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Abstract: The concept of Digital Twin (DT) is widely explored in literature for different application
fields because it promises to reduce design time, enable design and operation optimization, improve
after-sales services and reduce overall expenses. While the perceived benefits strongly encourage the
use of DT, in the battery industry a consistent implementation approach and quantitative assessment
of adapting a battery DT is missing. This paper is a part of an ongoing study that investigates
the DT functionalities and quantifies the DT-attributes across the life cycles phases of a battery
system. The critical question is whether battery DT is a practical and realistic solution to meeting
the growing challenges of the battery industry, such as degradation evaluation, usage optimization,
manufacturing inconsistencies or second-life application possibility. Within the scope of this paper,
a consistent approach of DT implementation for battery cells is presented, and the main functions
of the approach are tested on a Doyle-Fuller-Newman model. In essence, a battery DT can offer
improved representation, performance estimation, and behavioral predictions based on real-world
data along with the integration of battery life cycle attributes. Hence, this paper identifies the efforts
for implementing a battery DT and provides the quantification attribute for future academic or
industrial research.

Keywords: digital twin; battery model; battery management system; Doyle-Fuller-Newman model;
equivalent circuit model; parameter estimation

1. Introduction

Digital Twin (DT) is a virtual dynamic model of a system, process, or service, with
real-world data interactions that facilitate improved system analysis and comprehensive
representation [1]. NASA defined DT as an integrated multi-physics, multi-scale simulation
of a system that uses the best available physical models, sensor data, and historical data
to mirror the life of its physical twin [2]. The applications of DT are: (1) to simulate the
behavior of the physical twin before its usage, where even without the benefit of continuous
sensor updates, the DT can study the effects of various parameters, determine the various
anomalies and validate the degradation mitigation strategies; (2) to simulate the system
behavior during operation, through the continuous update of actual load, temperature,
and other environmental factors, as input to the models, enabling continuous predictions
for the physical twin; (3) to perform diagnostics in the event of a fault or damage; (4) to
serve as a platform where the effects of parameter modifications, not considered during
the design phase, can be studied. In practice, DT implementation involves allocating real-
world data to the virtual model or platform. Boschert et al. [3] identified that simulation
would become the primary tool for decision support once a DT is fully integrated. Likewise,
Kunath et al. [4] summarized the three main functions of a DT: Prediction—execution of
studies ahead of the system run; Safety—monitoring and control of the system state in terms
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of a continuous prediction during the system run; Diagnosis—analysis of unpredicted
disturbances during the system run.

By definition, a model is a simplified abstraction of the structure or processes that
define a real system. In that sense, models do not aim to replicate the original system in
intensive detail [5]. The idea of moving a digital model closer to the real system is in fact a
basic rationale for building computer models. Some models are extreme simplifications
of the real system, while some are much closer to the real system, through multiscale
simulations and interdisciplinary collaborations. The difference between a DT and a
simulation model has been discussed previously [1,6], but it is essential to address the
features that qualify a model as a DT: (1) model of the product—physical or data-driven;
(2) evolving set of real-world data about/related to the product; (3) method of adjusting
the model in accordance with the data. According to [7], the DT evaluation framework
consists of four metrics, autonomy, intelligence, learning, and fidelity.

Some articles [8,9] describe seemingly similar concepts to DTs, such as digital shadow,
virtual model, product avatar and digital thread, but they do not necessarily indicate the
complete concept of DT, but rather fragments of overlapping functions. DT implementation is
often mapped to IoT (Internet of Things) devices and CPS (Cyber-Physical Systems) [10,11],
due to its high dependence on a compatible mode of data acquisition. A DT can have
single or multiple stakeholders and may make use of 3D simulations, IoT devices, 4G and
5G networks, blockchain, edge computing, cloud computing, and artificial intelligence.
Depending on the complexity, a DT may have access to past and present operational data
along with predictive capabilities.

A multitude of literature [12,13] has been published, defining and characterizing the
concept of DT in a variety of domains. However, missing from the literature is a consistent
view on what the DT is and how the concept is helping to meet the challenges of the many
use-cases to which it is being associated as a solution approach [14]. Some articles [15–17]
suggest the methodologies, frameworks, and interpretation of DT for specific use cases.
While this may help understand the system boundaries, it also leads to inconsistent ideas
of the requirements of DT implementation and thus generating the risk of diluting the
concept. The potential costs, infrastructure challenges, clarity of return on investments
for product/process DT are not transparent. Without substantial effort to describe and
quantify the DT benefits, it is challenging even to suggest that the concept itself may be the
most appropriate solution to the challenges faced by each particular industry [14].

DT is generally perceived with the core idea that it is a model that can replicate the
behavior of an existing system through the acquisition of real system data. This highlights
the importance and completeness of the phrase “replicate the behavior”. To which extent is
the replication satisfactory? DTs at first may appear to be a replica but replicating every
behavioral aspect might not necessarily be realistic. For example, in battery DTs, it is
unnecessary to digitally replicate each of the molecular, fluid, and structural behavior
of each cell component. DTs need not attempt to mirror everything about the original
system [5]. Hence, the reality of an exhaustive high-fidelity DT, which replicates every
aspect of the physical system and maximizes services while minimizing expense and
technical difficulty of implementation, is ambiguous. The level of model fidelity, cost, and
effort for implementation is subject to limitations which will vary depending on the use
case and its applications. Furthermore, the idea of DTs across the lifecycle is not yet fully
understood. The number of DTs required across the entire lifecycle, or the transitions and
interactions between the software components of the DT are yet to be explored.

Therefore, the stakeholders in industries or academia looking to invest in or develop a
DT face the following challenges:

• Limited use cases and implementation results available to learn from others;
• No clear guidance on how much to budget;
• Difficult to know where to start to get value quickly;
• Initiatives that are misleadingly branded as “Digital Twin”;
• Limited know-how.
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The hypothesis that DT would be a driver for product lifecycle management and
smart manufacturing in the future needs to be tested. This paper is a part of an ongoing
study that investigates the DT functionalities and quantifies the DT attributes across
the life cycle phases of a battery system. Essentially, the pressing question is whether
battery DT is a practical and realistic solution to meeting the growing challenges of the
battery industry, such as degradation evaluation, usage optimization, manufacturing
inconsistencies, second-life application possibility, etc. Within the scope of this paper, the
concept of DT will be explicitly explored for battery cells and the functionalities it can offer
during the operation and end-of-life (EoL) phases. Research on battery DT has already
gained much popularity, and with this paper, we aim to provide a consistent approach to
DT implementation for battery cells. In doing so, we identify the efforts for implementing
a battery DT. The contributions of this paper are as follows: (1) literature-analysis of
the potential functionalities of a battery DT during operation and EoL; (2) battery DT
implementation approach; (3) KPIs (Key Performance Indicators) to quantify the value-
add of battery DTs; (4) testing the main functions of the implementation approach on a
DFN model.

This paper is structured as follows: Section 2 reviews past literature followed by a
discussion about battery DT functionalities during operation and EoL. Section 3 outlines the
approach of battery DT implementation with subsections elaborating each step. Section 4
demonstrates the results of the application of the described approach in Python. Lastly,
Sections 5 and 6 is a discussion of the contributions of the paper and its future scope.

2. Battery DT Functionalities during Operation and End-of-Life

The number of literature specific to DTs has increased drastically in the last decade [8,18].
The topic is explored in various domains, such as product optimization, production plan-
ning/control, layout planning, maintenance, or product lifecycle. However, a microscopic
look into the implementation of product DT, i.e., battery DTs has become prevalent since
the past decade with increased utilization of IoT devices, CPS, and cloud-based services.
Sometimes battery model implementation learns from real-time operational data to eval-
uate the battery states but is not necessarily defined as a battery DT [19]. So, is it crucial
to even understand if a model is, in fact, a DT? Generally, at the initial stage of product
development, it is not an essential requirement. However, at the business level i.e., in
order to draw profits and innovation in the existing business model, a DT can facilitate
effective R&D.

In the context of battery systems, it is uncertain whether battery DT insinuates a
single cell DT, module-level DT, or pack-level DT. Currently, DTs are the result of custom
technical solutions that are difficult to scale [20]. The scalability of battery DTs depends on
the extrapolation of cell behavior through physical, physics-based, or data-driven battery
models. For this purpose, the term battery DT referred to in this paper implies the DT of
a battery cell. However, module and pack-level battery DTs are worth pursuing in the
later stages.

The literature review in this paper takes only those published literature into account,
which consists of practical implementations of battery DTs with defined DT-functionalities
and implementation methods. The focus is on reviewing the latest literature on DTs
concerning applications in the battery industry, published in the past 5 years (starting from
2016 to 2021). With Google Scholar as the research literature database and the following
logical expression of keywords: (“digital twin”) AND (“battery”) AND (“lithium-ion”),
updates until July 2021, the total number of resulting articles were 392 (39 google scholar
pages), among which several articles had to be excluded due to the following reasons:

• Some articles only mentioned battery DTs as a possible application
• Some of them did not explain the architecture to support battery DTs
• Others were only theoretical articles.

However, in combination with advanced search for the keywords (“battery digital
twin”) or (“digital twin” AND “battery”) in the title, the literature was filtered down to
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9 articles. As a result, Table 1 elaborates the available literature, their reported method of
DT implementation, and the corresponding DT functionality.

Table 1. Literature review of DT-implementations relevant for battery system.

Reference Implementation Method 1 DT Functionality

[21] HI and LSTM algorithm Estimation of battery’s actual
discharge capacity

[22]
Cloud BMS with AEHF-based SOC

estimation algorithm and PSO-based
SOH estimation algorithm

Estimation of SOC, SOH, capacity
fade, power fade

[23]

On-board diagnosis to cloud
environment; ECM model parameter
fitting, curve fitting and SOC-OCV

curve

SOC, capacity, internal resistance,
SOH-R, SOH-C

[24] Visual software in LabVIEW; ECM
with SVM and filter algorithms

DT platform for spacecraft
lithium-ion battery pack degradation

assessment; SOC estimation

[25]
Cloud connected BMS;

electric-thermal model and empirical
ageing model

Cell voltage and temperature

[26] ECM and EFK algorithm SOC estimation

[27] Review paper on battery DT Battery DT framework and its
cyber-physical elements

[28]

Offline—Regression model using
sparse-Proper Generalized

Decomposition (s-PGD);
Online—Dynamic Mode
Decomposition technique

Cell voltage, anode/cathode bulk
SOC, anode/cathode surface SOC

[29] Linking reduced order model with
ECM in Ansys Twin Builder

Real-time temperature of the battery
pack at different locations; What-if

scenarios for root cause analysis
1 HI—Health Indicator; LSTM—Long Short-Term Memory; BMS—Battery Management System; AEHF—adaptive
extended H-infinity filter; PSO—Particle Swarm Optimization; SOC—State of Charge; SOH—State of Health;
OCV—Open Circuit Voltage; ECM—Equivalent Circuit Model; EKF—Extended Kalman Filter; SVM—Support
Vector Machines.

While some of the references identified in Table 1 are pioneering attempts to map
real-time battery data to the battery models through cloud services, the others have yet
again used simulated driving cycle data to validate the state estimation algorithms. This
procedure of using drive cycle simulations such as WLTP (Worldwide Harmonized Light
Duty Vehicles Test Procedure) or UDDS (Urban Dynamometer Driving Schedule) for valida-
tion of battery state estimation algorithms is a state of the art state estimation approach [30].
Nevertheless, this is not ideal for designing battery DT because simulated driving cycles
can only validate the algorithm accuracy of static models while battery DTs are dynamic.
Additionally, a common observation among all the DT functionalities in Table 1 is that
they all have approximately the same output, i.e., SOC, SOH, internal resistance, or ca-
pacity. Evaluation of the battery state through these output variables has already been an
established requirement from electrical models, electric-thermal models, electrochemical
models, and until recently, data-driven (or NN) battery models. In this context, it is worth
noting the conundrums that this raises regarding the argument about the need for a battery
DT only for performing state estimations. Other than the fact that if implemented correctly,
a battery DT should deliver those output variables to the users, developers or testers in
real-time, there are no significant utilities that only a battery DT can implement. So, what
additional value-add does a battery DT contribute? In an attempt to answer this, the
following 2 aspects are now elaborated:

• Battery DT influence on life cycle phases;
• Current BMS functionalities.
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To achieve competitiveness with the internal combustion engine, the key requirement
for battery development is high driving ranges, low-charging times, and low battery pack
cost. The performance indicators of batteries during usage are characterized by cost,
specific energy (Wh kg−1), energy density (Wh L−1), specific power (W kg−1), and power
density (W L−1), and charging time (=fast charging ability) [31]. While a DT cannot take
the responsibility of improving the energy density or specific power of a battery, it can
significantly aid the design optimization process and EoL assessment process. Sensing the
battery data and uploading that to a storage server gives the opportunity to easily access
the battery data and create learning models, which directly guide the product design,
and optimization process [27]. The battery data storage platform stores the design and
usage history, which supports behavioral integration in consequent life cycle phases and
simplifies the prediction of the remaining useful life (RUL) during operation and also at
EoL for second life assessment [32].

The Battery Management System (BMS) is the central element for protecting, mon-
itoring, and controlling the battery-powered system by ensuring safety, efficiency, and
reliability [33]. BMS measurements are performed for cell voltages, pack current, pack
voltage, and pack temperature and it usually uses these measurements to estimate SOC,
SOH, DOD (Depth of Discharge) [34]. Battery DT requires the onboard-BMS to work
together with the battery data storage platform.

The potential functionalities of a battery DT in combination with an onboard-BMS are
identified in the literature. Identifying the stress factors from the time-series measurement
data and calculating its effect on the model parameters facilitates evaluating battery aging
indicators during operation [25]. Besides, the model update integrated with the charging
data enables a battery DT to maximize the optimization objective and select the best
parameters for an optimal charging strategy such as multi-stage constant current charging,
pulse charging, multi-stage constant heat charging and AC charging [35]. Similarly, thermal
management based on battery DT relies on prediction of aging effect of temperature
distribution across the battery pack using thermal models. Detection and traceability of
sensor faults, electrical faults, and thermal runaway in a battery DT can allow integration
of fault diagnosis procedure of the BMS with the battery DT functionalities [32].

In order to identify the functionalities and potentially the value add of a battery DT,
the above discussion is encapsulated in Figure 1. The black circle lists the functionalities of
a BMS, taken from the datasheets of two commercial BMSs found in [36,37]. The extended
blue block lists the battery DT outputs taken from Table 1. These are the applied battery
DT functionalities. Lastly, the green block lists the potential DT functionalities identified
from the literature (as highlighted above). Thus, Figure 1 compares the existing BMS
functionalities with the applied battery DT functionalities and the potential battery
DT functionalities.

The BMS functionalities taken from the referenced datasheets are to monitor the
current and temperature sensors. It uses programmed settings to control the current flow
into and out of the battery pack by broadcasting the charge and discharge current limits,
cell balancing, and monitoring each cell tap to ensure that cell voltages are not too high or
too low. Using the programmed values in the battery pack profile, the BMS calculates the
pack and individual cell’s internal resistance (SOH) and OCV. Current sensor data is used
to calculate the battery pack’s SOC (via coulomb counting CC).
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Figure 1. Comparison of BMS functionalities with the applied battery DT and the potential battery DT functionalities.

The SOC estimation method in the studied BMSs is CC. Literature shows alternative
methods with higher estimation accuracy, such as adaptive EKF, impedance method,
fuzzy logics, SVM, hybrid method (EKF combined with ANN) [38–40]. Here a DT can
complement the current BMS functionalities by applying estimation algorithms with higher
accuracy. Moreover, the main functionality of the BMS is to ensure that the battery stays
with its specified limits. It takes immediate measurements to analyze the voltage and
temperature of the cell to estimate the SOC. It does not consider the degradation effect
of the charge/discharge cycles on the battery from an electrochemical perspective. The
immediate battery user may not be interested in understanding the degradation effects
of the battery, such as loss of lithium, diffusivity of electrolyte or SEI resistivity at the
anode. However, for deeper knowledge and future innovations by the battery designers,
this would serve as a stepping-stone towards ensuring that the battery lasts until its
maximum possible capacity and optimal performance. Hence, a DT can complement the
functionalities of a BMS by taking the load for large computation requirements. BMS
diagnostics over a long period can be enhanced and even simplified by using a DT.

To sum up, the added value that battery DTs can offer is improved representation,
performance estimation, behavioral predictions, optimization strategies, and integration of
battery life cycle attributes to the remaining DT functions.

3. Approach

In this section, an approach for implementing a battery DT is introduced. The purpose
is to define a functional procedure to move from battery model to battery DT systemat-
ically. Figure 2 illustrates the 5-step approach, and each step is then further elaborated.
By piecing together the existing methodologies of battery modeling, model parameter
estimation, battery state prediction, the efforts needed for implementing a battery DT will
be investigated.
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Figure 2. Approach for battery DT implementation.

3.1. Step 1: Lightweight or Heavyweight Battery Model Development

The first step to implement a battery DT is inevitably the development of a reliable
battery model. Battery models have become an essential tool in battery-powered applica-
tions, which are safety and performance-critical. Depending on how the model inputs and
outputs are related, battery models can be classified as empirical, semi-empirical, physical
and, data-driven [41,42], while the different types of battery models are:

• Electrical model (ECM);
• Electrochemical model (P2D);
• Thermal model;
• Mechanical model;
• Interdisciplinary combined model.

Fast and accurate identification of the BMS model parameters is a vision for battery
developers and engineers. With the outlook of computational expense, the battery model
types can be differentiated as either lightweight battery models or heavyweight battery
models. Based on [43], the factors which differentiate between the two are as follows:

• Battery dynamics represented by the model
• Number of parameters
• Computation time
• Accuracy
• Ease of understanding and complexity for implementation.

We limit discussion to only electrochemical and electrical models for this paper. As a
lightweight model, ECM of a battery is relatively easy to scale to the module or pack level
and is widely used in BMS algorithms. They are derived from the empirical measurements
of external characteristics of the cell [44]. However, by observing only the external behavior
of the battery, the internal electrochemical dynamics cannot be entirely represented, and it is
challenging to provide insights into electrochemical or life-reduction phenomena occurring
inside the battery. Additionally, ECMs are developed based on data obtained from specific
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operating conditions of the target batteries, and their accuracy abruptly decreases while
performing calculations on other operating conditions or if the battery is replaced [45].

As heavyweight models, the electrochemical models mainly fall into two categories,
single particle model or pseudo two-dimensional (P2D) model (also known as the Doyle-
Fuller-Newman—DFN model). DFN model for lithium-ion batteries use the combination of
the porous electrode theory and the concentrated solution theory [46]. Compared to ECM,
which has less physically relevant parameters, a DFN model contains a large number of
parameters with a physical meaning. It calculates electrical, chemical, and electrochemical
phenomena occurring inside the battery to predict its performance and lifespan Hence,
DFN models provide the opportunity for a deep understanding of lithium-ion batteries’
aging mechanisms, accurately predicting battery performance by considering the material
characteristics and the electrode design.

Experimental Parameter Identification Techniques

Accurate fitting of the battery model with experimental data is not the focus of this
paper, so the authors rely on the existing techniques. Instead, the focus is parameterizing the
model once the battery is in the usage phase and eventually at EoL (discussed in Section 3.3).
Experimental parameter identification is naturally the first step to model development.

ECM or DFN model development requires the human and hardware effort to set up
the experiments and perform the necessary tests followed by the subsequent calculation
of the battery parameters and its state [47]. The state of the art method of optimizing the
parameter set consists of: (1) initially solving the model for a given set of model parameters;
and (2) finding the parameter set that minimizes the sum of squared error between the
simulated voltage response of the cell and the experimentally observed voltage for a specific
drive cycle [48]. It is worth noting that, many techniques have been proposed to identify the
necessary parameters for electrical models, but a lower number of identification techniques
are available in the literature for electrochemical and aging models.

The term parameter refers to the characteristic of the battery, including chemical (solid-
phase conductivity, diffusion coefficients, etc.) and electric quantities (internal resistance,
capacitance, etc.), while the term state refers to the variables which illustrate the behavior
of the battery such as SOC and SOH.

In the conventional battery model parameter identification methods, experimental
data is used to reference the model parameters, which are then brought closer to the
experimental results using the following methods: Kalman filter (KF) method, the gradient
method, and the gradient-free method. KF approach is usually applied in the parameter
estimation of ECMs due to its recursive computation process, while gradient and gradient-
free methods are often employed for a DFN model. Evolutionary computation-based
identification methods such as particle swarm optimization (PSO) and genetic algorithm
(GA) are gradient-free methods, immune to local minimum traps and are usually used to
solve the cell’s governing equations faster.

The objective or fitness function for parameter identification via GA, PSO, DE, and KF
algorithms is defined by Equation (1) [49–52]:

L2 =
1
N

min
N

∑
i=1

[
Vexp(ti)− Vsim(θ, ti)

]2 (1)

where, Vexp and Vsim are the experimental and simulated cell output voltage with the same
input current, N is the total number of input current data samples, and i is the time index,
L is a representation of the RMS error.

However, the estimations done using these methods may deviate from the actual val-
ues due to the fact that the degradation physics caused by SEI (solid electrolyte interphase)
layer or lithium plating is not included. Moreover, the variations of the concentration-
dependent parameters are usually ignored or assumed as the constant values, which makes
the battery state estimation deviate further from reality.
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3.2. Step 2: Impact Analysis of Real-World Charge/Discharge Cycles on Battery Model Parameter

Voltage, current, and temperature are the real-world charge/discharge data types
collected from the battery. Data in the time-series comes directly from the BMS. Direct
connection with the BMS, plug-and-play devices, or cloud servers are some of the data
interaction methods. Although the data interaction method is not standardized, cloud
services have been integrated with onboard-BMS in the past (Table 1) for seamless data
exchange. Initial investment and time for implementation have made real-work data
interactions and control of battery systems challenging.

The simulated experimental inputs used for model parameterization (as described
in Section 3.1) in contrast with real-world charge/discharge cycles do not have the same
effect on battery model parameters. While driving procedures such as WLTP or USSD
are used to validate the accuracy of model parameter identification, after prolonged use
of the battery, the battery model parameters do not always mimic the actual state of the
battery. Hence, with continued usages, the state estimation results of the battery model
go farther and farther away from the actual battery state. The effect of prolonged real-
world charge/discharge cycle on the battery behavior and the changes that it causes in
the inherent characteristics are experimented and researched by academics [53]. However,
these effects are not transparent or readily available.

For the impact analysis, first, the governing equations of both DFN model and ECM
model are obtained (Tables A1 and A2). Based on these, the list of parameters of both
models is summarized in Table 2. For a battery DT, it is essential to identify the parameters
that undergo drastic change due to a long period of usage. Hence, step 2 of the approach is
to understand the impact of charge/discharge cycles on battery model parameters. The
argumentations provided in this section are based on Uddin et al.’s work [48], which
applies non-destructive experimental techniques to quantify the detailed degradation
associated with different aging stress factors. Model parameter estimation was done using
a non-linear fitting algorithm i.e., minimizing the square of the error between simulated
and measured voltage. The authors assert that since model parameters are connected to
intrinsic properties of the battery, the evolution of these parameters will highlight physical
changes within the battery. Thus, by tracking the evolution of model parameters, it will be
possible to deduce the mechanisms by which the battery has degraded over time.

Factors that are known to cause degradation effects on Li-ion batteries are: calendar
age (tage), cycle number (N), temperature, SOC, DOD, cycle bandwidth (∆SOC), charge
voltage, C-rate, cycle frequency. Expected parameter changes reviewed in the reference
paper and further published literature is depicted in Table 2. Knowing the factors that
affect the battery life during cycling is essential to design a DT model that evolves along
with the degradation of the actual battery. Hence, the model parameters which are directly
and most largely affected by the cycling of the battery system are identified.

For reduced-order modeling of DFN model, no particular consensus exists on which
parameter needs to be estimated. Some of the parameters are considered while keeping the
others at a nominal value. A systematic approach for selecting which parameters can be
reliably estimated is presented in [54] in the form of parameter sensitivity analysis. The
parameter sensitivity analysis determines how sensitive is the output of the model with
respect to variation in values of parameters. Rather than looking into the sensitivity of
the model output with variations in values of the parameters, in the following Table 2,
we look into the sensitivity of model parameters with respect to cycling data. Table 2
mainly elaborates the effect of high cycle number and charging current (C-rate) on the
parameters of the DFN model and the ECM—based on the referenced literature. High
cycle number is a primary factor for cyclic aging, and high C-rate directly impacts the
cell temperature, which in turn influences battery degradation. Hence, only these two
stress factors are considered and not all the mentioned battery degradation factors because
the experimental and quantitative sensitivity analysis for each model parameter will be
too large to handle in this paper. With the outlook for battery DTs, understanding the
sensitivity of model parameters to the environmental conditions and usage practices is
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a requisite. This implies experimental or simulative confirmation of effect of prolonged
cycling on model parameters.

Table 2. Impact analysis of model parameters vs. battery degradation factors based on [48,54,55]. Legend for the table:
x—impact identified in the reference article, but the impact level is not specified; C—Constants; Text—impact level identified
by the reference article; Blank (-)—No direct information found on the sensitivity or dependency for this parameter.

Parameters Symbol (Unit) 1 High Cycle Number High C-Rate

DFN

Thickness Lp, Ln, Ls (µm) x [55] Moderate [55]

Surface area Ap, An, As, (m2) x [48] Moderate [55]

Particle radius Rp
+, Rp

− (µm) x [54] x [54]

Active/Inactive material volume fraction εs
p, εs

n x [55] Moderate [55]

Electrolyte phase volume fraction εe
p; εe

n - -

Maximum Li+ concentration cs
p,n,se (mol cm−3) x [48] Moderate [55]

Average electrolyte concentration ce (mol cm−3) - x [48]

Stoichiometry of n, p at 0% and 100% SOC xp,n
0,100 - -

Diffusion coefficient in solid and liquid phase Ds
p, Ds

n, De (m2 s−1) x [54] -

Solid phase conductivity σs
p, σs

n (µm) x [48] x [48]

Li transference number t+
0 Not sensitive [54] Not sensitive [54]

Resistivity of film layers (including SEI) Rf (Ω) Not significant [54] x [48]

Negative electrode potential, U− coefficients - x [48] -

Positive electrode potential, U+, coefficients - x [48] -

Open circuit potential V x [48] -

Overpotential η Not significant [55] -

Reaction flux at the solid particle surface j (mol cm−1 s−1) - -

Exchange (electrolyte and solid) current
density ie (A cm−2) - -

Electrolyte activity coefficient ±f C C

Bruggeman porosity exponent p C C

Anodic/Cathodic charge transfer coefficient αa, αc C C

Intercalation/deintercalation reaction-rate
coefficient kn,p (A cm2.5 mol−1.5) C C

Universal gas constant R C C

Absolute temperature T C C

Faraday’s constant F C C

ECM

Internal ohmic resistance RO (Ω)

Sensitive [56] Sensitive [56]OCV VOCV (V)

Polarization Resistances R1, R2 . . . (Ω)

Polarization Capacitances C1, C2 . . . (F)

Coulomb efficiency η Almost constant [57] Sensitive [57]

Hysteresis voltage, hysteresis decaying factor H (V), k Not significant [58] Impact of overvoltage
[59]

1 n = Negative electrode; p = Positive electrode; se = Separator; s = Solid phase; e = liquid phase.
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A natural question here is that after continued usage of the battery, shouldn’t all the
parameters change. Not all the coefficients are majorly altered, and the constants do not
change. Also, based on the usage practice, only a particular subset of parameters may undergo
significant changes, such as the performance parameters or the structural parameters.

Knowledge of the impact of cyclic aging on model parameters helps in model reduc-
tion, intermediate battery state estimation at different stages of battery lifecycle, and control
algorithms for the BMS. Additionally, it helps the battery designers evaluate how the cell
degrades for various applications in different working conditions because the model is
up-to-date with the real system in battery DTs. Thus, supporting product optimization for
designers and product state estimation during battery usage and end of life.

3.3. Step 3: Model Parameter-Update Estimation

The third step of the approach should not be mistaken as the parameter identification
described in step 1. The first parameter identification of a battery requires an experimental
setup, i.e., testing the cell in a battery cycler and temperature chamber. However, for
identifying the parameters of partially (in operation) or completely aged cells (at EoL),
the option of removing the cell from its application and testing it does not necessarily
exist. Instead, the sensor measurements from the BMS and knowledge of how the battery
has been used (charge/discharge cycles and environmental data) are the basis for the
parametrization of the battery DT.

The procedures used to estimate the model parameters and states primarily limit
the model usability. From the existing parameter identification techniques for ECM and
DFN models, what role do they play when identifying the parameters of a battery DT that
continuously needs to evolve as the battery is aging? Ultimately, the parameter estimation
procedure that can track model parameters evolution as the cell ages is ideal for battery DT.

The battery DT parameter-update estimation procedure cannot entirely rely on the
existing identification methods (Equation (1)) because, with the battery-DT-workflow, a
cell in operation cannot be dismounted in order to perform experiments. Although the first
step of accurate model development involves estimating parameters using experimental
datasets and validation datasets, in practice, many parameters are constantly changing. For
battery DT the parameter-update estimation needs to be repeated during operation after a
certain number of cycles (N) or time (t). The input data from the BMS is not necessarily
retrieved continuously in real-time. N and t will differ based on the battery application
(EV, grid storage) and its usage practices. We leave the evaluation of optimal values
of N and t for future studies, but an apparent range of N as evaluated from [60,61] is
500–1000 cycles, after which a significant change in electrochemical model parameters is
observed. Parameter update for DTs during battery operation and at EoL includes but is
not limited to the following methods:

• Calculate the model parameters at the end of N cycles, and repeat the update pro-
cess iteratively. Identify the reduced set of parameters (such as in Table 1) directly
influenced by the number of cycles and operating conditions. The initial conditions
(from the governing equations) of the model are certainly updated. Thus, new param-
eters set and initial conditions are available to the model for its next simulation (N
cycles). For DFN, the mathematical estimations of parameters mainly involves reval-
uating the governing equations which employs Fick’s law of diffusion, charge and
mass conservation, concentrated solution theory and Butler-Volmer electrochemical
kinetic expression.

• Calculate the rate of degradation physics caused by lithium plating and SEI growth
through the reaction equations and rate expressions [62]. Lithium-plating passive film
layers formed by consuming of cyclable Li-ions is influenced by the charge transfer
mechanism. The rate of SEI formation reaction is affected by mass transport within
the anode and by surface kinetics. Effects of degradation physics are integrated in the
model after every N cycles.
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• Utilize the fast minimization algorithms such as Gauss-Newton method, prediction er-
ror minimization by estimating the parameter-update through synthetic experimental
data [63]. Synthetic experimental data can be obtained using simulated battery out-
put with computer-generated randomness. However, this method has an unjustified
validation scheme because the input would also be simulated; hence this approach is
mainly beneficial for initial testing purposes of the battery DT.

• Apply data-driven parameter identification methods estimation which employs the
terminal voltage and load current for parameter update (partially applied in [64]). A
comprehensive literature survey of the data-driven parameter identification methods
is not conducted. Therefore, this paper does not attempt to review the data-driven
parameter identification methods thoroughly. Instead, we choose to review if data-
driven approaches can support the parameter-update step. There is no doubt that
a large amount of training data (collected at the beginning of life) is a requirement
for data-driven parameter-update during usage. Nonetheless, the cost and computa-
tion time of the data-driven algorithms [65,66] for application in battery DT need to
be compared.

Looking at the state of art parameter estimation algorithms, the gaps between the
currently used battery models and the proposed battery DT are as follows; (1) Availability
of cycling data to the battery model; (2) Model parameter-update method that does not
entirely rely on experimental inputs, but instead on the charge/discharge characteristics
and environmental data. Nevertheless, the state estimation algorithms would inherently
remain the same in both battery model and DT.

3.4. Step 4: Adaptive Model Update

Step 4 of the approach addresses the execution efforts applied on the software segment
for implementing a battery DT. The commonly used software and programming languages
of battery modeling are MATLAB, COMSOL or Python. Irrespective of the chosen platform,
the flowchart of the implementation steps is shown in Figure 3. The green arrows denote
the workflow of battery DT while the blue arrows denote that of a battery mode.

Figure 3. Software segment for implementation steps.

The conventional steps of building a battery model using experimental inputs for its
parameter identification followed by the state estimation is the preliminary implementation
step for battery DT. Real-world battery data (i.e., terminal voltage, load current and temper-
ature) is then integrated with the model, which means they are added as time series input
by importing the battery data (in .csv or other compatible formats). The parameter-update
estimation step can be computationally handled in a dedicated code or in the differential
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solver tools in MATLAB or Python. A standard method in MATLAB for accessing the
parameters is through lookup tables (LUT). For model parameter-update in MATLAB, the
parameter (in the required format) is uploaded to the workspace and directly imported to
the LUT. Alternatively, in Python, re-assigning or updating an input parameter is relatively
easy by direct access and assignment of the parameter in its respective object. Finally, the
battery DT is subjected to the state estimation algorithm.

3.5. Step 5: Battery DT KPI Quantification

Lastly, but most importantly, it is necessary to identify the benefits of the battery
DT to draw light on its significance for the battery industry. Referring to the problem
identified in the Section 1 of the paper that without substantial effort to describe and
quantify benefits, it is challenging to suggest that the DT concept itself may be the most
appropriate solution to the challenges faced by each particular industry. To support a
holistic battery DT implementation in the future, both qualitative and quantitative KPIs
are identified and elaborated below:

1. Investment

◦ Effect on optimization cost due to battery DT functionalities.
◦ Cost to establish data acquisition from BMS to the battery model. Here, we assume

the preexisting cost of sensors installed on the BMS and the cells.
◦ Cost of data storage method, i.e., cloud server, memory drive, etc.
◦ Computational cost of simulating the algorithms of the battery DT.

2. Time

◦ Time needed for the state estimation algorithms, optimization algorithms and
other battery DT functionalities

◦ Time to retrieve battery data from its application and assign it to the DT
◦ Speed of battery DT alignment with actual battery, i.e., total time for executing the

parameter-update step.

3. Accuracy

◦ Accuracy of parameter identification.
◦ Accuracy of parameter-update estimation parameter identification.
◦ Accuracy of state estimation

4. Functionalities

◦ DT functionalities that support the battery designers (battery design optimization)
◦ DT functionalities that support the battery users
◦ DT functionalities that support the battery EoL handler (RUL assessment)

Note: Functionalities is a qualitative KPI. We determine the services that a DT is
capable of providing its users through the battery DT functionalities. The accuracy of those
services across the battery lifecycle is a KPI for evaluating the benefits of using a battery DT.

4. Results

Here, we highlight the usage of approach in Section 3. The number and variety of ex-
isting open-source battery modeling software packages (MATLAB, COMSOL, DUALFOIL,
fastDFN, to name a few) have made it convenient for academics and industrial battery
designers to begin with partially developed and functional models rather than building
the battery model from scratch.

Utilization of experimental results for estimating the battery model parameters is
necessary during initial design of the model. However, for estimating the battery state
that is already in use for N cycles, experimental validation of terminal voltage followed
by a minimization optimization algorithm is impossible. Here, the alternative is that
either the BMS provides the voltage values of each cell through the voltage sensor or the
parameter-update is identified through the aging physics of the battery.
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PyBaMM (Python Battery Mathematical Modelling) is an open-source Python package
that can solve continuum models. It can be coupled with other software packages and is
capable of solving standard electrochemical battery models. Documentations for using
PyBaMM are available [67,68] and the results show that PyBaMM can facilitate the model
parameter-update estimation.

The data structure of battery models in PyBaMM is a collection of symbolic expression
trees (variable, parameter, addition, multiplication, and gradient). These enable mathe-
matical representation of the model components. The addition of a new battery model
in PyBaMM requires initialization of attributes such as: (1) variable boundary conditions;
(2) governing equations; (3) initial conditions; (4) output variables of the model; (5) other
optional attributes (geometry, computation solver, parameter values, termination events,
and battery region).

PyBaMM provides parameter sets based on experimental data provided in litera-
ture [69,70] which are used as the reference parameter values in this paper. Types of
parameter for all the components (cells, electrolytes, negative electrode, positive electrode,
SEI, separators) includes, macroscale geometry [m] or microstructure, current collector
conductivities [S m−1], current collector density [kg m−3], current collector specific heat
capacity [J· kg−1 K−1], current collector thermal conductivity [W m−1 K−1], nominal cell
capacity [A.h], current function [A], electrode properties, and interfacial reactions.

According to Figure 3, the model is first fed with the charge/discharge cycle data
through an excel file. In the following execution, a high acceleration aggressive driving
schedule—US06 is used to discharge the DFN model. Code segments (2), (3) and (4) are
the cycle integration steps.

Experiment1 = pybamm.Experiment ([“Charge at 1 A until 4.1 V”, “Hold at 4.1 V until 50 mA”]) (2)

Experiment2 = pybamm.Experiment([(“Discharge at 1C for 0.5 h”, “Discharge at C/20 for 0.5 h”)] × 2 +
[(“Charge at 0.5 C for 45 min”,)]

(3)

Experiment3 = pybamm.Experiment([(“Discharge at 2C until 3.3 V”, “Rest for 0.5 h”,
“Charge at 1 A until 4.1 V”, “Hold at 4.1 V until 50 mA”)])

(4)

The Python program was written based on the provided examples in the documen-
tation, hence the results can be reproduced. PyBaMM operates with respect to a defined
set of input parameters (~97) and output variables (~400). The PyBaMM program steps
highlight the ease of following the implementation steps of Figure 3. It can be considered
the means to develop battery DTs, mainly due to fast access to the model parameters in
Python. Further analysis and research with different input data and parameter identifica-
tion are definitely needed in order to implement a holistic battery DT. The correctness of
the findings in these results are dependent on the precision of the PDE and ODE solvers
in PyBaMM.

In Figure 4, the default DFN model is assigned with the two types of charging
preconditions—(2) and (3). The battery model is fully charged using 2, followed by
the final state of the experimental solution being mapped to the initial conditions of the
next discharge cycle. Similarly, using (3), the battery model is completely discharged
followed by slow charge at 0.5 C for 45 min. Likewise, the final state of the experimental
solution is mapped as the initial condition for the consequent discharge cycle. The surface
concentration, electrode potentials, and terminal voltage values are compared for the three
scenarios, i.e., default battery initial state, fully charged, and slow charged. The compar-
ison implies that the effect of charging under varying conditions can be mirrored to the
consequent discharge cycle. This helps in running the state estimation procedures after
certain discharge cycles with relevant initial conditions.
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Figure 4. DFN model discharge results with different preconditions. Fully charged—code statement
(2). Complete discharge and slow charge—code statement (3).

Code segment (4) is a variation of (3), where the model is discharged at 2 C until
3.3 V, followed by 30 min rest and full charge until 4.1 V. Figures 5 and 6 show that a
discharge/charge cycle with respect to (4) is followed by the US06 drive cycle. Similar
to the processing of Figure 4, the final state of the model at the end of the charge cycle
(Experiment 3) is used to update the initial conditions at the beginning of the discharge
cycle. Figure 5 compares the model behavior with direct discharge and discharge after
the Experiment 3. The plot of terminal voltage reflects that an accurate terminal voltage
estimation is possible when the model parameters are appropriately updated with respect
to the operation of the actual battery. Figure 6 partially repeats a section of Figure 5. It
mainly shows the DFN model output variables for charge and discharge cycle based on
code segment (4) and the US06 drive cycle.

Figure 5. Comparison between output parameters of two discharge characteristics.
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Figure 6. DFN model output variables for discharge based on code statement—(4).

Some of the variables are two-dimensional, with respect to time and the distance from
the anode current collector (x). Thus, the graphs change as time is modified. From Figure 5,
the output variables for both the scenarios (i.e., only discharge and charge followed by
discharge) are retrieved in MATLAB files in 1D or 2D arrays. The output variable set shown
in the following code segment can be used to calculate the degradation mechanisms of the
electrode, separator, and electrolyte.

solution.save_data(“Output_AfterDischarging.mat”,
[“Time [h]”, “Current [A]”, “Terminal voltage [V]”,“x [m]”,
“Electrolyte concentration [mol.m-3]”,
“Electrolyte potential [V]”,
“Negative particle surface concentration [mol.m-3]”,
“Negative electrode potential [V]”,
“Positive particle surface concentration [mol.m-3]”,
“Positive electrode potential [V]”,
“Negative electrode surface area to volume ratio [m-1]”,
“Positive electrode surface area to volume ratio [m-1]”,
“Positive electrode active material volume fraction”,
“Negative electrode active material volume fraction”], to format=“matlab”)
Hence, the first parameter-update method of 3.3 is realizable in PyBaMM. This exam-

ple was based on only a small range of driving schedules, while the input charge/discharge
cycles are much longer in reality. There also arises an alternative of a straightforward
implementation through continuous concatenation of the driving cycles. While that will
work for small durations, a very high computation power will be needed to cycle the
model through the complete usage phase using a single concatenated file. The model
parameter-update during usage keeps the battery DT up-to-date with the actual cell after
every N cycle.

Knowledge of which driving cycle parameters affects the model parameters might not
always be computationally practical because evaluating the exact values of each parameter
is not practically possible. Model reduction is, therefore, an important component, espe-
cially of electrochemical battery models. However, understanding potential dependencies
will directly impact the formulation of the estimation algorithms’ objective function and
cost functions.

The output files generated from the results contribute to parameter retrieval and
comparison, it can further be integrated with existing battery state estimation techniques.
The extensive parameter set that the DFN model provides complements the requirements
of the high fidelity prediction algorithms that aim for high accuracy, irrespective of the
computation costs. Additionally, the output parameter set can be used for generating
training data for data-driven predictions in real-time applications.
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Due to the unavailability of operational data, the KPIs identified in Step 5 of the
approach are not be quantified for this implementation. However, comprehensive testing
and KPI quantification will be investigated in future research.

5. Discussion

The following points focus on the unaddressed issues that remain unresolved but are
considerably broad in scope to be handled in one paper:

• Level of fidelity expected from a battery DT—A model that captures the electrical,
thermal, electrochemical, mechanical and aging aspects of a battery is deemed a high
fidelity model. The reality and practicality of such a model are not clear. The cost and
time needed for an exhaustive high-fidelity battery DT are high, and the estimate of
accuracy improvement is also missing;

• Number of DTs across the battery lifecycle—The idea of a DT across the lifecycle of a
product is not entirely understood. This is due to the uncertainty of the number of
DTs needed in such cases. Either there is one DT with a large capacity, or there are
many small-sized DTs coupled together. For battery DT, the coupling of process and
product DT is a possible use case during manufacturing;

• Scaling the battery DT to module and pack-level DT—Achieving battery DTs at scale
will require a reduction in technical barriers for their adoption. This implies that for a
pack-level battery DT, the number of sensors and the amount of data retrieved will
drastically increase. Hence, the data acquisition and storage needs to be seamless;

• Accuracy of behavioral prediction using battery DT—For commercial utilization of
battery DTs, it is necessary to compare and quantify the accuracy of existing BMS pre-
dictions vs. the prediction of battery DT. Quantification and comparison of percentage
error in DT estimations should be the primary focus in future works.

6. Conclusions

An approach for battery DT implementation was presented. The 5-step approach
allows the readers to recognize the difference between a battery model and battery DT
implementation. The first challenge recognized for battery DT implementation is making
the battery operational data available to the model. Cloud services have been integrated
with onboard-BMSs in the past, but this is not common. In the coming years, the data
integration method for battery DTs has to be standardized, even though it might entail
initial investment and implementation time. The second challenge recognized for battery
DT implementation is that the method of model parameter-update during usage is not well
established and still needs further research. The results of the paper indicate that, if tracked,
the DFN model parameters will keep changing after a certain period of usage and cycling.
The other methods proposed for parameter-update in the paper will be investigated in
future work.

This paper provides a consistent view of a battery DT and the added value, i.e., its
functionalities that it offers during battery operation and EoL. The benefits of battery DTs
are: improved representation, performance estimation, behavioral predictions, optimiza-
tion strategies, and integration of battery life cycle attributes to the remaining DT functions.
Based on the results provided in this paper, a battery DT can widen the scope of current
BMS functionalities by evaluating the degradation effect that the driving cycle has on the
battery from an electrochemical or electrical perspective.

The quantitative uncertainty of the potential costs, infrastructure challenges, and
return on investments for battery DTs still exist. However, the KPIs identified in this
paper will play a significant role in quantifying the battery DT attributes. Promising future
scope exists in evaluating the KPIs for DT across the life cycle phases of a battery. As part
of the ongoing research to evaluate the feasibility of battery DTs, its functionalities and
quantification of its attributes across the lifecycle will be explored in future works.
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Appendix A

Table A1. Governing equations of DFN model along with the phenomenon that describes the diffusion, charge/mass
conservation and flux density in DFN model [46,71].

DFN Model Derived through Governing Equations 1

Solid phase mass transport
equation—Li+ concentration in

electrodes and separator
Fick’s law of diffusion ∂cs(x,r,t)

∂t = Ds
r2

∂
∂r

(
r2 ∂cs(x,r,t)

∂r

)
Liquid phase mass transport

equation—Li+ concentration in
electrolyte

Conservation of Li+ ions
(Conservation of mass) εe

∂ce(x,t)
∂t = ∂

∂x

(
De f f

e
∂ce(x,t)

∂x

)
+
(
1 − t0

+

)
As j(x, t)

Solid phase charge transport
equation—Potential in electrode

Ohm’s law (Conservation of
charge)

∂
∂x

(
σe f f ∂φs(x,t)

∂x

)
− AsFj(x, t) = 0

Liquid phase charge transport
equation—Potential in electrolyte

Ohm’s law and Kirchhoff’s
law (Concentrated solution

theory, conservation of charge)
∂

∂x

(
κe f f ∂φe(x,t)

∂x

)
+ ∂

∂x

(
κ

e f f
D

∂ ln(ce(x,t))
∂x

)
+ AsFj(x, t) = 0

Flux density between solid and
liquid phase Butler-Volmer Equation

j =
k0c1−α

e (cs,max − cs,e)
1−α cα

s,e

(
exp

(
(1−α)F)

RT η
)
− exp

(
− αF

RT η
))

1 Concentration of lithium in the solid phase cs(x, r, t) and electrolyte ce(x,t). Electric potential in the solid phase φs(x,t) and electrolyte
φe(x,t). Flux density between solid phase and electrolyte j(x,t). Remaining symbols are described in Table 1.

Table A2. Equations of ECM model in the time domain for pulse current [72].

ECM Model Equations Variables

pi = fi(SOC, SOH, T, I)
p1 = {VOCV, R1, C1, RS}

i is the i-th parameter of the model. R1 and C1 are the polarization resistance and
capacitance and RS is the ohmic resistance. VOCV is the open circuit voltage

Vt = VOCV − V1 − VRs; VRs = I * RS where VRs refers to the voltage reduction from Rs and Vt is the terminal voltage

SOC = SOC0 −
∫ t

0
Ib
C dt

SOC calculation using CC, where C is capacity, Ib is current, and SOC0 is the initial
SOC
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