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Skeletal muscles generate bioelectromagnetic fields that contain informa-
tion about the neural control of motions and the function of the muscle.
One distinguishes between electromyography (EMG), the measurement
of the muscle-induced electric potential field, and magnetomyography
(MMG), the recording of muscle-induced magnetic fields. EMG is a
well-established methodology, and its limitations have been extensively
discussed in the scientific literature. In contrast, MMG is an emerging
methodology with the potential to overcome some of the inherent limi-
tations of EMG. To unlock the full potential of MMG, it is essential to
support empirical observations from experiments with a solid theoretical
understanding of muscle-induced bioelectromagnetic fields. Therefore,
this thesis derives a novel multiscale skeletal muscle model that can pre-
dict realistic EMG and MMG signals. This model is used to conduct
the first systematic comparison between surface EMG and non-invasive
MMG. By using simulations, all system parameters can be controlled
precisely. This would not be possible experimentally. The fundamental
properties of EMG and MMG are systematically explored using simula-
tions comparable to electrically or reflex-evoked contractions. Notably,
it is shown that non-invasive MMG data is spatially more selective than
comparable high-density EMG data. This property, for example, is ad-
vantageous for decomposing signals of voluntary contractions into indi-
vidual motor unit spike trains. Using a novel in silico trial framework,
it is demonstrated that non-invasive MMG-based motor unit decompo-
sition is superior to the well-established surface EMG-based motor unit
decomposition.
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Deutsche Zusammenfassung

Die große Variabilität der menschlichen Bewegung erfordert ein koordiniertes Zusammenspiel
von Nervensystem und Bewegungsapparat. Bis heute gibt es jedoch nur ein grobes Verständnis
der physiologischen Prozesse die zu Bewegungen führen. Dies ist auch darauf zurückzuführen,
dass nur wenige geeignete experimentelle Messmethoden existieren, um am lebenden Menschen
die Funktionsweise des neuromuskulären Systems zu erforschen. Das Fehlen solcher Tech-
nologien erschwert zudem die Erforschung und Beurteilung von Behandlungsmethoden von
neuromuskulären Erkrankungen. Folglich ist es notwendig die Entwicklung von nichtinvasiven
Methoden zur Untersuchung des neuromuskulären Systems am lebenden Menschen voran-
zutreiben.

Die Ansteuerung von Skelettmuskeln erfolgt über elektrische Signale, welche als Muskelak-
tionspotentiale bezeichnet werden. Ein Aktionspotential beschreibt eine charakteristische,
zeitlich kurze Abweichung des Membranpotentials. Folglich erzeugen Muskelaktionspotentiale
bioelektromagnetische Felder, deren Messung Rückschlüsse auf die neuronale Ansteuerung der
Muskulatur sowie auf das elektrophysiologische Verhalten des Muskels zulässt. Dabei kann
zwischen Elektromyografie (EMG), d.h. der Messung des vom Muskel erzeugten elektrischen
Potentialfeldes, und Magnetomyografie (MMG), d.h. der Messung des vom Muskel generierten
Magnetfeldes, unterschieden werden.

In der Vergangenheit wurde jedoch fast ausschließlich die EMG zur Beobachtung der
elektrophysiologischen Muskelaktivität verwendet. Bei der Messung von EMG-Signalen können
entweder invasive Nadelelektroden oder nichtinvasive Oberflächenelektroden genutzt werden.
Die Unterschiede beider Methoden ergeben sich hauptsächlich durch den Abstand zwischen den
aktiven Muskelfasern und der Messelektrode sowie den elektrischen Eigenschaften des Körpers.
Nadel-EMG erlaubt räumlich hoch sensitive Messungen, die hauptsächlich die Aktionspoten-
tiale der Muskelfasern in unmittelbarer Nähe der Elektrode wieder spiegeln. Daher sind die
zugehörigen Messdaten in der Regel relativ leicht zu interpretieren. Durch den schmerzhaften
und invasiven Eingriff lassen sich jedoch ausschließlich kooperative Patienten oder Probanden
untersuchen. Zudem besteht die Gefahr, dass die gewonnenen Erkenntnisse durch lokale
Effekte verfälscht werden. Oberflächen-EMG unterscheidet sich hauptsächlich durch den
größeren Abstand zwischen den aktiven Muskelfasern und den Messelektroden. Dies lässt
sich durch einen Tiefpassfilter beschreiben, wodurch die räumliche Sensitivität der Messungen
abnimmt, d.h. das Oberflächen-EMG bietet einen globaleren Blick auf die elektrophysiologische
Aktivität des Muskels. Jedoch ist die Interpretation des Oberflächen-EMG schwieriger. Dies
ist insbesondere darauf zurückzuführen, dass die exakten Eigenschaften des Tiefpassfilters
von üblicherweise unbekannten Körpereigenschaften abhängen und Untersuchungsergebnisse
infolgedessen erheblichen Unsicherheiten aufweisen können.

Die MMG wurde erstmals in den 1970er Jahren beschrieben. Jedoch haben technische
Einschränkungen den Einsatz der MMG bisher großteils verhindert. Dabei ist insbesondere zu
berücksichtigen, dass das vom Muskel erzeugt Magnetfeld um mehrere Größenordnungen kleiner
ist als das Erdmagnetfeld. Daher erfordert die MMG hoch empfindliche Magnetfeldsensoren und
eine gezielte Abschirmung oder Unterdrückung des elektromagnetisches Hintergrundrauschen.



Nichtsdestotrotz existieren eine Reihe physikalischer Überlegungen, welche die Aufzeichnung
von MMG-Signalen als Alternative zur EMG motivieren. Insbesondere ist hervorzuheben, dass
sich Magnetfelder im menschlichen Körper wie im Vakuum ausbreiten können. Daher lassen
sich MMG-Signale kontaktfrei messen, was beispielsweise die Anwendung im klinischen Alltag
erleichtert, oder stabile Langzeitmessungen über implantierte MMG Sensoren ermöglicht.
In den letzten Jahren konnten die technischen Einschränkungen von Magnetometern soweit
gelöst werden, dass es jetzt möglich ist die Nutzung von MMG-Messungen in biomedizinischen
Anwendungen zu erforschen. Dabei müssen empirischen Beobachtungen, d.h. aus Experi-
menten, durch ein fundiertes theoretisches Verständnis von EMG-Signalen und MMG-Signalen
unterstützt werden.

Das übergeordnete Ziel dieser Arbeit ist es daher eine Simulationsumgebung zu schaffen,
die es erlaubt vom Muskel generierte bioelektromagnetischer Felder systematisch zu unter-
suchen. Da bei Experimenten am lebenden Menschen viele relevante Einflussfaktoren nicht
exakt kontrollierbar sind, erlauben mathematischen Modelle Studien die sonst nur schwierig
umsetzbar wären. Mathematische Modelle sind eine wichtige Säule der Naturwissenschaften
und Simulationen haben in der Vergangenheit schon einen wichtigen Beitrag zum Verständnis
von EMG-Signalen geleistet. Jedoch sind Modelle zur Berechnung von MMG-Signalen noch
kaum verbreitet und die wenigen existierenden Simulationsmethoden haben signifikante
Einschränkungen. Daher wird in dieser Arbeit ein neuartiges Skelettmuskelmodell hergeleitet,
dass in der Lage ist muskelinduzierte bioelektomagnetische Felder zu simulieren. Die relevante
Zeitskala der vom Muskel erzeugten bioelektromagnetischen Feldern liegt in der Größenordnung
von Millisekunden. Daher können für die Modellierung die Näherungen der Elektrostatik
und der Magnetostatik benutzt werden. Folglich ist es möglich zunächst die elektrischen
Potentialfelder im Muskel zu berechnen und in einem zweiten Schritt das vom Muskel erzeugte
Magnetfeld zu bestimmen. Die Beschreibung des elektrischen Verhaltens des Muskels beruht auf
einem Mehrskalenmodellierungsansatz, d.h. ein etabliertes (mikroskopisches) Modell zur Bes-
chreibung der elektrischen Ströme in den Muskelfasermembranen wird in ein makroskpoisches
Kontinuumsmodell integriert. Die verschiedenen Längenskalen lassen sich dabei unter Berück-
sichtigung des funktionalen Aufbaus der Skelettmuskulatur konsistent zusammenführen. Um
das vom Muskel erzeugte elektrische Potentialfeld im ganzen Körper zu berechnen, kann das
hergeleitete Skelettmuskelmodell an ein Volumenleitermodell gekoppelt werden. Basierend auf
der Lösung des elektrischen Modells kann nun das (quasi-statische) muskelinduzierte Magnetfeld
berechnet werden. Im Bezug auf das Gesamtmodell ist hervorzuheben, dass die simulierten
bioelektomagnetischen Felder mechanistisch mit der elektrophysiologischen Funktionsweise
des Skelettmuskels verknüpft sind und somit prädiktive Modellvorhersagen möglich sind.
Mathematisch repräsentiert das Gesamtmodell ein System gekoppelter Differenzialgleichun-
gen. Jedoch existiert hierfür keine allgemeingültige analytische Lösung. Daher wird in der
vorgestellten Arbeit ein Lösungsverfahren hergeleitet, welches es erlaubt die Modellgleichungen
numerisch anzunähern. Die Konsistenz des Berechnungsalgorithmus wird durch eine Reihe von
Konvergenzstudien nachgewiesen.

Der letzte Teil der vorgestellten Arbeit nutzt die hergeleitete Simulationsumgebung, um
zu untersuchen ob die MMG als neue oder alternative elektrophysiologische Untersuchungs-
methode eingesetzt werden kann. Dafür werden zunächst einige Simulationen betrachtet
die grundlegenden Zusammenhänge zwischen den Vorgängen im Körper und den messbaren
EMG-Signalen oder MMG-Signalen herstellen. Elektrisch ooder Reflexinduzierte Muskelkon-
traktionen erzeugen Summensignale die einfacher zu verstehen sind als Signale von wilkürlichen
Kontraktionen. Daher vergleicht diese Arbeit zunächst Summensignale, die entstehen wenn ein



Teil der Muskelfasern stimuliert wird. Dabei kann gezeigt werden, dass sowohl EMG-Signale
als auch MMG-Signale von der Anzahl der aktiven Muskelfasern, der räumlichen Anordnung
der aktiven Muskelfasern, den Eigenschaften der aktiven Muskelfasern, den elektrischen
Eigenschaften des Gewebes sowie der räumlichen Positionierung des Messsystems abhängen.
Insbesondere zeigen die Simulationen, dass EMG und MMG komplementäre Signale darstellen.
Jedoch zeigt sich dass für die MMG der Informationsgehalt der Signale auf weniger Messkanäle
verteilt ist. Folglich ist die nichtinvasive MMG eine attraktive Alternative zur Messung von
Oberflächen-EMG. Beispielsweise um genauere Rückschlüsse auf die Vorgänge im Körper
ziehen zu können oder um neuartige elektrophysiologische Bildgebungsmethoden zu entwickeln.
Eine weiter Vorteil des vorgestellten Computermodells ergibt sich durch die Möglichkeit das
messbare Magnetfeld in die Anteile verschiedener elektrischer Ströme zu zerlegen. Dabei kann
beispielsweise gezeigt werden, dass die zu den Muskelfasern senkrecht orientierten Magnet-
feldkomponenten hauptsächlich auf intrazelluläre Ströme zurückzuführen sind. Außerdem
zeigen die Simulationen, dass auch die nicht aktiven Muskelfasern einen relevanten Beitrag zu
MMG-Signalen leisten.

Eine wichtige Anwendung der EMG befasst sich mit der Entschlüsselung der neuronalen An-
steuerung der Muskulatur. Jedoch haben entsprechende Methoden zahlreiche Einschränkungen,
die oft eng mit den physikalischen Eigenschaften vom EMG-Signalen verknüpft sind. Daher
untersucht die vorgestellte Arbeit den Einsatz von MMG um die Steuersignale des Nervensys-
tems zu Entschlüsseln. Dafür werden zunächst die grundlegenden Interferenzmuster von EMG-
Signalen und MMG-Signalen vorgestellt und verglichen. Dabei kann gezeigt werden, dass beide
Signale durch dasselbe Systemmodell angenähert werden können, d.h. EMG-Signale oder MMG-
Signale lasses sich als lineare Überlagerung der von den einzelnen motorischen Einheiten gener-
iert Teilsignalen beschreiben. Daher hängen bioelektromagnetische Felder die bei willentlichen
Kontraktionen entstehen, sowohl vom neuronalen Stimulationsmuster als auch von den Muskelei-
genschaften selbst ab. Beide Effekte lassen sich jedoch nicht ohne Weiteres trennen. Folglich
existiert keine eindeutige Beziehung zwischen der EMG-Amplitude oder MMG-Amplitude und
der Stärke des neuronalen Steuersignals. Jedoch ist es möglich ein gemessenes Interferenzsignal
in seine Einzelkomponenten zu zerlegen und somit die Aktivität von einzelnen Motoneuronen
zu beobachten. Wird dafür jedoch Oberflächen-EMG genutzt beschränken die räumlichen Tief-
passfiltereigenschaften die Anzahl an motorischen Einheiten die zuverlässig extrahiert werden
können. In dieser Arbeit wird gezeigt, dass bei nichtinvasiven Messungen die MMG der EMG
überlegen ist um verschiedene Quellen, d.h. motorische Einheiten, voneinander zu unterscheiden.
Diese Beobachtung macht die MMG zu einer vielversprechenden Methode um die Aktivität ein-
zelner Motoneuronen am lebenden Menschen zu untersuchen. Um das Potential dieses Ansatzes
zu testen, wird eine simulationsbasierte Testumgebung vorgestellt. Diese ermöglicht es eine obere
Schranke der trennbaren motorischen Einheiten vorherzusagen. Dabei werden die vorgestellten
Simulationsmodelle direkt in das Lösungsverfahren existierende Signaltrennmethoden integriert.
Hierbei kann gezeigt werden, dass nichtinvasiv gemessene MMG-Signale der Oberflächen-EMG
überlegen sind um die Aktivität einzelner Motoneuronen zu entschlüsseln, d.h. die Anzahl der
motorischen Einheiten die zuverlässig aus dem Interferenzsignal extrahiert werden kann, erhöht
sich annähernd um einen Faktor von zwei. Insbesondere ist es mittels MMG auch möglich das
verhalten motorischer Einheiten mit tief liegenden Fasern zu beobachten. Darüber hinaus wird
gezeigt, dass die gute Trennbarkeit von MMG-Signalen hauptsächlich darauf zurückzuführen ist,
dass ein dreidimensionales Vektorfeld gemessen wird.





Abstract

The impressive variability of human motion requires the coordinated interplay of the nervous
system and the musculoskeletal system. However, only a crude understanding of the mech-
anisms enabling motions exists. A fundamental challenge for investigating the neuromuscular
system in vivo is the lack of sophisticated experimental methodologies that can measure the
performance of muscles and the biophysical function of the body. This shortcoming also limits
the development and assessment of therapies to tackle diverse neuromuscular disorders. Hence,
novel methods for studying neuromuscular physiology in vivo are desperately needed.

Skeletal muscles are the actuators of the body, and their activity is controlled by electric
signals, i.e., action potentials. An action potential can be described as the coordinated change of
the polarity of an excitable cell’s membrane and, thus, causes bioelectromagnetic fields. Hence,
measuring muscle-induced bioelectromagnetic fields can provide information on the neural
control signals to the muscle and the electrophysiological function of the muscle itself. One dis-
tinguishes electromyography (EMG), i.e., measuring the muscle-induced electric potential field,
and magnetomyography (MMG), i.e., recording the magnetic field generated by skeletal muscles.

In the past, however, almost exclusively, EMG was used to study neuromuscular physiology.
EMG can be recorded invasively via needle electrodes or with non-invasive surface electrodes.
The most relevant difference between both signals is determined by the distance between the
active muscle fibres and the electrode, as well as the electric properties of the body. In short,
needle EMG is spatially highly sensitive and mainly reflects the behaviour of the muscle fibres
close to the electrode. Thus, signals obtained from needle EMG recordings are typically easy to
interpret. However, the painful and invasive nature of the measurements limits the application
of needle EMG to collaborative patients or subjects. Further, the results may be biased by
local tissue properties. Due to the increased distance between the electrodes and the sources,
surface EMG exhibits a spatial low-pass filtering effect that depends on the body’s anatomy
and properties. Hence, the signal provides a more global view of the muscle. However, as many
relevant properties of the tissues are unknown, the interpretation of surface EMG is challenging,
and the results of surface EMG-based studies are often subject to considerable uncertainties.

Although MMG was first described in the 1970s, several (technological) challenges have
limited its practical relevance. Most importantly, the amplitude of the magnetic field generated
by skeletal muscles is significantly lower than the earth’s magnetic field. Hence, MMG
requires sensitive magnetic field sensors and shielding or suppression from electromagnetic
noise. Nevertheless, a set of physical arguments makes MMG an attractive alternative to
well-established EMG recordings. Most importantly, the magnetic permeability of biological
tissues is close to the magnetic permeability in free space. Thus, MMG can be measured
contact-free, which facilitates, for example, their use in everyday clinical practice or enables
stable long-term measurements using implanted MMG sensors. In recent years, the technical
limitations of magnetometers have been solved to such an extent that it is now possible to
explore the use of MMG signals in biomedical applications. Therefore, supporting empirical
observations from experiments with a solid theoretical understanding of bioelectromagnetic
fields generated by skeletal muscles is essential.



Hence, this thesis aims to establish a simulation framework enabling systematic investigations
of muscle-induced bioelectromagnetic fields. Since many relevant factors affecting muscle-
induced bioelectromagnetic fields cannot be precisely controlled during in vivo experiments,
mathematical models allow investigations that would otherwise be difficult to implement.
In the past, simulations have made relevant contributions to understanding EMG signals.
However, models for predicting MMG signals are still rare, and the few existing methods have
significant limitations for simulating the magnetic fields induced by whole muscles. Therefore,
after introducing the basics of neuromuscular physiology and the fundamentals for modelling
bioelectromagnetic fields, this thesis derives a novel multiscale bioelectromagnetic skeletal
muscle model. The characteristic time scale of muscle-induced bioelectromagnetic fields is
in the range of milliseconds. Accordingly, the modelling framework uses the quasi-static
approximation of Maxwell’s equations. This assumption allows us to decouple the electric and
magnetic field equations. Hence, for describing the electric potential fields in the muscle, the
proposed simulation framework consistently integrates a (microscale) description of the electric
behaviour of the muscle fibre membranes, i.e., the source of EMG and MMG, as well as the
most important (microscale and mesoscale) structural features of skeletal muscle tissue into a
multiphase macroscopic continuum model. This multi-domain model of skeletal muscle tissue
can be coupled to a volume conductor model describing electrically inactive tissues surrounding
the muscle. Having solved the electric field problem, we know the current distribution in the
body. Within the limits of the quasi-static approximation, this fully determines the muscle-
induced magnetic field. Notably, the multiscale approach links the well-studied microscopic
behaviour of the muscle fibres to the macroscopic bioelectromagnetic fields and allows for
predictive simulations. The overall mathematical model yields a set of coupled differential
equations which cannot be solved analytically. Hence, a staggered numerical solution scheme
for approximating the model equations is derived in this work. A set of convergence studies
demonstrates the consistency of the computational model.

Using EMG or MMG for in vivo investigations of the neuromuscular system requires
a mechanistic understanding of the relation between the spatiotemporal patterns of the
bioelectromagnetic fields and the biophysical state of the body. Electrically or reflex-evoked
muscle contractions generate compound muscle responses that are easier to understand than
signals from voluntary contractions. Yet, even for artificially evoked contractions, it is not
possible to control all system parameters. Hence, to study the fundamentals of muscle-induced
bioelectromagnetic fields, this work compares simulated EMG and MMG compound muscle
responses in fusiform skeletal muscles. In summary, both EMG and MMG depend on the
number of active muscle fibres, the spatial configuration of the recruited muscle fibres, the
properties of the muscle fibres, the electric properties of the tissues, and the spatial position of
the detection system. Notably, it is shown that EMG and MMG are complementary signals with
many common characteristics. Yet, it is shown that compared with surface EMG, the sparsity
of non-invasive MMG is less affected by the body’s properties and anatomy. This property is
beneficial for applications such as the reconstruction of bioelectric sources. Moreover, the in
silico environment also allows us to predict the contribution of currents in different structural
components of the muscle to the MMG signal. For example, the simulations demonstrate that
the MMG’s normal-to-the-surface component strongly reflects currents inside the muscle fibres.
Further, it is shown that the non-recruited muscle fibres considerably contribute to MMG signals.

Finally, this work investigates the use of muscle-induced bioelectromagnetic fields for decoding
the voluntary neural drive to the muscle. First, it is demonstrated that – just as EMG signals



– MMG exhibits both positive and destructive interference. In detail, muscle-induced bioelec-
tromagnetic fields can be described as the (linear) superposition of the motor unit responses,
i.e., the EMG or MMG signal generated by the activity of an individual motor unit, convoluted
by the discharge times of the motor neurons. Hence, EMG and MMG signals observed during
voluntary contractions depend on the neural stimulation pattern and the muscle’s properties.
Both effects cannot be separated straightforwardly. Accordingly, it is well reported that no
univocal relation exists between the EMG amplitude and the strength of the neural drive to
the muscle. Hence, the current gold standard for decoding the neural drive to a muscle is to
decompose interference EMG signals into the spike rains of individual motor units. However,
when recording non-invasive surface EMG, the spatial low-pass filtering of the observable signals
limits the number of reliably decomposable motor units. This work shows that motor units are
more uniquely represented in non-invasively measured high-density MMG data than in compar-
able high-density surface EMG data. This property of the magnetic field generated by a skeletal
muscle motivates us to consider non-invasive MMG-based motor unit decomposition as an al-
ternative to surface EMG-based motor unit decompositions. Hence, this work introduces an in
silico trial framework for predicting upper-bound accuracy estimates of motor unit decomposi-
tions. In short, the in silico trial platform integrates the presented EMG and MMG models into
state-of-the-art (blind source separation-based) motor unit decomposition methods. Thereby, it
is demonstrated that non-invasive MMG-based motor unit decomposition is superior over the
well-established surface EMG-based motor unit decomposition, i.e., the number of motor units
that can be reliably decomposed nearly increases by a factor of two. Notably, MMG exhibits
a less pronounced bias for detecting superficial motor units. Further, it is demonstrated that
the most relevant feature explaining the MMG’s superior separability is that it represents a
three-dimensional vector field.
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1 Introduction

1.1 Motivation, Clinical Relevance and Impact

Motions are a defining feature of human life, i.e., allowing us to perform various tasks, act-
ively interact with the outside world and enable essential bodily functions such as breathing.
Therefore, the human body consists of more than 600 skeletal muscles controlled by the nervous
system. The amazing variability of human motion relies on the coordinated interplay of the
nervous and musculoskeletal systems. Yet, despite more than a century of scientific efforts, only
a crude understanding of the mechanisms enabling motions has been established. This is further
manifested by the fact that the pathophysiology of various and typically complex neuromuscular
disorders – ranging from motor neuron diseases, peripheral neuropathies, muscular dystrophies,
multiple types of myopathies, metabolic disorders to diseases affecting the neuromuscular junc-
tions – is often only partially understood. Importantly, this also limits the development of
efficient treatment strategies. A fundamental challenge for studying the neuromuscular system
in vivo is the lack of sophisticated experimental methodologies that can measure the perform-
ance of muscles and the biophysical function of the body. For example, motion capture systems
allow the study of the kinematics of the body. However, they provide limited insights on the
mechanisms involved in performing the motion [e.g., 4, 54, 156, 266]. Imaging techniques,
for example, magnetic resonance imaging or ultrasound, allow the study of the morphology of
muscles but can only incompletely assess the quality of the tissue [e.g., 102, 146, 173, 209].
Electromyography (EMG), i.e., recorded via needle electrodes or non-invasively from the skin,
contains information on the neural drive to the muscle as well as the state of the muscle itself
[e.g., 45, 175]. However, needle EMG has limitations due to its invasive nature and surface EMG
recordings are associated with high levels of uncertainty caused by the unknown properties of the
body. Hence, novel non-invasive techniques for obtaining an integrated view of neuromuscular
physiology are desperately needed.

1.2 State-of-the-Art and Objectives

Excitable cells use electric signals, i.e., action potentials, to communicate with other cells or to
activate other physiological processes [136]. The most prominent examples of tissues or organs
consisting of excitable cells are the brain, the heart and skeletal muscles. An action potential
can be described as the coordinated change of a membrane’s polarity and thus causes both
a time-dependent electric field and a magnetic field. The measurement of bioelectromagnetic
fields induced by excitable cells can, therefore, be used to gain insights about the function of
the body [163]. Hence, different types of bioelectromagnetic field measurements have been
developed for specific tissues and organs [e.g., 45, 77, 175, 183, 198, 247, 249]. For example,
the electrocardiogram (ECG) is routinely used to monitor the heart’s function. Further, the
electroencephalogram (EEG) and the magnetoencephalogram (MEG) are well-established as
neuro-imaging techniques for obtaining a (spatial) mapping of brain activity. In skeletal muscle,
action potentials control the active contractile behaviour of the muscle fibres [160]. Hence,
the activity of skeletal muscles can be measured via electromyography (EMG), i.e., recording
the electric potential field caused by the muscle fibre action potentials, or magnetomyography
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(MMG), i.e., measuring the magnetic field induced by the muscle fibre action potentials. Both
signals contain information on the neural drive to the muscle and the state of the muscle itself
and can, therefore, be used to gain insights into the neuromuscular system.

Historically, almost exclusively, EMG has been used to study neuromuscular physiology
[cf. e.g., 45, 175]. EMG can be either recorded by utilising invasive needle electrodes
[174] or via non-invasive surface electrodes [70]. The most relevant difference between both
measurement techniques is the modulation of the signals caused by the distance between the
EMG electrode and the sources, as well as the electric properties of the body. In short, needle
EMG dominantly records the electric potential field caused by the muscle fibres close to the
electrode. This minimises the effect of the electric tissue properties, making signals obtained
from needle EMG recordings relatively easy to interpret. For example, individual motor unit
action potentials and, hence, the activity of single motor units can often be identified visually
[e.g., 1, 34, 50]. Further, needle EMG allows the detection of different classes of pathological
spontaneous muscle activity representing hallmarks of neuromuscular diseases. For example,
fibrillation potentials, i.e., caused by the involuntary activity of isolated muscle fibres, are
associated with muscle denervation, or repeated muscle fibre action potentials that wax and
wane in amplitude, as well as frequency, are caused by myotonic disorders, i.e., the delayed
relaxation of muscles. Due to these properties, needle EMG represents a well-established
clinical diagnostic tool [e.g., 26, 43, 226]. However, the invasiveness of the measurements limits
the applicability of needle EMG to collaborative patients or subjects. For example, examining
children or conducting longitudinal studies is often difficult. In contrast, surface EMG exhibits
a spatial low-pass filter effect due to the increased distance between the electrodes and the
sources, which depends on the anatomy and the property of the body [e.g., 66, 159, 219].
Accordingly, surface EMG has a higher detection volume and provides a more global view of
muscle activity. However, due to the unknown tissue properties and the spatial location of
the bioelectrical sources, the correlation between surface EMG signals and the function of the
neuromuscular system is usually associated with a high level of uncertainty. Hence, surface
EMG measurements often fail to provide sufficient reliability for biomedical applications. Yet,
in the last decade, the combination of high-density surface EMG [11, 177], i.e., utilising dense
arrays of electrodes, and sophisticated blind source separation methods have proven to be a
valuable methodology to observe the behaviour of individual motor units non-invasively and in
vivo [e.g., 30, 70, 124, 192, 194].

Although MMG was first described by Cohen & Givler in 1972, several challenges still exist
that limit its practical use. Most importantly, the amplitude of the magnetic field induced by
skeletal muscles is very low, i.e., in the range of nano-Tesla to pico-Tesla, and thus, significantly
lower than the earth’s magnetic field. This yields high technical demands for MMG recording
systems [270], for example, regarding the sensitivity, the detection range, the sampling rate, the
shielding from magnetic noise, the size and portability of the sensor device as well as the cost
of such measurements. Nevertheless, several physical considerations regarding the properties
of muscle-induced bioelectromagnetic fields motivate the development and investigation of
the MMG methodology. Most importantly, the magnetic permeability of biological tissues
is close to the magnetic permeability in free space [163, 206]. Thus, compared to surface
EMG, MMG is expected to show a higher spatial selectivity. Further, unlike EMG, MMG
recordings do not rely on sensor-tissue contacts. This facilitates measurements in everyday
clinical practice and increases the reliability of longitudinal studies. Moreover, this means MMG
sensors can be encapsulated to guarantee biocompatibility with the body. MMG is therefore
appealing for long-term (invasive) measurements, such as prosthesis control via implanted
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sensors. Recently, advances in sensor technology [e.g., 14, 103, 188, 233, 270] has enabled
a few proof-of-concept studies illustrating the feasibility of measuring MMG for biomedical
applications [e.g., 18, 20, 154, 217]. Consequently, MMG can now be considered a promising,
rapidly developing method to study the neuromuscular system in vivo.

However, the full potential of MMG has yet to be explored. Therefore, it is particularly rel-
evant to investigate how MMG compares to other methodologies, most importantly EMG. This
requires combining empirical observations from experiments with a solid theoretical understand-
ing of muscle-induced bioelectromagnetic fields through mathematical modelling. Hence, this
work aims to establish a mechanistic understanding of EMG and MMG signals by performing
in silico experiments. This includes:

• Investigation of the influence of the tissue properties and the detection system on EMG
or MMG signals.

• The first detailed comparison of compound muscle responses, i.e., characterising signals
from electrically or reflex-evoked contractions.

• Predicting the relevance of intracellular and extracellular currents to the measurable mag-
netic field.

• Examining the basic properties of interference signals observable during voluntary con-
tractions.

• Testing the potential use of MMG for performing non-invasive motor unit decompositions.

Maxwell’s equations are the universal basis for describing electromagnetic fields. Modelling
bioelectromagnetic fields induced by the human body requires suitable constitutive assumptions.
For the simulation of EMG signals, skeletal muscle tissue is typically considered a volume
conductor, i.e., describing the extracellular space, interacting with a source (volume) current
field [cf. e.g., 179, 242], i.e., representing the transmembrane currents associated with the
muscle fibre action potentials. Depending on the complexity of the tissue geometry, the applied
boundary conditions, the muscle architecture and spatial heterogeneities, volume conductor
models can be either solved analytically [e.g., 68, 178] or need to be approximated numerically
[e.g., 58, 72, 158, 159, 181, 185]. Volume conductor EMG models have, for example, been
used to study the relation between the tissue properties and the signal shape [58, 158, 159],
to investigate the influence of the detection system [66, 68], to assist the interpretation of
experimental data [57, 176, 219] or to examine the influence of motion [181, 185]. The accuracy
of volume conductor models depends on the precise estimation of electric tissue properties and
the description of the source current field. Currently, it is extremely challenging to perform
subject-specific EMG simulations.

Modelling predictions of MMG signals are still rare. All models that aim to predict the muscle-
induced magnetic field have in common that they assume quasi-static conditions, i.e., decoupling
of the electric and magnetic fields. Hence, one can first calculate the current field in the body,
which fully determines the magnetic field. For example, in [20], a finite wire model, i.e., de-
scribing the current field in the muscle fibres, was used for explaining the MMG signal triggered
by an electrical stimulus of the motor nerve. However, this model could only partially explain
the observed data. This is most likely because volume currents in the extracellular space are
neglected. Further, in [270, 272] a full-field continuum model, i.e., the muscle fibres and the
extracellular connective tissue are modelled as spatially separated region [cf. 264], was used to
predict both the electric potential field and the magnetic field in a small muscle tissue sample.
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However, the computational demands of this approach limit its usability for simulating bio-
electromagnetic fields of whole muscles. Hence, performing in silico investigations of EMG and
MMG requires new modelling frameworks. Since knowledge about MMG and experimental data
is sparse, simulations must have high predictive capabilities. Thus, this work aims

• to introduce a multiscale model of muscle-induced bioelectromagnetic fields,

• identify suitable model parameters enabling reliable in silico predictions,

• derive a numerical solution scheme for solving the proposed equations.

1.3 Outline of This Thesis

This thesis aims to establish the theoretical basis for using bioelectromagnetic fields in
biomedical applications. This is achieved by performing in silico investigations of EMG and
MMG signals. Therefore, the presented work is structured as follows:

Part I introduces the fundamental basics for modelling muscle-induced bioelectromagnetic
fields. Performing predictive EMG and MMG simulations requires solid knowledge of the
underlying physiological processes. Hence, Chapter 2 briefly introduces the anatomy and
physiology of the neuromuscular system. Representing the source of bioelectromagnetic fields, a
particular focus is dedicated to the function of excitable cells. Further, to guarantee consistency
with the laws of physics, the basics of electromagnetism are presented in Chapter 3. Finally,
Chapter 4 provides an overview of existing mathematical models currently used for modelling
the behaviour of excitable cells and bioelectromagnetic fields.

Part II describes a novel modelling framework for simulating EMG and MMG signals.
Therefore, in Chapter 5, a multiscale model consistently integrating a microscopic description
of the transmembrane currents in the muscle fibres as well as the functional organisation of
skeletal muscles in motor units into a macroscopic continuum model is derived. This so-called
multi-domain model is coupled to a model of electrically inactive tissues surrounding the muscle.
Further, suitable boundary conditions, as well as model parameters, are introduced. The overall
mathematical model can only be solved numerically. Hence, in Chapter 6, a staggered solution
scheme for approximating the model equations is introduced. The consistency of the resulting
computational model is shown by conducting a set of convergence studies.

Part III comprises specific in silico experiments for obtaining theoretical insights on muscle-
induced bioelectromagnetic fields that would currently not be easily feasible using experiments.
First, in Chapter 7, the fundamental properties of EMG and MMG are examined by simulating
compound muscle responses. That is the EMG or MMG signals caused by the synchronous
activity of multiple muscle fibres, which is comparable to signals from artificially evoked
contractions (e.g., electric stimulation or reflex pathways). In particular, it is demonstrated how
the spatiotemporal patterns of EMG and MMG signals relate to a skeletal muscle’s properties.
Hence, the presented results represent the theoretical basis for interpreting EMG and MMG
signals within specific biomedical applications. Chapter 8 investigates EMG and MMG of
voluntary contractions. A particular focus is dedicated to methods estimating the neural
control of muscles. First, the fundamental interference patterns of EMG and MMG signals are
examined, followed by a discussion of the associated challenges. The current gold standard for
non-invasively decoding the voluntary drive to the muscle is the decomposition of high-density
surface EMG signals into the spike trains of individual motor units. However, the electric tissue
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properties typically limit the number of motor unit sources that can be reliably identified.
Hence, this work investigates the potential of using non-invasive high-density MMG recordings
for observing individual motor units in vivo. This is achieved by introducing a novel in silico
trial framework for predicting upper bound accuracy estimates of motor unit decompositions.
The performance of MMG-based motor unit decompositions is compared to the performance of
EMG-based motor unit decompositions.

Finally, Chapter 9 concludes the presented work by discussing the limitations of the presented
results, contextualising the proposed methods and providing an outlook on further applications
of EMG and MMG. Thereby, a particular focus is dedicated to the need for mathematical
modelling.





Part I

Basics for Modelling Muscle-Induced
Bioelectromagnetic Fields
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2 Anatomy and Physiology of the
Neuromuscular System

This chapter introduces the anatomical and physiological basics for modelling muscle-induced
bioelectromagnetic fields. With the overall scope of this work in mind, only a short and in-
complete overview is provided. Numerous specialised textbooks exist to get deeply into the
fascinating world of the neuromuscular system. For example, the textbook of Kandel, Schwartz,
Jessell, Siegelbaum, Hudspeth, Mack et al. [136] provides an excellent overview of the structure
and function of the nervous system. The physiology of skeletal muscles is extensively described
in the textbook of MacIntosh, Gardiner & McComas [160]. Further, the works of Heckman &
Enoka [100, 101] focus on the tightly coupled functional organisation of the nervous system and
skeletal muscles.

2.1 Neuromuscular Physiology in a Nutshell

Skeletal muscles allow the central nervous system to interact with the outside world. Hence, one
considers all the muscles in the body and the nerves serving them as one physiological system,
i.e., the neuromuscular system. The smallest functional unit of the neuromuscular system is the
motor unit. A motor unit consists of a motor neuron and all the muscle fibres it innervates. The
fact that a muscle consists of up to several hundreds of motor units allows a fine modulation
of a muscle’s force output, enabling the great variability of human motions. Motor neurons
are the ultimate control elements of the neuromuscular system. Therefore, the motor neurons
integrate signals from the brain, i.e., where motions are planned and initiated, as well as sensory
pathways that provide feedback on the state of the body. Once a motor neuron reaches its
depolarization threshold, an action potential is triggered (see Section 2.2.2) and travels along
the axon towards the neuromuscular junctions of the associated muscle fibres. Each stimulus
arriving at a neuromuscular junction causes an action potential that spreads along the entire
length of the muscle fibre. The muscle fibre action potential controls cellular force production
(see Section 2.3.2). The overall muscle force is the sum of the contributions of the individual
motor units. The latter depends on the frequency of the motor neuron discharges, the number
of muscle fibres per motor unit and the properties of the muscle fibres (see Section 2.3.3).
Ultimately, the active muscle force is transmitted to the skeleton via tendons. Since skeletal
muscles can only contract actively, the coordinated interplay between agonistic and antagonistic
muscles is required to control the movement of whole joints. A schematic illustration of the
basic physiological processes involved in the generation of motion is shown in Figure 2.1.

2.2 Excitable Cells

The nervous system encodes information through a temporal series of impulses. Biophysically,
each impulse corresponds to an action potential. Action potentials are characterised by a rapid
rise, i.e., known as depolarisation, and fall, i.e., known as repolarisation, of a cell’s membrane
potential [117], cf. Figure 2.2. Cells generating action potentials are called excitable cells, such
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Figure 2.1: Left: Schematic drawing showing the basic physiological pathway of motion. The colours
(blue, green and red) indicate different motor units. Right: Exemplary illustration of how
neural stimuli are translated into a muscle’s mechanical force output.

as nerve and muscle cells. The membranes of all excitable cells share the same basic structure
and function [121, 216]. Given the scope of this work, a skeletal muscle fibre is used as a
representative example to explain the structure and function of the membrane of an excitable
cell. Notably, these fundamental principles are equally valid for other excitable cells.

2.2.1 The Structure of the Muscle Fibre Membrane

The function of an excitable cell’s membrane is closely linked to its structure [3, 136, 251].
Phospholipid molecules are the main components of the cell membrane. The phospholipids
are organised as a lipid double layer. Thereby, the hydrophilic heads create the inner and outer
surface of the membrane, and the hydrophobic tails form the inner part. Further, the lipid double
layer is approximately 10 nm thick and nearly impermeable for dissolved molecules. Hence, the
cell membrane is a boundary between the intracellular environment, i.e., the cytoplasm, and the
extracellular fluid. In this way, a specific electrolyte solution can be maintained inside the cell,
which may differ considerably from the biochemical composition of the extracellular fluid. At
the same time, highly specialised protein complexes are embedded in the membrane, forming
transport systems, for example, for ions, signalling molecules or metabolites. For the function of
excitable cells, the exchange of ions between the cytoplasm and the extracellular environment is
essential. Therefore, ion-specific channels can be opened and closed, for example, driven by the
membrane potential. Ion channels enable the (passive) flux of ions driven by the electrochemical
gradient of the ionic species [e.g., 8, 115]. Further, active pumps allow the transport of ions
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against their electrochemical gradient by the cost of energy, which is typically provided by the
hydrolysis of ATP (adenosine triphosphate) [e.g., 85, 239]. The most prominent example is the
sodium-potassium pump, which transports sodium from the cell in exchange for potassium ions.

2.2.2 The Function of the Muscle Fibre Membrane

The rapid time course of an action potential requires the resting cell to keep the membrane
in an electrically polarised state (see Figure 2.2A). That is, the concentration of ions – most
importantly sodium and potassium – is different in the cytoplasm and the extracellular fluid.
In detail, the extracellular sodium concentration is one magnitude higher than the intracellular
sodium concentration. Further, the concentration of potassium ions is one magnitude higher
inside the cell than in the extracellular space. Hence, the resting potential is typically in the
range of −70 mV to −80 mV. External stimuli can modulate the membrane potential. In
detail, an excitatory stimulus will depolarise the transmembrane potential, while an inhibitory
stimulus will hyperpolarise the membrane potential. If the membrane potential reaches a
depolarisation threshold, i.e., approximately −55 mV, voltage-gated sodium channels [265]
open and cause a strong sodium influx into the cell, cf. Figure 2.2B. This yields the rapid
depolarisation of the membrane potential. The increase of the transmembrane potential also
activates voltage-dependent potassium channels [161], causing a potassium flux from the
cell into the extracellular space, cf. Figure 2.2C. Initially, the sodium current dominates
the potassium current, and the transmembrane potential is further depolarised. Once the
transmembrane potential reaches its peak value, the sodium channels close while the potassium
channels remain open. This behaviour causes the transmembrane potential to return to its
resting potential (see Figure 2.2D). Hence, the action potential is an all-or-nothing event.
After returning to the resting potential, the sodium channels remain inactivated for several
milliseconds. This causes a refractory period, during which triggering a new action potential is
impossible. Notably, only a few ions must flow across the membrane to considerably change
the membrane potential. Hence, hundreds of action potentials can be generated without the
immediate need for restoring the concentration gradient through the sodium-potassium pump.

Action potentials can be triggered locally on each membrane patch. A reaction-diffusion
process achieves the spatial propagation of action potentials within the cell (see Figure 2.3).
If the membrane potential is depolarised at one point of a membrane, the electric potential
gradient causes electric currents. The diffusion of ions towards their electric equilibrium state
yields a depolarisation of the membrane potential on neighbouring membrane patches. The
action potential is regenerated locally if the membrane potential reaches the depolarization
threshold. Notably, the axons of some neurons are surrounded by an insulating molecule named
myelin. The latter increases the distance over which an action potential can be propagated
without the need to be regenerated. Hence, myelinated axons show higher conduction velocities
[e.g., 262].

2.2.3 Communication Between Excitable Cells

Cell-to-cell communication is based on functional structures known as synapses. While there
exist several specialised forms of synaptic transmission [e.g., 40, 60, 189], synapses are typically
classified into two basic forms, i.e., electric synapses and chemical synapses. The latter is
particularly relevant for the physiology of the neuromuscular system. Thus, only the function
of chemical synapses is introduced briefly within this work. Chemical synapses enable the
unidirectional transmission of information, i.e., from a presynaptic neuron to a postsynaptic
cell. In short, when an action potential reaches the (axon) terminal in the pre-synaptic cell,



12 Chapter 2: Anatomy and Physiology of the Neuromuscular System

Figure 2.2: Schematic illustration of the function of an excitable cell’s membrane: (A) In the resting
state, the membrane is polarised and nearly impermeable to ions. (B) If an excitatory
stimulus reaches the depolarization threshold, voltage-gated sodium channels open and cause
a strong sodium influx into the cell. (C) The shift in the membrane potential successively
activates voltage-gated potassium channels, causing a potassium current outside the cell.
(D) The sodium channel’s inactivating gate closes when the membrane voltage reaches its
maximum value. This causes the membrane potential to return to its resting potential.
Note that the inactivating gate of the sodium channels remains closed for a few milliseconds
after the membrane potential has returned to its resting value, causing a refractory period.

Figure 2.3: Schematic drawing illustrating how an action potential is propagated along a muscle fibre.
(A) The local depolarisation of the membrane potential at t0 causes a potential gradient and,
hence, electric currents, i.e., illustrated by the arrows. (B) and (C): The induced currents
trigger action potentials on neighbouring sites of the muscle fibre membrane. Hence, the
action potential is propagated through a reaction-diffusion process.
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neurotransmitters, e.g., acetylcholine or different amino acids, are released via synaptic vesicles
and transported through synaptic cleft towards the membrane of the post-synaptic cell. The
membrane of the postsynaptic cell contains specialised receptor channels. In the presence of
a neurotransmitter, the receptor channels open and modulate the ionic permeability of the
postsynaptic membrane. Depending on the equilibrium potential of the ionic species that
can pass through the receptor channel, an excitatory postsynaptic potential or an inhibitory
postsynaptic potential is generated. The postsynaptic potentials generated by all synapses are
summed up. This allows the post-synaptic cell to integrate different inputs.

The neuromuscular junction (see Figure 2.4) is a specific synapse linking the motor neurons
and the muscle fibres [41, 135]. Once the motor neuron’s axon reaches its target muscle, it is
split into nerve branches. These nerve endings contain the presynaptic terminals, which form
connections to the motor end plates, i.e., the post-synaptic parts of the associated muscle fibres.
At the neuromuscular junction, acetylcholine is used as a neurotransmitter binding to nicotinic
receptors at the motor end plate. This opens sodium channels in the muscle fibre membrane
and, thus, depolarises the transmembrane potential. Notably, the neuromuscular junction is a
strong synapse. Thus, in a healthy neuromuscular system, each presynaptic action potential in
the motor axon triggers a post-synaptic action potential in the connected muscle fibre.

Figure 2.4: Schematic drawing of the neuromuscular junction as an example of a chemical synapse.

2.3 Skeletal Muscles

Muscles are the actuators of the human body. Thereby, one distinguishes cardiac muscles,
smooth muscles and skeletal muscles. Skeletal muscles enable voluntary motions and translate
the commands of the central nervous system into mechanical work. This section provides a brief
overview of the structure and function of skeletal muscles.
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2.3.1 The Anatomy of Skeletal Muscles

The most striking property of a skeletal muscle is its ability to contract actively. Muscle
contraction relies on a complex interplay of cellular processes, which are closely related to
the structure of a skeletal muscle. That is, skeletal muscle tissue is hierarchically organised,
cf. Figure 2.5, mainly consisting of muscle fibres, i.e., the muscle cells, and extracellular
connective tissue. The connective tissue dominantly consists of collagen. Forming direct
connections to the muscle fibres, the connective tissue is the structural scaffold of the muscle.
Further, the connective tissue subdivides the muscle into muscle fibre bundles called fascicles.
Besides providing mechanical support [e.g., 128, 184, 244], the extracellular connective tissue
is important for embedding other structures and cells into the muscle, for example, nerves and
blood vessels.

The muscle fibres themselves are long, cylindrically shaped, multi-nucleated cells. The most
dominant structures in a muscle fibre are the myofibrils. Myofibrils are arranged in parallel
and comprise thousands of sarcomeres, i.e., the basic contractile unit of the muscle fibre.
Sarcomeres are constructed by a periodic lattice of thin actin and thick myosin filaments that
can slide relatively to each other without changing their length [99, 133]. Further, the actin
filaments are connected to the myosin filaments via a giant protein named titin [165, 166, 260].
The sarcolemma surrounds the muscle fibre, i.e., a lipid double layer showing all properties
of an excitable cell’s membrane (cf. Section 2.2) and a basement membrane, for example,
providing mechanical support. One specific feature of the muscle fibre membrane is that it
includes a channel-like network known as T-tubules. The T-tubules penetrate towards the

Figure 2.5: Schematic drawing of the basic architecture of a skeletal muscle.
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centre of the muscle fibres and are essential for transmitting the stimulus delivered by the action
potential to the whole cell. The muscle cell includes another tubular structure known as the
sarcoplasmic reticulum, which serves as calcium storage for intracellular signalling [e.g., 224].
Further, a network of mitochondria enables oxidative ATP synthesis within the muscle fibre [88].

Skeletal muscles do exist in different sizes and shapes [e.g., 150]. The human body has
skeletal muscles with only a few hundred fibres and muscles with more than a million fibres.
Further, skeletal muscles are often classified based on their primary facile direction. The
most prominent example is the class of fusiform skeletal muscles, where the fibres span from
tendon to tendon, i.e., longitudinally to the muscle’s line of action. For pinnated muscles, the
fibres are obliquely arranged concerning the muscle’s line of action. One further distinguishes
uni-pinnated and multi-pinnated muscles, i.e., where the pinnation angle is variable within
different muscle compartments. Internally, pinnated muscles include tendinous structures
named aponeurosis, which are essential for transmitting the active stresses generated by the
individual muscle fibres. Pinnation maximizes muscle force for a given volume [151].

2.3.2 The Function of a Muscle Fibre

The active contractile behaviour of muscle fibres can be explained by the sliding filament theory
pioneered by the works of Huxley & Hanson [132] and Huxley & Niedergerke [131] as well as the
cross-bridge theory proposed by Huxley [130]. In summary, in the presence of calcium ions, the
catalytic domain of the myosin heads can bind to specialised binding sites on the thin filament.
The resulting bound, which consists of a myosin head and an actin-binding site, is denoted
as a cross-bridge. A conformational change, which myosin heads can undergo, represents the
molecular motor’s working stroke. Depending on the mechanical constraints, the working stroke
yields a relative motion between the thin and the thick filaments, i.e., muscle contraction,
or an elongation of the myosin heads’ molecular spring, i.e., active force. After the working
stroke, the cross-bridge can detach from the thin filament and return to its initial state. The
repeated process of attachment, working stroke and detachment is known as the cross-bridge
cycle. Through cross-bridge cycling, skeletal muscles convert chemically stored energy into
mechanical work. The mechanical stress a muscle fibre generates depends on the contraction
velocity [114] and the length of the muscle [92]. While the classical two-filament model captures
many features of active force generation, it should be noted that further cellular structures are
crucial for the physiological function of muscle tissue. For example, the identification of an
additional myofilament named titin [165, 166, 260] within the sarcomeres of skeletal muscles
advanced the understanding of the active contractile behaviour of the fibres [112].

In normal conditions, putting muscle fibres into action requires an external stimulus. When
a muscle fibre is stimulated at its neuromuscular junction, an action potential is triggered
and propagated towards the end of the muscle fibre (cf. Section 2.2.2). The action potential
is conducted along the muscle fibre and transmitted towards the centre of the fibre via the
T-tubules system. Within the T-tubules, the depolarisation of the membrane potential stimu-
lates voltage-sensitive dihydropyridine receptors (DHPR). The DHRP sensor is a voltage-gated
calcium channel and allosterically activates the ryanodine receptor (RyR1) of the sarcoplasmic
reticulum [218]. Ryanodine receptors are calcium channels, and due to the concentration
gradient of calcium ions between the sarcoplasmic reticulum and the cytoplasm, the action
potential triggers the fast release of calcium ions into the cytoplasm. In the cytoplasm, calcium
ions serve as a second messenger system, controlling the active mechanical behaviour of a
muscle fibre. The Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase (SERCA) is an
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antagonistic system pumping calcium ions from the cytoplasm to the sarcoplasmic reticulum to
remove the contractile stimulus.

Two proteins are particularly relevant for linking the intracellular calcium signalling system
to the active mechanical behaviour of a muscle fibre [cf. e.g., 91]: troponin and tropomyosin.
Both molecules are linked to the actin filament. In short, troponin has calcium binding sites
controlling its conformation. Further, the tropomyosin filaments span the entire length of the
actin filaments and, in the resting state, block the binding sites for the myosin heads on the
thin filaments. Tropomyosin and troponin are mechanically linked. Hence, the conformational
change of the troponin molecule moves the tropomyosin filaments, which uncovers the binding
sites of the thin filaments. This enables cross-bridge cycling and, hence, muscle contraction. The
whole physiological pathway from the action potential to the mechanical response of a muscle
fibre is known as excitation-contraction coupling [232]. The fact that an electric stimulus directly
controls the mechanical muscle output is the basis for using bioelectromagnetic fields to study
a muscle’s function.

2.3.3 The Motor Unit

A motor neuron and all the fibres it innervates are known as a motor unit. The motor unit
is the basic functional unit for controlling voluntary motions. This fundamental physiological
concept was pioneered by the works of Charles Sherrington [149, 235, 236] at the beginning
of the 20th century and further refined in the last 100 years [cf. e.g., 74, 100, 101, 127].
Typically, each muscle is innervated by hundreds of motor neurons, forming a motor neuron
pool. The somas of all motor neurons belonging to the same motor neuron pool are clustered
in the spinal cord. The axons of the motor neurons exit the spinal cord through the ventral
horn and are the connecting element between the central nervous system and the muscles.
Each axon innervates a set of muscle fibres, i.e., a few to several thousand, via a specialised
synapse called the neuromuscular junction. Once an action potential reaches the neuromuscular
junction, acetylcholine is released as a neurotransmitter and travels through the synaptic cleft
to activate the respective muscle fibre. Notably, in the healthy neuromuscular system, the
induced post-synaptic potential is always strong enough to trigger an action potential in the
muscle fibre [62]. Hence, the fact that a single motor neuron (simultaneously) activates multiple
muscle fibres makes a muscle a natural amplifier of a motor neuron activity.

The properties of the motor units are distributed heterogeneously across the motor unit pool.
This is essential for the function of the neuromuscular system [24]. First, the motor neurons
vary in axon diameter, whereby a motor unit’s depolarisation threshold decreases with its size
[109]. Further, the attributes of the muscle fibres belonging to the same motor unit are closely
linked to the properties of the innervating motor neuron [25, 108]. In detail, the motor neuron
with the smallest axon diameter innervates the lowest number of muscle fibres. For all other
motor units, the number of innervated fibres increases with the size of the motor neuron. The
relation between motor unit size and its fibre load can be approximated with an exponential
function. Hence, many small motor units and only a few large ones exist. Further, the ratio
between the fibre load of the largest motor unit and the fibre load of the smallest motor unit is
typically in the range of 102 [64]. Muscle fibres belonging to the same motor unit are distributed
within a subset of the muscle cross-section, i.e., referred to as motor unit territory, and are
intermingled with muscle fibres from other motor units [12, 22]. Notably, the size and the fibre
density of a motor unit territory differs between muscles and subjects. Further, it is noted that
small motor units are associated with slowly contracting and fatigue-resistant muscle fibres. In
contrast, larger motor units have fibres showing faster contraction times but are more fatigable.
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Based on the organisation of the neuromuscular system in motor units, the muscle force can be
adjusted by modulating the number of active motor units and the firing frequency of each motor
unit [59]. Theoretically, this allows infinite recruitment patterns to achieve the same motion. The
dimensionality of the neuromuscular control problem is reduced as the neuromuscular system
makes use of the previously described organisation of the motor unit pool [107]. For most
conditions, the main parts of the neural drive to the individual motor neurons are shared across
the entire motor neuron pool [74] or at least parts of it [127]. Hence, increasing the (common)
voluntary drive to a motor neuron pool causes a recruitment order from the smallest motor
unit to the largest motor unit. Thereby, the smallest motor neuron shows the highest firing
frequency.





3 Electromagnetism

Predictive biological models need to be consistently derived from the fundamental laws of phys-
ics. Electromagnetism is the scientific discipline that deals with the electromagnetic force,
which describes the interaction between electrically charged particles. Representing the theor-
etical backbone for simulating bioelectromagnetic fields, a brief overview of electromagnetism
is provided in this chapter. The electromagnetic force introduced in Section 3.1 is a funda-
mental force of physics and responsible for all electromagnetic phenomena. It can be described
through electromagnetic fields, which are determined by Maxwell’s equations, see Section 3.2.
For bioelectromagnetic fields, one can typically assume quasi-static conditions. This simpli-
fies Maxwell’s equations, and the resulting electrostatic and magnetostatic approximation is
introduced in Section 3.3. Finally, in Section 3.4, the basics for constitutively describing electro-
magnetic fields in materials are introduced. A more detailed introduction to electromagnetism
can, for example, be found in the textbook of Griffiths [93].

3.1 The Electromagnetic Force

The electromagnetic force is responsible for all electromagnetic phenomena. Mathematically,
the electromagnetic force can be described by electromagnetic fields, i.e., the electric field E
and the magnetic field B. Lorentz force law1 describes the effect of an electric field E and a
magnetic field B on a particle with charge q and velocity v, i.e.,

F = q (E + v ×B) . (3.1)

Therein, F is the electromagnetic force, which is one of physics’s four (currently known) funda-
mental forces.

3.2 Maxwell’s Equations

In classical physics, Maxwell’s equations describe the evolution of the electric field and magnetic
field. Maxwell’s equations2 were established in the 19th century and unified various experimental
observations in a consistent theory. In summary, they state that all electromagnetic fields are
ultimately caused by alternating electromagnetic fields, electric charges and electric currents.

3.2.1 Formulation in Terms of the Electric Field and the Magnetic Field

Maxwell’s equations can be expressed in various equally valid formulations. In modern literature,
the standard notation is often based on the vector calculus formalism introduced by Oliver

1The electromagnetic force is also referred to as Lorentz force named after the physicist Hendrik Lorentz. Parts
of the force law were already included in earlier works by James Maxwell, which Oliver Heaviside and Hendrik
Lorentz further elaborated.

2Maxwell’s equations are named after the physicist James Maxwell, who proposed between 1861 and 1862 in a
groundbreaking series of four articles entitled “On Physical Lines of Force” [168–171] a set of 20 equations,
which are capable of explaining all known electromagnetic phenomena.
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Heaviside. Thereby, the differential form of Maxwell’s equations reads

divE =
ρ

ε0
, (Gauss’s law) (3.2a)

divB = 0 , (Gauss’s law for magnetism) (3.2b)

curlE = −∂B
∂t

, (Faraday’s law) (3.2c)

curlB = µ0

(
j + ε0

∂E

∂t

)
. (Ampère-Maxwell law) (3.2d)

Therein, div(·) denotes the divergence operator, curl(·) is the curl operator, ρ is the electric
charge density, ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and j is the
total electric current density. Maxwell’s equations, together with Lorentz force law, i.e., Equa-
tion (3.1), form the universal basis of electromagnetism. Other important physical relations,
such as the conservation of electric charges, directly follow from Maxwell’s equations. Hence,
a continuity equation describing the local charge density can be derived by applying the div-
curl identity, i.e., stating that the divergence of the curl for all vector fields is zero, to the
Ampère-Maxwell law:

0 = div
[

curlB
]
,

⇔ 0 = div

[
µ0

(
j + ε0

∂E

∂t

)]
,

⇔ 0 = µ0

(
div j + ε0

∂

∂t
divE

)
,

⇔ 0 = div j +
∂ρ

∂t
.

(3.3)

In short, Equation (3.3) states that the density of electric charges within an infinitesimal control
volume is related to the flux of electric currents into and outside the control volume. Balance
equations are essential to evaluate if a process conforms to the laws of physics. Hence, it is
often convenient to use the charge balance as a starting point for describing the electromagnetic
behaviour of materials.

3.2.2 Potential Formulation

For many applications, it is useful to express the electric field E and the magnetic field B in
terms of a corresponding potential, i.e.,

E = − gradφ − ∂A

∂t
, (3.4a)

B = curlA . (3.4b)

Therein, φ is the electric (scalar) potential, and A is the magnetic vector potential. Using
Equations (3.4a) and (3.4b) Maxwell’s equations can be rewritten to yield

div(gradφ) +
∂

∂t

[
divA

]
= − ρ

ε0
, (3.5a)(

div(gradA) +
1

ε0µ0

∂2A

∂t2

)
− grad

[
divA +

1

ε0µ0

∂2φ

∂t2

]
= −µ0 j . (3.5b)

This exchange of variables reduces the number of independent state variables from six to four.
Further, the electromagnetic field problem is fully described by only two equations as Gauss’s
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law for magnetism (3.2b) and Faraday’s law (3.2c) reduce to identities.

While the electric field E and the magnetic field B are physical degrees of freedom, i.e., each
mathematical degree of freedom has a uniquely quantifiable effect on a test charge (cf. Equa-
tion (3.1)), their corresponding potentials are not. This means that the electric field E and the
magnetic field B are invariant with respect to the potential transformations

φ′ = φ − ∂λ

∂t
and (3.6a)

A′ = A + gradλ . (3.6b)

Therein, λ is an arbitrary twice-differentiable function (both in space and time). Hence, ob-
taining a unique mathematical solution requires the introduction of a gauge. While an infinite
number of possible gauge choices exist, this additional degree of freedom can be beneficial to
simplify Maxwell’s equations further.

3.3 The Electrostatic and the Magnetostatic Approximation

When the electromagnetic fields, the electric charges and the electric currents are stationary,
i.e., they do not change with time, electrostatics and magnetostatics provide a simplified frame-
work to study the electric and magnetic fields, respectively. Even when charges and currents
change relatively slowly, assuming quasi-static conditions (i.e., for each time frame, the physical
quantities are considered stationary) can yield reasonable approximations for time-dependent
problems. For bioelectromagnetic fields, the characteristic time scale is typically in the range
of milliseconds. Hence, sufficient accuracy can be achieved within the limit of the quasi-static
approximation.

3.3.1 Formulation in Terms of the Electric Field and the Magnetic Field

Using the vector calculus formalism, the differential form of the (quasi-)static Maxwell’s equa-
tions is given by

divE =
ρ

ε0
, (Gauss’s law) (3.7a)

divB = 0 , (Gauss’s law for magnetism) (3.7b)

curl E = 0 , (Faraday’s law) (3.7c)

curl B = µ0 j . (Ampère’s law) (3.7d)

Further, the conservation of the electric charges reads (cf. Equation (3.3))

div j = 0 . (3.8)

Hence, within the limits of the quasi-static approximation, the charge density is locally con-
served.

3.3.2 Potential Formulation

For quasi-static conditions the electric (scalar) potential φ and the magnetic vector potential A
are defined as

E = − gradφ , (3.9a)

B = curlA . (3.9b)
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Accordingly, the potential formulation of the quasi-static Maxwell’s equations is as follows

div(gradφ) = − ρ

ε0
, (3.9c)

div(gradA) − grad [divA] = −µ0 j . (3.9d)

For quasi-static problems, Coulomb gauge, i.e.,

divA = 0 , (3.10)

is a popular choice to yield:

div(gradφ) = − v

ε0
, (3.11a)

div(gradA) = −µ0 j . (3.11b)

Notably, Equation (3.11a) and Equation (3.11b) are Poisson equations for which various solution
schemes exist.

3.4 Electromagnetic Fields in Matter

The previous sections, i.e., Section 3.2 and Section 3.3, showed that all electromagnetic fields
are caused by alternating electromagnetic fields, electric charges and electric currents. On the
atomic scale, charges and currents are associated with discrete particles, i.e., electrons and pro-
tons. Theoretically, it would be possible to solve Maxwell’s equations by considering all charged
particles and their trajectories. However, for obvious reasons, such an approach becomes quickly
impractical. Therefore, on the macroscopic continuum scale, the charge density ρ and the current
density j were introduced, representing an idealisation of the discrete nature of real materials.
Nevertheless, for modelling materials, it is helpful to consider how those idealised continuum
quantities relate to the atomic scale properties of matter. This allows us to reformulate Max-
well’s equations in terms of the auxiliary fields, which are typically the basis for describing
electromagnetic fields in matter.

3.4.1 The Concept of Free and Bound Charges

Materials can be classified into conductors and dielectrics (in a simplified view, also called
insulators). Hence, it turns out useful to additively split up the total charge density into the
free charge density ρf and the bound charge density ρb, i.e.,

ρ = ρf + ρb . (3.12)

The free charge density ρf corresponds to charged particles that can move freely within a ma-
terial, for example, electrons in metal crystals or ions in electrolyte solutions. In contrast, the
bound charge density ρb describes charges attached to a specific atom or molecule. For example,
the electrons that spin around an atom’s positively charged nucleus. Hence, bound charges can
undergo only tiny motions on the atomic scale. In the absence of an external electric field, the
configurations of bound charges are uncorrelated. Thus, macroscopically bound charges cancel
each other out. However, when a dielectric material is exposed to an external electric field,
bound charges can be aligned to yield macroscopic electric dipoles. This effect is known as
polarisation.
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3.4.2 The Concept Free and Bound Currents

Analogously, the total electric current density j can be split up into the free current density jf

and the bound current density jb, i.e.,

j = jf + jb . (3.13)

The free current density jf corresponds to the net flux of unbounded charged particles and is
often called conductive current density. The bound current density jb represents the net flux of
bound charges on the atomic scale. Bound currents can be caused by the temporal change of the
bound charge density, i.e., known as polarisation current density jp. Further, other tiny currents
on the atomic scale exist, for example, caused by electrons spinning around the nucleus of an
atom or their axes. In non-magnetic materials, such currents are uncorrelated and cancel each
other out. However, such tiny currents on the atomic scale can be aligned in magnetic materials.
Macroscopically, this behaviour can be described by the magnetisation current density jm, which
can depend on various factors, for example, the magnetic field, the temperature or the pressure.
Accordingly, the bound current density jbound is given by

jb = jp + jm . (3.14)

In summary, modelling electromagnetic fields in matter requires knowledge of the underlying
material’s conductive, dielectric, and magnetic properties.

3.4.3 Maxwell’s Equations in Terms of the Auxiliary Fields

Experimentally, only the free charge density and the free current density can be explicitly con-
trolled. In contrast, the bound charge density and the bound current density depend on the
(fixed) material properties. By introducing the auxiliary fields D and H one can reformulate
the right-hand side of Maxwell’s equations to purely depend on the free charge density and the
free current density, i.e.,

divD =
ρf

ε0
, (Gauss’s law) (3.15a)

divB = 0 , (Gauss’s law for magnetism) (3.15b)

curlE = −∂B
∂t

, (Faraday’s law) (3.15c)

curlH = µ0

(
jf + ε0

∂E

∂t

)
. (Ampère-Maxwell law) (3.15d)

Therein, the displacement field D is defined as

D = ε0E + P , (3.16)

with P denoting the polarisation field. The latter is related to the bound charge density via

ρb = −divP . (3.17)

Further, the magnetic H field is given by

H =
1

µ0
B − M , (3.18)
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where the magnetisation field M is related to the bound current density by

jb = curlM +
∂P

∂t
. (3.19)

Hence, the auxiliary fields D and M fully describe the influence of bound charges and bound
currents. However, this approach comes with the cost that one needs to introduce (phenomen-
ological) constitutive assumptions relating the auxiliary fields to the electric field E and the
magnetic field B as well as all other relevant physical quantities. Further, for solving a specific
electromagnetic field problem, a constitutive description of the free current density is required.
The most prominent choice is Ohm’s law, i.e.,

jf = σE , (3.20)

where σ is the conductivity tensor.



4 Mathematical Models for Simulating
Bioelectromagnetic Fields

Mathematical models are essential for obtaining a mechanistic understanding of biological sys-
tems or for augmenting experimentally acquired data with state variables that are not directly
measurable. This chapter aims to provide an overview of existing mathematical models that
are particularly relevant for describing muscle-induced bioelectromagnetic fields. Hence, Sec-
tion 4.1 considers quantitative methods for describing the electric behaviour of the muscle fibre
membrane, i.e., the source of EMG and MMG. Further, in Section 4.2, modelling approaches for
simulating bioelectromagnetic fields in the body are described. A general overview of mathem-
atical models for simulating physiological systems can be found, for example, in the textbook of
Keener & Sneyd [138]. Further, a more focused description of methods for simulating bioelectro-
magnetic phenomena is provided in the textbooks of Malmivuo, Plonsey et al. [163] or Plonsey
& Barr [212]. A review of models specifically describing skeletal muscles and the neuromuscular
system can be found in the work of Röhrle, Yavuz, Klotz, Negro & Heidlauf [222].

4.1 Biophysical Modelling of Excitable Cells

The discovery of the mechanisms responsible for generating action potentials as described in
Section 2.2 represents one of the major achievements in computational biology. That is, in 1952
Alan Hodgkin and Andrew Huxley proposed a mathematical model [121] providing a mechanistic
explanation of an action potential’s generation as well as propagation and earning them the
1963 Nobel Prize in Physiology or Medicine1. Their original 1952 paper remains a scientific
masterpiece worth reading. As the framework described therein is still the most important
theoretical tool for describing the function of an excitable cell’s membrane, a summary of their
work is provided within this section.

4.1.1 The Electrochemical Gradient

In Section 2.2, it was described that excitable cells make an effort to preserve specialised electro-
lyte compositions in the intracellular and extracellular environments. This yields for each ionic
species an electrochemical potential, i.e., describing both the concentration gradient and the
electric gradient across the membrane, which is the driving force for all ionic currents through
the channels of an excitable cell’s membrane. The electrochemical potential for an ion of species
X can be quantified by computing the difference between the transmembrane potential and the
ionic species’s equilibrium potential. Based on fundamental thermodynamics, the equilibrium
potential of an ionic species can be computed by the Nernst equation [196], i.e.,

EX =
RT

zF
ln

(
[X]o
[X]i

)
. (4.1)

1The Noble Prize was shared in three equal parts between Alan Hodgkin, Andrew Huxley and John Eccles for
their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and
central portions of the nerve cell membrane. Eccles was awarded for his studies showing how nerve pulses are
transmitted between cells.
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Therein, R is the gas constant, T is the absolute temperature in Kelvin, and F is the Faraday
constant. Further, z is the charge of the ionic specie, [X]o is the concentration of the ionic specie
outside the cell, and [X]i is the concentration of the ionic specie inside the cell. Hence, if the
membrane voltage is smaller than the equilibrium potential, ions from species X will flow from
the extracellular space into the cell. Given a membrane voltage larger than the equilibrium
potential, ions of specie X will flow outside the cell.

4.1.2 The Hodgkin-Huxley Model

In 1939, Alan Hodgkin and Andrew Huxley measured for the first time an action potential
between an intracellular electrode and an extracellular electrode in the squid’s giant axon [117].
Their experiment proved that an action potential originates at the membrane level. About the
same time Cole & Curtis [39] were capable of showing that the ionic permeability of an excitable
cell’s membrane changes during the time course of an action potential. To unlock the biophysical
mechanisms responsible for generating an action potential, in the late 1940s, Alan Hodgkin and
Andrew Huxley, together with Bernard Katz, conducted a series of voltage-clamp experiments
on the squid’s giant axon [118–120, 122]. Their experiments revealed that in the squid’s giant
axon – as in many other excitable cells – the transmembrane currents are mainly caused by
sodium and potassium ions and a rather small leakage current. Note that the leakage current
summarises the effect of additional ionic species, for example, chloride ions. Hence, a patch of
the membrane can be represented by an equivalent electrical circuit2 consisting of a capacitor,
i.e., reflecting that the membrane is electrically polarised, in parallel with a sodium channel, a
potassium channel and a leakage channel (see Figure 4.1A). Using Kirchhoff’s current law, the
transmembrane current density is given by

Im = Cm
∂Vm

∂t
+ Iion = 0 . (4.2)

Therein, Cm is the capacitance-per-unit area of the membrane patch. Further, the overall ionic
current across the membrane is additively split up, i.e.,

Iion = INa + IK + IL , (4.3)

where INa, IK and IL are the sodium current density, the potassium current density and the
leakage current density, respectively. From a modern point of view, the ionic currents can be
attributed to the lumped behaviour of all ion channels of an ionic species (cf. Section 2.2).
However, when the Hodgkin-Huxley model was developed, the membrane structure had yet to
be discovered. Nevertheless, Hodgkin and Huxley provided an explanatory hypothesis that the
ions cross the membrane through tunnel-like structures. Thereby, the conductive current density
through the ion channels is driven by the electrochemical potential of the respective ionic species,
i.e.,

INa = gNa (Vm − ENa) , (4.4a)

IK = gK (Vm − EK) , (4.4b)

IL = gL (Vm − EL) . (4.4c)

2The work of Gustav Kirchhoff [139] pioneered electric circuit theory in the middle of the 19th century, even
before Maxwell’s equations had been established. Nevertheless, electric circuit theory can be considered a
consistent simplification of Maxwell’s equations that approximately holds in the low-frequency limit. That
is, the wavelength of the electromagnetic fields is large compared to the length of the elements in an electric
circuit. In particular, Kirchhoff’s current law can be considered equivalent to the current balance given in
Equation (3.8). Kirchhoff’s voltage law is equivalent to Faraday’s law, i.e., Equation (3.7c), stating that the
electric field is a conservative vector field. Hence, integrating the electric field over an arbitrary closed loop is
always zero.
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Therein, gNa, gK as well gL describe the conductivity of the membrane for the different ionic
species. Further, a positive sign corresponds to an outward current3.

For modelling an action potential, the key challenge remains to describe the membrane’s dy-
namic and selective ionic permeability. This was possible as Hodgkin and Huxley could separate
the sodium and potassium currents induced by step-wise perturbations of the transmembrane
potential. Based on this data, Hodgkin and Huxley concluded that the sodium conductance
gNa and the potassium conductance gK depend on the time t and the transmembrane potential
Vm. However, the leakage conductance gL as well as the sodium equilibrium potential ENa, the
potassium equilibrium potential EK and the leakage equilibrium potential EL are assumed to
be constant. Having observed that the sodium conductance has a fast-activating component
and a slower inactivating component, it can be empirically described by a system of differential-
algebraic equations, i.e.,

gNa = m3h ḡNa , (4.5a)

∂m

∂t
= αm(1−m) + βmm , (4.5b)

∂h

∂t
= αh(1− h) + βhh . (4.5c)

Therein m ∈ [0, 1] is the probability of the sodium channel’s activating gate to be open, h ∈ [0, 1]
is the probability of the sodium channel’s inactivating gate to be open and ḡNa is a constant.
Further, the transition rates for the gates to close or open, i.e., αm, βm, αh and βh, are assumed
to depend on the transmembrane potential, i.e.,

αm =
−0.1 · (Vm + 50)

exp
(
−Vm+50

10 − 1
) , (4.6a)

βm = 4 · exp

(
−Vm + 75

18

)
, (4.6b)

αh = 0.07 · exp

(
−Vm + 75

20

)
, (4.6c)

βh =
1

exp
(
−Vm+45

10 + 1
) . (4.6d)

A similar empirical model is used to describe the potassium conductance dynamics. Contrary to
the sodium conductance, the potassium conductance does not show an inactivating component,
yielding

gK = n4 ḡK , (4.7a)

∂n

∂t
= αn(1− n) + βnn . (4.7b)

Therein, n ∈ [0 , 1] is the probability of the potassium channel’s activating gate to be open, and
ḡK is a constant. Further, the transition rates αn and βn can be calculated by

αn =
−0.01 · (Vm + 65)

exp
(
−Vm+65

10 − 1
) , (4.8a)

βn = 0.125 · exp

(
Vm + 75

80

)
. (4.8b)

3Today, the transmembrane potential is defined as Vm = φi − φe. Hodgkin and Huxley used the opposite,
equally valid definition. Within this work, the modern definition of the transmembrane potential is used.
The corresponding transformations of the equations are adopted from the model repository of the physiome
project: https://models.physiomeproject.org/workspace/hodgkin huxley 1952
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Note that Hodgkin and Huxley had considered different, equally valid mathematical descriptions
for modelling the dynamic behaviour of the membrane conductance. However, without an
explicit physical motivation for any formulation, they chose the simplest model that could
adequately describe the recorded action potential.

Figure 4.1: (A) Electric circuit model of the Hodgkin-Huxley model. (B) The action potential predicted
by the Hodgkin-Model (blue). Further, the red and green curves show the time course of
the sodium and potassium conductivities, respectively.

The mathematical model given by Equations (4.2) to (4.8b) was capable of (perfectly)
replicating the measured action potential (see Figure 4.1B). Using a verbal description, the
behaviour of the model can be described as follows: If the membrane potential reaches a
depolarization threshold, i.e., approximately −55 mV, the activating gates of the sodium
channels open and cause a strong sodium influx into the cell. This yields a rapid increase
in the membrane potential. Increasing the transmembrane potential successively activates
voltage-dependent potassium channels, causing a potassium flux from the cell into the
extracellular space. Initially, the sodium current dominates the potassium current, so the
transmembrane potential is depolarised. Once the transmembrane potential reaches its peak
value, the inactivating gates of the sodium channels close while the potassium channels remain
open. This behaviour causes the transmembrane potential to return to its resting potential.
After the membrane potential has returned to its resting value, a tiny overshot known as
afterhyperpolarisation can be observed. This is because the potassium channels remain open for
a short period. Further, since the sodium inactivating gate has a similar (slow) time constant as
the potassium channels, there is a refractory period during which the membrane is not excitable.

Mainly driven by the introduction of the patch-clamp technique4 [195, 238] allowing to study
the behaviour of individual ion channels, the knowledge on the behaviour of an excitable cell’s
membrane has been further refined. Notably, the channels predicted in the work of Hodgkin &
Huxley [121] have been confirmed by patch-clamp recordings (as well as from the identification
of their genes [202]). Further, the basic framework of the Hodgkin-Huxley model has proven
great flexibility to describe various cell types consisting of different combinations of ion channels,
for example, cortical neurons [191, 210, 261], spinal motor neurons [13, 32, 193, 213], cardiac
myocytes [55, 197, 201] or skeletal muscle fibres [2, 27, 259].

4In 1991, Erwin Neher and Bert Sakmann jointly received The Nobel Prize in Physiology or Medicine for their
discoveries concerning the function of single ion channels in cells.
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4.2 Bioelectromagnetic Fields in the Body

Measuring and analysing bioelectromagnetic fields requires knowing how the source signals are
propagated in space. In Chapter 3, Maxwell’s equations were introduced as the universal basis
for predicting the evolution of the electric field and the magnetic field. This section presents
specific (material) models that can describe bioelectromagnetic fields in the human body.

4.2.1 Volume Conductor Models

When simulating bioelectromagnetic fields, the most common approach is to describe the body
as an ideal volume conductor interacting with a bioelectric source field. This means that the
impact of bound charges and currents is considered negligible. The main challenge in modelling
lies in accurately describing the active electric behaviour of the tissue and its conductive prop-
erties. The following section provides a brief summary of the volume conductor model. The
key modelling assumption is that the overall current density can be additively split up into a
conductive current density jc, i.e., representing extracellular currents, and a (non-conservative)
source current density js, i.e., reflecting the bioelectric activity of the cells, yielding

j = jc + js . (4.9)

The conductive current is described by Ohm’s law, i.e.,

jc = −σb gradφb , (4.10)

where σb and φb are the conductivity tensor and the electric potential in the body, respectively.
Assuming quasi-static conditions, the charge balance, i.e., Equation (3.8), is used to obtain for
each material point in the body parametrised by a continuous region Ωb the following partial
differential equation:

div [ σb gradφb] = div js in Ωb ,

⇔ div [σb gradφb] = Is in Ωb .
(4.11)

Equation (4.11) is a generalised Poisson equation, whereby the source term Is is equivalent to
the total transmembrane current flowing into an infinitesimal control volume of the tissue. The
quasi-static approximation decouples the electric field problem from the magnetic field problem.
Hence, for a known source current distribution, Equation (4.11) allows to predict the electric
potential field in the body. Having solved for the electric potential field, the corresponding
magnetic field can be calculated straightforwardly from Ampère’s law, i.e.,

curlB = µ0

(
− σb gradφb + js

)
in Ωb . (4.12)

Assuming that the magnetic field vanishes at an infinite distance from the body, the Biot-Savard
law [93] is a solution to the biomagnetic boundary value problem, i.e.,

B(r) =
µ0

4π

∫∫∫
V

j(r′)× (r − r′)
|r − r′|3

dV . (4.13)

Therein, r is an arbitrary observation point, r′ is a source point and V parameterises the
domain Ωb.

The volume conductor modelling framework provides great flexibility for describing different
bioelectromagnetic fields. For modelling a specific bioelectromagnetic field, for example, induced
by the brain, the heart or skeletal muscles, the application-specific challenge is to describe the
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bioelectric source field [cf. e.g., Section 8 in 163]. Notably, the source term vanishes when
describing electrically inactive tissues, for example, bones, fat or the skin. The source field in
skeletal muscles is typically modelled by considering idealised cylindrical fibres. In this case, the
fibre radius is considerably smaller than the fibre’s longitudinal dimension. Hence, the source
current density is assumed to be one-dimensional and computed via Ohm’s law:

js = σf
i

∂φi

∂xf
. (4.14)

Therein, σf
i is the intracellular conductivity (along the fibre direction), φi is the intracellular

potential, and xf is the spatial coordinate along the fibre path. Further, when assuming that
the extracellular potential φe is small compared to the transmembrane potential Vm, the source
term can be approximated by calculating the second spatial derivative of the transmembrane
potential [cf. e.g., 6, 211], i.e.,

Is =
∂

∂xf

(
σf

i

∂φi

∂xf

)
= σf

i

∂2(Vm + φe)

∂x2
f

≈ σl
f

∂2Vm

∂x2
f

. (4.15)

Note that there exist both analytical descriptions [e.g., 172, 190, 223] as well as numerical
models [e.g., 86, 221] to compute the transmembrane potential along a muscle fibre.

Volume conductor models are routinely used for simulating bioelectromagnetic fields from
various tissues. Depending on the volume conductor’s geometry and the conductivity tensor’s
spatial heterogeneity, the corresponding model equations can be solved analytically or need to
be approximated numerically. Specifically regarding skeletal muscle, volume conductor models
[for reviews see 179, 242] have been used extensively for studying EMG signals, for example,
for investigating the relation between the tissue properties and the signal shape [58, 158, 159],
optimising the detection system [66, 68], assisting the interpretation of experimental findings
[57, 176, 219], or studying the influence of motions [181, 185]. Further, volume conductor models
are routinely used for reconstructing the bioelectric source field associated with an electroen-
cephalogram (EEG) or magnetoencephalogram (MEG) [e.g., 98, 204, 228, 257], modelling the
electrocardiogram (ECG) or the magnetocardiogram (MCG) in the torso [e.g., 31, 137] or for
simulating the defibrillation of the heart [e.g., 36, 252].

4.2.2 The Bidomain Model

The forward solution of a volume conductor model requires that the bioelectric source field is
known. However, for some tissues, the behaviour of the bioelectric sources is complexly coupled
to the tissue properties and the applied boundary conditions. Hence, accurately describing the
bioelectric sources in the body a priori can be highly challenging. For such cases, models mech-
anistically linking the biophysical behaviour of the body and the generated bioelectromagnetic
fields are needed. Theoretically, this would be possible by simulating all cells in a tissue and
their coupling. However, for obvious reasons, such an approach becomes quickly impractical.
For example, the number of cells in the brain and the heart is in the order of 1010, and the
number of muscle fibres in the biceps is in the order of 106. Suppose one assumes that several
cells behave similarly and only macroscopic effects are relevant. In that case, the complexity can
be reduced by considering a tissue consisting of individual cells as a multiphase continuum body.

The bidomain model is a bioelectric multiscale continuum model proposed in the late 1970s
[182, 254] and is currently accepted as the gold standard for simulating the electric behaviour
of the heart [cf. e.g., 37, 110]. A brief description of the bidomain model is provided in the
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following. The critical assumption of the bidomain model is that at each material point of
an excitable tissue, i.e., P ∈ Ωm, an intracellular domain and an extracellular domain coexist.
Hence, one can introduce for each domain an individual electric potential, which is related
through the transmembrane potential Vm, i.e.,

Vm = φi − φe . (4.16)

Therein, φi denotes the electric potential in the intracellular domain, and φe is the electric
potential in the extracellular domain. Further, the overall current density can be additively
decomposed into

j = je + ji , (4.17)

where je is the current density in the extracellular domain and ji is the current density in the
intracellular domain. The conservation of charges requires that

div(je + ji) = 0 in Ωm . (4.18)

Hence, in the absence of additional current sources, the charge balance holds if any current
leaving the intracellular domain via the cell membrane enters the extracellular domain. Math-
ematically, this assumption yields two (local) balance equations, i.e.,

− div ji = div je in Ωm , (4.19a)

− div ji = AmIm in Ωm . (4.19b)

where Im is the transmembrane current density and Am is the surface-to-volume area of a
representative cell. Notably, both the transmembrane current density and the surface-to-volume
area of the cells represent microscopic properties. Hence, the bidomain model can be classified
as a multiscale model, i.e., considering the most important microscopic tissue properties for
predicting its macroscopic electric behaviour. Assuming that in each domain, the currents are
purely conductive, the current densities are related to the electric potentials via Ohm’s law:

je = −σe gradφe , (4.20a)

ji = −σi gradφi . (4.20b)

Therein, σe is the conductivity tensor in the extracellular domain, and σi is the conductivity
tensor in the intracellular domain. Hence, Equation (4.19a) can be rewritten to yield

div [(σe + σi) gradφe] + div [σi gradVm] = 0 in Ωm . (4.21)

Further, Equation (4.19b) is used to obtain

div [σi gradVm] + div [σi gradφe] = Am Im in Ωm . (4.22)

For solving Equation (4.22), a mathematical description of the transmembrane current density
Im is needed. This can be achieved by using the microscale electric circuit model of the Hodgkin-
Huxley formalism (see Section 4.1.2). Thus, using Equation (4.2) yields for every material point
P ∈ Ωm the following set of coupled differential equations:

0 = div [(σe + σi) gradφe] + div [σi gradVm] , (4.23a)

∂Vm

∂t
=

1

CmAm

(
div [σi gradVm] + div [σi gradφe] − AmIion(y, Vm)

)
, (4.23b)

ẏ = g(y, Vm) . (4.23c)
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The vector y summarises all state variables required for calculating the ionic current flowing
over the membrane, and g is a vector-valued function describing their evolution. Further, it is
noted that the bidomain model can be coupled to a volume conductor model (see Section 4.2.1)
to simulate the influence of surrounding electrically inactive tissues.

When a scalar can relate the intracellular conductivity tensor σi and the extracellular con-
ductivity tensor σe, the bidomain model can be simplified to yield the monodomain model [cf.
e.g., Chapter 12 in 138]. The monodomain model has, for example, been used for predicting
the propagation of action potentials in individual muscle fibres [106, 185, 221]. Further, the
monodomain model is often applied as a computationally less demanding approximation of the
bidomain model [e.g., 199]. For modelling the propagation of electrical waves in the gastrointest-
inal tract, there exist modifications of the bidomain model taking into account not only one but
two different cell types [cf. 23, 42]. However, it is noted that none of the existing bidomain-type
models can adequately describe bioelectromagnetic fields induced by (whole) skeletal muscles.
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5 A Multiscale Model for Muscle-Induced
Bioelectromagnetic Fields

This chapter aims to derive a mathematical model that enables systematic investigations of
EMG and MMG signals. Since the temporal dynamics of the muscle-induced bioelectromagnetic
fields are in the range of milliseconds, one can assume quasi-static conditions. The quasi-static
approximation of Maxwell’s equations allows us to decouple the electric field equations from the
magnetic field equations. Hence, Section 5.1 introduces a modelling framework mechanistically
linking the electrophysiological behaviour of skeletal muscles to the electric potential fields in the
body. With the solution of the electric field problem at hand, Section 5.2 derives the equations
for predicting the magnetic field generated by the muscle. Further, obtaining meaningful in
silico predictions of muscle-induced bioelectromagnetic fields requires suitable model parameters
specified in Section 5.3. Note that the presented simulation framework was previously published
in Klotz et al. [140, 141].

5.1 Modelling the Muscle-Induced Electric Field

Section 5.1.1 presents a novel multiscale model for describing the electric behaviour of skeletal
muscles. The latter consistently integrates a microscale description of the transmembrane cur-
rents across the muscle fibre membranes and skeletal muscle tissue’s most important structural
properties into a multiphase continuum model at the macroscale. To simulate the muscle-induced
electric potential field in the entire body, the electrophysiological skeletal muscle model can be
coupled to a volume conductor model (see Section 5.1.2), for example, resolving the influence of
the subcutaneous fat or the skin. The overall model yields a set of coupled differential equations.
Hence, in Section 5.1.3, the necessary interface and boundary conditions are derived.

5.1.1 A Multi-Domain Model for Skeletal Muscle Tissue

Skeletal muscle tissue is a heterogeneous material of muscle fibres associated with different motor
units and extracellular matrix (see Figure 5.1). All muscle fibres in the same motor unit are
activated synchronously during voluntary contractions. Further, all muscle fibres innervated
by the same motor neuron show similar properties. Hence, instead of modelling each muscle
fibre individually, it is possible to simulate the behaviour of all fibres belonging to one motor
unit in an averaged sense. Within an idealised macroscopic continuum model, one can assume
that there coexist at each skeletal muscle material point P ∈ Ωm an extracellular space and
N intracellular spaces, with N denoting the number of motor units. Given this homogenised
tissue representation, an electric potential is introduced for each domain, i.e., φe and φki , ∀ k ∈
MMU := {1, 2, ..., N}. Thereby, the subscripts (·)e and (·)i denote extracellular and intracellular
quantities, respectively. Further, a transmembrane potential V k

m can be calculated for each
motor unit, i.e.,

V k
m = φki − φe , ∀ k ∈MMU . (5.1)

The challenge is now to accurately model the electric properties of the individual domains and
their coupling based on the biophysical function of skeletal muscles. The macroscopic electric

35
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Figure 5.1: Schematic drawing illustrating the concept of the proposed multiscale skeletal muscle model.
The heterogeneous muscle structure on the macroscale is homogenised and represented by an
idealised, continuous multi-domain material. To couple the different domains, the multiscale
model captures the most important features of the muscle’s structure. That is the motor unit
composition on the mesoscale and the (microscale) interaction of one representative muscle
fibre per motor unit and the extracellular space via the muscle fibre membrane. For the
illustrated muscle fibres, each colour represents a different motor unit. Based on those key
assumptions, the continuum model predicts for each skeletal muscle material point P ∈ Ωm

the muscle-induced electric potential fields, i.e., the transmembrane potentials V k
m as well as

the extracellular potential φe. Having described the electric field problem, the magnetostatic
approximation allows us to compute the muscle-induced magnetic field B (blue arrows).
To compute the bioelectromagnetic fields in the whole body, the multi-domain model can
be coupled to a volume conductor describing surrounding electrically inactive tissues, for
example, fat tissue or the skin. This is particularly relevant for investigating signals that
can be measured non-invasively. Hence, the (virtual) measurement of surface EMG signals
or non-invasive MMG signals is schematically illustrated by a grid of sampling points on
the body surface.

behaviour of skeletal muscles is closely related to the tissue’s microscopic properties. Hence, the
coupling will be achieved through a multiscale approach, resolving the most important features of
a muscle’s mesostructure and microstructure and the microscale electric behaviour of the muscle
fibre membranes. These basic assumptions lead to a multi-domain modelling framework for
simulating the electric potential fields in skeletal muscles. This is explained in more detail below.

To guarantee consistency with the fundamental laws of physics, the starting point for model-
ling the electric behaviour of skeletal muscles is the conservation of electric charges, cf. Chapter 3.
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For an idealised multi-domain material, the conservation of charges can be enforced if the out-
ward volume fluxes of the current densities from all domains are balanced at each skeletal muscle
material point P. This corresponds to a set of balance equations. The muscle fibre membrane
contains ion channels for selectively exchanging ions with its environment (see Section 2.2). Thus,
it can be assumed that ions can flow between an intracellular domain and the extracellular space.
However, there exist no current fluxes between the different intracellular domains. Further, it
can be assumed that the muscle fibres of the same motor unit show similar biophysical proper-
ties (see Section 2.3.3). Hence, at each skeletal muscle material point, the coupling between an
intracellular space k and the extracellular space is modelled by describing the interaction of one
representative muscle fibre per motor unit with the extracellular space. Mathematically, this is
achieved by relating the current density outward volume flux of an intracellular domain to the
transmembrane current density Ikm, i.e.,

div jki = Ak
mI

k
m , k ∈MMU in Ωm . (5.2)

Therein, jki is the current density of an intracellular domain associated with motor unit k
in a representative fibre-matrix cylinder and Ak

m is the surface-to-volume ratio of a muscle
fibre belonging to motor unit k, i.e., representing the microscale geometry of the muscle fibres.
Further note that the transmembrane current density Ikm reflects the (microscale) dynamic ionic
permeability of the muscle fibre membranes, i.e., the source of bioectromagnetic fields. The
extracellular space’s current density outward volume flux is the sum of the transmembrane
current densities from all motor units. As the fibre density for each motor unit is variable in
space, the transmembrane current densities are weighted by a mesoscale parameter fkr , reflecting
the motor unit composition at each skeletal muscle material point. This yields

div je = −
N∑
k=1

fkr A
k
mI

k
m in Ωm , (5.3)

where je denotes the extracellular current density. Inserting Equation (5.2) into Equation (5.3)
yields the total current balance, where the total current density is given by

j = je +
N∑
k=1

fkr j
k
i . (5.4)

Thereby, it is evident that the electric charges are conserved if Equation (5.2) and Equation (5.3)
hold. Notably, the domain-specific current densities are given in two different length scales, i.e., a
representative fibre-matrix cylinder for the intracellular domains and a control volume including
multiple muscle fibres for the extracellular domain. This is essential as the electric behaviour
of the intracellular domains is dominantly determined by the microscopic single-fibre scale.
However, the current density in the extracellular domain strongly depends on the mesoscale
motor unit composition. The parameter fkr guarantees consistency across both scales. Note
that fkr can be interpreted as the probability of finding a muscle fibre associated with motor
unit k is a representative control volume and hence,

N∑
k=1

fkr = 1 (5.5)

must hold for each skeletal muscle material point P.

Constitutive relations are required to express the derived current balance equations in terms
of the model’s primary variables, i.e., the extracellular potential φe and the transmembrane
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potentials V k
m (∀ k ∈ MMU). Within the limits of the quasi-static approximation, polarisation

currents vanish, cf. Section 3.4. It is also assumed that the magnetising currents are negligible
for skeletal muscle tissue. Hence, the current densities are purely conductive, and Ohm’s law
can be used to relate the electric potentials and the current densities, i.e.,

je = −σe gradφe , (5.6a)

jki = −σk
i gradφki , ∀ k ∈MMU . (5.6b)

Therein, σe and σk
i (∀ k ∈ MMU) denote the extracellular conductivity tensor and the intra-

cellular conductivity tensors, respectively. Using Equations (5.6a) and (5.6b) the intracellular
current balances, i.e., Equation (5.2), can be rewritten to yield

div jki = Ak
m I

k
m , ∀ k ∈MMU in Ωm ,

⇔ div
[
σk

i gradφki

]
= Ak

m I
k
m , ∀ k ∈MMU in Ωm ,

⇔ div
[
σk

i grad
(
V k

m + φe

)]
= Ak

m I
k
m , ∀ k ∈MMU in Ωm .

(5.7)

In the same way, the extracellular current balance, i.e., Equation (5.3), is reformulated and one
obtains:

div je +

N∑
k=1

fkr div jki = 0 in Ωm ,

⇔ div [σe gradφe] +

N∑
k=1

fkr div
[
σk

i gradφki

]
= 0 in Ωm ,

⇔ div [σe gradφe] +
N∑
k=1

fkr div
[
σk

i grad
(
V k

m + φe

)]
= 0 in Ωm ,

⇔ div

[(
σe +

N∑
k=1

fkr σ
k
i

)
gradφe

]
+

N∑
k=1

fkr div
[
σk

i gradV k
m

]
= 0 in Ωm .

(5.8)

Completing the model equations requires a mathematical description for the microscale trans-
membrane current densities Ikm. For this purpose, one can utilise an electrical circuit model of the
muscle fibre membrane, i.e., using the Hodgkin-Huxley formalism as described in Section 4.1.2.
For a generic electric circuit model of the muscle fibre membrane, the transmembrane current
density across a representative membrane patch can be calculated from Kirchhoff’s current law,
i.e.,

Ikm = Ck
m

∂V k
m

∂t
+ Ikion

(
yk, V k

m, I
k
stim

)
, ∀ k ∈MMU . (5.9)

Therein, Ck
m is the membrane capacitance per unit area of a muscle fibre belonging to motor

unit k, Ikion is the total conductive current density through a membrane patch associated with
motor unit k and Ikstim is an external stimulus that is used to describe the motor nerve stimuli of
motor unit k at the neuromuscular junctions. Further, yk (∀ k ∈MMU) is a vector of additional
membrane state variables, for example, describing the probability of an ion channel’s gate to be
open or closed. This is required for modelling the dynamic ionic permeability of the membrane.
Without introducing a specific membrane model, a generally valid description for the evolution
of the membrane state vector yk can be formulated as follows ∀ k ∈MMU

ẏk = gk
(
yk, V k

m, I
k
stim

)
, with

yk0 = yk(t = 0) .
(5.10)
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Therein, gk(yk, V k
m, I

k
stim) is a vector-valued function representing the right-hand side of the

differential equations describing the dynamics of the membrane state vector yk.

Combing Equation (5.7), Equation (5.8), Equation (5.9) and Equation (5.10) yields for each
skeletal muscle material point P ∈ Ωm the following system of coupled differential equations:

0 = div [σe gradφe] +
N∑
k=1

fkr div
[
σk

i grad
(
V k

m + φe

)]
, (5.11a)

∂V k
m

∂t
=

1

Ck
mA

k
m

(
div

[
σk

i grad
(
V k

m + φe

)]
− Ak

mI
k
ion(yk, V k

m, I
k
stim)

)
, ∀ k ∈MMU , (5.11b)

ẏk = gk(yk, V k
m, I

k
stim) , ∀ k ∈MMU . (5.11c)

Equations (5.11a) to (5.11c) are referred to as the multi-domain model of skeletal muscle tissue
and relate the microscopic electrophysiological behaviour of skeletal muscles to the generated
macroscopic electric potential fields.

5.1.2 The Electric Potential Field in the Body

Skeletal muscles are surrounded by electrically inactive tissues, for example, connective tissues,
subcutaneous fat or the skin. Electrically inactive tissues considerably influence the electric
potential field at the body surface. As described in Section 4.2.1, electrically inactive tissues
can be modelled as ideal volume conductors. Accordingly, all currents are purely conductive
and can be described by Ohm’s law. Further, it is noted that in electrically inactive tissues, no
current sources exist. Hence, from the charge balance one obtains

div jb = 0 in Ωb ,

⇔ div [σb gradφb] = 0 in Ωb ,
(5.12)

where the body region Ωb summarises all electrically inactive tissues and jb is the current density
in the body region. Further, φb and σb are the body region’s electric potential and conductivity
tensor, respectively. Mathematically, Equation (5.12) represents a generalised Laplace equation.

5.1.3 Boundary Conditions for the Electric Field Problem

Boundary conditions and interface conditions are required to solve the coupled differential equa-
tions derived in Sections 5.1.1 to 5.1.2. A schematic drawing illustrating the different regions
and their coupling is shown in Figure 5.2. First, it is noted that muscle fibres are electrically in-
sulated by their membranes. Hence, it can be assumed that no charges can leave the intracellular
domains at their boundary. This is modelled by applying zero Neumann boundary conditions
to the intracellular potential, yielding ∀ k ∈MMU[

σk
i gradφki

]
· nm = 0 on Γm ,

⇔
[
σk

i gradV k
m

]
· nm = −

[
σk

i grad φe

]
· nm on Γm .

(5.13)

Therein, “·” denotes the scalar product and nm is a unit outward normal vector at the muscle
surface Γm, cf. Figure 5.2. Further, it is assumed that no charges can leave the body, yielding
zero Neumann boundary conditions for the electric potential in the body region, i.e.,

[σb gradφb] · nout
b = 0 on Γout

b . (5.14)
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Therein, nout
b denotes a unit outward normal vector of the body surface Γout

b , cf. Figure 5.2. In
case the outer surface of the simulated body is the muscle’s boundary (or part thereof), the same
assumption holds, but with zero Neumann boundary conditions for the extracellular potential,
i.e.,

[σe gradφe] · nm = 0 on Γm \ Γb . (5.15)

While this case does not correspond to conditions in vivo, this boundary condition is useful as
most in silico experiments are restricted to a particular region of interest.

To couple the muscle region and the body region, it is assumed that at the muscle-body
interface, the extracellular potential φe and the electric potential of the body region φb are
continuous, i.e.,

φe = φb on Γm ∩ Γb . (5.16)

Further, the current flux between the extracellular space and the body region must be balanced,
yielding [

σe gradφe − σb gradφb

]
· nm = 0 on Γm ∩ Γb . (5.17)

Finally, it is noted that an electric potential field is not unique, i.e., the potential can be shifted
by an arbitrary scalar value (cf. Chapter 3). To guarantee a unique solution for the mathematical
problem, one can simulate a grounding electrode by prescribing the potential at the grounding
electrode’s location. This is equivalent to an additional Dirichlet boundary condition.

Ωm Ωb

Γout
b

Γm ∩ Γb

nm
nb

nout
b

Γm \ Γb

Figure 5.2: Schematic illustration of an arbitrary geometrical arrangement of muscle tissue Ωm, the
body region Ωb and their interfaces. Thereby, Γm denotes the muscle boundary with unit
outward normal vector nm, Γout

b is the body surface with unit outward normal vector nout
b

and Γb is an inner boundary of the body region with unit outward normal vector nb.

5.2 Modelling the Muscle-Induced Magnetic Field

Section 5.1 established a mathematical model of the muscle-induced electric activity in the hu-
man body. Assuming quasi-static conditions, this fully determines the magnetic field generated
by the muscle (see Chapter 3). The equations to describe the magnetic field in the muscle region
as well as in the body region are presented in Section 5.2.1 and in Section 5.2.2, respectively.
Further, in Section 5.2.3, a description of the magnetic field around the body is introduced. This
is particularly relevant as MMG measurements do not rely on direct contact with the body. Fi-
nally, the boundary and interface conditions for the magnetic field problem are introduced in
Section 5.2.4.

5.2.1 The Magnetic Field in Skeletal Muscles

Within the limits of the magnetostatic approximation, the magnetic field B is fully determined
by the overall current density. To describe the electric behaviour of skeletal muscles, it was
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assumed that the total current density is purely conductive (see Section 5.1.1). Since this
assumption is crucial for modelling the magnetic field induced by the muscle, the arguments are
revisited here:

i.) The characteristic time scale of the MMG is in the range of milliseconds. Hence, the
quasi-static approximation holds, and polarisation currents are negligible.

ii.) The magnetic susceptibility of muscle tissue is approximately zero. Hence, skeletal muscles
can be classified as non-magnetic material with negligible magnetisation currents.

Two types of conductive currents exist in the multi-domain skeletal muscle model, i.e., the
macroscopic current densities in each domain and the microscopic transmembrane current dens-
ities. However, due to geometrical arguments, the microscopic transmembrane current densities
can be eliminated to calculate the macroscopic magnetic field. The muscle fibres are (approx-
imately) cylindrically shaped with a radius considerably smaller than the characteristic length
scale of the macroscopic continuum model. Hence, when the transmembrane current density is
uniformly distributed on the membrane surface, their contributions cancel each other out. In
conclusion, the muscle-induced magnetic field can be predicted based on the total macroscopic
current density given in Equation (5.4). Accordingly, the magnetic vector potential for every
material point P ∈ Ωm within the muscle region is determined by

div(gradA) = µ0

(
je +

N∑
k=1

fkr j
k
i

)
,

⇔ div(gradA) = −µ0

(
σe gradφe +

N∑
k=1

fkr σ
k
i gradφki

)
,

⇔ div(gradA) = −µ0

(
σe gradφe +

N∑
k=1

fkr σ
k
i grad(V k

m + φe)

)
.

(5.18)

The potential formulation is chosen as this yields a Poisson-type equation for which various
well-established solution methods exist. Having solved for the magnetic vector potential A, the
experimentally measurable magnetic field B can be calculated directly from Equation (3.9b).
Notably, the linearity of the magnetostatic equations can be exploited to predict the contribution
of each domain to the MMG signal. The total magnetic field is the superposition of the fields
generated by the individual right-hand terms.

5.2.2 The Magnetic Field in the Body

For the body region, there are only conductive currents. Hence, the magnetic vector potential
is described as follows

div(gradA) = µ0 jb in Ωb ,

⇔ div(gradA) = −µ0 [σb gradφb] in Ωb .
(5.19)

5.2.3 The Magnetic Field Outside the Body

While EMG measurements rely on direct contact with the body, MMG can be recorded contact-
free. Therefore, one also needs to model the environment of the body. Since air can be assumed
to be free of electric currents, the source term vanishes, i.e.,

div(gradA) = 0 in Ωf , (5.20)

where Ωf refers to the region outside the body. Further, 0 is a vector of zeros.
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5.2.4 Boundary Conditions for the Magnetic Field Problem

For the magnetic vector potential, it can be assumed that far away from the muscle, i.e., the
bioelectric sources, the magnetic vector potential vanishes. Thus, zero Dirichlet boundary con-
ditions are applied to all infinitely distant points Γ∞ (see Figure 5.3), i.e.,

A = 0 on Γ∞ . (5.21)

Further, the magnetic vector potential is continuous at the interface between two media [cf.
e.g., 93]. This is accounted for through

Am = Ab on Γm ∩ Γb , (5.22a)

Am = Af on Γm \ Γb , (5.22b)

Ab = Af on Γout
b , (5.22c)

where the subscripts refer to the medium contributing to the interface, cf. Figure 5.3. That
is, Am is the magnetic vector potential in the muscle region, Ab is the magnetic vector poten-
tial in the body region and Af is the magnetic vector potential outside the muscle. Further,
surface currents are negligible for biological tissues, i.e., they only exhibit volume conduction.
Accordingly, the fluxes of the magnetic vector potential across any boundary are balanced [cf.
e.g., 93]: [

gradAb − gradAm

]
· nm = 0 on Γm ∩ Γb , (5.23a)[

gradAf − gradAm

]
· nm = 0 on Γm \ Γb , (5.23b)[

gradAf − gradAb

]
· nout

b = 0 on Γout
b . (5.23c)

A schematic illustration of the different regions and their interfaces is shown in Figure 5.3.

Ωm Ωb

Γout
b

Γm ∩ Γb

nm
nb

nout
b

Ωf

. . . Γ∞

Γm \ Γb

Figure 5.3: Schematic illustration of an arbitrary geometrical arrangement of muscle tissue Ωm, the body
region Ωb, the surrounding space Ωf , and its respective interfaces. Thereby, Γm denotes the
muscle boundary with unit outward normal vector nm, Γout

b is the body surface with unit
outward normal vector nout

b , Γb is an inner boundary of the body region with unit outward
normal vector nb and Γ∞ refers to the set of infinitely distant points.

5.3 Parameters for the Multi-Domain Model

The multi-domain model requires a set of parameters describing the electric tissue proper-
ties, the muscle’s mesostructure, its microstructure, and the behaviour of the muscle fibre
membranes. Measuring all model parameters for a single subject is currently impossible.
However, the range of all parameters is well studied in the literature, and hence, one can expect
meaningful predictions of EMG and MMG signals for virtual subjects closely approximating
humans. A summary of all model parameters is given in Table 5.1.
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Parameter Symbol Value Reference

Longitudinal intracellular conductivity σf
i 8.93 mS cm−1 [21]

Transversal intracellular conductivity σt
i 0.0 mS cm−1 Assumption

Longitudinal extracellular conductivity σf
e 6.7 mS cm−1 [227]

Transversal extracellular conductivity σt
e 1.675 mS cm−1 to 3.35 mS cm−1 Assumption

Fat conductivity σb 0.4 mS cm−1 [227]

Membrane capacitance Ck
m 1 µF cm−2 [121]

Surface-to-volume ratio Ak
m Variable

Motor unit density fk
r Variable

Magnetic permeability µ0 4π × 10−15 V s µA−1 cm−1 Physical constant

Table 5.1: Summary of model parameters.

Macroscopically, muscle fibres can be considered as one-dimensional, cable-like objects. This
implies ions can only flow along the muscle fibre direction within the intracellular domains.
Accordingly, the longitudinal intracellular conductivity is chosen to be σf

i = 8.93 mS cm−1

[cf. 21] and the transversal intracellular conductivity is set to σt
i = 0.0 mS cm−1. Hence,

the intracellular conductivity tensors for all motor units k (with k ∈ MMU) are given by
σk

i = σf
i f ⊗ f . Thereby, f is a unit vector aligned with the muscle fibre direction in the

actual configuration1. The conductivity of the extracellular domain is assumed to be in the
same range as for the intracellular domains [227]. However, contrary to the intracellular
domains, in the extracellular domain, ions can flow transverse to the muscle fibre direction
[65] and the extracellular conductivity tensor is typically assumed to be anisotropic. Thereby,
a wide range of anisotropy ratios has been reported in the literature [e.g., 84, 87]. This
work assumes that the extracellular conductivity tensor is transversely isotropic and the
anisotropy ratios are between 2 and 4. Following those assumption yields σf

e = 6.7 mS cm−1

for the longitudinal extracellular conductivity and σt
e = 1.675 mS cm−1 to 3.35 mS cm−1 for the

transversal extracellular conductivity. Finally, the overall extracellular conductivity tensor can
be summarised to read σe = σf

e f ⊗ f + σt
e (I − f ⊗ f), where I is the second-order identity

tensor. Further, the conductivity of fat tissue is assumed to be isotropic and much lower than
the conductivity of the muscle tissue. Hence, the conductivity tensor in the body region is
given by σb = σbI with σb = 0.4 mS cm−1 [cf. 227].

To simulate the behaviour of the muscle fibre membranes, the electric circuit model of
Hodgkin & Huxley [121] is utilised. Including a sodium conductance, a potassium conductance
and a leakage conductance, it can be considered a basic model for describing the electric
behaviour of the muscle fibre membranes. The implementation of the model equations was
imported from the model repository of the Physiome Project2 [155]. If another description of
the skeletal muscle fibre membranes is desired, the membrane model can easily be replaced
by any other suitable model. Depending on the desired application, a range of muscle fibre
membrane models has incorporated different levels of detail [cf. e.g., 2, 27, 237].

1Especially when simulating muscle contractions, caution is required regarding the configuration in which phys-
ical quantities are described, i.e., in terms of referential or actual coordinates.

2https://models.physiomeproject.org/cellml
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The fibre load of a motor unit and the area of a motor unit are determined by the mesoscale
parameter fkr . Importantly, it is noted that those motor unit properties show considerable vari-
ability between different subjects as well as different muscles (see Section 2.3.3) and hence, the
motor unit densities fkr (∀k ∈MMU) need to be specified for each in silico experiment individu-
ally. Further, the radius of a muscle fibre is correlated to the properties of the innervating motor
neuron [e.g., 53, 109]. Therefore, just as for the motor unit density parameter, the microscale
membrane surface area per representative fibre-matrix cylinder volume Ak

m is specified for each
simulation. Assuming that skeletal muscle tissue dominantly consists of muscle fibres and that
the muscle fibres are ideal cylinders, the membrane surface per representative fibre-matrix cyl-
inder volume can be approximated by Ak

m ≈ 2/rk. Thereby, rk is the average radius of a muscle
fibre belonging to motor unit k. For example, given an average fibre radius of rk = 40 µm the cor-
responding membrane surface per representative fibre-matrix cylinder volume is Ak

m = 500 cm−1.
Finally, it is noted that the vacuum permeability is given by µ0 =4π × 10−15 V s µA−1 cm−1.



6 Discretisation of the Multi-Domain Equations

No universal analytical solution exists for the mathematical model presented in Chapter 5.
Hence, it is necessary to approximate the model equations numerically. Instead of solving all
model equations monolithically, a staggered solution algorithm is derived in Section 6.1. This
allows the application of specialised numerical methods to the individual sub-problems. Hence,
in Section 6.2, the discretisation steps for approximating the muscle-induced electric potential
fields are introduced. Further, in Section 6.3, the methods for predicting the corresponding
magnetic field are derived. The resulting simulation framework is implemented in MATLAB
(The MathWorks, Inc., Natick, Massachusetts, United States), and the code is hosted in a freely
accessible git repository1. Section 6.4 demonstrates the convergence and consistency of the
described computational model.

6.1 A Staggered Solution Scheme for Solving the Multi-Domain
Model

One challenge for multiscale models is that the individual sub-models typically differ in their
characteristic time and length scales. Hence, instead of solving all equations monolithically, using
a staggered solution algorithm is often favourable. This enables one to use specialised solvers for
each sub-problem. Specifically for the proposed multi-domain model, Equation (5.11b) includes
a macroscopic diffusion term and a strongly non-linear microscopic reaction term, i.e., the ionic
current Ikion. For reaction-diffusion equations, it is often convenient to first apply an operator
splitting method before introducing a specific discretisation scheme [e.g., 215, 245, 263]. Hence,
Equation (5.11b) is rewritten for obtaining

∂V k
m

∂t
= L1V

k
m + L2V

k
m , ∀k ∈MMU in Ωm . (6.1)

Therein the differential operators L1 and L2 are defined such that

L1V
k

m = − 1

Ck
m

Ikion(yk, V k
m, I

k
stim) , (6.2a)

L2V
k

m =
1

Ck
mA

k
m

div
[
σk

i grad
(
V k

m + φe

)]
. (6.2b)

Now, an approximated solution for Equation (5.11b) can be obtained by subsequently integrating
Equation (6.2a) and Equation (6.2b). Thereby, the transmembrane potential V k

m (∀ k ∈MMU) is
iteratively updated after each integration step. This algorithm yields a splitting error acceptable
for sufficiently small time steps. Employing a first-order accurate Godunov-type splitting [cf.
e.g., 148, 243], the multi-domain model can be solved by the following multi-step solution
scheme:

(i.) For tn < t ≤ tn +∆t solve for each motor unit k ∈MMU the system of ordinary differential

1https://bitbucket.org/klotz t/multi domain fd code

45
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equations

∂V k
m

∂t
= − 1

Ck
m

Ikion(yk, V k
m) in Ωm , (6.3a)

∂yk

∂t
= gk(yk, V k

m) in Ωm . (6.3b)

(ii.) Using the approximated solution for V k
m from step (i.) as an initial condition, solve for

tn < t ≤ tn + ∆t the coupled system of partial differential equations and corresponding
boundary conditions given by

∂V k
m

∂t
=

1

Ck
mA

k
m

div
[
σk

i grad
(
V k

m + φe

)]
, ∀k ∈MMU in Ωm , (6.4a)

0 = div [σe gradφe] +

N∑
k=1

fkr div
[
σk

i grad
(
V k

m + φe

)]
in Ωm , (6.4b)

0 = div [σb gradφb] in Ωb , (6.4c)

0 =
[
σk

i gradV k
m + σk

i grad φe

]
· nm , ∀k ∈MMU on Γm , (6.4d)

0 = [σe gradφe] · nm on Γm \ Γb , (6.4e)

0 = [σb gradφb] · nout
b on Γout

b , (6.4f)

0 =
[
σe gradφe − σb gradφb

]
· nm on Γm ∩ Γb , (6.4g)

0 = φe − φb on Γm ∩ Γb . (6.4h)

(iii.) The quasi-static approximation decouples the electric field problem from the magnetic field
problem. Hence, for each global time step of the splitting scheme, the magnetic vector
potential can be computed by solving

div(gradA) = −µ0

(
σe gradφe +

N∑
k=1

fkr σ
k
i grad(V k

m + φe)
)

in Ωm , (6.5a)

div(gradA) = −µ0 [σb gradφb] in Ωb , (6.5b)

div(gradA) = 0 in Ωf , (6.5c)

A = 0 on Γ∞ , (6.5d)

Am − Ab = 0 on Γm ∩ Γb , (6.5e)

Am − Af = 0 on Γm \ Γb , (6.5f)

Ab − Af = 0 on Γout
b , (6.5g)[

gradAb− gradAm

]
· nm = 0 , on Γm ∩ Γb , (6.5h)[

gradAf − gradAm

]
· nm = 0 , on Γm \ Γb , (6.5i)[

gradAf − gradAb

]
· nout

b = 0 , on Γout
b . (6.5j)

(iv.) Calculate the magnetic field B for each time step via

B = curlA . (6.6)

Therein, ∆t denotes the global time step size of the overall solution scheme. The specific methods
for solving step (i.), as well as step (ii.), are introduced in Section 6.2 and the methods for solving
step (iii.) as well as step (iv.) are described in Section 6.3. Notably, this general solution
algorithm (see Figure 6.1) allows the utilisation of different temporal and spatial discretisations
in each sub-step.
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Figure 6.1: Schematic illustration of the utilised staggered solution scheme. Therein, red arrows repres-
ent solution steps, and blue arrows indicate variables exchanged between the sub-problems.

6.2 Solving for the Electric Potential Fields

Following the general solution scheme presented in Section 6.1, this section describes the numer-
ical methods for solving the electric field problem, i.e., step (i.) and step (ii.). Therefore, the
spatial derivatives are approximated by finite differences. Hence, the continuous body, i.e., the
muscle region Ωm and the body domain Ωb, needs to be represented by a discrete set of points.
Within this work, idealised cube-shaped tissue samples are simulated, which can be discretised
by a rectangular grid of uniformly spaced discrete points.

6.2.1 Solving for the Membrane Dynamics

Step (i.) requires to solve the system of stiff ordinary equations given by Equation (6.3a) and
Equation (6.3b) for tn < t ≤ tn+∆t. This is achieved by utilising an improved Euler method [cf.
e.g., 16] with a fixed time step size. Hence, for each discretisation point and each intracellular
domain k ∈MMU in the muscle region, the following explicit solution scheme is applied:

(
V k

m

yk

)p+1

=

(
V k

m

yk

)p

+
∆tode

2

[(
− Ikion(yk,V k

m)

Ck
m

gk(yk, V k
m)

)p

+

(
− Ikion(yk,V k

m)

Ck
m

gk(yk, V k
m)

)q]
. (6.7)

The superscript p refers to a (discrete) time frame in the interval [tn, tn + ∆t]. Further, the
superscript q refers to an intermediate time frame obtained from

(
V k

m

yk

)q

=

(
V k

m

yk

)p

+ ∆tode

(
− Ikion(yk,V k

m)

Ck
m

gk(yk, V k
m)

)p

. (6.8)

Note that this is equivalent to a forward Euler step, which is used as an estimate for the temporal
derivative at t = tp + ∆tode. Further, it is noted that the time step sizes are chosen such that
∆t and ∆tode can be related by a natural number.



48 Chapter 6: Discretisation of the Multi-Domain Equations

6.2.2 Solving for the Spatial Distribution of the Electric Potential Fields

Step (ii.) requires to approximate a solution for Equations (6.4a) to (6.4h), i.e., a coupled
diffusion problem. Therefore, a first-order finite difference discretises the temporal derivative
on the left-hand side of Equation (6.4a). The step size equals the global time step of the
splitting scheme ∆t. Further, the spatial derivatives on the right-hand side of Equation (6.4a)
are approximated by second-order accurate central finite differences, which are evaluated at
t = tn + ∆t. Hence, we use a backward Euler method. Analogously, the right-hand side terms
of Equation (6.4b) to (6.4h) are also evaluated at t = tn + ∆t. Thereby, the second spatial
derivatives in Equations (6.4b) and (6.4c) are approximated by second-order accurate central
finite differences. The first spatial derivatives in Equations (6.4d) to (6.4g) are approximated
with second-order accurate forward or backward finite differences. Following these discretisation
steps yields a linear system, i.e.,(

1

∆t
M − K̄

)
un+1

e =
1

∆t
Mun

e . (6.9)

Therein, un
e is a vector summarising the electric potential fields in all domains at a discrete

time frame t = tn. Hence, it contains the transmembrane potentials as well as the extracellular
potential for all discrete points within the muscle region and the body potential for every discrete
point in the body region, i.e.,

un
e =

[
V 1,n

m , ...,V N,n
m ,Φn

e ,Φ
n
b

]T
. (6.10)

Further, K̄ is a block matrix, i.e.,

K̄ =



K̄1,1 K̄
N+1
1

. . .
...

K̄N,N K̄
N+1
N

K̄N+1,1 · · · K̄N+1,N K̄N+1,N+1 K̄N+1,N+2

K̄N+2,N+1 K̄N+2,N+2


, (6.11)

where the sub-matrices K̄i,j correspond to the discrete differential operators given on the right-
hand side of Equations (6.4a) to (6.4h). Finally, the block matrix

M =



M1

. . .

MN

0

0

 (6.12)

is a linear operator equivalent to the discrete version of the left-hand sides of Equation (6.4a).
The linear system specified by Equations (6.9) to (6.12) is solved with MATLAB’s built-in
GMRES function [229]. The linear system is preconditioned by an incomplete LU factorisation
(crout version, drop tolerance: 10−6), and the following solver options are applied: an absolute
and relative tolerance of 10−10, restart after 20 inner iterations and a maximum number of 20
outer iterations.
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6.3 Solving for the Magnetic Field

Assuming quasi-static conditions, the magnetic field can be predicted for each time step based
on the electric potential fields in the muscle and the body region. This is achieved by deriving
a solution to compute the magnetic vector potential A. The result is the basis for finally
computing the magnetic field B.

6.3.1 Solving for the Magnetic Vector Potential

The system of Equations given by (6.5a) to (6.5j) describes three independent Poisson equations
with vanishing potential at infinite distance from the current source. This mathematical problem
can be solved using Green’s function [e.g., 7], i.e., the impulse response of a specific boundary
value problem defined by an inhomogeneous linear differential operator. In short, let

Lu(x) = f(x) in Ω (6.13)

describe an arbitrary differential equation defined on a region Ω. Therein, L is a linear differential
operator, u(x) is a solution to the given boundary value problem, and f(x) is the right-hand side
of the differential equation. A Green’s function G(r, r′) is a solution of the differential equation

LG(r, r′) = δ(r − r′) , (6.14)

where δ(∗) is the Dirac delta function. Thereby, coordinates r denote field points and r′ denote
source points. If a Green’s function exists for a given boundary value problem, a solution can
be computed by exploiting the linearity of the problem. In detail, the solution of the differential
equation can be calculated by evaluating the volume integral of Green’s function multiplied by
the right-hand side of the equation, i.e.,

u(x) =

∫∫∫
V
G(r, r′)f(x)dV . (6.15)

For a Poisson equation with vanishing potential at infinity, the Green’s function is [cf. e.g., 7]

G(r, r′) =
1

4π

1

|r − r′|
. (6.16)

Accordingly, the magnetic vector potential at an observation point r can be computed by [cf.
e.g., 93]

A(r) =

∫∫∫
V
G(r, r′)

(
µ0j(r

′)
)

dV =
µ0

4π

∫∫∫
V

j(r′)

|r − r′|
dV . (6.17)

Thereby, the volume integral needs to be evaluated for the whole simulated tissue sample,
i.e., Ωm ∪ Ωb, for which the current density is given by

j =


σe gradφe +

N∑
k=1

fkr σ
k
i grad(V k

m + φe) in Ωm

σb gradφb in Ωb .

(6.18)
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6.3.2 Computing the Magnetic Field

Given the solution for the magnetic vector potential, i.e., Equation (6.17), the magnetic field B
can be computed by a series of vector calculus operations:

B(r) = curlA

⇔ B(r) = curl

(
µ0

4π

∫∫∫
V

j(r′)

|r − r′|
dV

)
⇔ B(r) =

µ0

4π

∫∫∫
V

curl

(
j(r′)

|r − r′|

)
dV

⇔ B(r) =
µ0

4π

∫∫∫
V

[
1

|r − r′|
curl

(
j(r′)

)
− j(r′)× grad

(
1

|r − r′|

)]
dV

⇔ B(r) =
µ0

4π

∫∫∫
V
− j(r′)× grad

(
1

|r − r′|

)
dV

⇔ B(r) =
µ0

4π

∫∫∫
V

j(r′)× (r − r′)
|r − r′|3

dV .

(6.19)

Equation 6.19 is known as the Biot-Savard law [e.g., 93]. For the derivation, one makes use of
the product rule of the curl operator, i.e.,

curl(ϕF ) = ϕ curl(F ) − F × grad(ϕ) . (6.20)

Therein, ϕ denotes an arbitrary scalar field and F an arbitrary vector field. Moreover, it is
utilised that the curl of the current density vector with respect to the source vector is zero [93].
The numerical solution of the Biot-Savard law requires computing the current densities given
in Equation (6.18). Therefore, the spatial derivatives of the electric potentials are approxim-
ated utilising second-order accurate central finite differences. Moreover, the volume integral is
approximated by the three-dimensional trapezoidal rule. This discretisation can be expressed
in terms of a series of matrix-vector multiplications. In detail, component i (i = 1, 2, 3) of the
current density at the discrete time frame n is given by

ui,n
j =

[
Di

1 · · · Di
N Di

N+1 D
i
N+2

]
un

e , (6.21)

where the matrices Di
k are the discrete differential operators of Equation (6.18). Next, each

magnetic field component i (i = 1, 2, 3) is computed by

u1,n
b = L3u2,n

j − L2u3,n
j , (6.22a)

u2,n
b = L1u3,n

j − L3u1,n
j , (6.22b)

u3,n
b = L2u1,n

j − L1u2,n
j . (6.22c)

Therein, the matrices Li (i = 1, 2, 3) numerically evaluate the integral given in Equation 6.19.
From a physical point of view, the matrices Li relate the contribution of a unit source at location
r′ to the field observed at a point r. Hence, the matrices Li are also known as lead-field matrices
[e.g., 163].

6.4 Convergence Analysis

To demonstrate the consistency of the numerical solution schemes presented in Sections 6.1 to
6.3, this section comprises a set of convergence studies.
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6.4.1 The Temporal Discretisation Error Associated with the Membrane Models

First, the explicit method for solving the system of stiff ordinary equations describing the mem-
brane dynamics, i.e., Equations (6.3a) and (6.3b), is investigated. Hence, an action potential
is simulated for a single muscle fibre membrane model, cf. Section 4.1.2. This is achieved
by perturbing the transmembrane potential from −75 mV to −60 mV, i.e., representing the
initial condition. Further, the duration of the simulated time interval is 20 ms. For testing
the convergence of the numerical solution scheme, five different time step sizes are considered,
i.e., 5× 10−5 ms to 1× 10−2 ms. The solution obtained from the finest discretisation is defined
as the reference solution and used to estimate the error for all other time step sizes. Figure 6.2A
shows that the relative discretisation error monotonically decreases with decreasing time step
size. Applying a linear regression to the data points in the log-log plot yields a slope of 1.08.

6.4.2 The Spatial Discretisation Error of the Coupled Diffusion Problem

Second, the spatial discretisation error associated with solving the coupled diffusion problem
given by Equation (6.4a) to (6.4h) is examined. Therefore, a cube-shaped muscle sample with
edge lengths L = 40 mm, W = 20 mm and H = 20 mm is simulated. Further, the thickness
of the subcutaneous fat is set to 4 mm. This tissue sample is discretised with four uniform
grid spacings, i.e., 0.25 mm, 0.5 mm, 1 mm and 2 mm. The global time step size ∆t is set to
0.1 ms, and the muscle is assumed to consist of a single motor unit. As a test scenario, the
transmembrane potential at the centre point of the muscle is perturbed from −75 mV, i.e., the
resting potential, to 0 mV. The solution vector is computed for each spatial discretisation for one
isolated time step using this initial condition. As in the previous example, the solution obtained
from the finest discretisation is the reference solution. Figure 6.2B shows that the relative
discretisation error monotonically decreases with decreasing grid point spacing. In detail, for a
linear regression model, the slope in the log-log plot is 2.90.

6.4.3 The Splitting Error

Third, the error introduced by the operator splitting method is estimated. Therefore, a cube-
shaped muscle with edge lengths L = 20 mm, W = 10 mm and H = 10 mm as well as a 2 mm
thick subcutaneous fat tissue layer is simulated. The muscle is assumed to consist of a single
motor unit, and the intracellular domain is stimulated by applying a current pulse with an
amplitude of 700 mA cm−2 and a duration of 0.1 ms to the centre point of the muscle. The
spatial discretisation utilises equidistant grid points with a spacing of 0.5 mm. Further, the step
size for solving the membrane models, i.e., ∆tode, is set to 0.001 ms. The error associated with
the splitting scheme is computed by varying the global time step size ∆t, i.e., 0.005 ms, 0.01 ms,
0.05 ms and 0.1 ms. Thereby, the result obtained from the finest discretisation is defined as the
reference solution. Figure 6.2C shows the relative splitting error when solving the described test
problem in the interval 0 ms ≤ t ≤ 0.4 ms in dependence of the global time step size ∆t. One
can observe that the splitting error is negatively correlated with the time step size, and a linear
regression with a slope of 1.13 can be fitted to all data points in the log-log plot.

6.4.4 The Spatial Discretisation Error of the Magnetic Field Problem

Finally, the error associated with predicting the magnetic field is computed. Therefore, a cube-
shaped tissue geometry with edge lengths L = 10 mm, W = 20 mm andH = 20 mm is considered.
It is assumed that the current density along a line parallel to the shortest edge of the sample
and centred within the sample is j = 100 µA cm−2 f . Therein, f is a unit vector parallel to
the shortest edge of the cuboid. Further, the current density is zero for all other discretisation
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points. For estimating the spatial discretisation error, the described problem is simulated for four
different grid spacings, i.e., 0.25 mm, 0.5 mm, 1 mm and 2 mm. It can be seen from Figure 6.2D
that the discretisation error negatively correlates with the grid point spacing. That is, the slope
of a linear regression in a log-log plot is 2.39.

Figure 6.2: (A) Relative error of the transmembrane potential depending on the time step size when
solving a single membrane model. (B) Relative error of the electric solution vector un

e when
solving the coupled diffusion problem for a single time step with different grid spacings. (C)
Relative error of the electric solution vector un

e when varying the global time step of the
operator splitting method. After triggering an action potential, the simulation captures a
time interval of 0.4 ms. (D) Relative error of the magnetic solution vector un

b for a given
current distribution in dependence of the grid spacing.
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7 The Fundamental Properties of EMG and
MMG Signals

Artificially evoked contractions (e.g., electric stimulation or through reflexes) yield the syn-
chronised activity of several muscle fibres. Hence, the corresponding EMG or MMG signals are
considerably easier to understand than signals of voluntary contractions. However, one cannot
control all relevant system parameters experimentally. This chapter systematically investigates
simulated compound muscle responses, i.e., the EMG or MMG generated by the synchronous
activity of several muscle fibres, for idealised fusiform muscles. Thereby, a compound muscle
electric potential1 describes the signal observable using EMG, and a compound muscle mag-
netic field represents the corresponding MMG signal. The conducted in silico experiments are
described in Section 7.1. Given the simulated signals, Section 7.2 exemplarily investigates the
temporal properties of compound muscle electric potentials and compound muscle magnetic
fields observed from a single electrode or magnetometer. Further, in Section 7.3, the spati-
otemporal properties of muscle-induced bioelectromagnetic fields are examined by considering
high-density EMG and high-density MMG signals. Finally, Section 7.4 exploits the simulation
environment to predict the relevance of different currents for measurable MMG signal.

7.1 In Silico Experiments

The in silico experiments presented in this chapter use the simulation framework introduced in
Part II to systematically investigate compound muscle electric potentials and compound muscle
magnetic fields. That is the influence of the number of active muscle fibres, the properties of
the recruited muscle fibres, the distance between the active fibres and the detection system, and
the electric tissue properties. This section introduces the corresponding in silico experiments.

7.1.1 Tissue Geometry, Stimulation Protocol and Discretisation

For excluding the influence of complex muscle geometries, a cube-shaped, fusiform muscle with
edge lengths L = 60 mm, W = 15 mm and H = 20 mm is considered. It is assumed that the
muscle fibres are aligned with the longest edge of the tissue sample. Moreover, the simulated
tissue sample can have a subcutaneous fat layer of varying thickness (see Figure 7.1). The
simulations are described in a coordinate system inspired by the muscle’s morphology. A
unique (orthogonal) coordinate system can be obtained by choosing two orthogonal reference
directions. That is the muscle fibre direction and the body surface’s normal vector. Hence, as

shown in Figure 7.1, the x
‖
f -direction is aligned with the muscle fibres and parallel to the body

surface, the x
‖
t -direction is perpendicular to the muscle fibres and parallel to the muscle surface,

and the x⊥t -direction is perpendicular to the muscle fibres and normal to the body surface.

1In the literature, compound muscle electric potentials are also referred to as compound muscle potentials or
compound muscle action potentials. This work chooses compound muscle electric potential as it unambiguously
refers to the measured physical field. Within this work, this is particularly relevant to distinguish EMG and
MMG measurements. A compound muscle magnetic field denotes the corresponding MMG signal following
this argument. Accordingly, the term compound muscle response includes all muscle-induced bio-signals.

55
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Figure 7.1: Schematic drawing illustrating the simulated tissue geometry, whereby muscle and fat tissue

are coloured in red and yellow, respectively. The muscle fibres are aligned with the x
‖
l -

direction. The sampling points illustrate a high-density EMG array. The virtual MMG
array is shifted by 1 mm above the body surface (indicated by the transparent plane).

A series of simulations were conducted to investigate how the distance between active muscle
fibres and the detection system affects the results. The muscle was activated by selectively
stimulating muscle fibres at different depths, namely dfibre = 3 mm, 5 mm, 7 mm and 9 mm,

and centred in the x
‖
t direction. This is achieved by functionally subdividing the virtual muscle

into two motor units. All recruited fibres are grouped into the first motor unit, i.e., MU1.
The territory of MU1 comprises all skeletal muscle material points with the cross-sectional

coordinates x
‖
t = 0 mm and x⊥t = 20 mm− dfibre. If not noted otherwise, the motor unit volume

fraction of MU1 is f1
r = 1. The territory of the second motor unit, i.e., MU2, is chosen such that

Equation (5.5) holds for each skeletal muscle material point. MU1 is stimulated by applying
a current pulse with an amplitude of 700 mA cm−2 and a duration of 0.1 ms to the respective
intracellular domain at the innervation zone. Further, three subcutaneous fat tissue layers
with thicknesses of 0 mm, 2 mm and 4 mm are considered for studying the influence of fat. As
baseline parametrisation the surface-to-volume ratio of the muscle fibres is Ak

m = 250 cm−1

(k = 1, 2), i.e., corresponding to a muscle fibre radius of 80 µm. The anisotropy ratio of the extra-
cellular conductivity tensor is 2. All other model parameters are directly adopted from Table 5.1.

For the discretisation of the computational model, the global time step ∆t is set to 0.1 ms.
Further, the time step for solving the membrane models is ∆tode = 0.01 ms. The spatial
discretisation of the tissue sample is based on a regular grid of equidistantly distributed points.
Thereby, the spacing of the grid points is 0.5 mm.

An idealised recording system that does not affect the physical fields is assumed to obtain
synthetic EMG and MMG signals. For the EMG, it measures at each virtual electrode xel

i

(i = 1, ..., Sel, with Sel denoting the number of electrodes) the extracellular potential or the
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body potential:

EMGi =

{
φe , xel

i ∈ Ωm ,

φb , xel
i ∈ Ωb .

(7.1)

This is equivalent to a monopolar EMG recording. The electrodes are always placed on top of
the simulated tissue sample. For the virtual MMG, the detection system records at each virtual
magnetometer xmag

i (i = 1, ..., Smag, with Smag denoting the number of magnetometers) all three
components of the magnetic field, i.e.,

MMGi =
[
B
‖
f , B

‖
t , B

⊥
t

]T
, xmag

i ∈ Ωf . (7.2)

Thereby, B
‖
f is the magnetic field component aligned with the muscle fibres (and tangential

to the body surface), B
‖
t is the component of the magnetic field orthogonal to the muscle

fibres and tangential to the body surface, and B⊥t is the magnetic field component normal to
the body surface (and orthogonal to the muscle fibres), see Figure 7.1. Moreover, the virtual
magnetometers are always placed 1 mm above the tissue sample’s surface. Sampling the model
output at each time step, i.e., ∆t = 0.1 ms, yields a sampling frequency of 10 000 Hz for both
the synthetic EMG and the synthetic MMG.

7.1.2 Data Analysis

The root mean square (RMS) value is computed to quantify the amplitude of a signal. For an
arbitrary signal ψ ∈ RL, the root mean square value is defined as:

RMS =

√√√√ 1

L

L∑
i=1

(ψt)2 . (7.3)

Therein, the superscript t refers to a (discrete) time sample and L is the total number of samples
(in time). Further, the frequency content of the signals is investigated by estimating the power
spectral density (PSD), i.e., reflecting the squared modulus of a signal’s Fourier transform. The
power spectral density is computed using MATLAB’s built-in meanfreq function. To compute
the sparsity and thus the spatial selectivity of a recording, Hoyer’s sparsity measure [126, 129]
is computed, i.e.,

Sparseness(ψ) =

(√
L − ||ψ ||1

||ψ ||2

)(√
L − 1

)−1

. (7.4)

Therein, || ∗ ||1 and || ∗ ||2 denote the L1 norm and L2 norm, respectively.

7.2 Single Sensor Recordings

This section showcases the temporal dynamics of compound muscle electric potentials and com-
pound muscle magnetic fields, i.e., the EMG or MMG signals caused by the simultaneous activ-
ity of several muscle fibres. For this purpose, virtual EMG and MMG recordings from a single
sampling point are considered. First, the summation of single-fibre muscle action potentials is
described. Second, the impact of the muscle fibre type on EMG and MMG signals is examined.
Finally, the influence of anatomical factors, such as the depth of the active fibres or the thickness
of subcutaneous fat, is investigated.
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Figure 7.2: Power spectral density (PSD) and time domain graph for the simulated EMG and MMG
signal when varying the number of active muscle fibres. Hence, for the same geometrical
configuration of the active muscle fibres, the motor unit density parameter fkr is varied,
i.e., 15 % (blue), 10 % (red) and 5 % (yellow). Each spectrum is normalised with the total
power of the respective signal obtained from the simulation with a fibre density of 15 %.
The dashed lines in the power spectrum (top row) indicate the mean frequency content of
the signal.

7.2.1 The Summation of Muscle Fibre Action Potentials

A single-fibre action potential is the smallest event observable when measuring muscle-induced
bioelectromagnetic fields. Detecting single-fibre activity in humans is usually considered a
hallmark of neuromuscular diseases [cf. e.g., 226]. For enabling motion, the neuromuscular
system recruits motor units (see Chapter 2). This corresponds to the synchronous activity
of several muscle fibres. Hence, compound muscle electric potentials and compound muscle
magnetic fields are the basic components of EMG or MMG signals in the healthy neuromuscular
system. Nevertheless, it is helpful to investigate the signals generated by single fibres to obtain a
fundamental understanding of EMG and MMG. Simulating the activity of isolated muscle fibres
is beyond the scope of the homogenised multi-domain model presented in Chapter 5. However,
the summation of muscle fibre action potentials can be investigated by varying the mesoscale
motor unit density parameter fkr . Hence, this section considers three simulations where the
fibre load of a motor unit (MU1) is varied, i.e., f1

r equal to 5 %, 10 % and 15 %. The geometrical
settings of the in silico experiments are fixed. The depth of the active fibres is 10 mm, and the
thickness of the subcutaneous fat tissue is 2 mm. Further, the simulated bioelectromagnetic
fields are recorded from a single EMG electrode or MMG sensor placed between the innervation

zone and the boundary of the muscle, i.e., x
‖
l = 15 mm and x

‖
t = 2.5 mm (see Figure 7.1).

It can be observed from the bottom row of Figure 7.2 that the duration of compound muscle
electric potentials and compound muscle magnetic fields is in the range of 10 ms to 15 ms.
Thereby, the MMG components orthogonal to the muscle fibres, i.e., the x⊥t -component and
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the x
‖
t -component, show a characteristic two-phasic shape. In contrast, the signals observed

through EMG and the MMG’s x
‖
f -component have a tri-phasic shape. The difference in the

shape is also reflected in the frequency content of the different signals. The spectra of the
signals are shown in the top row of Figure 7.2. For example, for f1

r = 15 % the mean frequency

content is 133.4 Hz for the EMG, 134.1 Hz for the MMG’s x
‖
f -component, 90.5 Hz for the MMG’s

x
‖
t -component and 93.2 Hz for the MMG’s x⊥t -component. Notably, the shape of all signals

is (nearly) independent of the motor unit density fkr . This fact is underscored by the mean
frequency content variability of all signals being less than 0.5 % when fkr varies.

Further, the bottom row of Figure 7.2 shows that the amplitude of the compound muscle
electric potential and all components of the compound muscle magnetic field (linearly) correlates
with the motor unit volume fraction fkr . When comparing the RMS value of signals obtained
from simulations with motor unit volume fractions of 5 % and 10 % to that obtained from the
in silico experiment with a volume fraction of 15 %, the relative RMS values obtained are 33 %
and 66 % respectively for all signals. Further, when comparing the signals obtained from the
simulation with a volume fraction of 15 % to the linear combination of the signals from the in
silico experiments with volume fractions of 5 % and 10 %, the relative L2-errors are 1.1 % for the

EMG, 1.1 % for the MMG’s x
‖
f -component, 0.8 % for the MMG’s x

‖
t -component and 0.8 % for the

MMG’s x⊥t -component. Hence, the contributions of individual muscle fibre action potentials add
up linearly. This holds for compound muscle electric potentials and compound muscle magnetic
fields.

Figure 7.3: Power spectral density (PSD) and time domain graph of the simulated EMG and MMG
signal for muscle fibres of different radius (blue: 80 µm; red: 40 µm). Each spectrum is
normalised with the total power of the respective signal obtained from the simulation with
a fibre radius of 80 µm. The dashed lines in the power spectrum (top row) indicate the mean
frequency content of the signal.
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7.2.2 Influence of the Muscle Fibre Properties

Next, the influence of the muscle fibre properties on compound muscle electric potentials and
compound muscle magnetic fields is examined. As for the simulations presented in the previous
section, the geometrical parameters are fixed, i.e., the depth of the activated muscle fibres
is 5 mm and the thickness of the subcutaneous fat tissue layer is 2 mm. Further the motor
unit density parameter f1

r is 100 %. However, virtual muscles with muscle fibres of different
sizes are considered, i.e., 80 µm and 40 µm. This corresponds to surface-to-volume ratios Ak

m

of 250 cm−1 and 500 cm−1, respectively. The simulated bioelectromagnetic fields are observed

from a single EMG electrode or MMG sensor with the coordinates x
‖
l = 15 mm and x

‖
t = 2.5 mm.

Figure 7.3 (bottom row) shows that the duration of the compound muscle electric potentials
and the compound muscle magnetic fields depends on the muscle fibre radius. For both EMG
and MMG the signal duration is approximately 12 ms for a muscle fibre radius of 80 µm and
16 ms for a muscle fibre radius of 40 µm. Yet, the basic shape of the signals is preserved (see
Section 7.2.1). This behaviour is also reflected in the signals’ frequency content. For example,
for a muscle fibre radius of 40 µm, the mean frequency content of the EMG signal decreases by
24.6 % when compared to the simulation with a muscle fibre radius of 80 µm. For the MMG the

mean frequency decreases by 25.4 % for the MMG’s x
‖
l -component, by 25.1 % for the MMG’s

x
‖
t -component and by 25.5 % for the MMG’s x⊥t -component. Further, it can be observed that

the amplitude of the EMG signal decreases by 1.2 % when comparing the simulations with a
muscle fibre radius of 80 µm to the simulation with a muscle fibre radius of 40 µm. Analogous,
the RMS increases by 12.33 % for the MMG component perpendicular to the muscle fibres as
well as parallel to the body surface and increases by 11.6 % for the MMG’s normal-to-the-surface
component. For the MMG component aligned with the muscle fibre direction, the RMS value
is identical for a muscle fibre radius of 40 µm and 80 µm.

7.2.3 Influence of Muscle Fibre Depth

This section investigates the influence of the distance of the active muscle fibres and the
sampling point. To focus on the properties of the muscle tissue itself, an isolated muscle is
considered. Accordingly, the thickness of the subcutaneous fat tissue layer is 0 mm. A set
of compound muscle electric potentials and compound muscle magnetic fields is simulated by
selectively stimulating muscle fibres in different depths of the muscle (see Figure 7.1), i.e., 3 mm,
5 mm, 7 mm and 9 mm. The corresponding EMG and MMG signals are recorded from a single

electrode or magnetometer with coordinates x
‖
l = 15 mm and x

‖
t = 2.5 mm.

The bottom row of Figure 7.4 shows that the amplitude of all signals decreases with increasing
depth of the active muscle fibres. Moreover, the decrease in amplitude is more pronounced for
the MMG than for the EMG. In detail, when defining the in silico experiment with a fibre
depth of 3 mm as reference, for a muscle fibre depth of 9 mm the normalised RMS value is 1.2 %

for the MMG’s x
‖
l -component, 1.2 % for the MMG’s x

‖
l -component and 3.1 % for the MMG’s

x⊥t -component. The normalised RMS value is 13.4 % for the EMG. It is noted that depending
on the depth of the active muscle fibres, the magnitude of the compound muscle magnetic fields
is in the range of femto-Tesla to pico-Tesla.

Moreover, it can be observed that the EMG exhibits a more pronounced modulation in fre-
quency content than the MMG. In detail, when defining the simulation with a depth of 3 mm as
a reference, for a muscle fibre depth of 9 mm, the EMG’s mean frequency drops by 26.9 %. In
comparison, the mean frequency decreases by 12.2 % for the MMG component aligned with the
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muscle fibres and decreases by 15.0 % for the MMG component orthogonal to the body surface.

Further, the modulation of the frequency content is less than 2 % for the MMG’s x
‖
t component.

Figure 7.4: Power spectral density (PSD) and time domain graph of the simulated EMG and MMG
signals for variable depths of the activated muscle tissue (blue: 3 mm; red: 5 mm; yellow:
7 mm; green: 9 mm). Each spectrum is normalised with the total power of the respective
signal obtained from the simulation with a depth of 3 mm. The dashed lines in the power
spectrum (top row) indicate the mean frequency content of the signal.

7.2.4 Influence of Fat Tissue

Previously, it was shown that the shape and the amplitude of EMG or MMG signals depend on
the distance between the active muscle fibres and the sampling point. This behaviour is because
a propagating source is observed, as well as the electric properties and the geometry of the
tissue. In this section, the influence of the tissue properties is studied. For this purpose, three
in silco experiments with a fixed distance between the sampling point and the active muscle
fibres are considered. However, the thickness of the subcutaneous fat tissue layer is varied,
i.e., 0 mm, 2 mm and 4 mm. To compensate for the differences in the fat tissue thickness, the
depth of the stimulated muscle fibres is 5 mm, 3 mm and 1 mm, respectively. This yields a fixed
distance of 5 mm between the active fibres and the body surface. A virtual EMG electrode or
MMG sensor is placed in the middle between the innervation zone and the boundary of the

muscle, i.e., x
‖
l = 15 mm and x

‖
t = 2.5 mm.

Figure 7.5 (bottom left) illustrates that the amplitude of a compound muscle electric
potential strongly depends on the thickness of the fat tissue layer. Comparing the RMS
of the EMG signals simulated for fat tissue layers of 2 mm and 4 mm to the case without
fat, an increase of the RMS by 109.0 % and 281.1 % is observed. The amplitude of the
compound muscle magnetic fields also depends on the thickness of the fat tissue layer.
However, the effect of the tissue arrangement is less pronounced for the MMG than for the
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EMG. In detail, the influence of the fat tissue is least pronounced for the MMG’s normal-
to-the-surface component. When using the signal obtained from the simulation without fat
as a reference, for fat tissue layers of 2 mm and 4 mm, the RMS increases by 22.8 % and

53.2 %, respectively. For the same scenario, the RMS of the MMG’s x
‖
f -component increases

by 40.7 % and 106.7 %. The RMS increases by 49.3 % and 106.2 % for the MMG’s x
‖
t -component.

Further, one can observe an increase in the mean frequency for all signals. For example, when
comparing the simulation without fat and the simulation with a fat tissue thickness of 4 mm,
the mean frequency of the EMG signal increases by 12.5 %. In comparison, the mean frequency

increases by 12.8 % for the MMG’s x
‖
f -component, 6.1 % for the MMG’s x

‖
t -component and 7.6 %

for the MMG’s x⊥t -component

Figure 7.5: Power spectral density (PSD) and time domain graph of the simulated EMG and MMG
signals for variable thicknesses of a superficial fat tissue layer, i.e., 0 mm (blue), 2 mm (red)
and 4 mm (yellow). The distance between the active fibres and the body surface is fixed,
yielding fibre depths of 9 mm, 7 mm and 5 mm, respectively. Each spectrum is normalised
by the total power of the respective signal obtained from the simulation without fat. The
dashed lines in the power spectrum (top row) indicate the mean frequency content of the
signal.

7.3 High-Density Recordings

Bioelectromagnetic fields depend on the spatial coordinate of an observation and time. Hence,
measuring EMG or MMG at multiple points in space yields images of the electric potential
or magnetic field for each time frame. When a dense array of sampling points is used, such
measurements are called high-density recordings. This section investigates the fundamental
spatiotemporal patterns of muscle-induced bioelectromagnetic by considering compound muscle
electric potentials and compound muscle magnetic fields detected by utilising (virtual) high-
density recordings.
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7.3.1 The Spatiotemporal Patterns of EMG and MMG Signals

To illustrate the fundamental properties of high-density EMG (HD-EMG) and high-density
MMG (HD-MMG) signals, a single in silico experiment is analysed. Muscle fibres are
selectively stimulated in a depth of 5 mm. Further, a fat tissue layer with a thickness
of 2 mm is added on top of the muscle. The corresponding bioelectromagnetic fields are
recorded with a detection system consisting of 7 × 7 sampling points (see Figure 7.6A). The
sampling points span from the innervation zone (IZ) to the myotendinous junction (MTJ), and
their spacing along the muscle fibre direction is 5 mm. Further, the sampling points span the
whole width of the muscle, and the spacing perpendicular to the muscle fibre direction is 2.5 mm.

The spatiotemporal pattern of the simulated high-density EMG is shown in Figure 7.6B.
Further, Figure 7.6C-E show the corresponding high-density MMG. Thereby, the three magnetic
field components are visualised in individual panels. First, it is noted that the high-density EMG
or MMG signals exhibit a time delay when comparing two signals from different sampling points
in a line parallel to the muscle fibre direction. Hence, the temporal coordinate is linked to
the spatial coordinate. Logically, this is caused by the propagation of the muscle fibre action
potentials. For the high-density EMG, Figure 7.6B illustrates that the basic (time-domain) shape

of the observable compound muscle electric potential depends on the x
‖
f -coordinate, i.e., two-

phasic at the innervation zone as well as at the myotendinous junction and tri-phasic in between
[cf. e.g., 147]. For the high-density MMG, the relation between the spatial coordinate and the
compound muscle magnetic field shape depends on the measured magnetic field component. In
detail, the MMG’s normal-to-the-surface component shows a characteristic bi-phasic shape for all

sampling points of the high-density MMG array. Notably, the x
‖
t coordinate of the active muscle

fibres represents a reflection axis, where the sign of the signal is flipped (see Figure 7.6E). This

behaviour is also observed for the MMG’s x
‖
f -component. However, comparable to high-density

EMG, the signal’s shape depends on the spatial coordinate along the muscle fibre direction,
i.e., bi-phasic at the innervation zone and the myotendinous junction and tri-phasic in between.

The MMG’s x
‖
f -component also shows a characteristic bi-phasic shape. Moreover, Figure 7.6D

shows that the magnetic field component orthogonal to the muscle fibres and parallel to the
body surface is maximal directly above the active muscle fibres and quickly decreases in the
lateral direction. Finally, it is noted that both MMG components that are orthogonal to the
muscle fibre direction are zero at the innervation zone and decrease in amplitude towards the
myotendinous junction.

7.3.2 The Influence of the Muscle Fibre Properties

In the previous section, it was demonstrated that for muscle-induced bioelectromagnetic fields,
the temporal coordinate and the spatial coordinate are linked, i.e., due to the propagating
nature of the action potentials. Typically, it is assumed that the action potential conduction
velocity is related to the properties of the muscle fibres, i.e., particularly the muscle fibre
diameter [e.g., 5, 10, 96]. Hence, this section investigates the spatiotemporal correlation of
high-density EMG signals and high-density MMG signals as a function of muscle fibre size.
Therefore, two different muscles consisting of differently sized muscle fibres, i.e., the muscle
fibre radius is 80 µm and 40 µm, are simulated. This corresponds to surface-to-volume ratios Ak

m

(k = 1, 2) of 250 cm−1 and 500 cm−1, respectively. A fat tissue layer with a thickness of 2 mm
is added on top of both virtual muscles. Compound muscle electric potentials and compound
muscle magnetic fields are simulated by selectively recruiting all muscle fibres in a depth of 5 mm.

Within the in silico simulation framework, the muscle fibre conduction velocity can be directly
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Figure 7.6: High-density EMG or MMG signals recorded from a grid with 7 × 7 sampling points. (A)
The sampling points span from the innervation zone (IZ) to the myotendinous junction
(MTJ), i.e., the end of the muscle fibres. The step size between the sampling points is 5 mm
along the muscle fibre direction and 2.5 mm transversal to the muscle fibre direction. The
EMG electrodes are on the body surface, and the magnetometers are shifted by 1 mm above
the body surface (transparent plane). The depth of the activated muscle fibres is 5 mm.

Further, in the x
‖
t -direction, the active fibres are centred in the middle of the tissue sample.

(B) Spatiotemporal pattern of the simulated compound muscle electric potential. (C) to
(E) Spatiotemporal patterns of the simulated compound muscle magnetic fields, i.e., the
individual magnetic field components.

measured by computing the temporal delay of the transmembrane potential at two points along
the muscle fibre path. In detail, for the simulations with a fibre radius of 40 µm and 80 µm, the
muscle fibre conduction velocities are 2.78 m s−1 and 3.85 m s−1, respectively. Figure 7.7 shows
the simulated compound muscle electric potential and all components of the compound muscle

magnetic field on a linear array of sampling points along the muscle fibre direction, i.e., x
‖
t =

2.5 mm. The distance between the sampling points is 5 mm, and the sampling points span from
the innervation zone to the myotendinous junction. It can be observed that the spatiotemporal
delay of the signals correlates with the muscle fibre conduction velocity. Hence, the muscle fibre
conduction velocities can be estimated indirectly by computing the temporal delay associated
with the maximum cross-correlation for two signals sampled at different locations along the
muscle fibre direction [cf. e.g., 177]. Thereby, the influence of end of fibre effects, as well as end
plate effects, can be reduced by considering double differential signals [17], i.e., the summed signal
of two outer sampling points subtracted by twice the signal recorded at a central sampling point.
For example, if one considers two double differential signals between the innervation zone and
the myotendinous junction, the conduction velocities estimated from the EMG are 2.9 m s−1 and
4.2 m s−1. Further, the conduction velocities computed from the MMG signals are 2.9 m s−1 and

4.5 m s−1 for the MMG’s x
‖
f -component, 2.5 m s−1 and 3.6 m s−1 for the MMG’s x

‖
t -component

as well as 2.5 m s−1 and 3.3 m s−1 MMG’s x⊥t -component.
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Figure 7.7: High-density EMG and high-density MMG signals observed from a linear array of sampling
points. The sampling points span from the innervation zone (IZ) to the myotendinous
junction (MTJ). Moreover, the sampling points are shifted by 2.5 mm from the muscle’s
transversal centre line. The spacing of the sampling points is 5 mm. The red curve curves
correspond to the simulation with a muscle fibre radius of 80 µm, and the blue curve cor-
responds to the simulation with a muscle fibre radius of 40 µm.

7.3.3 The Distribution of the Signal Amplitude

Instead of directly analysing the spatiotemporal patterns of bioelectromagnetic fields, features
of a signal can be computed for each sampling point. This reduces the multi-dimensional
data to two-dimensional images. Here, the spatial distribution of the signal amplitude is
considered. This is achieved by computing the RMS value for each discretisation point on
the body surface. A single in silico experiment is considered to compare the images of
the RMS values. The muscle is activated by selectively stimulating the muscle fibres in a
depth of 5 mm. Further, a fat tissue layer with a thickness of 2 mm is added on top of the muscle.

From Figure 7.8, it can be observed that the signal amplitude distribution is fundamentally
different for the EMG and the three MMG components. When fixing the spatial coordinate
along the muscle fibre direction, for the EMG, the RMS is maximal directly over the active

muscle fibres and decreases towards the muscle’s boundary. The MMG’s x
‖
t -component is

also maximal directly above the active fibres. However, the signal amplitude is more spatially

confined. For the MMG’s x
‖
f -component and the MMG’s x⊥t -component, the signal amplitude

is zero directly over the active fibres.

Suppose a line parallel to the muscle fibre direction is followed. In that case, the RMS of the
EMG shows two local maxima, i.e., one at the innervation zone and one at the myotendinous

junctions. Further, the signal amplitude is maximal at the innervation zone for the MMG’s x
‖
f -

component. In contrast, the amplitude is zero at the innervation zone for both MMG components

perpendicular to the muscle fibres. Further, the RMS images of the MMG’s x
‖
t -component and

the MMG’s x⊥t -component have the maximal intensity in the middle between the innervation
zone and the myotendinous junction.
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Figure 7.8: Root mean square (RMS) images of a compound muscle electric potential as well as the
compound muscle magnetic field for each discretisation point on the body surface. The
RMS values are normalised to the corresponding maximum value.

7.3.4 The Influence of the Tissue Properties

After considering the basic spatiotemporal patterns of compound muscle electric potentials and
compound muscle magnetic fields, this section investigates the influence of the tissue properties
and composition on high-density EMG or MMG. This is accomplished through a series of in
silico experiments that vary the depth of the active muscle fibres as well as the thickness of
the subcutaneous fat. In detail, muscle fibres are selectively stimulated in depths of 1 mm,
3 mm, 5 mm, 7 mm and 9 mm, respectively. Further, three fat tissue layers with thicknesses
of 0 mm, 2 mm and 4 mm are considered. This yields a set of 15 simulations. The predicted
bioelectromagnetic fields are investigated by computing the RMS value for each discretisation
point on the body surface.

Figure 7.9 summarises for all conducted in silico experiments the RMS of the EMG as well
as the three MMG components in a line perpendicular to the muscle fibres mid-way through

the innervation zone and the myotendinous junction, i.e., x
‖
l = 15 mm. As reported in the

previous section, the distribution of the RMS values is fundamentally different for the EMG
and the three MMG components. For the EMG, the RMS reaches its maximum directly over

the active fibres. In contrast, for the MMG’s x
‖
l -component and the MMG’s x⊥t -component, the

compound muscle electric potential’s amplitude is zero directly over the active fibres, i.e., the
muscle’s transversal centre line. When increasing the distance to the muscle’s transversal centre
line, the RMS first increases and decreases after reaching its maximum. Notably, the distance
to the maximum correlates with the depth of the active fibres. For the case without fat, the

distance between the zero value of the MMG’s x
‖
l -component (i.e., directly over the source) and

the maximal RMS value is 2 mm for a fibre depth of 1 mm, 3 mm for a fibre depth of 3 mm and
3.5 mm for fibre depths below 5 mm. For the MMG’s x⊥t -component and in the case without
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Figure 7.9: Normalised RMS values in a line orthogonal to the muscle fibres in the middle between

the innervation zone and the muscle boundary, i.e., x
‖
l = 15 mm. From left to right, the

thickness of the fat tissue increases. The first row shows the EMG, the second row shows

the x
‖
l -component of the MMG, the third row shows the x

‖
t -component of the MMG, and

the fourth row shows x⊥t -component of the MMG. Further, the colours indicate the depth
of the activated muscle fibres (blue: 3 mm; red: 5 mm; yellow: 7 mm; green: 9 mm; grey:
11 mm).
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Figure 7.10: Normalised RMS values in a line parallel to the muscle fibres, i.e., x
‖
t = 2.5 mm. From

left to right, the thickness of the fat tissue layer increases. The first row shows the EMG,

the second row shows the MMG’s x
‖
l -component, and the third row shows the MMG’s

x
‖
t -component and the fourth row shows the MMG’s x⊥t -component. Further, the colours

indicate the depth of the activated muscle fibres (blue: 3 mm; red: 5 mm; yellow: 7 mm;
green: 9 mm; grey: 11 mm).
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fat, the distance between the maximum RMS value and the zero value is 1.5 mm for a fibre
depth of 1 mm, 2.5 mm for a fibre depth of 3 mm and saturates at 3.5 mm for fibre depths below
5 mm.

When increasing the thickness of the fat tissue layer’s thickness, the sparsity of the signals
is modulated. For example, for a muscle fibre depth of 3 mm the Hoyer sparsity value, cf.
Section 7.1.2, of the RMS values decreases by a factor of 6.04 when comparing the case with a
fat tissue thickness of 4 mm to the case without fat. The sparsity of the MMG is less affected by
the subcutaneous fat tissue. In detail, for the MMG component aligned with the muscle fibre
direction, the Hoyer sparsity of the RMS values increases by a factor of 1.08. Moreover, the

Hoyer sparsity of the RMS values decreases by a factor of 1.08 for the MMG’s x
‖
t -component

and decreases by a factor of 1.40 for the MMG’s x⊥t -component.

Further, Figure 7.10 shows the RMS of the simulated EMG and MMG signals in a line parallel

to the muscle fibre direction, i.e., x
‖
t = 2.5 mm. Notably, it is observed that the main character-

istics of the amplitude distribution along the muscle fibre direction are (nearly) invariant to the
depth of the active fibres and the thickness of the subcutaneous fat tissue layer. For example,
it can be observed that independent of the depth of the active muscle fibres and the thickness
of the subcutaneous fat tissue layer, the amplitude of the MMG components perpendicular to

the muscle fibres, i.e., the x
‖
t -direction and the x⊥t -direction, is zero at the innervation zone. In

contrast, the MMG component aligned with the muscle fibres shows a local maximum at the
innervation zone. The same behaviour is observed for the EMG. However, for the EMG, the
dominance of the local maximum at the innervation zone depends on the depth of the active

muscle fibres. For the MMG’s x
‖
t -component, several local maxima can be observed between

the innervation zone and the myotendinous junction. However, the number of local maxima and
their location varies depending on the depth of the active muscle fibres and the thickness of the
subcutaneous fat tissue layer.

7.4 The Source of the Muscle-Induced Magnetic Field

The electric activity of the muscle fibre membranes ultimately causes MMG. The muscle fibre
action potentials yield conductive currents in the muscle fibres and the extracellular space. Both
types of current contribute to the measurable magnetic field. Within the presented in silico
simulation framework, the magnetic field can be decomposed into the contributions of each
domain, i.e., the intracellular domains of all motor units, the extracellular domain and the body
region. This is possible due to the linearity of the magnetic field equations, i.e., Equation (5.18)
and Equation (5.19). By computing the magnetic field generated by the currents in each domain,
this section predicts the relevance of the different currents for the measurable MMG signal.

7.4.1 Single Sensor MMG Recordings

The contribution of the different current densities to the total MMG signal is exemplarily invest-
igated for a single in silico experiment. That is, for a cube-shaped muscle and a superficial fat
tissue layer with a thickness of 2 mm, muscle fibres in a depth of 5 mm are selectively stimulated.
The magnetic field induced by the current densities in each domain of the multi-domain skeletal
muscle model and the body region is computed. The results obtained from this in silico experi-

ment are exemplarily evaluated at a single sampling point on the body surface, i.e., x
‖
f = 15 mm

and x
‖
t = 2.5 mm. From the left panel in Figure 7.11, it can be observed that the MMG’s

x
‖
l -component is fully determined by volume currents in the extracellular space and the body
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region. When normalising the RMS of the signals generated by an individual current source to
the RMS value of the overall magnetic field, the RMS of the extracellular contribution is 99.9 %,
and the RMS of the body region contribution is 0.1 %. Further, Figure 7.11 (middle and right)

show that the MMG components orthogonal to the muscle fibre direction, i.e., the x
‖
t -component

and the x⊥t -component, depend on currents from all domains. Notably, the non-recruited muscle
fibres contribute considerably to the experimentally observable magnetic field. The magnetic
field contribution of the recruited fibres has the opposite direction than the contributions from

the non-recruited fibres and the extracellular domain. In detail, for the MMG’s x
‖
t -component,

the relative domain-specific RMS values, i.e., normalised to the RMS of the overall magnetic
field, are 313.7 % for the extracellular space, 824.8 % for the recruited intracellular domains,
416.9 % for the non-recruited intracellular domains and 0.2 % for the body region. Considering
the MMG’s normal-to-the-body-surface component, the recruited fibres dominate the measur-
able signal, i.e., the relative RMS value is 253.6 %. Further, the relative RMS values are 101.3 %
for the non-recruited intracellular domains, 55.9 % for the extracellular space and 0.03 % for the
body region.

Figure 7.11: Contribution of different domains to the magnetic muscle compound action potential. The
presented data correspond to a simulation where the muscle fibres are stimulated in a

depth of 5 mm. The coordinates of the MMG sensor are x
‖
l = 15 mm and x

‖
t = 2.5 mm.

7.4.2 High-Density MMG Recordings

After considering the contribution of different currents to the MMG signal for an arbitrarily
chosen sampling point, this section generalises the results from the previous section for a
high-density MMG array. Here, an array of 4 × 3 sampling points is considered. The distance
between two sampling points is 10 mm along the muscle fibre direction and 5 mm perpendicular
to the muscle fibre direction.

It can be observed from Figure 7.12A that the MMG component aligned with the muscle fibres
is fully determined by currents in the extracellular space and the body region. This is explained
by the fact that the magnetic field is related to the current density through the curl operator.
Further, from Figure 7.12B and Figure 7.12C, it can be seen that the magnetic field induced by
the intracellular currents always shows a characteristic two-phasic shape. This is in agreement
with magnetic field measurements from single muscle fibres [256]. Hence, more complex wave-
forms are always caused by extracellular currents (see Figure 7.12B). Note that extracellular
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currents are expected to strongly depend on the exact geometry of the muscle and the surround-
ing tissues. Hence, the results can differ between different subjects or muscles. Moreover, it is
observed that intracellular currents dominantly cause the magnetic field components orthogonal
to the muscle fibre direction. However, as the muscle fibre action potentials trigger reversal
currents in the extracellular space and passive muscle fibres, the observable magnetic field is
considerably lower than the magnetic field caused by active muscle fibres.

Figure 7.12: Contribution of different currents to an exemplary high-density magnetic compound muscle
magnetic field. Each panel (A to C) shows one MMG component. The magnetic field
induced by the active muscle fibres is shown in red. The yellow colour indicates the
magnetic field induced by currents in the non-recruited muscle fibres. Further, the green
colour shows the magnetic field generated by extracellular currents, i.e., the extracellular
domain of the muscle region as well as the body region.

7.5 Summary and Discussion

This chapter provides the first systematic comparison of EMG and MMG. The analysed
signals are simulated with the biophysical model presented in Part II of this work. This
data is comparable to EMG and MMG of electrically or reflex-evoked contractions [e.g., 15].
However, experimentally, controlling the position and the number of recruited muscle fibres is
impossible. Thus, the presented in silico experiments provide insights on muscle-induced bio-
electromagnetic fields that would currently not be easily feasible through experimental methods.

EMG and MMG are caused by the propagation of action potentials in the muscle fibres.
Notably, the electric compound muscle electric potentials and the magnetic compound muscle
magnetic fields represent the linear summation of the signals generated by all involved muscle
fibre action potentials (see Section 7.2.1). Moreover, the duration of compound muscle electric
potentials measured via EMG or compound muscle magnetic fields recorded by MMG is
comparable, which agrees with experimental observations [cf. e.g., 19, 38, 207, 271]. However,
there are substantial differences concerning the spatiotemporal patterns of each signal. That
is, EMG and the different MMG components vary in basic signal shape (see Section 7.3.1) and
the spatial distribution of the signal amplitude (see Section 7.3.3). Common for all signals
is that the spatial and temporal coordinates are linked, i.e., due to the propagating nature
of the muscle fibre action potentials (see Section 7.3.2). For the interpretation of EMG and
MMG signals, it is essential to consider that bioelectromagnetic fields induced by active skeletal
muscles depend on (i.) the properties of the recruited muscle fibres, (ii.) the relative position
between the sampling point and the active fibres and (iii.) the properties of the tissue itself.
Those factors are typically unknown in an in vivo experiment. Hence, the interpretation of
non-invasively recorded signals is associated with significant levels of uncertainty. This is
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a well-known limitation of surface EMG measurements [cf. e.g., 45, 70] and represents a
significant factor that invasive needle EMG recordings are preferred in clinical applications
[e.g., 26, 43, 226]. The interpretation of non-invasive MMG data is subject to the same
sources of uncertainty. Yet, it is shown that high-density MMG data is sparser and, hence,
spatially more selective than comparable high-density EMG data. Thus, using MMG instead
of EMG potentially leads to superior results when inverse modelling is used to reconstruct
the bioelectric sources in skeletal muscles [e.g., 152, 154, 180, 255]. However, despite this
theoretical advantage of MMG shown through computer simulations, experimental research is
needed to determine whether MMG can provide new insights into neuromuscular physiology.

Further, the capabilities of the in silico environment are exploited for exploring the bio-
physical origin of the magnetic field generated by a skeletal muscle. An electrical current
only can generate a magnetic field circular to the direction of the current. Accordingly, it
is shown that the magnetic field aligned with the muscle fibres is entirely determined by
volume currents in the extracellular space or the body region. In contrast, both magnetic field
components orthogonal to the muscle fibre direction are dominantly caused by currents in the
active fibres. The magnetic field generated by the active muscle fibres shows a characteristic
bi-phasic shape, which is in agreement with experimental findings [cf. 256]. The charge
balance ultimately requires the existence of reversal currents. Such reversal currents exist
both in the extracellular space as well as in non-recruited muscle fibres. This effect limits the
amplitude of the measurable magnetic field. However, as the extracellular region allows the
flux of ions in all spatial directions, the magnitude of the overall magnetic field is larger than zero.

This chapter showed that the amplitude of compound muscle magnetic fields is in the
range of pico-Tesla. Moreover, it is shown that the bandwidth of MMG signals is comparable
to EMG data. Hence, the noise spectral density of MMG sensors should be as low as a
few tens of fT/

√
Hz and their bandwidth should be up to 500 Hz. Currently, this is only

possible with the superconducting quantum interference device (SQUID) [e.g., 35, 143] and
optically pumped magnetometers (OPMs) [e.g., 14, 95, 205, 231]. However, as SQUIDs require
cryogenic cooling, they must be placed several centimetres away from the subject. Moreover, as
SQUID arrays are rigid devices optimised for brain recordings, existing systems do not provide
sufficient flexibility to measure MMG. OPMs can be modularly arranged to record signals from
all superficial muscles. Yet, SQUIDs are still superior to OPMs regarding their sensitivity
and bandwidth. Thus, advancing MMG requires further research on magnetometers. Other
magnetic sensing technologies that potentially can be used for biomagnetic recordings in the
future are magnetoelectric sensors [273] and nitrogen-vacancy centres in diamond [267].
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The voluntary force output of a skeletal muscle can be controlled by modulating the number
of recruited motor units and their discharge frequency (see Chapter 2). Each motor neuron’s
discharge synchronously triggers an action potential in all the muscle fibres it innervates. Con-
sequently, each motor neuron firing causes a compound muscle response, i.e., referred to as
motor unit electric potential (MUEP) and motor unit magnetic field (MUMF), respectively.
Based on this behaviour, a muscle can be considered a natural amplifier of motor neuron activ-
ity. However, because motor unit discharge patterns are not synchronised in time and motor unit
responses have positive and negative phases, EMG or MMG of voluntary contractions yield com-
plex interference signals. This chapter presents a series of simulations to support and guide the
analysis of these challenging bio-signals. The basic simulation set-up is described in Section 8.1.
Next, Section 8.2 demonstrates the fundamental interference patterns of EMG or MMG and
discusses the associated challenges. The current gold standard to reconstruct the neural drive
to a muscle is the decomposition of EMG signals into the spike trains of individual motor units.
However, for non-invasive surface EMG measurements, the number of reliably decomposable
motor units is limited by the distance between the active muscle fibres and electrodes and the
body’s electrical properties. The previous chapter demonstrated that non-invasive MMG signals
are sparser than high-density EMG data. Due to this reason, it is hypnotised that measuring
MMG could overcome some of the limitations of surface EMG-based motor unit decomposition.
Thus, Section 8.3 tests the hypothesis that MMG is superior to EMG for distinguishing different
motor unit responses. Finally, Section 8.4 presents a novel in silico trail framework that predicts
upper bound accuracy estimates of surface EMG-based or non-invasive MMG-based motor unit
decompositions.

8.1 In Silico Experiments

The multi-domain simulation framework introduced in Part II is used to investigate EMG or
MMG signals of voluntary contractions. This section describes the specific simulation set-up for
the in silico experiments presented in this chapter.

8.1.1 Tissue Geometry, Motor Unit Population and Discretisation

In Chapter 7, it was shown that the spatio-temporal patterns of compound muscle electric
potentials and compound muscle magnetic fields depend on the tissue geometry, the spatial
configuration of the muscle fibres, and the tissue properties. Here, a cube-shaped layered tissue
model is used to exclude the potential influence of complex tissue geometries on the results
presented. The edge lengths of the muscle sample are L = 80 mm, W = 40 mm and H = 40 mm
(see Figure 8.1). Further, a fat tissue layer of variable thickness, i.e., 0 mm, 5 mm and 20 mm,
is added on top of the muscle. The muscle fibres are aligned with the longest edge of the
muscle, yielding a fusiform muscle. To limit the computational complexity of the conducted
simulations, a half-muscle is considered, i.e., the distance between the centre of the innervation
zone and the myotendinous junction is 65 mm (see Figure 8.1).

73
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Further, five different motor unit pools consisting of N = 150 motor units are simulated.
Assuming an idealised circular shape of the motor unit territories, the anatomy of each motor
unit is fully described by its centre and radius. The motor unit territory centres are randomly
distributed within the muscle’s cross-sectional area. Further, the radius of each motor unit
territory is randomised according to a uniform distribution ranging from 3 mm to 5 mm. Thereby,
it is noted that the motor unit territories can overlap with each other (see Figure 8.1). It is
assumed that a motor unit’s fibre load follows an exponential distribution, and the ratio of
the innervation number of the largest motor unit to the smallest motor unit is roughly 100
[e.g., 81, 193]. To compute for each motor unit territory a local (continuous) fibre load, first,
each point within the motor unit territory is weighted with a parameter wk, i.e.,

wk = exp

(
ln(100)

(k − 1)

(N − 1)

)
+ 1 . (8.1)

Next, the motor unit volume fractions fkr (k = 1, ..., N) are calculated for each skeletal muscle
material point:

fkr = wk /
N∑

m=1

wm , k = 1, ..., N . (8.2)

In the last step, the motor unit territories are sorted such that the integral of the motor unit
volume fraction over the whole muscle region increases with the motor unit index k. For each
motor unit, the neuromuscular junctions are located in a plane orthogonal to the muscle fibre
directions, which are randomly distributed in the innervation zone, i.e., spanning a length
of 10 mm (cf. Figure 8.1). Further, the radius of the muscle fibres is uniformly distributed,
i.e., 40 µm for the largest motor unit and 80 µm for the smallest motor unit. The anisotropy
ratio of the extracellular conductivity tensor is set to 4. All other model parameters are adopted
from Table 5.1.

For the discretisation of the tissue sample, the spacing of the grid points is 0.5 mm in the

x
‖
f -direction and 1 mm in the x

‖
t -direction as well as in the x⊥t -direction. Further, the step size

of the global time step is set to ∆t = 0.1 ms. The membrane models are solved with a step
size of ∆tode = 0.01 ms. Virtual high-density EMG and high-density MMG signals are obtained
by using a 10 × 7 array of sampling points that is centred between the innervation zone and
the myotendinous junction (see Figure 8.1). The distance between the sampling points is 5 mm.
While the high-density EMG array is placed on top of the muscle, the MMG array is 1 mm
above the body surface. Further, sampling the model output after each fifth global time step
yields a sampling frequency of 2000 Hz.

8.1.2 Simulating Voluntary Contractions

A muscle’s force can be modulated by motor unit recruitment and rate coding (see Chapter 2).
Here, a phenomenological approach integrating basic physiological knowledge is used to com-
pute the motor neuron discharge times. In the presented in silico experiments, three different
isometric contraction levels, i.e., low intensity, medium intensity and high intensity, are con-
sidered. First, a motor unit’s recruitment threshold is assumed to increase with its size [109].
Hence, the number of active motor units increases with the contraction intensity. Further, it is
assumed that the smallest motor unit exhibits the highest firing frequency [49, 208]. Thereby,
the peak firing rate increases with the contraction intensity. The firing rate of the largest active
motor unit is always set to 8 Hz [59]. Further, the firing frequencies for all other motor units are
uniformly distributed between the minimum firing rate, i.e., 8 Hz, and the peak firing rate. For
each contraction level, the firing rate decreases with the size of the motor units. Spike trains are



8.2 The Fundamental Properties of EMG and MMG During Voluntary Contractions 75

Figure 8.1: Schematic drawing illustrating the basic set-up of the simulations presented. For the virtual
EMG, the sampling array is placed on the body surface. The virtual MMG array is 1 mm
above the body surface (indicated by the transparent plane).

obtained by adding a random jitter of ±10 % to the base firings [33, 167], which are determined
by the mean inter-spike interval. The parameters for simulating the three different contraction
intensities are summarised in Table 8.1.

Contraction intensity Number of recruited motor units Peak firing rate

Low MVC 60 15 Hz

Medium MVC 100 20 Hz

High MVC 150 25 Hz

Table 8.1: Summary of model parameters for simulating the neural drive to the muscle.

8.2 The Fundamental Properties of EMG and MMG During
Voluntary Contractions

The fundamentals of EMG and MMG of voluntary contractions are introduced by considering
the interaction between two motor units. A linear signal model can describe the observed
interference patterns. This generative model is the basis for discussing the challenges associated
with decoding the neural drive to the muscle from bioelectromagnetic field measurements.
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8.2.1 Constructive and Destructive Interference

To illustrate the fundamental properties of EMG and MMG of voluntary contractions, the
interaction of two motor units from a randomly selected virtual test muscle is investigated (see
Section 8.1.1). Thereby, the thickness of the subcutaneous fat tissue is 5 mm. The presented in
silico experiments test the influence of the temporal delay of the motor unit discharge times
when both motor units are simultaneously active. Hence, after simulating an isolated stimulus
for each motor unit, temporal delays of 0 ms, 5 ms, 10 ms and 15 ms are considered.

Figure 8.2 exemplarily shows, for a single sampling point, that constructive or destructive
interference can be observed depending on the time delay between the discharges of both motor
units. When both motor units are activated synchronously, the RMS value of the EMG signal
in a time window of 30 ms after the stimulus is 196.0 % of the RMS value obtained in a time
window of 30 ms after an isolated stimulus of the second motor unit. Analogously, the relative

RMS values of the MMG signals are 298.3 % for the x
‖
f -component, 190.4 % for the x

‖
t -component

and 283.0 % for the x⊥t -component. For a time delay of 10 ms, the relative RMS values in a time
window of 30 ms after the stimulus of the second motor unit decrease to 72.3 % for the EMG,

82.8 % for the MMG’s x
‖
f -component, 84.1 % for the MMG’s x

‖
t -component and 123.9 % for

the MMG’s x⊥t -component. Hence, this basic in silico experiment illustrates that the signal
amplitude of EMG and MMG signals is complexly coupled to both the firing times of the motor
neurons as well as the shape of the motor unit responses, i.e., the properties of the muscle.

Figure 8.2: Interaction of two motor units observed from a single sampling point via EMG and all three
components of the MMG. The sampling point is located midway between the innervation

zone and the myotendinous junction, i.e., x
‖
f = 35 mm and x

‖
t = 20 mm. The firings of the

first motor unit are indicated in green, and the firings of the second motor unit are shown in
blue. The solid grey line shows the EMG and MMG signals simulated with the multi-domain
model, and the black dashed line shows the approximation obtained from Equation (8.3).
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8.2.2 Generative Model for EMG and MMG

EMG and MMG of voluntary contractions can be described through a linear convolutive mixing
model [cf. e.g., 44, 70]. For a multi-channel recording system with M channels, the EMG or
MMG signal observed at the ith channel is given by

ψt
i =

N∑
k=1

L−1∑
l=0

hliks
t−l
k , i = 1, ...,M . (8.3)

The superscript t refers to a (discrete) time sample. From Equation (8.3), it is evident that
the EMG or MMG measured during voluntary contractions is the superposition of signal
components stemming from the individual motor units k (k = 1, ..., N). The contribution of
each motor unit k is determined by the discharge times of the motor neuron, i.e., a binary spike
train stk, which is convolved by the corresponding motor unit response H ik = [h0

ik, ..., h
L−1
ik ]T ,

i.e., the motor unit electric potential or motor unit magnetic field. Thereby, L denotes the
number of time samples of the motor unit response.

The validity of this signal model, i.e., Equation (8.3), is tested by comparing the computed
EMG or MMG signals to the results predicted by the multi-domain model. Figure 8.2 shows
that for the interaction of two motor units (cf. Section 8.2.1) both models are almost perfectly in
agreement. Considering all sampling points of the high-density EMG or MMG array, the relative

L2-error is 1.3 % for the EMG signal, 1.3 % for the MMG’s x
‖
f -component, 5.0 % for the MMG’s

x
‖
t -component and 5.2 % for the MMG’s x⊥t -component. Further, Figure 8.3 summarises the

results obtained from an in silico experiment computing the EMG signal and the MMG signals
during the simultaneous activity of ten motor units. It is observed that the linear signal model
closely approximates the muscle-induced bioelectromagnetic fields simulated with the multi-
domain model. That is, the relative L2-error for all discretisation points on the body surface

is 0.2 % for the EMG, 0.2 % for the MMG’s x
‖
f -component, 1.1 % for the MMG’s x

‖
t -component

and 1.0 % for the MMG’s x⊥t -component.

8.2.3 The Relation Between Contraction Intensity and Signal Amplitude

It was shown that EMG or MMG signals observed during voluntary contraction depend both
on the neural drive to the muscle, i.e., through the spike trains stk, as well as the muscle
properties, i.e., through the motor unit responses htik. Hence, it is impossible to separate
both effects explicitly. Nevertheless, different measures of the EMG amplitude are frequently
used to describe the strength of the neural drive to the muscle. This section quantifies the
uncertainty associated with methods that aim to estimate the neural drive to the muscle based
on the amplitude of muscle-induced bioelectromagnetic fields. This uncertainty is caused by
the inter-subject variability of the motor unit responses and the variability in the motor unit
firings.

Five muscles with different motor unit territory distributions are considered to investigate
the relation between the signal amplitude and the neural drive to the muscle (see Section 8.1).
Thereby, for all muscles, the thickness of the subcutaneous fat tissue layer is 5 mm. After
simulating a library of motor unit electric potentials and motor unit magnetic fields for each
muscle, Equation (8.3) is used to predict the interference signals for three different contraction
intensities. Thereby, the same spike trains are applied to all virtual muscles. High-density
EMG signals and high-density MMG signals are simulated by considering an array of 10 × 7
sampling points, which is placed midway between the innervation zone and the myotendinous
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Figure 8.3: EMG and MMG signals caused by the activity of ten motor units. The solid grey line shows
the signals predicted by the multi-domain model, and the dashed-dotted black line shows
the linear approximation (see Equation (8.3)). Further, the vertical blue lines indicate the
firing times of the motor units.

junction on the surface of the simulated tissue sample (see Figure 8.1). Estimates of the signal
amplitudes are obtained by computing the mean RMS value across all high-density EMG or
MMG sampling points.

Figure 8.4 shows that the amplitude of the EMG and all three components of the MMG
monotonically increases with the contraction intensity. However, for the same neural drive
to the muscle, the signal amplitude is variable across the population of the virtual muscles.
Notably, the variability across the virtual muscles is more pronounced for the high-density
EMG than the high-density MMG. Moreover, the lowest variability of the RMS values is
observed for the MMG components orthogonal to the muscle fibres. For example, for the
medium contraction level the coefficient of variation of the mean RMS values is 50.1 % for the
EMG, 36.1 % for the MMG’s x

‖
f -component, 19.1 % for the MMG’s x

‖
t -component and 16.7 %

for the MMG’s x⊥t -component.

In summary, this section showcases the limitations of methods that aim to directly extract the
neural drive to the muscle from the amplitude of an interference signal. For a more elaborated
discussion on the factors affecting the amplitude of EMG signals, the reader is referred to the
existing literature [cf. e.g., 45, 56, 67, 70, 76].

8.3 Similarity of Motor Unit Electric Potentials and Motor Unit
Magnetic Fields

Given the limitations of methods that directly correlate the EMG amplitude and the neural
drive to the muscle, the current gold standard for decoding the neural control of the muscle
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Figure 8.4: Relative RMS values for a high-density EMG array and all components of a high-density
MMG array depending on the contraction intensity. All values are normalised to the mean
RMS value at the highest contraction level.

is the decomposition of EMG signals into the spike trains of individual motor units. However,
due to the distance between the active muscle fibres and the electrodes, surface EMG exhibits
spatial low-pass filtering that depends on the electric properties of the body. This limits the
number of motor units reliably decomposable from surface EMG. In contrast, the propagation of
magnetic fields is not affected by biological tissues. This makes non-invasive MMG a promising
method with the potential to overcome some of the limitations of surface EMG-based motor
unit decomposition. This section investigates this hypothesis by comparing the similarity of
simulated motor unit electric potentials and motor unit magnetic fields.

8.3.1 Measures of Similarity

A unique representation of the motor unit responses in a high-density EMG or MMG signal is
a fundamental requirement to decompose interference signals into the spike trains of individual
motor units. To quantify the uniqueness of motor unit responses, the cosine similarity is com-
puted for all pairs of motor units included in the same pool of motor units. Therefore, the motor
unit responses are aligned in time by maximising their channel-by-channel cross-correlation. The
cosine similarity between the multi-channel motor unit responses of motor unit k and motor unit
q is given by

Skq
cos =

L−1∑
l=0

M∑
i=1

hlikh
l
iq√

L−1∑
l=0

M∑
i=1

(
hlik

)2
√

L−1∑
l=0

M∑
i=1

(
hliq

)2
. (8.4)

Therein, M denotes the number of channels. Note that Skq
cos = 0 means that the kth and the

qth motor unit response are orthogonal and hence uncorrelated. In contrast, Skq
cos = 1 indicates

that the motor unit responses are identical.

8.3.2 Similarity for Exemplary Pairs of Motor Unit Responses

This section illustrates the theoretical advantage of MMG by comparing the similarity of
pairs of motor unit electric potential and motor unit magnetic fields. The motor unit electric
potentials and the motor unit magnetic fields are simulated with the multi-domain simulation
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framework using the set-up described in Section 8.1.1.

Figure 8.5 considers for two pairs of motor units the similarity of the corresponding motor
unit electric potentials and the motor unit magnetic fields observed from an array of 10 × 7
sampling points. It can be observed that for two motor units with spatially distinct territories,
both the motor unit electric potentials and the motor unit magnetic fields can be visually
distinguished in the temporal domain, see Figure 8.5B and Figure 8.5E. In detail, the cosine
similarity across all channels is 0.90 for the motor unit electric potentials and 0.73 for the motor
unit magnetic fields. Further, the minimum channel-by-channel cosine similarity is 0.54 for the
motor unit electric potentials and 0.37 for the motor unit magnetic fields. Note that the motor
unit magnetic fields have three channels for each sampling point, i.e., one for each magnetic
field vector component.

However, if one considers two motor units in close physical proximity, the high-density motor
unit electric potentials become nearly indistinguishable. This is quantitatively reflected in the
cosine similarity, i.e., 0.99 across all channels and the minimum channel-by-channel cosine simil-
arity is 0.96. In contrast, the motor unit magnetic fields are still visually distinguishable on some
channels. The cosine similarity between the two high-density motor unit magnetic fields is 0.93.
Further, the minimum channel-by-channel cosine similarity is 0.79. This example demonstrates
that non-invasive MMG can provide better contrast between the two motor unit responses when
it is hardly feasible to distinguish two motor units using surface EMG.

Figure 8.5: Illustrative example comparing the similarity of motor unit responses. The left column
shows the territories of two arbitrarily chosen motor units, illustrated by blue and green
colours. The second column shows the corresponding motor unit electric potentials on a few
randomly selected channels of the high-density EMG signal. The third column shows the
channel-by-channel cosine similarity between the two motor unit electric potentials. A value
of zero (green) indicates uncorrelated motor unit responses and a value of 1 means that the
motor unit responses are identical (red). The fourth column shows the motor unit magnetic
fields on a few randomly selected channels of the high-density MMG signal. The last column
shows the channel-by-channel cosine similarity between the two motor unit magnetic fields.
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8.3.3 Similarity of the Motor Unit Responses Across the Whole Motor Unit Pool

The robust decomposition of a motor unit requires that the respective motor unit response
is unique compared to all other motor unit responses. Hence, this section investigates five
different motor unit populations and three different thicknesses of the subcutaneous fat tissue
layers (see Section 8.1.1). Thereby, for each virtual muscle, the mean cosine similarity of the
motor unit electric potentials as well as the motor unit magnetic fields across the muscle’s
motor unit pool is computed.

Figure 8.6 shows that the average cosine similarity of the motor unit magnetic fields is
lower than for the motor unit electric potentials. For example, for a thickness of 5 mm of
the subcutaneous fat tissue, the mean cosine similarity is 0.38 for the motor unit magnetic
fields and 0.76 for the motor unit electric potentials. Further, with increasing thickness of the
subcutaneous fat, for the motor unit electric potentials, the mean cosine similarity increases.
In contrast, there is no significant relation between the cosine similarity of the motor unit
magnetic fields and fat tissue thickness. In conclusion, it can be expected that more motor
units can be decomposed from the high-density MMG than from the high-density surface EMG.

Figure 8.6: Mean cosine similarity of the motor unit electric potentials (red) and the motor unit mag-
netic fields (blue) across the whole motor unit pool depending on the thickness of the
subcutaneous fat tissue. The markers denote the average values from all virtual muscles,
and the shaded areas represent the corresponding standard deviations.

8.3.4 The Influence of the Spatial Configuration of the Motor Units

This section uses the in silico environment to examine the influence of the spatial configuration
of the motor unit territories on the uniqueness of the corresponding motor unit electric
potentials and motor unit magnetic fields. Hence, three motor units, i.e., superficial, centred
and deep, from one virtual muscle are considered. The muscle has a fat tissue thickness of 5 mm.
For each selected motor unit, the cosine similarity of the motor unit action signals is correlated
with the spatial configuration of the motor unit territories. In detail, for each grid point of
the muscle, the mean cosine similarity between the reference motor unit response and the mo-
tor unit responses of all motor units for which fkr > 0 holds at the selected grid point is computed.
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Figure 8.7 showcases that the uniqueness of the motor unit electric potentials correlates with
the depth of the motor unit territory. That is, the fraction of the muscle’s cross-sectional area
with a mean cosine similarity larger than 0.9 is 3.0 % for the superficial motor unit, 18.4 % for the
centred motor unit and 24.5 % for the deep motor unit. For the MMG, there is no considerable
correlation between the depth of the motor units and the uniqueness of the motor unit magnetic
fields. In detail, the fraction of the muscle’s cross-sectional area with a mean cosine similarity
larger than 0.9 is always less than 1 %. Thus, it is expected that the MMG decomposition will
be less affected by variations in the depth of the motor units.

Figure 8.7: Uniqueness of three randomly selected motor unit electric potentials (top row) and motor
unit magnetic fields (bottom row) depending on the (spatial) positions of the motor units.
Black circles visualise the territories of the considered motor units. The colour map indicates
the mean cosine similarity between the motor unit response of the selected motor unit and
all other motor unit responses located at the respective grid point.

8.4 In Silico Trials for Investigating the Separability of EMG and
MMG

In Section 8.2, it was shown that EMG and MMG of voluntary contractions share the same
generative model. Solving the inverse problem, i.e., inverting Equation (8.3), allows to study
individual motor units in vivo. This is known as motor unit decomposition. For surface EMG,
this is possible by utilising blind source separation methods. However, the similarity of motor
unit electric potentials limits the number of motor units that can be reliably decomposed. In
Section 8.3, it was shown that motor unit responses are less similar when high-density MMG
is measured instead of high-density EMG. Hence, this section investigates non-invasive MMG-
based motor unit decomposition and compares the results to surface EMG-based motor unit
decomposition.This is achieved by performing in silico trials that integrate the knowledge of the
forward mixing model into state-of-the-art motor unit decomposition algorithms1.

1The methods and results presented in this section have been elaborated in close collaboration with Lena
Lehmann and Francesco Negro. The contributions of Lena and Francesco are greatly acknowledged
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8.4.1 In Silico Framework for Predicting Upper Bound Accuracy Estimates of
Motor Unit Decompositions

The motor unit responses are unknown when decomposing experimentally acquired EMG
or MMG signals. Hence, motor unit decomposition requires the solution of an optimisation
problem to estimate the forward mixing model. Thereby, the selected algorithm strongly
affects the decomposition results. To focus on the influence of the signal properties, this work
introduced an in silico trial platform that can predict upper-bound accuracy estimates of motor
unit decompositions [cf. 142]. In short, for simulated data, the motor unit responses are known.
They can, therefore, be directly integrated into the workflow of state-of-the-art (blind source
separation-based) motor unit decomposition algorithms [cf. e.g., 30, 125, 194]. Hence, for a
set of virtual muscles, the motor unit electric potentials and the motor unit magnetic fields
are simulated with the multi-domain simulation framework (see Part II). Further, interference
signals corresponding to different contraction intensities are computed via Equation (8.3).
Finally, the motor unit spike trains are optimally reconstructed with the proposed methodology.
The proposed approach is schematically illustrated in Figure 8.8.

First, it is exploited that any convolutive mixing model with finite impulse response filters
(see Equation (8.3)) can be transformed into an instantaneous mixture of extended sources and,
hence, a matrix system [e.g., 194]. Therefore, the signal ψt

i , consisting of M observations at time

frame t, is expanded by K time instances to yield an extended observation vector ψ̃t ∈ RKM :

ψ̃t =
[
ψt

1, ψ
t−1
1 , ... , ψ

t−(K−1)
1 , ... ,

ψt
M , ψ

t−1
M , ... , ψ

t−(K−1)
M

]T
.

(8.5)

Here, the chosen extension factor K equals the dimension of the motor unit responses L. The
extended observations ψ̃t can be computed by

ψ̃t = H̃ s̃t . (8.6)

Therein, the extended spike train vector s̃t ∈ RN(L+K−1) is derived from the spike trains stk, i.e.,

s̃t =
[
st1, s

t−1
1 , ... , s

t−(L−1)−(K−1)
1 , ... ,

stN , s
t−1
N , ..., s

t−(L−1)−(K−1)
N

]
T .

(8.7)

Further, the mixing matrix of the extended system H̃ ∈ RKM×N(L+K−1) is given by

H̃ =


H̃11 H̃12 ... H̃1N

H̃21 H̃22 ... H̃2N

... ... ... ...

H̃M1 H̃M2 ... H̃MN

 , (8.8)

where the block matrices H̃ ij ∈ RK×(L+K−1) are defined as

H̃ ik =


h0
ik h1

ik ... hL−1
ik 0 ... 0

0 h0
ik ... hL−2

ik hL−1
ik ... 0

. . ... . . ... .

. . ... . . ... .

. . ... . . ... .
0 0 ... . . ... hL−1

ik

 . (8.9)

Therein, htik denote the motor unit responses.
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Figure 8.8: A-D: Schematic illustration of the generative model of MMG during voluntary contractions.
(A) The discharge patterns of motor neurons in the spinal cord control the activity of
skeletal muscles. (B) Every neural stimulus at a muscle fibre’s neuromuscular junction
triggers a muscle fibre action potential. (C) The spatiotemporal summation of the action
potentials yields a characteristic motor unit magnetic field (MUMF) for each motor unit.
(D) The simultaneous activity of multiple motor units mixes the motor unit magnetic fields
according to the firing instances of the motor units. (E) Concept of a state-of-the-art motor
unit decomposition algorithm. Instead of solving a blind source separation problem, we
use the known motor unit responses to obtain upper-bound decomposition performance
estimates.

Instead of directly inverting Equation (8.6), the signal extension is followed by a whitening
transformation [cf. e.g., 134]. This linear transformation is used to decorrelate the signals, i.e.,

zt = Wψ̃t , (8.10)

such that the covariance matrix of the extended observations, i.e., Czz, is the identity matrix
(see Figure 8.8E). Here, ZCA (zero-phase component analysis) whitening is applied [144], in
which the whitening matrix W is constructed from the eigendecomposition of the extended
signals covariance matrix C

ψ̃ψ̃
, i.e.,

W = V D−
1
2V T . (8.11)

Therein, D is a diagonal matrix containing in increasing order the eigenvalues ej (j = 1, ...,KM)
of the extended signals covariance matrix C

ψ̃ψ̃
and V is the corresponding eigenvector matrix.

Note that eigenvalues that are numerically zero, i.e., ej < ε ·KM , with ε denoting the modulus
of the distance from the maximum eigenvalue to the next larger floating point number, are
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discarded for the calculation of the whitening matrix W . Accordingly, the mixing model for the
extended and whitened observations reads

zt = WH̃ s̃t = (WH̃) s̃t . (8.12)

Therein, the mixing matrix (WH̃) is equivalent to the extended and whitened motor unit
responses. Next, the motor unit spike trains are estimated by approximating a solution for the
linear system given in Equation (8.12). For the presented in silico trials, this is achieved by
correlating the whitened motor unit responses with the extended and whitened signal zt, i.e.,

ŝtk = (Wh̃k)Tzt ,

h̃k =
[
hL−1

1k , hL−2
1k , ..., h0

1k, ...,

hL−1
Mk , h

L−2
Mk , ..., h

0
Mk

]T
.

(8.13)

Therein, ŝtk is the reconstructed spike train of motor unit k at the discrete time instance t.

Further, h̃k denote the extended motor unit responses. Notably, the motor unit responses
need to be sorted from the last to the first time instance. The evaluation of Equation (8.13)
is impossible for experimentally acquired signals as the mixing matrix is unknown. Hence,
inverting Equation (8.12) requires solving a blind source separation problem.

Ultimately, the estimated spike trains ŝtk yield a real number for each time frame and motor
unit (cf. Figure 8.9). For each motor unit k, the relative size of ŝtk measures the probability that a
discharge occurs at time frame t. To obtain for each motor unit k a binary spike train ŝ′ tk , a peak
detection method is applied to the estimated spike trains ŝtk. Further, the k-means clustering
algorithm [79, 157] is applied to identify (potential) false-positive firings, i.e., separating the
spikes into two clusters whereby the cluster centroids are initialised by the minimum peak
height and the maximum peak height, respectively.

8.4.2 Measures of Decomposition Performance

Different performance metrics are computed to evaluate the separability of high-density EMG
and MMG. Therefore, the predicted spikes are classified for each motor unit k (k = 1, ..., N)
into the true-positive spikes TPk that represent the firings that appear in the true spike train stk
and in the predicted spike train ŝ′ tk with a maximal delay of ±0.5 ms. Further, the false-positive
spikes FPk are the firings only included in the predicted spike train ŝ′ tk and the false-negative
spikes denote the firings that are only included in the true spike train stk. Thereby, for each
motor unit k (k = 1, ..., N) the rate-of-agreement RoAk is given by

RoAk =
|TPk|

|TPk|+ |FPk|+ |FNk|
, (8.14)

where |TPk| is the number of true-positive spikes, |FPk| is the number of false positive spikes
and |FNk| is the number of false-negative spikes. The uncertainty of identifying the firings of
motor unit k from a given interference signal is evaluated by computing for each motor unit k
(k = 1, ..., N) the silhouette coefficient [cf. e.g., 194], i.e.,

SILk =

∑
p∈TPk

Dpk
nospike−

∑
p∈TPk

Dpk
spike

max

 ∑
p∈TPk

Dpk
spike,

∑
p∈TPk

Dpk
nospike

 . (8.15)
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Therein, Dpk
spike is the euclidean distance between a true positive point of the estimated spike

train ŝpk and the mean value of all estimated true positive spike points ¯̂sp∈TPk , i.e., Dpk
spike =

‖ŝpk − ¯̂sp∈TPk‖. Accordingly, Dpk
nospike is the euclidean distance between a true positive value of

the estimated spike train spk,est and the mean value of all remaining estimated spike points not

included in the set of the true-positive spikes ¯̂sp/∈TPk , i.e., Dpk
spike = ‖ŝpk− ¯̂sp/∈TPk‖. For SILk < 0.9,

a motor unit is considered to be reliably decomposable [194].

8.4.3 Upper Bound Accuracy Estimates for EMG-Based and MMG-Based Motor
Unit Decompositions

The in silico trials that predict upper bound accuracy estimates for the decomposition of
high-density EMG and high-density MMG comprise 45 independent computational experi-
ments. Five different motor unit pools are generated, and motor unit electric potential libraries
and motor unit magnetic field libraries are simulated for three different fat tissue layers
(see Section 8.1.1). For these 15 virtual muscles 30 s long steady isometric contractions are
simulated via Equation (8.3) and repeated for three different contraction intensities, i.e., low
MVC, medium MVC and high MVC. The interference signals obtained from these simulations
are analysed with the decomposition framework introduced in Section 8.4.1.

Figure 8.9 shows for three motor units the spike trains that are estimated from high-density
EMG (top row) and high-density MMG (bottom row). The first motor unit can be perfectly
reconstructed from both high-density EMG and high-density MMG, i.e., the rate-of-agreement
is 100 %. Further, the robustness of the decomposition is reflected in the silhouette coefficients,
which are 0.98 for the high-density EMG and 0.97 for the high-density MMG. The second motor
unit is considered to be reliably identifiable from both high-density EMG, i.e., SIL = 0.91, and
high-density MMG, i.e., SIL = 0.95. However, while the spike train is perfectly reconstructed
from the high-density MMG signal, the rate-of-agreement is only 92.6 % for the EMG-based
decomposition. The last exemplary selected motor unit can only be reliably identified from the
high-density MMG. The poor reconstruction of the spike train obtained from the high-density
EMG is reflected in the silhouette coefficient and the rate-of-agreement. That is, the silhouette
coefficient is 0.78. This is considerably lower than the threshold value of 0.9. Further, the
rate-of-agreement is only 5.2 %.

Figure 8.10 summarises the results of all conducted in silico trials. The fraction of separable
motor units, i.e., the number of motor units with SILk > 0.9 divided by the number of active
motor units, is related to the thickness of the subcutaneous fat and the contraction intensity.
For both high-density EMG and high-density MMG, the fraction of separable motor units de-
creases with the thickness of the fat tissue layer. Further, the fraction of separable motor units
negatively correlates with the contraction intensity. Notably, for all conditions considered, the
decomposition performance of the high-density MMG is superior to that of the high-density
EMG. In detail, the fraction of separable motor units increases between 56 % and 116 % when
decomposing high-density MMG instead of high-density EMG. The accuracy of the spike train
estimation is reflected in the rate-of-agreement. That is, the mean rate-of-agreement for the
set of reliably decomposable motor units is 98.1 % for the high-density EMG and 99.7 % for the
high-density MMG. The mean rate-of-agreement for the motor units that are classified as not
reliably identifiable, i.e., SILk < 0.9, is 20.5 % for the high-density EMG and 64.3 % for the
high-density MMG. This indicates that the chosen thresholding method might underestimate
the potential performance benefit when decomposing high-density MMG instead of high-density
surface EMG.
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Figure 8.9: Exemplary spike trains estimated from high-density EMG (top row) and high-density MMG
(bottom row). Each column represents one randomly selected motor unit. Green circles
correspond to true positive spikes, red circles to false positive spikes, and orange circles to
false negative spikes. All predicted spike trains are normalised to the mean values at the
true positive spikes.

Figure 8.10: Fraction of motor units that can be reliably identified by decomposing high-density EMG
(red) or high-density MMG (blue). All results are shown for three different contraction in-
tensities (left to right) depending on the thickness of the subcutaneous fat tissue layer. The
markers indicate mean values, and the shaded areas represent the corresponding standard
deviations.

8.4.4 Difference in Separable Motor Units

The previous section demonstrated that high-density MMG can decompose more motor units
than high-density surface EMG. This section investigates if there is a difference between motor
units which can be decomposed from MMG and EMG. Figure 8.11A subdivides the motor
units classified as reliably decomposable into three groups. That is, 25 % of the motor units
can be reliably decomposed from both high-density EMG and high-density MMG, 1 % of the
motor units are only identifiable from high-density EMG and 19 % of the motor units can
only be reconstructed from high-density MMG. In summary, non-invasive MMG-based motor
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unit decomposition nearly identifies all motor units that can be decomposed from high-density
surface EMG. However, the MMG decomposition allows to observe motor units that cannot be
identified with the EMG-based decomposition.

Next, it is investigated if the motor units detected only through the MMG-based decompos-
itions have common characteristics. Figure 8.11B and Figure 8.11C map for both EMG and
MMG the fraction of identifiable motor units to the anatomical position of the motor units.
It can be observed that the EMG-based decomposition has a strong bias to detect superficial
motor units. In detail, when the muscle is subdivided into a superficial part and a deep part,
67 % of the motor units from the superficial part are classified as separable. However, only 4 %
of the motor units from the deep part are classified as detectable. The MMG-based motor unit
decomposition also tends to identify more superficial motor units, cf. Figure 8.11C. However,
considerably more deep motor units can be reliably decomposed, i.e., 88 % of the superficial
motor units and 41 % of the deep motor units are classified as detectable.

Figure 8.11: (A) Fraction of motor units reliably decomposable in all in silico trials. (B) Fraction of
motor units identifiable with HD-EMG depending on the spatial position of the motor
units. (C) Fraction of motor units identifiable with HD-MMG depending on the spatial
position of the motor units. The dashed horizontal lines in (B) and (C) show the boundary
between the muscle’s superficial and deep parts.

8.4.5 Relevance of MMG Properties

This section examines which properties of the MMG are particularly relevant for obtaining good
decomposition results. First, the relevance of the individual MMG components is examined.
Hence, the proposed in silico motor unit decomposition framework (cf. Section 8.4.1) is applied

to each MMG component individually, i.e., the x
‖
f -component, the x

‖
t -component and the

x⊥t -component. From Figure 8.12A, it can be observed that the fraction of separable motor
units for the individual MMG components is between the values of high-density EMG-based
decomposition and high-density (vector) MMG-based decomposition. Notably, the MMG
components transversal to the muscle fibre direction yield a better decomposition performance
than the MMG component aligned with the muscle fibres. The fraction of separable motor
units is highest for the MMG component normal to the body surface. In detail, defining the
vector MMG-based decomposition as a reference solution, the fraction of separable motor units

decreases by 34.4 %, 24.4 % and 18.0 %, for the scalar MMG components x
‖
f , x

‖
xf and x⊥xf ,

respectively.

The magnetic field is a three-dimensional vector field. Hence, when using vector magnetomet-
ers, a high-density MMG signal has three times more channels for the same number of sampling
points than a corresponding high-density EMG signal. Therefore, it is investigated if the higher
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number of channels causes the superior separability of high-density MMG signals. This is tested
by applying the decomposition workflow to two data sets only considering every third and every
sixth MMG sensor. The corresponding decomposition results are summarised in Figure 8.12B.
It can be observed that with only 12 vector magnetometers, the high-density MMG decomposi-
tion identifies more motor units than the EMG-based decomposition, which uses an array of 70
electrodes. Further, for an array with 24 vector magnetometers, the decomposition performance
is nearly as good as for the 70-MMG-sensors case. In detail, using only every third and every
sixth MMG sensor decreases the fraction of separable motor units by 2.6 % and 34.2 %, respect-
ively. Hence, it is concluded that measuring a vector field instead of a scalar field is the most
important feature of the MMG to explain its superior decomposition performance.

Figure 8.12: Fraction of separable motor units considering all in silico trials. (A) Decomposition per-
formance for the individual MMG components. (B) Decomposition performance when
using a reduced number of MMG sensors.

8.5 Summary and Discussion

This chapter investigates the use of EMG and MMG to decode the voluntary drive to a
muscle through simulations. First, it is shown that both EMG and MMG signals exhibit
positive and destructive interference. This behaviour can be described by a linear convolutive
model [44, 70], which depends on the firing instances of the motor neurons and the motor
unit responses. Hence, signals stemming from voluntary contractions depend on the neural
drive to the muscle and the state of the muscle itself [cf. e.g., 45, 67, 70]. Therefore, no
univocal relation exists between the voluntary drive to the muscle and the signal amplitude
(see Section 8.2.3). Thus, the current gold standard for decoding the neural drive to a muscle
in vivo is decomposing (high-density) EMG signals [11, 177] into the firing times of individual
motor units [e.g., 30, 47, 124, 194]. For surface EMG, the similarity of the motor unit electric
potentials limits the number of motor units that can be reliably decomposed [75]. This is
caused by the body’s low-pass filtering effect. In Section 8.3, it is shown that non-invasive
high-density MMG is superior over high-density surface EMG to discriminate different motor
units, i.e., particularly for motor units with overlapping territories as well as for motor units
located deep within the muscle. This makes MMG-based motor unit decomposition a promising
alternative to the well-established EMG-based decomposition.
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In Section 8.4, a novel in silico trial framework is introduced to predict upper bound
accuracy estimates of motor unit decompositions. Using an in silico testing framework has
several advantages. Decomposing experimentally recorded EMG or MMG signals requires
solving a blind source separation problem. Thereby, the results are influenced by the selected
decomposition algorithm. In contrast, one can consistently achieve the best achievable
decomposition in the presented in silico testing framework. This is possible as one can use
the knowledge about the forward model to solve the inverse problem. Yet, as the motor unit
decomposition problem is typically ill-conditioned, even with the full knowledge of the forward
model, a perfect reconstruction of the spike trains is only sometimes feasible. Further, during
in vivo experiments, the biophysical properties of the body are associated with considerable
uncertainty. This makes it very challenging to relate the results of motor unit decompositions
and the properties, the anatomy and the function of the body. This work shows that the
decomposition goodness for both EMG and MMG is negatively correlated with subcutaneous
fat tissue thickness and contraction intensity. This is consistent with decomposition results
from experimentally measured surface EMG signals [e.g., 52, 75, 203], even if other factors
may play a role [250]. The simulation environment also allows us to systematically study
the differences between EMG-based and MMG-based motor unit decomposition. Notably,
the decomposition of high-density MMG detects nearly all motor units that can be decom-
posed from the corresponding high-density EMG signal. However, while surface EMG-based
decomposition is limited to detecting motor units up to a depth of approximately 20 mm,
the non-invasive MMG-based decomposition can also decompose deeper motor units. The
predicted depth limit of the surface EMG-based motor unit decomposition is in agreement with
experimental observations [cf. 82, 220]. This underlines the predictive power of the presented
in silico trials. Finally, in Section 8.4.5, it is shown that the most important property for
explaining the MMG’s superior separability is that a three-dimensional vector field is considered.
This property is more important than the fact that magnetic fields propagate differently than
electric fields in the body. The latter is often considered as the most relevant advantage of MMG.

The simulation results presented in this chapter are upper-bound accuracy estimates of
motor unit decompositions. Whether the theoretical advantages of MMG-based motor unit
decomposition also apply to experimentally measured signals depends on many factors.
The simulations presented assumed ideal magnetometers. Yet, magnetometers that are
currently used to measure biomagnetic fields, most importantly, the superconducting quantum
interference device (SQUID) [e.g., 35, 143] and optically pumped magnetometers (OPMs)
[e.g., 14, 95, 205, 231], still have some limitations for high-density MMG measurements. For
example, SQUIDs require cryogenic cooling. Hence, SQUIDs must be placed several centimetres
away from the skin. Further, SQUIDs are rigid devices (typically in a helmet-like geometry)
that do not provide the flexibility required to cover different muscles. OPMs can overcome
those limitations. However, OPMs still have shortcomings regarding the bandwidth (most
sensors act as a low-pass filter with a cutoff frequency in the range of 150 Hz to 300 Hz) and the
achievable grid density (typical sensor footprint sizes are in the range of 1 cm2 to 4 cm2). The
application of other magnetometers to measure MMG is currently subject to basic research,
for example, magnetoelectric sensors [273] or nitrogen-vacancy centres [267]. Further, it was
assumed that the signals are not affected by noise. However, experimentally measured EMG
or MMG signals are affected by different sources of physiological noise, e.g., cross-talk from
other muscles or (small) motions, and non-physiological noise, e.g., ambient electromagnetic
fields or imperfections of the detection system. The influence of these factors needs to be
examined in the future. We also note that solving a blind source separation problem strongly
depends on the implemented optimisation schemes. Moreover, the utilised biophysical model is
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an idealised representation of the underlying physiology and anatomy. For example, the motor
units are characterised by the mean firing rate, muscle fibre diameter, territory, and fibre load.
However, the respective parameters’ distribution and the corresponding assumptions’ validity
might vary considerably between different muscles, subjects or patients. This shortcoming is
substantiated by the fact that we considered an idealised cube-shaped tissue geometry. Despite
the advantage that geometrical effects do not play a role in the presented results, the influence
of muscle geometry needs to be explored in the future. This can easily achieved by applying the
proposed methodology to realistic muscle geometries discretised by the finite element method
[cf. e.g., 159, 185, 234].

This chapter shows that high-density MMG can become the new gold standard for recording
single motor unit activity non-invasively and in vivo. Further experimental research is required
to prove the theoretical predictions presented within this work. This should be feasible within
the next decade. The proposed in silico decomposition framework can be used to optimise
high-density MMG recording systems, establish a systematic understanding of motor unit de-
composition results, and benchmark the performance of motor unit decomposition algorithms.





9 Summary, Discussion and Conclusion

9.1 Summary and Context

EMG is a well-established experimental methodology to study the neuromuscular system in
vivo. The associated challenges, as well as its limitations, have been discussed extensively
in the scientific literature [e.g., 45, 67, 70, 175]. In contrast, MMG represents an emerging
method that has recently gained attention due to progress in the field of sensor technology
[e.g., 14, 95, 205, 231] and the signal’s physical properties [e.g., 18, 20, 140, 154, 270]. EMG
and MMG measure the same biophysical phenomenon, i.e., the electric activation of skeletal
muscles, and hence, contain similar information on the body’s function. However, no systematic
comparison between both signals exists. Thus, this work introduces a computational model for
simulating muscle-induced bioelectromagnetic fields. This enables detailed in silico investiga-
tions of EMG and MMG, which can provide insights into muscle-induced bioelectromagnetic
fields that would not be easily accessible using experimental methods. Hence, the presen-
ted work contributes to developing methodologies for studying the neuromuscular system in vivo.

In summary, a novel bioelectromagnetic multiscale model of skeletal muscle tissue was
developed, see Chapter 5. Notably, the multi-domain skeletal muscle model integrates a
well-established (microscopic) description of the muscle fibre membrane’s electrophysiology
[e.g., 2, 27, 121, 237] and the most relevant structural as well as functional features of skeletal
muscle tissue into a multiphase macroscopic continuum model. The proposed model can be
described as a skeletal muscle-specific bidomain-like model [cf. e.g., 37, 110] and is expected
to have strong predictive capabilities. To simulate muscle-induced bioelectromagnetic fields in
the whole body, the multi-domain skeletal muscle model can be coupled to a volume conductor
model, i.e., representing electrically inactive tissues surrounding the muscle, for example, fat,
connective tissues or the skin. Further, the modelling framework allows the computation of the
muscle-induced magnetic field. As no analytical solution exists for the described mathematical
model, a numerical discretisation scheme for approximating the proposed model equations was
developed, see Chapter 6. The resulting computational model was validated by performing a
set of convergence studies.

Using muscle-induced bioelectromagnetic fields within biomedical applications requires a
solid understanding of the relation between the biophysical processes in the body and the
spatiotemporal patterns of the measurable signals. This work presents the first detailed
comparison of compound muscle electric potentials and compound muscle magnetic fields, see
Chapter 7. That is, the EMG or MMG signal generated by the synchronous activity of multiple
muscle fibres. Thus, the results presented are comparable to EMG or MMG of electrically or
reflex-evoked contractions [e.g., 15]. EMG or MMG of artificially evoked contractions is more
straightforward to interpret than signals stemming from voluntary contractions. Nevertheless,
it is impossible to control all system parameters experimentally. In contrast, the simulation
framework allows the investigation of each relevant factor. This work simulated muscle-induced
bioelectromagnetic fields for idealised cube-shaped fusiform skeletal muscles, where the influence
of complex muscle architectures can be neglected [cf. e.g., 19, 177]. It is shown that EMG
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and MMG signals depend on the number of active muscle fibres, the depth of the active fibres,
the properties of the recruited muscle fibres, the electric properties of the tissues, and the
spatial configuration of the detection system. These factors are typically unknown for in vivo
studies. Thus, studies correlating surface EMG signals and the biophysical state of the body
are often associated with considerable uncertainty. This work demonstrates that MMG is
subject to the same sources of uncertainty. One of surface EMG’s most extensively discussed
properties is the spatial low-pass filtering effect, depending on the exact properties of the body
[e.g., 66, 159, 219]. This effect inherently limits the sparsity and, thus, the spatial selectivity of
surface EMG measurements. This work demonstrates that the sparsity of MMG signals is less
sensitive to changes in the body’s properties or anatomy. The increased spatial selectivity can
decrease the influence of amplitude cancellation when recording interference signals [e.g., 67],
potentially reduces the effect of cross-talk from nearby muscles [e.g., 71, 240, 248] and might
lead to more accurate results of source localisation methods [97]. Further, the computational
model allows us to examine the relevance of different currents for explaining a measurable
MMG signal. The simulations predict that both MMG components orthogonal to the muscle
fibres strongly reflect intracellular currents. Further, it is noted that the model predicts an
unexpectedly large contribution of currents in the non-recruited muscle fibres to the overall
magnetic field. Intracellular currents can not be detected with EMG. Whether this provides
any advantage for biomedical applications needs to be studied in the future.

EMG measurements are routinely used to decode the neural control signals to the muscle, for
example, for studying motor control [e.g., 63, 69, 70] or for driving human-machine interfaces
[e.g., 73, 78, 90, 123, 258]. However, no univocal relation between the EMG’s signal amplitude
and the muscle force exists [e.g., 56, 67, 83]. Hence, the current gold standard for reconstructing
the voluntary drive to a muscle is the decomposition of EMG signals into the spike trains of
individual motor units [e.g., 51, 63, 124, 194]. However, (non-invasive) surface EMG-based
motor unit decomposition is limited to detecting only a small subpopulation of motor units
from a whole motor unit pool. Better results can only be achieved by using invasive high-
density needle electrodes [e.g., 186, 187]. This is caused by the body’s spatial-low pass filtering
effect, which increases the similarity between different motor unit electric potentials such that
they often become indistinguishable [75]. Chapter 8 compares the use of MMG and EMG for
decoding voluntary contractions It is shown that EMG and MMG of voluntary contractions can
be described by the same generative model [cf. 44]. Accordingly, both signals exhibit positive
as well as destructive interference. Hence, as for EMG, there is no univocal relation between the
amplitude of the MMG signal and the neural drive to the muscle. This work compares MMG-
and EMG-based motor unit decompositions by using a novel in silico trial framework. The in
silico trials integrate the presented computational skeletal muscle model into the workflow of
blind source separation-based motor unit decomposition algorithms [e.g., 30, 125, 194]. It is
shown that non-invasive high-density MMG-based motor unit decomposition is superior to high-
density surface EMG-based motor unit decomposition. The fraction of motor units that can be
robustly decomposed nearly increases by a factor of two. Notably, decomposing non-invasively
measured MMG data also allows the detection of rather deep motor units. This is not possible
when decomposing high-density surface EMG [82, 220]. Further, the most important feature
explaining the MMG’s superior separability is that a three-dimensional vector field is considered.
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9.2 Discussion

9.2.1 Validation and Limitations

A direct validation of the proposed simulation framework is currently out of scope due to meth-
odological limitations. However, as the proposed model consistently integrates a validated mi-
croscopic electric circuit model of the muscle fibre membranes [2, 27, 121, 237], i.e., the source
of EMG and MMG, into a macroscopic continuum model respecting Maxwell’s equations, it is
emphasised that the proposed multiscale model provides strong predictive capabilities. This is
underlined by various experimental observations correctly predicted by the presented simulation
framework. For example, the muscle fibre conduction velocities predicted by the computational
model are perfectly in the range of experimental observations, i.e., approximately 2.5 m s−1 to
5 m s−1 [5]. Further, the EMG signals predicted by the multi-domain model replicate the key fea-
tures of (experimentally acquired) EMG data, for example, regarding the signal shape [147, 177],
the amplitude decay [82], the effect of fat tissue [9, 219], the signal’s frequency content [46] as
well as the interference patterns observed during voluntary contractions [44, 45, 67, 70]. Com-
parable data has yet to be recorded for MMG. Nevertheless, the presented in silico predictions
are qualitatively in agreement with existing experimental measurements. First, the model re-
spects the observation that the compound muscle responses recorded via EMG and MMG have
the same temporal duration and show similar frequency content [38, 207, 271]. Further, the
bi-phasic shape of the magnetic field generated by the active muscle fibres is in agreement with
the measurement of the magnetic field induced by an isolated muscle fibre [cf. 256] or an isolated
axon [e.g., 225]. Yet, experimentally measured compound muscle magnetic fields show variable
multi-phasic shapes [e.g., 19, 20]. This agrees with the simulated MMG signals. Multi-phase
shapes are caused by volume currents in the extracellular space or end-of-fibre effects. However,
as volume currents strongly depend on the exact tissue geometry and the electric tissue prop-
erties, a direct comparison to existing experimental data is impossible. Nevertheless, it should
be noted that the presented continuum modelling approach allows high flexibility to resolve
arbitrary muscle geometries when employing discretisation schemes such as the finite element
method [e.g., 269]. Moreover, this work focused on the physical properties of muscle-induced
bioelectromagnetic fields. Hence, idealised sensors are considered, i.e., having the ability to re-
cord the physical fields from a single point in space, the capability to sample the full bandwidth
of the physical fields and the measurements are not affected by noise. However, for comparing
in silico predictions with experimental data, the properties of the EMG electrodes or MMG
sensors need to be considered.

9.2.2 Contextualisation of the Proposed Simulation Framework

Mathematical models have been an essential tool to describe the behaviour of excitable tissues
[e.g., 110, 214, 221] or cells [e.g., 116, 121, 200] and for assisting the interpretation of
bioelectromagnetic fields [e.g., 138, 163, 212]. For example, volume conductor models, cf.
Section 4.2.1, are commonly used for EEG-based or MEG-based neuro-imaging techniques
[e.g., 98, 204, 228, 257] and for the simulation of EMG signals [e.g., 179, 242]. Further, the
bidomain model, cf. Section 4.2.2, has provided essential insights into the properties of the elec-
tric signals generated by the heart as well as the biophysics of defibrillations [e.g., 37, 110, 253].
The most relevant difference between volume conductor models and the bidomain model is their
capabilities to explain the generation of a bioelectromagnetic field mechanistically. Volume
conductor models are appropriate when the fundamental properties of the (relevant) bioelectric
sources are known and can be described independently from the body’s electric potential field.
Therefore, volume conductor models typically use phenomenological descriptions of the bioelec-
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tric sources. The origin of the magnetic field generated by a skeletal muscle has yet to be fully
explored. Hence, this work introduced a novel multiscale simulation framework that can mech-
anistically link the function and structure of the tissue to the observed bioelectromagnetic fields.

The class of bidomain-like models [e.g., 23, 42, 182, 221, 246, 254] represents the most
prominent example of tissue-scale models that directly link the propagation of electric signals
in the body to the biophysical function of a tissue. Therefore, the cell membrane dynamics and
the tissue’s most relevant microstructural features are integrated into a multiphase macroscopic
continuum model. However, none of the existing bidomain-like models can adequately resolve
the electrophysiological behaviour of skeletal muscle tissue. Most importantly, bidomain-like
models fail to adequately resolve a skeletal muscle’s functional organisation in motor units.
Hence, this work introduces a skeletal muscle-specific extension of the bidomain model, cf.
Chapter 5. For deriving the multi-domain equations, it is assumed that at each material point,
the behaviour of each intracellular domain can be modelled by considering the microscale
interaction between one representative muscle fibre for each motor unit and the surrounding
extracellular space. Further, the consistency of the macroscopic charge balance is guaranteed
by introducing a mesoscale motor unit density parameter, i.e., resolving the local motor unit
composition of the tissue. Notably, a multi-domain model can also be obtained by homogenising
the behaviour of multiple cells [cf. 23, 42]. This would require formulating the intracellular
current balance equations considering the overall membrane surface area of all cells associated
with an intracellular domain. In the classical bidomain model, a representative control volume
can be reduced to a single cell interacting with the extracellular space. Hence, both modelling
assumptions will yield the same results. However, the two assumptions for a multi-domain
approach will result in different biophysical tissue properties. While the conduction velocity
of action potentials for the presented multi-domain model of skeletal muscle tissue is strongly
associated with the shape and the function of a single cell, for the alternative approach, the
propagation of electric signals in the tissue reflects an ensemble property of multiple cells.

Computing the solution of the microscopic membrane models at each discretisation point is
associated with significant computational demands. Hence, using bidomain-type models typ-
ically requires the development of efficient numerical methods as well as the use of large-scale
computational facilities [e.g., 16, 80, 94, 145, 162]. Thus, when the properties of the electric
sources can be described with sufficient precision a priori, a volume conductor model provides a
better trade-off between the computational cost and the accuracy of the simulations. Finally, it
is noted that the presented model considers isometric conditions. However, muscle contraction
is associated with large deformations. EMG and MMG signals during motions can be simulated
by coupling the proposed bioelectromagnetic skeletal muscle model to a continuum-mechanical
skeletal muscle model [cf. e.g., 104, 105, 185, 221, 230, 234].

9.2.3 Future Directions and Biomedical Applications

The results presented within this work consider an idealised cube-shaped, fusiform skeletal
muscle. However, both EMG and MMG signals strongly depend on the geometry of the muscle
itself as well as the surrounding tissues [19, 177]. To investigate muscle geometry’s influence
on muscle-induced bioelectromagnetic fields, the in silico experiments performed within this
work should be applied to other muscle architectures. Thereby, it is noted that recording
high-density EMG allows the extraction of morphological features [177], for example, the
innervation zone or the muscle fibre direction in pinnated muscles. Such anatomical markers
can also be extracted from MMG signals [e.g., 19]. However, such methods only provide a
rough view of a muscle’s (superficial) structure. More detailed insights into the structure of
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skeletal muscles could be obtained by developing physiological imaging techniques based on
muscle-induced bioelectromagnetic fields, i.e., simulating the bioelectric source field explaining
a measured EMG or MMG signal. While inverse modelling is commonly used for localising
the neural activity in the brain [e.g., 98, 204, 228, 257], only a few studies have applied
such techniques to EMG signals [152, 180, 255] or only recently MMG signals [154]. Such
electrophysiological tomograms of skeletal muscles could, for example, provide insights on the
(spatial) recruitment strategies of muscles [111], the morphology of individual motor units
[28, 113, 241], the anatomical position of the innervation zones [153] and could ultimately be
used to track the internal deformation of the tissue. Electrophysiological images of skeletal
muscles rarely exist because surface EMG-based inverse modelling typically yields inaccurate
results due to the unknown conductive properties of the tissue. For example, for the brain,
it was shown that magnetic field-based source reconstruction provides higher accuracy than
the electric potential field-based counterpart [97]. Hence, advancing MMG might be a critical
step towards novel in vivo imaging techniques of skeletal muscles. The presented modelling
framework can be used to generate labelled test data for optimising and validating methods
that aim to reconstruct the bioelectric sources in skeletal muscles.

This work showed that non-invasive high-density MMG-based motor unit decomposition is
superior to high-density surface EMG-based motor unit decompositions, cf. Section 8.4. It
was concluded that representing a three-dimensional vector field is the most critical feature
of the MMG for explaining its outstanding separability. Nevertheless, the factors influencing
the performance of motor unit decompositions require further investigation. The latter
can be achieved by utilising the presented in silico trial framework, cf. Section 8.4.1, for
example, regarding the influence of the synchronisation of the motor neuron firings, the
size of the motor unit pool, the muscle properties as well as the muscle geometry. Further,
for the detection system, it is essential to investigate the geometrical arrangement of the
sensors as well as the influence of noise. While it was shown that the number of motor
units that can be observed is higher when decomposing MMG instead of EMG, another
significant limitation of state-of-the-art motor unit decomposition techniques is that they are
typically limited to isometric contractions. Only a few exceptions consider cyclic contractions
[e.g., 48, 89], whereby the signal can be easily windowed into quasi-isometric segments.
The fact that MMG can be used as a physiological imaging technique might open up new
possibilities for decomposing MMG signals during arbitrary motions. In particular, one can
use simulations to predict the motor unit responses for arbitrary joint positions. Further,
a fundamental challenge of in vivo motor unit decomposition is the development of proper
validation methods. One approach is to simultaneously perform needle EMG recordings as
well as surface EMG measurements and compare the similarity between the spike trains of
commonly identified motor units [e.g., 47, 124, 194]. The fact that the MMG measures
a three-dimensional vector field might enable completely non-invasive validation methods,
for example, comparing the similarity of spike trains identified from different MMG components.

This work focused on EMG and MMG signals generated by the healthy neuromuscular
system. The potential use of MMG in clinical applications, for example, as a non-invasive
diagnostic tool replacing needle EMG measurements [cf. e.g., 164], needs to be explored
in the future. The results show that – as for EMG – MMG is the linear superposition of
the signals generated by the individual motor units. This is the basis for using electrically
evoked contractions and surface EMG to perform motor unit number estimation (MUNE)
[e.g., 29]. The number of motor units is a critical biomarker to quantify the progression of
neuromuscular diseases. The equivalence regarding the signal summation of EMG and MMG
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means that MMG-based MUNE is possible. Because MMG is less biased in recording signals
from superficial motor units, MMG-based MUNE might be superior to EMG-based MUNE.
This needs to be investigated in the future. Further, the fact that the proposed multiscale model
links the function and structure of a skeletal muscle to the measurable bioelectromagnetic fields
allows us to predict EMG or MMG signals for various neuromuscular pathologies. For example,
diverse types of myotonic discharges can be simulated by implementing the corresponding ion
channel defects in the microscopic membrane model [cf. e.g., 27, 61].

The results presented in this thesis focused on the physical properties of muscle-induced
bioelectromagnetic fields. In an experimental environment, measurements are affected by
different sources of physiological noise (e.g., cross-talk from other muscles or signals stemming
from other organs such as the heart) and non-physiological noise (e.g., electromagnetic noise
from the environment or imperfections of the observation system). When conducting high-
density EMG or MMG measurements, noise can be suppressed by performing spatial filtering
[e.g., 177]. That is, computing the linear combination of the signals recorded at different
sampling points. This can be considered an approximation for the spatial derivatives of the
measured physical field. Further, spatial filtering can be used to focus on specific sources,
i.e., increasing the spatial sensitivity of a measurement [e.g., 75]. Hence, in the future, the funda-
mentals and advantages of spatial filters applied to high-density MMG need to be explored [268].

9.3 Conclusion

This work has developed methods that enable systematic in silico investigations of muscle-
induced bioelectromagnetic fields, i.e., EMG and MMG. Both signals stem from the same bio-
physical phenomenon, namely the muscle fibre action potentials, and can be used to study the
neuromuscular system in vivo. Currently, only EMG is routinely used as a clinical diagnostic
tool and in various research applications. The advantages and limitations of EMG recordings
are extensively described in the scientific literature. In contrast, MMG is an emerging tech-
nology with great potential to provide (novel) insights into the function of the neuromuscular
system. To pave the way towards using MMG in biomedical applications, this work presents
the first systematic comparison between EMG and MMG. It is shown that EMG and MMG
are complementary signals that share various common characteristics, for example, regarding
the duration of the signals and the spatiotemporal signal summation. Yet, it is shown that the
sparsity of non-invasive MMG is less affected by the properties and anatomy of the body than
surface EMG. Further, this work demonstrates that MMG recordings can push the boundaries
of non-invasive motor unit decomposition. The MMG methodology is expected to be widely
available within the next ten years. To unlock the full potential of MMG, experimental work
and theoretical studies must be carefully combined.
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