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In this contribution we investigate the relevance of the theory of porous media for the non-isothermal modelling of material
injection into porous structures. In particular, we provide a model describing the injection of cement during percutaneous
vertebroplasty, which is derived by consistently following the theory of porous media. We demonstrate numerically that
this model elicits unphysical behaviour under local thermal non-equilibrium conditions. No distinct unphysical behaviour is
observed under local thermal equilibrium conditions. We conclude that heuristic modifications of the model equations are
necessary and suspect the unphysical behaviour to be caused by contradictory modelling assumptions.
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1 Introduction

Percutaneous vertebroplasty is a medical procedure in which biocompatible cement is injected into an osteoporotic vertebral
body. The aim of the procedure is to stabilise the vertebral body from within by means of the injected cement undergoing
curing [1]. The most common complication during vertebroplasty is the leakage of cement. This is an unfavourable outcome
given, e.g., the close proximity of the spinal chord [2]. In the future, numerical simulations will be able to assist the prevention
of such complications. These simulations necessitate adequate models describing the cement injection process.

Continuum models have been proposed with which micro-scale simulations yield promising results regarding the descrip-
tion of the injection of cement into porous structures as well as the description of the curing of the same cement after the
injection [3]. The disadvantage is the computational cost associated with micro-scale simulations. This cost is far too high
given the prospect of many simulations being necessary for the optimisation of operating parameters.

To avoid this inherent problem, a continuum model for macro-scale simulations has been proposed based on the theory of
porous media [4]. This model assumes isothermal conditions for simplicity. This contradicts both the exothermic nature of
the cement curing process and the boundary conditions of the cement injection. I.e., the injected cement typically assumes
temperatures below the human body temperature at the start of the injection.

To account for this, we expand the model to the non-isothermal case, considering local thermal non-equilibrium conditions
in particular. For the underlying derivation, we strictly follow the theory of porous media [5] and its applications [6, 7]. The
theory of porous media is often claimed to inherently yield thermodynamically consistent models but is also regarded to be a
quasi-equilibrium theory [8]. Thus, we numerically investigate the physical meaningfulness of our model for our application.

2 Model

2.1 Fundamentals of the Theory of Porous Media (TPM)

For a comprehensive overview of the fundamentals of the TPM see, e.g., the works of Ehlers [5]. The TPM describes
porous media based on representative elementary volumes whose microstructure is homogenised in the sense of volumetric
averaging. This allows a macroscopic description of porous media, where constituents are treated as spatially superimposed
continua referred to as phases. Here, three constituents are considered, yielding a solid phase φS and two immiscible fluid
phases φM and φC . They represent trabecular bone, bone marrow and bone cement, respectively. The local composition of
the porous medium is captured by volume fractions

nα :=
dvα

dv
, α ∈ {S,M,C}, with

∑

α

nα = 1, (1)

defined by the ratio of the partial constituent volumes dvα and the aggregate volume dv. Further, fluid saturations are defined
as

sβ :=
nβ

nF
, β ∈ {M,C}, with nF :=

∑

β

nβ , such that
∑

β

sβ = 1. (2)

∗ Corresponding author: e-mail jan-soeren.voelter@imsb.uni-stuttgart.de
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

PAMM · Proc. Appl. Math. Mech. 2022;23:1 e202200070. www.gamm-proceedings.com 1 of 6

https://doi.org/10.1002/pamm.202200070 © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.



2 of 6 Section 2: Biomechanics

Denoting their local masses as dmα each constituent is assigned a material and an apparent density defined as

ραR :=
dmα

dvα
and ρα :=

dmα

dv
, such that ρα = nαραR. (3)

The description of motion of porous media borrows from the description of single-phase continua. I.e., the coordinates Xα of
the material points of constituent α evolve according to its unique motion function χα. Therewith, the coordinates of spatial
points at time t are defined as x(t) := χα(Xα, t) and constituent velocities are defined as (x)′α := dχα(Xα, t)/dt. In our
mixed Lagrangian-Eulerian setting, solid motion is expressed via the solid displacement uS := x−XS and fluid motion via
the seepage velocities wβ :=

′
xβ − ′

xS .
Continuing, the aggregate and each constituent are assigned balance laws governing the conservation of mass, linear mo-

mentum, angular momentum, energy and the non-negativity of total entropy production. This set of balance laws can be
simplified under certain modelling assumptions.

2.2 Non-isothermal model

In the following, we provide the preliminary assumptions underlying our model and the final set of equations which constitute
our model. The derivation itself is omitted for the sake of brevity.

2.2.1 Preliminary assumptions

For our model, the mass production is neglected, the angular momentum production is neglected, the body forces are neglected
(bα = 0), the material densities are assumed to be constant and uniform, and quasi-static conditions are assumed. Isothermal
conditions are not assumed. On the contrary, local thermal non-equilibrium is assumed.

Anticipating our simulation scenarios, the influence of solid deformations, capillary forces, as well as local thermal non-
equilibrium effects on the fluid flow are negligible for our results. Therefore, for the sake of brevity, we further neglect solid
deformations (uS ≡ 0), we neglect capillary pressure entirely (pCR ≡ pMR) and we neglect the influence of local thermal
non-equilibrium effects on the fluid flow as well as on the capillary pressure (θS/θβ ≈ 1). Further, we neglect the overall
momentum balance.

With these assumptions the set of governing equations reduces to two fluid volume balances and three constituent energy
balances. As corresponding primary variables we choose the marrow saturation sM , the cement pressure pCR and the absolute
constituent temperatures θS , θM and θC .

2.2.2 Model equations

The fluid volumes balances are given by

0 = (nβ)′S + div(nβ wβ), provided uS ≡ 0, (4)

wherein the Darcy velocities are determined by the extended Darcy filter law

nβwβ := −κβ
r K

S

µβR
grad pβR, provided bα = 0,

θS

θβ
≈ 1 and pCR ≡ pMR. (5)

Therein, KS denotes the intrinsic solid permeability tensor, µβR the dynamic viscosity and κβ
r the relative permeability factor

of constituent β. The relative permeability factors are modelled according to Brooks and Corey as

κM
r := (sMeff)

(2+3λbc)/λbc and κC
r := (1−sMeff)

2
[
1− (sMeff)

(2+λbc)/λbc

]
, with sMeff :=

sM − sMres
1− sMres − sCres

. (6)

Therein, λbc is a uniformity parameter, sMeff denotes an effective saturation and sβres denotes residual saturations. The con-
stituent energy balances can be written as

ραcαv (θ
α)′α = −divqα + ραrα + ω̂α, with ω̂S := ε̂S , provided uS ≡ 0, (7)

and

ω̂β := ε̂β + pβR
[
(nβ)′S + gradnβ ·wβ

]
, provided

θS

θβ
≈ 1 and pCR ≡ pMR. (8)

Therein, cαv denotes the specific heat capacity, qα the conductive heat flux vector and rα an external volumetric heat supply of
the constituent α. The terms ω̂α are introduced for ease of notation and simply combine the direct energy production ε̂α with
contributions of non-thermal work. The heat flux vectors are given by

qα := −nα κα grad θα, (9)
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where κα denotes the thermal conductivity of constituent α. Thermal dispersion and thermal tortuosity are not considered for
simplicity. The direct energy production terms of the constituents are given by

ε̂S = −
∑

β

(
ε̂β + grad(nβpβR) ·wβ

)
and ε̂β := κSβaSβ(θS − θβ). (10)

Therein, κSβ denotes the volumetric heat transfer coefficient, specific to the interface of the solid constituent and the fluid
constituent β, and aSβ denotes the interface area per unit volume of the same interface. The interface between the fluid
constituents is assumed to be negligible compared to the solid-fluid contact area. Under the neglect of convective heat transfer,
the heat transfer coefficients are determined as

κSβ =
1

LF

( 1

κS
+

1

κβ

)−1

, (11)

with a given reference length LF . The solid-fluid interface areas are approximated as

aSM := aSF
[
−0.83 (sC)3 + 1.25 (sC)2 − 1.10 sC + 0.84

]
and aSC := aSF − aSM , (12)

for sC ∈ [0.05, 0.95], wherein aSF denotes the specific surface area of the solid constituent for a fixed porosity. Values for all
of the above parameters are given in Table 1.

Table 1: Model and material parameter values.

Symbol Value Unit Reference
ρSR 1850.0 [kg/m3] see [9]
ρMR 1060.0 [kg/m3] see [10]
ρCR 1500.0 [kg/m3] cf. [3]
KS

ii 5.0× 10-8 [m2] cf. [3]
λbc 3.0 [ - ] arbitrary
sMres 0.05 [ - ] arbitrary
sCres 0.05 [ - ] arbitrary
µMR 1000.0 [Pa s] arbitrary
µCR 1000.0 [Pa s] arbitrary

Symbol Value Unit Reference
cSv 2274.0 [J/(kg K)] see [11]
cMv 2666.0 [J/(kg K)] see [11]
cCv 1470.0 [J/(kg K)] cf. [3]
κS 0.42 [W/(m K)] see [12]
κM 0.42 [W/(m K)] cf. [12]
κC 0.25 [W/(m K)] cf. [3]
rα 0.0 [W/kg] arbitrary
LF 1.0× 10-3 [m] cf. [9, 13]
aSF 2216.9 [1/m] cf. [14]

2.3 Numerical treatment

Our model is prepared for numerical discretisation in the following. Without further explanations, the spatial discretisation
is based on the Petrov-Galerkin finite element method. In particular, the Box approach is employed (e.g. [15]), allowing the
employment of upwinding to prevent oscillations. The temporal discretisation is done employing a Crank-Nicholson scheme.
The system of governing equations is solved monolithically using the coupled finite element solver PANDAS1.

2.3.1 Weak formulation

Denoting the not yet specified simulation domain as Ω and the test functions as δφ, the weak formulation of the fluid volume
balances is derived as

0 =

∫

Ω

(nβ)′S δφdv −
∫

Ω

nβ wβ · grad δφdv +

∫

Γ
vβ

δφ nβ wβ · n︸ ︷︷ ︸
=: vβ

da, (13)

the weak formulation of the solid energy balance is derived as

0 =

∫

Ω

(
ρScSv (θ

S)′S − ω̂S − ρSrS
)
δφdv+

∫

Ω

nSκS grad θS · grad δφdv−
∫

ΓqSκ

δφ nSκS grad θS · n︸ ︷︷ ︸
=: qSκ

da (14)

1 Porous media Adaptive Nonlinear finite-element solver based on Differential Algebraic Systems (http://www.get-pandas.com)
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and the weak formulation of the fluid energy balances is derived as

0 =

∫

Ω

(
ρβcβv (θ

β)′S − ω̂β − ρβrβ + ρβRcβvθ
β(nβ)′S

)
δφdv

−
∫

Ω

ρβRcβvθ
βnβwβ · grad δφdv +

∫

Ω

nβκβ grad θβ · grad δφdv

+

∫

Γ
q
β
v

δφ ρβRcβvθ
βnβwβ · n︸ ︷︷ ︸

=: qβv

da−
∫

Γ
q
β
κ

δφ nβκβ grad θβ · n︸ ︷︷ ︸
=: qβκ

da.

(15)

Therein, as Neumann boundaries we identify the volume flux boundaries Γvβ and the heat flux boundaries Γqα
κ

and Γqβ
v

for
conductive and advective heat flux, respectively.

2.3.2 Geometry and Spatial Discretisation

A simple tubular geometry with quadratic cross-section is considered, as depicted in Figure 1. Three boundaries are distin-
guished. Boundary ΓA at one end of the tube, boundary ΓB at the opposite end and boundary ΓC the mantle of the tube.

The finite element mesh consists of 80 hexahedral elements made up of 324 nodes. Linear shape functions are considered
for all primary variables. For the employed Box approach the test functions are element-wise constant.

Fig. 1: Discretised simulation domain Ω with indicated boundaries ΓA, ΓB and ΓC.

2.3.3 Initial and boundary conditions

For the results shown in the next section, cement is injected into the geometry at boundary ΓA. The inflowing cement has a
temperature of 308.15K which is identical to the common initial temperature of all constituents. There are no external heat
sources present and the entire boundary of the geometry is insulated regarding heat conduction. The initial and boundary
values are given in Table 2. We choose the injection to stop after 120 seconds.

Anticipating the results, we simulate this scenario for different rates of heat transfer between the constituents. We realise
this by multiplying the direct energy production of the fluids ε̂β with a constant. This is indicated in the corresponding figures.

For the given parameter values and initial and boundary conditions all simulations are stable with a fixed time step-size
of 1.0 seconds. In particular, no oscillations occur and the only notable artefacts are numerical diffusion as well as the finite
nature of the spatial and temporal discretisation.

Table 2: Initial and boundary values.

Symbol Value Unit Domain/Boundary
sM0S 0.95 [ - ] Ω

pCR
0S 0.0 [Pa] Ω

θα0S 308.15 [K] Ω

nS
0S 0.15 [ - ] Ω

sM 0.95 [ - ] ΓB

pCR 0.0 [Pa] ΓB

θα 308.15 [K] ΓB

Symbol Value Unit Boundary
vM 0.0 [m/s] ΓA,ΓC

vC 5.0× 10-4 [m/s] ΓA

vC 0.0 [m/s] ΓC

qακ 0.0 [W/m2] ΓA,ΓC

qMv 0.0 [W/m2] ΓA,ΓC

qCv 3.40× 105 [W/m2] ΓA

qCv 0.0 [W/m2] ΓC

3 Results

The simulation results for the considered scenario are depicted in Figures 2, 3 and 4. In all figures, the profiles of selected
variables are plotted along the main axis of the geometry.

In Figure 2, profiles of the cement saturation are depicted. The cement saturation evolves corresponding to the Brooks-
Corey relative permeability factors. A shock front propagates in flow direction, followed by a rarefaction fan. As ensured by
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the employment of the extended Darcy filter law, the evolution of the cement saturation is not affected by temperature changes
and, in particular, by the choice of the rate of heat transfer.

In Figure 3, profiles of the aggregate temperature are depicted. For these results, the rate of heat transfer is increased
by factor 104, hence, the profiles of the constituent temperatures are identical to the profiles of the aggregate temperature
and a visualisation is omitted. As is depicted, the aggregate temperature increases inside the simulation domain as time
continues. Given that there are no external heat sources, this temperature increase can only be interpreted as an effect of
energy dissipation, if thermodynamic consistency is to be claimed. The temperature increase does not exceed 1.0K after 120
seconds of cement injection. This temperature increase is small in the context of our application. Therefore, an interpretation
as an effect of energy dissipation is plausible. However, this appears to only hold with greatly increased heat transfer, i.e.
under local thermal equilibrium conditions.

In Figure 4, profiles of the constituent temperatures are shown, resulting from simulations employing realistic and decreased
rates of heat transfer. All profiles show results after 30 seconds.

Beginning with the cement temperature, with respect to the profiles of the cement saturation, the cement temperature peaks
where the shock front of the cement saturation is located. After the peak, the cement temperature drops to a value slightly
above the initial temperature and remains spatially constant. With a realistic rate of heat transfer, the cement temperature
is close to the initial temperature at the inflow boundary and increases almost linearly until the peak occurs. In case of a
decreased rate of heat transfer, the cement temperature first dips below the initial temperature before approaching the peak.

Continuing with the marrow temperature, with a realistic rate of heat transfer, the marrow temperature starts above the initial
temperature at the inflow boundary, but drops below the initial temperature where the shock front of the cement saturation is
situated. Afterwards, the marrow temperature rises slightly above the initial temperature and remains spatially constant. The
lower the rate of heat transfer is chosen, the bigger the region in which the marrow temperature is below the initial temperature.

Continuing with the bone temperature, the temperature is consistently above the initial temperature. The lower the rate of
heat transfer is chosen, the higher the bone temperature rises at the inflow boundary. This temperature increase is dispropor-
tional compared to the temperature changes of the cement and marrow. I.e., with the lowest considered rate of heat transfer, the
marrow and cement temperature deviate from the initial temperature by 0.6K at most, whereas the bone temperature deviates
from the initial temperature by more than 2.0K at the inflow boundary.

The described behaviour, in particular, the decrease of constituent temperatures below the initial temperature, can not
be interpreted as an effect of energy dissipation. However, this means that the model as we derived it, is not inherently
thermodynamically consistent.

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2: Profiles of cement saturation along streamline. Pro-
files show results after 30, 60, 90 and 120 seconds.
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Fig. 3: Profiles of aggregate (—) and initial (· · · ) temperature
along streamline. The rate of heat transfer is scaled by 104.

0 0.025 0.05

308

308.2

308.4

308.6

308.8

a)
0 0.025 0.05

307.5

308

308.5

309

309.5

b)
0 0.025 0.05

307

308

309

310

311

c)

Fig. 4: Profiles of cement (—), marrow (-·-), bone (- -) and initial (· · · ) temperature after 30 seconds. The rate of heat transfer is scaled by
(a) 100, (b) 10−1 and (c) 10−2.
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4 Conclusion

Our model does not appropriately describe the energy dissipation occurring during cement injection when considering the
case of local thermal non-equilibrium. However, we derived the underlying model strictly obeying the modelling principles
of the TPM. We are confident in dismissing numerical issues and algebraic mistakes as a possible source for the unphysical
behaviour. Therefore, our modelling assumptions and boundary conditions must be contradictory, either towards themselves
or towards the inherent assumptions of the TPM.

It is necessary to modify our model heuristically in order to avoid the unphysical behaviour we have demonstrated. Nev-
ertheless, the model derived with the TPM is a suitable point of reference within the continuing modelling process. In future
work, we will derive and present a more general model, identify the sources of unphysical behaviour and propose an adequate
correction within the context of our application.
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