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Abstract: The collection and analysis of industrial Internet of Things (IIoT) data offer numerous
opportunities for value creation, particularly in manufacturing industries. For small and medium-
sized enterprises (SMEs), many of those opportunities are inaccessible without cooperation across
enterprise borders and the sharing of data, personnel, finances, and IT resources. In this study,
we suggest so-called data cooperatives as a novel approach to such settings. A data cooperative is
understood as a legal unit owned by an ecosystem of cooperating SMEs and founded for supporting
the members of the cooperative. In a series of 22 interviews, we developed a concept for cooperative
IIoT ecosystems that we evaluated in four workshops, and we are currently implementing an IIoT
ecosystem for the coolant management of a manufacturing environment. We discuss our findings
and compare our approach with alternatives and its suitability for the manufacturing domain.

Keywords: data sharing; industrial internet of things; business ecosystems; SME

1. Introduction

As a global network that enables real-world assets to interconnect, intercommunicate,
and interact digitally, the Internet of Things (IoT) is of interest for all industrial domains
that deal with physical goods, where manufacturing is prime. IoT technologies allow
organizations to automatically generate digital representations of physical objects that
can capture their real-world identities, locations, and states (digital objects). The collec-
tion, integration, and analysis of such data enable companies to implement new types
of services [1]. Examples documented in the literature include predictive maintenance
services for machinery and equipment, process mining for determining bottlenecks in
complex production environments, fine-tuning of recipes and sequences for process man-
ufacturing [2], optimization of plant availability, energy management, monitoring and
analysis of production and logistics processes [3], and new approaches to the management
of packaging [4]. The context of most of these scenarios is not an isolated workplace or
an individual asset but an environment with a variety of components embedded in large
processes. The necessary data for such services can quickly cross company borders [5].
Data are often owned by a multitude of organizations, such as the manufacturing company,
provider of (smart) machinery, suppliers of parts and materials, operator of smart sensors,
logistics and transport enterprises, possible customers, and more. This entails the necessity
for those organizations to cooperate to design innovative, analytics-based business models,
such as machinery as a service, production on demand, or asset benchmarking [6,7]. In
the academic literature, respective collaborations are discussed under the subject of IoT
ecosystems [5]. An IoT ecosystem denotes a community of interacting firms that compete
and cooperate using a common set of core assets and digital objects [5].
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To date, viable IoT ecosystems have predominantly been created around a focal com-
pany that usually also acts as a platform provider and introduces financial, technological,
and human resources for state-of-the-art data collection and analytics [8]. The advantage of
a large and powerful focal company is that it can represent entire value chains and enforce
IoT data provision by leveraging its dominant position [9]. The unprecedented power of
such players is a relevant (and justifiable) acceptance barrier to enter such constellations–
especially for small and medium-sized enterprises (SMEs). Many SMEs, particularly those
active in high-tech manufacturing markets, rely on keeping a technological or a business
edge that can be easily lost when critical data get into the wrong hands [10]. To counter
the platform providers’ dominance, it has been proposed to include independent data
trustees or platform-neutral “data spaces” [11]. Such entities increase reliability and reduce
reticence [12]. However, even when neglecting the fact that in doing so, they introduce
a level of indirection and complexity that is not conducive to easy implementation of a
cross-border analytics scenario for SMEs, they cannot erase the reality of the platform
provider remaining in a unique position of power [8]. For these reasons, data sharing
applications are a niche segment [13].

An alternative approach is the formation of an IoT ecosystem for SMEs without direct
or indirect dependency on a focal company. To facilitate this, it has been proposed to
coalesce ecosystems around well-defined and commonly pursued core value propositions
in which the capabilities of the various partners are combined [14]. This scenario also entails
a rationale for pooling shared resources (i.e., the data and resources needed to implement
the IoT analytics solutions) [15] in a joint unit owned by the ecosystem– and not just owned
by a single entity of the network or an external enterprise. Several countries have dedicated
legal frameworks for founding such bodies, usually under the label cooperative (although
the subsumed organizational settings, traditions, legal characteristics, and associated values
vary greatly across different countries) [16]. Here, we define a data cooperative as a legally
independent business entity owned by a business network or ecosystem that is dedicated
to cooperation in the field of data sharing and analysis.

In this paper, we address two research questions:

(1) Is a data cooperative an appropriate approach to enable the sharing and analysis of
IoT data in a business ecosystem?

(2) Design-oriented follow-up question: What building blocks must be specified to
successfully implement a data cooperative for IoT data?

In the following sections, we first provide an overview of related research in the
fields of IoT, IoT analytics, and IoT ecosystems. Subsequently, we present the design
and results of two series of qualitative and explorative expert interviews in the German
cooperative sector, as well as with industrial IoT experts. The results were used to formulate
suggestions regarding the relevant building blocks and were consolidated into a data
cooperative concept, which was evaluated in four expert workshops. We also present
our experiences in a pilot implementation process for a data cooperative in the context
of coolant management for manufacturing processes. The paper concludes with a critical
reflection of the approach in general and its suitability for the manufacturing domain
in particular.

2. Related Work and Background

Our research draws heavily from the literature on IoT and smart manufacturing,
business intelligence and analytics (BIA), and business and IoT ecosystems. The IoT part
introduces concepts for understanding the underlying infrastructure and its connection to
the digital (and thereby analytical) world. The data side of the research comes from the
BIA literature, which provides insight into building analytical solutions and supporting
organizational structures and processes. This includes aspects of the design, implementa-
tion, and management of self-contained analytics solutions. Under the term “analytical
solution,” we subsume both descriptive (reporting and OLAP, dashboarding) and predic-
tive analytics (mostly with machine learning methods, which themselves are subsumed
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under the umbrella term artificial intelligence). The areas of business and IoT ecosystems
were central to conceptually capturing the economic side of our endeavor and therefore
imperative for a holistic view of the subject. Aspects of accounting and pricing turned out
to play a central role when data are supposed to be moved to a data cooperative.

We included three academic organizations in our research consortium specializing in
the respective fields. Moreover, we included an association for cooperatives to provide the
practical and legal background necessary for framing a viable solution.

2.1. Internet of Things and Smart Manufacturing

Unlike “the” Internet, IoT is a concept that is more than a well-defined stack of
technologies or protocols. It is usually characterized by its core characteristics [17]: a global
digital connectivity of real-world assets via the digital (Internet) sphere, a representation of
physical objects as identifiable digital objects, and a capturing of state and possibly location
data on the physical objects with (smart) sensors. Sometimes, digital objects can also trigger
actions in physical objects.

In the field of IoT, a digital representation of a physical asset consists of three parts:
the physical object in the real world, an associated digital object, and the data flow that
connects both [18]. Notably, the relevant data differ from classical master or planning data
because these include the current states of the real object (and possibly the history of those
states), as well as analytical models that capture, describe, and/or predict the dependencies
between various measured values and the object environment. The described schema
allows the addition of functions to change the state of the digital object, which can, in turn,
be transferred to the real object, thereby moving the control of the physical system into the
digital realm [5,6,19].

IoT solutions have been used in a wide variety of application domains. In addition to
consumer products, IoT has been applied to business applications across various industry
sectors, such as energy, health care, and manufacturing [20]. This aspect of IoT is discussed
under Industrial IoT (IIoT), with the Industrial Internet Consortium (IIC) as a leading
standardization body. For manufacturing, the subject of IIoT is connected to the concept of
Industry 4.0, which envisions IIoT-based decentral manufacturing as a fourth industrial
revolution [21]. By focusing on aspects of production and logistics, Industry 4.0 standards
complement the broader but are less specialized IIC concepts [7].

IIoT/I.4.0-based manufacturing solutions are the building blocks of smart facto-
ries [22]. This, in turn, is a pillar of the more general concept of smart manufacturing [23],
which the NIST defines as a “fully integrated, collaborative manufacturing system that
responds in real time to meet changing demands and conditions in the factory, supply
network, and customer needs” [24]. The common theme across these concepts is the vi-
sion of agile, decentral-organized manufacturing systems that are not hampered by the
established hierarchical systems of the past.

For many established SMEs in the manufacturing sector, such far-fetched visions are
not easily attained, given their existing “brownfield” environments that often mix state-
of-the-art technologies with decade-old legacy equipment. However, they can very well
insert specific IIoT applications into their shop floor environments either by bringing in
selected “smart” machinery, buildings, transportation materials, or parts or by retrofitting
existing objects [25,26].

A concept for a data cooperative for SME ecosystems needs to be able to navigate such
environments [27]. It is, therefore, advisable to formulate it separately from a narrowly
defined set of standards, an isolated technology stack, or even a selected platform or
product. Therefore, we decided to design our concept in this regard and pursued a
technology-agnostic and generalizable concept.

2.2. Business Intelligence and Analytics

Many of the applications discussed under the terms IIoT, smart factory, or smart man-
ufacturing are tied to analytical solutions. Corresponding frameworks like the industrial



Appl. Sci. 2021, 11, 7547 4 of 18

Internet Reference Architecture by the IIC are designed as blueprints for building the data
side of an IIoT solution [28]. This includes locating analytics functionality in overarching
(cloud) platforms, cloud-like solutions that offload analytics to the application premises
(fog computing) [29], or analytics conducted directly at the point of data origin (edge
computing) [30]. Fog and edge computing have become particularly relevant in smart
manufacturing environments owing to confidentiality and safety or for dealing with data
that need to be processed with a high velocity (e.g., sensor data), or that is challenging to
transmit because of its volume (e.g., video and image content) [31].

A schema for the specification of an analytics solution can be drawn from the literature
on business intelligence. Since the beginning of the century, integrated approaches for
decision support (that include the collection, transformation, and analysis of data) have
been applied under the umbrella term business intelligence (BI) [32]. Recurring insight is
the need to consider a logical architectural layering of analytical solutions with a data layer
that handles the data ingestion, transformation, integration, and storage (including the
storage of data histories), a logic layer that includes the actual analytical processing, and an
access layer that handles the presentation and distribution of the analysis results [33]. The
concrete specification of those layers can be performed with respect to different levels of
abstraction from the hardware and the closeness to actual business content. Relevant levels
of business specificity encompass:

• The infrastructure level (e.g., data storage based on a cloud-based object store, an
independent edge device, or a federated relational database),

• The software level (e.g., a dashboarding solution or an analytics-oriented programming
language like Python or Julia), and

• The level of actual business contents (e.g., data models, transformation logic, report
design, and applied analytical models).

Eventually, there is a distinction to be made between the provision or development
phase (e.g., data modeling, report design, or machine learning (ML) training) and the
operation of the service. An analytical solution can be defined by the interplay of services
that span those architectural layers, levels of business specificity, and lifecycle phases [34].
Figure 1 illustrates this approach with examples in the domain of smart manufacturing.
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Notably, this logic can be applied to define purely local analytics solutions. However,
as we strive to support IIoT business ecosystems, we deem it necessary to design all
solutions in a way that they remain integrable into overarching cooperative solutions on a
platform layer (the local solution acts as a sort of “analytical atom” in this regard [35]).

While the overall structure of this framework has remained stable over the years, the
internals of the individual architectural layers have undergone significant changes. Most
notably, the data layer now regularly includes Big Data components that can handle high
velocity, high volume, and high-variety data for which “classical” BI components like a
relational data warehouse or data mart are not designed [36,37]. The logical layer has
seen a shift of attention toward more predictive analytical systems owing to the rise of
ML [38]. In ML, models are not entered in detail by a modeler or programmer but rather
are derived from data [39]. ML has made significant leaps, particularly within the field of
artificial neural networks with a multitude of layers, that is, deep learning. Deep learning
allows the iterative recognition (or manipulation or even generation) of complex features
in unstructured data (images, videos, audio, speech, and text) [40]. This has opened
opportunities for the design of a new set of analytical IIoT and smart manufacturing
applications. Examples include the analysis of imagery for quality assurance on the
shop floor [41,42] or the supervision of compliance with safety regulations [43]. With the
inclusion of image and video sensors into an IIoT environment, the requirements explode,
which leads to requirements for specific big data infrastructure, software, and content.

Orthogonal to the architecture side, a recurring theme in the analytics literature is the
need to complement the discussed systems with a suitable IT governance that defines the
structures, processes, rules, and responsibilities for their provision and operation [44,45]. This
particularly includes aspects of governance related to data quality and data governance [46].
In that regard, it is significant that, especially in the field of IIoT, analytics is increasingly
distributed across a variety of players that each brings different capabilities [47]. The
challenge for analytics governance is to bring the capabilities together to provide solutions
as compositions of well-defined analytical services that subsume the data, logic, and access
layer [34].

2.3. Business and IIoT Ecosystems and Aspects of Accounting

In general, a business ecosystem can facilitate joint value creation by bringing different
actors together [48]. We follow Ron Adner’s ecosystem concept, which defines a business
ecosystem as a collaborative structure in which value is provided collectively based on a
central value proposition [14]. This value proposition also forms the heart of the ecosystem
and requires the partners to align their activities and capabilities. Notably, an ecosystem
can very well include partners that are competitors outside the joint value generation
scenario, which sets the ecosystem apart from more closed forms of business networks.
Meanwhile, it goes beyond the loose fog of selfish actors. This sort of selective cooperative
setting aligns very well with our data cooperative concept (cf. Section 1). The basic elements
to describe such ecosystems are the actors involved, activities and capabilities of the actors,
positions of the actors in the ecosystem, and relationships between them (see Figure 2) [14].

The information systems literature distinguishes between different types of business
ecosystems, such as platform, innovation, and knowledge ecosystems. In our study, we
focus on IIoT ecosystems, which are a subtype of a platform ecosystem [49] in which the
member enterprises compete and cooperate based on a common set of IIoT assets that
are connected over a platform [5]. An IIoT ecosystem can bind partners from different
domains, technologies, and processes [7,50]. This is illustrated in Figure 2.
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We understand the formation of a data cooperative as a manifestation of a business
ecosystem in the Adner sense that has the purpose of sharing and analyzing data. As we
also focus on IIoT data, the data cooperatives we are investigating are also considered
variants of an IIoT ecosystem. In this context, the tangible data cooperative is a separate
legal entity that incorporates coordination responsibilities for shared resources. Figure 3
shows the resulting typology.
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Where they are established, cooperatives have stood the test of time and have proven
to enable SME business ecosystem settings, for example, in the sectors of agriculture,
banking, retail, and manufacturing. The German literature on cooperatives claims that the
long-term success of German cooperatives stems from their three guiding principles of
self-help, self-administration, and self-responsibility. The principle of self-help states that a
cooperative does not receive external support, for instance, from a government body or
an external enterprise. The principle of self-administration means that the cooperative is
managed by the ecosystem participants in a democratic fashion. Self-responsibility implies
that all members of the cooperative have a defined set of rights and responsibilities. The
interaction of these principles is seen as the basis for the creation of a space of trust in
which the participating partners come together on equal terms [16,51].

One aspect that needs careful consideration when implementing a cooperative is the
measurement and sharing of the generated benefits, aspects of accounting and reporting,
and the recognition of revenues. While this is not easy for any cooperative scenario, the
sharing and utilization of data bring specific challenges. In fact, data sharing initiatives
are quickly impeded by issues of acceptance that result from the perceived (un)fairness of
the sharing of costs and benefits. The intangible nature of data and the implications of the
information paradox–the benefits of the utilization of information are often only measurable
ex-post–make the development and coordination of revenue and cost structures in a data
cooperative particularly challenging. We assume that this, as well as overall governance,
has relevant implications for the acceptance of the endeavor.

3. Research Design and Methodology

The two central research questions are aimed at identifying the role and the relevant
building blocks for a novel type of organization: a data cooperative that supports SME
ecosystems. The novelty concerns several core aspects of our research: the type of organi-
zation, a data cooperative; the configuration of an IIoT ecosystem that is grouped around a
central cooperative; the aspect that the members are SMEs that individually mostly lack
capital, experience, and analytical resources for extensive analytical initiatives; the aspect of
data sharing across enterprise borders for analytical purposes (which is rarely seen outside
a few niche scenarios); and the related aspects of governance, acceptance, and accounting
in an ecosystem formed by equal SME partners. We conclude that we cannot draw the
answers from literature alone. A quantitative study is not possible either, as we cannot
even fully understand the relevant aspects to be included in a questionnaire. Our research
is, therefore, explorative by definition, and we need to identify the potentially relevant
building blocks of a data cooperative, their dependencies, and their interplay, as well as
the reasons that support or speak against their inclusion. As such, we strive for hypothesis
generation rather than hypothesis testing, and our methodology, both for data gathering
and data analysis, is based primarily on the literature on qualitative research [52].

Following a common best practice in qualitative research, we begin by deriving a
conceptual framework that structures the areas of insight we are focusing on [53]. We
see that the most relevant “unknowns” are not primarily located in the areas of IIoT and
analytics technology. While there are open questions on how IIoT analytics services are
tailored for a data cooperative (e.g., regarding the degree of the federation, the data models,
the inclusion of big data components, etc.), we already know the relevant building blocks
and have a schema for specifying them (cf. Section 2.2). The largest knowledge gaps
remain in the successful organization of a cooperative, division of roles of the cooperative
and surrounding ecosystem, aspects of IT and data governance, accounting and pricing,
and in aspects of organization and acceptance for sharing analytical data. Combined with
the areas of novelty, this leads to the conceptual framework depicted in Figure 4. This
framework guided the design of our interview questionnaire and the analysis of our results.
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Figure 4. Conceptual framework.

As there is no existing sample of data cooperatives, we decided to collect data from two
unconnected samples with different, complementary perspectives: interview series 1, with
existing business networks, and interview series 2, with experts in data sharing and analysis.
The first series is concerned with the cooperative approach. For the respective insight, we
conducted 14 semi-structured interviews with representatives of German cooperatives from
a variety of industries (cf. Table 1, left column). The smallest cooperative we interviewed
(CO14) had 12 members, whereas the largest cooperative (CO11) had 43,960 listed members;
the mean member number was 13,038; thus, our sample included small, medium, and large
cooperatives. Although these are not data cooperatives, there is a large area of overlap with
the issues they face, particularly with respect to general questions about the organization of
a cooperative, questions on how to deal with resource sharing and pricing, and governing
a business ecosystem. Some interviewees also brought in experiences with the provision
of general IT services and related questions on IT governance. For data sharing and joint
analysis, we interviewed eight members of IIoT projects (with two exceptions all coming
from the IIC) that all involved data sharing and data analysis across several enterprises
(interview series 2). Unlike in the first interview series, the organizations in the second
were mostly large companies [54,55].

The average interview duration was approximately 70 min. All interviews were fully
transcribed, coded, and iteratively condensed to obtain higher-order insights that were
transferred to the subject of IIoT data cooperatives (each subject was conducted by a team
of two coders). Therefore, a qualitative content analysis was performed [56,57]. We checked
the plausibility as well as the consistency of all our results and evaluated and refined them
in four workshops with external participants (one with members of the association of
cooperatives, two with representatives from cooperatives, and one in a dedicated session
of an IIC member meeting). We compiled our findings in a concept for a data cooperative;
a bird’s eye view of this concept is depicted in Figure 5.
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Table 1. Overview of the two interview series.

Interview Series 1
with Existing Business Networks

Interview Series 2
with Experts in Data Sharing & Analysis

CO1 Cooperative in the context of a large winery DS1 Logistics and supply chain with object tracking and analysis

CO2 Cooperative in the trade of bedding supplies DS2 Streaming IoT data for analysis, fishing industry

CO3 Cooperative in the context of bakeries DS3 Analytics infrastructure for device coordination;
drone hospital deliveries initiative

CO4 Cooperative in the context of energy distribution DS4 Floor planning for smart factories

CO5 Cooperative in the context of supra-regional banking and finance DS5 Optimizing plastic injection molding machines

CO6 Cooperative in context of agar products and services DS6 Port traffic management

CO7 Cooperative in the context of open-source software development DS7 Port traffic management

CO8 Cooperative in the context of regional banking DS8 Data analysis for smart factories and smart logistics in retail

CO9 Cooperative in the context of regional banking

CO10 Cooperative in the context of regional banking

CO11 Cooperative in the context of regional banking

CO12 Cooperative in the context of logging and forest management

CO13 Cooperative in the context of wood wholesale

CO14 Cooperative in the context of specialized consulting

Note: Due to the COVID-19 pandemic, all interviews of the second series were conducted in a virtual setting.
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4. Findings

The following section presents the consolidated results of the interviews and the
four evaluation workshops. They form and fill the concept of Figure 5, which also shows
the identified macro building blocks. The left-hand side includes building blocks for
specifying how a data cooperative is embedded into an IIoT business ecosystem (macro
view), namely the goal of the cooperative, roles the cooperative and the members assume, as well
as their fundamental services and the service interplay, including a catalog of IIoT analytics
services. The right-hand side shows building blocks that organize the internal structure of
the cooperative (micro view), namely the specification of the IIoT analytics solutions, IT and
data governance, the accounting and pricing system, and measures to ensure trust.
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We consider these to be of specific relevance for data cooperatives, and therefore an
answer to our second research question. Notably, each of these blocks comes with a set of
sub-components for which we identify various design alternatives.

Both interview series support the assumption that a cooperative can facilitate the
sustainable provision of joint services based on shared resources, directed at a joint value
proposition. First, a cooperative can act as a neutral and trustworthy intermediary that is
obligated to work in the interests of the ecosystem (CO14). Second, by formally fixing the
rights and responsibilities of the members, it provides an extrinsic obligation to cooperate
(CO6, CO10, CO13). In fact, in the shared port management initiative discussed in DS6, the
lack of a respective binding agreement with clear roles, rights, and responsibilities, as well
as the absence of a central entity for enforcing them, were deemed to be the main reasons
for the limited success of the solution. Despite being beneficial for all partners, most did
not contribute their data even after agreeing informally to do so during project initiation.
Third, as a cooperative has its own legal identity, it is capable of coordinating external
suppliers and/or customers, which is crucial for resource pooling and sharing. Examples
can be found in the sharing of machinery in the winery sector (CO1), wood distribution
channels (CO12), or bakery equipment (CO3). Fourth, the formation of the cooperative also
fostered the adherence to the cooperative principles and brought a more intrinsic sense
of unity across the members with some expressing pride in participating in a cooperative
(CO2, CO3, CO4, CO12) (a participant from CO12 describes it as the “cooperative gene”).

4.1. IIoT Analytics Solutions

As stated above, this building block is taken as given and is not at the center of our
interviews. Nevertheless, we elicited the solutions designed in the initiatives of the second
interview series with experts in data sharing and analysis (following the three-layer three-
level two-phase framework introduced in Section 2.2, Figure 1). Unsurprisingly, given our
sample of IIC projects, we found some highly sophisticated IIoT analytics solutions. The
fishery solution of DS2 is built utilizing a lightweight, yet highly scalable infrastructure
for global data streaming. For the drone setting of DS3, a multi-layered infrastructure is
used for complex, deep-learning-based path predictions for drone steering. DS4 applies
extensive simulations and optimizations. DS5 builds services based on a variety of state-of-
the-art classification and regression algorithms, and DS6 applies image segmentation and
object detection to traffic video streams with single-board computers (mostly to handle the
insufficient willingness of other network participants to share structured traffic data). In all
cases, some degree of data sharing is the basis for the analytics solution, even if most of the
organizations are not SMEs.

Finding 1: The results support the conclusion that data sharing is an enabler for state-of-the-art
analytics services.

4.2. Goal of the Cooperative

All cooperatives in our study have formulated an explicit goal for cooperation (as
required by the German cooperative law), and they can also name benefits for all types of
their members. While in two cases, some of those benefits appear rather lofty (“support the
region” in CO10, “foster open-source development” in CO7), they can all name tangible
(and, in most cases, monetary) benefits, and therefore reasons to fund the cooperative. For
example, in CO3, the cooperative can realize economies of scale by concentrating purchases
for bakery ingredients; the affiliated bakers and confectioners can thereby immediately
profit from lower prices. In CO4, members are supplied with renewable electricity at a cost
price. This also sets it apart from some of the IIoT projects in the interview series on joint
data sharing and analysis, where the existence of the ecosystem is primarily driven by a
government mandate (DS3), the pressures of a focal enterprise (DS7, DS8), or a technical
feasibility study with a defined expiration date (DS5, DS6).

Finding 2: It is advisable for a cooperative to formulate an explicit purpose and identify
tangible benefits for all members.
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All cooperatives interviewed in the first interview series are based on a joint value
proposition that can only be achieved cooperatively. This is obvious for cooperatives that
are built primarily to achieve economies of scale by bundling purchasing or sales activities
like the bakery cooperative in CO3 or the procurement of beds in CO2. Interestingly, the
latter also provides a means for cooperative design and financing of the beds. The CO14
cooperative focuses on the joint development of surface technology.

Finding 3: The cooperative has to be formed by the members to realize a cooperative va-
lue proposition.

4.3. Roles of the Cooperative and Members

Based on the first series of interviews with existing business networks, it was pos-
sible to derive a catalog of roles that are potentially relevant for the cooperative and the
ecosystem, which we also consider fitting for an IIoT data cooperative. Unsurprisingly,
the number of roles in the various cases and their distribution varies widely as a result
of the different industries in which cooperatives are active. We observed a continuum of
options between centralized models in which the cooperative takes over a wide set of roles
and fully decentralized models in which the cooperative is only active as a coordinator
between the members and external service providers. While we have no clear decision rule
so far as to when to centralize and when to decentralize, we see the decentral model more
in small ecosystems that can only carry a more lightweight cooperative.

Finding 4: A cooperative plays a coordinative role. It can also play a variety of additional roles,
especially in larger ecosystems.

The coordinator’s role can manifest in various forms. In CO3, the cooperative coor-
dinates the construction of new bakeries and is thereby the interface to architects, civil
engineers, and investors. Most cooperatives are entrusted with tasks of procuring or trad-
ing goods for their members, such as cooperatives in CO6, CO12, and CO13 in product
distribution, e.g., power saws (CO12). Some also handled the production of, for instance,
the winery of CO1. For a data cooperative, this would imply the procurement of not
only IT services (hardware, software, development, operations) but also the procurement
distribution of information products.

Finding 4a: Next to coordination, the procurement and distribution of goods is a common role
for a cooperative.

We also find some roles connected to the provision of financial services and not just
for cooperatives in the banking sector. The identified roles include the capital provision,
investment management (CO2, CO5, CO8), insurance (CO5), payment processing (CO5),
and deposit protection (CO3, CO5). In DS2, data sharing is directly linked to the handling
of loans (depending on the data of the fish).

Finding 4b: A cooperative can also provide, or coordinate financial services.
Moreover, large ecosystems sometimes come with a complex hierarchy of additional

organizational bodies, such as member representation (CO1) or strategy formation (CO8
and CO11). In the latter case, a “second-order” cooperative was founded by a large
number of smaller cooperatives. From a more long-term perspective, such settings might
be interesting for the data cooperative world.

In the CO3 interview, the cooperative was found to also have a consulting role with a
focus on legal questions. The CO7 cooperative offers education and training services for
complex open-source solutions in the field of real-time data streaming.

Finding 4c: A cooperative can act as a consultant for the ecosystem members.
Some IT-related roles were also found in the interviews, most importantly an infras-

tructure provider (CO1, CO3, CO5, CO6, CO7, CO9, and CO12). In these cases, there is a
separate data center that is available through the cooperative (in fact, the infrastructure
provider here is a joint subsidiary of the cooperatives). An application provider was identi-
fied in CO12, and a data analyst was active in CO1. In the CO5 and CO9 interviews, a data
provider appeared in the form of an organization that provided data for analyses.
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In the evaluation workshops, the participants voiced strong concerns against the
suggestion to insert an IT provider as an additional member of the ecosystem; the IT-
related roles are seen either as located within the cooperative itself or at least as being
coordinated by the cooperative. An IT provider is regarded as coming into a position with
too much power, thereby destroying the balance of and trust in the ecosystem.

Finding 4d: A cooperative can become an infrastructure and application provider. It is not
advisable to include an IT provider as a member of the ecosystem to take over these roles.

For data cooperatives, the set of roles derived from the interviews can be comple-
mented with:

• roles for the management of the IIoT infrastructure,
• data analysis (the provision and operation of analytics services on the different layers

and business specificity levels), and
• data governance (such as data stewards, data scientists, data analysts, data engineers,

and owners, as documented in the data governance literature).

4.4. Services and Their Interplay

A common theme in our findings is that each of the identified roles is tasked with
the provision of a distinct set of goods and services. Most of these are defined in a
formal binding manner in a service catalog that delineates the specified requirements. The
exchange of goods and services is also tied to financial transactions: mostly to a defined
price. Examples of such services were given in interviews CO2 and CO4; in interview
CO2, the procurement and sale of goods in various forms were named a service, while in
interview CO4, it was the physical provision of energy.

For physical services, it was simple to identify the related financial transactions.
Sometimes, accompanying services for the exchange of data and information were given.
An interviewee of CO3 mentioned the provision of data from coffee machines. In interview
CO8, the exchange of analyses in relation to benchmarking between different banks was
mentioned as a supporting service. Notably, for data- and information-related services, the
interviewees had difficulties in clearly stating the financial side. Future research should
focus on the interplay between digital services and associated financial transactions.

Finding 5: Defining and tying financial transactions to nonphysical data-based services is
identified as a challenge.

4.5. IT and Data Governance

Our results on IT and data governance mirror the findings of those on the roles
and services. There is a continuum of options between a strong cooperative and a more
decentral handling of governance-related questions. This particularly applies to the IT
strategy definition (CO2, CO5, CO9, CO10, CO11), responsibility for the process and
product development (CO2, CO3, CO4, CO5, CO6, CO7, CO8, CO10, CO11, CO12, CO13),
formulation of a binding and formal code of conduct (CO10, CO7, CO6, CO2, CO3, CO8,
CO12, CO13, CO4, CO14), centrality of defining data access rights (DS1, DS4, DS8), and
standardization of data quality requirements (DS8). A prominent factor that seems to
influence the degree of centrality seems to be the competition between the ecosystem
members. The more competition there is, the more it is deemed necessary to have strong
and formal governance that is handled by the cooperative (CO2, CO8, CO13, DS7).

Finding 6: Competition between ecosystem members demands a central and formally defined
IT and data governance.

Furthermore, consistent with the coordinative role of a cooperative, the cooperative is
seen as an interface of the ecosystem to external IT or analytics providers (CO2, CO3, CO4,
CO6, CO7, CO8, CO10, CO11, CO12).
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Finding 7: The data cooperative can act as an interface between the business ecosystem and
external IT or analytics providers.

We identify the definition of verifiable data integrity requirements (DS2), setting the
visibility of the data for the different members (CO5, CO11, DS1), automation of data
quality tests (DS7), and a classification of data according to relevance and confidentiality
(DS7) as data governance measures that seem to be advisable in a data sharing cooperative.

Finding 8: The data cooperative should be responsible for a variety of central data manage-
ment tasks.

4.6. Accounting and Pricing System

Our findings indicate that a transparent cost accounting and pricing system for coop-
erative goods and services is central to their viability and acceptance. For example, as the
interviewees of CO11 and CO9 pointed out, regular and detailed reporting on costs and
pricing (decisions) supports transparency. CO14 states that a common standard for costing
and pricing supports the creation of commitment. In CO10 and CO5, it is stated that if a
trusted unit sets the respective standards (e.g., a state regulator or an elected committee of
member representatives), this fosters clarity and transparency and thus the acceptance of
the cooperative. In the same vein, it is stated in CO10 that democratic and participatory
decision-making on pricing is of particular importance.

Finding 9: A transparent costing and pricing system can improve perceived fairness and thus
influence the acceptance of the cooperative.

Such a pricing system can become very complex, as it needs to accommodate different
companies that are active in different markets and because it needs to consider a variety of
soft factors. This is particularly evident in CO1 where a “grape price” is calculated based
on a highly complex formula. Such challenges need to be dealt with pragmatically, and
this implies that some degree of imbalance needs to be anticipated and accepted. Here, a
particular adjusting screw comes into play: the membership fee for the cooperative. Such
a fee is mostly used to cover the overhead costs of the cooperative administration, but it
can also be used to cover costs that are hard to distribute fairly or impossible to be traced
to individual members of the cooperative. By contrast, the costs of self-contained and
well-defined dedicated services usually can be better connected to their consumption (S8).

Finding 10: A suitable costing and pricing system should reflect inequalities and asymmetries
among members of a cooperative.

4.7. Measures to Ensure Trust

We found that trust in the cooperative, in general, and data sharing with the coopera-
tive, in particular, are results of most of the discussed measures, particularly those in the
blocks “IT and data governance,” and “accounting and pricing”. Naturally, trust is difficult
in larger ecosystems that involve competitors. The less intrinsic trust there is, the more
important become formally specialized governance and well-defined pricing mechanisms.

However, we find that some measures are mainly motivated by the need to build trust.
An occurring theme in that regard is measured to increase transparency in how data are
handled (DS8). More specific measures include the pseudonymization or anonymization
of data (CO3, CO8, DS2) and/or generated results/information, and the certification of the
cooperative and/or the infrastructure and application providers (CO2, DS8).

Finding 11: Pseudonymization, anonymization, and certification can foster trust.
In Figure 6, the described findings are summarized.
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5. Pilot Implementation in the Realm of Smart Manufacturing

We are currently implementing our concept in the domains of manufacturing, IIoT
financing, and crafts. The objective of all cases is to establish sustainable data cooperatives
for sharing and analyzing IIoT data. The manufacturing initiative has progressed the
farthest, and we use it to illustrate how our concept can be applied in a real-world setting.

The manufacturing initiative is focused on data- and analytics-enabled coolant man-
agement. It currently comprises a manufacturing company, provider of coolant manage-
ment equipment, and supplier of cooling lubricants. A common goal is to enable more
efficient and effective coolant management. In general, coolant management is not only
costly but also directly affects production quality and processes (the production needs to
be stopped for coolant replacement), as well as causing potential health hazards (risk of
toxic fumes).

The manufacturer wants to outsource as much of the coolant management as possible
(including reporting tasks needed for compliance reasons), a task the lubricant provider is
willing to take over as it wants to diversify its services. The equipment provider delivers
innovative smart machinery (with a battery of sensors) and hopes to develop both its
products and the market. The cooperative value proposition of the data cooperative is
enabling a “cooling lubricant as a service” setting.

At the core are both descriptive and prescriptive monitoring and analysis services that
are supposed to be managed mostly on a cooperative platform (although there are local
“analytical atoms” needed as well for questions of the immediate coolant steering). The
initiative started with basic reporting scenarios but has already explored more complex
IIoT analytics services (e.g., the prediction of the time the coolant becomes problematic, the
optimization of coolant recipes, or image analysis for coolant supervision).

In the current form, the data (including the data transformations and an expandable
data model) and the logic and access components run in separate cloud environments
for reasons of licensing, but the architecture is not final. All analyses require data from
all partners who also provide different real objects: cleaning systems, manufacturing
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halls, machining centers, lubricants, and tanks. With the maturity of the pilot system,
aspects of governance gain relevance; the consortium is currently exploring what level of
confidentiality is needed for what data source and how to deal with data quality issues.
This also leads to questions of pricing, as we found a plethora of tasks that need to be
defined, assigned, and dealt with on the accounting side; for example, the installation and
maintenance of the sensors, the ongoing correction of measurement errors, issues of data
integration, requirements elicitation, model validation, and more.

To expand the database, better models and design further-reaching services are
planned, as well as manufacturers of production equipment and/or insurance companies
in the ecosystem. It is also possible to add further manufacturers and potentially lubricant
suppliers, although this would immediately require stricter governance, accounting, and
trust-building mechanisms, as the complementary nature of the current consortium would
be lost.

6. Discussion and Outlook

In this paper, we present our concept for a data cooperative that we consider an
enabler for SMEs to harness the vast potential of IIoT analytics despite limitations in
capital, expertise, and IT resources. The idea is to draw together the capabilities of an SME
ecosystem and concentrate them in a data cooperative that also acts as a legal entity owned
by the SMEs. Our findings support the assumption that this is a viable solution to foster
data sharing among SMEs and to enable innovative analytics solutions, which provide a
preliminary answer to our first research question. We see this as a practical contribution
and a theoretical one, as it fleshes out the body of knowledge on business ecosystems and
data sharing. In addition, our concept also shows the relevant building blocks of a data
cooperative (and thus provides an answer to research question 2). This not only expands
our practical contribution but also highlights relevant research areas.

We consider data cooperatives to be of particular relevance for IIoT scenarios, espe-
cially for smart manufacturing scenarios. Manufacturing brings an innate need to combine
various assets when producing physical goods, which are often owned by different part-
ners. This is, even more, the case for highly specialized SMEs. Furthermore, there is a
growing set of use cases for IIoT analytics in the field of smart manufacturing that can be
made accessible using this approach.

As for alternatives, we consider the element of trust as an essential trait of a cooperative
and, therefore, as an advantage over competing approaches. Data sharing in a cooperative
is not done over anonymous interfaces open to a wide market but rather within a defined
ecosystem of cooperating partners, none of whom is allowed the role of a focal player or a
dominating platform provider. However, some alternative ideas to foster data sharing can
complement our approach. For example, new solutions for data space provision (e.g., the
EU GaiaX project) might supply a cooperative with an interesting technological basis and
the possibility to facilitate the connection of multiple data cooperatives.

As discussed in Section 5, we are currently exploring our approach in the first pilot
implementation. Backed by our evaluation activities, feedback from a large number of
interested SMEs, and support of an association of cooperatives, we are confident that we
have identified the relevant building blocks and that they will help us reach the actual
legal basis of several cooperatives. Nevertheless, we acknowledge the limitations of our
qualitative design. The variety of insight that arose during the derivation of the framework
admittedly needs further quantitative scrutiny. We see this as a natural consequence of
the novelty of our subject, as well as the scope of our research. We aim to provide a
comprehensive and applicable concept, rather than test the isolated hypothesis.

Although our results are not as consolidated as we would like them to be, given the
pilot status of the projects and the limitation in numbers, we consider it a solid conceptual
basis for the organizational design of data cooperatives for SMEs. We are striving to
constantly expand our knowledge base, include new experiences, and welcome inputs
from all sides.
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