!m)b(i!m) + b>(�i!m)�(i!m)

+
X

ijkl

A2
ij(�i!m)A2

ij(i!m)�ijkl

A2A2(i!m)

#
(6.20)

with

�>(i!m) =
⇣
��(i!m) ✓(i!m) �⇢(i!m)

⌘
, (6.21a)

M =

0

BB@

H�1 i!m
2 ��⇢ ��⇢

� i!m
2 �⇢�

!
2
m
4 �⇢⇢ � i!m

2 �⇢⇢

�⇢�
i!m
2 �⇢⇢ � 1

V (q) + �⇢⇢

1

CCA , (6.21b)

b(i!m) =

0

B@

P
ij

A2
ij

(i!m)�ij

�A2(i!m)

�i!m

P
ij

A2
ij
(i!m)�ij

⇢A2(i!m)
P

ij
A2

ij
(i!m)�ij

⇢A2(i!m)

1

CA . (6.21c)

The susceptibilities are given in Appendix D.2. Integrating the fluctuations and using 1/V (q) ! 0 for
q ! 0 one obtains for the third-order current j(3) = �H + �Q

�Q = �A2A2 �
�2
A2⇢

�⇢⇢
, (6.22a)

�H =
(�A2� � �A2⇢��⇢/�⇢⇢)2

H�1 � �2
�⇢

/�⇢⇢
. (6.22b)

The Coulomb interaction renormalizes the Higgs and quasiparticle response. Yet, due to obtained struc-
ture, the phase signature is not changed. The expressions in the numerator containing the terms �A2⇢ and
��⇢ do not contain poles and only add continuous phase contributions around 2�. This can be seen in
Fig. 6.3(c),(d), where the respective expressions are numerically evaluated with the same parameters of the
previous section. Except global scaling factors and small deviations resulting from the 1/�⇢⇢ contribution
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the result is basically unchanged with a phase change of ⇡/2 at the resonance.

6.2.5 Influence of impurities

Recently it was pointed out in several papers [58, 75, 115, 142, 147, 157] that nonmagnetic impurities
allow an additional paramagnetic coupling of light to the condensate. This is shown diagrammatically in
Fig. 6.2(c) and (d) where the light-coupling vertices are in the ⌧0-channel. While these diagrams vanish in
the clean limit, they have been shown to dominate the optical nonlinear response even for small disorder. To
model impurities, different approaches have been used, e.g. quasiclassical Eilenberger equations equivalent
to impurity ladder summations [147], the self-consistent Born approximation [157], or averaging disorder
configurations in real-space [142]. Here, we adopt the Mattis-Bardeen approximation first applied to the
nonlinear response in [115] and subsequently formulated in the effective action framework in [58]. This
approach allows to model impurities with an effective vertex approximation and shows qualitatively similar
results to [142, 147, 157].

Following [58], we implement a 3D continuum model, where we can express the THG current within
the Mattis-Bardeen approximation as

j(3)(3⌦) = �H(2⌦) + �Q(2⌦) (6.23)

with the Higgs (H) and quasiparticle (Q) susceptibilities

�H(2⌦) = 2�AA�(2⌦, �⌦)�AA�(�2⌦, �⌦)H(2⌦) , (6.24a)

�Q(2⌦) = �AAAA(⌦, 2⌦, �⌦) . (6.24b)

The triangle and square bubbles are defined as

�AA�(!m,!l) =
1

�

X

!n

X

kk0

|Jkk0 |2 tr
h
G0(!n + !m,k)G0(!n + !m + !l,k

0)G0(!n,k)⌧1
i
, (6.25a)

�AAAA(!m,!l,!p) =
1

�

X

!n

X

kk0k00

|Jkk0 |2|Jkk00 |2

⇥ tr
h
G0(!n,k)G0(!n + !m,k0)G0(!n + !m + !l,k)G0(!n + !m + !l + !p,k

00)
i

(6.25b)

and are shown in Fig. 6.2(c) and (d). The transition matrix element Jkk0 = hk| ep
m

|k0i is approximated by a
Lorentzian distribution

|Jkk0 |2 ⇡ (evF )2

3N(0)

1

⇡

�

(✏k � ✏k0)2 + �2
(6.26)

with impurity scattering rate �, Fermi velocity vF , and density of states at Fermi surface N(0). We choose
the parameters � = 2 meV, mass m = 0.78me of the parabolic band dispersion, ✏F = 1 eV, and impurity
scattering rate �/� = 10. As � � 2�, the considered case corresponds to a superconductor in the dirty
limit [115]. We evaluate Matsubara sums analytically and numerically compute the momentum integrals.
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For further details about the calculation see [58]. While the Mattis-Bardeen approximation may not yield
qualitatively accurate results in the nonlinear response, it serves well to discuss qualitative differences of the
phase response compared to the clean limit.

The resulting amplitude and phase of the dirty superconductor are shown in Fig. 6.3(e) and (f). We find a
pronounced resonance peak at 2⌦ = 2�. Here, the Higgs contribution is no longer subdominant but instead
gives the main contribution to the THG signal. The resonance peak is accompanied by a positive phase jump
of roughly ⇡ across the resonance. The detailed structure of this phase response as well as the value of the
phase jump show some weak dependence on material parameters.

The more complex phase structure in the dirty limit can be understand as follows: While the clean phase
response is dominated by the ⇡/2 phase jump of the Higgs propagator, the phase contribution of the suscep-
tibilities in the dirty case adds a steep positive drift above 2�, such that the overall phase change is increase
to roughly ⇡. The susceptibility is represented by the fermionic triangles �AA�(2⌦, �⌦)�AA�(�2⌦, �⌦)

and shown in Fig. 6.2(c). Thus, the phase response in the dirty limit is not only given by the Higgs propaga-
tor but has an additional contribution from the electron-mediated microscopic coupling of light to the Higgs
mode.

6.3 Phase response of two modes
Now, we will consider systems which contain two modes and study the interaction between these. Again,
we start by an analysis of the classic analogue of two coupled oscillators to understand the fundamental
properties before proceeding to a microscopic model.

6.3.1 Coupled oscillators

If there are two modes in a system, interference effects occur in the driven system which can lead to the so-
called antiresonance phenomenon. The usual way to understand this effect is based on the assumption that
there are two modes in the system which are coupled and only one of these modes is externally driven. For
a particular driving frequency, the external force on the driven mode cancels exactly with the force induced
by the other coupled mode such that the amplitude of the oscillation of this mode vanishes – thus the name
antiresonance. Furthermore, the antiresonance is accompanied by a negative phase jump of ⇡, therefore it
goes in the opposite direction compared to a resonance.

The same phase signature can also be obtained when both oscillators are driven, and the observed signal
is comprised of the sum of both oscillation amplitudes. Here, this effect is a trivial consequence of a
destructive interference and does not necessarily rely on a coupling between the modes. An additional
coupling between the modes allows for a tuning of the antiresonance frequency. We refer to this scenario as
antiresonance behavior as well.

To make this effect more clear, let us first investigate again the classic model where we consider now
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two coupled and driven oscillators described by the following equations of motion

x00

1(t) + !2
1x1(t) + �1x

0

1(t) + gx2(t) = F1 cos(⌦t) ,

x00

2(t) + !2
2x2(t) + �2x

0

2(t) + gx1(t) = F2 cos(⌦t) . (6.27)

There are two oscillators x1(t) and x2(t) with individual eigenfrequencies !i, dampings �i and driving
amplitudes Fi but same driving frequencies⌦. The coupling between the modes is controlled by the constant
g. Using the complex variable method ansatz

xi(t) = A1 cos(⌦t � �i) = Re x̂i(t) , (6.28)

where x̂i(t) = Â1(⌦)ei⌦t with Âi(⌦) = Ai(⌦)e�i�i(⌦), we write the equations in matrix form

 
P�1
1 g

g P�1
2

! 
Â1

Â2

!
=

 
F1

F2

!
, (6.29)

where we define the “propagator” of the oscillators as P�1
i

= �⌦2 + !2
i

+ i⌦�i. Inversion of the matrix
leads to the solution

 
Â1

Â2

!
=

 
P̃1 �gP1P̃2

�gP1P̃2 P̃2

! 
F1

F2

!
(6.30)

with the renormalized propagator P̃i = (P�1
i

� g2Pj)�1 where i 6= j. We also consider the total response
xT = x1 + x2, where

xT (t) = AT cos(⌦t � �T ) = Re x̂T (t) (6.31)

with x̂T (t) = ÂT (⌦)ei⌦t and ÂT = AT (⌦)e��T (⌦). One obtains for the complex amplitudes

Â1 = P̃1F1 � gP1P̃2F2 , (6.32a)

Â2 = P̃2F2 � gP1P̃2F1 , (6.32b)

ÂT = P̃1F1 + P̃2F2 � gP1P̃2(F1 + F2) . (6.32c)

In Fig. 6.4 we show a numerical evaluation of the individual and total amplitudes Ai and phases �i for
two distinct cases (see Appendix D.3 for the exact expressions). In the first column, the two oscillators are
coupled, i.e. g 6= 0, but only the first oscillator is driven F2 = 0. In the second column, the two oscillators
are uncoupled, i.e. g = 0, but both oscillators are driven Fi 6= 0.

The first scenario (left column) corresponds to the usual definition of the antiresonance, namely a de-
structive interference between the driving force and the force from the second oscillator due to the coupling.
The dip between the two resonance peaks and the negative ⇡ phase change, is clearly visible for the first os-
cillator (red curve). The energy of the antiresonance !A is determined by P̃1 = 0, which leads to !A = !2,
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Figure 6.4: (a),(b) Amplitude and (c),(d) phase of two (coupled) modes as defined in Eq. (6.28) and
Eq. (6.31). For the left column (a) and (c), the two oscillators are coupled with g = 1 but only
the first oscillator is driven with F1 = 1 and F2 = 0. For the right column (b) and (d), the two
oscillators are uncoupled with g = 0 but both oscillators are driven with F1 = F2 = 1. The
frequencies are !1 = 1, !2 = 2 and the damping coefficients �1 = �2 = 0.01.

i.e., the antiresonance occurs at the energy of the other undriven mode. The total response AT and �T (blue
curve) also shows this behavior resulting from the antiresonance of the first oscillator. Yet, the energy of the
antiresonance is shifted as a result of the second superposition scenario.

We can further see that the finite coupling shifts the resonances frequency with respect to the uncoupled
eigenfrequencies !i. The resonance frequency for the lower modes is decreases, while the resonance fre-
quency of the higher mode is increased. The energies are given by the poles of the renormalized propagators

!̃i =
1p
2

r
!2
1 + !2

2 ±
q

(!2
1 � !2

2)
2 + 4g2 . (6.33)

For the shown parameters, this results in a resonance peak below !1 = 1 and a resonance peak above
!2 = 2.

The total response (blue curve) of the second scenario (right column) shows a very similar behavior,
namely a dip in between the two resonance peaks and a negative ⇡ phase change. However, in this case the
negative phase jump does not result from an individual oscillator, both individual oscillators (red and green
curve) do not show this behavior. It rather results from the superposition of the two oscillations where the
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Figure 6.5: Diagrammatic representation of effective action for a system with Higgs and another mode
assuming diamagnetic coupling to light. (a),(b) Excitation of renormalized mode 1 or 2 (c) Mixed
contribution term, where light couples to both modes and the modes to each other. (d) Renor-
malization of both modes as RPA series due to interaction with each other. The wiggly lines
represent the vector potential A, the solid lines the BCS Green’s function G0, the double dashed
line the Higgs propagator H and the double zigzag line the propagator of another mode. Red
lines represent the renormalized propagators. The filled square vertex corresponds to fk⌧1, the
filled circle vertex to @2

ij
✏k⌧3 and the filled triangle vertex represent the interaction with the other

mode.

sum of both cancel out in an intermediate position between the resonances. This energy is determined by
P1 + P2 = 0 leading to !A = 1

p
2

p
!2
1 + !2

2 . As the sum of both undergoes a sign change from negative
to positive a negative ⇡ phase change occurs naturally. The resonance frequencies in this scenario are not
changed and still occur at !i.

To summarize, the antiresonance behavior of the total response of two oscillators can have different
origins. It can be either controlled by the coupling between the oscillators or the interference if both modes
are driven.

6.3.2 Microscopic theory

Let us now investigate whether this behavior is observable in a microscopic model as well. For now, we will
make some general arguments assuming that there are two modes 1 and 2 in the system, for example the
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Higgs mode and a second collective mode. In Sec. 6.4 and Sec. 6.5 we will consider specific examples.
Considering the general form of the effective action and the analysis of the classical oscillator system,

we are anticipating the results of the next sections and postulate the general structure of the response. The
fourth order effective action for two modes reads

S(4) =
1

2

1

�

X

i!m

b>(�i!m)M�1(i!m)b(i!m)

=
1

2

1

�

X

i!m

K(4)(i!m)A2(�i!m)A2(i!m) (6.34)

where

M�1 =

 
P̃1 �1,2P1P̃2

�2,1P1P̃2 P̃2

!
, (6.35a)

b =

 
�1,A2

�2,A2

!
A2 . (6.35b)

Hereby, Pi stands for the propagator of mode i, �i,j for different coupling susceptibilities and A the vector
potential, where the polarization indices are not included. The tilde denotes a renormalization due to the
other mode. This can be understood as an RPA series renormalization of the propagators shown in Fig. 6.5(d)
and expressed as

P̃1 = P1 + �2
1,2P1P2P̃1 , (6.36a)

P̃2 = P2 + �2
1,2P1P2P̃2 (6.36b)

which leads to

P̃1 =
1

P�1
1 � �2

1,2P2
, (6.37a)

P̃2 =
1

P�1
2 � �2

1,2P1
. (6.37b)

The fourth-order kernel K(4) explicitly reads

K(4) = �1 + �2 + �12 (6.38)

with

�1 = �2
1,A2 P̃1 , (6.39a)

�2 = �2
2,A2 P̃2 , (6.39b)

�12 = P1P̃2(�A2,1 �1,2 �2,A2 + �A2,2 �2,1 �1,A2) . (6.39c)
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These terms are diagrammatically shown in Fig. 6.5(a)-(c) and can be understood in the following way. First
of all, both modes may couple individually to light represented by Eq. (6.39a) and Eq. (6.39b). If there is a
coupling between the modes, a mixed term Eq. (6.39c) occurs, where light couples to both modes and the
modes to each other.

A comparison with the classic coupled oscillator model of the previous sections in Eq. (6.32) reveals the
exact same structure except that there, all susceptibilites are constant without frequency dependence.

After these general remarks, let us now consider specific examples of two microscopically coupled
modes in the next sections.

6.4 Higgs and charge density wave
As a first example of two coupled collective modes, we will consider a coexisting superconducting and
charge density wave (CDW) system. The amplitude modes are schematically shown in Fig. 6.6(a) in the
picture of the free energy. An example for such a scenario is NbSe2, where the coupling of the Higgs mode
to a CDW phonon was observed in Raman response [107, 149] and theoretically investigated by several
authors [27, 31, 95]. Another relevant system are cuprates, where superconductivity and fluctuating charge
order has been reported in the underdoped regime [65, 154]. This scenario might be a possible explanation
of the antiresonance behavior observed in recent THG experiments [37].

To model the system, we follow [31] and start from the BCS Hamiltonian in Eq. (6.8) where we add a
phonon of momentum Q responsible for creating the charge order and a coupling to electrons with strength
g. The Hamiltonian is given by

H = HBCS + HCDW (6.40)

with

HCDW =
X

q=±Q

!qb
†

qbq + g
X

k,q=±Q,�

gkc†k+q,�ck�(bq + b†
�q) . (6.41)

Hereby, b†q or bq are the phonon creation or annihilation operators and !Q the energy of the CDW phonon.
The electron phonon coupling is controlled by g · gk with strength g and momentum dependence gk.

To simplify the calculation, we will make the following assumptions. We consider a 2d square lattice
with a tight-binding dispersion and nearest-neighbor hopping t at half-filling, namely ✏k = �2t(cos kx +

cos ky). As it was shown in [31], a finite chemical potential leads to a qualitative similar result. Choosing
Q =

⇣
⇡ ⇡

⌘
we have perfect nesting and a commensurate CDW with k + 2Q=̂k where ✏k+2Q = ✏k and

✏k+Q = �✏k. We assume an s-wave superconductor with fk = 1 and an anisotropic s-wave CDW with
gk = | cos kx � cos ky|.

We start from the action of the system, where we introduce a CDW order parameter Dk = Dgk with
D = g hbQ + b†

�Qi and the superconducting order parameter � using a Hubbard-Stratonovich transforma-
tion. Details of the calculation can be found in Appendix D.4. Please note that we neglect here the Coulomb
interaction and phase fluctuations as we have shown in Sec. 6.2.4 that they do not affect the phase signature.
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Figure 6.6: Collective modes in the picture of the free energy. (a) Higgs and CDW mode. The Higgs
mode is the amplitude fluctuation of the superconducting order parameter and the CDW mode
the amplitude fluctuation of the CDW order parameter corresponding to the renormalized CDW
phonon. (b) Higgs and Bardasis-Schrieffer mode. The Bardasis-Schrieffer mode is the amplitude
oscillation of the subleading pairing channel orthogonal to the amplitude (Higgs) oscillation of
the dominant pairing channel.

Furthermore, in the half-filled case, as considered here, its influence vanishes completely as the system has
perfect particle-hole symmetry [31].

After integration of the fermions and expansion of the action at Gaussian level for amplitude fluctuations
�(t) = �+ ��(t) and D(t) = D + �D(t), the effective fourth order action reads

S(4) =
1

2

1

�

X

i!m

 
�T (�i!m)M(i!m)�(i!m) + �T (�i!m)b(i!m) + b>(�i!m)�(i!m)

!
(6.42)

with

�T (�i!m) =
⇣
��(�i!m) �D(�i!m)

⌘
, (6.43a)

M(i!m) =

 
H�1(i!m) ��D(i!m)

�D�(i!m) � 1
g2

P�1(i!m)

!
, (6.43b)

b(i!m) = �
X

ij

A2
ij(i!m)

 
�ij

�A2(i!m)

�ij

DA2(i!m)

!
, (6.43c)
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where H is the Higgs propagator and P the renormalized Phonon propagator. It is defined as

P�1(i!m) = P�1
0 (i!m) � g2�DD(i!m) (6.44)

with the bare phonon propagator P0 = �2!Q/(!2
Q

� (i!m)2) and �DD the susceptibility describing the
influence of the CDW. The susceptibility on the off-diagonal in M leads to a coupling between Higgs and
CDW and the expression is equivalent to the coupled oscillator system Eq. (6.29) in the previous section.
An integration of the amplitude fluctuations finally leads to

S(4) =
1

2

1

�

X

i!m

b>(�i!m)M�1(i!m)b(i!m) (6.45)

with

M�1 =

 
H̃ g2��DPH̃

g2�D�P̃H �g2P̃

!
(6.46)

where we identify the renormalized Higgs and phonon propagator as shown diagrammatically in Fig. 6.5(d)

H̃ =
1

H�1 + g2��D�D�P
, (6.47a)

P̃ =
1

P�1 + g2��D�D�H
. (6.47b)

The expression of the action follows exactly the general structure as shown in the previous section and the
resulting diagrams are the ones shown in Fig. 6.5(a)-(c).

Let us analyze the result in more detail. First, we evaluate the expression for the bare Higgs propagator.
One finds

H(!) /
p

4�2 + 4D2 � !2

4�2 � !2
. (6.48)

For D = 0, we would retain expression Eq. (6.17). However, for finite CDW gap D, the Higgs mode energy
2� no longer coincides with the quasiparticle excitation gap�+ D and, as already pointed out by [31], the
Higgs mode becomes stable as its energy is below the gap. This has consequences for the pole structure, as
the Higgs mode now has a simple pole without square root such that we can expect a ⇡ phase shift when
varying the driving frequency ! from below to above the Higgs mode energy.

The CDW phonon propagator can be evaluated and reads

P (i!m) = � 2!Q

⌦2
Q

� (i!m)2
(6.49)
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with

⌦2
Q = 4g2!Q

X

k

g2k
4D2

k � (i!m)2

Ek(4E2
k � (i!m)2)

tanh(�Ek/2) . (6.50)

The phonon propagator has a simple pole leading to a phase change of ⇡.
Assuming linear polarized light in x-direction as in Sec. (6.2.3), we can write the action as

S(4) =
1

2

Z
d!K(4)(!)A2(�!)A2(!) , (6.51)

where the kernel is given by K(4) = �H + �P + �M with the Higgs (H), phonon (P) and mixed (M)
contributions

�H = �2
A2�H̃ , (6.52a)

�P = �g2�2
A2D

P̃ , (6.52b)

�M = g2H̃P (�A2��A2D��D + ��A2�DA2�D�) . (6.52c)

It has the same structure as Eq. (6.39c) introduced as the general response for coupled modes. With the
insight of the previous sections, we can expect an antiresonance behavior with a negative phase change of ⇡
in between the two resonances where a phase change of positive ⇡ should occur.

To confirm, we calculate numerically the total THG response as function of frequency and temperature.
The temperature dependence is necessary to compare with experimental results where only the temperature
can be varied for fixed driving frequency. The calculation for a set of parameters � = 2.5 meV, !0 =

15 meV, D = 3 meV, t = 10 meV, ! ! !+i0.1 meV is evaluated on a 2d grid with 2000⇥2000 points and
shown in Fig. 6.7. Hereby, the CDW phonon energy is above the Higgs mode energy. The top row shows
the THG intensity, and the bottom row the THG phase. The first column is a 2d plot of the THG signal
as function of frequency and temperature. Thus, vertical cuts in this plot, shown in the second column,
correspond to varying the frequency for fixed temperature and horizontal cuts, shown in the third column,
correspond to varying the temperature for fixed frequency.

The result fulfills our expectation of the previous general analysis. Looking at the 2d plot in the first
column, we can see the Higgs mode as a sharp resonance peak which follows the temperature dependence
of the gap. However, due to the coupling to the CDW, the energy of the Higgs mode is renormalized and
shifted to lower frequencies. This resonance peak is accompanied by a positive phase jump of ⇡ as the Higgs
mode is a stable mode below the total gap as discussed before. At a slightly higher energy, we observe an
antiresonance behavior with a dip in the amplitude and a negative phase jump of ⇡. At higher energy, we
observe a second resonance peak at the renormalized CDW phonon frequency with an associated positive
phase jump of ⇡. This resonance peak follows the temperature dependence of the CDW gap. Please note,
due to the residual broadening, the positive phase change at the Higgs mode and the negative change at the
antiresonance is slightly lower than ⇡.

The temperature dependence of both modes is similar and follow roughly a quarter circle as can be
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Figure 6.7: Intensity (top row) and phase (bottom row) of THG signal in the coexisting superconduct-
ing and CDW state as function of temperature and frequency. The first column shows the full
temperature and frequency dependence. The second column shows the frequency dependence
for selected temperatures (vertical cuts). The third column shows the temperature dependence
for selected frequencies (horizontal cuts).

seen in the left column in Fig. 6.7. Thus, vertical cuts along the frequency and horizontal cuts along the
temperature reveal, in principle, the same information. Resonance peaks and phase changes are visible
in both signals. Yet, obtaining single cuts at unfavorable positions, e.g., in between the modes, or limited
variation range of parameters might miss several features. Experiments with a large variation of temperature
and frequency are therefore necessary to reveal the full information.

6.5 Higgs and Bardasis-Schrieffer mode
As a second example, we consider a superconducting system where the ground state is dominated by one
symmetry, yet fluctuations in a subleading pairing channel are allowed. These fluctuations are known as
Bardasis-Schrieffer modes [18, 151] and might exist for example in iron-based superconductors [99, 100,
135], where multiple pairing instabilities occur on different bands. While most studies investigated the
signature of a Bardasis-Schrieffer mode in Raman spectra, recent work has shown that such modes can also
be excited with THz light [114]. This mode is schematically shown in Fig. 6.6(b) and will be discussed in
the following.

Here, we will consider an s-wave ground state and allow fluctuations in the d-wave channel. We use the
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BCS Hamiltonian in Eq. (6.8) with a sum of separable pairing interactions

Vk,k0 = Vsf
s

kf s

k0 + Vdf
d

kfd

k0 (6.53)

with the (anisotropic) s-wave symmetry f s

k = (cos kx + cos ky)/2 and d-wave symmetry fd

k = (cos kx �
cos ky)/2. Choosing ✏k = �2t(cos kx + cos ky) � µ with t = 6 meV, we solve the gap equations

�i = Vi

X

k

f i

k
�k

2Ek
(6.54)

with �k =
P

i
�if i

k for i = s, d for varying Fermi level µ and symmetry ratio Vd/Vs. This phase diagram
is shown in the Appendix in Fig. D.1. In the following, we choose parameters µ = �12 meV, Vd = Vs

and � = 2 meV, where the ground state is s-wave but still close to the d-wave transition. The residual
broadening is ! ! ! + i0.05 meV. Please note, for the chosen parameters, i.e. the anisotropic s-wave and
the energy dispersion, the maximum of the gap at the Fermi level is �max ⇡ 1 meV, such that the Higgs
mode energy is at !H ⇡ 2�max and not at !H = 2�.

If the system is excited, we allow fluctuations in both symmetry channels

�s(t) = �s + ��s(t) , (6.55a)

�d(t) = i��d(t) . (6.55b)

Hereby, ��s(t) corresponds to the usual Higgs mode of the dominant symmetry channel, while ��d(t) are
amplitude fluctuations of the subleading channel orthogonal, i.e. in the imaginary axis direction. This is the
Bardasis-Schrieffer mode. As shown in [151], subleading fluctuations in the parallel or real channel do not
lead to a finite energy mode.

After integrating out the fermions (see Appendix D.5), we obtain the same structure of the effective
action as Eq. (6.42) with

�T (�i!m) =
⇣
��s(�i!m) ��d(�i!m)

⌘
, (6.56a)

M(i!m) =

 
H�1(i!m) ���B(i!m)

��B�(i!m) B�1(i!m)

!
, (6.56b)

b(i!m) =
X

ij

A2
ij(i!m)

 
��ij

�A2(i!m)

�ij

BA2(i!m)

!
(6.56c)

where H(i!m) is the usual Higgs propagator and B(i!m) the Bardasis-Schrieffer propagator defined as

B�1(i!m) =
2

Vd

+ �BB(i!m) . (6.57)
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The susceptibilities are defined as

�BB(i!m) =
X

k

(fd

k)2X22(k, i!m) , (6.58a)

��B(i!m) =
X

k

f s

kfd

kX12(k, i!m) , (6.58b)

�ij

BA2(i!m) =
X

k

1

2
fd

k@
2
ij✏kX23(k, i!m) . (6.58c)

with X↵� defined in Eq. (6.13). In analogy to the previous sections, the fluctuations are integrated out which
leads to

S(4) =
1

2

1

�

X

i!m

⇣
b>(�i!m)M�1(i!m)b(i!m) +

X

ijkl

A2
ij(�i!m)A2

kl
(i!m)�ijkl

A2A2(i!m)
⌘

(6.59)

with

M�1 =

 
H̃ ��BH̃B

�B�H̃B B̃

!
(6.60)

and the renormalized propagators

H̃ =
1

H�1 � ��B�B�B
, (6.61a)

B̃ =
1

B�1 � ��B�B�H
. (6.61b)

For monochromatic, linear polarized light with polarization angle ✓, the THG current parallel to the light
polarization is given by (see Appendix D.5)

j(3)
k

/ (cos4 ✓ + sin4 ✓)Kxx(2⌦) + 2 sin2 ✓ cos2 ✓Kxy(2⌦) (6.62)

with the kernel K(4)
ij

= �H +�B +�M +�Q and the susceptibilities for the Higgs (H), Bardasis-Schrieffer
(B), mixed (M) and quasiparticle (Q) contribution

�H = �ii

�A2(�!)�jj

�A2(!)H̃(!) , (6.63a)

�B = �ii

BA2(�!)�jj

BA2(!)B̃(!) , (6.63b)

�M = �H̃(!)B(!)
h
�ii

A2�(!)��B(!)�jj

BA2(!) + �ii

A2B
(!)�B�(!)�jj

�A2(!)
i
, (6.63c)

�Q = �iijj

A2A2(!) . (6.63d)

The response has again the same structure of coupled modes as discussed before.
To get a first insight into the Bardasis-Schrieffer mode, we evaluate the expression for the propagator

analytically for T = 0 and assuming a constant normal state density of states at the Fermi level. One obtains
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Figure 6.8: THG intensity (top row) and phase (bottom row) for Higgs and Bardasis-Schrieffer mode
system for two light polarizations, with respect to the crystal axis, ✓ = 0 (left column) and
✓ = ⇡/4 (right column). The individual contributions are shown separately as quasiparticles
(Q), Higgs (H), Bardasis-Schrieffer mode (B), and total response (T). The Higgs and Bardasis-
Schrieffer modes are scaled to be visible.

for continuum implementation with density of states � at the Fermi surface (see Appendix D.5)

B(!) =

p
4�2 � !2

⇣
2
Vd

� 2
Vs

⌘p
4�2 � !2 � 2!� sin�1

�
!

2�

� . (6.64)

Using these simplification, one can see that for Vd ! Vs the pole of the propagator shifts to zero, while for
Vd ! 0 the pole approaches 2�. Furthermore, due to the

p
4�2 � !2 term in the numerator, the expression

is always zero at ! = 2�, which leads to a negative phase change of ⇡/2. Thus, we expect a positive phase
change of ⇡ at the Bardasis-Schrieffer mode energy below 2� and a negative phase change of ⇡/2 at 2�.

As the coupling term ��B contains the product of the two symmetry functions f s

kfd

k , which are or-
thogonal, the term vanishes, and the Higgs and Bardasis-Schrieffer modes are not coupled but contribute
individually to the response. However, for strong pulses beyond the Gaussian level, as used in pump-probe
experiments, a finite coupling between Higgs and Bardasis-Schrieffer mode can exist [114]. In addition, due
to the symmetry function fd

k in �ij

BA2 , the coupling strength of light to the Bardasis-Schrieffer mode will
depend on the polarization. For our band structure, ✓ = ⇡/4 will correspond to the A1g symmetry, such that
we expect the d-wave (B1g) Bardasis-Schrieffer mode to vanish. This polarization sensitivity has also been
discussed in [114].

Next, we evaluate the THG response at T = 0 numerically for two different polarization angles ✓ =
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Figure 6.9: Intensity (top row) and phase (bottom row) of total THG signal for Higgs and Bardasis-
Schrieffer mode scenario as function of temperature and frequency with a polarization angle
✓ = 0 analogous to Fig. 6.8(a,b). The first column shows the full temperature and frequency
dependence. The second column shows the frequency dependence for selected temperatures
(vertical cuts). The third column shows the temperature dependence for selected frequencies
(horizontal cuts).

0,⇡/4 and show the individual contributions in Fig. 6.8. As we have anticipated, there is no coupling
between Higgs and Bardasis-Schrieffer mode and the mixed contribution is zero (not shown). Thus, the
quasiparticle (blue curve) and Higgs (red curve) response is the same as in the pure system discussed in
Sec. 6.2.3. The Higgs contribution is polarization independent, while the quasiparticle contribution gets
reduced for ✓ = ⇡/4. The Bardasis-Schrieffer (green curve) mode has a strong polarization dependence.
For ✓ = 0, the expected phase behavior originating from the Bardasis-Schrieffer propagator B(!) is visible.
At the resonance energy a positive ⇡ phase change occurs and at the energy of the Higgs mode a negative
⇡/2 phase change occurs. The intensity shows a strong peak at the Bardasis-Schrieffer resonance. The small
peak at the Higgs mode energy is a result of the susceptibility �BA2 . For ✓ = ⇡/4, the Bardasis-Schrieffer
mode is not excited.

Having no coupling between the modes, the resulting phase signature is influenced only by the interfer-
ence of the pure, individual contributions. The total THG signal (yellow curve) consists of two resonance
peaks at the original, unrenormalized frequencies each accompanied by a positive phase change. In between
we see an antiresonance behavior with a dip in the intensity and a negative phase change.

In analogy to the previous section, we also calculate the frequency and temperature dependence of the
total THG signal. The result is shown in Fig. 6.9. As before, the temperature dependence follows roughly a
quarter circle (left column). Thus, both vertical and horizontal cuts along the frequency or temperature axis
show a similar result and the resonance and antiresonance behavior is visible in both cases.
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6.6 Conclusion
In this chapter, we have investigated the phase signatures of the third-harmonic (TH) signal generated by
driving superconductors with THz light. Hereby, the phase of the oscillatory TH signal is measured with
respect to the phase of the first-harmonic. While it is well known that resonances in the intensity of the
signal occur if the driving frequency matches with the energy of intrinsic modes, here we have shown that
the phase change is a robust feature as well and additionally encodes intrinsic properties of the system.

From a classical point of view, the resonance peak of a driven oscillator is accompanied by a positive
phase change of ⇡. This phase signature is more robust against damping than the peak itself, as it is still
observable even if the peak is heavily suppressed. Coupled modes lead to antiresonance behavior where the
interference of driving force and coupling leads to a dip in the oscillation amplitude and a negative phase
change of ⇡. Usually, the antiresonance is understood as a feature of a single oscillator which is externally
driven and coupled to an undriven second oscillator. Yet, for oscillators which are both driven but uncoupled
a similar feature also occurs in the superposition of the oscillation amplitudes as a destructive interference
of two oscillations.

In a microscopic BCS model for superconductors, the amplitude (Higgs) mode can be driven by a
nonlinear, quadratic process such that the effective driving frequency is doubled which leads to an induced
third-harmonic current. This driving of the Higgs mode is similar to a classical oscillator, yet the microscopic
details lead to a modification of the phase signature.

First of all, as the energy of the Higgs mode coincidences with the quasiparticle excitation energy at the
gap 2� it is intrinsically damped. This leads to a propagator with a square root pole structure such that the
phase change across the pole is reduced to ⇡/2. Secondly, in the microscopic theory, frequency-dependent
susceptibility terms occur which govern the coupling of light to the condensate. These terms are missing in
the classical theory and can, in principle, modify the phase signature of the observed signal. In the clean
limit, the influence of the diamagnetic coupling terms is negligible as they only contribute a small drift
above 2� such that the total phase response is dominated solely by the propagator. Yet, in the dirty limit,
the paramagnetic coupling terms modify the phase signature strongly and approximately restore the ⇡ phase
change. Finally, in addition to the Higgs mode response, quasiparticles contribute to the TH signal as well
which also show a ⇡/2 phase signature.

Considering long-ranged Coulomb interaction, the TH response of Higgs and quasiparticles is renor-
malized. Yet, one finds that these modifications do not change the phase signature. Thus, in a BCS super-
conductor one can expect a ⇡/2 phase change in the clean limit and a ⇡ phase change in the dirty limit at
the resonance frequency.

If in addition to the Higgs mode other modes exist, the coupled mode scenario with the antiresonance
behavior is applicable. Yet, again, microscopic details may modify the classical analysis. To get some
insight, we investigate two specific scenarios: A coupling of the Higgs mode to a charge density wave
(CDW) and a superconducting system which additionally hosts a Bardasis-Schrieffer mode, an amplitude
fluctuation of a subleading pairing channel.

In the superconductor-CDW scenario, the propagator of the Higgs mode itself is modified as the energy
of the Higgs mode no longer overlaps with the total energy gap of the system which consists of the super-
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conducting and CDW gap. Therefore, the propagator obtains a proper pole, and the Higgs mode becomes
stable. This restores the usual ⇡ phase change at the Higgs mode energy. In this system, both modes are
driven by light and additionally couple to each other such that an antiresonance effect is expected both from
the usual scenario but also due to the interference of the individual contributions. The structure of the ana-
lytically evaluated response exactly corresponds to the classic coupled oscillator system. An evaluation of
the response as function of frequency and temperature shows the antiresonance behavior and thus, acts as
fingerprint of the existence of two modes.

The second scenario with the Bardasis-Schrieffer mode serves as an example of two uncoupled modes.
As the Bardasis-Schrieffer mode is a fluctuation of a subleading pairing channel orthogonal to the dominant
pairing channel, the coupling element vanishes. Nevertheless, the superposition of the individual contribu-
tions leads to an antiresonance behavior where a dip in the intensity and a negative phase change occurs.

The considered scenarios are of course not exhaustive but serve as a proof-of-principle how a careful
examination of the THG signal phase gives insight about the existence and nature of collective modes.
Furthermore, these scenarios may be applicable in real systems. The superconductor-CDW scenario is
relevant for example for NbSe2, where superconductivity and CDW coexists [31, 107] but might also be
relevant for cuprates, where an antiresonance behavior was observed in recent THG experiments [37]. On
the other hand, Bardasis-Schrieffer modes might exist in iron-based superconductors. As our study shows,
this coupled mode scenario in a microscopic theory is as generally applicable as in the classic theory. Thus,
we expect that it can describe any other collective mode including Leggett modes in multiband systems
[116], Josephson-Plasma modes in layered systems [51], Carlson-Goldman modes close to the transition
temperature [13, 30, 137] or generally phonon and magnon excitations in the THz regime.

One issue one should investigate in more detail in future, is the influence of impurities in the coupled
modes scenario. We generally expect that impurities will not modify the antiresonance behavior, i.e., the
negative phase change, as this seems to be an universal feature independent of the exact properties of the
involved modes. As the paramagnetic coupling terms may modify the usual, positive phase change of
the individual modes, a quantitative change might be expected. One feature we expect to change is the
polarization dependence. It was shown in previous studies [142, 147, 157] that the polarization dependence
of the Higgs mode and quasiparticles is changed by varying the impurity strength. However, as this effect is
model dependent, one cannot make a general prediction for different modes. A detailed calculation in this
matter is beyond the scope of this chapter.

So far, THG experiments on superconductors have only been performed in a setup where the temperature
was varied to reach the resonance condition [37, 86, 104]. As our calculation shows, the resonance and
antiresonance signature of the coupled modes is also visible in this case. Yet, to obtain a full picture, it
would be necessary to obtain full temperature and frequency data to map out the temperature and frequency
dependence of the modes. A further experimental difficulty in this case is the extraction of the phase from
the measured signal. As the screening of the THz light is temperature dependent, the first-harmonic signal
might be shifted such that a comparison of the relative TH phase could be unreliable. While the phase
change is generally more robust than resonance peaks as a signature, strong damping may decrease or wash
out the antiresonance behavior, especially if a resonance and antiresonance are positioned close to each
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other.
To conclude, we have shown that the phase of the THG signal is an interesting quantity to study as it

serves as a signature of microscopic details and coupled modes in superconductors. It is a further step in the
new field of Higgs spectroscopy and extracting phase information in future experiments will help to reveal
more details of the investigated systems.
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Chapter 7

Incoherent tunneling and topological
superconductivity in twisted cuprate
bilayers

In the previous chapter, we studied the phase response of the THG signal in a generic model with multiple
collective modes. In the present chapter, we will shift our focus to a specific material system with two order
parameters: twisted bilayers of cuprate superconductors that spontaneously break time reversal symmetry.
In the first part of this chapter we will examine the effect of impurities on the phase diagram of the cuprate
bilayers. In the second part of this chapter we will study the general properties of the collective mode
spectrum in the absence of impurities, without reference to a specific experimental techniques.

Twisting two monolayers of a high-Tc cuprate superconductor can engender a chiral topological state
with spontaneously broken time reversal symmetry T . A crucial ingredient required for the emergence
of a gapped topological phase is electron tunneling between the CuO2 planes, whose explicit form (in
an ideal sample) is dictated by the symmetry of the atomic orbitals. However, a large body of work on
interlayer transport in cuprates indicates the importance of disorder-mediated incoherent tunneling which
evades symmetry constraints present in an idealized crystal. This arises even in the cleanest single-crystal
samples through oxygen vacancies, in layers separating the CuO2 planes, introduced to achieve the hole
doping necessary for superconductivity. Here we assess the influence of incoherent tunneling on the phase
diagram of a twisted bilayer and show that the model continues to support a fully gapped topological phase
with broken T . Compared to the model with a constant, momentum conserving interlayer coupling, the
extent of the topological phase around the 45� twist decreases with increasing incoherence, but remains
robustly present for parameters likely relevant to Bi2Sr2CaCu2O8+�.

7.1 Introduction
Twisted 2D van der Waals materials have emerged as an elegant platform to engineer and study correlated
quantum phases with unprecedented experimental control [11, 15, 29, 118, 133, 169]. At certain magic
angles, the electronic structure of graphene is deformed into exceedingly narrow bands in a moiré Brillouin
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Figure 7.1: Illustration of twisted cuprate bilayers.

zone. The small bandwidth yields pronounced correlation effects and generally makes multiple quantum
phases experimentally accessible in a single fabricated device through application of electrostatic gating
[29].

Recently, a related paradigm of twisted bilayer structures was introduced that does not rely on engi-
neering of correlated flat bands but can produce interesting new phases by combining known non-trivial
properties of constituent monolayers [28, 165]. It was shown that two cuprate monolayers, stacked at a twist
angle ✓, can give rise to a spontaneously time-reversal symmetry broken state by virtue of simple electron
tunneling between the layers. Most notably, in a finite range of angles around the critical twist ✓c = 45�,
the ground state of an otherwise nodal d-wave superconductor becomes fully gapped and acquires a finite
Chern number. At exactly 45� the gapped phase persists up to the native critical temperature of the cuprate
monolayer, thus furnishing the first known proposal of a high-Tc topological superconductor.

The angle of 45� may be viewed as a magic angle for twisted bilayer cuprates. It is, however, important
to stress the differences between the magic angles in bilayer graphene and bilayer cuprates. While in twisted
bilayer graphene, electronic bands are flattened at the magic angle due to interlayer coupling, in twisted
cuprates the magic angle marks a change in crystal symmetry resulting from the twisting of the layers,
highlighting the distinct and separate nature of these two phenomena.

Pioneering experimental work on very thin twisted Bi2Sr2CaCu2O8+� (BSCCO) flakes succeeded in
fabricating bilayers at various twist angles [181]. Measurements of the interlayer Josephson current, Fraun-
hofer interference patterns and half-integer Shapiro steps in samples close to the 45� are suggestive of a
T -broken phase [158]. Strong twist angle dependence of the critical current has been reported elsewhere
[90].

It was later noted by Song, Zhang and Vishwanath [148] that twist angle and momentum dependence of
the interlayer tunneling matrix element gk, arising from the symmetry of the copper active orbitals, can play
an important role in the emergence of the T -broken phase. As argued in Refs. [5, 173], the matrix element
has the form

gk = g0 cos 2✓ + g1µk(✓/2)µk(�✓/2), (7.1)

which we generalized here to a twisted bilayer geometry following [148]. The g0 term represents the direct
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tunneling between copper dx2�y2 orbitals while the g1 term describes the ‘oxygen-assisted’ tunneling pro-
cess with form factor µk(✓) = [cos (R✓kx) � cos (R✓ky)]/2, where R✓ is the rotation matrix. Crucially, the
part of gk that remains non-vanishing at ✓ = 45� contains the form factor µk that suppresses tunneling at
the nodes of the d-wave order parameter. While spontaneous T -breaking is still found to occur in this case,
the ground state remains gapless and hence does not support the gapped topological phase with non-zero
Chern number predicted in Ref. [28].

In the present chapter we consider the twisted bilayer problem within a family of incoherent tunneling
models [56, 130–132, 159] in which the transfer of electrons between two adjacent CuO2 layers is mediated
by impurities that are inherently present in the otherwise inert ‘spacer’ layers. Such incoherent tunneling
models have been shown to yield better agreement with experimentally measured c-axis transport properties
of nominally clean single-crystal cuprates than models where momentum is strictly conserved [39, 144].
Because random impurities break all spatial symmetries of the system, the form of the interlayer coupling is
required to respect the crystal symmetry constraints only on average. One may thus expect that incoherent
tunneling models will evade the difficulties noted above and produce a fully gapped topological phase near
✓ = 45�.

Based on a perturbative diagrammatic treatment within a simplified continuum model we show that the
incoherent tunneling model indeed delivers the same phenomenology as the coherent model of Ref. [28]
while respecting the point group symmetries of the physical system on average. Importantly, we show
that for sufficiently slowly varying disorder the ground state near ✓ = 45� is gapped, T -breaking and
topologically non-trivial. These results are then confirmed in a more realistic setting through a full numerical
diagonalization of a lattice model with parameters chosen to reproduce the actual cuprate band structure
in the vicinity of the Fermi level. The effect of interface inhomogeneity on Josephson effects in twisted
bilayers was recently considered in Ref. [165] where it was found that sufficiently strong disorder can leave
the system in a topologically trivial state around 45�. This is consistent with our model.

7.2 Group theoretical discussion of T -breaking in twisted cuprates
The phenomenology of T -breaking in twisted cuprates can be captured by a two-component Landau-
Ginzburg theory with complex order parameters  1,  2 given by

F = ↵
�
| 1|2 + | 2|2

�
+ �1

�
| 1|4 + | 2|4

�

+ � ( ⇤

1 2 +  ⇤

2 1) + �2| 1|2| 2|2 + �3
�
( ⇤

1)
2 2

2 + ( ⇤

2)
2 2

1

�
. (7.2)

Writing  1 = | 1|ei(✓+'/2),  2 = | 2|ei(✓�'/2) the '-dependent part of free energy is

F(') = �� | 1 2| cos'+ �3 | 1 2|2 cos 2'+ const . (7.3)

Time reversal symmetry will be spontaneously broken whenever the free energy develops two minima that
are related by T : ' ! �'. The Josephson coupling term, proportional to cos', has only a single minimum
at ' = 0 or ⇡, depending on the sign of �. Presence of the fourth order term proportional to �3 cos 2' is,
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therefore, necessary to break T . Additionally, one must have �3 > 0, since otherwise the two minima of
�3 cos 2' occur at ' = 0,⇡ which map to themselves under T . In Ref. [28] it was argued that �3 is indeed
positive based on microscopic mean-field calculations. We confirm that �3 remains positive in the case of
incoherent interlayer coupling in Sec. 7.3.2.

Given �3 > 0, the fourth order term is minimized at ' = ±⇡/2. Then, T -breaking occurs as a
consequence of the competition among the two terms in Eq. (7.3). Specifically, T will be broken when

4�3 | 1 2| > |�| . (7.4)

A special situation clearly arises if symmetry requires � to vanish; then Eq. (7.4) is guaranteed to be satisfied
for any �3 > 0.

Next, we describe a set of symmetry requirements under which the coefficient � vanishes, and the
system is forced into the T -broken phase. The order parameters  1, 2 transform according to irreducible
representations (irreps) of the point group of the crystal. Two cases must be distinguished: (a)  1 and  2

transform under two different 1D irreps or (b) ( 1, 2) transform under a 2D irrep [12, 127]. The latter case
is considered a generic pathway to T -breaking that occurs immediately upon entering the SC phase. The
former case generically yields two successive phase transitions with distinct critical temperatures, Tc and
T 0
c, with T -breaking setting at the lower one T 0

c. Note that T 0
c can be zero or negative, in which case the

T -broken phase is physically not accessible [12, 76]
The point symmetries of an untwisted cuprate bilayer form the point group D4h. Here, the dx2�y2 and

dxy order parameters transform according to the 1D irreps B1g and B2g, respectively. At arbitrary twist
angle, inversion and mirror symmetries are broken and the point group reduces to D4 with d-wave irreps B1

and B2. Thus, given the d-wave nature of the order parameter in cuprates, only pathway (b) to T -breaking
is possible and no definite symmetry-based arguments can be made.

Precisely at 45�, however, the symmetry group is enlarged to the non-crystallographic point group D4d

which contains an additional 8-fold improper rotation S8 of the quasicrystalline lattice. Most notably,
among the irreps of D4d only the 2D E2-irrep supports d-wave order. Thus, the Josephson coupling term
�B | 1 2| cos'must necessarily be absent at 45�. This is because it descends from the �B( 1 ⇤

2+c.c.)/2

term in the free energy which is not invariant under S8 : ( 1, 2) ! ( 2, � 1). Thus, T -breaking can be
viewed as a fundamental consequence of the point group at ✓ = 45�.

We summarize our key arguments as follows: Two-component order parameters that transform under a
2D irrep naturally break T . At 45� twist angle, because the point group of the bilayer is D4d, any d-wave
order parameter must necessarily transform under a 2D irrep. Therefore, the superconducting state breaks
T right below Tc.

The phase diagram of twisted bilayer cuprates derived in Ref. [28] can then be understood from conti-
nuity arguments. It is expected that the T -breaking phase will not be limited to the exact 45�-twist but will
extend to a range of twist angles in its vicinity. Since at twists slightly away from 45� the order parame-
ters transform under two 1D-irreps, two distinct critical temperatures are permitted and T -breaking will no
longer coincide with the critical temperature Tc of the spontaneous U(1)-symmetry breaking. This naturally
leads to the wedge-shaped T -broken domain in the phase diagram explicitly computed in Ref. [158]. Our
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symmetry arguments will be manifest in a microscopic description of the bilayer system.

7.2.1 Transition splitting for orthorhombic symmetry

Many cuprate superconductors undergo a phase transition from the tetragonal lattice structure with point
group D4h to an orthorhombic unit cell of reduced symmetry D2h as a function of temperature or stoi-
chiometry [12].

The point group of twisted bilayers is D2 for all twist angles in the orthorhombic case. At 45�, the
transition from D4d in the tetragonal case to D2 in the case of orthorhombic layers implies splitting of the
two-dimensional irrep into

E2 ! A � B1 . (7.5)

Thus, the two superconducting gaps transform under two one-dimensional irreps and each have their indi-
vidual critical temperatures Tc1, Tc2. We assume now, without loss of generality, that Tc1 > Tc2. Then, Tc1

is expected to approximately match Tc of monolayer cuprates. Topological superconductivity requires con-
densation of two order parameters and will only set in upon cooling the sample below Tc2. Orthorhombic
deformation hence precludes a topological T -broken phase all the way up to Tc. From continuity arguments
one may nevertheless expect the critical point Tc2 of the topological phase transition to be close to Tc.

7.3 Incoherent tunneling

7.3.1 Background and model definition

Experimental measurements of the c-axis transport in bulk crystals of BSCCO and other cuprates, sum-
marized for example in Ref. [39], have been interpreted as evidence of interlayer tunneling dominated by
disorder-mediated, incoherent processes. The c-axis superfluid stiffness, accessible through the measure-
ment of the c-axis London penetration depth [69, 122], provides particularly clear evidence. Experimentally,
the temperature dependence of the c-axis superfluid stiffness in clean single crystals was observed to follow
an approximate power-law behavior ⇢c = a � bT↵ with ↵ ' 2 at low temperatures, whereas the in-plane
stiffness showed a T -linear dependence [62]. The latter is the canonical behavior expected of a clean d-
wave superconductor, reflecting the presence of low-energy excitations with a Dirac spectrum [67]. Models
with coherent tunneling between CuO2 predict the same linear T -dependence for the c-axis stiffness [83],
in clear disagreement with experimental data. If the interlayer tunneling were dominated by the oxygen-
assisted processes (the g1 term in Eq. (7.1)) then theory predicts ⇢c = a � bT 5 [173], again at variance with
experiment.

As demonstrated in Refs. [130–132, 144] a description that captures the correct ⇠ T 2 scaling along
the c-axis (while preserving the T -linear behavior in the ab plane) can be given using the incoherent c-axis
tunneling approach. In the following we shall review the relevant model and then apply it to the problem of
a twisted bilayer.
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A minimal model of the uncoupled bilayer system consists of the second-quantized Hamiltonian

H0 =
X

kl

 †

klHkl kl (7.6)

where l = 1, 2 denotes the layer index, Nambu-Gorkov spinors  kl = (ckl", c�kl#)T . In the BCS approxi-
mation, we have

Hkl = ⇠k�z +�0

kl�x ��00

kl�y, (7.7)

with Pauli matrices �j acting in the Nambu space and �0

kl, �
00

kl denoting real and imaginary parts of the
superconducting gap function. We adopt units such that ~ = e = kB = me = a0 = 1, where mass
is measured in units of electron mass me and length scales in units of lattice constant a0. To make the
model tractable we assume a simple parabolic band dispersion given by ⇠k = k

2/2m � µ in each layer.
(In Sec. 7.4 we consider a more realistic band structure and show that it leads to similar results.) The two
superconducting d-wave order parameters are

�k1 = �ei'/2 cos(2↵k � ✓)

�k2 = �e�i'/2 cos(2↵k + ✓) , (7.8)

where ' is the phase difference and ↵k denotes the polar angle of k.
The layers are coupled by an additional term

H0 =
X

kq

�qc†k,1ck�q,2 + h.c. (7.9)

and H = H0 + H0 constitutes the full model. The lack of momentum conservation in Eq. (7.9) is the
defining feature of the incoherent tunneling models and originates, physically, from the disorder present
in the spacer layers separating the copper-oxygen planes. The disorder is captured via a set of Gaussian-
distributed random variables �q of average �q = 0 and variance given by

�⇤q�q+p =
1

N

4⇡g2

3⇤2
�p,0e

�q2
/⇤2

. (7.10)

The scale⇤ defines the characteristic momentum change that an electron undergoes when tunneling between
the two layers. The factor 1/3 is chosen to reproduce the phase diagram of the coherent model of Ref. [28]
in the limit ⇤ ! 0 for the same value of g. For simplicity we have neglected any ✓-dependence of the
interlayer coupling although we expect the randomness to be stronger in twisted samples due to the increase
in interface roughness, added strain, and moiré lattice modulations.

The above form of incoherent interlayer tunneling is consistent with all lattice symmetries because �q
vanishes on average. This constitutes the key difference to a coherent coupling of the form

P
k(g c†k,1ck,2 +

h.c.). As was pointed out in Ref. [148], at 45� twist the two participating Cu d-orbitals transform under a
2D representation of D4d and a coherent tunneling term is therefore not invariant under S8 : (ck,1, ck,2) !
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Figure 7.2: Diagrammatic expansion of the interlayer current (a) at order g2 and (b-c) at order g4. Full
lines correspond to electronic propagators G and dashed lines correspond to impurity vertices
paired by disorder average. The open circle denotes the current vertex jq defined in the main text
and impurity vertices �q are given by black dots.

(ck,2, �ck,1). It thus vanishes by virtue of the same argument as the Josephson coupling in Eq. (7.4). This
is indeed owed to the coincidence of the atomic Cu orbitals transforming under the same representation as
the superconducting order parameters.

It is instructive to consider the limit ⇤ ! 0 of the incoherent tunneling in Eq. 7.10. Here, one has
�⇤q�q+p = g2�q,0�p,0/3 and momentum is conserved in the interlayer tunneling process. Yet, ⇤ ! 0 is
not the clean limit in the sense that, in real space, it corresponds to the case where macroscopic regions
are correlated with the same random value of interlayer tunneling g/

p
3. From the viewpoint of disorder-

induced incoherence, the random values of g should only be correlated in the vicinity of an impurity which
sets the appropriate scale for 1/⇤. In the discussion below, the ⇤ ! 0 thus serves as an abstract but
convenient reference point that connects the present model to the calculations in the original work [28]. We
will refer to it as the coherent limit.

7.3.2 Free energy and phase diagram

The physics of T -breaking is captured by the '-dependence of the free energy. To determine the free energy
we begin by implementing the global gauge transformation (ck1, ck2) !

�
ck1ei'/4, ck2e�i'/4

�
which

moves the superconducting phase difference from the order parameters in Eq. (7.8) to H0 according to

H0 ! H0 =
X

kq

�qei'/2c†k,1ck�q,2 + h.c. . (7.11)

In this gauge, the disorder-averaged interlayer current is given by

J =
X

kq

iei'/2�qhc†k,1ck�q,2i + h.c. = Tr
h
jqG(k,k � q,!n)

i
,

where G(k,k0, ⌧) = hT⌧ ck(⌧)c†k0(0)i is the full imaginary time ordered Green’s function of the disordered
system and the current vertex is

jq = i�q

 
0 ei�z'/2

�e�i�z'/2 0

!
. (7.12)

103



Note that the trace is to be performed over all momenta k,q and Matsubara frequencies !n = (2n+1)⇡/�,
in addition to interlayer and Nambu indices.

From the Josephson relation J(') = 2@F(')/@' one then obtains the functional dependence of the free
energy on the interlayer phase difference ' by simple integration. We expand Eq. (7.12) up to fourth order
in g while treating H0 as a perturbation. Three different terms arise, which are diagrammatically represented
in Fig. 7.2. Panel (a) corresponds to the term

J (2)
c = Tr

h
jqG0(k � q,!n)u�qG0(k,!n)

i
(7.13)

which is quadratic in g. Here, G0(k,!n) = (i!n � Hk)�1 is the unperturbed, translationally invariant
Green’s function with Hk = diag(Hk1, Hk2) and

uq = �q

 
0 �zei�z'/2

�ze�i�z'/2 0

!
. (7.14)

is the impurity vertex. The disorder average acts on �q factors and is performed according to Eq. (7.10).
The diagrams in Fig. 7.2(b-c) represent terms of order g4:

J (4)
c = 2 Tr

⇥
jqG0(k,!n)uq0G0(k � q

0,!n)u�q0G0(k,!n)u�qG0(k + q,!n)
⇤

+ Tr
⇥
jqG0(k,!n)uq0G0(k � q

0,!n)u�qG0(k � q
0 + q,!n)u�q0G0(k + q,!n)

⇤ (7.15)

where impurity averaging is assumed but not explicitly shown for clarity of notation. Evaluating the traces,
we obtain the current of the form

J = J (2)
c + J (4)

c = Jc1(✓) sin'� Jc2(✓) sin 2' , (7.16)

with coefficients, to lowest order of g,

Jc1 = 4
X

nk

jnk (7.17)

Jc2 = 8
X

nk

j2
nk + 4

X

nkqq0

|�q|2
���q0

��2 fnk,1fnk+q+q0,1fnk+q,2fnk+q0,2 (7.18)

Here, we have defined

jnk =
⇣
fnk,1 ⇤ |�nk|2

⌘
fnk,2 (7.19)

fnk,l =
�k,i

!2
n + E2

k,l

(7.20)

and (⇤) denotes a convolution integral, ak ⇤ bk =
P

q aqbk�q. The quasiparticle dispersion of the unper-

turbed bands is given by Ekl =
q
⇠2k +�2

kl.
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Figure 7.3: Phase diagram of incoherently coupled twisted bilayer cuprates. For a given ⇤, the col-
ored, cone-shaped region breaks T . The light-red ⇤ = 0 region corresponds to the clean limit,
previously introduced in [28]. For increasing degree of momentum non-conservation ⇤, the T -
breaking phase boundaries shrink towards 45�.

From Eq. (7.16) one obtains the free energy

2F = �Jc1(✓) cos'+
Jc2(✓)

2
cos 2'+ const . (7.21)

The T -breaking phase transition occurs as a consequence of competition between cos' and cos 2' terms.
Clearly, Jc2 > 0 and the ground state acquires a finite phase difference for

2Jc2 > |Jc1|, (7.22)

where it spontaneously breaks T . From our discussion in Sec. 7.2 it follows that that Jc1 must vanish
at twist of ✓ = ⇡/4. Explicitly, one can see this result as follows. The functions Ek,l, |�k|2 transform
under the A1g irrep of D4h whereas the fk,1, fk,2 transform under B1g and B2g, respectively. We note
that convolution with the A1g-symmetric impurity distribution |�k|2 does not change the symmetry of the
convolution integral. Hence, jk transforms under B1g ⌦ B2g = A2g and all terms in Eq. (7.17) average to
zero at 45�-twist. However, j2k is A1g-symmetric and Jc2 will consequently be finite and positive. Thus, it
is clear that condition (7.22) is generally satisfied at ✓ = 45� and T will always be broken as soon as the
system enters the SC state below Tc.

We conclude that impurity-mediated tunneling must not qualitatively change the T -breaking phase di-
agram relative to the model of Ref. [28]. The incoherent tunneling, however, shifts the phase boundaries.
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As shown in Appendix E.1, Jc1 ⇠ 1/⇤ and Jc2 ⇠ 1/⇤2. Since Jc1 is only weakly dependent on ✓, and Jc1

vanishes linearly around 45� twist, it follows from Eq. (7.22) that the width of the T -breaking phase space
is proportional to Jc2(✓ = 0)/Jc1(✓ = 0) ⇠ 1/⇤. In the perfectly incoherent limit, ⇤ ! 1, the free energy
becomes independent of ' and the T -breaking phase disappears.

To quantitatively ascertain the effect of incoherent tunneling on the phase diagram, we numerically
evaluate the coefficients Jci. In principle, all Matsubara sums can be evaluated analytically, at the cost of
removing the simple convolution structure in Eq. (7.19). This leaves three remaining momentum integrals
to be numerically evaluated at complexity O(N3) where N is the number of k-points of the 2D mesh used
to perform the integrals. A more efficient approach is to exploit the convolution structure of Eq. (7.19) using
the fast Fourier transform (fft) algorithm and numerically evaluate M Matsubara frequencies, affording
evaluation of diagrams Fig. 7.2(a-b) at order O(MN log N). The crossed diagram Fig. 7.2(c) does not
possess a convolution structure. As we show in Appendix E.2, it can be evaluated at a cost of O(MN2).

The resulting phase diagram is shown in Fig. 7.3 for coupling strength g = 10.5 meV and several values
of ⇤. We see that the T -breaking phase space is largest in the coherent limit ⇤ ! 0 where it extends
between (45 ± 6)� at T = 0. Increasing ⇤ gradually reduces the extent of the T -broken phase which
eventually vanishes in the perfectly incoherent limit when ⇤ ⇠ kF , i.e., when impurity correlations are on
the scale of the lattice constant. Physically, this occurs because at this level of incoherence the Cooper pair
essentially loses all memory of its momentum structure in the process of tunneling between layers.

7.3.3 Spectral gap and topological superconductivity

Having discerned the fate of the T -breaking phase in the presence of impurity-mediated tunneling we pro-
ceed to examine the topological properties of the resulting ground state. In the clean limit, T -breaking
establishes a topological phase with Chern number C = 4 [28]. Since the disordered model is connected to
the clean case by taking the limit ⇤ ! 0, it is reasonable to expect the same C = 4 phase as long as the
quasiparticle gap does not close.

Here, we show that these expectations are indeed met. To this end, we evaluate the Green’s function

G(k,!n) = [G0 � ⌃(k,!n)]�1 (7.23)

in the Born approximation where

⌃⌧⌧ 0 =
X

q

uq G0(k � q,!n) u�q = ��⌧,⌧ 0 fk,⌧̄ (i!n + ⇠k�z + ei⌧�z'�k,⌧̄�x) ⇤ |�k|2 . (7.24)

with layer-indices ⌧ = ±1. Here, we regularized the continuum model on a square lattice using

⇠k = �2t(cos kx + cos ky) � µ

�k,⌧ = �[(cos kx � cos ky) cos ✓ + ⌧ sin kx sin ky e�i' sin ✓] (7.25)

with parameters chosen to match the continuum model.
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Figure 7.4: Bulk (a-b) and boundary (c-d) spectrum for incoherently coupled cuprate bilayers with
⇤ = 0 (left) and ⇤/kF = 0.08 (right) at 45� twist angle. The spectrum shows chiral edge modes
traversing the bulk gap which is reduced but finite for increased ⇤. Edge modes, which are in
fact degenerate, indicate a Chern number C = 4.

Following the method introduced in Ref. [126], we compute a spatially resolved Green’s function

GB(x, ky,!n) = G(x, ky) � G(x, ky)T (ky)G(�x, ky)

T (ky) =

2

4 1p
N

X

kx

G(kx, ky)

3

5
�1

(7.26)

in the presence of a strong repulsive potential at x = 0 which simulates an edge and thus allows us to
inspect the edge modes of the disordered system. We outline the method and give a derivation of Eq. (7.26)
in Appendix E.3.

In Fig. 7.4 we plot the analytically continued boundary spectral function

AB(x, ky,!) = � 1

⇡
Im [GB(x, ky, �i! + ⌘)] (7.27)

at the edge (x = 1) as well as the bulk spectral function. We clearly observe two chiral edge modes
traversing the bulk gap thus confirming the non-trivial topology of the system. The edge modes display a
degeneracy in the layer degree of freedom, suggesting that the model is in a topological phase with Chern
number C = 4. The bulk gap is reduced but remains finite as ⇤ increases.
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Figure 7.5: (a) Illustration of the geometry of the bilayer lattice model at an incommensurate angle
of ⇠ 43�. (b) Disorder averaged free energy of the bilayer at zero temperature as a function of
the phase difference. The minima 'min are situated away from zero at small disorder strengths.
(c) Dependence of the order parameter amplitude and phase as a function of temperature for
⇤̃ = 0.2. One could view it as a vertical cut at a specific twist in the phase diagram of Fig. 7.3,
with the onset of a non-zero phase marking the phase boundary.

7.4 Lattice model
So far, we have looked at the role of disorder in a continuum formulation of a twisted bilayer. The two-site
unit cell of the regularized model allowed for analytical expressions for the layer Green’s function to which
we have systematically added incoherent interlayer tunneling and calculated the free energy up to fourth
order in g. Another approach to tackle the problem and corroborate the results in a more general setting is
to perform a BCS mean field calculation on two twisted square lattices that represent the two CuO planes.
In this case one can incorporate more realistic band structures, but it is also harder to obtain the Green’s
functions analytically using Feynman diagrams. The reason is twofold: For one, at an arbitrary twist the
lattice model is not commensurate. Secondly, at commensurate twist angles close to 45�, the moiré unit cell
contains many sites. To get around this, we perform a brute force disorder average wherein several disorder
realizations with the same microscopic parameters are taken into account. While it limits us to real space,
such a treatment is exact because all orders in perturbation theory are implicitly accounted for.

For each layer, we consider a square lattice Hubbard model with nearest neighbor density-density in-
teractions such that a mean-field decoupling produces a d-wave order parameter. Including the interlayer
tunneling processes with amplitudes gij , the bilayer is described by

H = �t
X

hiji�l

c†
i�l

cj�l � t0
X

hhijii�l

c†
i�l

cj�l � µ
X

i�l

ni�l

+
X

hijil

⇣
�ij,lc

†

i"l
c†
j#l

+ h.c.
⌘

�
X

ij�

gijc
†

i�1cj�2, (7.28)

where l is a layer index, t (t0) is the (next-)nearest-neighbor hopping amplitude, µ is the chemical poten-
tial that controls on-site particle density ni�l and �ij,l denotes the complex order parameter on the bond
connecting sites i and j on layer l. Considering a fully coherent interlayer tunneling, Ref. [28] employs a
circularly symmetric, exponentially decaying form gij = e�(rij�c)/⇢ which connects sites i and j separated
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by rij . Therein c in the interlayer separation and ⇢ is defined by the radial extent of the participating orbitals.
The twist angle ✓ between the layers determines connectivity and the strength of the interlayer tunnelings.
The free energy of this model shows a double-well structure for twist angles around 45� [28].

To incorporate incoherent processes, we introduce a random tunneling factor that vanishes on average
but encodes the correlation between different processes depending on spatial separation. That is,

gij = gR e�(rij�c)/⇢ (7.29)

where R = (ri + rj)/2 denotes the center of mass location of the hopping and

gR = 0,

gRgR0 = g2 exp

"
� ⇤̃

2

4
(R � R0)2

#
. (7.30)

Note that the correlations are treated approximately in that they depend only on the center of mass locations
R,R0 while any dependence on relative coordinates is neglected. Analogous to the parameter ⇤ in the
continuum model, ⇤̃ sets the length scale for the correlation between different tunneling amplitudes and is
indicative of disorder strength. We distinguish the two simply because of the slightly differing definitions. To
simulate the Fermi surface of optimally doped BSCCO with hole pocket around (⇡,⇡), we set t = 153meV,
t0 = �0.45t and µ = �1.35t [23]. Further, we choose c = 2.2 and ⇢ = 0.4 (in units of the lattice constant)
to set interlayer distances. The d-wave order parameters in cuprates originates in the CuO planes and the
interlayer coupling is a minor perturbation that does not influence the order parameter magnitude. In other
words, temperature dependence of the gap in each layer is independent of twist and coupling strength g,
which we peg at 20meV. Therefore, we use a � calculated self-consistently in a monolayer, which has a
maximum of ⇠ 40meV at 0K in accordance with experimental findings in cuprates [42, 47].

To look for T -breaking we examine the free energy of the system, which can be calculated from the
eigenvalues Ei of the BdG Hamiltonian (7.28):

FBdG =
X

i

Ei � 2kBT
X

i

ln [2 cosh (Ei/2kBT )] . (7.31)

In particular, for a given twist ✓ and disorder parameter ⇤̃, we draw from the distribution (7.30) and average
the free energy over 50 independent realizations. We choose a square bilayer sample as shown in Fig. 7.5(a),
but the results are independent of the shape. Further, the exact number of sites in the system depends on
the cut and the twist angle, but the free energy does not show an appreciable change beyond ⇠ 900 sites
per layer. In agreement with the continuum model, Fig. 7.5(b) shows that the presence of T -breaking free
energy minima is controlled by ⇤̃. Namely, small values of ⇤̃ support the T -broken ground state while
larger values do not.
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7.5 Collective modes
The presence of two superconducting order parameters, one for each layer, yields an intricate spectrum of
three collective modes. We will first analyze the bosonic spectrum within the Landau-Ginzburg framework.

Following the steps outlined in Sec. 2.1.2 of Ch. 2, we rewrite the order parameters  i as

 1 = ( eq + h1)e
i('eq

/2+✓1)

 2 = ( eq + h2)e
i(�'eq

/2+✓2) (7.32)

The hi, ✓i represent small fluctuations around the groundstate given by the amplitude  eq and the relative
phase difference 'eq. Explicitly, one has

'eq =

8
<

:
0 � � �⇤ (trivial)

arctan
p

(�⇤/�)2 � 1 0  � < �⇤ (topological)
(7.33)

where �⇤ = 4( eq)2�3 marks the critical point of the topological phase transition where the system sponta-
neously breaks T .

Expanding the free energy (7.2) to quadratic order around the groundstate, we compute the eigenmodes
and their respective energies. First, we consider the topological trivial region, � > �⇤. Here we obtain

F = F0 +
1

2
m�h2

� +
1

2
m+h2

+ +
1

2
m'h2

' , (7.34)

with the asymmetric and symmetric Higgs mode h⌥ and the relative phase mode ', defined by

h� = (h1 � h2) /
p

2

h+ = (h1 + h2) /
p

2

' = ✓1 � ✓2

m� = 4( eq)4 (2�1 � �2 + 2�3) + 4( eq)2(� � �⇤)

m+ = 4( eq)4 (2�1 + �2 + 2�3)

m' = 2( eq)2(� � �⇤) .

(7.35)

In the topological region, for � < �⇤, the symmetric Higgs mode mixes with the relative phase mode
according to

h� = (h1 � h2) /
p

2

h̃1 = cos(↵) h+ � sin(↵)'

h̃2 = sin(↵) h+ + cos(↵)'

m� = 4( eq)4 (2�1 � �2 + 2�3)

m̃1 = a + b

m̃2 = a � b

(7.36)

where we have defined

a = 2( eq)4(2�1 + �2) + �2/4�3

b =
q

4( eq)8(2�1 + �2 � 4�3)2 + ( eq)4(6�1 + 3�2 � 4�3)�2/�3 + �4/16�23 . (7.37)

At the phase transition, � = �⇤, we have↵ = 0, i.e., phase and amplitude sectors are decoupled. Importantly,
here, the excitation frequency of the relative phase mode vanishes.
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Near the topological phase boundary, ↵ becomes finite. We can expand the mode energies in small
deviations �⇤ � �. We find

m̃1 = m+ � 4( eq)2
(2�1 + �2)

2�1 + �2 + 2�3
(�⇤ � �)

m̃2 = 4( eq)2
(2�1 + �2 � 2�3)

2�1 + �2 + 2�3
(�⇤ � �) . (7.38)

We note that the mode energy m̃2 = 0 vanishes at � = �⇤ and then increases linearly in � close to the
transition point, within the topological region � < �⇤.

We conclude that the m̃1 mode constitutes a low-energy excitation. Within the topological region, the
system becomes fully gapped. If the collective mode is located within the single-particle gap, it cannot be
damped by quasiparticle excitations and must thus be a stable, long-lived mode. As such, it should give a
strong signal in nonlinear optical response measurements.

7.5.1 Microscopic evaluation in the coherent limit

The Landau-Ginzburg framework does not take into account the quasiparticle excitation spectrum. To an-
alyze the stability of the collective modes, we therefore need to perform a microscopic calculation. For
simplicity, we will restrict ourselves to the coherent limit ⇤ = 0 which does not require a disorder average.
Since we have seen that the overall phenomenology of the topological phase transition is stable against inco-
herence, we expect that generic features of the collective mode spectrum will also extend into the incoherent
regime.

To this end, we define the density matrix

⇢k = h †

k ki (7.39)

in the basis  †

k =
⇣
c†1k", c†2k", c1�k#, c2�k#

⌘
. Dynamics of the density matrix is governed by the equation

of motion

i@t⇢k = [Hk, ⇢k] (7.40)

�1,2 =
V

N

X

k

cos (2↵k ± ✓) Tr [(�x � i�y)(⌧0 ± ⌧z) ⇢k] /4 , (7.41)

where the second equation specifies the self-consistency condition of the superconducting gap that induces
the collective behavior. The equilibrium value of the density matrix is

(⇢eqk )ij = (U †

k)innF (Enk)(Uk)nj , (7.42)

where nF is the Fermi function and the unitary matrix U is the eigenvector transformation, Eik = U †

kHkUk,
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Figure 7.6: Collective modes energies as a function of twist angle ✓ for difference interlayer coupling
scales g. Above the critical twist, the antisymmetric Higgs mode h� and the mode m̃2, that
mostly has relative phase character, branch out from the quasiparticle continuum.

of the first-quantized Hamiltonian

Hkl = ⇠k�z +�0

kl�x ��00

kl�y + g⌧x�z . (7.43)

Within the density matrix formalism, we can extract the resonance spectrum of eigenmodes as follows.
Instead of initializing the equation of motion in the equilibrium configuration, �i = �eq

i
, we will slightly

detune the initial values from equilibrium. Explicitly, we choose�i = (1+ �0
i
+ i�00

i
)�eq

i
. When the system

is evolved in time by numerical integration of the equation of motion (7.40), the superconducting gap will
oscillate around the equilibrium configuration with the frequencies of the collective modes.

By choosing the �i according to the eigenmode basis derived in Eqs. (7.35-7.36), we can selectively
excite a single mode. For example, choosing �01 = ��02 and �00

i
= 0 will only produce relative amplitude

fluctuations h� with the characteristic frequency m�.
Figure 7.6 shows the resulting spectrum of collective modes as a function of twist angle ✓. Above

the critical twist of the T -breaking transition, the antisymmetric Higgs mode h� leaves the quasiparticle
continuum, which is shown by a green dashed line. The mode m̃2 has even lower energy. This mode is a
mix of relative phase mode ' and symmetric Higgs mode h+, but has mostly phase character. In fact, it is
a pure phase mode at ✓crit and ✓ = 45�. The last mode, m̃1, which is mostly of symmetric Higgs character
coincides with the quasiparticle continuum.

Since m̃2 and h� are subgap collective excitation, they are not affected by quasiparticle damping, and are
sharp, infinitely long-lived bosonic modes. As such they are expected to yield a distinguished signature in
the non-linear THz response. Measurement of these in-gap collective excitations could serve as a supporting
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Figure 7.7: Critical c-axis current Jc of the twisted bilayer as a function as interlayer coherence scale
⇤. Incoherence significantly reduces Jc. The color scale denotes temperature T in panel (a) and
twist angle ✓ in (b).

indication of the underlying T -broken superconducting state.

7.6 Conclusions
Twisted bilayers of high-Tc cuprates hold the potential for realizing topological superconductivity, wherein
a topological gap is spontaneously induced. As per the symmetry informed momentum space form factors,
which determine the electron hopping between interlayer Cu atoms, the tunneling amplitude vanishes along
the nodal directions and a spectral gap may not appear. In this chapter we highlight that an important aspect
to consider in such an analysis is the disorder mediated tunneling. Not only does disorder appear naturally
due to oxygen doping and interfacial defects but incorporating momentum non-conservation has been shown
to better represent experimental data in clean single crystals.

Using perturbative diagrammatic calculations and disorder averaging on the lattice, we find that an ex-
perimentally motivated incoherent tunneling model that respects all point group symmetries of the physical
system gives rise to a qualitatively similar phase diagram as obtained in Ref. [28]. Specifically, we find a
substantial range of twist angles around 45� and temperatures where spontaneous T -breaking occurs and
produces a fully gapped topological phase with non-zero Chern number. The angular extent of the T -broken
phase depends on the disorder length scale ⇤�1 where the coherent limit ⇤ ! 0 recovers the phase diagram
of Ref. [28] and increasing ⇤ corresponds to a shrinking extent of the topological phase. Only when the
incoherence length scale is comparable to the Fermi momentum, the twist angle for spontaneous T breaking
is reduced to exactly 45�.

From an experimental point of view, the inhomogeneity due to oxygen doping the BiO planes of un-
twisted BSCCO was found to be correlated over ⇡ 14Å [121]. Since the CuO plane lattice constant is
⇡ 5Å, that amounts to a correlations over 3 unit cells, i.e., ⇤̃ ⇡ 0.3. In a twisted geometry, one may expect
the characteristic length scale to decrease and, hence, the estimate for ⇤̃ could shift up. That said, the role
of complex atomic arrangements, moiré length scales and strong correlations are difficult to incorporate
into such a heuristic reasoning. One would probably have to await data from complementary experimental
probes, such as transport and optical response, to discern the nature of the superconducting state around 45�.
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It was noted in Ref. [148] that the measured critical current density Jc in both twisted and untwisted
Bi2212 is about factor of 500 smaller than the theory prediction based on the slave-boson mean field theory
of a t-J model used in that study. We checked that a similar discrepancy occurs in the calculation using BCS
mean field theory of Ref. [28]. As indicated in Fig. 7.7 the discrepancy is somewhat reduced in the incoherent
tunneling model (by about one order of magnitude at large ⇤) but nevertheless significant disagreement
with experiment persists. As noted in Ref. [144] this is a known problem that affects superconductors in
the cuprate family and becomes increasingly severe in the underdoped part of their phase diagram. A
phenomenological fix can be implemented [144] by restricting the momentum sums in the expression for
Jc to patches of linear size ⇠ x (the hole doping) around the nodal points of the d-wave order parameter.
This modification leaves the temperature dependence of ⇢ab(T ) and ⇢c(T ) unchanged but reduces their
T = 0 magnitude to experimentally observed values. It similarly fixes the problem with Jc. As with many
aspects of cuprates a truly microscopic understanding of this phenomenon remains a challenge to the theory
community. With regards to twisted cuprate bilayers it would be interesting to explore the effect of the
phenomenological fix outlined above on the phase diagram.

We have further investigated the collective mode spectrum of twisted cuprates in the coherent limit.
Above the critical twist, the system develops a fully gapped bulk state which supports two in gap collective
modes. Measurement of these bosonic subgap excitations could provide key evidence of the T -broken state
in the spirit of the new field of collective mode spectroscopy.

In closing, we note that the incoherent tunneling model and techniques employed in this chapter can be
extended to the study of other twisted 2D superconductors. The key general observation is that even though
the single-electron tunneling amplitude �q between the layers may vanish on average this does not prevent
the SC condensates in neighboring layers from being strongly coupled. A Cooper pair consists of two elec-
trons and coherent pair tunneling therefore only requires nonzero �q��q, which translates to randomness
being spatially correlated over some lengthscale longer than the lattice scale. The most interesting appli-
cations of our theory will likely involve nodal superconductors where the coupling between twisted layers
has a potential to break discrete symmetries and open a gap, although other interesting phenomena can also
occur.
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Chapter 8

Superconducting diode from flux biased
Josephson junction arrays

In the previous chapter we studied the free energy of twisted cuprate bilayers and examined its dependence
on the twist angle ✓twist. The deformation of the free energy caused a phase transition at a critical twist angle
✓c, which is characterized by time-reversal symmetry breaking.

The cuprate bilayer can be thought of as a Josephson junction, where the two monolayers each constitute
one side of the junction and the Josephson current is given by the interlayer current

I = Ic1 cos(2✓twist) sin'� Ic2 sin 2' . (8.1)

This current phase relation offers two different regimes. Close to zero twist, it mostly gives the usual
sin' current-phase relation. Near 45�, its current-phase relation is of the type sin 2'. These features can
be exploited to engineer a device that displays the superconducting diode effect, as we will show in the
following.

A superconducting diode is a two-terminal device whose forward and backward critical supercurrents
are different. In the ideal limit of maximal imbalance, current applied in one direction is dissipationless (zero
resistance), while it is always dissipative (resistive) in the opposite direction. This is a natural generalization
of the semiconductor diode that is only weakly resistive in one direction and highly resistive in the opposite
direction.

How can we exploit the physics of twisted cuprates to engineer a superconducting diode? Consider the
device depicted in Fig. 8.1. Two cuprate Josephson junctions are connected in parallel. The first junction is
made of untwisted (or minimally twisted) cuprate bilayers, whereas the second junction has a twist of 45�.
The total current through the device is therefore given by

I = Ic sin'1 + I 0c sin 2'2 , (8.2)

where '1,'2 are the Josephson phases across the two junctions. The two phases are not independent. They
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Figure 8.1: Schematic of a twisted cuprate bilayer interferometer.

are related via the phase continuity condition (cf. Eq. (1.12))

'1 � '2 + 2⇡n = 2⇡�/�0 , (8.3)

where � is the external magnetic flux threaded through the superconducting loop. Thus, the total current is

I = Ic sin'1 + I 0c sin (2'1 � 4⇡�/�0) . (8.4)

We see that the current phase relation is given by the interference of the first harmonic contribution sin'

and a second harmonic contribution sin 2' that are phase shifted with respect to each other by the external
flux. When the flux is tuned to � = �0/8, the maxima of the two harmonics align and one obtains the
current-phase relation plotted in Fig. 8.2. Notably, the critical currents

I+c ⌘ max
'

I(')

I�c ⌘
����min
'

I(')

���� (8.5)

become imbalanced, as indicated by red and blue dashed lines in Fig. 8.2. This constitutes the supercon-
ducting diode effect.

We have shown how the superconducting diode effect can arise in a device of cuprate bilayers. This
cuprate-powered device, however, has little prospects of near-term applicability. Similar proposals that rely
on a higher-harmonic content in the current phase relation have recently been made in Refs. [48, 150]. A
flurry of other theoretical studies [41, 43, 59, 68, 70, 72, 84, 109, 136, 152, 175, 179, 180, 183] as well as
experimental studies [10, 20, 21, 73, 94, 97, 120, 146, 166, 170, 174] have recently been conducted. The
common factor among them is reliance on a rather complicated material platform, precluding near-term
commercial applications. The diode effect requires both inversion- and time-reversal symmetry breaking.
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Figure 8.2: Current phase relation for (top) left arm of the interferometer, I1, (middle) for the right
arm, I2, and (bottom) total current. The total current shows the diode effect, i.e. maximum and
minima are imbalanced.

Inversion can be absent in systems with spin-orbit coupling [20, 72], or it can be explicitly broken by twisting
bilayers, as in the current proposal, [52, 94, 136] or applying a current bias [36].

8.1 The diode effect in a superconducting Josephson circuit
In the present chapter, we propose a realization of the diode effect that does not rely on a specific material
platform. It is based on a classical circuit of Josephson junctions with a standard sinusoidal current phase
relation. Junctions can in principle even be identical, and inversion symmetry is broken by the connectivity
of the circuit. Time-reversal symmetry is removed by magnetic fluxes that can most readily be applied using
flux bias lines. The present diode implementation is agnostic to its underlying material platform and can be
realized in industry standard Nb-Al processes based on scalable semiconductor technology.

8.1.1 Minimal circuit

We consider the superconducting circuit depicted in Fig. 8.3 consisting of two arms of Josephson junctions
(JJ). The first arm consists of two junctions across which the superconducting phase jumps by '1a, '1b,
respectively. The second arm consists of single Josephson junction with phase difference '2. The parasitic
inductance of the wires is modeled by the lumped inductors L1, L2. This circuit has been previously intro-
duced in the context of second harmonic generation, where it is known as the Superconducting Nonlinear
Asymmetric Inductive Element (SNAIL) [49].
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Figure 8.3: Superconducting circuit consisting of two inductive arms with one and two Josephson
junctions in series, respectively. An external flux �ext may thread the superconducting loop.
Here, the inductors L1, L2 represent the geometric inductance of the superconducting wires.

The supercurrents in both arms of the SNAIL are determined by the Josephson relations

I1 = I(1a)c sin'1a = I(1b)c sin'1b (8.6)

I2 = I(2)c sin'1 . (8.7)

We will be interested in the case of identical junction in the first arm, i.e., I(1a) = I(1b). Here, the phases
across the junctions are equal, '1a = '1b ⌘ '1. Continuity of the phase along the superconducting loop
then yields the phase quantization condition

2'1 � '2 + 2⇡n = 2⇡�/�0 (8.8)

where � is the total flux threading the junction and �0 = h/2e is the superconducting flux quantum.
For small circuits the geometric inductance can be neglected, La, Lb ! 0. Then, flux through the loop

is solely determined by the external flux, i.e., � = �ext. The total current is

I(') = I1 + I2 = I(1)c sin'1 + I(2)c sin (2'1 � 'ext) (8.9)

where we have defined 'ext = 2⇡�ext/�0.
The critical current in forward (+) and backward (�) directions are defined as
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Figure 8.4: Generalized Josephson interferometer consisting of N arms with current Ik and nk iden-
tical Josephson junctions with critical current I(k)c that each experience a superconducting phase
drop 'k. Geometrical inductances have been lumped into the elements Lk. A magnetic flux �k,l

may be threaded between arms k and l.

I+c ⌘ max
'

I(')

I�c ⌘
����min
'

I(')

���� (8.10)

where we note that I+c and I�c are positive quantities. Importantly, for 'ext/2⇡ /2 Z, i.e., when 'ext is a
nontrivial phase, one generally has

I+c 6= I�c , (8.11)

i.e., the forward and backward applied critical currents are imbalanced. This constitutes the superconduct-
ing diode effect. The degree of imbalance between these two critical current values is quantified by the
superconducting diode efficiency

⌘ =
|I+c � I�c |
I+c + I�c

, (8.12)

which is a positive number and ⌘ < 1. We find the maximum efficiency of ⌘ = 1/3 for the two-arm
geometry in Fig. 8.3 when I(2)c = I(1)c /2 and �ext = �0/4.
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8.1.2 N -arm interferometers and the ideal diode limit

Next we consider a N -ladder of JJ arrays which we enumerate by k = 1, .., N with nk consecutive junctions
forming each arm k and flux �k,l enclosed between the arms k and l. By phase continuity, the Josephson
phase for a single junction in arm k in terms of the phase variable '1 is given by

'k =
n1'1 � 2⇡

�0
�ext

1,k + 2⇡n

nk

(8.13)

in the limit of zero inductance.
We assume the zero-vortex state n = 0 and define �ext

k
= 1

nk

2⇡
�0
�ext

1,k . Then, the total current is

I('1) =
X

k

Ik =
NX

k=1

I(k)c sin

✓
n1

nk

'1 � �ext
k

◆
. (8.14)

If the integer coefficients nk are chosen in such a way that

n1/nk = k , (8.15)

Eq. (8.14) represents a Fourier series that allows for engineering of arbitrary current phase relations. One
such set of integers is given by nk = N !/ [floor(N/2)! k]. For an efficient diode layout, one should however
reduce this set by its greatest common denominator, GCD({nk}).

The Fourier series is fully specified by the individual magnetic flux parameters �ext
k

and critical currents
I(k)c . The fluxes are easily tuned via flux bias lines and critical currents are determined by the junction area
in the fabrication design.

We are now left to discuss the problem of finding the set of parameters that yield the greatest diode
efficiency ⌘. Let us propose the particular choice

I(k)c = I0
N + 1 � k

N
(8.16)

�ext
k

= (k � 1)⇡/2 (8.17)

This yields the following analytical expression for the total current of the interferometer:

I('1)/I0 =
NX

k=1

N + 1 � k

N
sin (k'1 + (1 � k)⇡/2)

=
cos ((N + 1)('1 � ⇡/2)) � 1

2N (sin'1 � 1)
� N + 1

2N
(8.18)

A plot of Eq. (8.18) for various N is shown in Fig. 8.5(a). As N is increased, the function develops a narrow
peak of height I/I0 = (N + 1)/2 at '1 = ⇡/2 over a seemingly flat background at I/I0 = (N + 1)/2N ,
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Figure 8.5: (a) Current phase relation for number of interferometer arms N = 1, 2, 5, 20 and (b) diode
efficiency as a function of N that is given by ⌘ = (N � 1)/(N + 1).

yielding a significant imbalance of critical currents with diode efficiency

⌘ =
N � 1

N + 1
(8.19)

that approaches unity in the large-N limit. In fact, for N ! 1, the current-phase relation approaches a
series of �-functions centered at 2⇡(n + 1/4) and shifted by a constant current �I0/2, according to

lim
N!1

I/I0 = ⇡
X

k

�('1 � ⇡/2 + 2⇡k) � 1

2
. (8.20)

While the flux and critical current parameters defined in Eqs. (8.16-8.17) yield an ideal diode in the large-
N limit, they likely also constitute the fastest converging series. For small N  5, where the parameter
space is still amenable to numerical optimization, we have numerically confirmed that it represents the
optimal solution.

8.2 Parasitic components

8.2.1 IV-characteristic

We now consider a resistively and capacitively shunted junction (RCSJ) model where each junction on arm
k in Fig. 8.4 is shunted by an internal capacitor Ck and resistor Rk. For an external dc current bias I(k)

dc
in

arm k the equation of motion is given by

I(k)
dc

=
�0

2⇡

'̇k

Rk

+
�0

2⇡
Ck'̈k + I(k)c sin'k (8.21)

We assume that every junction is identical for a given arm and current conservation implies that 'k is the
same for every junction. Using the phase continuity condition (8.13) and adding all currents one can show
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Figure 8.6: I-V curves computed within RSJ model for � = 0.6
p

n1 and N = 1, 2, 5, 20

that the system is governed by a single differential equation

Idc/I0 =
d2'1

d⌧2
+ �

d'1

d⌧
+ I('1)/I0 , (8.22)

where Idc =
P

k
I(k)
dc

is the total, experimentally applied current bias. We have also defined the dimension-

less parameters ⌧ = !J t, � = (!JReffCeff)�1, !J =
q

2e
~

I0
Ceff

and the effective resistance and capacitance
parameters

Reff =

 
NX

k=1

n1

Rknk

+
n1

Rext

!�1

(8.23)

Ceff =
NX

k=1

n1Ck

nk

+ n1Cext . (8.24)

Rk and Ck will depend on the geometries of individual junctions. For better tunability, one may shunt the
entire device with an additional resistor Rext and a capacitor Cext. The voltage across each arm is given
by V = n1

�0
2⇡ '̇1. In the limit where Rext ⌧ Rk and Cext � Ck, dynamics is independent of internal

resistances and capacitances of the junctions, where we find Reff ⇡ Rext/n1 and Ceff ⇡ n1Cext. In this
limit, � defined just below 8.22 scales as � ⇡

p
N ! where !̃ =

q
2e
~

I0
Cext

and n1 is the number of junctions
on arm k = 1 which depends on N as nk ⇡ N ! in the large-N limit
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Figure 8.7: Current phase relation (a) for the exemplary case N = 5 and (b) diode efficiency as a
function of N for varied strength of the inductance parameter �/n1. The geometrical inductance
distorts the current-phase relation and diminishes the diode efficiency ⌘.

N ⌘ NJ nk �k,k+1/�0 I(k)c N/I0
2 1/3 3 2 1 1/4 2 1
3 1/2 11 6 3 2 3/4 1/4 3 2 1
4 3/5 25 12 6 4 3 3/2 1/2 1/4 4 3 2 1
5 2/3 137 60 30 20 15 12 7.5 5/2 5/4 3/4 5 4 3 2 1

Table 8.1: Optimal parameters for superconducting diode circuits with N arms. NJ =
P

k
nk is the

total number of Josephson junctions required and �k,k+1 is the magnetic flux threaded between
arms k and k + 1.

We numerically solve the differential Eq. (8.22) for voltage as a function of external current Idc. The
resulting I-V -curves are shown in Fig. 8.6 for various N and � = 0.6

p
n1. For N > 1, the critical currents

become imbalanced. The I-V -curves display a well-known hysteretic behavior which, however, can be
suppressed for large N , i.e., when � is sufficiently large.

8.2.2 Finite inductance

In the case of finite geometric inductance, Lk > 0, the flux through the superconducting loops is no longer
defined just by the external flux. Instead, Eq. (8.13) must be modified to also include the contribution of the
induced flux,

'k =
1

nk

2⇡

�0

�
�ext

1,k + L1I1 � LkIk
�

. (8.25)

Now, Eq. (8.14) must be solved self-consistently, since a change in current implies a change in 'k, which
again induces a change in the Ik. For sufficiently large inductances, the induced fluxes will develop hys-
teretic behavior in the externally applied flux.

Since the geometrical inductances are expected to be roughly equal for each arm, we parametrize them
by a single dimensionless parameter 2⇡LiI0/�0 ⌘ �. In Fig. 8.7, we show the results of the self-consistent
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calculation for various �, small enough that the diode is still in the non-hysteretic regime. The inductance
can be seen to distort the current phase relation and yields an overall decrease in diode efficiency. Assuming
that the � roughly scales with the maximum number of junctions in a branch n1, this efficiency decrease is
more pronounced at large N .

8.3 Discussion and Summary
We have proposed a superconducting diode circuit element that requires only conventional Josephson junc-
tions and flux bias loops which can be fabricated utilizing existing integrated circuit technology.

A Josephson interferometer will exhibit the superconducting diode effect if current arms carry different
harmonics sin n' of the current phase relation and if these harmonics are phase-shifted with respect to each
other.

We have shown that higher harmonics can effectively be generated in generalized SNAIL geometries
when multiple conventional Josephson junctions are connected in series. Flux biases in the loops are crucial
for generating the phase differences, which we have optimized for diode efficiency. Note that polarity of
the superconducting diode can be switched by reversal of all fluxes, i.e., by setting 'k,ext ! �'k,ext in
Eq. (8.17). We have also considered the effects of geometric inductance, which lead to an overall decrease
in diode efficiency.

We work in the limit EJ � EC where charging energy is Ec = e2/2CJ . Here, fluctuations in the phase
variable ' are suppressed. Therefore ' can be treated as a classical variable, justifying the use of RSJ model
in Eq. (8.6).

Table 8.1 summarizes the various optical circuit parameters for different N , along with the resulting
diode efficiency in the non-inductive case. Circuits with more than a few arms are likely mostly of academic
interest, as the total number of required junctions scales exponentially in N , even though more than 106

Josephson junctions and on the order of 105 flux biases have been integrated on a single chip [25, 63].
Nevertheless, for reasonably small N , our proposed diode device could be promising for practical use.
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Chapter 9

Summary

In this thesis, we have highlighted a host of fascinating aspects of the superconducting condensate and its
collective modes. The phenomenology of superconductivity can be understood within the Landau-Ginzburg
formalism. Here, group theory serves as a powerful tool to distill a compact theoretical description from
the point group symmetry transformations of the underlying microscopic system. In this framework, the
collective mode eigenspectrum can be deduced. We have applied the group theoretical analysis to the novel
system of twisted cuprate bilayers. We have demonstrated that the phase transition of spontaneous time-
reversal symmetry breaking, that is accompanied by a topological Chern phase, can be understood as a
natural consequence of the change in symmetry group from D4h to D4d when the cuprate layers are twisted
by 45�.

The microscopic theory of superconductivity is elegantly formulated in terms of a Euclidean path in-
tegral in imaginary time. We have summarized how optical response functions can be computed from an
effective action and are expressed in terms of the nonlinear optical kernel. Collective modes are the Gaus-
sian fluctuations of the Hubbard Stratonovich field, that we introduced to decouple a four-fermion BCS
interaction. They yield peaked resonance structures at their eigenmode frequencies in the optical kernel. In
an alternative, equivalent, theoretical treatment we have sometimes numerically integrated the equations of
motion of the superconductor, taking the BCS gap equation into account to ensure self-consistency.

We have outlined the two basic THz spectroscopic settings that are currently used to probe the Higgs
mode: third harmonic generation and pump-probe spectroscopy. Both of them have been shown to give
experimental access to the functional form of the nonlinear optical kernel. While the kernel’s frequency
dependence can in effect be swept directly with the pump-probe method, only temperature sweeps can be
performed in THG experiments. We have further described a novel experimental scheme, which we termed
quench-drive spectroscopy. Here, a combination of a single-cycle pump and a multi-cycle THG pulse are
applied. The spectra are then recorded in 2d plots as a function of time and pump-probe delay. We have
shown that the optical kernel appears as a side band modulation when the 2d spectrum is presented in
frequency space.

Further, we have combined the path integral description of collective modes with the Mattis-Bardeen
theory of impurity scattering of a two-band superconductor, making close reference to the material MgB2.
We showed that impurity scattering can yield a sizable contribution of the Higgs mode to the nonlinear
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response, both in THG and time-resolved pump-probe measurements of the optical conductivity. Interest-
ingly, our calculations also reproduce a puzzling feature of the linear optical conductivity of MgB2 thin
films: While MgB2 is an acclaimed two-band superconductor, only one absorption gap has ever been ob-
served in linear response THz measurements. Our model helps to solve this puzzle. We explain the missing
spectroscopic features of the second gap with the Fermi surface of the �-band being small compared to the
⇡-band.

We have studied an exotic system of two cuprate monolayers, that have been twisted with respect to
each other, and then stacked into a single device. Twisted cuprates have been proposed to realize the first
known example of a topological high-Tc superconductor. Here, we demonstrated that the cuprate topological
phase also persists in the realistic scenario of incoherently coupled bilayers. The twisted cuprate structure
gives rise to a rather non-trivial spectrum of in-gap collective modes. THz spectroscopic measurement of
these in-gap modes may serve as a smoking gun experiment for the topological, spontaneously time-reversal
symmetry broken phase.

In the last part of this thesis, we proposed a novel superconducting Josephson device that realizes the
superconducting diode effect. While recent experimental and theoretical implementations of the diode effect
rely on rather complex material platforms, our device can be generically built using scalable semiconductor
fabrication technology. It is described by a circuit model of Josephson junctions, where collective fluctua-
tions are, for once, neglected.

The emerging field of collective mode spectroscopy has many future directions that present exciting new
avenues for future studies. One such direction is the excitation of collective modes at finite momentum q >

0. Current experimental techniques, that are based on THz or visible laser radiation, work in the opposite
regime, since the photon momentum at these frequencies satisfies |q| ⌧ |kF |. However, angle-resolved
photoemission (ARPES) techniques or momentum-resolved electron energy loss spectroscopy (M-EELS)
can excite collective modes at finite q [127]. Away from q = 0, the Higgs mode is no longer suppressed by
particle-hole symmetry, and one expects a significant contribution of Higgs to the non-linear response.

Beyond small q, measurement of the full bandstructure of collective superconducting modes for q in
the Brillouin zone would allow to study topological properties. Topological band theory has been applied
to a plethora of bosonic excitations, such as magnons via linear spin wave theory [167], phonons [93], pho-
tons [119], among others. Application of topological band theory to collective modes of the condensate
would present an interesting avenue of research. While massive bosonic bands are usually highly damped
due to decay channels into Goldstone modes and therefore difficult to observe in experiment, supercon-
ducting bosonic bands can be stable (due to the absence of the Goldstone channel) as a consequence of the
Anderson-Higgs mechanism. Yet, topological properties require at least two bands and are hence only pos-
sible in two- or multi-band superconductors. Few multi-band superconductors are known to date. The study
of topological superconducting collective modes would therefore initially involve a rigorous classification
effort and material search based on point group symmetries.
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Appendix A

Higgs mechanism in the Standard Model

While the Higgs mechanism was first discovered in the context of superconductivity [8], it may be most
famous for its application in the field of particle physics, where it earned its name. Here, we will give a
brief comparison of the terminology used in the two fields and outline some key differences between the
Higgs mode in superconductivity and the Standard model [124, 125]. For reference, these differences are
summarized in Table A.1.

The Higgs mechanism occurs in gauge theories when a charged field acquires a finite vacuum expec-
tation value. In the case of superconductivity, the relevant quantum field is the complex bosonic Hubbard-
Stratonovich field that arises after decoupling a fermionic interaction in the Cooper channel (cf. Sec. 3.1).
In the Standard model, the relevant field is the Higgs field, which is a fundamental two-component complex
field that transforms under SU(2)⇥U(1). Thus, the Higgs field has 4 real components. The superconducting
Hubbard-Stratonovich field has 2n real components for a n-component order parameter theory.

The quantum fields in superconductivity physically describe the superconducting condensate. In high
energy physics, the Higgs field describes the electro-weak condensate which is sometimes also referred
to as Higgs condensate. A superconductor condenses at temperatures ranging from mK to below room
temperature, depending on the specific material, while the critical condensation temperature of the Standard
Model is estimated to be at 250 GeV ⇡ 3 ⇥ 1015 K.

For superconductors, one out of the 2n degrees of freedom of the quantum field (the Goldstone phase
mode) is absorbed to produce a massive photon, leaving only one mode (the Higgs mode) as a physical
degree of freedom of the Hubbard-Stratonovich fields. In the Standard Model, three out of four components
of the Higgs field combine with the Z0, W+, W� gauge bosons and make them massive. Only a single
quantum field remains, its excitations are referred to as Higgs particles. In the Standard Model, the pho-
ton remains as the only massless gauge boson. No such massless gauge particle exists in the context of
superconductivity.
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Superconductivity Standard Model
Quantum field Hubbard-Stratonovich field Higgs field (fundamental)

# of real components of quantum field 2 (or 2n for n-band superconductor) 4
Gauge group U(1) SU(2) ⇥ U(1)

Massive gauge boson photon (plasmon) Z0, W+, W� bosons
Massless gauge boson N/A photon

Condensate superconducting condensate electro-weak condensate
TC mK to K ⇠3 ⇥1015 K

Table A.1: Comparison of Higgs mechanism terminology in superconductivity and the Standard
Model
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Appendix B

Systems of units

In the literature, certain natural constants are often set to one. In this thesis, e.g., we have sometimes made
used of ~ = kB = me = 2� = 1.

This does not mean that these natural constants (and the energy gap 2�) are equated to one. Instead it
means that these quantities are defined as the base units of our unit system. For example, from now on we
measure mass in units of me instead of kg, energy in units of 2�, action in units of ~, and so on.

What, then, is the unit that we measure distances in? The answer is readily determined using the methods
of linear algebra [101].

There are five base quantities in the SI system: length l, mass m, time t, temperature T , and current A.
The corresponding base units are {m, kg, s, K, A}, respectively. It is useful to think of the natural constants
as a vector in unit space. For example, ~ has units [~]

SI
= kgm2

s . We therefore represent it by the vector

[~]
SI

= (2, 1, �1, 0, 0) ,

where the vector components indicate the power of the SI units {m, kg, s, K, A}. The other constants can
be represented by

[kB]
SI

= (2, 1, �2, �1, 0)

[me]SI = (0, 1, 0, 0, 0)

[e]
SI

= (0, 0, 1, 0, 1)

[2�]
SI

= (2, 1, �2, 0, 0) .

For a set of natural constants to be a valid choice for a unit system, they need to be linearly independent, i.e.
the five vectors need to span a five-dimensional space. We may arrange the basis vectors as columns in a
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matrix

C =

0

BBBBBB@

2 2 0 0 2

1 1 1 0 1

�1 �2 0 1 �2

0 �1 0 0 0

0 0 0 1 0

1

CCCCCCA
.

Linear independece can then readily be checked by the condition det C 6= 0. If we want to know what SI
units the quantity ~ is composed of, we represent ~ by the unit vector [~]U = e1 and multiply it: C [~]

U
=

[~]
SI

. The same holds for all other natural constants.
What do the five base SI units look like in terms of the U base? To answer this question we simply invert

the matrix C:

C�1 =

0

BBBBBB@

1 0 1 0 �1

0 0 0 �1 0

�1
2 1 0 0 0

0 0 0 0 1

�1
2 0 �1 1 1

1

CCCCCCA
.

Then the unit of length is [l]SI = m = e1 and [l]U = C�1[l]SI = (1, 0, �1
2 , 0, �1

2) = ~ 1
p
me

1
p
2�

. The
same holds for the other SI base quantities m, t, T, j. We find that, for the choice of 2� = 2meV,

[l]U =
~p

me2�
= 2.76 nm

[m]
U

= me = 9.11 ⇥ 10�31 kg

[t]
U

=
~

2�
= 658.3 fs

[T ]
U

=
2�

kB
= 116K

[j]
U

= =
e2�

~ = 2.43 µA .

Different units can be constructed from the base units. An appropriate system of units is important for
numerical calculations, since small numbers on the order of machine precision can be avoided.
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Appendix C

Appendices for Chapter 5

C.1 Derivation of the effective action for a two-band superconductor
The problem is stated with the partition function

Z =

Z
D(c†c)e�S with S =

Z
�

0
d⌧

 
X

ik�

c†
ik�@⌧ cik� + H

!
. (C.1)

We decouple the interacting term in the pairing channel via the Hubbard Stratonovich transformation

exp

0

@
Z

d⌧
X

ij

 
X

k

c†
ik"c

†

i�k#

!
Uij

 
X

k0

cj�k0#cjk0"

!1

A

=

Z
D(�̄i�i)e

�
R
d⌧

hP
ij �̄iU

�1
ij �j�

P
ik

⇣
�̄icik"ci�k#+�ic

†
i�k#c

†
ik"

⌘i

. (C.2)

The bosonic fields �i(⌧) are complex, i.e. they permits amplitude and phase fluctuations.
Note that�i(⌧) does not depend on momentum. This is because the usual BCS Hamiltonian, Eq. (5.1),

is an approximation of the more general interaction term

X

ijkk0q

Uijc
†

ik+q"c
†

i�k#cj�k0#cjk0+q" ,

where the Cooper pair center of mass momentum is incorporated through the summation over the small
variable q. It is interesting to note that a supercurrent can be modelled even in the absence of such a
center of mass momentum. In that case, the supercurrent is determined by the static component of the
electromagnetic vector potential [110, 128].

We decompose �i into real fields and additional express fluctuation with respect to the meanfield sad-
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dlepoint, �i(⌧) ! (�eq

i
+�i(⌧))ei✓i(⌧), �̄i(⌧) ! (�eq

i
+�i(⌧))e�i✓i(⌧). The action is

S =
X

ij

U�1
ij

Z
d⌧
⇣
�eq

i
�eq

j
+�i(⌧)�j(⌧)

⌘
e�i(✓i(⌧)�✓j(⌧)) (C.3)

+
X

ik�

Z
�

0
d⌧
⇣
c†
ik� [@⌧ + ⇠ik] cik� � (�eq

i
+�i(⌧))e

�i✓i(⌧)cik"ci�k# (C.4)

�(�eq

i
+�i(⌧))e

i✓i(⌧)c†
i�k#c

†

ik"

⌘
+

Z
�

0
d⌧ H1 .

Here we have encountered the Josephson coupling term

X

ij

U�1
ij
�eq

i
�eq

j
e�i(✓i(⌧)�✓j(⌧))

= U�1
11 (�eq

1 )2 + U�1
22 (�eq

2 )2 + 2U�1
12 �

eq

1 �
eq

2 cos(✓1 � ✓2) (C.5)

that induces the Leggett mode. We express the action in the Nambu basis  †

ik(!n) =
⇣
c†
ik" , ci�k#

⌘
,

S =
X

ij

U�1
ij

Z
d⌧
⇣
�eq

i
�eq

j
+�i(⌧)�j(⌧)

⌘
e�i(✓i�✓j) (C.6)

�
X

ikk0

Z
d⌧ †

ik(⌧)G�1
i

(kk0, ⌧) ik0(⌧) ,

where

G�1
i

= �kk0

 
�@⌧ � ⇠ik (�eq

i
+�i(⌧))ei✓(⌧)

(�eq

i
+�i(⌧))e�i✓(⌧) �@⌧ + ⇠ik

!

+ Jikk0 · eA(⌧)�0 � sie2

2mi

A2(⌧)�kk0�3 . (C.7)

Integrating out the Fermions gives

S =
X

ij

U�1
ij

Z
d⌧
⇣
�eq

i
�eq

j
+�i(⌧)�j(⌧)

⌘
e�i(✓i�✓j) �

X

i

Tr ln
⇥
�G�1

i

⇤
, (C.8)

where the trace is performed over time, momenta, and Nambu indices, but not over band-indices i. To sepa-
rate amplitude�i(⌧) and phase ✓i(⌧) fields, we introduce a local unitary transformation Vi = exp(i✓i(⌧)�3/2)

[2],

Tr ln
⇥
�G�1

i

⇤
= Tr ln

h
�G�1

i
ViV

†

i

i
= Tr ln

h
�V †

i
G�1

i
Vi

i
= Tr ln

h
�G̃�1

i

i
. (C.9)
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We split G̃�1
i

into a meanfield part, G�1
0,i , and all remaining contributions ⌃i. In frequency space, this gives

G̃�1
i

= G�1
0,i � ⌃i , (C.10)

G�1
0,i (k!n,k0!m) = [i!n � ⇠ik�3 +�eq

i
�1] �kk0�!n,!m , (C.11)

⌃i(k!n,k0!m) = ��i(!n � !m)�1�kk0 � i
i!n � i!m

2
✓i(!n � !m)�3�kk0

� Jikk0 · eA(!n � !m)�0 +
sie2

2mi

A2(!n � !m)�kk0�3 . (C.12)

Note that phase fluctuations ✓i live in the �3 channel, i.e. the charge channel.
Next, we expand S at Gaussian level. To compute currents j

��
1

and j
��
3

we additionally keep terms up to
fourth order in the classical field A. In expanding the trace, we use

Tr ln
⇣
�G̃�1

⌘
= Tr ln

�
�G�1

0 (1 � G0⌃)
�

= Tr ln
�
�G�1

0

�
� Tr

1X

n=1

1

n
(G0⌃)n . (C.13)

The quadratic action is given by the terms

S[�i, ✓i, A] = SMF + S� + S�,A + S✓ + S✓,A + SQP,dia + SQP,para , (C.14)

150



which are explicitly

SMF =
X

ij

U�1
ij
�eq

i
�eq

j
�
X

i

Tr ln
h
�G�1

0,i

i
(C.15)

S� =
1

2

X

ij⌦m

�i

 
��1�11 + 2U22/ det U �2U12/ det U

�2U21/ det U ��1�12 + 2U11/ det U

!

ij

�j

=
1

2

X

ij⌦m

�i(�⌦m)H�1
ij

(⌦m)�j(⌦m) (C.16)

S�,A = �
X

ikk0

X

⌦m⌦l

|Jikk0 |2��0�0�1
i

(⌦m,⌦l,k,k0)A(⌦l)A(�⌦m � ⌦l)�(⌦m) (C.17)

S✓ = �1

2

X
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�i⌦m

2
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� �

⌦2
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� �
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���3�32 + �
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!
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2
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2

X

ij⌦m

�i⌦m

2
✓i

2

4
 

���3�31

���3�32
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ij

+ Jij

3

5 i⌦m

2
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=
1

2

X
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�i⌦m

2
✓i(�⌦m)L�1

ij
(⌦m)

i⌦m

2
✓j(⌦m) (C.18)

S✓,A =
X

i⌦m

i
sie2

2mi

A
2(⌦m)��3�3

i
(⌦m)

�i⌦m

2
✓i(�⌦m) (C.19)

S(2)
QP,dia = �

X

i

sie2

2mi

��3
i

A2(0) (C.20)

S(4)
QP,dia =

1

2

X

i⌦m

✓
sie2

2mi

◆2

��3�3
i

(⌦m)A2(⌦m)A2(�⌦m) (C.21)

S(2)
QP,para =

1

2

X

ikk0⌦m

|Jikk0 |2��0�0
i

(k,k0,⌦m)A(⌦m)A(�⌦m) (C.22)

S(4)
QP,para =

1

4

X

ikk0k00

X

⌦m⌦l⌦p

|Jikk0 |2|Jikk00 |2⇠i(k,k0,k00,⌦m,⌦l,⌦p)

⇥ A(⌦m)A(⌦l)A(⌦p)A(�⌦m � ⌦l � ⌦p) . (C.23)

Here, � = 8�1�2v

U22�v2U11
. The Higgs and Leggett terms, Eqs. (C.16-C.19), are diagrammatically shown in

Fig. 5.1. The density fluctuation terms, Eqs. (C.20-C.23) are shown in Fig. 5.2. The susceptibilities, given
by the fermionic bubbles, are
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Figure C.1: Additional diagrams following from Eq. (C.8) that vanish in the presence of particle-hole
symmetry and a parabolic dispersion.
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=
X
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X

!n

Tr [G0,i(!n,k)�k] , (C.24)

��k�l
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(⌦m,k,k0) =
X
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Tr
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⇤
, (C.25)

��k�l
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X
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��k�l
i

(⌦m,k,k) , (C.26)

��0�0�1
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X

!n

Tr
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G0,i(!n + ⌦m,k)G0,i(!n + ⌦m + ⌦l,k

0)
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⇠i(k,k0,k00,⌦m,⌦l,⌦p) =
X

!n

Tr[G0,i(!n,k)G0,i(!n + ⌦m,k0)

⇥ G0,i(!n + ⌦m + ⌦l,k)G0,i(!n + ⌦m + ⌦l + ⌦p,k
00)] , (C.28)

We evaluate Matsubara sums in above expressions analytically using the MatsubaraSum package developed
by [1].

Additional diagrams, that vanish due to particle-hole symmetry, are listed in Fig. C.1. We proceed to
integrate out all collective fields. This gives

S[A] = SMF + S̃� + S̃✓ + SQP,dia + SQP,para (C.29)

with
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sie2

2mi
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2mj

A2(�⌦m)A2(⌦m)��3�3
i

(�⌦m)Lij(⌦m)��3�3
j

(⌦m) (C.31)

We note that phase and fourth order diamagnetic density fluctuation terms combine to give the Leggett
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contribution

S̃L = S(4)
QP,dia + S̃✓ (C.32)

= �e4

2

X
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�
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✓
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� s2
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⌦2
n � �

��3�31 + ��3�32

��3�31 ��3�32

�
�1

A2(�⌦m)A2(⌦m) .

Thus, the zero-energy Goldstone mode does not contribute to the optical response. Above equations,
obtained by Gaussian integration, have the diagrammatic representation of an RPA summation shown in
Fig. 5.3. For the Higgs propagator this can be seen by expanding

H =
⇥
2U�1 + X

⇤�1
=

U

2

1X

n=0

✓
�X

U

2

◆
n

, (C.33)

where Xij = ��1�1
i

�ij corresponds to fermionic bubbles and Uij/2 corresponds to the to dashed lines. The
case of the Leggett mode is analogous. The currents can now, after analytic continuation of all external
frequencies, be computed by a functional derivative of the action,

j(!) = � �S[A]

�A(�!)
. (C.34)

The Mattis-Bardeen approximation enters by replacing

X

kk0

|Jikk0 | = Ni(0)2
Z
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Z
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d✏kd✏k0
(evFi)

2

3Ni(0)
W (✏ik, ✏ik0) (C.36)

according to Eq. (5.6). For the fourth-order paramagnetic density fluctuation contribution, Eq. (C.23), we
follow Ref. [115] and further approximate

X

kk0k00

|Jikk0 | |Jikk00 | ⇡ Ni(0)3
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◆
. (C.37)

C.2 Effect of Coulomb interactions
In this section, we will show explicitly that the presence of Coulomb interactions does not alter the results
derived above. This is specific to our case of a continuum model with quadratic band dispersion and the
assumption of exact particle hole symmetry [34]. When particle hole symmetry is broken, the Coulomb
interaction will additionally screen the Higgs mode contribution to the nonlinear current.

We introduce long-range Coulomb interactions with potential Vq ⇠ 1/q2 and decouple the Coulomb
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action in the density channel by means of the Hubbard-Stratonovich transformation
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In the presence of long-range Coulomb interactions, the phase action in Eq. (C.18) is modified according to
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Here, we have introduced the short notation �i for the susceptibility ��3�3
i

defined in Eq. (C.26). The light
coupling term of Eq. (C.19) becomes
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The matrix in Eq. (C.39) has a singular eigenvalue corresponding to the eigenvector (i, i, 1). We can there-
fore reduce the decription to
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where we have taken the limit 1/Vq = 0 (q = 0) and have defined new variables

✓G = (✓1 + ✓2)/2 (C.42)

✓L = (✓1 � ✓2)/2 . (C.43)

The light-coupling term Eq. (C.40) becomes
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and after Gaussian integration we obtain
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Together with the nonlinear diamagnetic density fluctuation contribution we arrive at the Leggett action
S̃L = S(4)

QP,dia + S̃✓ which identically matches Eq. (C.32) derived in the absence of Coulomb interactions.
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Figure C.2: Real and imaginary part of optical conductivity computed in the time-dependent density
matrix formalism (blue lines) and from diagrams Fig. 5.2(a,b) in the effective action approach.
There is perfect agreement between the two methods.

C.3 First order currents and optical conductivity
The paramagnetic first order current jP

��
1

is represented by the diagram in Fig. 5.2(a) and explicitly given
by a functional derivative of Eq. (C.22). After analytical continuation and MB substitution one arrives at
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The diamagnetic first order current jP
��
1

reads
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where we have used that �

�A(!)A
2(0) = �

�A(!)

R
d!0A(�!0)A(!0) = 2A(�!). Note that the k-sum does

not vanish away from the Fermi surface and therefore strongly depends on the numerical cutoff. Here, we
follow Murotani [115] and regularize the integral as

jD(�!)
��
1

= A(!)
X

i

e2ni

mi

Z
d✏d✏0

f(✏) � f(✏0)
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0) (C.48)

with and Fermi function f(✏) and the band specific carrier density ni = k3
Fi

/3⇡2.
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Figure C.3: Diagrammatic representation of THG signal. Red photon legs denote A with respect to
which the functional derivative has been performed. Higgs and Leggett propagators (double
lines) correspond to an RPA summation shown in Fig. 5.3.

C.4 Third Harmonic Generation
For THG experiments, we are interested in the non-linear current j(3⌦) evaluated at ! = 3⌦ where ⌦ is the
dominant frequency of the optical pulse A(⌦):

j(�3⌦) = � �S[A]

�A(!)

����
!=3⌦

. (C.49)

A diagrammatic representation of Eq. (C.49) is shown in Fig. C.3. The field A(!) with respect to which
the functional derivative is performed is colored red. All four choices are equivalent. The functional
derivative forces the external frequency of the field A to be 3⌦. In principal one now needs to integrate
over all remaining external frequencies, while satisfying energy conservation. This can be numerically
challenging. Here, we focus instead on the case of a monochromatic field A(t) = A0 cos⌦t, A(!) =
A0
2 (�(! � ⌦) + �(! + ⌦)) where external fields possess two discrete frequencies ±⌦. Then energy con-

servation dictates all remaining external legs to carry frequency �⌦. Note that the energy flow through
collective Higgs or Leggett propagators is 2⌦, i.e. THG probes the optical kernel at twice the driving fre-
quency as expected for a non-linear process.

Fig. C.4 shows magnitude and phase of the Higgs contribution to the THG current jH(3⌦) as a function
of ⌦ and T for two interband couplings v = 0.05, 0.4. Panels (a,b,e,f) correspond to the limit of a dirty
⇡-band and a clean �-band, whereas the remaining panels are computed for two dirty bands. Both cases are
possible descriptions of MgB2. Yellow spectral lines map out the Higgs resonance that follow 2�⇡, 2��.
In all cases the ⇡-resonance is dominant, although the relative �-contribution is enhanced in the dirty-dirty
limit and for strong v. Increased interband coupling v decreases and broadens the overall Higgs response.
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(h) arg jH/π
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Ω Ω Ω Ω

Figure C.4: Magnitude, up to a prefactor, (a-d) and phase (e-h) of Higgs contribution to THG current
as a function of driving frequency ⌦ and temperature T . (a),(c),(e),(g) correspond to the dirty-
clean case with �⇡ = 100 meV, �� = 0.01 meV and (c,d,g,h) correspond to the dirty-dirty case
with �⇡ = 100meV, �� = 50meV.

(a) (b) (c)|jL| |jL| |jL|

arg jL/π arg jL/π arg jL/π(d) (e) (f )
ΩΩ Ω

ΩΩ Ω

Figure C.5: Magnitude, up to a prefactor, (a-c) and phase (d-f) of Leggett contribution to THG current
as a function of driving frequency ⌦ and temperature T for various interband coupling parame-
ters v as denoted in plot titles.
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Figure C.6: Magnitude, up to a prefactor, (a-d) and phase (e-h) of density fluctuation contribution to
THG current as a function of driving frequency ⌦ and temperature T for cases (a) clean-clean
(b) clean-dirty case, (c) dirty-clean (d) dirty-dirty.

The Higgs resonance is sharp at small v, but much broader in the v = 0.4 case. Therefore, slices along
the T -axis for a given drive frequency ⌦ do not exhibit a pronounced resonance peak. The observation of a
resonance peak in Ref. [86] when experimentally sweeping the temperature would be therefore suggestive
of a small v coupling in MgB2. This is in disagreement to Refs. [24, 54] that experimentally determined a
large v based on evidence of the Leggett mode above 2�⇡.

Lower panels in Fig. C.4 show a phase jump of ⇡ in the THG current across the first Higgs resonance
along the ⌦ direction that is most pronounced at low temperatures. The phase also shows features of the
�-Higgs resonance, albeit less clearly. Approaching the resonance along the T axis does not yield a phase
behavior that is consistently simple to interpret. These results are to be contrasted to the clean case where
one expects a phase jump of ⇡/2.

Fig. C.5 shows the amplitude and phase response of the Leggett THG signal for three different coupling
strengths v = 0.02, 0.2, 0.5. The overall contribution is about three magnitudes smaller than the Higgs
contribution and therefore negligible. At large coupling, the Leggett resonance is very broad but sharpens
at high temperatures. This observation was first reported in Ref. [116]. The phase shows a clear ⇡/2-jump
across the resonance for all temperatures below TC .

The density fluctuation contribution is shown in Fig. C.6 for v = 0.05 in different impurity cases.
Here clean refers to � = 0.01 meV and dirty specifies � = 100 meV. Results at different v are nearly
identical since the only v-dependent quantity in Eq. (C.23) is the superconducting order parameter at finite
T . For all impurity concentrations, the density fluctuation mediated THG signal is peaked at the onset of the
quasiparticle continuum of the ⇡-band. The signal is about one order of magnitude smaller than the Higgs
contribution in the small v case. For v = 0.4, the density fluctuation signal remains nearly identical but the
Higgs signal increases, so that the Higgs contribution is only slightly larger. In all but the dirty-dirty case,
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the density fluctuation signal has a large contribution for small ⌦ and large T .
The bottom row of Fig. C.6 shows the phase of the non-linear THG signal. In the dirty-clean and

dirty-dirty cases we observe a clear phase jump of ⇡/2 across a resonance.
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Appendix D

Appendices for Chapter 6

D.1 Effective action for Higgs mode
We use the BCS Hamiltonian coupled to light

H(t) =
X

k,�

✏kc†k,�ck,� �
X

k,k0

Vk,k0c†k,"c
†

�k,#c�k0,#ck0," +
1

2

X

k,�

X

i,j

@2ij✏kAi(t)Aj(t)c
†

k,�ck,� (D.1)

with electron dispersion ✏k = ⇠k � ✏F measured relative to the Fermi level and c†k,� or ck,� the electron
creation or annihilation operators. We assume that the system is parity symmetric, i.e. ✏k = ✏�k. The
separable BCS pairing interaction is given by Vk,k0 = V fkfk0 with pairing strength V and symmetry
function fk. The coupling to light is obtained by the expansion of the minimal coupling term in powers of
the vector potential A up to second order

✏k�A(t) = ✏k �
X

i

@i✏kAi(t) +
1

2

X

i,j

@2ij✏kAi(t)Aj(t) + O(A(t)3) . (D.2)

Hereby, the paramagnetic term linear in A vanishes due to parity symmetry, i.e. @i✏�k = �@i✏k, while only
the diamagnetic term quadratic in A remains due to @2

ij
✏�k = @2

ij
✏k. The partition function of the system is

given by

Z =

Z
D(c†, c)e�S(c†,c) (D.3)

with the action in imaginary time ⌧

S(c†, c) =

Z
�

0
d⌧

0

@
X

k,�

c†k,�(⌧)@⌧ ck,�(⌧) + H(⌧)

1

A . (D.4)
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We decouple the pairing interaction with the help of a Hubbard-Stratonovich transformation. Furthermore,

we allow amplitude fluctuations via �(⌧) = � + ��(⌧). Introducing the Nambu spinor  †

k =

 
c†k,"
c�k,#

!
,

the action can be written in the compact form

S( †, , ��) =

Z
�

0
d⌧

 
|�(⌧)|2

V
�
X

k

 †

k(⌧)G�1(k, ⌧) k(⌧)

!
(D.5)

with the inverse Green’s function

G�1(k, ⌧) = �@⌧⌧0 � ✏k⌧3 +�k⌧1 � 1

2

X

ij

@2ij✏kAi(t)Aj(t)⌧3 + ��(⌧)fk⌧1 . (D.6)

After integration of the fermions, one obtains in frequency representation

S(��, ✓, ⇢) = �
�2

V
+

1

�

X

i!m

��(�i!m)
1

V
��(i!m) � tr ln(�G�1) (D.7)

where the trace include summation over momentum and frequency and

G�1(k, i!m, i!n) = G�1
0 (k, i!m, i!n) � ⌃(k, i!m � i!n) , (D.8)

G�1
0 (k, i!m, i!n) = [i!m⌧0 � ✏k⌧3 +�k⌧1]��!m,!n , (D.9)

⌃(k, i!m � i!n) =
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5 . (D.10)

Expanding the logarithm for small ⌃, one obtains

S(��) = Smf + Sfl(��) , (D.11)

Smf = �
�2

V
� tr ln(�G�1

0 ) , (D.12)

Sfl(��) =
1
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X

i!m

��(�i!m)
1

V
��(i!m) + tr

1X

n=1

(G0⌃)n

n
. (D.13)

Relevant for THG is the fourth order action. Thus, we consider the second order term in the sum 1
2 tr G0⌃G0⌃

which leads to
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. (D.14)
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with the inverse Higgs propagator

H�1(i!m) =
2

V
+ ���(i!m) =

X

k

f2
k

4�2
k � (i!n)2

Ek(4E2
k � (i!n)2)

tanh(�Ek/2) (D.15)

and the susceptibilities

X↵�(k,k0, i!m) =
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Finally, integrating the fluctuations using
Z

D(�>,�) e�
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= e
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>(�i!m)M�1(i!m)b(i!m) (D.18)

and after analytic continuation i!m ! ! + i0+, one obtains
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For the following, we will only consider linear polarized light in x-direction A(t) = A0êx cos(⌦t), such
that we can neglect all polarization indices and the action reads

S(4) =
1

2

Z
d!K(4)(!)A2(�!)A2(!) (D.20)

where the kernel is given by

K(4) = ��A2(�!)H(!)��A2(!) + �A2A2(!) . (D.21)

The third-order current is computed via

j(3)(3⌦) = � dS(4)

dA(�!)

�����
3⌦

/ K(4)(2⌦) (D.22)
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and is proportional to the fourth-order kernel evaluated at 2⌦. To analytically evaluate the momentum sums,
we assume T = 0, s-wave symmetry, i.e. fk = 1, and a constant density of states at the Fermi level such
that we can write

P
k ! �

R
d✏. We use

F (!) :=

Z
d✏

1p
✏2 +�2(4✏2 + 4�2 � !2)
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2�

�

!
p

4�2 � w2
(D.23)

and expand the derivative term
P

k @
2
ij
✏k =
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k ↵0+↵1✏k, which is valid for our band structure. We obtain
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D.2 Effective action with Coulomb interaction
The susceptibilities for the effective action in Eq. (6.20) are given in Eq. (D.16) and
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D.3 Coupled oscillator
The explicit expressions for the complex amplitudes Âi defined in Eq. (6.32) are given by

Â1 =
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We define
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to split the nominator and denominator in real and imaginary part

Â1 =
V1 + iV2

V5 + iV6
, Â2 =

V3 + iV4

V5 + iV6
. (D.33)

Extracting absolute value and phase and using the definition Âi = Aie�i�i , finally yields for the real ampli-
tudes Ai and phases �i
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The total complex amplitude ÂT is defined as

ÂT = AT e�i�T = A1e
�i�1 + A2e

�i�2 . (D.36)

Thus, it follows for the real amplitude AT and phase �T
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D.4 Higgs-CDW model
The action for the BCS and phonon Hamiltonian Eq. (6.40) reads
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Rewriting the phonon operator as bq = 1
p
2
(Qq + iP�q), integrating over the momentum variable Pq,

introducing the CDW field Dk = Dgk with D = �
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2gQq and performing a Hubbard-Stratonovich trans-
formation to decouple the superconducting pairing interaction, one obtains
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where the bare phonon propagator is defined as
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We rewrite the expression with the four-component Nambu spinor  †

k = (c†k,", c
†

k+Q,"
, c�k,#, c�(k+Q),#)

and introduce amplitude fluctuations of both fields via �(t) = � + ��(t) and D(t) = D + �D(t). We
obtain in frequency representation (see also [34])
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with
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where ⌧i are Pauli matrices in Nambu space and �i Pauli matrices in the CDW channel. The saddle point
equations are
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A diagonalization of the Hamiltonian yields the quasiparticle energy Ek =
q
✏2k +�2 + |Dk|2. After

integration of the fermions and expansion of the logarithm as in Appendix D.1, the action is split into a
mean-field part and a fluctuation part
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After evaluating the sum to second order, one obtains the fourth order action Eq (6.42). The Higgs propaga-
tor is defined as
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Analogously, the renormalized phonon propagator is defined as
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Hereby, the susceptibilities are defined as
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Integration of the amplitude fluctuations finally leads to Eq (6.45).

D.5 Higgs-Bardasis-Schrieffer model
Using the ansatz in Eq. (6.53) for Vkk0 including the two pairing channels, the action in imaginary time ⌧
after decoupling of the quartic interaction is given by
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Figure D.1: Phase diagram showing ground state symmetry for system with two possible pairing chan-
nels described in Sec. 6.5 as function of chemical potential and ratio Vd/Vs. In the blue region,
the s-wave channel is dominant and in the red region the d-wave channel.

with

G�1(k, ⌧) = �⌧0@⌧ � hk(⌧) , (D.51)
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The usual Higgs mode lives in the ⌧1 channel, while the Bardasis-Schrieffer mode lives in the ⌧2 channel.
In analogy to the previous sections, the fermions can be integrated out which leads to
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with
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G0(k, i!m, i!n) = (i!m⌧0 � ✏k⌧3 +�sf
s

k⌧1)��!m,!n , (D.55)

⌃(k, i!m � i!n) =
1

2

X

i,j

@2ij✏kA2
ij(i!m � i!n)⌧3 � ��s(i!m � i!n)f s

k⌧1 + ��d(i!m � i!n)fd

k⌧2

(D.56)

167



After expansion of the logarithm for small ⌃ it follows

S(��l) = Smf + Sfl(��l) , (D.57)
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The second-order term in the sum of the logarithm leads to the fourth-order action S(4)
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with M , � and b given in Eq. (6.56c). The susceptibilities read
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After integration of the fermions and analytic continuation i!m ! ! + i0+, the action reads
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with the fourth-order kernel
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(!) = �H + �Q + �B + �M (D.68)
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where the Higgs (H), quasiparticle (Q), Bardasis-Schrieffer (B) and mixed (M) susceptibilities are given in
Eq. (6.63)

We consider monochromatic, linear polarized light with polarization angle ✓, i.e. A(t) = A0ê cos⌦t

with ê> =
⇣
cos ✓ sin ✓

⌘
. For the chosen tight-binding band dispersion ✏k = �2t(cos kx + cos ky) � µ,

the derivative @2
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The THG current is calculated as
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Thus, it follows for the current parallel to the light polarization
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where we used K(4)
xy = K(4)

yx and K(4)
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yy .
We evaluate the Bardasis-Schrieffer propagator analytically for T = 0, and in the limit of constant

density of state at the Fermi level. We assume f s
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Using Eq. (D.23) one finds
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Appendix E

Appendices for Chapter 7

E.1 ⇤-dependence of diagrams
We can estimate the ⇤-dependence of the three diagrams in Fig. 7.2. First consider diagram Fig. 7.2(a)
which contains the coefficient

Jc1 = 4
X

nkq

fnk,2fnk+q,1 |�q|2 . (E.1)

The function fnk,i is defined in Eq. (7.20). It is strongly peaked at the Fermi surface. Thus, in the above
equation the term fnk,2 restricts the summation to |k| ⇡ kF . The sum over q is constrained by the terms
fnk+q,1 and |�q|2. For a given k, the summation over q of the former term fnk+q,1 may be visualized by a
circle of radius kF , displaced by k, as illustrated in Fig. E.1. The latter term corresponds to the blue shaded
area |q| < ⇤. The combined constraints then restrict the summation to the red segment of length 2⇤. Since
|�q|2 ⇠ 1/⇤2, the overall dependence on the momentum scattering scale is

Jc1 ⇠ 1

⇤
(E.2)

The diagram in Fig. 7.2(b) factors into two expressions of the type shown in Fig. 7.2(a), as is clear from
Eq. (7.18). It is therefore proportional to 1/⇤2.

The crossed diagram Fig. 7.2(c) is given by

Jcrossed
c2 = 4

X

nkqq0

fnk,1fnk+q,2fnk+q0,2fnk+q+q0,1

���q�q0
��2 .

The sum over q entails a factor of ⇤ following the same argument as described above. The sum over
q
0 is constrained by the terms fnk+q0,2fnk+q+q0,1, shown as the intersection of red and purple circles in

Fig. E.1(b). For large enough ⇤, the intersection is not further constrained by the blue shaded region and the
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Figure E.1: Graphical representation of the momentum summation constraints used to estimate ⇤-
dependence of the diagrams in Fig. 7.2. In (a) the summation is restricted to the thick red segment
of length ⇤, whereas in (b) it is restricted to a small region around the origin, independent of ⇤.
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Figure E.2: ⇤-dependence of the width of the T -breaking region at T = 0 computed in the continuum
model. It is well approximated by a 1/⇤ (orange line) for large ⇤.

summation is independent of ⇤. With
���q�q0

��2 ⇠ 1/⇤4, one then arrives at

Jcrossed
c2 ⇠ 1

⇤3
. (E.3)

These arguments break down for small enough ⇤ where the width of the circular constraints fnk,i becomes
relevant. Importantly, the diagrams Fig. 7.2(b-c) become identical in the limit ⇤ ! 0.

As discussed in Sec. 7.3.2, the width of the topological phase space region along ✓ is related to Jc2(✓ =

0)/Jc1(✓ = 0) ⇠ 1/⇤ which we numerically confirm in Fig. E.2.

E.2 Numerical evaluation of crossed diagram
The crossed diagram in Fig 7.2(c) involves evaluation of the sum

X

nkqq0

|�q|2
���q0

��2 fnk,1fnk+q+q0,1fnk+q,2fnk+q0,2 . (E.4)
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Naively, since this sum does not factorize, and convolutional structure is not apparent, numerical evaluation
requires computational time O(MN3), where M is the number of Matsubara frequencies required to reach
convergence and N are the number of k-points in the 2D Brillouin zone. Here, we show that the complexity
can be reduced to O(MN2) by exploiting the Gaussian form of |�q|2 ⇠ e�q2

/⇤2 . For ease of notation, we
will omit prefactors and Matsubara indices n and set ⇤ = 1.

We perform the substitution q ! q � k and q
0 ! q

0 � k which modifies Eq. (E.4) to
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Choosing the center of mass frame Q = q + q
0, P = q � q

0, the term is expressed as
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The sum over k requires N2 steps (N steps to perform the k-summation times N steps to resolve the
residual Q-dependence). Analogously, the Q-sum can be computed in N2 steps, and the remaining P-sum
is performed in N steps. Taking into account the Matsubara summation, we arrive at a total complexity of
O(MN2).

E.3 Surface spectral function
In the following we summarize the derivation of the surface Green’s function given in Ref. [126]. This
method provides a remarkably clear and numerically efficient way to examine the boundary spectrum, given
a bulk Green’s function G(k). It involves perturbing the original Hamiltonian with an ‘impurity’ line of the
form

U = u0

X

r

�x,0c
†

rcr . (E.7)

Here, the coordinate vector is r = (x, y). We see that the perturbation introduces a potential barrier along the
line x = 0. If the barrier is sufficiently high, i.e., u0 is much larger than the bandwidth, tunnelling between
the two infinite half planes x > 0 and x < 0 will be completely suppressed and they become essentially
decoupled. In effect, the perturbation creates two independent semi-infinite half planes with boundaries at
x = ±1.

The perturbation U can be treated exactly by means of a Dyson series for the full Green’s function
F (p;p0)

F (p;p0) = G(p)�p,p0 + G(p)
X

q

U(p � q)F (q;p0), (E.8)

where we suppress the frequency variable for brevity. Here, G(p) is the disorder-averaged Green’s function
defined in Eq. (7.23) and U(q) = u0�z�qy ,0 is the first-quantized matrix of the perturbation U . Note
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Figure E.3: Two different gap regularizations. Panels (a-b) show the gaps defined in Eq. (7.25). They
can be transformed into each other by a mirror reflection, up to a sign. Panels (c-d) show a
different regularization where this symmetry is absent.

that F (p;p0) is not diagonal in momentum space, since translational invariance is explicitly broken by the
perturbation. We rewrite the above series using the transfer matrix T , yielding

F (p;p0) = G(p)�p,p0 + G(p)T (p;p0)G(p0) (E.9)

with an explicit expression of the transfer matrix

T (p;p0) =

"
1 � u0�z

X

qx

G(qxpy)

#
�1

u0�z�py ,p0y , (E.10)

where 1 denotes the identity matrix. The local Green’s function G̃ is deduced by transforming the px

momentum coordinate to real space:

G̃(x, py) ⌘ F (xpy; xpy) =
X

pxp
0
x

eipxxe�ip
0
xxF (pxpy; p

0

xpy) . (E.11)

The surface Green’s function is obtained by evaluating G̃(x, py) at x = ±1 and the corresponding spectral
function is plotted in Fig. 7.4.

E.4 Lattice regularizations of �k,i

Regularization of the superconducting gap function in Eq. (7.25) gives rise to an accidental degeneracy of
the surface spectral function in Fig. 7.4. This is because the gap functions in each layer can be mirrored into
each other with respect to the axis kx = 0, up to a phase of �1. Plots of the two gaps are shown in the top
panels of Fig. E.3 where the Fermi surface is indicated by a black circle. When projected onto the ky-axis,
the two gaps will yield identical spectra.
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(a) (b)layer 1 layer 2 (c) (d)layer 1 layer 2

(e) (f ) (g) (h)

Figure E.4: Layer-resolved bulk (a-d) and boundary (e-h) spectra for incoherently coupled cuprate
bilayers with ⇤ = 0 (left two columns) and ⇤/kF = 0.08 (right two columns) at 45� twist angle
for superconducting gaps plotted in Fig. E.3(c-d). In each layer, the spectral functions display
two distinct chiral edge modes, indicating a total Chern number C = 4.

A different regularization, specific to the twist ✓ = 45�, is given by

�k,1 = � sin kx sin ky,

�k,2 = � (cos kx � cos ky) . (E.12)

The two gap functions are plotted in the bottom panels of Fig. E.3. Here, the two gaps are no longer related
to each other through a mirror symmetry. The corresponding layer-resolved spectral functions hence differ
in the two layers of the bilayer structure, as seen in Fig. E.4. In the absence of any interlayer coupling,
g = 0, each layer possesses four Dirac cones. Finite interlayer coupling g has two effects: (a) it gaps the
Dirac cones and (b) induces the four gapped cones of layer 1 onto layer 2 and vice versa. The induced
gapped Dirac cones are characterized by light spectral weight in Fig. E.4. The positions of gapped Dirac
cones correspond to intersections of the Fermi surface in Fig. E.3(c-d) with the gap nodes, projected onto
the ky axis.

In each layer, the gapped Dirac cones are traversed by two Chiral edge modes, indicating a total topo-
logical Chern invariant of C = 4. This is still the case in the presence of impurities, ⇤/kF = 0.08. Here,
the incoherent nature of the interlayer tunneling causes a broadening of the induced gapped Dirac cones.
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