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Tunnelling in Glutamate Mutase

AtomQtunnelingQoccursQinQmanyQchemicalQreactionsQinvolvingQ

hydrogenQtransfers.QTunnelingQincreasesQtheQreactionQrateQ

comparedQtoQtheQclassicalQover-the-barrierQmodelQespeciallyQ

atQlowQtemperature.QComputerQsimulationsQcanQdirectlyQ

quantifyQtheQeffectQofQtunnelingQinQaQreactionQbyQswitchingQitQ

onQandQoff.
QQQQQ

TheQenzymeQGlutamateQmutaseQisQstudiedQbyQaQmultiscaleQ

approachQcombiningQquantumQmechanicsQwithQmolecularQ

mechanicsQ(QM/MM)QandQaQrigorouslyQimprovedQinstantonQ

theoryQforQefficientQtunnelingQrateQcalculations.
QQQQ

TheQresultsQofQtheQQM/MMQsimulationsQshowQnewQdetailsQofQ

theQcatalyzedQreactionQandQleadQtoQaQbetterQunderstandingQofQ

theQcatalysisQbyQglutamateQmutase.
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Abstract

Motivation: Catalysts for radical reactions are important in industrial processes. The
understanding of enzymes catalyzing radical reactions allows to design new biomimetic
catalysts. Computational investigations complemented by experiments can provide
better insight into the use and the control of radicals by biological systems.

Atom tunneling occurs in many chemical reactions involving hydrogen transfers. Tun-
neling increases the reaction rate compared to the classical over-the-barrier model
especially at low temperature. In many enzymes tunneling of hydrogen atoms inWu-
ences the reaction rate even at room temperature which can experimentally be observed
by unusually high kinetic isotope eUects (KIEs). The KIE is the ratio of reaction rates
of protium and a heavier isotope, e.g., deuterium or tritium. Computer simulations
can directly quantify the eUect of tunneling in a reaction by switching it on and oU. A
high KIE shows that tunneling accelerates the rate limiting step. Whether tunneling is
essential for the catalytic eUect of some enzymes is part of an ongoing scientiVc debate.
Simulations are a promising tool to gain insights on the level of atoms and electrons to
answer that question.

The reaction mechanism of glutamate mutase: The enzyme glutamate mutase cat-
alyzes the radical conversion mechanism of (S)-glutamate to (2S,3S)-3-methylaspartate
including two hydrogen transfer steps. Glutamate mutase occurs in many anaerobic
bacteria (for example in Clostridium cochlearium) that use glutamate as carbon and
energy source. The protium/deuterium KIEs measured in glutamate mutase range from
4.1 to 35 at 10°C. Thus, it is unclear whether tunneling is involved or important for the
catalytic process. Glutamate mutase is studied by a multiscale approach combining
quantum mechanics with molecular mechanics (QM/MM), with quantum mechanical
(QM) calculations used for the atoms directly involved in bond rearrangements and
force Veld calculations (MM) for the environment. The QM part is investigated with
density functional theory and coupled cluster theory.

The results of the QM/MM simulations show new details of the catalyzed reaction:
the conversion of (S)-glutamate to (2S,3S)-3-methylaspartate is found to proceed via a
fragmentation–recombination mechanism. The involved hydrogen atom transfer steps
exhibit the highest barrier, 101 kJ mol−1 (M06 functional). The barriers of the hydrogen
transfers match for density functional theory (M06 functional) and coupled cluster
(LUCCSD(T)) calculations.

Comparison of the interconversion reaction in the gas phase, water (COSMO), and
protein shows that the inWuence of the enzyme is mainly electrostatical and to a lesser
degree sterical. The calculations shed light on the atomistic details of the reaction

xiii



Abstract

mechanism. The well-known arginine claw (Arg 66, Arg 100, and Arg 149) and Glu
171 are found to have the strongest inWuence on the reaction. The arginine claw keeps
the intermediate fragments in place, and is important for the recombination process.
However, signiVcant catalytic roles of amino acids close to the active center, e.g., Glu
214, Lys 322, Gln 147, Glu 330, Lys 326, and Met 294 are found as well. These results
predict new promising experimental targets.

The role of tunneling in the enzyme glutamate mutase is investigated by QM/MM
simulations based on instanton theory with up to 78 atoms allowed to tunnel. Primary
protium/deuterium KIEs of hydrogen transfers are in good agreement with experiment.
The secondary tritium KIEs hint that coupled motions on a ribose ring of the cofactor
are part of the tunneling motions. The enzyme uses both classical and tunneling
motions for a successful catalysis.

These simulations lead to an improved understanding of the catalysis by glutamate
mutase.

Improvements to the instanton method: To investigate the role of tunneling in glu-
tamate mutase several adaptations of the instanton theory and their implementations
are required.

The instanton method (also called imaginary free energymethod) is based on Feynman’s
path integral formalism to describe quantities from statistical quantum mechanics. The
instanton is the most-likely tunneling path. The instanton is also a Vrst-order saddle
point of the Euclidean action. Tunneling rates to calculate KIEs are determined via
the second variation of the Euclidean action including the quadratic Wuctuations along
the instanton path. The problem of Vnding an instanton is addressed as a saddle-point
search problem. Four algorithms implemented to locate instantons are compared: a
modiVed Newton–Raphson method, the partitioned rational function optimization
algorithm, the dimer method, and a newly proposed mode-following algorithm. These
algorithms are tested on three chemical systems. Overall, the Newton–Raphson turns
out to be the most promising method, consistently eXcient and stable, with the newly
proposed mode-following method being the fall-back option.

Two bottlenecks are challenging in instanton rate calculations:

• Hessian calculations subsequent to the instanton optimization are expensive for
large systems like enzymes.

• At lower temperature more and more discretization points (images) on the
equidistantly discretized path tend to accumulate at the ends of the instanton
path.
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Thus, methods that allow to use fewer discretization points for the same quality in the
rates are required.

After reviewing the basic concepts of diUerential geometry necessary for a mathe-
matical formulation, a stringent higher-dimensional derivation of the instanton rate
theory is presented. Thereby, a variable step-size discretization of the instanton paths
is used. Updating strategies, like for example BoVll updates, increase the eXciency of
the rate calculations as well. Another option to save computation time is the Vxed-path
approximation. The adaptation of the variable step-size to the temperature allows to
apply instanton theory at low temperature while avoiding the accumulation of images
at the ends of the instanton path observed with the traditional constant step-size
discretization. The development of a quadratically convergent optimizer signiVcantly
increases the eXciency of instanton optimizations. In combination with a new, Wexible,
and variable discretization of the integration along the instanton, the computational
costs are reduced by one or two orders of magnitude.
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Zusammenfassung

Motivation: Die Katalyse von Radikalreaktionen spielt eine wichtige Rolle in industri-
ellen Prozessen. Ein verbessertes Verständnis der Reaktionsmechanismen von Enzymen,
die Radikalreaktionen katalysieren, ermöglicht die Herstellung neuer biomimetischer
Katalysatoren. Computersimulationen können, ergänzt durch Experimente, besseren
Einblick geben, wie biologische Systeme Radikale verwenden und kontrollieren.

Tunneln von Atomen tritt in vielen chemischen Reaktionen auf, vor allem bei sol-
chen, die WasserstoUatome involvieren. Besonders im Bereich tiefer Temperaturen
erhöht der TunneleUekt die Reaktionsraten im Vergleich zum klassischen Modell, bei
dem die Edukte mit genügend Aktivierungsenergie über die Reaktionsbarriere auf die
Produktseite gelangen. Bei vielen Enzymen beeinWusst das Tunneln von WasserstoU-
atomen sogar bei Raumtemperatur die Reaktionsrate, was sich experimentell in einem
ungewöhnlich hohen kinetischen IsotopeneUekt (KIE) zeigt. Der KIE ist das Verhältnis
der Reaktionsraten für Protium und eines schwereren Isotops, wie z.B. Deuterium
oder Tritium. Computersimulationen können die Bedeutung von TunneleUekten in
der Katalyse direkt zeigen. Der TunneleUekt kann in Simulationen im Gegensatz zum
Experiment an- oder ausgeschaltet werden. Ein hoher KIE zeigt, dass Tunneln den
geschwindigkeitsbestimmenden Schritt einer Reaktion beschleunigt. Ob das Tunneln
von Atomen essentiell für den katalytischen EUekt einiger Enzyme ist, ist Teil einer
aktuellen und aktiven wissenschaftlichen Debatte. Simulationen sind ein vielverspre-
chender Ansatz, um auf Atom- und Elektronenebene zur Klärung dieser Fragestellung
beizutragen.

Der Reaktionsmechanismus von Glutamatmutase: Glutamatmutase ist ein Enzym,
das die reversible Umlagerung von (S)-Glutamat zu (2S,3S)-3-Methylaspartat über eine
Radikalreaktion katalysiert. Es kommt in vielen anaeroben Bakterien (z.B. Clostridium
cochlearium) vor, die Glutamat als KohlenstoU- und Energiequelle nutzen. Die für
Glutamatmutase gemessenen Protium/Deuterium KIEs reichen von 4.1 bis 35 bei 10°C.
Daher ist unklar, ob Tunneln für die Katalyse eine Rolle spielt. Das Enzym Glutamatmu-
tase wird mit einem Multiskalenansatz, einer Kombination aus Quantenmechanik und
Molekularmechanik (QM/MM), untersucht. Dabei werden quantenmechanische (QM)
Rechnungen für Atome, die direkt an der Umlagerung der Bindungen beteiligt sind,
verbunden mit Kraftfeldrechnungen (MM) zur Beschreibung der Umgebung verwendet.
Der QM-Teil wird mit Dichtefunktionaltheorie und Coupled Cluster beschreiben.

Die Ergebnisse der QM/MM-Simulationen zeigen neue Details der katalysierten Reak-
tion auf Atom- und Elektronenebene: Die Umlagerung von Glutamat zu Methylaspartat
verläuft über einen Fragmentierungs-Rekombinations-Mechanismus. Die Zwischen-
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schritte, in welchen WasserstoUatome übertragen werden, weisen die höchste Barriere
auf, 101 kJ mol−1 (M06 Funktional). Für diese Reaktionsschritte stimmen die Barrie-
ren, der Dichtefunktionaltheorie (M06 Funktional) und Coupled Cluster (LUCCSD(T))
Rechnungen überein.

Ein Vergleich der Umlagerungsreaktion in der Gasphase, in Wasser (COSMO) und in
der Proteinumgebung zeigt, dass der EinWuss des Enzyms überwiegend elektrostatisch
und zu einem geringeren Anteil sterisch bedingt ist. Die Rechnungen demonstrieren
Details des Reaktionsmechanismus’ auf atomarer Ebene. Die “Argininkralle” (Arg 66,
Arg 100, und Arg 149) und die Aminosäure Glu 171 haben den stärksten EinWuss auf
die Reaktion. Die Argininkralle hält die Fragmente (Zwischenprodukte der Reaktion)
an ihrer Position. Sie spielt eine wichtige Rolle bei der Rekombination der Fragmente.
Jedoch haben auch mehrere andere Aminosäuren, z.B. Glu 214, Lys 322, Gln 147, Glu
330, Lys 326 und Met 294, in der Nähe des aktiven Zentrums signiVkanten EinWuss auf
die Reaktivität des Enzyms.

Die Rolle des TunneleUekts in Glutamatmutase wird mit QM/MM-Simulationen basie-
rend auf Instantontheorie mit bis zu 78 Atomen, die tunneln dürfen, untersucht. Die
primären Protium/Deuterium KIEs der WasserstoUüberträge stimmen gut mit den expe-
rimentellen Ergebnissen überein. Die sekundären Tritium KIEs weisen darauf hin, dass
gekoppelte Bewegungen am Ribosering des Kofaktors Teil der Tunnelbewegung sind.
Das Enzym verwendet sowohl klassische Bewegungen als auch Tunnelbewegungen für
eine erfolgreiche Katalyse.

Diese Simulationen führen zu einem verbesserten Verständis der Katalyse durch
Glutamatmutase.

Verbesserungen der Instantonmethode: Um die Rolle des TunneleUekts in Glutamat-
mutase zu untersuchen, sind Anpassungen der Instantontheorie und deren Implemen-
tierung zur Berechnung von Tunnelraten in großen Systemen notwendig.

Die Instantonmethode (auch Imaginary F Methode genannt) basiert auf Feynmans
Pfadintegralformalismus zur Beschreibung von Größen der statistischen Quanten-
mechanik. Das Instanton ist der optimale Tunnelpfad, der den größten Beitrag zur
Tunnelrate liefert. Dieser ist ein Sattelpunkt erster Ordnung des euklidischenWirkungs-
funktionals. Tunnelraten zur Berechnung von kinetischen IsotopeneUekten werden
über die zweite Variation der euklidischen Wirkung unter Einbeziehung der quadra-
tischen Fluktuationen entlang des Instantonpfades bestimmt. Vier Algorithmen zur
Instantonsuche wurden implementiert und verglichen: das Newton–Raphson Verfah-
ren, der partitioned rational function optimization Algorithmus, die Dimermethode und
eine weitere neu vorgeschlagene auf Gradienten basierende Methode. Die Algorithmen
werden an drei chemischen Systemen getestet. Das Newton–Raphson Verfahren zeigte
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die beste Stabilität und EXzienz. Die neu vorgeschlagene Methode kann als Alternative
dienen.

Zwei Herausforderungen sind bei der Berechnung von Instantonraten zu meistern:

• Die Berechnungen der Hessematrix, die auf die Instantonoptimierungen folgen,
sind für große Systeme wie z.B. Enzyme teuer.

• Bei niedriger Temperatur tendieren immer mehr Diskretisierungspunkte (Bil-
der) auf einem equidistant diskretisierten Pfad dazu, sich an den Enden des
Instantonpfades anzuhäufen.

Daher sind Methoden notwendig, die es ermöglichen, weniger Diskretisierungspunkte
bei gleicher Qualität der Rate zu verwenden.

Zunächst werden einige grundlegende Konzepte der DiUerentialgeometrie, die für
die mathematische Formulierung notwendig sind, wiederholt. Dann folgt eine konsis-
tente und stringente Herleitung einer Instantonrate für höherdimensionale Systeme.
Dabei erfolgt die Diskretisierung entlang der Tunnelpfade mit variabler Schrittwei-
te. Die Verwendung von Hessian-Updates, z.B. BoVll Updates, erhöht die EXzienz
der Ratenrechnungen ebenso. Eine weitere Möglichkeit, Rechenzeit zu sparen, ist die
Fixed-Path-Näherung. Die Anpassung der variablen Schrittweite an die Temperatur
vermeidet eine Anhäufung der Bilder, wie sie bei einer traditionellen Diskretisierung
mit konstanter Schrittweite bei niedrigen Temperaturen zu beobachten ist.

Die Entwicklung eines quadratisch konvergenten Optimierers zur Instantonbestim-
mung steigert die EXzienz der Simulationen signiVkant. In Kombination mit einer
neuen, Wexiblen und variablen Diskretisierung der Integration entlang des Instantons
reduziert sich der Rechenaufwand um ein bis zwei Größenordnungen.
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Introduction and Review

Enzymes are very eXcient and highly speciVc biological catalysts occurring in every
living organism. They create an environment to enhance the rates of the catalyzed
reaction. Understanding the mechanisms they use will help to create new bio-mimetic
catalysts with high target speciVcity. Many catalytic processes also involve tunneling
especially at low temperature.

In the following chapter the enzyme glutamate mutase will be introduced and the
results of experimental studies with glutamate mutase, especially the kinetic isotope
eUect measurements will be summarized. Then follows an overview of the basic
concepts of two diUerent commonly used rate theories and tunneling. In the last
section the computational approaches that have been used by others to study tunneling
in enzymes will be discussed. The instanton method and its advantages, which is later
on used to study tunneling in glutamate mutase is described in detail in Chapter 3.

1.1 The enzyme glutamate mutase: a radical reaction in
biology

Adenosylcobalamin-dependent glutamate mutase (GM), in IUBMB enzyme nomencla-
ture EC: 5.4.99.1, belongs to a group of enzymes that catalyze radical reactions, which
is unusual for biological systems. They use 5’-deoxyadenosylcobalamin (AdoCbl), also
called coenzyme B12, as a cofactor [1]. GM occurs as a tetramer consisting of two iden-
tical σε-dimers each made up of a σ-subunit and an ε-subunit. One cofactor is bound
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σ-subunit

ε-subunit

cofactor

Figure 1.1: Two of the four subunits of GM: a σ-subunit (blue) and an ε-subunit
(red). The cofactor AdoCbl homolytically cleaved into cob(II)alamin (gray) and a 5’-
deoxyadenosyl radical (blue), state A, and the (S)-glutamate substrate (yellow) are
shown as well. The protein consists of two identical σε-subunits.

to each σε-interface, see Fig. 1.1. GM is found in anaerobic bacteria, e.g. in Clostridium
spec. [2]. They use (S)-glutamate as a carbon and energy source and degrade it to
butyrate, CO2, NH+

4 , and H2 [3]. This work focuses on the Vrst step of glutamate
fermentation by those bacteria which starts with a reversible interconversion including
a carbon-skeleton rearrangement of (S)-glutamate (Glu) to (2S,3S)-3-methylaspartate
(MA, see Fig. 1.2) [4]. This reaction involves radical intermediates. Both, the substrate
and the product are small, stable molecules. The reaction is reversible. Thus, glutamate
mutase provides a relatively simple system to study enzymatic catalysis using radicals.

The crystal structure of the enzyme in complex with substrate and cofactor has been
determined at 1.6 Å and 1.9 Å resolution [5, 6]. NMR structures are available as well
[7–10]. Key residues in the vicinity of the active site of GM are, e.g., arginine (Arg)
149, Arg 100, and Arg 66, which form hydrogen bonds to the glutamate substrate. They
establish the so-called arginine-’claw’ [5]. The amino acid glutamate (Glu) 171 was
suggested to act as a a proton acceptor during the reaction [11]. Here and in the
following residue numbers refer to GM from Clostridium cochlearium. According to
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A B

C

E D

Figure 1.2: The rearrangement of (S)-glutamate (Glu) to (2S,3S)-3-methylaspartate (MA)
catalyzed by GM [20] (A: 5’-deoxyadenosyl radical (Ado) and glutamate (Glu); B:
Ado+H and glutamyl radical; C: Ado+H, acrylate, and glycyl radical;D: Ado+H and
methylaspartyl radical; E: Ado and methylaspartate)

the bound-free-radical hypothesis, the initial step in coenzyme B12-mediated reactions
is the homolytic cleavage of the cobalt-carbon (Co–C) bond of the cofactor, which
produces a 5’-deoxyadenosyl radical (Ado) and cob(II)alamin [12, 13]. Compared to the
following hydrogen transfer catalyzed by GM, this homolytic cleavage is fast; it is not
rate-limiting [14–16]. Therefore it is not considered in our simulations. Several reaction
mechanisms have been proposed, e.g., removal of a hydride ion or a not very likely
addition–elimination pathway [17]. This study will emphasize on the fragmentation–
recombination mechanism proposed based on experimental data [18, 19].

In the following the considered intermediates of the fragmentation–recombination
mechanism [18–20] catalyzed by GM are denoted as: the state A0 is the inactive
holoenzyme GM with AdoCbl. The initial step induced by Glu substrate in the binding
pocket is the homolytic cleavage of the cobalt-carbon bond of the cofactor, which
yields a 5’-deoxyadenosyl radical (Ado) and cob(II)alamin [12, 13], stateA (see Fig. 1.1
and Fig. 1.2). The transfer of an unpaired electron from Ado to the Glu substrate
generates the glutamyl radical and 5’-deoxyadenosine (Ado-H), stateB. Then follows
the fragmentation into acrylate and a glycyl radical, state C . Binding of glycyl to
acrylate (recombination) results in the methylaspartyl radical, state D. The back-
transfer of the unpaired electron from the substrate to Ado yields MA, state E. The
Vnal part of the catalysis in GM is reforming the Co–C bond, resulting in E0, and
product release. From experiment, it is unclear which of the individual steps is rate-
limiting. While some studies observed large deuterium Kinetic Isotope EUects (KIEs)
[21–23], which indicate the hydrogen-transfer steps to be rate-limiting, more recent
work found smaller KIEs and concludes that neither of the hydrogen-transfer steps is
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cleanly rate-limiting [24, 25].

1.1.1 Tunneling in the enzyme glutamate mutase?

Atom tunneling is involved in many chemical reactions that include hydrogen transfers.
It is a quantum mechanical eUect by which a particle can penetrate into classically
forbidden regions of coordinate space. Tunneling is also the phenomenon that light
particles (e.g. protons) with energies lower than the height of the classical barrier pene-
trate through the barrier from the reactant to the product side, which is in contradiction
to classical mechanics [26].

The probability of tunneling depends on

• the mass of particles that undergo tunneling motions and

• on the shape and

• height of the eUective barrier being crossed [27, 28].

It is most important for light particles, in particular hydrogen atoms, and narrow
barriers. Tunneling increases the reaction rate compared to the classical over-the-
barrier reaction, especially at low temperature. However, in many enzymes tunneling
of hydrogen atoms (H+, H−, or H⋅) can contribute to the reaction rate even at room
temperature [25, 29–36]. The inWuence of tunneling and its role in enzyme catalysis
is a very controversial topic [37–39]. Kinetic isotope eUects are used as indicators to
determine the contribution of tunneling [39]. The KIE manifests itself in the ratio of
the reaction rates of protium (H=1H) and a heavier isotopologue (containing deuterium:
2H or tritium 3H) in the same reaction. Changing the mass of one or more of the
atoms involved in the reaction does not fundamentally change the reacting system.
Thus, measurement of KIEs are a powerful tool to study enzymatic reactions [40–45].
The mass-dependence of the tunneling rate gives rise to high KIEs. A high KIE hints
that tunneling enhances the rate-limiting step of the reaction. From experiments it is
unclear whether tunneling plays a role in the reaction catalyzed by GM. An overview
on the experiments will be given in the following section.

1.1.2 Kinetic isotope eUect measurements in glutamate mutase

KIEs can experimentally be determined (a) by independently measuring reaction rates,
i.e., noncompetitive KIE experiments, or (b) by competitive KIE measurements, i.e.,
by assessing the isotopic distribution in the substrates and products at the same time.
A third option is to determine KIEs (c) by equilibrium perturbation through isotope
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substitution. The noncompetitive measurements (a) are direct methods and include the
determination of reaction rates for each isotopologue separately, e.g., with absorption
or emission spectroscopy (infrared, ultraviolet-visible, nuclear magnetic resonance,
Wuorescence, mass spectrometry, etc.) [48]. The competitive KIE experiments (b) start
with a mixture of diUerent isotopologues in the same reaction vessel. Then, the reaction
mixture is quenched at diUerent points in time, e.g., by mixing with another solution or
quickly lowering the temperature. After the quenching the product and substrate are
separated. The change of the isotopic ratio in either the substrate(s) or the product(s)
relative to the initial ratio in the substrate(s), or Vnal ratio in the product(s) determines
the KIEs. The method of equilibrium perturbation (c) starts with adding concentrated
enzymes to a reaction mixture that contains the unlabeled (natural) substrates. Then
the equilibrium concentrations of the substrates and products are determined. Next, a
new reaction mixture of isotopically labeled substrates and unlabeled products at those
equilibrium concentrations is prepared. After adding the enzyme the system changes
toward a new equilibrium. The rate of change and the Vnal equilibrium constants are
determined, e.g., by ultraviolet-visible (UV–visible) spectroscopy and circular dichroism
techniques [48].

The experimental intricacy is to measure the rate of the step where tunneling is
involved without being aUected by any isotopically insensitive steps (e.g. substrate
binding, conformational changes, product release).

Experimental measurements of rates and KIEs in GM were conducted with various
techniques. The results vary between the diUerent techniques. Here the results of (1)
steady state measurements, (2) stopped Wow pre-steady state measurements following
the kinetics of cob(II)alamin formation, (3) rapid quench pre-steady state measure-
ments following the kinetics of Ado-H formation, and (4) rapid quench secondary KIE
measurements will be summarized. An overview of the results for deuterium KIEs
determined with (1) to (3) is given in table 1.1. Here the Michaelis–Menten constant
[49, 50], i.e., the substrate concentration at which the reaction rate is at half-maximum,
is denoted byKm. The smallerKm the higher the aXnity of the substrate to the enzyme.
Reaction rates are the velocity with which a chemical reaction takes place, i.e., how
fast or slow the reactants are changed into the products of the reaction. The turnover
numberKcat, is the number of substrate molecules converted to product by one enzyme
active site per second, when the enzyme is fully saturated with substrate. The constant
Kcat/Km is a measure of how eXciently an enzyme converts a substrate into product.
The higherKcat/Km the more eXcient the enzyme. The turnover numbersKobs(.→ .),
as given in table 1.1, belong to the rates observed for the turnovers with either Glu,A0,
or MA, E0, in the binding pocket, starting with the the inactive enzyme (before the
homolytic Co–C bond cleavage) and proceeding to diUerent intermediate states. The
apparent dissociation constant for the substrate is denoted as Kd. See [39] for more
details on these constants and numbers.
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Most of the studies mentioned in the following used three times deuterated MA and
three times deuterated Glu as substrates to investigate the deuterium rates and KIEs.
In two studies [21, 25] perdeuterated Glu and monodeuterated MA were used. A more
detailed overview on the results of diUerent measurements in GM can be found in [51].

Steady state measurements (1)

Steady state measurements consider the kinetics of the enzyme in situations, when
all state variables are constant despite of ongoing processes trying to change them
[52]. With steady state measurements the complete interconversion of MA to Glu was
studied with a spectroscopy assay by coupling the formation of Glu to the oxidation
of reduced nicotinamide adenine dinucleotide (NADH) [47]. The initial lag phase was
about 1 min. The results are given in table 1.1. For the conversion of Glu to MA
kcat = 5.8 ± 0.3s−1 and for the reverse reaction kcat = 5.8 ± 0.2s−1 [47]. The deuterium
isotope eUects measured under steady-state conditions are: 3.9 and 6.3 for Glu and
MA, respectively. The rates and KIEs obtained form steady state measurements give
information about the complete turnover from substrate to product and vice versa.
To gain insight on diUerent intermediate steps, for example on the role of tunneling
during the two H-transfers, pre-steady state measurements are required.

Stopped-Wow pre-steady state measurements (2)

Stopped-Wow pre-steady state measurements of GM started with a rapid mixing of the
substrate and the enzyme in a chamber, where the reaction could be followed with
UV-visible spectroscopy. The disappearance of AdoCbl at 530 nm or the appearance
of cobalamin(II) at 470 nm were measured over time [23]. These stopped-Wow mea-
surements reported primary deuterium KIEs and rates, see table 1.1, on the H-transfer
steps indirectly by following the kinetics of cobalamin(II) formation. The resulting
KIEs are large for both substrates, ratios of 28 for A → B and 35 for D → E. The
adenosyl radical (A, E) is a high-energy intermediate that does not accumulate on the
enzyme [47]. Thus, the measured KIEs rather belong to the transition from A → B
(or E →D) than to the homolytic cleavage (A0 →A or E0 → E) where an adenosyl
radical is formed [23]. The homolysis of AdoCbl with deuterium was found to be
biphasic with rate constants diUering by 5 to 10-fold [23]. Experiments with rapid
quenching techniques showed that these two phases are due to multiple turnovers of
deuterium from the substrates to the B12-cofactor, which is undetectable by following
the kinetics on cobalamin(II) formation [21]. Then the cofactor is two or more times
deuterated. The kinetics are inWuenced by that. Thus, in further experiments the
kinetics of Ado-H formation (intermediate states B to D) was directly followed by
using rapid chemical quench techniques.



10 Chapter 1 — Introduction and Review

Rapid quench pre-steady state measurements (3)

Rapid quench pre-steady state measurements helped to identify the intermediates (A
to E), as well as their kinetics of formation, in the reaction catalyzed by GM [18, 53].
Enzyme, cofactor and substrate were reacted together and then quenched at various
times, e.g., between 5–1600 ms [46], with triWuoroacetic acid. Then the components
were separated with reverse phase high-performance liquid chromatography (HPLC),
which allows to determine a reaction rate. The deuterium content of Ado-H was
measured as a function in time by electrospray mass spectrometry. The measurements
were all done at T =283.15 K. At a temperature below 283.15 K the multiply deuterated
Ado-H contributed negligibly (<1%) to the measured rates [21]. Above 283.15 K the
dideuteration increased rapidly to more than 2% of the yield which makes correct
measurements of KIEs impossible. With these techniques the observed ratesKobs(A0 →
B) = 73 ± 8 s−1 agreed for perdeuterated and trideuterated Glu substrate [21, 46], see
table 1.1. The deuterium KIEs were then quite low about 2.4.

When measuring the KIE on the formation of Ado-H directly by a competition exper-
iment with deuterated and unlabeled substrate in the same vessel the primary KIE
on Ado-H formation was 10 ± 0.4 [21]. An internal competition experiment was later
on designed to measure intrinsic KIEs even if the isotopically sensitive step is not
rate-limiting. Protium and deuterium were competing intramolecularly at the same
methyl group of the substrate to be transferred to the cofactor. The substrate was
monodeuterated MA [24, 25]. The formation of Ado-H over time was followed by
radiolabeled [8-14C]-adenosylcobalamin. The resulting KIE was 4.1, at T =283.15 K
[24, 25].

An isotopic substitution at an atom directly involved in establishing or breaking bonds
during the reaction results in a primary KIE. The measured KIEs reported so far are
primary deuterium KIEs. As the primary deuterium KIEs measured in GM range from
4.1 to 35 at T =283.15 K, it is unclear whether tunneling is involved in the catalysis by
GM, see Section 1.1.1. Secondary KIEs result from isotopic substitution of atoms which
keep their bonds intact during the reaction. Experiments investigating tritium isotope
eUects, based on rapid quench techniques [21, 54, 55], considered both primary and
secondary tritium KIEs.

Tritium isotope eUects (4)

Primary tritium isotope eUect measurements with rapid-quenching, where tritium was
transferred from Ado-H to form either Glu (substrate) or MA (product), resulted for GM
in a 1:1 distribution of tritium in the substrate and the product [22]. The primary tritium
KIEs were 21 for the transfer to Glu and 19 for the transfer to MA. For the secondary
tritium KIEs, also determined with rapid quench methods following the formation
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of Ado-H, tri- and perdeuterated substrates were used [21, 54, 55]. An inverse KIE
means that deuterium or tritium move faster than protium which leads to a secondary
KIE smaller than unity. Experimentally a large inverse secondary tritium KIE of 0.76
± 0.02 was found with protium in the primary position [54]. With deuterium in the
primary position the measured secondary KIE was close to unity, 1.05 ± 0.08 [55]. More
details on the interpretation of these measurements in comparison to the calculational
results will be given in Section 5.3. Measurements of KIEs in GM are only possible
for a temperature less than 283 K, as mentioned above, to prevent the contribution of
multiple deuterium transfers to the rate. They are also limited to certain time frames as
the threshold in concentration for detecting the substance of interest (e.g. the product)
must be exceeded. In experimental investigations the reverse reaction aUects the results,
as GM catalyzes a reversible conversion. Thus, the measured rates are apparent rates
leading to apparent KIEs. The intrinsic KIEs, real KIEs without masking side eUects,
can be obtained only indirectly by experiment. Experimental results always include
the tunneling contributions. In contrast, computational investigations allow to switch
tunneling oU and on. Direct predictions on the intrinsic, the real, KIEs are possible by
computational approaches.

Experiments can indicate the importance of tunneling. However, many diXculties are
encountered in studying tunneling eUects in enzymes purely by experiments [41, 56].
Experimental studies always measure apparent rates and KIEs that can be masked
by experimental side eUects, like for example detection methods being insensitive to
deuterium content below a certain threshold, see Section 1.1.2. The measurements are
also limited to certain time frames as the threshold in concentration for detecting the
substance of interest (e.g. the product) must be exceeded. In experimental investigations
the reverse reaction can aUect the results. Therefore, the measured rates are apparent
rates leading to apparent KIEs. The intrinsic KIEs, real KIEs without masking side
eUects, can be obtained only indirectly by experiment.

Computational approaches allow to predict the intrinsic KIEs. In contrast to experimen-
tal measurements which always include tunneling contributions, calculations allow to
switch tunneling on and oU. Thus, calculations are a promising tool to provide insight
into whether tunneling of atoms is crucial for the catalytic eUect of some enzymes and
whether it is actively promoted by the proteins.

Computational studies can also contribute valuable insights into how enzymes work
on the atomic and electronic levels based on high-resolution protein structures. These
levels are veiled in experiments due to the large size and complexity of enzymes, and
the speed of chemical reactions. Prerequisites to obtain good predictions are models
based on the fundamental physics that include the essential details of the enzyme,
despite possible simpliVcations to make calculations feasible. The simulation methods
should incorporate multidimensional tunneling and allow quantum simulations of the
studied system while taking eUects of solvents or protein environment into account.
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1.2 Rate theories

The KIEs deVned in the previous Section 1.1.1 are based on reaction rates. Several
classical rate theories and quantum rate theories have been developed over the last
decades, reviewed for example in [57–59]. Methods to calculate tunneling rates in
biological systems based on diUerent rate theories will be described in Section 1.3. In
the following, a brief overview of some commonly used rate theories will be given.

Classical transition state theory

Classical Transition State Theory (TST) [60–64], strictly based on classical mechanics,
assumes:
(1) The Born–Oppenheimer separation of nuclear and electronic motions.
(2) The Boltzmann distribution of energies for reactant molecules.
(3) Molecules pass through the transition state only once while they become products.
(4) The motion along the reaction coordinate in the transition state is separable from
other motions.
(5) The use of classical mechanics which includes no tunneling. However, corrections
for zero-point energy (ZPE) are possible.

The ZPE originates from Heisenberg’s uncertainty principle, which states that, for a
moving particle such as an electron, the more precise one measures the position, the
less exact is the best possible measurement of its momentum, and vice versa. The
least possible uncertainty of position and momentum is speciVed by Planck’s constant,
h̵. The zero-point energy is the energy that remains, when all other energies are
removed from a system. When considering a one-dimensional quantum mechanical
harmonic oscillator the expectation value of its energy at zero temperature is ⟨H⟩ =
h̵ω/2 ≠ 0, which is the zero-point energy. This behavior is, e.g., demonstrated by liquid
helium. When lowering the temperature to absolute zero, helium remains liquid. The
irremovable zero-point energy of its atomic motions prevents the helium from freezing
to a solid. To freeze it, the pressure has to be increased.

A general transition state in a system with N degrees of freedom is a closed N − 1 di-
mensional hypersurface encapsulating the reactant state (dividing surface). Commonly,
however, one refers to a (classical) transition state as a Vrst-order saddle point on the
potential energy surface. The transition structure (TS) corresponds to the geometry of
the transition state.

Let d denote the number of vibrational degrees of freedom, ωR,i the i-th vibrational
frequency of the reactant, ωT,i the i-th vibrational frequency of the transition state,
ET the potential energy of the transition state, and, ER the potential energy of the
reactant state. With ∆E† = ET −ER, T the temperature, kB Boltzmann’s constant, and
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β = 1/kBT , the classical TST rate is given as

kTST =
1
2π
∏d
i=1 ωR,i

∏d−1
i=1 ωT,i

exp (−β∆E†) . (1.1)

In order to take the zero-point vibrations into account, the classical partition function
of the harmonic oscillator can be replaced by a quantum partition function, which leads
to

kTST =
1

2πβh̵
∏d
i=1 2 sinh(βh̵ωR,i/2)

∏d−1
i=1 2 sinh(βh̵ωT,i/2)

exp (−β∆E†) , (1.2)

where h̵ denotes the reduced Planck’s constant.

Weaknesses of TST are that recrossing of the dividing surface is neglected and that
the separability of the motion along the reaction coordinate from the other motions
can only be guaranteed in a small range around the TS. In variational TST (VTST) a
variationally optimized dividing surface between reactant and product regions is used
to minimize the eUects of recrossing [65]. There are several applications of (variational)
TST approaches in enzymes [66, 67], see also Section 1.3.

Many catalytic processes also involve tunneling. Tunneling is an eUect based on wave
mechanics. At higher temperature the over-the-barrier model described by classical
TST dominates the escape rate from a metastable system. Especially at low temperature
tunneling through the barrier is more important, as even the smallest kinetic energy
barriers may not be overcome by the particles. Despite the fact that conventional
chemical reactions are slowing down as the temperature is lowered, tunneling reactions
rarely change at all, which indicates their temperature independence.

Tunneling contributions are disregarded by classical TST, see Fig. 1.3. Quantum rates,
taking tunneling into account, are required to Vnd out whether enzymes use tunneling
for their catalysis. In the next paragraphs an overview of methods to calculate tunneling
rates will be given. Since many methods have appeared over the years, this list is
necessarily incomplete.

Quantum corrections to classical TST

In classical TST quantum eUects can be included via the vibrations and, thus, the ZPE.
However, tunneling is neglected. A schematic comparison of classical, ZPE corrected,
and tunneling rates is depicted in Fig. 1.3. Tunneling near the top of the barrier is
accounted for by corrections to the classical reaction rate proposed by Wigner [68]
and used by Bell [69, 70]. The Wigner correction assumes a one-dimensional reaction
coordinate with tunneling occurring through a barrier approximated by a truncated
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Figure 1.3: Schematic Arrhenius plot as a general example. ZPE denotes the classical
rate with zero-point energy corrections.

parabola. The correction κ(T ) is given as a tunneling enhancement factor:

κ(T ) = h̵ω/(2kBT )
sin (h̵ω/(2kBT )) , (1.3)

where ω denotes the magnitude of the imaginary frequency of the unstable mode at
the saddle point. The method is applicable above a crossover temperature Tc [71]:

Tc =
h̵ ω

2π kB
. (1.4)

Above the crossover temperature thermal activation events dominate over tunneling-
induced transitions. When going below Tc tunneling through the barrier becomes more
and more important. To extend the range of applicability to below Tc, a third-order
expansion in h̵ of κ(T ) was used as correction [72].

Common models based on TST and used for experimental interpretations of enzyme-
studies are [48]: the Arrhenius equation [60], the Bigeleisen equation [73], the West-
heimer model [74], and the Streitweiser model [75].

Beyond transition state theory

Marcus-like theories have been developed and used for (experimental) studies of
enzymes [76–86]. In Marcus theory [76] the electronic transitions occur at solvent
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geometries for which the donor and acceptor electronic states are isoenergetic [48,
87, 88]. However, modeling the temperature dependence of KIEs in enzymes with
Marcus-like theories gave only moderately satisfying results [41, 42].

An alternative approach is Kramers’ rate theory [89] which is, along with some exten-
sions, also used to study enzymatic reactions[32, 90–96]. In Kramers’ rate theory the
concept of Brownian motion is used to describe the motion of particles over a barrier as
a model for chemical reactions in solutions. The basic equation is a Langevin equation
describing the classical stochastic dynamics of a particle coupled to a (heat) bath. The
bath puts frictional (dissipative) and random forces on the particle.

A representation in Feynman’s path integral formalism, see Section 2.5 for details on the
formalism, allows to calculate quantum rates. More details on Kramers’ rate theory can
for example be found in [57, 96–98]. Kramers’ approach can be used below the crossover
temperature. For reactions above or at the crossover temperature Wolynes corrections
[99, 100] have been developed in combination with Kramers’ theory. However, the
friction term required to describe in an enzyme the interaction between the quantum
mechanical system and the bath environment have to be estimated from experiments
[96, 101].

Beyond TST, quantum dynamics allows to calculate tunneling rates by solving the
time-dependent Schrödinger equation [58]. However, the costs of these methods grow
exponentially with the number of degrees of freedom, which makes them diXcult to
use in high-dimensional systems like enzymes.

1.3 Quantum rate calculations in biological systems

Several methods have been used during the last years to study tunneling in biological
systems, which all have strengths and weaknesses. In the following an overview on
some of these methods will be given. Among the discussed methods are the variational
transition state theory with multidimensional tunneling corrections (VTST/MT) [102,
103], a mixed quantum-classical molecular dynamics approach [104], and a centroid
path integral approach [105–107]. The instanton method, implemented and improved
[108, 109] to study tunneling in GM, will be presented in more detail in Chapter 3.

Generally methods used to calculate potential energies and methods, based on various
rate theories, to calculate reaction rates are distinct. The potential energies can, e.g.,
be obtained from semiempirical methods like AM1 [110] or from computationally
more demanding methods as for example density functional theory or coupled cluster.
Expensive methods for rate calculations lead often to the use of less demanding methods
to calculate the necessary potential energies.
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The semiclassical approximation assumes one main tunneling path rather than tak-
ing the whole potential energy surface into account. The zero-curvature tunneling
approximation (ZCT) [111] approximates the tunneling path by the intrinsic reaction
path (minimum-energy path (MEP) in mass-weighted coordinates). Even at rather high
temperature, close to Tc, the most likely tunneling path will deviate from the MEP.
The eUect is dubbed as corner cutting [112]. Small-curvature tunneling (SCT) [113]
assumes a tunneling path in the vicinity of the MEP. SCT can be expected to be a good
approximation close to Tc. The other extreme for a choice of a tunneling path is the
straight line path in a method known as large curvature tunneling correction (LCT)
[114, 115]. While minimizing the tunneling distance, LCT ignores the potential energy
in the choice of the path. At low temperature, LCT can be expected to be a better
approximation than SCT. It has been proposed [116, 117] to use a linear combination of
the SCT and LCT paths by minimizing the tunneling action.

A well-known method to calculate tunneling rates is the JeUreys–Wentzel–Kramers–
Brillouin (JWKB, in some literature also WKB) method [118–121], where the amplitude
of the wave function is expanded in powers of h̵. Truncating the expansion (i.e.
semiclassical approximation) assumes that either the potential or the amplitude are
slowly changing with the position. The JWKB method assumes, like other semiclassical
approximations, one main tunneling path rather than taking the whole potential energy
surface into account.

The validity of quantum correction to classical TST is limited to tunneling in the close
vicinity of the saddle point where the potential energy is approximately quadratic
and where all the modes perpendicular to the tunneling path can be assumed to be
adiabatic. Methods with a broader range of validity are based on several paths. They
employ a transmission coeXcient, for example calculated by the SCT, LCT, or ZCT
methods mentioned above, to include the quantum and non-separable eUects in the
rate [102, 103, 122, 123].

Several methods can complement VTST to include tunneling in the calculations [43,
103, 116, 124–128]. In ensemble-averaged variational TST including multi-dimensional
tunneling (EA-VTST/MT) a range of diUerent possible tunneling paths, both, close
and further away from the classical reaction path at a range of diUerent energies are
considered to Vnd the best compromise between path length and eUective potential
along the path in order to maximize the rate. Several enzymatic reactions have been
studied with EA-VTST/MT or with VTST/MT [36, 43, 102, 103, 129–142]. The EA-
VTST/MT method is a robust and well tested approach. Tunneling is included in
a separate step, which allows to switch the eUect on or oU. However, most of the
current VTST/MT studies used semiempirical electronic structure methods which have
a limited accuracy and are not suitable for many important systems. The corrections
are typically only calculated for a small number of reaction paths which does not cover
the full dynamics of the system. In these QM/MM calculations, quantum mechanical
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(QM) calculations for the atoms directly involved in bond rearrangements and force
Veld calculations (MM) for the environment, the geometry optimizations are performed
with a frozen MM part. Within the framework of VTST/MT QM/MM calculations most
studies focused only on one temperature, with some exceptions [133, 135]. However, to
investigate a large temperature range these methods require quite some eUort.

Another method based on several paths is mixed quantum-classical molecular dynamics
(MD) [40, 104, 143, 144], where the entire solvated enzymatic system is able to move
throughout the MD simulation. The dynamics of the entire system can be calculated
while the eUects of zero-point energy, tunneling and excited vibrational states are
included simultaneously. The quantum eUects in hydrogen transfer reactions are
modeled by numerically solving the vibrational wave function of the transferring
hydrogen atom. However, a major limitation is the complexity of the method which
prevents its extension to quantize more than one particle.

Statistical Feynman paths [145] can circumvent the exponential growth of computa-
tional eUort with the number of degrees of freedom when solving the time-dependent
Schrödinger equation. They have also been used in simulations to estimate tunnel-
ing probabilities either by evaluating a centroid potential of mean force [146–149] or
by so-called ring-polymer dynamics [150]. The centroid density method, a quantum
transition-state theory (QTST), is a Feynman path integral approach using TST, but
not the semiclassical approximation [71, 151, 152]. Another QTST approach is the re-
versible action-space work QTST (RAW-QTST) [153, 154], which in the harmonic limit
reduces to instanton theory, see Chapter 3. As most of the Feynman path integral based
methods the centroid path integral approach treats a small number of atoms as ring of
quasi-particles (images or beads) each experiencing a fraction of the external potential
acting on the real particle. The ring of beads corresponds to the atoms quantized in the
simulations, e.g., the transferring hydrogen atom. The quantized classical path method
is based on centroid path integral sampling, but is formulated as a correction to the
classical potential of mean force [105, 106, 155, 156]. Classical simulations and quantum
corrections are fully separated [155]. After the classical trajectories of the beads were
run the average over thousands of protein and bead conVgurations is taken, which
provides the diUerence in the activation free energies including both zero-point energy
and tunneling contributions inseparably. By combining the quantized classical path
method with bisection sampling [157] the method became applicable to enzymatic sys-
tems [107, 158, 159]. However, these QM/MM simulations are limited to semiempirical
methods as for example AM1 or PM3 for their QM part. Similar path integral based
approaches with and without centroid constraint have also been used to study enzymes
[160, 161].

Despite their advantages all the methods described above do not fulVll at least one of the
following requirements: a method to eXciently calculate tunneling rates in enzymes
should give predictions at various temperatures without much of additional eUort. It
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should allow a correct description of forming and breaking bonds with reasonable
costs and complexity, e.g., density functional theory. The theory behind the method
should go beyond corrections to classical TST to circumvent its failures. Finally, the
method should also allow tunneling for more than one atom to Vnd out which atoms
are additionally involved in the tunneling motion.

In the following, a method will be presented that fulVlls these requirements, see
Chapter 3 and Chapter 4.
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Basics of Differential Geometry and

Definitions

The aim of the following chapter is to review the deVnitions necessary in Chapter 3
for the variable step-size tunneling rate formulation. For mathematically rigorous
introductions to the Veld of microlocal analysis, quantum and classical mechanics, and
diUerential geometry see for example [162–166].

The following notation will be used: R is the set of real numbers, N = {1, 2, . . .} is the
set of natural numbers, and Rd = R × ⋅ ⋅ ⋅ ×R (d factors) the d-dimensional real space.
LetX ⊂ Rd, k ∈ N, and Ck(X) denotes the space of k-times continuously diUerentiable
functions X → R. The space C∞(X) = ⋂k∈NCk(X) denotes the space of inVnitely
(continuously) diUerentiable functions. i is the imaginary unit, with i2 = −1.
Points in conVguration space (d-dimensional for a molecule with d degrees of freedom)
will be denoted by bold italic symbols (x). Non-bold symbols are used for scalar
quantities. Vectors of path dimension (d(J + 1)) are denoted as bold upright symbols x.

The chapter is structured as follows: Vrst a short overview on instantons will be given,
Section 2.1, then mathematical structures used to describe the theory are introduced.
Manifolds and the Euclidean space in Section 2.2, diUerentiation and derivatives on
manifolds in Section 2.3. Lagrangian mechanics is reviewed in Section 2.4 and in
Section 2.5 Feynman’s path integral formalism is introduced. In the last sections the
distributional derivatives of the Euclidean action, Section 2.6, the time slicing approxi-
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mation of the stationary-action path, Section 2.7, the use of Fermi local coordinates in
connection with the Fourier path integral, Section 2.8, will be discussed.

2.1 Instantons

Instantons are solutions of the Yang-Mills equations [167, 168]. The Yang-Mills theory is
a non-abelian gauge theory which describes strong and weak interactions in elementary
particles. Strong and weak interactions are two of the four fundamental forces in
physics. An example of a non-abelian gauge theory is quantum chromodynamics,
whereas quantum electrodynamics is an example of an abelian gauge theory. The
instanton solutions are localized in space and (Euclidean) time, which is so to say at a
speciVc instant. They are also called pseudoparticles.

From the huge variety of existing instantons a few examples will be mentioned in
the following. There are for example tunneling phenomena in quantum mechanics
with a double-well potential as described by the kink, see e.g. [169], or the Yang-Mills
instantons in four dimensions [170, 171]. There are also various kinds of instantons in
string theory, for example D-instantons [172]. Instantons are also linked to the vacuum
structure of quantum chromodynamics [173]. Instantons allow to describe tunneling in
quantum mechanics. However, worldsheet instantons lead to many nonperturbative
eUects in string theory, that go beyond tunneling [173]. More details on Veld theoretic
approaches can, e.g. be found in [168, 174]. A review on instantons from mathematical
and physical point of view is given in [175].

Instantons describe tunneling processes in Minkowski space-time from one state to
another. Classically, the traveling from one state to another is forbidden for a particle
at the tunneling energy. However, quantum mechanically tunneling occurs. After
performing a Wick rotation instantons are solutions of equations of motion with a
Vnite, non-zero action in Euclidean space-time. More details on that will be given in
the next sections.

2.2 Manifolds and the Euclidean space

Basis to describe physical phenomena are space and time. A d + 1-dimensional (d = 3n,
n ∈ N the number of considered atoms or particles) Minkowski space consists of d
space-like dimensions and one dimension corresponding to time. In contrast to the
Minkowski space the Euclidean space has only space-like dimensions. These two spaces
have diUerent metrics. For d = 3 the Minkowski metrics is given as

ds2 = −(c2dτ 2) + dx2 + dy2 + dz2,
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with τ the time-like, c a unit conversion factor, and x, y, and z space-like coordinates.
The four-dimensional Euclidean metric, with −it ∶= τ is

ds2 = c2dt2 + dx2 + dy2 + dz2.

The Minkowski space can be considered as an Euclidean metric with a negative imagi-
nary time coordinate and, thus, become a generalized Euclidean space. This transform
is called Wick rotation. The combination of space and time in the Minkowski space
forms a d + 1-dimensional diUerentiable (Riemannian) manifold representing a space-
time continuum. Manifolds are generalizations of the familiar ideas of lines, planes,
and their higher dimensional analogs.

A real d + 1-dimensional manifoldM is a space which looks like an Euclidean space
Rd around each point, i.e. it is locally similar to Euclidean space. More precisely, a
manifold is deVned by introducing a set of neighborhoods Ui, each a subspace of Rd,
coveringM. Thus, a manifold is constructed by pasting together many pieces of Rd,
which motivates the following deVnition, see also Fig. 2.1:

DeVnition 1 (DiUerentiable manifold). A diUerentiable manifold is a setM equipped
with the following structure

1. A family of coordinate charts, also called an atlas, such that each point x ∈ M is
represented in at least one chart. A coordinate chart is a subset Ui ⊂ M together
with a bijective map Φi ∶ Ui → Φi(Ui) ⊂ Rd+1.

2. For every pair of coordinate charts (Ui,Φi) and (Uj,Φj) of the atlas, Φi(Ui ∩Uj)
and Φj(Ui ∩Uj) are open sets of Rd and the map

Φj ○Φ−1
i ∶ Φi(Ui ∩Uj) → Φj(Ui ∩Uj) (2.1)

is smooth (i.e. C∞).

For every point xi ∈ M there exists a chart Ui ⊂M in which xi is represented by local
coordinates xi = (x1i , . . . , xdi ) = Φi(xi). In the rest of the text the notation xi ∈ M, as
generally accepted in the literature, will be used to represent local coordinates.

2.3 DiUerentiation and derivatives on manifolds

To specify the equations of motion of a dynamical system it is necessary to consider
derivatives of curves in manifolds. The derivative of a curve in a vector space is again a
curve in the vector space. For curves in manifolds this is not generally the case. In the
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Ui

Uj

Φj

Φi
Φi(Ui)

Φj(Uj)

Φj ○Φ−1i

M

Figure 2.1: Two overlapping coordinate charts on the diUerentiable manifoldM. The
map Φj ○Φ−1

i ∶ Φi(Ui ∩Uj) → Φj(Ui ∩Uj) between the overlapping parts is smooth.1

following, concepts needed in order to speak of derivatives of maps between manifolds,
will be recollected.

By deVnition the transformation between any two diUerent coordinate representations
is smooth, see 1 and Fig. 2.1.

A smooth manifold is, for example, a subset of Euclidean space which is locally the
graph of a smooth (vector-valued) function. A line and a circle are one-dimensional
manifolds, planes and spheres are two-dimensional manifolds, and so on to high-
dimensional spaces. On smooth manifolds each predication about diUerentiability
made in one coordinate representation automatically holds also in other coordinate
representations. Because of that ordinary calculus as developed in Rd may also be used
on manifolds. DiUerentiability of maps between manifolds is deVned as follows:

DeVnition 2 (DiUerentiability). LetM and R be two diUerential manifolds of dimension
d andm, respectively. A map ψ ∶ M → R is called diUerentiable at x ∈ M if

Φj ○ ψ ○Φ−1
i ∶ Rd → Rm (2.2)

is diUerentiable at Φi(x) for some coordinate charts (Ui,Φi) containing x and (Uj,Φj)
containing Φj(x).

Notice that the deVnition of diUerentiability is independent of the coordinate charts
used. For more details on the following concepts and a pictorial explanation see for
example [165].

Let x be a point inM⊂ Rd+1. Then we have a lot of vectors at x in the surrounding
space Rd. A vector is characterized by its direction, length, and the point x. Thus,
1 Figure inspired by [162]
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vectors with diUerent base points x and x′ are diUerent even if they have the same
length and direction. If considering the vectors at the base point x, then not all of them
are tangent vectors to the smooth surfaceM. Let γ(t) ∶ R →M be a smooth curve
passing through P. Then γ generates a tangent vector at x, the velocity vector.

vx =
dγ

dt
∣
t=0
. (2.3)

DeVnition 3 (Tangent vector). A tangent vector vx at a point x ∈ M is an equivalence
class of diUerentiable curves R→M, where the equivalence relation for the two curves γ1
and γ2 is given by

γ1(0) = γ2(0) = x and
d(Φi ○ γ1)(t)

dt
∣
t=0

= d(Φi ○ γ2)(t)
dt

∣
t=0

(2.4)

for a coordinate chart (Ui,Φi) containing x.

M

T xM

x

vx

Figure 2.2: The tangent space ofM at x, denoted by T xM, in case of d = 2.

DeVnition 4 (Tangent space). The tangent space ofM at x is the set of all tangent vectors
at x, and is denoted as T xM. It is the linear space of dimension d, where αv1 + βv2 is
deVned by the equivalence class of curves γ3 that fulVlls

γ3(0) = x and
d(Φ ○ γ3)(t)

dt
∣
t=0

= (αd(Φ ○ γ1)(t)
dt

+ βd(Φ ○ γ2)(t)
dt

)∣
t=0
, (2.5)

with γ1 and γ2 the representatives for v1 and v2, respectively.

DeVnition 5 (Tangent bundle). The tangent bundle ofM is the union of all tangent
spaces, i.e., the set

TM= ⋃
x∈M

T xM. (2.6)
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An element in TM which is in T xM is denoted vx. The map Π ∶ TM→M which
is given by Π ∶ vx → x is called the natural projection. A C1 map X ∶ M → TM
such that Π ○X = Id is called a vector Veld, with Id the identity. Every vector Veld is
intrinsically associated with a diUerential equation dx/dt =X(x). A vector Veld can
be considered as a collection of smoothly varying directional derivatives at each point
inM.

DeVnition 6 (Cotangent space). The cotangent space ofM at x is the dual space of
T xM, i.e., the space of linear forms on T xM. It is denoted by T ∗

xM.

DeVnition 7 (Cotangent bundle). The cotangent bundle is the union of all cotangent
spaces

T ∗M= ⋃
x∈M

T ∗
xM. (2.7)

The natural projection Π ∶ T ∗M→M is deVned in line with this.

Both, the tangent bundle TM and the cotangent bundle T ∗M, have the structure
of diUerentiable manifolds of dimension 2d. Coordinate charts inM can naturally
introduce coordinate charts in TM and T ∗M, see discussion below.

Remark 1. The set of smooth vector Velds onM is denoted X(M). This set is an inVnite
dimensional vector space. The vector space operations are deVned by point-wise operations
on each tangent space.

Remark 2. The set of smooth real-valued functions onM is denoted F(M) ⊂ L2. This
set is an inVnite dimensional vector space, with point-wise deVned vector space operations.

DeVnition 8 (Inner product). The standard Hilbert space inner product on the function
space L2 is given as

⟨f ; g⟩ = ∫
b

a
f(x)g(x)dx (2.8)

for f, g ∈ C2, will be used for non-discrete functions. The discrete Euclidean inner product
is given as

⟨x;y⟩ = x ⋅ y =
d

∑
k=1
xkyk (2.9)

and will be used in the discrete case.

Due to the smooth transition between coordinate charts, the deVnitions of tangents
and cotangents and the corresponding spaces given above are again independent of the
choice of the coordinate (Ui,Φi), assuming that x ∈ Ui. Therefore, if γ ∈ F(M) is a
C1 curve, its velocity vector at γ(t), denoted by γ′(t) or (dγdt )(t), is a tangent vector in
T γ(t)M. Thus, γ′ is a map t→ vγ(t) ∈ TM.
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DeVnition 9 (Derivative). The derivative of a diUerential map ψ ∶ M → R is a map
ψ∗ ∶ TM→ TR deVned by

ψ∗(vx) = (ψ ○ γ)′(0), (2.10)

with vx ∈ T xM and γ is a representative of vx.

Note that the deVnition is independent of the representative γ of vx. The derivative ψ∗
takes a tangent vector in T xM and “pushes it forward”, by the map ψ, to a tangent
vector in T ψ(x)M. Therefore, ψ∗ is sometimes called the push-forward derivative.
When expressed in coordinates, ψ∗ constitutes the coordinate representation of ψ
together with the Jacobian, which is the matrix valued function that gives the directional
derivatives.

A vector in Rd can be viewed as a Vrst order diUerential operator that acts on real-
valued functions on Rd. Thus, the linear space Rd is equivalent to the linear space
of Vrst order diUerential operators. From that point of view the space T xM can be
thought of as the linear space of Vrst order diUerential operators acting on smooth
real-valued functions f onM by taking the derivative of them in some direction. For
example, assume γ is a representative of vx ∈ T xM, then the diUerential operator

vx[f] =
d

dt
(f ○ γ)(t)∣

t=0
(2.11)

is well deVned. In local coordinates we have

vx[f] =
d

dt
(f ○Φ−1 ○Φ ○ γ)(t)∣

t=0
= ∂f(x)

∂x
⋅ d
dt

(Φ ○ γ)(t)∣
t=0
. (2.12)

Note that here a simpliVed notation is used: ∂f(x)/∂x really means ∂(f ○Φ−1)(x)/∂x.
A basis in T xM is given by ∂/∂x1, . . . , ∂/∂xd. With (2.12) we see that every element
vx ∈ T xM is uniquely represented in this basis of partial (directional) derivatives

vx =
d

∑
i=1
ẋi

∂

∂xi
= ẋ ⋅ ∂

∂x
, (2.13)

where ẋ = d(Φ ○ γ)(t)/dt∣t=0. Obviously, we have constructed coordinates ẋ in T xM
from coordinates x inM. The pair (x, ẋ) constitutes local (natural) coordinates for
TM. The importance of natural coordinates is given by the fact that if the derivative
γ′ of a curve is represented in natural coordinates as (x, ẋ), then holds that dx(t)/dt =
ẋ(t).
A basis in a vector space induces a dual basis in the dual vector space. Thus, the basis
{∂/∂x1, . . . , ∂/∂xd} = {e1, . . . ,ed} in T xM induces a dual basis w1, . . . ,wd in T

∗
xM.

Recall that for a dual basis holds ⟨wi, ∂/∂xj⟩ = δij , with δij the Kronecker delta. From
that follows, that wi = dxi, i.e. the projection of vectors on the xi-axis. Therefore,
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every element p ∈ T ∗
xM can be written as ∑i pidx

i = pdx, and (x,p) constitutes a
coordinate chart in T ∗M, called canonical coordinates. The cotangent space can also
be seen as the space of diUerentials at p. The general cotangent vector has the form
a1dx1∣p + ⋅ ⋅ ⋅ + addxd∣p.

DeVnition 10 (Intrinsic coordinates). Let vx be a tangent vector generated by γ and
let γ have the global coordinate representation γ(t) = (x1(t), . . . , xd(t)). The numbers
ai = dxi

dt are called intrinsic coordinates of vx with respect to the coordinate chart (Ui,Φi)
containing x.

The intrinsic coordinates ai are the components of vx with respect to the canonical
frame (e1, . . . ,ed). Any tangent vector u ∈ T uM is a vector spanned by e1, . . . ,ed, i.e.
can be represented as

u = a1e1 +⋯ + aded. (2.14)

Intrinsic coordinates to describe the tangent space of a curve γ, will for example be used
in the derivations of the rate in Section 3.2.1. The local bases at each point on gamma
together form a basis of the tangent bundle. As we are working in a Wat space, the
coeXcients of the orthonormal frames of tangent and cotangent space can be identiVed
with each other, which means that they form a basis and its dual basis at the same time.
The coeXcients ai of the tangent space can directly serve as Fourier coeXcients in the
dual cotangent space, which will be important in Section 2.8.

2.4 Lagrangian mechanics

Recall that a Lagrangian system in classical mechanics consists of a conVguration
space Q and a Lagrangian function L(t, γ̇, γ), with L ∶ R × TM×Q→ R represented
by (t,vx,x) ↦ L(t,vx,x). Hamilton’s principle states that motions of Lagrangian
systems extremize the action integral, see Fig. 2.3. The vector xinit ∈ Rd = Q denotes
the initial state of the considered system and xVnal ∈ Rd the Vnal state. The curve
γ ∶ [a, b] → Q, with γ(a) = xinit and γ(b) = xVnal, is a trajectory of a Lagrangian system
if the action

S[γ(t)] = ∫
b

a
L(t, γ̇, γ)dt (2.15)

is extremized, i.e., its diUerential at γ, see Section 2.6 for the deVnition, vanishes for
variations with Vxed end points:

⟨S[γ], δγ⟩ = 0, for all δγ ∈ T γC[a,b](Q), (2.16)

where

C[a,b](Q) = {C2 curves (a, b) → Q with Vxed end points γ(a) and γ(b)}. (2.17)
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M

γ

xinit

xVnal

Figure 2.3: Hamiltons principle: variation of the path γ on the manifoldM to Vnd the
stationary-action path.

The set C(Q) is an inVnite dimensional diUerential manifold. However, the space itself
is incomplete and, therefore, just a Banach space and not a Hilbert space. An element
δγ ∈ T γC[a,b](Q) is a curve (a, b) → TQ such that Π ○ δγ(t) = γ(t).
Hamilton’s principle leads to the governing equations, the Euler-Lagrange equations,
a system of second order diUerential equations for the evolution of γ(t) expressed in
local coordinates

d

dt

∂L

∂ẋ
− ∂L
∂x

= 0. (2.18)

Together with initial conditions (xinit, ẋinit) the Euler-Lagrange equations deVne unique
curves of motions. These equations keep their form in all coordinate representations
which reWects the fact that Lagrangian mechanics is invariant under the group of dif-
feomorphisms on Q. The Lagrangian is also invariant with respect to time translation.

A Newtonian potential system with a conVguration space Q = Rd, d = 3n is a special
case of a Lagrangian system. The Lagrange function is here deVned as the diUerence
between the kinetic and the potential energy

L(x, ẋ) = ẋ ⋅Mẋ
2

− V (x), (2.19)

where M is the mass matrix, containing the masses of the considered d-body system,
and the time independent potential energy function V ∶ Q → R, a smooth function,
deVned on the conVguration space. The Euler-Lagrange equations (2.18) of such systems
are the classical Newtonian equations of motions. The corresponding action is the
classical action.
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2.5 Feynman’s path integral formalism

Feynman’s path integral formalism generalizes the action principle of classical me-
chanics described in the previous section to quantum mechanics. The Feynman path
integral, an integration over all paths γ contained in the path space Ω = C[0,βh̵](Q) ⊂M,
can be rigorously deVned as [176–178]

∫
Ω

exp( i
h̵
S[γ(t)])F [γ(t)]D[γ(t)] (2.20)

with S[γ(t)] the classical action functional. The measure D[γ(t)] means the integra-
tion over all paths γ(t) satisfying the boundary conditions xinit = γ(0) = γ(βh̵) = xVnal
weighted with the action S[γ(t)]. In [176–178] a class of functionals F [γ(t)] is pro-
vided, such that the path integral (2.20) converges uniformly on any compact subset of
the conVguration space of the paths γ ∈ Ω. One method to deVne the path integrals is
a time slicing method [176–178], see Section 2.7. In the following the particular case
where the functional F [γ(t)] = 1 for all paths is considered. The variable t parametrizes
the arc-length of the path.

Another version of a time slicing approach is obtained by employing Trotter formulas
[179]. Further mathematically rigorous approaches to deVne Feynman’s path integrals,
e.g., analytic continuation using the Feynman–Kac formula [180, 181] or treating them
as oscillatory integrals, are mentioned in [182–187] and references therein. Another
approach for a rigorous deVnition is to formD[γ(t)] into a conditional Wiener measure
to give a well-deVned formulation of the integral [188].

Now we will have a look at the Wick rotation, a procedure that allows the explicit
evaluation of path integrals.

Wick rotation

The basic notion of the Wick rotation is to replace the integration over real time in the
classical action with an integration over negative imaginary time when going from the
Minkowski space to the Euclidean space. From now on imaginary time will be denoted
as t. Then the path γ(t) is a continuous or suXciently smooth map from the inverse
imaginary time interval [0, βh̵] to Rd = Q in the path space C[0,βh̵](Q). Later on we are
interested in calculating partition functions via the path integral fromalism, therefore,
the interval (a, b) is replaced by [0, βh̵].
Also the classical action changes. The new weight function is the Euclidean action
functional SE.

SE[γ(t)] = ∫
βh̵

0
L(t, γ̇, γ)dt = ∫

βh̵

0

1
2
γ̇ ⋅Mγ̇ + V (γ(t))dt, (2.21)
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h̵ reduced Planck’s constant, β = 1/kBT , T the temperature, kB Boltzmann’s constant,
and SE ∶ C1 ([0, βh̵]) → R. Compared to the classical Lagrangian in (2.19) there is a
plus sign instead of a minus in front of the potential function. Therefore, the path
γ can also be interpreted as the classical movement on the upside-down potential
energy surface −V (x) of a chemical system which allows to calculate the transition
probability of a particle to tunnel through a classical forbidden region in the Minkowski
space (through V (x) from the reactant to the product valley). The calculation of
the tunneling probability with the Euclidean path integral after the Wick rotation is
based on a classically allowed movement on −V (x), see Fig. 2.4. For a more detailed
explanation of the Euclidean action coming from the classical action see for example
[174, 189].

V (x)

reaction coordinatexRS

reactant
valley

product
valley

x0 x(J+1)/2

γinst(t)) = (x0, . . . ,xJ+1)

γRS(t) = xRS

Wick rotation

xRS

γinst(t)

xcl

Figure 2.4: Left: The reactant state xRS and the instanton (red), a special case of γ(t),
on a one-dimensional potential energy surface, d = 1. xcl is the classical transition state,
a Vrst-order saddle point on the potential energy surface. Right: The upside-down
potential after the Wick rotation.

The integration over all paths, in equation (2.20), corresponds to all possibilities a
particle can take to propagate out of the initial state xinit and go to the Vnal state xVnal.
Thus, the propagator ⟨xVnal∣ exp (−βĤ)∣xinit⟩, also called kernel, can be replaced by the
integration over all paths and each path has a weight depending on its importance.
Here, the Bra-Ket notation is used, the Ket ∣⋅⟩ denotes a vector of the Hilbert space L2

and the Bra ⟨⋅∣ its dual. Ĥ is the Hamilton operator. In correspondence to Feynman’s
derivation of the density matrix [190], where the kernel is expressed in terms of path
integrals, the propagator is then given as

⟨xVnal∣exp (−βĤ)∣xinit⟩ = ∫
γ(βh̵)=xVnal

γ(0)=xinit

D[γ(t)] exp(− 1
h̵
SE[γ(t)]) , (2.22)

which is also an element of the density matrix.
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2.6 Distributional derivatives of the Euclidean action

The formula for the gradient of a functional depends on the chosen inner product.
When considering continuous paths, as in the rest of this section, the standard Hilbert
space inner product, see (2.8) is used.

In variational calculus the functional (also distributional) derivative arises as general-
ization of the usual derivative. Instead of diUerentiating a function with respect to a
variable, one diUerentiates a functional with respect to a function.

DeVnition 11 (Functional derivative). LetM be a diUerentiable manifold with smooth
functions γ(t) deVned on it and the functional S[γ(t)] ∶ M → R. The functional
derivative of S[γ(t)] which is denoted by δS[γ(t)]/δγ(t) is a distribution. For all test
functions f(t) applied to the distribution holds

⟨δS[γ(t)]
δγ(t) , f(t)⟩ = ∫

δS[γ(t)]
δγ(t′) f(t′)dt′ = (2.23)

= lim
ε→0

S[γ(t) + εf(t)] − S[γ(t)]
ε

(2.24)

= d

dε
S[γ + εf]∣

ε=0
. (2.25)

In a Banach space, e.g., a Hilbert space, the functional derivative is the Fréchet deriva-
tive. In general locally convex spaces the Gâteaux derivative is used. The Vrst variation
of the action functional δS[γ(t)] is obtained by replacing f(t) with the Vrst variation
δγ(t) of γ(t). Instead of δγ(t) the Dirac delta function can be used as test function.

First variation

By deVnition the Vrst variation of the Euclidean action functional (2.21) is then found
as

δSE[γ(t)]
δγ(s) = ∫

βh̵

0

δ

δγ(s) [M
2

(dγ(t)
dt

)
2

+ V (γ(t))]dt, (2.26)

where the interchangeability of the integral and the variation has been used. With the
properties of the delta function (B.4) and δγ(t)

δγ(s) = δ(t − s), see Section B.1, follows

δSE[γ(t)]
δγ(s) = ∫

βh̵

0
[M
2
2
dγ(t)
dt

d

dt
δ(t − s) + dγ(t)

dγ(t)
δV (γ(t))
δγ(s) ]dt. (2.27)
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By deVnition of the Delta function and when exchanging the derivative operators in
the second term we have

δSE[γ(t)]
δγ(s) = ∫

βh̵

0
[Mdγ(t)

dt

d

dt
δ(t − s) − dV (γ(t))

dγ(t) δ(t − s)]dt. (2.28)

With partial integration and evaluating the integration over the delta function

δSE[γ(t)]
δγ(s) =M

⎡⎢⎢⎢⎣
dγ(t)
dt

δ(t − s)∣
T /2

−T /2
− ∫

βh̵

0

d2γ(t)
dt2

δ(t − s)dt
⎤⎥⎥⎥⎦
− dV (γ(t))

dγ(t) ∣
t=s
, (2.29)

if s ∈ [0, βh̵], else ∫ δ(t − s) = 0, the Vrst variation of the Euclidean action is

δSE[γ(t)]
δγ(s) = −Md2γ(t)

dt2
− dV (γ(t))

dγ(t) ∣
t=s

for s ∈ [0, βh̵] . (2.30)

Second variation

For the second distributional derivative of the action functional holds

δ2SE[γ(t)]
δγ(s)δγ(s′) = ∫

βh̵

0

δ2

δγ(s)δγ(s′) [M
2

(dγ(t)
dt

)
2

+ V (γ(t))]dt. (2.31)

Here properties of the Dirac delta function are used, see Section B.1, then follows
similar to the Vrst variation

δ2SE[γ(t)]
δγ(s)δγ(s′) =∫

βh̵

0

1
δγ(s) [M

2
dγ(t)
dt

d

dt
δ(t − s′) + dV (γ(t))

dγ(t) δ(t − s′)]dt = (2.32)

=∫
βh̵

0
[M
2
d

dt
δ(t − s) d

dt
δ(t − s′) − d

2V (γ(t))
dy2(t) δ(t − s)δ(t − s′)]dt.

(2.33)

Partial integration leads to

δ2SE[γ(t)]
δγ(s)δγ(s′) =M

2
[ d
dt
δ(t − s)δ(t − s′)∣

T /2

−T /2
− (2.34)

∫
βh̵

0
δ(t − s) d

2

dt2
δ(t − s′)dt] + d2V (γ(t))

d2γ(t) δ(t − s′)∣
t=s

= (2.35)

= −M
2
d2

dt2
δ(t − s′)∣

t=s
+ d2V (γ(t))

d2γ(t) δ(t − s′)∣
t=s
. (2.36)

The last expression (2.36) is the second variation of the Euclidean action. This expression
will play a role when deriving the instanton rate formula in the next chapter.

Now the stationary-action paths γ(t) with δSE[γ] = 0 can be determined. The steepest
descent evaluation of partition functions in Section 3.1 is based on these paths. The
basics for a numerical evaluation are provided in the next section.
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2.7 Time slicing approximation of the stationary-action
path

To evaluate the path integral formulation of the propagator (2.22) the imaginary time
interval [0, βh̵] (of the path γ(t), γ ∶ [0, βh̵] → Rd ⊂M) is discretized in J + 1 intervals
of variable length. A schematic overview of the notation introduced and used in the
following is depicted in Fig. 2.5 and Fig. 2.6. The division of [0, βh̵] is

∆ ∶ 0 = t0 < t1 < ⋅ ⋅ ⋅ < tJ < tJ+1 = βh̵ (2.37)

and the step-size of each sub interval is hj = tj − tj−1. Let

x̃j ∈ Rd ⊂M, j = 0, 1, 2, . . . , J, J + 1 (2.38)

be arbitrary J + 2 points (coordinate charts) of the conVguration space Rd = Q ⊂M.
For sake of simplicity here and in the following mass-weighted coordinates will be
used. The mass matrix is then absorbed in the coordinates in conVguration space by
xj =

√
Mjx̃j , with Mj the mass matrix at tj .

xj ∈ Rd ⊂M, j = 0, 1, 2, . . . , J, J + 1. (2.39)

Each discretization point j of dimension d in the conVguration space corresponds to one
geometry of the considered molecule. Thus, d and J are independent of each other. The
piecewise path γ∆(t) ∈ C[0,βh̵] (Q) going through (xJ+1,xJ , . . . ,x1,x0) ∈ Rd(J+2) ⊂ Ω
is the broken path satisfying Euler’s equation of motion in mass-weighted coordinates

− 1
2
d2

dt2
γ∆(t) − dV (γ∆(t))

dγ∆(t) = 0, (2.40)

for tj−1 ≤ t ≤ tj (j = 1, 2, . . . , J, J + 1) with the control points

xj ∶= γ∆(tj), j = 0, 1, 2, . . . , J, J + 1. (2.41)

A path γ∆ fulVlling condition (2.40) is also called a minimum action path (MAP) that
diUers from the minimum energy path (MEP).

At each time 0 < t < βh̵ the path γ∆(t) has d components. Thus, after discretization
into J + 1 intervals the dimension is d(J + 2). When the path is closed, i.e., tJ+1 = t0,
the manifold is of dimension d(J + 1). As we are later on especially interested in
calculating partition functions, which are based on closed loops, see (3.5), the following
formulations refer to closed paths.

The Euclidean action of the closed and piecewise continuous path is given as

S∆
E ∶ Rd ×⋯ ×Rd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(J + 1)-times

→ R. (2.42)
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(0,xinit)

(βh̵,xVnal)

0 βh̵arclength parametrized by t

γ(t)

Figure 2.5: Schematic paths Wuctuating between xinit = γ(0) and xVnal = γ(βh̵) for
d = 1.1

(0,x0)

(tJ+1,xJ+1)

0 βh̵

(t1,x1)

(t2,x2)

(t3,x3)

(tJ ,xJ)

t1 t2 t3 tJ

Figure 2.6: The time sliced path γ∆(t) for d = 1. The connection between the discretiza-
tion points tj does not need to be linear. The Wuctuations around γ∆(t) can have any
form, but have to go through the points (tj,xj). 1

1 Figures inspired by [177]
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The functional SE[γ∆] becomes in its discrete version the action sum

S∆
E (xJ+1,xJ , . . . ,x2,x1) = SE[γ∆] = ∫

βh̵

0
L(t, d

dt
γ∆(t), γ∆(t))dt = (2.43)

=
J+1
∑
j=1
∫

tj

tj−1
Ld (t,

d

dt
γ∆(t), γ∆(t))dt = (2.44)

=
J+1
∑
j=1
SjE(xj,xj−1) =

J+1
∑
j=1

1
2
Sj0 + Sjpot = (2.45)

=∶ 1
2
S0(xJ+1, . . . ,x1) + Spot(xJ+1, . . . ,x1), (2.46)

with S0 the velocity part and Spot the potential energy part of the Euclidean action. For
more mathematical details on the symplectic integration on manifolds see for example
[191, 192].

This leads to the time sliced Wat-space version of path integration. The resulting
oscillatory integral, which corresponds to Feynman’s deVnition of path integration
in (2.22), has an existing limit [178, 193]

lim
∣∆∣→0

I(∆,xinit,xVnal) = lim
∣∆∣→0

⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠∫RdJ
exp(− 1

h̵
SE[γ∆(t)])

J

∏
j=1
dxj

(2.47)

= ∫
Ω

exp(− 1
h̵
SE[γ(t)])D[γ(t)], (2.48)

with ∣∆∣ = maxj{tj}. Note the meaning of ∫Rd . . . dx = ∫ ⋯∫ . . . dx1dx2⋯dxd.

The prefactor∏J+1
j=1 ( 1

2πh̵hj
)
d/2

, which is important to guarantee the convergence, arises
by the free-particle assumption between two time steps. For the kinetic energy part of
SjE denoted by Sj0 (xj,xj−1) holds after discretization (for d = 1):

⟨xj+1∣ exp(−hj
h̵

d2

dt2
γ∆(tj)) ∣xj⟩ (2.49)

=
√

1
2πh̵hj

exp(−hj
2h̵

(γ∆(tj+1) − γ∆(tj))2
h2j

) . (2.50)

2.8 Fermi local coordinates and Fourier path integration

The Fourier path integral approach uses a set of variables which represent the diUerent
length scale Wuctuations of the quantum path instead of points on the path [194]. The
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y∆(t)
γ∆(t)

(t0,x0)

(t1,x1)

(t2,x2)
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1

a2je
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Figure 2.7: black: stationary-action path, blue: Wuctuation, red recangles (images along
the instanon path): tangent space and Fermi local coordinates for d = 2.

paths contributing to a density matrix ⟨xVnal∣exp (−βĤ)∣xinit⟩ have the same initial
point xinit and Vnal point xVnal. Thus, it is possible to write the Wuctuations with
respect to the stationary-action path γ∆(t) that fulVlls the Euler-Lagrange equation,
see equation (2.40). Fermi local coordinates [195] are in Riemannian geometry local
coordinates adapted to the stationary-action path γ∆(t). They will later on be used for
the explicit rate calculations. In global coordinates the stationary-action path is given in
discrete form as γ∆ → (xJ+1, . . . ,x1). LetM again be a d + 1-dimensional Riemannian
manifold. The path γ∆(t) is the stationary-action path onM and xj , j = 1 . . . , J + 1
points on γ∆(t). Then there exist local coordinates (t, x1j, . . . , xdj) around xj such that
(i) for small t0, (t0, 0, . . . , 0) represents the stationary path near xinit and (ii) on γ∆(t),
the metric tensor is the Euclidean metric.

The Fermi local coordinates based on γ∆ are deVned as follows [196, 197]: the coor-
dinates of a point on the curve are xj = γ∆(tj) = (tj, 0, . . . , 0) ∈ Rd+1, where tj is
the proper time (distance) measured along γ∆(t) from its origin xinit to the point in
question. By e0j the tangent to γ∆(t) is labeled and e0j = dγ∆/dtj .
Pick a vielbein of unit orthonormal vectors eji , i = 1, . . . , d which are also orthogonal to
ej0 . For these orthonormal vectors holds

ejk ⋅ e
j
l = δk,l, (2.51)

with δk,l the Kronecker Delta. The {ekj}dk=1 ∈ Rd+1 are similar to the canonical frame
vectors of the conVguration space deVned in deVnition 10 as intrinsic coordinates.
The vectors are given as ej0 = (1, 0, . . . , 0), ej1 = (0, 1, 0, . . . , 0), and so on until ejd =
(0, 0, . . . , 0, 1). This holds for all j = 1, . . . , J+1. Thus, the indices j could in principle be
neclegted. These vectors form the rows of the matrices Ej = (e0,e1, . . . ,ed−1)T ∈ Rd×d.

Now we consider a point x̃j apart from the curve γ∆, see Fig. 2.7. We have a closer
look at the curve orthogonal to γ∆(t) which goes through x̃ to obtain a coordinate
representation of x̃. Let its tangents at the point where it intersects the curve γ∆(t) be
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expressed as ajie
j
i ∈ Txj

M. Then x̃j = (tj, aj1zj, aj2zj, . . . , ajdzj), where tj is again the
proper “time” measured to the foot (t0,x0) of γ∆(t), while zj is the proper distance to
γ∆(t) measured from xj to x̃. The local Fermi coordinates are well deVned in regions,
where γ∆(t) and its orthogonal curve do not recross.

The paths Wuctuating around the stationary-action path γ∆(t) are given as

γ
a11,...,a

J+1
d

∆ (t) = γ∆(t) + y∆(t), (2.52)

with y∆(0) = 0 and y∆(βh̵) = 0. The full Wuctuations around γ∆ are also represented as

γ
a11,...,a

J+1
d

∆ (tj) = x̃j = γ∆(tj) + δxj = γ∆(tj) + y∆(tj). (2.53)

In general relativity this is also known as the equation of geodesic deviation. The
Wuctuations can be written in Fermi local coordinates as

y∆(tj) = aj1ej1 + aj2ej2 + ⋅ ⋅ ⋅ + ajde
j
d. (2.54)

However, the boundary conditions for y∆(t) in equation (2.52) indicate that it is
possibile to expand the Wuctuations in Cartesian coordinates component-wise into a
Fourier sine series [182, 198]. The i-th component is (for an equidistant discretization,
see [199] for a variable step-size approach) given as

yi(t) =
∞
∑
l=1
bil sin( lπt

βh̵
) . (2.55)

The Fourier series can be truncated at some values lmax. The d lmax Fourier coeXcients
are the necessary variables to describe the quantum paths contributing to the path
integral. Usually, lmax can be chosen to be equal to J + 1, the number of discretization
points of the interval [0, βh̵]. A bijective relation between the bik and the aik can be
established. Thus, the bil can as well be considered as local Fermi coordinates, however,
in a diUerent representation than in equation (2.54).

Therefore, any y∆(t) ∈ Tγ∆M can be described as

y∆(tj) =aj1ej1 + aj2ej2 + ⋅ ⋅ ⋅ + ajde
j
d (2.56)

=
d(J+1)
∑
l=1

blul(tj), (2.57)

with orthonormal functions ul(t). Their discrete form is given as the vector ul. The
matrix U contains the vectors ul as entries of its colums. The functions ul(t) are
orthonormal with respect to a weighted inner product deVned on the Banach space
C(Rd)[0,βh̵]

1
βh̵ ∫

βh̵

0
dtuk(t)ul(t) = δkl. (2.58)
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In the discrete case the inner product is, analog to deVnition 8,

⟨uk,ul⟩ =
1
βh̵

ukul = δkl. (2.59)

The full path y∆ of a Wuctuation is represented as

y∆ =
⎛
⎜
⎝

y∆(t1)
⋮

y∆(tJ+1)

⎞
⎟
⎠
=
⎛
⎜⎜⎜
⎝

E1 0 ⋯ 0
0 E2 0 ⋯ 0
⋮ 0 ⋯ 0
⋮ 0 ⋯ EJ+1

⎞
⎟⎟⎟
⎠

⎛
⎜
⎝

a1

⋮
aJ+1

⎞
⎟
⎠
=∶ Ea = (2.60)

= (u1, . . . ,uJ+1)
⎛
⎜
⎝

b1

⋮
bJ+1

⎞
⎟
⎠
=∶ Ub. (2.61)

Here the coeXcients of the orthonormal frame vectors are written in vector notation
(aj)T = (aj0, aj1, . . . , ajd−1). The relation between E and U will become clear on page 56.

For the later derivations of the tunneling rates we are interested in a path integral
representation where the integration over the Cartesian coordinates xj is replaced by
the integration over local Fermi coordinates. That includes a transform of the path
integral from the time sliced path to a Fourier representation of the path, which are
equivalent [200, 201]. The Fourier representation is obtained by a sine transform or an
expansion in any complete set of orthonormal functions {ul(t)}dkmax

l=0 (normal modes).

The transform from one representation to the other is includes a functional Jacobian
determinant N , see page 57. The value of the Jacobian N is connected with the S0

term of the action. The S0 term includes the velocity of passing through the path and
dominates over the second term Spot. The “Fourier” transform is not a linear transform
for time sliced paths.

It turns out, that for small enough step-size the Jacobian N of the sine transform in
one-dimension on the interval [a, b] = [0, 1], d = 1, and equidistant discretization is
[200]:

N =
J+1
∏
j=1

1
2πj/(J + 2)

sin( 1
2πj/(J + 2)) = (J + 1)1/2

J+1
∏
j=1

( πj

J + 2
) . (2.62)

A similar relation holds for the d-dimensional case. In the limit for ∆→ 0 and J →∞,
N converges to 1. The transformed path integral which needs such an Jacobian will be
discussed on page 57.

In the next chapter all the deVnitions given above will be used to derive a stringent
formulation of instanton rate theory.
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The Variable Step-Size Imaginary F

(Instanton) Method

Instanton rate theory (also called imaginary F method, where F is the free energy)
[202–207] is a quantum rate theory based on statistical Feynman path integrals [145],
see Section 2.5, incorporating quantum tunneling eUects. Adiabatic and non-adiabatic
processes can easily be handled while it is a challenge in other rate theories [208].
Central to the instanton method is the optimal tunneling path (the instanton), the path
with the highest statistical weight at a certain temperature. The longer the instanton
path is, the stronger is the delocalization of the atoms involved thereby indicating
tunneling to be important during the reaction. The Wuctuations around the instanton
tunneling path are taken into account up to second order. The instanton method is,
along with some extensions [209, 210], increasingly used to calculate reaction rates
in chemical systems [149, 153, 211–226]. In the formulation of a harmonic quantum
transition-state theory, many parallels between the classical TST and the instanton
method were demonstrated [153, 154, 227].

The aim of the following chapter is a consistent rate formulation with a variable step-
size discretization. It will according to my knowledge be the Vrst step-by-step derivation
of the imaginary F instanton rate for d-dimensional systems. For an equidistant step-
size discretization the rate has been published, see for example [216, 216, 227, 227–229]
or for one-dimensional systems [182, 198].

This Chapter is organized as follows: after a short introduction to the imaginary F
method, the steepest descent evaluation of path integrals is taken, leading to similar
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results as in the JWKB approximation. The next part deals with a consistent and
stringent derivation of the more dimensional variable step-size evaluation of the
imaginary free energy rate [202–204, 206]. Here the evaluation of partition functions in
one- and higher-dimensional systems will be presented. In the Vnal part the variable
step-size instanton rate is formulated. Fig. 3.1 contains an overview of the structure of
the Chapter as well.

The imaginary free energy method comes from quantum Veld theory where the squares
of the absolute values of the elements of the scattering matrix (S-matrix) [230, 231]
describe the probability of a system to pass from a certain initial state to a certain,
also predeVned, Vnal state. The poles of the S-matrix, its energy eigenvalues, can be
complex. Complex S-matrix poles are related to decaying resonances [232]. In analogy
to imaginary part of the ground state energy Im E0 of resonances in quantum Veld
theory, the imaginary part of the free energy Im F is related to the decay probability
of a metastable system which gives quantum reaction rates (decay rates of a metastable
state), kinst, including tunneling [202], see [233] for an overview.

kinst = −
2
h̵
Im (F ) , (3.1)

with h̵ Planck’s constant divided by 2π. This relation, a generalization of equilibrium
statistical mechanics, holds for a wide class of models [234] whose dynamics can be
described by a Fokker-Planck equation [202]. One of many approaches [234] to calculate
Im (F ) is a Veld-theoretical approach [206].

Here, the approximation of Im (F ) is a relation of the partition function of the
metastable reactant state QRS and the imaginary part ImQinst of the partition function
of the quantum transition state, belonging to γinst, also called the bounce, see Fig. 2.4.
The partition function is Q = QRS + i(Im Qinst). Then

kinst =
2
βh̵
Im(lnQ) = 2

βh̵
arctan(Im Q

Re Q ) ≈ 2
βh̵

Im Qinst

QRS
, (3.2)

with β = 1/(kBT ), kB Boltzmann’s constant, and for temperature T ≤ Tc. The crossover
temperature Tc is deVned in (1.4) on page 14. Im Q denotes the imaginary part of Q
and Re Q the real part. The second equality holds as Re Q = QRS > 0 and the rules
for complex functions apply. To evaluate the formula, an analytic continuation of
a partition function Q from a stable to a metastable situation is required. The third
approximation holds as Im Qinst ≪ QRS.

In Feynman’s path integral formalism the partition function is given as an integration
over closed paths (of inVnite length, βh̵→∞ for T → 0). Of course, in calculations the
paths are always Vnite. However, the more the temperature T tends to zero, the longer
the paths and the more discretization points are necessary for a suXcient sampling.



43

Imaginary F method, equation (3.2) page 42

Path integral formalism to express
partition functions, equation (3.5) page 44

Time slicing approximation of path
integration, equation (2.48) page 34

Semiclassical approximation
(steepest descent), equation (3.17) page 47:

functional Taylor expansion, equation (3.7) page 46

Transform from time sliced to Fourier path integral
to evaluate the Wuctuations, equation (3.53) page 57

Evaluation of QRS,
equation (3.60) page 58

Optimize geometry to
Vnd reactant state mini-
mum xinit = γRS, page 45

Calculate Hessian
V ′′(xinit), Section 3.2.2

Calculate det[MRS], i.e.
the product of eigenvalues

of MRS, for Gaussian
integration of Wuctuations

Evaluation of Qinst,
equation (3.103) page 67

Find instanton path
γinst (1st order saddle
point of SE), page 45

Calculate Hessian
M , Fig. 3.3 page 55

Determine eigenvalues
of M for Gaussian inte-
gration of Wuctuations

Prefactor through
(i) zero-mode: Faddeev–
Popov trick, page 60 U.

(ii) negative mode: analytic
continuation, page 66 U.

Combine QRS and Qinst

for instanton rates,
equation (3.106) page 67

Figure 3.1: Overview of the necessary approximations and single steps to derive and
calculate instanton rates.
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Here and in the following the deVnitions and approximations given in Section 2.7 are
used. With the kernel of the density operator expressed in Feynman’s path integral
formalism, see Section 2.5, the partition function reads

Q =Tr[exp (−βĤ)] = (3.3)

=∫
Rd
dxinit⟨xinit∣exp (−βĤ)∣xinit⟩ = (3.4)

=∫
Rd
dγ(0)∫

γ(0)=γ(βh̵)
exp(− 1

h̵
SE[γ(t)])D[γ(t)]. (3.5)

Note, that xinit = xVnal as the paths are closed. Tr[exp (−βĤ)] denotes the trace of the
density matrix.

The Im F method is applicable when there is thermal equilibrium in the well region.
The time scale for relaxation in the well should be short compared to the average time
for escape from the well. The advantage of this approach is that no energy and time
integrals have to be evaluated. The theory is valid for low temperature as the procedure
corresponds to a generalization (extrapolation) of k(T = 0K) = − 2

h̵Im (E0), which is
the ground state decay rate at zero Kelvin where β = ∞, to Vnite temperature [98].

To calculate the rate kinst the expression for partition functions given in (3.5) is inserted
into (3.2). The next Section deals with a time slicing approximation of the path integrals
to derive an explicit formulation of the Im F rate in d-dimensional conVguration
space and with variable step-size discretization of the path γ. The advantage of
the approach used in the following is that the formulation in a variable step-size
discretization of the paths is straight forward in each step of the derivation. In contrast
to previous derivations, e.g. [182, 198, 206], a more dimensional formulation, i.e. for a
path γ ∈ C[0,βh̵](Rd), will be given. This allows the Vnal rate to be easier understood and
used for higher dimensional systems. See Fig. 3.1 for an overview of the derivations.

3.1 Semiclassical approximation (steepest descent)

The rate will be evaluated by taking a semiclassical limit, also called steepest descent
approximation or stationary path (the instanton) method. Here Feynman’s path integral
formulation, see (3.5), will be used to express partition functions. When the Euclidean
action SE[γ∆(t)] is large compared to the reduced Planck’s constant h̵, the path integral
in equation (3.5) is dominated by paths which are in the neighborhood of the stationary
action paths. The contributions remote from the stationary path cancel out due to
oscillations.
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Paths extremizing the Euclidean action

The path γ∆(t) is a time sliced path deVned in Section 2.7. As discussed above, the
most important non-vanishing contributions come from the close neighborhood of
the stationary action function. The time sliced path γ∆ satisfying the Euler-Lagrange
equation (2.40), which is obtained by the condition that the Vrst variation of the
Euclidean action is equal to zero, see Section 2.6, makes the action stationary. Thus, in
the following the Wuctuations around the path γ∆(t) will be of interest. Two possible
paths on the potential energy surface that are relevant as γ∆(t), see Fig. 2.4 for a
schematic overview of the notation.

1. A path that fulVlls equation (2.40) is the time-sliced path γRS(tj) = xRS for all
j = 1, . . . , J + 1 collapsed to the geometry of the reactant minimum. From this,
the quantum partition function of the reactant state (RS) can be obtained.

2. The non trivial solution of equation (2.40) is the instanton path γinst. It is the
tunneling path with the highest statistical weight at a given temperature.

Here and in the following, the time sliced stationary-action path belonging to the
reactant minimum is denoted by γRS(t). It is involved in the calculation of QRS. The
path associated with Qinst is denoted by γinst(t).
The instanton path is obtained by optimizing the action not the energy, thus, it diUers
from the MEP a classical particle would take to go over the barrier. In contrast to the
path corresponding to the reactant minimum, the instanton path γinst(t) is delocalized.
In the action sum equation (2.46) the time integration over the interval [0, βh̵] is
discretized in J + 1 points. Discretizing the integration in the action functional is the
same as summing over several images or replicas of the geometry of the particle (or
molecule) along the path. That leads to a string of particles (beads) which is the broken
time sliced path (x1, . . . ,xJ+1) mentioned in Section 2.7. The instanton consisting of
this string of beads spreads over the potential energy barrier, as V (xj) = V (γinst(tj)),
j = 1, . . . , J + 1, is part of the integrand of the integral determining SE. The stronger
the tunneling and the lower the temperature, the longer is the path and the stronger
will the delocalization during the transition of a particle be.

Fluctuations around the stationary-action paths

In the steepest descent (or stationary phase) method SE in equation (3.5) is approximated
by a second order functional Taylor expansion. The Wuctuations, around its stationary
path are integrated analytically. The stationary-action path γ∆ is the most important
path of all these tunneling paths. The time-sliced path γ∆ represents in the following
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either γinst or γRS, as deVned above. The results described for γ∆ hold for both of these
paths.

The Wuctuations around the path γ∆

γ
a11,...,a

J+1
d

∆ ∈ T γ∆C[0,βh̵](Rd)

are part of the tangent space to γ∆ ∈ C[0,βh̵](Rd) ⊂ M, see equation (2.17). Due to
the method of geodesic deviation all the full Wuctuating paths can be expressed in
Fermi local coordinates, see Section 2.8, as the sum of the stationary-action path γ∆(t)
plus Wuctuations y∆(t). The Wuctuations satisfy Dirichlet boundary conditions, i.e.,
y∆(0) = y∆(βh̵) = 0. Therefore, the full Wuctuating paths

γ
a11,...,a

J+1
d

∆ (t) = γ∆(t) + y∆(t) (3.6)

will start at γ∆(0) and end at γ∆(βh̵) for all y∆(t) ∈ T γ∆M, see equation (2.52).

The integration over all paths is in the semiclassical stationary phase method approxi-
mated by a second order functional Taylor expansion of SE around the path γ∆:

SE [γ∆ + y∆] = SE [γ∆] + ∫
βh̵

0

δSE

δγ∆(t)y∆(t)dt

+ 1
2 ∫

βh̵

0
∫

βh̵

0

δ2SE

δγ∆(t)δγ∆(t′)y∆(t)y∆(t′)dtdt′ +O((y∆(t))3). (3.7)

Note that δ
δγ∆(t) is meant in a distributional sense (a functional derivative), see Sec-

tion 2.6. To evaluate the terms included in the functional Taylor expansion the Vrst
and second variation of the Euclidean action functional have to be determined, see
Section 2.6. The Vrst term on the right hand side is a constant in R and can be taken
out of the integration in (2.48). The second term vanishes as the path γ∆ fulVlls the
Euler Lagrange equation, see (2.40).

The functional Taylor expansion is inserted in the time slicing approximation of the
partition function, see (2.48), (2.22), and equation (3.5):

∫
Ω

exp(− 1
h̵
SE[γ(t)])D[γ(t)] ≈ (3.8)

≈
⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠∫RdJ
exp(− 1

h̵
SE [γ∆(t) + y∆])

J

∏
j=1
dxj. (3.9)

Now let us have a closer look at the third term in equation (3.7) including the second
variation of the Euclidean action functional. That term corresponds to a quadratic term
in the exponent of an exponential function which becomes a Gaussian integral, see
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Appendix B.1 and therein (B.5). The reason for that will become clear in the following.
For the third term holds, by evaluating one integration with integration by parts to get
rid of the Delta function, see Section 2.6 for more details,

1
2 ∫

βh̵

0
∫

βh̵

0

δ2SE

δγ∆(t)δγ∆(t′)y∆(t)y∆(t′)dtdt′ (3.10)

= 1
2 ∫

βh̵

0
y∆(t) ⋅ (−1

2
d2

dt2
+ d

2V (γ∆(t))
d2γ∆(t) ) y∆(t)dt (3.11)

= 1
2 ∫

βh̵

0
y∆(t) ⋅ J y∆(t)dt (3.12)

= 1
2
(∫

βh̵

0

1
2
dy∆(t)
dt

⋅ dy∆(t)
dt

dt + ∫
βh̵

0
y∆(t) ⋅ d

2V (γ∆(t))
dγ2∆(t) y∆(t)dt) . (3.13)

The operator

J = (−1
2
d2

dt2
+ d

2V (γ∆(t))
dγ2∆(t) ) (3.14)

denotes the Jacobi operator. Expression (3.13) follows by another integration by parts.

The contributions of expression 3.13 can also be considered as spring forces acting
on the connection between the diUerent xj , j = 1, . . . , J + 1 belonging to the path γ∆,
see Fig. 3.2.

Steepest descent evaluation

The imaginary time interval [0, βh̵] of the integration is discretized as in (2.37), Sec-
tion 2.7. The J + 1 discrete points on the closed time sliced path γ∆(t) are denoted by
{γ∆(tj)}J+1j=1 = {xj}J+1j=1 ∈ Rd. The integration over time in (3.12) reduces to a summation
due to the discretization of the path.

1
2 ∫

βh̵

0
y∆(t)J y∆(t)dt ≈ 1

2

J+1
∑
j=1
y∆(tj)J y∆(tj)hj. (3.15)

The integrations from minus to plus inVnity in (3.9) are then easy to perform. The
quadratic form in (3.15) leads in (3.9) to d(J + 1) Gaussian integral evaluations, see
Appendix B.1, where each step-size hj contributes d-times to the product over all
eigenvalues of the operator J . The resulting approximation formula based on (3.9) for
the partition function reads

Q = ∫
Rd
dxinit⟨xinit∣exp (−βH)∣xinit⟩ = (3.16)

=
⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠
exp(− 1

h̵
SE[γ∆(t)])

¿
ÁÁÀ 1

(∏J+1
j=1 (hj)d)det[J ]

(1 + r(∆, h̵, 0, βh̵)) .

(3.17)
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black: γinst(tj) = xj , j = 1, . . . , 6

blue: γinst(tj) + y∆(tj)

x1

x2x3

x4

x5 x6

Figure 3.2: The instanton path γinst and the Wuctuations around them connected by
springs. The spring constants are temperature dependent.

Formula (3.17) is called the semiclassical or steepest descent approximation of the
Feynman path integrals. ∆ refers to the divison of the interval [0, βh̵] deVned in equa-
tion (2.37). More details can be found in, e.g. [182, 185, 235], and references therein. The
semiclassical approximation allows to evaluate the partition function in equation (3.5).
A more detailed evaluation of this procedure will be given in the next Sections of this
Chapter. With the time sliced formulation used above an estimate for the remainder
r(∆, h̵, 0, βh̵) of order O(h̵) was found, see for example [176–178].

Notes on the determinant of the Jacobi operator

The determinant of the Jacobi operator J is in discrete form given as:

det[J ] = det [−1
2
d2

dt2
+ d

2V (γ∆(t))
d2γ∆(t) ] ≈ det[Jγ] = [det δ

2SE(γ∆(t))
δxiδxk

]
−1
, (3.18)

where det[Jγ] = detJik, i.e., the Jacobi Veld along the trajectory γ(t) ⊂M where Jik =
δγi(t)
δpk(t) with i, k = 1, . . . , d and pk(t) = mγ̇(0) diUerent initial momenta of trajectories
starting at x0 = γ(0) into diUerent directions, which has been proven several times
[174, 182, 236, 237]. Moreover the Jacobi Veld is related to the second variation of the
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Euclidean action functional by (Jik)−1 = δ2SE(γ∆(t))
δxiδxk

. The determinant det [ δ
2SE(γ∆(t))
δxiδxk

]
is referred to as the Morette–Van Hove determinant [174, 182, 236–239]. The JWKB
approximation [118–121] contains the same determinant as well. So up to now a
JWKB-like approach was derived.

The Jacobi Veld Jik describes the deviation of the stationary phase trajectory γ by a
variation through all possible stationary paths. In these paths several conjugate points,
i.e., points where two or more paths cross each other at focal points, are possible
[174, 182, 240]. The determinant det[Jγ] is also equivalent to the Fredholm determinant
detFJ G, where J = − 1

2
d2

ds2 +
d2V (γ(s))
d2γ(s) is the Jacobi operator and G Feynman’s Green

function [239]. Sometimes the determinant is also referred to as a regularized zeta-
function determinant [166].

In the following Section the results given above are applied to evaluate the partition
function at the metastable reactant state QRS and the partition function of the quantum
transition state Qinst.

3.2 Evaluation of partition functions

The partition functions QRS and Qinst, we are interested in, see (3.5), are based on
loops of closed trajectories γ∆. That implies the starting point x0 of a trajectory to
be the same as its end point xJ+1. The trajectories are passed once. To evaluate the
partition functions (i) a stationary path has to be located and then (ii) the Wuctuations
around it are determined. The Wuctuations are taken into account by determining the
determinant of the operator in (3.17). In the next Sections the Vrst example discussed is
always the one dimensional case with d = 1. Then follows the higher dimensional case.
The Vnal rates will be given in Section 3.3.

The main diUerence between γRS(t) and γinst(t), deVned on page 45, is their behavior
under the displacement along the path. The partition function QRS belongs to the
metastable system at the reactant minimum. Its path is collapsed to one point, i.e. the
displacement along the path dγRS(t)

dt ≡ 0, see Fig. 2.4.

For the displacement along the instanton path dγinst(t)
dt holds, when applying the Jacobi

operator

J u(t) = J dγ∆(t)
dt

= (−1
2
d2

dt2
+ V ′′(γ∆(t))) dγ∆(t)

dt
(3.19)

= − d
dt

(1
2
dγ2∆(t)
dt2

+ V ′(γ∆(t))) = 0. (3.20)
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This follows due to the chain rule

− d

dt

d

γ∆(t)V (γ∆(t)) = d

γ∆(t)
d

dt
V (γ∆(t)) = d

γ∆(t)
d

γ∆(t)V (γ∆(t)) d
dt
γ∆(t). (3.21)

In (3.19) the trivial solution of the zero-mode u(t) ∶= ũ0(t) = dγRS(t)
dt ≡ 0 is one of two

possible solutions and belongs to QRS. The second non-trivial solution belongs to
displacement along the instanton path γinst. The zero-mode u(t) ∶= u0(t) = dγinst(t)

dt ≠ 0,
will be discussed in the Subsection 3.2.1, when evaluating Qinst. The zero-mode makes
the matrix representing the Jacobi operator J at the instanton geometry singular.

3.2.1 Evaluation of Qinst

The closed path γinst(t) belonging to Qinst has a conjugate point which leads to a
determinant of a singular matrix with zero and negative eigenvalues [241, 242]. The
discrete Hessian representing equation (3.13), the integration over the second variation
of the Euclidean action, exhibits exactly one negative eigenvalue. The eigenvector
uinst(t) ∈ {uk(t)}d(J+1)k=1 denotes the unstable mode belonging to the negative eigenvalue
which corresponds to a movement of the whole path toward the reactant or the
product. The zero-mode corresponds to the arbitrary starting position of the path, i.e.,
to a reparametrization t→ t + t0 of the path.

The one dimensional case

We consider now a one-dimensional example, where γinst(t) ∶ [0, βh̵] → R, i.e., d = 1.
First of all the stationary path is located by optimizing a discretized version of the Vrst
variation of the Euclidean action, see (2.30). The stationary path fulVlls equation (2.40).
The optimization determines a term equal to zero with J +1 entries each corresponding
to one discretization point along the path γinst(t):

0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2
d2γinst(t1)

dt21
+ V ′(γinst(t1))
⋮

1
2
d2γ inst(tj)

dt2j
+ V ′(γ inst(tj))
⋮

1
2
d2γinst(tJ+1)

dt2J+1
+ V ′(γinst(tJ+1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.22)
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Consider the second order forward Vnite diUerence approximation of the j-th compo-
nent:

0 = 1
2
d2γ inst(tj)

dt2j
+ V ′(γ inst(tj)) (3.23)

≈ 1
2

1
(hj + hj−1)

(γ inst(tj+1) − γ inst(tj)
hj

− γ inst(tj) − γinst(tj−1)
hj−1

) + V ′(γ inst(tj))

(3.24)

= 1
2
( γ inst(tj+1)
hj(hj + hj−1)

− γ inst(tj)(hj + hj−1)
hjhj−1(hj + hj−1)

+ γinst(tj−1)
hj−1(hj + hj−1)

) + V ′(γ inst(tj)). (3.25)

The full vector reads in matrix notation

0 = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
h1hJ+1

− 1
h1(h1+hJ+1) − 1

hJ+1(h1+hJ+1)
− 1
h1(h2+h1)

− 1
hJ(hJ+hJ−1)

− 1
hJ+1(hJ+1+hJ) − 1

hJ(hJ+1+hJ)
1

hJ+1hJ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

γinst(t1)
⋮

γ inst(tj)
⋮

γinst(tJ+1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜
⎝

V ′(γinst(t1))
⋮

V ′(γ inst(tj))
⋮

V ′(γinst(tJ+1))

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

(3.26)

The matrix on the right hand side is a band matrix. It contains non-zero entries on
the diagonal, the two subdiagonals, here and in the following denoted by a line, and
in the outermost subdiagonals. The other entries are equal to zero. The path fulVlling
the condition (3.26) is the stationary-action path (MAP), the most probable tunneling
path. One possible way to Vnd the path is to optimize the Euclidean action. A detailed
discussion and comparison of diUerent optimizers will be given in Chapter 4.

After locating the path its discretized Euclidean action sum, see (2.21) and equa-
tion (2.46), has to be evaluated. The discrete action sum reads

SE[γinst(t)] = ∫
βh̵

0

1
2
(dγinst
dt

)
2

+ V (γinst(t))dt ≈ (3.27)

≈
J+1
∑
j=1
hj

1
2
(γ inst(tj+1) − γ inst(tj)

hj
)
2

+ hjV (γ inst(tj)) = (3.28)

=
J+1
∑
j=1

1
2
γ2inst(tj+1) − 2γ inst(tj+1)γ inst(tj) + γ2inst(tj)

hj
+ hjV (γ inst(tj)) =

(3.29)
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and in matrix formulation

= 1
2

⎛
⎜⎜⎜⎜⎜⎜
⎝

γinst(t1)
⋮

γ inst(tj)
⋮

γinst(tJ+1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

T
⎛
⎜⎜⎜⎜⎜⎜
⎝

1
h1
+ 1
h2

− 1
h1

− 1
hJ+1

− 1
h1

− 1
hJ

− 1
hJ+1

− 1
hJ

1
hJ+1

+ 1
h1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

γinst(t1)
⋮

γ inst(tj)
⋮

γinst(tJ+1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜
⎝

V (γinst(t1))
⋮

V (γ inst(tj))
⋮

V (γinst(tJ+1))

⎞
⎟⎟⎟⎟⎟⎟
⎠

T
⎛
⎜⎜⎜⎜⎜⎜
⎝

h1
⋮
hj
⋮

hJ+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (3.30)

The matrix in the Vrst term is again a band matrix with entries on the diagonal, the
two subdiagonal and in the outermost subdiagonals. To calculate rates the Wuctuations
around that path up to second order are considered, as in the discrete equation (3.15),
by a functional Taylor expansion. When applying the operator J to the discrete time
sliced path, (3.13) changes to

1
2 ∫

βh̵

0
∫

βh̵

0

δ2SE

δγinst(t)δγinst(t′)
y∆(t)y∆(t′)dtdt′ ≈ (3.31)

1
2
[
J+1
∑
j=1

1
2
(y∆(tj+1) − y∆(tj)

hj
)
2

hj +
J+1
∑
j=1
y∆(tj)V ′′ (γ inst(tj)) y∆(tj)hj] = (3.32)

= 1
2
[
J+1
∑
j=1

1
2
y2∆(tj+1) − 2y∆(tj+1)y∆(tj) + y2∆(tj)

hj
+
J+1
∑
j=1
y∆(tj)V ′′ (γ inst(tj)) y∆(tj)hj] =

(3.33)

= 1
2

⎛
⎜⎜⎜⎜⎜⎜
⎝

y∆(t1)
⋮

y∆(tj)
⋮

y∆(tJ+1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
h1
+ 1
h2

− 1
h1

− 1
hJ+1

− 1
h1

− 1
hJ

− 1
hJ+1

− 1
hJ

1
hJ+1

+ 1
h1

⎞
⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜
⎝

V ′′(γinst(t1))h1

V ′′(γinst(tJ+1))hJ+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜
⎝

y∆(t1)
⋮

y∆(tj)
⋮

y∆(tJ+1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= 1
2
yTMy.

(3.34)
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The y∆ are the Wuctuations around the path γinst(t) as deVned in Section 2.8, see
also Fig. 3.2. Thus, to calculate rates Vrst the instanton path has to be optimized and
then the second derivative of the potential energies along the path has to be calculated.
More details on the evaluation of the Gaussian integrals will be given after the next
paragraph concerning the higher dimensional case.

The higher dimensional case

In the higher dimensional case the stationary-action path is given as γinst(t) ∶ [0, βh̵] →
Rd. The dimension d can be considered as the number of degrees of freedom, i.e., the
number of atoms in a system times three as they can move in three directions. For the
evaluation of the Euclidean action and its Vrst variation, the matrices in (3.30) and (3.26)
will turn into block matrices, when they are treated in the same way as the second
variation in the following. The Fermi local coordinates with respect to the classical
path γinst(t) described in Section 2.8 have a local d-dimensional coordinate system at
each discrete time point tj ∈ [0, βh̵]. Inserting the expansion of y∆(tj) = ∑d−1

k=0 a
j
ke

j
k,

which is a representation of the Wuctuations in Fermi local coordinates into (3.32) yields

1
2

⎡⎢⎢⎢⎢⎣

J+1
∑
j=1

1
2
(
d−1
∑
k=0
aj+1k ej+1k −

d−1
∑
k=0
ajke

j
k)

2
1
hj
+ (3.35)

J+1
∑
j=1

d−1
∑
k=0
ajke

j
kV

′′ (γ inst(tj))
d−1
∑
l=0
ajlelhj] . (3.36)

Consider the part in the parenthesis taken to the power of two:

(
d−1
∑
k=0
aj+1k ek −

d−1
∑
k=0
ajkek)

2

= (3.37)

(
d−1
∑
k=0
aj+1k ej+1k )

2

− 2
d−1
∑
k=0
aj+1k ej+1k

d−1
∑
k=0
ajke

j
k + (

d−1
∑
k=0
ajke

j
k)

2

. (3.38)

Rewrite the coeXcients in vector notation (aj)T = (aj0, aj1, . . . , ajd−1) and the d-dimen-
sional orthonormal frame vectors ek in the rows of a matrix

Ej = Ej+1 = (e0,e1, . . . ,ed−1)T ∈ Rd×d,

see page 35. Then the Wuctuation reads y∆(tj) = Ejaj . Then (3.38) reads

(Ej+1aj+1)2 − 2 (Ej+1aj+1)T Ejaj + (Ejaj)2 (3.39)

=(aj+1)T (Ej+1)T Ej+1aj+1 − (aj+1)T (Ej+1)T Ejaj + (aj)T (Ej)T Ejaj. (3.40)
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The matrices (Ej)T Ej and (Ej+1)T Ej are identity matrices by deVnition, see page 35.
When applying the same step as in (3.34) the result is a block diagonal sparse matrix
M =H + V ∈ Rd(J+1)×d(J+1). Therefore (3.36) turns into

1
2 ∫

βh̵

0
∫

βh̵

0

δ2SE

δγinst(t)δγinst(t′)
y∆(t)y∆(t′)dtdt′ ≈ (3.41)

≈ 1
2

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1

⋮
aj

⋮
aJ+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
h1
+ 1
h2

− 1
h1

− 1
hJ+1

− 1
h1

− 1
hJ

− 1
hJ+1

− 1
hJ

1
hJ+1

+ 1
h1

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ (3.42)

⎛
⎜⎜⎜⎜⎜⎜
⎝

V ′′(γinst(t1))h1

V ′′(γinst(tJ+1))hJ+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1

⋮
aj

⋮
aJ+1

⎞
⎟⎟⎟⎟⎟⎟
⎠

= 1
2
aTMa,

(3.43)

where V ′′ (γ inst(tj)) ∈ Rd×d, aT = (a1, . . . ,aJ+1), and each entry ofM has become a
block diagonal matrix. The matrix M = H + V has the form depicted in Fig. 3.3. It
is important to note that the step-size factor hj which is obtained in equation (3.15)
by discretizing the integral is absorbed in the matrices H and V . Thus, the factor√

1
(hj)d det[J ] in equation (3.17) becomes

√
1

det[M] .

To evaluateQinst Vrst the optimization of an instanton path γinst ∈ C[0,βh̵](Rd) is required
which corresponds to the search of a Vrst order saddle “point“ of the Euclidean action.
The geometry of the instanton path is then used to setup a matrix in the form ofM ∈
Rd(J+1)×d(J+1). That matrix can also be considered as a discretized form of the Jacobi
operator J . To be able to evaluate the Gaussian integrals in equation (3.9) obtained by
the Taylor expansion equation (3.7) analytically, the matrixM is diagonalized:

aTMa = aT ŨTDŨa = bTDb, (3.44)

where Ũ is an unitary matrix, b ∶= Ũa, and D a diagonal matrix with eigenvalues in
the spectrum ofM σ(M) ∶= {λinst1 , . . . , λinst

d(J+1)} on the diagonal.

By diagonalizing the matrixM the local coordinate representation of the Wuctuating
path changes. The coeXcients ak change to coeXcients bk by

b = Ũa⇔ ŨTb = a, (3.45)
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+

1
h1
+ 1

h2
− 1

h1
− 1

hJ+1

=

V ′′(γinst(t1))h1

V ′′(γinst(t2))h2

V ′′(γinst(t3))h3

H V

M ∈ Rd(J+1)×d(J+1)

∈ Rd×d

∈ Rd×d

∈ Rd×d

(J
+1
)b

lo
ck
s

Figure 3.3: The matrices H , V and M = H + V representing the Wuctuations up to
second order around the instanton path γinst(t). The eigenvalues of the matrixM are
denoted by λinsti , i = 1, . . . , d(J + 1). Only the colored blocks contain non-zero entries
and the entries of the blocks in H are limited to the diagonal elements (blue lines).
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where Ũ is an unitary matrix with eigenvectors of the matrixM in its columns and
therefore (2.54) becomes

y = EŨTb =∶ Ub. (3.46)

The matrix E contains on its diagonal block matrices Ej , which contain the orthonor-
mal frame vectors deVned on page 53. The columns uk of the matrix U belong to the
d(J + 1) discrete eigenmodes of the operator J . They constitute a complete orthonor-
mal system spanning the tangent space to γ∆. The non-discrete continuous eigenmodes
will in the following be denoted as uk(t), with k = 1, . . . , d(J + 1). The coeXcients
bk determine the amount of contribution of eigenmodes to each Wuctuation y∆. The
entries of U are obtained by solving the equation

(M − λkI)uk = 0 (3.47)

for each eigenvalue λk, k = 1, . . . , d(J + 1) ofM with I the unity matrix.

For equation (3.19) is the non-trivial solution after the diagonalization ofM given as
u0, the discrete version of u0(t). The zero-mode u0 is the eigenvector belonging to the
eigenvalue λ0 = 0 in the eigenvalue spectrum ofM , λ0 ∈ σ(M):

Mu0 = λ0u0 = 0u0. (3.48)

Changing from time sliced to Fourier path integration

A normal mode expansion of the Wuctuations into a complete orthonormal system
y∆(t) = ∑d(J+1)

k=1 bkuk(t) leads to:

1
2 ∫

βh̵

0

d(J+1)
∑
k=1

bkuk(t) (−
1
2
d2

dt2
+ V ′′(γ(t)))

d(J+1)
∑
l=1

blul(t)dt = (3.49)

1
2

d(J+1)
∑
k,l=1

bkblλk ∫
βh̵

0
uk(t)ul(t)dt =

1
2

d(J+1)
∑
k=0

b2kλk, (3.50)

as ∫
βh̵

0 uk(t)ul(t)dt = δk,l, with δk,l the Kronecker delta and λk the d(J +1) eigenvalues
ofM . The right-hand side of equation (3.50) depends only on the coeXcients bk. This
relation motivates the replacement of the time sliced measure Dx by the normal mode
measure Db.
The paths y∆(t) ⊂ T γC[0,βh̵](Rd) are characterized by their local coordinates (a11, . . . ,
adJ+1), see Section 2.8. Through the unitary transform in equation (3.45) a bijective cor-
respondence to the coeXcients (b11, . . . , bdJ+1) ⊂ T

∗
γC[0,βh̵](Rd) is established. In equa-

tion (3.9) after inserting the Taylor expansion equation (3.7) the Euclidean action of the
stationary-action path is a constant. The remaining time sliced path integration over
the term containing the second variation changes as follows:



3.2. Evaluation of partition functions 57

⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠∫R
. . .∫

R
exp(− 1

h̵

1
2 ∫

βh̵

0
∫

βh̵

0

δ2SE

δγ∆(t)δγ∆(t′)

y∆(t)y∆(t′)dtdt′)dx1 . . . dxJ+1 ≈ (3.51)

∫
R
. . .∫

R
exp(− 1

h̵

1
2
aTMa)dx1 . . . dxJ+1 = (3.52)

⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠
N ∫

R
. . .∫

R
exp(− 1

h̵

1
2
aTMa)da11 . . . dad1 . . . da1J+1 . . . dadJ+1 =

(3.53)

⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠
N ∫

R
. . .∫

R
exp(− 1

h̵

1
2
bTDb)

det
⎡⎢⎢⎢⎢⎣
(∂a

k
i

∂blj
)
k,l=1,...,d

i,j=1,...,J+1

⎤⎥⎥⎥⎥⎦
db11 . . . db

d
1 . . . db

1
J+1 . . . db

d
J+1 = (3.54)

⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠
N ∫

R
. . .∫

R
exp

⎛
⎝
− 1
h̵

1
2

d(J+1)
∑
i=1

b2iλi
⎞
⎠
db0 . . . dbd(J+1)−1. (3.55)

The normalization factor N accounts for the relation between the time sliced Dx
measure and the normal mode measure Da. It includes a determinant of a Jacobian.
Note that this is not a simple linear coordinate transformation [182], see also Section 2.8.

The Jacobian determinant in equation (3.54) is equal to one, as the transform it accounts
for is the unitary transform of Da to Db, see equation (3.44). In the last equation (3.55)
the coeXcients bk are just renamed for simpler notation in Section 3.2.3. They are the
same d(J + 1) coeXcients as in equation (3.54).

The value of the constant N will cancel out later in the ratio of Im Qinst
QRS

contributing to
the instanton rate kinst, as both partition functions are treated in the same way.

3.2.2 Evaluation of QRS

The evaluation of QRS follows a similar procedure as the evaluation of Qinst. However,
in contrast to γinst(t) the path γRS(t) is collapsed to a point. Then, the determinant of
the Jacobi operator det{J } corresponds to the determinant of a non-singular matrix,
that has no zero eigenvalues.

To evaluate QRS Vrst an optimization to Vnd the reactant minimum at xRS is required.
The stationary-action path is then given as γRS(t) = xRS for all t. Of course γRS(t)
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fulVlls δSE
δγRS

= 0. The Euclidean action function of the stationary path is then

SE[γRS(t)] = ∫
βh̵

0

1
2
dγRS(t)
dt

⋅ dγRS(t)
dt

+ V (γRS(t))dt = βh̵V (γRS(t)), (3.56)

as γRS(t) = xRS for all t, the Vrst summand dγRS(t)
dt = 0 for all t.

We assume γRS to have the same discretization as γinst. Then there are as well d(J + 1)
possible Wuctuations around γRS. To Vnd them and then calculate the partition function
QRS the path integral is transformed in the same way as in equation (3.54). The only
diUerence between the calculation of Qinst and QRS is the form of the matrix V . For γRS
V contains J + 1 blocks of V ′′(xRS) instead of the Hessians at each point xj on γinst.
Thus, the matrixMRS has diUerent values thanM and diUerent eigenvalues, denoted
by λRSi , i = 1, . . . , d(J + 1).
To evaluate the partition function QRS we will now put all together: the path integral
expression of the partition function equation (3.5), the semiclassical steepest descent
approximation equation (3.17), and the discrete evaluations of the determinant of the
Jacobi operator (hj)d detJ which is det[MRS].
At Vrst consider the partition function after (i) taking the the Wuctuations up to second
order into account by a functional Taylor expansion, (ii) transforming from the time
sliced to the normal mode measure, and (iii) diagonalizingMRS and transforming from
dakj to db

k
j :

QRS ≈
⎛
⎝
J+1
∏
j=1

( 1
2πh̵hj

)
d/2⎞

⎠
exp(− 1

h̵
SE[γRS(t)])N

∫
R
. . .∫

R
exp(− 1

h̵

1
2
bTDRSb)db11 . . . dbd1 . . . db1J+1 . . . dbdJ+1. (3.57)

The relation

bTDRSb =
d(J+1)
∑
i=1

biλ
RS
i bi (3.58)

allows to treat the integrals in equation (3.57) as Gaussian integrals, see (B.5). For one
integration holds

∫
R

exp(− 1
h̵

1
2
b1λ

RS
1 b1)db1 =

√
2πh̵
λRS1

. (3.59)

Therefore factor 2πh̵ in the denominator of the Vrst prefactor in (3.57) cancels out
against the result of the Gaussian integration. Then the partition function at the
reactant minimum is given as

QRS ≈
⎛
⎝
J+1
∏
j=1

( 1
hj

)
d/2⎞

⎠
exp(− 1

h̵
SE[γRS(t)])N

¿
ÁÁÀ 1

∏d(J+1)
i=1 λRSi

. (3.60)
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Summarizing, the evaluation of the semiclassical steepest descent approximation (3.17)
of QRS via Gaussian integrals requires

1. to locate the reactant minimum xRS,

2. determine the Hessian V ′′(xRS), and

3. calculation of the determinant, possibly by diagonalization ofMRS.

3.2.3 Special treatment of Qinst

The normal mode expansion of the Wuctuation in terms of uk(t) is given as

y∆ = yb0,b1,...(t) =
d(J+1)−1
∑
k=0

bkuk(t), (3.61)

with the normal mode functions uk(t) ∈ C1(R). The powers in the Wuctuation yb0,b1,...

indicate its dependence on the coeXcients bk, see equation (2.52) and equation (3.6).
Assume the coeXcient b0, to belong to the direction of the zero-mode. In the discrete
case

y∆ =
⎛
⎜
⎝

y∆(t1)
⋮

y∆(tJ+1)

⎞
⎟
⎠
= Ub. (3.62)

Note that in equation (3.55) the components of b were renamed with new indices which
is used in the following.

Due to two reasons the partition function Qinst based on γRS can not be calculated in
the same way as QRS in equation (3.60):

1. The Feynman functional integration sums over all possible physical states. How-
ever, it is crucial to count equivalent physical states only once. Therefore, in
the case where symmetries are present, one has to sum over the orbits of the
symmetry group but not over the single points of the orbit which to obtain a
Vnite result. The zero-mode describes the displacement along the instanton path
γinst, which induces a symmetry relation.

Without loss of generality assume the zero eigenvalue λ0 = 0 belonging to the
mode u0(t) ∝ dγinst(t)

dt and u0(t) ∈ {uk(t)}d(J+1)k=1 , see equation (3.19) and equa-
tion (3.48), which leads to a contribution of

∫
R

db0√
2π

exp (−λ0b20) = ∫
R

db0√
2π

1 = ∞ (3.63)

in equation (3.55). Thus, an eigenvalue λ0 = 0 would lead to an inVnite contribu-
tion to Qinst.
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2. In addition to the zero-mode, the negative eigenvalue, caused by SE[γinst(t)]
being a saddle point, has to be treated separately. The negative eigenvalue leads
to a non-Gaussian integral.

A more sophisticated approach to evaluate Qinst, than in equation (3.60), is needed
to deal with the negative eigenvalue and the zero eigenvalue. Based on the idea of
counting equivalent states only once applying the method developed by Faddeev and
Popov to the d-dimensional time sliced formulation will provide a solution [243] for
the zero-mode treatment. A more detailed description on the basic notion and the
introduction of a delta function in the path integration is given in the Appendix B.2. The
non-trivial zero-mode dγinst(t)

dt belonging to the zero eigenvalue of the operator J is in
the following renormalized and left out in the determinant evaluation. In the procedure
proposed by Faddev and Popov the integration over the coeXcient b0 belonging to the
zero-mode u0(t) is replaced by an integration of a generalized coordinate, t0, along the
instanton trajectory γinst(t). The parameter t0 ∈ [0, βh̵] representing the generalized
coordinate varies along the instanton path. At the end a prefactor enters the expression
for Qinst, and, thus, the rate, by the renormalization.

The negative eigenvalue of the operator J , λ1 < 0, is handled by an analytic continua-
tion into the complex plane. The result is an imaginary partition function Im(Qinst) ≠ 0.

Zero-mode treatment

The functions uk(t) satisfy the orthonormality condition for all k, l = 1 . . . , d(J + 1),
see equation (2.58) page 36:

1
βh̵ ∫

βh̵

0
uk(t)ul(t)dt = δkl, (3.64)

where δkl denotes the Kronecker Delta. For the discretized uk obtained from the
eigenbasis calculations in (3.47)

⟨uk,ul⟩ =
1
βh̵

d(J+1)
∑
i=1

uk(ti)ul(ti)hi = δkl (3.65)

holds for the discrete inner product with uk columns of the matrix U which implicates
that all vectors uk are conjugate (i.e. orthogonal) with respect to the matrix containing
the stepsizes hi on its diagonal. For the deVnition of the inner products see page 24.
The discrete case is in the following marked by a gray bar.
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Recover b0 by forming the inner product of the Wuctuation with the zero-mode function
u0(t)

b0 =
1
βh̵ ∫

βh̵

0
yb0,b1,...(t)u0(t)dt. (3.66)

And in the discrete case

b0 = ⟨yb0,b1,...,u0⟩ = ⟨Ub,u0⟩ =
1
βh̵

bTUu0 =
1
βh̵

bT
⎛
⎜⎜⎜
⎝

1
0
⋮
0

⎞
⎟⎟⎟
⎠
. (3.67)

The overlap of the stationary path (the instanton) γinst(t) and its zero-mode function
dγinst(t)
dt is zero

1
βh̵ ∫

βh̵

0
γinst(t − t0)u0(t − t0)dt

∝ 1
βh̵ ∫

βh̵

0
γinst(t − t0)

dγinst(t − t0)
dt

dt∝ [ 1
2βh̵

(γinst(t − t0))2]
βh̵

0
= 0. (3.68)

The equality to zero is given by the fact that the path γinst(t) is a closed path. Therefore
the Wuctuations in local coordinate representation can be replaced by by the full
Wuctuating path γb0,b1,...(t) = γinst(t) + yb0,b1,...(t) in general coordinates. Then the
coeXcient of the zero-mode is given as

b0 =
1
βh̵ ∫

βh̵

0
γb0,b1,...(t)u0(t)dt (3.69)

and in the discrete case

b0 = ⟨γinst + yb0,b1,...,u0⟩ = ⟨
⎛
⎜⎜⎜
⎝

x1

x2

⋮
xJ+1

⎞
⎟⎟⎟
⎠
+Ub,u0⟩ , (3.70)

with xi ∈ Rd the coordinates of the J + 1 control points belonging to the instanton path
determined by the (discrete) Euler-Lagrange equation (2.40).

Let δ denote the Dirac delta function, see Appendix B.1, then

δ (b0) = δ (
1
βh̵ ∫

βh̵

0
γb0,b1,...inst (t)u0(t)dt) (3.71)

and discrete
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δ (b0) = δ (⟨γinst + yb0,b1,...,u0⟩) . (3.72)

Now, let t0 be the generalized coordinate moving along the path γinst(t) = γinst(t − t0).
The constant t0 describes initial positions of the path, in physics literature it is also
referred to as kink position [198].

The relation between normal mode coordinate b0 and t0 will be established by intro-
ducing an alternative parametrization of the path γb0,b1,...(t), where b0 is replaced by
t0:

γb0,b1,...(t) = γinst(t) +
d(J+1)−1
∑
k=0

bkuk(t) (3.73)

changes to

γt0,b1,...(t) = γinst(t) +
d(J+1)−1
∑
k=1

bkuk(t). (3.74)

In the discrete case

γb0,b1,... = γinst + yb0,b1,... =
⎛
⎜⎜⎜
⎝

x1

x2

⋮
xJ+1

⎞
⎟⎟⎟
⎠
+Ub (3.75)

changes to

γt0,b1,... =
⎛
⎜⎜⎜
⎝

x1

x2

⋮
xJ+1

⎞
⎟⎟⎟
⎠
+ (u1, . . . ,ud(J+1)−1)

⎛
⎜⎜⎜
⎝

b1
b2
⋮

bd(J+1)−1

⎞
⎟⎟⎟
⎠
=∶ γinst +U ′b′, (3.76)

with U ′ ∈ R(d(J+1)−1)×d(J+1) and b′ ∈ Rd(J+1)−1. The point t0 = 0 coincides with b0 = 0 by
deVnition. Thus,

δ (b0) = δ
⎛
⎝

1
βh̵ ∫

βh̵

0

⎛
⎝
γinst(t) +

d(J+1)−1
∑
k=1

bkuk(t)
⎞
⎠
u0(t)dt

⎞
⎠

(3.77)

and discrete
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δ (b0) = δ (⟨γinst +U ′b′,u0⟩) . (3.78)

To apply the transition from expression (3.71) to (3.77) the measure, see (3.55)

N ∫
∞

−∞

db0√
2πh̵

d(J+1)−1
∏
k=1

[∫
∞

−∞

dbk√
2πh̵

] (3.79)

has to be transformed into

N√
2πh̵

∫
∞

−∞
dt0

d(J+1)−1
∏
k=1

∫
∞

−∞

dbk√
2πh̵

det [ ∂
∂t0

b0 (b0, b1, ...)] , (3.80)

which is achieved by the same trick as in in two dimensions with d = 1, see Appendix B.2.
Note that the integrals in the last two equations come from the path integration over
the whole conVguration space not from an inner product. Thus, they range from −∞
to∞.

Faddeev–Popov trick

To ensure a correct transform (and that the result at b0 = t0 = 0 stays the same) the
Jacobian has to fulVll

∫
∞

−∞
δ(b0)det [ ∂

∂t0
b0 (b0, b1, . . . )]dt0 = 1. (3.81)

The determinant of the Jacobian describes the volume changes caused by the transform
of b0 to t0. It depends on all paths, i.e., on all coeXcients bk. Inserting (3.77) into (3.81)
gives the condition for the Jacobian determinant

∫
∞

−∞
δ ( 1
βh̵ ∫

βh̵

0
γt0,b1,...(t)u0(t)dt)det [ ∂

∂t0
b0 (b0, b1, . . . )]dt0 = 1. (3.82)

∫
∞

−∞
δ (⟨γinst + yt0,b1,...,u0⟩)det [ ∂

∂t0
b0 (b0, b1, . . . )]dt0 = 1. (3.83)
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As the δ-function has a vanishing argument at t0 = 0 an expansion in powers of t0 is
possible. When keeping the argument of lowest order the result is

1
βh̵ ∫

βh̵

0
dtγt0,b1,...(t)u0(t) = (3.84)

=−N0t0
βh̵

⎡⎢⎢⎢⎢⎣
∫

βh̵

0
(dγinst(t)

dt
)
2

dt +
d(J+1)−1
∑
k=1

bk ∫
βh̵

0

dγinst(t)
dt

duk(t)
dt

dt

⎤⎥⎥⎥⎥⎦
+O(t20) =

(3.85)

=−N0t0
βh̵

⎡⎢⎢⎢⎢⎣
S0 +

d(J+1)−1
∑
k=1

bkrk

⎤⎥⎥⎥⎥⎦
+O(t20), (3.86)

with the remainder rk ∶= ∫
βh̵

0
dγinst(t)
dt

duk(t)
dt dt, the normalized normal mode u0 ∶=

N0
dγinst(t)
dt , and the action S0 = ∫

βh̵

0 (dγinst(t)dt )
2
dt; see also the deVnition of the action

sum in equation (2.46). The normalization constant is given as N0 =
√

βh̵
S0
, as

1
βh̵ ∫

βh̵

0
u0(t)u0(t)dt =

N 2
0

βh̵ ∫
βh̵

0

dγinst(t)
dt

dγinst(t)
dt

dt = 1 (3.87)

⇔ N 2
0 =

βh̵

S0
. (3.88)

In the discrete case holds

⟨γinst + yb0,b1,...,u0⟩ = −N0t0
J + 1
βh̵

⎡⎢⎢⎢⎢⎣
S0 +

d(J+1)−1
∑
k=1

bkrk

⎤⎥⎥⎥⎥⎦
+O(t20), (3.89)

with N0 =
√
βh̵/(S0(J + 1)). Then follows from (3.82)

∫
∞

−∞
δ
⎛
⎝
−N0t0
βh̵

⎡⎢⎢⎢⎢⎣
S0 +

d(J+1)−1
∑
k=1

bkrk

⎤⎥⎥⎥⎥⎦

⎞
⎠

det [ ∂
∂t0

b0 (b0, b1, . . . )]dt0 = 1. (3.90)

Employing the symmetry and the scaling property of the δ-function, see Appendix B.1,
yields

∫
∞

−∞

√
βh̵

S0

δ(t0)
[1 + S−10 ∑d(J+1)−1

k=1 bkrk]
det [ ∂

∂t0
b0 (b0, b1, ...)]dt0 = 1. (3.91)
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Using the fact ∫
∞
−∞ dt0δ(t0) = 1 and rearranging the equation leads to the Jacobian

determinant (Faddeev-Popov determinant)

det [ ∂
∂t0

b0 (b0, b1, ...)] =
√

S0

βh̵

⎡⎢⎢⎢⎢⎣
1 + S−10

d(J+1)−1
∑
k=1

bkrk

⎤⎥⎥⎥⎥⎦
. (3.92)

and in the discrete case

det [ ∂
∂t0

b0 (b0, b1, ...)] =
√

S0(J + 1)
βh̵

⎡⎢⎢⎢⎢⎣
1 + S−10

d(J+1)−1
∑
k=1

bkrk

⎤⎥⎥⎥⎥⎦
(3.93)

The term S−10 ∑d(J+1)−1
k=1 bkrk disappears at the level of quadratic Wuctuations as they are

odd in bk. Now with the renomalized (gauge Vxed) contributions of the zero-mode
in (3.80) the Wuctuation factor, see also (3.12), (3.17) and (3.50), reads

N
1√
2πh̵

∫
∞

−∞
dt0

d(J+1)−1
∏
k=1

∫
∞

−∞

dbk√
2πh̵

(3.94)

det [ ∂
∂t0

b0 (b0, . . . )] exp
⎛
⎝
1
2h̵

d(J+1)−1
∑
k=0

b2kλk
⎞
⎠

(3.95)

=N
√

J + 1
βh̵

√
S0

2πh̵

¿
ÁÁÀ 1

∏d(J+1)−1
k=1 λk

∫
∞

−∞
dt0 (3.96)

≈N [ 1
2πh̵ ∫

βh̵

0
(dγinst(t)

dt
)
2

dt]
1/2 ⎡⎢⎢⎢⎢⎢⎣

1

det′ [− 1
2
d2

dt2 +
d2V (γinst(t))
d2γinst(t) ]

⎤⎥⎥⎥⎥⎥⎦

1/2
√
βh̵. (3.97)

As ∫
∞
−∞ dt0 = βh̵ for t0 ∈ [0, βh̵] expression (3.96) turns into 3.97 where det′ denotes

that the eigenvalue belonging to the zero-mode is omitted. The semiclassical partition
partition function Qinst of the quantum transition state is then in analogy to QRS, see
equation (3.60), given as

Qinst ≈
⎛
⎝
J+1
∏
j=1

( 1
hj

)
d/2⎞

⎠
exp(− 1

h̵
SE[γinst(t)]) [ S0

2πh̵
]
1/2 N

√
βh̵√

det′ [− 1
2
d2

dt2 +
d2V (γinst(t))
d2γinst(t) ]

≈

(3.98)
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≈
⎛
⎝
J+1
∏
j=1

( 1
hj

)
d/2⎞

⎠
exp(− 1

h̵
SE[γinst(t)]) [S0(J + 1)

2πh̵
]
1/2

N
√
βh̵√

∏d(J+1)−1
i=1 λinsti

. (3.99)

However, that is not the correct formula as it is still open how to treat the negative
eigenvalue which will be discussed in the next paragraph. The evaluation of the
negative mode is still an open question.

Negative-mode treatment

Since the zero-mode γinst(t)
dt has one node and as γinst(t) lies at a saddle point, one

eigenvalue ofM (contributing to the discrete version of detJ ) is negative [242]. The
negative eigenvalue is without loss of generality denoted by λ1 < 0, λ1 ∈ σ(M) ∖λ0 and
the coeXcient of the corresponding mode by b1. It was shown that the distortion of
the integration contour along b1 into the complex plane enables a Gaussian integration
of the negative eigenvalue [202]. The negative eigenvalue λ1 of the Wuctuation is
proportional to the negative curvature at the maximum of γinst(t). There exists only
one negative mode [241]. Thus, the remaining modes are not involved in the analytic
continuation. A simple approach would be to evaluate the integration over b1 with
∣λ1∣ = λ̃1 > 0 which results in

∫
db1√
2πh̵

exp(− 1
2h̵
b1λ̃1b1) =

1√
λ̃1
. (3.100)

Then after the analytical continuation the right hand side would read

∫
db1√
2πh̵

exp(− 1
2h̵
b1λ1b1) = ±

i√
λ1
. (3.101)

However, there is a factor 1
2 missing in the resulting formula (3.101) [202]. The factor

1
2 is due to the equal probability of the moving particle to return back to the reactant
valley or proceed forward to the lower product valley, see Fig. 2.4. Only those paths
going forward to the product valley count to the reaction rate. The detailed derivation
of this factor can be found in [198] and the integration of the negative eigenvalue
results in:

∫
db1√
2πh̵

exp(− 1
2h̵

(b1)2λ1) =
i

2
√

∣λ1∣
. (3.102)

Then the Vnal result for the partition function Qinst is
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Qinst ≈
⎛
⎝
J+1
∏
j=1

( 1
hj

)
d/2⎞

⎠
exp(− 1

h̵
SE[γinst(t)]) [S0(J + 1)

2πh̵
]
1/2
i

2
N

√
βh̵√

∏d(J+1)−1
i=1 ∣λinsti ∣

.

(3.103)

This form contains the absolute values, denoted by ∣ ⋅ ∣, of all eigenvalues in the second
factor (except the one equal to zero) and an additional factor i/2 that makes the
partition function imaginary. Additionally, the zero-mode (u0(t) or discretized u0) in
the integration over the zero-mode coeXcient b0 is by the renormalization discussed in
the previous paragraph replaced by an integration over the instanton path. Now we
can have a closer look on the resulting rates.

3.3 Instanton rates

Taking the expressions for the partition functions in equation (3.60) and equation (3.103)
into account, the result for the Im F instanton rate, see (3.2), as derived in this chapter
is:

kinst =
2
βh̵

(Im Qinst

QRS
) ≈ (3.104)

≈ 2
βh̵

⎛
⎝
J+1
∏
j=1

( 1
hj

)
d/2⎞

⎠
exp(− 1

h̵
SE[γinst(t)]) [ S0

2πh̵
]
1/2 1

2
N

√
βh̵(J + 1)

√
∏d(J+1)−1
i=1 ∣λinsti ∣

⎛
⎝
J+1
∏
j=1

( 1
hj

)
−d/2⎞

⎠
exp(−−1

h̵
SE[γRS(t)])N−1

¿
ÁÁÀd(J+1)−1

∏
i=0

λRSi = (3.105)

= exp(− 1
h̵
(SE[γinst(t)] − SE[γRS(t)])) [ S0

2πh̵
]
1/2√J + 1

βh̵

¿
ÁÁÁÀ ∏d(J+1)−1

i=0 λRSi

∏d(J+1)−1
i=1 ∣λinsti ∣

.

(3.106)

This is a variable step-size instanton rate. Note that the product in the denominator
contains one factor less than the product in the enumerator. The normalization factor
N due to the transform from a time sliced to a Fourier path integral and the product
over the step-sizes introduced as normalization in the time sliced path integral for-
mulation cancel out in the ratio of the two partition functions. From equation (3.105)
to equation (3.106) the factor 2

βh̵ becomes
√
1/βh̵, which is a factor slightly diUerent
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from the previous versions of the rates. It is introduced through the normalization of
the functions that play a role in the zero-mode renormalization.

In molecular systems, V (γinst(t)) is invariant under a global rotation and translation.
Therefore,N0 eigenvalues of the V matrix, which contains the Hessians of the potential
energies along the path γinst(t), see Fig. 3.3, are zero. For non-linear molecules without
frozen atoms N0 = 6 (5 for linear molecules). The Euclidean action SE is, just like V ,
invariant under a rotation and translation of the whole paths γinst or γRS. Thus, in the
instanton rate for molecules additionally to the eigenvalue corresponding to the zero-
mode N0 are zero. The zero-mode eigenvalue has no counterpart in the reactant-state
partition function whereas the N0 additional zero eigenvalues do. The reactant-state
partition function can be treated as the quantum mechanical partition function of a
harmonic oscillator in d −N0 dimensions, see [109].

Therefore, the following discrete formulation of instanton theory allows to use variable
step-sizes along the instanton path. The indices have been renamed starting from 1
instead of 0 compared to equation (3.106).

kinst ≈
⎛
⎝

d(J+1)
∏

l=N0+1

√
λRSl

⎞
⎠
⎛
⎝

d(J+1)
∏

l=N0+2

1√
∣λinstl ∣

⎞
⎠

√
S0

2πh̵

√
J + 1
βh̵

exp(− 1
h̵
(SE[γinst(t)] − SE[γRS(t)])) . (3.107)

If the potential energy at the reactant state minimum V (xRS) = 0 is chosen to be
equal to zero, the action SE[γRS(t)] = 0 and vanishes in the exponential function. N0

eigenvalues corresponding to the overall translation and rotation are excluded from
the products, the vibrational partition functions. This means, that for the present
derivation, changes in the translational and rotational partition function are ignored.
These can be covered by the partition function of a rigid rotor and by the classical
translational partition function [227].

The rates obtained for an equidistant discretization hj = βh̵/(J + 1) ∀j = 1, . . . , J + 1,
have been published, see [57, 182, 198, 216, 227–229] and references therein.

In this chapter the instanton method was extended to a discretization using a variable
step-size along the imaginary time, the parameter of the stationary-action paths. The
derivation is slightly diUerent from the one used in [109]. Gradients and Hessians
required for locating the instantons were presented. The Vnal instanton reaction rate
was derived step-by-step by considering all necessary intermediate steps. In addition
to the theoretical derivations in this Chapter the algorithm for a variable step-size
discretization is outlined in [109] and in Chapter 4.2.
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4
Improvements in the Calculation of

Instanton Rates

The instanton method [202, 205, 206] described in Chapter 3 is a promising tool to
calculate tunneling rates. The instanton itself is the most-likely tunneling path at a
given temperature. It is also a Vrst-order saddle point of the Euclidean action in the
space of closed Feynman paths. Thus, optimizations can be used to locate instantons.

This chapter will give insights on (1) how to optimize an instanton path, i.e., locate
the dominant tunneling path in systems with many degrees of freedom (for example
enzymes), and (2) how to eXciently calculate quantum rates and kinetic isotope eUects
from the optimized instanton, despite some challenges.

Possible techniques to locate instantons are proposed and tested in Section 4.1: the
Newton–Raphson method will be compared to the partitioned rational function opti-
mization (P-RFO) algorithm, the dimer method, and a newly proposed mode-following
algorithm, where the unstable mode, uinst, is directly estimated from the instanton
path. The instanton method allows eXcient calculation of quantum rates at diUerent
temperatures using sequential cooling [108, 216, 216–219, 227]. The results of testing
these algorithms at diUerent temperature on three chemical systems, each including a

Parts of this Chapter have been used in:
J. B. Rommel and J. Kästner, Locating Instantons in Many Degrees of Freedom, J. Chem. Theory Comput.
7, 690, 2011, see [108].
J. B. Rommel and J. Kästner, Adaptive Integration Grids in Instanton Theory Improve the Numerical
Accuracy at Low Temperature, J. Chem. Phys. 134, 184107, 2011, see [109].
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hydrogen transfer, are presented. Then the eXciency of these algorithms and possible
issues which may impede instanton optimizations, and ways to avoid them are dis-
cussed. In Section 4.2 possible improvements on the eXciency of rate calculations by
taking a Vxed-path approximation or using an adaptive, variable step-size discretization
will be presented.

4.1 Locating instantons in many degrees of freedom

To calculate tunneling rates, see equation (3.2), the partition function of the reac-
tant state QRS and the the partition function Qinst are necessary. To determine QRS,
see equation (3.60), Vrst the reactant minimum of V (x) is determined, then the second
derivative V ′′(x) is calculated and to calculate the rate eigenvalues are determined, as
described in Section 3.2.2. The evaluation of Qinst is more complicated, see Section 3.2.1.

In general, sequential cooling is used [108, 216, 216–219, 227], i.e., the starting point is
at a temperature below Tc and then an instanton and the tunneling rate are calculated.
Then the temperature is successfully lowered, starting the search from a converged
instanton. Alternative approaches and other starting paths may be used as well.

The problem of Vnding an instanton has been formulated here, see Section 3.1, as a
saddle-point search of a discretized path. This allows to treat a high number of degrees
of freedom. Instantons can, however, also be interpreted as unstable periodic orbits
on the upside-down potential energy surface (−V ), see Section 2.5. Techniques to Vnd
periodic orbits [244, 245] have previously been used to Vnd instantons [246, 247]. In
practice, these techniques are, however, only applicable to systems with a few degrees
of freedom [247].

Reduced path formulation of SE

The Vrst possible simpliVcation is due to the fact that for molecules the instanton path
γinst is delocalized along one line in the conVguration space of the molecule. The path
is closed by proceeding along this line forward and backward.

To calculate the Euclidean action of the closed path γinst(t) and, through that Qinst,
γinst(t) is again discretized into J+1 images, see Section 2.7. Mass-weighted coordinates
are used throughout. Choosing an even number of images and starting the index j = 1
at an image next to one turning point, the images j and (J + 1) − j + 1 have identical
coordinates. All images are traversed twice. The turning points themselves are not
control points. An example is depicted in Fig. 4.1, where the turning points lie between
the images 4 and 5, as well as 8 and 1 of the path. Thus, it is suXcient to sum over half
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of the images (P = (J + 1)/2) [227]. The action sum reads then

SE[γinst(t)] ≈
2P
βh̵

P−1
∑
j=1

∣γ inst(tj+1) − γ inst(tj)∣2 +
βh̵

P

P

∑
j=1
V (γ inst(tj)), (4.1)

where ∣⋅∣ denotes the absolute value (Euclidean norm). Here an equidistant discretization
was chosen, with hj = βh̵

J+1 for all j = 1, . . . , J + 1. The equidistant step-size was used
throughout the rest of this section. To fulVll equation (2.40), a stationary action path
has to be searched for. Since rates are the interesting object, the search is specialized
on looking for a Vrst-order saddle point of SE, the instanton γinst ∈ C(R3n) ⊂ Ω, see
page 32. The reduced path that is searched for is of dimension Pd (for a molecule with
d = 3n degrees of freedom) [153].

ue ue ue ue
ue ue ue ue

h1 h5

h2 h3 h4j = 1 2 3 4

5678

Figure 4.1: Discretization of the instanton path γinst into J + 1 = 8 images. The images
(indicated by circles) are numbered by j = 1 to 8. The intervals in t between the images
are labeled with hj . Images aligned above each other (1 and 8, 2 and 7, ...) have pairwise
identical coordinates.

The collapsed path formulation has a slight impact on the gradient and Hessian formula-
tions which are needed to locate instantons by optimizations. The matrixM belonging
to the second variation of SE changes slightly by using the collapsed path. Half of
its block entries will be identical. As previously discussed,M (a Hessian) exhibits ex-
actly one negative eigenvalue and a corresponding eigenvector uinst(t) ∈ {uk(t)}d(J+1)k=1
belonging to a movement of the whole path toward the reactant or the product. An
example of uinst(t) is depicted in Fig. 4.2. The special treatment of the negative mode is
discussed on page 66.

The infrastructure to calculate the Euclidean action and all the methods to optimize
instantons described in the following were implemented in DL-FIND [248]. They can be
used with analytic potentials as well as with electronic structure calculations. Through
the interface to ChemShell [249], they can be combined with many quantum chemistry
programs as well as classical force Velds or QM/MM energy expressions.

4.1.1 Starting path

The instanton optimization starts with an initial guess of a path. The estimation of
the starting path should be as close as possible to the Vnal instanton. For temperature
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T ≧ Tc the instanton is collapsed to xcl, the Vrst-order saddle point on the potential
energy surface (classical TS), see Fig. 2.4. As the temperature decreases, the images
spread out approximately along the classical unstable mode ucl. In the quadratic region
of V (γ inst(t)), the images spread on the path reduced to a line like

γ inst(t) = xcl +∆r ucl cos(2π t/βh̵), 0 ≤ t ≤ βh̵ (4.2)

So, the discretized version for P images was used:

xi = xcl +∆r ucl cos(j − 1/2
P

π) , 0 < j ≤ P (4.3)

The initial spread ∆r is chosen manually. It cannot be estimated from xcl or its Hessian.
If not noted otherwise, ∆r = 0.4 atomic units was used. After optimization and below
Tc the instanton path γinst does not generally pass through the saddle point, xcl, any
more.

4.1.2 Mode-following methods

Minimum-mode following is an approach to search for Vrst-order saddle points. The
action is minimized in all directions but one, uinst(t), see Fig. 4.2. Along uinst(t) the
action is maximized. If uinst(t) is the eigenvector of the Hessian associated with the
lowest (the negative) eigenvalue, such an algorithm converges to a Vrst-order saddle
point.

The dimer method [250–252] is a minimum-mode-following algorithm with the transi-
tion mode recalculated in what is called dimer rotation in each iteration. Converged
rotation provides the correct uinst(t) without ever requiring the calculation of the
Hessian. An improved version of the dimer rotations [253] was implemented. The
limited memory version [254, 255] of the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
[256–259] optimizer was used for translations and rotations. Dimer rotations were
optimized until uinst(t) changed by less than 5 degrees in one rotation. This required
dimer rotations only at the start of an optimization run. A tighter convergence criterion
for the rotations was tried but lead to an increase in the number of energy evaluations
(i.e., a possible saving through fewer translations was lost by more rotation steps). An
alternative to the dimer method, which also does not require the Hessian, is the Lanczos
method [260, 261], which has previously been used to locate instantons [216–219, 227].

For the instanton search problem it turned out that an approximation of uinst(t) can
easily be obtained

uinst(ti) ≈ uTM
inst(ti) =

1
2
(γ inst(ti+1) − γ inst(ti−1)) , (4.4)
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i.e., the transition mode is assumed to be the tangent of the instanton path. Actually, it
is the tangent of only half the path and the reversed tangent of the other half. However,
as given in equation (4.1), only the points on the Vrst half of the instanton path γinst
are used as active variables in the optimization. The mode uinst(t) is recalculated after
each optimization step. Calculating it only at the start and keeping it constant resulted
in divergence in some cases. Using a uinst calculated by equation (4.4) is called “tangent
mode” (TM) in the following.

4.1.3 Hessian-based methods

The evaluation of the prefactor of the rate in (3.107) requires to calculate the Hessian
of the potential energy surface at each image of the instanton, a computationally
demanding task. In sequential cooling it can be used as a good Vrst approximation to
the Hessian of the instanton at a lower temperature, which speeds up convergence
considerably.

A truncated Newton–Raphson (NR) algorithm and the partitioned-rational function
optimizer (P-RFO) [262–265] were tested. NR generally converges quadratically to
stationary points. However, it has the disadvantage that it converges to any stationary
point, not necessarily to Vrst-order saddle points. This is expected unproblematic since
the starting structures are often already quite close to the sought-after saddle point.
After convergence is achieved, the Hessian at the new instanton geometry has to be
calculated. Its eigenvalue spectrum conVrms whether a Vrst-order saddle point was
obtained.

The P-RFO method converges to Vrst-order saddle points by construction. It is generally
the method of choice to search for classical transition states due to its fast and reliable
convergence properties.

Hessians are obtained for the individual images from previous rate calculations. With a
changed temperature, they are used for the subsequent optimization. With changes in
coordinates, the Hessians of the individual images are updated according to the BoVll
scheme [266]. For small steps and a noisy gradient, the update of the Hessian may
actually deteriorate it rather than improve it. So the Hessian is kept unmodiVed if the
coordinates of the images change by less than a predeVned threshold. Using the initial
Hessian without updates results in less stable optimizations.

When the Vrst instanton below Tc is calculated, a previous Hessian calculation along
the full instanton path is unavailable. However, normally the Hessian of the potential
energy surface is evaluated at the classical TS. Here, this Hessian is updated to the
initial image positions, again using the BoVll scheme.
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4.1.4 Examples and numerical tests

Figure 4.2: top: Instanton geometries of the three test cases: malonaldehyde, ammonium
and methylamine, as well as H + benzene. Each calculated at T = 200 K with P = 20
images. Bottom: the transition mode uinst(t) indicated as arrows on the hydrogen
atom transferred between ammonium and methylamine. For clarity, only the arrows
corresponding to every second image are shown. The components of uinst(t) on the
other atoms are negligibly small on the scale shown.

The performance of the four optimization algorithms was tested on three chemical
systems (Fig. 4.3) at various temperature intervals. All systems were described with
semiempirical methods. These pose similar challenges to the optimization algorithms,
like numeric discontinuities in the potential energy surface due to incomplete self
consistent Veld (SCF) convergence, while being orders of magnitude faster than density
functional theory or post-Hartree–Fock methods.

The internal hydrogen transfer in malonaldehyde was simulated with the PM3 Hamilto-
nian [267]. Since the reactant and product states are chemically indistinguishable, this
system has a symmetric barrier. Its tunneling behavior has recently been investigated
with a variety of methods [268]. The hydrogen transfer between ammonium and
methylamine, also described with PM3, is slightly asymmetric. A very asymmetric
barrier is found in the addition of hydrogen to benzene. The latter is a relevant model
for the formation of H2 in space [217, 218]. Here it is described with AM1 [110]. In
order to get a more realistic reactant-state geometry (van der Waals complex), an
empirical dispersion correction originally designed for higher-order methods [269] was
added (prefactor S6 = 1). Energies and gradients were calculated with MNDO99 [270]
interfaced to ChemShell [249] through DL-FIND. It should be emphasized that the aim
of this Section is to compare the eXciency of algorithms rather than the reproduction
of experimental values. The instantons of the three test cases are depicted in Fig. 4.2.
Visualization was done using VMD 1.8.7 [271].



4.1. Locating instantons in many degrees of freedom 75

H
O O

H
O O

+H

H
N H

CH3H

H
NH
H

H
N
H

H N
H H

CH3

H

H
H

Figure 4.3: The test cases for which the algorithms to locate instantons were tested:
malonaldehyde, ammonium and methylamine, and the addition of hydrogen to benzene.

Classical transition states for the three test systems were calculated with the superlinear
converging version [253] of the dimer method [250] as implemented in DL-FIND [248].
Mass-scaled coordinates (mass of hydrogen being 1) were used. Convergence was
considered to be achieved for the maximum component of the gradient gmax of SE/(βh̵),
being below a tolerance value (convergence criterion) of gtol = 10−5, the root-mean-
square (RMS) of the gradient being below 6.66 × 10−6, the maximum component of the
predicted step being below 4×10−5, the RMS of the predicted step being below 2.66×10−5,
and the last change in the energy of the dimer midpoint being below 2.22 × 10−8, all
values in atomic units (a.u.). The dimer direction, which in mass-scaled coordinates
converges to ucl, was converged in each dimer iteration until it changed by less than
one degree.

Hessians were calculated by Vnite diUerences of the gradients with two elongations of
2 × 10−3 (mass-scaled atomic units) in each dimension. The crossover temperature Tc
was obtained according to equation (1.4), page 14, as 442.3 K, 493.9 K, and 387.2 K for
malonaldehyde, ammonium and methylamine, and H + benzene, respectively.

Instanton searches were performed in mass-weighted coordinates with masses con-
sistent with atomic units (electron mass, me). That is, the mass of a hydrogen atom
(1H) is 1837.15 me. This ensures that the masses in equation (3.29) and equation (4.1)
really drop out. On the other hand, this scales all distances up by a factor of 42.695
(= [a.m.u./me]1/2), a.m.u. means atomic mass units, compared to mass-scaled coordi-
nates as deVned in Section 2.7 on page 32. Thus, gtol has to be smaller by the same
factor to achieve equivalent convergence. The convergence criterion for the instan-
ton searches was gtol = 10−7 for the maximum component of the gradient of SE/(βh̵)
in mass-weighted coordinates (gmax). Suitable choices for gtol will be discussed in
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Section 4.1.5

In each case, the Vrst instanton was found for T = 300 K by starting from the classical
transition state and distributing the P = 20 images along ucl using ∆r = 0.4 a.u. as
described in Section 4.1.1. The numbers of steps needed to reach convergence are
given in Table 4.1. In case of malonaldehyde, the instanton search using NR converged
back to a state where all images are collapsed to the classical TS. This is obviously a
stationary point, but it is not an instanton, i.e., it does not exhibit the correct number of
eigenvalues being zero. Using ∆r = 0.6, as deVned in equation (4.3) leads to convergence
to a delocalized Feynman path, the instanton.

system TM dimer P-RFO NR
Malonal. 114 (2280) 112 (6720) 337 (6726) 64 (1280)
Ammon. 103 (2060) 107 (6420) 338 (6760) 46 (920)

H+Benzene 151 (3020) 355 (19360) 137 (2740) 11 (220)

Table 4.1: Number of steps needed to reach convergence (number of energy and
gradient evaluations in parentheses) for Vnding an instanton at T = 300 K starting from
the classical TS. gtol = 10−7, P = 20.

Further instantons at lower temperature were optimized starting from the geometry
and the Hessian of the instanton obtained with TM at 300 K. Here the convergence
for diUerent temperature intervals was tested rather than using sequential cooling.
For T = 200 K an instanton search was additionally performed with more images,
P = 77. Geometries and Hessians from the instanton with P = 20 and T = 300 K were
interpolated by inserting three extra images in between two consecutive ones.

The number of steps needed to achieve convergence in each case, along with the number
of energy and gradient evaluations needed, are given in Table 4.2. The convergence
behavior is exemplarily depicted in Fig. 4.4.

In TM, P-RFO, and NR the number of energy evaluations is P times the number
of optimization steps. In the dimer method, the rotations require additional energy
evaluations. At least two energy and gradient calculations of the full path (dimer mid-
and end-points) are required for an estimate of the rotational angle [252]. In most
iterations, at least a third calculation (one dimer rotation) was required. Especially at
the beginning of an optimization run, more dimer rotations may be necessary. Overall,
in the dimer optimizations, the number of energy and gradient evaluations is about
3P times the number of optimization steps. This indicates that on average one dimer
rotation step per iteration was suXcient.

Those cases for which numbers are given in Table 4.2 converged to the correct in-
stanton within a maximum of 1000 optimization steps and 200000 energy evaluations.
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T [K] P TM dimer P-RFO NR

Malonaldehyde
275 20 81 (1620) 83 (4980) —c 4 (80)
250 20 75 (1500) 79 (4740) —c 6 (120)
225 20 72 (1440) 73 (4380) —c 6 (120)
200 20 70 (1400) 68 (4160) —c 17 (340)
100 20 75 (1500) —b 293 (5860) 45 (900)
200 77 275 (21175) 268 (61908) 220 (16940) 7 (539)

Ammonium and Methylamine
275 20 53 (1060) 66 (3760) 41 (820) 5 (100)
250 20 66 (1320) 67 (4020) 670 (13400) 8 (160)
225 20 114 (2280) 67 (4060) —c 12 (240)
200 20 111 (2220) 121 (6440) 738 (14760) 18 (360)
100 20 76 (1520) 88 (5160) —c 100 (2000)
200 77 248 (19096) —c —c 16 (1232)

H + Benzene
275 20 127 (2540) 119 (6080) 263 (5260) 5 (100)
250 20 129 (2580) 123 (6160) 82 (1640) 6 (120)
225 20 142 (2840) 124 (6540) 133 (2660) 10 (200)
200 20 225 (4500) 104 (5480) 258 (5160) 17 (340)
100 20 —a 75 (4080) 652 (13040) 44 (880)
200 77 528 (40656) 463 (106953) —c 19 (1463)

a: Calculation converged to a wrong stationary point
(all images in the reactant minimum).

b: Calculation converged to a wrong stationary point
(images interchanged during the optimization).

c: not converged

Table 4.2: Number of steps needed to reach convergence (gtol = 10−7, number of
energy and gradient evaluations in parentheses) in the diUerent methods at diUerent
temperature. All calculations started out from a converged instanton at T = 300 K,
P = 20.
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Figure 4.4: Convergence behavior of the four diUerent optimization methods for
ammonium and methylamine at T = 275 K. NR converges almost quadratically. The
convergence criterion of gmax = gtol = 10−7 is indicated by a thin horizontal line.

Consistency was checked by comparing SE, S0, and kinst, as well as the eigenvalue
spectrum between the results of diUerent optimization algorithms.

For the H + benzene case, the initial instanton search for T = 300 K with the TM method
resulted in a somewhat problematic starting structure for the following instanton
optimizations. The reason being that for this system the potential energy surface is very
Wat close to the reactant minimum. This results in many of the images accumulating
there. A too weak convergence criterion leads to numerical noise in the image positions
and, thus, to numerical noise in uinst(t) in the TMmethod. Thus, for the TM calculations
of this system, the instanton at T = 300 K optimized with NR was used as the starting
geometry.

The inWuence of P and gtol on the vibrational instanton rates (log10(kinst)), ignoring
changes in the rotational partition function as well as the translational partition func-
tion between the reactant and the instanton, is shown in Table 4.3. The error relative
to the most accurate value obtained with P = 96 images and gtol = 10−9 is given. A
diUerence in the logarithm of 0.1 corresponds to a rate which is oU by about 25.9%.

The ammonium and methylamine case raises a particular issue in the rate calculations.
The “vibrational” mode in which the two fragments rotate with respect to each other
has a very low vibrational frequency of only 11.5 cm−1 at the classical TS. Thus, at
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the temperature range considered, this mode would better be described as a hindered
rotator than as a harmonic oscillator. Since in this work only the eUect of P and gtol
on the rates are investigated, in Table 4.3 this mode is ignored just as the other six
translational and rotational modes are ignored. If it were included as a vibrational
mode in the rate calculations, then its low eigenvalue would cause numerical problems
in automatically designating the real zero eigenvalues in the eigenvalue spectrum of
the instanton Hessian, thereby compromising the rates. It is worth noting at this point
that the additional low mode was handled well by the optimization algorithms.

gtol
P 10−5 10−6 10−7 10−8 10−9

Malonaldehyde
20 −0.05 −0.01 −0.01 0.00 0.00
39 −0.14 −0.15 0.00 0.00 0.00
58 −0.53 −0.00 0.00 0.00 0.00
77 −0.54 −0.10 −0.01 0.00 0.00
96 −0.19 −0.10 −0.01 0.00 0.00

Ammonium and Methylamine
20 −0.45 −0.01 −0.01 −0.01 −0.01
39 −0.20 −0.01 0.00 0.00 0.00
58 −0.18 −0.27 0.00 0.00 0.00
77 −0.19 −0.41 0.00 0.00 0.00
96 −0.20 −0.40 0.00 0.00 0.00

H + Benzene
20 0.14 0.25 0.01 0.01 0.01
39 0.18 0.31 0.00 0.00 0.00
58 0.17 −0.05 −0.01 0.00 0.00
77 0.10 0.31 0.00 0.00 0.00
96 0.21 0.29 0.01 0.00 0.00

Table 4.3: Error in the logarithm of the rates compared to the tightest convergence
criterion gtol and the largest number of images for each case (T = 200 K, NR).

4.1.5 Comparison of methods for optimizations

Four diUerent algorithms to optimize instantons were compared. The results clearly
show that the NR algorithm is the most promising one among those tested. Its near-
quadratic convergence results in only few optimization steps necessary to reach tight
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convergence criteria. The convergence behavior is also promising for applications to
systems with signiVcantly more degrees of freedom. The methods are not restricted to
sequential cooling. Using analytic potentials, convergence was achieved even with the
TM method for a straight-line path as starting guess (data not shown). In these cases, a
Hessian from previous calculations is not easily available. The results also point out
some problems which can be expected in instanton optimizations. These will now be
addressed.

It is clear from Table 4.2 that the P-RFO fails to converge in a number of cases. As a
Vxed-point iteration scheme, it sometimes reaches a periodic cycle rather than actually
converging to the desired stationary point. This can be seen by plotting the maximum
gradient component against the number of iterations, see Fig. 4.5. In all cases except
T = 100 K, a cycle is reached rather than the gradient becoming smaller and smaller.
This is caused by a strong dependence of the P-RFO algorithm on an accurate Hessian.
The Hessians of the individual images are updated rather than recalculating it, which
inevitably leads to inaccuracies. Using the Powell update [272] or no update scheme at
all leads to an even worse convergence (data not shown). Recalculating the Hessian in
each step would of course be prohibitively expensive. Since the other algorithms, in
particular NR, generally converge faster and more reliably, instanton optimization with
P-RFO is not recommended.
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Figure 4.5: Convergence failures of the P-RFO method for malonaldehyde at diUerent
temperatures.

NR intrinsically converges to any stationary point, not necessarily Vrst-order saddle
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points. While in all results shown here, it actually converged to the sought-after
instanton; runs in which NR converged to diUerent states were observed as well.
Especially at high temperature, close to Tc, there seems to be a danger of the whole
path collapsing to the classical TS. This was observed here when starting from the
classical TS and searching for an instanton at T = 300 K in the case of malonaldehyde.
A larger ∆r for spreading the images in the initial path resolved that problem.

Convergence to a collapsed path can easily be detected during an optimization run
by a steadily decreasing value of S0. According to equation (4.5), S0 vanishes for any
collapsed path. In cases where NR converges to a diUerent stationary point than the
instanton, the TM algorithm is recommended as a backup solution.

In two cases, H + benzene at T = 100 K with the TM method and the dimer method, the
calculations actually converged to a path collapsed to the reactant state, see Table 4.2.
While this is also a stationary point of SE, it obviously is no instanton. These cases are
less worrying, however, because the direct change from T = 300 K (starting point) to
T = 100 K is rather extreme. Smaller temperature intervals are recommended. Even at
this large temperature interval, however, NR converged well.

Convergence criteria are applied in the present implementation in the same unit system
as the optimization being done, i.e., in mass-weighted coordinates with the mass of an
electron as unit. To assess which gtol is necessary to obtain the tunneling rate with a
given accuracy, the data presented in Table 4.3 were calculated. A criterion of gtol = 10−7

seems suXcient to ensure convergence of the logarithm (basis 10) of the rate to within
0.01. For the systems and the temperature (T = 200 K) studied here, P = 20 images are
obviously suXcient, as the rate (at suXciently small gtol) is independent of the number
of images. At lower temperature, however, the images become less equally spaced in
conVguration space. More and more images accumulate close to the minima. In these
cases, more images are required to achieve converged rates as found in agreement with
previous work [216]. It can also be seen from Table 4.3 that with more and more images,
the rate becomes more sensitive to gtol. At 20 images, the rate is already converged if
gtol = 10−6 is used for malonaldehyde and ammonium and methylamine.

The remaining error at nonperfect convergence can be due to three sources, kinst =
kS0 ⋅ kharm ⋅ kSE : S0 (entering the rate as kS0 =

√
S0/(2πh̵)), SE (entering the rate as

kSE = exp(−SE/h̵), and all terms covering the quadratic expansion of the potential
around the stationary paths: kharm = 1

QRS

J+1
βh̵

1√
∣∏′

i λi∣
. The latter causes the largest eUect.

This is somewhat surprising as SE enters the rate exponentially. The eigenvalues λi
of the Hessian only enter under the square root. However, numerical noise in the
Hessian aUects most or all eigenvalues, which together apparently make a noticeable
contribution. Thus, it seems important to calculate the Hessians of the images with
high accuracy.

Finally, a property of the instanton path itself rather than the optimization of it is
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Figure 4.6: The potential energy surface, the MEP, and instantons at three temperatures
for the case of ammonium and methylamine, projected onto a plane of two geometric
coordinates. The corner cutting shortens the tunneling path by keeping the heavy
nitrogen atoms Vxed and focusing the movement onto the light hydrogen atom.

discussed, namely corner cutting. Tunneling is more eXcient the thinner the barrier is.
The relevant width of the barrier is the width in mass-weighted (or any iso-inertial)
coordinates. Thus, movement of heavy atoms reduces the tunneling rate more than
movement of light atoms. This results in an instanton path which, in many cases,
deviates signiVcantly from the MEP, an eUect known as corner cutting [112]. An
example is demonstrated in Fig. 4.6. The Vgure shows the N–N distance plotted against
one N–H distance of the ammonium and methylamine system used in this work. All
numbers are of course calculated with semiempirical methods of limited accuracy.
However, the qualitative conclusions also hold with more accurate methods. On the
MEP, the nitrogen atoms approach each other signiVcantly (shortening of the N–N
distance by 0.14 Å) before the hydrogen atom is transferred. The movement of the
heavy atoms is more and more avoided the more important tunneling becomes. At
T = 100 K the N–N distance decreases by only 0.06 Å. This shortening of the eUective
tunneling path comes at the expense of a higher energy of some images along the
instanton compared to the classical TS. A similar corner cutting is observed for the
instantons in glutamate mutase, see Section 5.3. However, it still results in a larger
tunneling rate than tunneling along the MEP.
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4.2 Instanton tunneling rate calculations

Optimizing an instanton corresponds to Vnding a Vrst-order saddle point in the space
spanned by all coordinates of all images. EXcient optimizers with near-quadratic
convergence behavior are available [108], see Sections 4.1.2 and 4.1.2. However, there
are several challenges to calculate rates based on the instanton path γinst located with
the methods discussed in the previous section. Two of them are:

1. The temperature dependence of the distribution of images along γinst (accumula-
tion at the ends of the path), when using an equidistant discretization, see the
next paragraph. Calculations of rates become more and more computationally
demanding the lower the temperature, as more images are required to calculate
rates.

2. The expensive Hessian calculations of V (xj) at each discretization point (image)
j = 1, . . . , (J + 1)/2 are challenging for rate calculations in large systems such as
enzymes.

Aims of the following section are to improve the eXciency of the instanton rate
calculations and to provide a procedure for fast scans of KIEs for diUerent combinations
of isotopes.

The temperature dependence of γinst

In general, the instanton path γinst shows the following temperature dependence:
at temperatures above a crossover temperature Tc, deVned in (1.4) on page 14, the
instanton collapses to, xcl, the saddle point on the potential energy surface [71]. The
path spreads out below Tc. Then it generally does not pass through the saddle point,
xcl, any more. At intermediate temperature below Tc the path and the rate vary with T .
The path becomes longer and more delocalized, the lower the temperature T becomes.
When using an equidistant discretization, hj = βh̵/(J + 1) for all j = 1, . . . , J + 1, the
distribution of the images (discretization points) along the path changes with T . They
accumulate at the ends of the paths. A pictorial understanding for the accumulation of
images for a constant step-size in t can be drawn in two ways.

1. The equation (3.7) describes images connected by springs optimized in the po-
tential V , see also Fig. 3.2. The spring constant between the images j and j − 1
is proportional to 1/h2j . If all the spring constants are equal (hj = (βh̵)/(J + 1)
for all j), it is clear that the springs are more stretched in the steep region of
the potential (around the barrier) than in the Wat region. For low temperature,
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the eUective force constants become particularly weak leading to a pronounced
eUect which is a further spread to accommodate a lower potential energy.

2. The Euclidean action given in (2.21) describes a system in the upside-down
potential −V moving according to classical mechanics, see Fig. 2.4. In this
interpretation t represents the time and βh̵ the period of the closed path (periodic
orbit). At low temperature (high β) such a orbit starts close to a stationary point
of V , a maximum of −V , the reactant state. Close to this maximum the particle
moves slowly. In steeper regions of −V it is accelerated, having the largest
velocity at the minimum of −V along the path (the barrier) and decelerates as
it moves up −V towards the second turning point. The velocity of the particle
(dγ inst(t)/dt) directly corresponds to the distance between the images if they are
taken at constant intervals in t.

In Fig. 4.7 an example is depicted showing position and energy of the images of a
typical instanton at low temperature. 50% of the images end up in only 2% of the length
of the path. These numbers get more extreme at even lower temperature. Symmetric
barriers lead to accumulations at both ends of the path. Therefore, the region around
the top of the barrier is barely sampled, see Fig. 4.7. However, it is the region at the

50%
75%

90%

reactant product

en
er
gy

reaction coordinate

Figure 4.7: Accumulation of images near the end(s) of the instanton path of the Müller–
Brown potential at T = 0.2 Tc for P = 300 images (every Vfth image is shown by a ring).
Percentages of images left of the indicated images are given.

top of the barrier where the kinetic energy and potential energy change most. Thus, a
suXcient sampling is required there and along the whole path, for converged rates.

Summarizing, due to the path becoming longer while lowering the temperature more
images have to be used to obtain converged rates. Additionally, most of these images
accumulate at low temperature close to the end of the instanton path (the one with the
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smaller slope of the potential energies surface along the path). Thus, calculations of
rates become more and more computationally demanding the lower the temperature,
as more images are required to calculate rates.

4.2.1 The Vxed-path approximation for the calculation of KIEs

To obtain estimates of KIEs without signiVcant additional computational eUort a “Vxed-
path approximation” (FPA) can be employed [222]. The FPA allows to approximate the
instanton path at a given set of atomic masses by the instanton path at the reference
masses (generally, the light isotopes), while Vxing x̃j for all j = 1, . . . , J + 1 and, thus,
Spot and the V matrices (part of the Hessian matrix M ), but adjusting S0, λRSl , and
λinstl to the correct masses. The masses would change γ inst(tj) even though xj remain
Vxed. Note that all S0, λRSl , and λinstl do depend on the path (i.e., on xj) as well as on
the masses. So, also for these quantities, skipping the re-optimization of FPA while
changing the mass is an approximation. Since xj is kept Vxed the recalculation of
any potential energies, gradients or V -Hessians, i.e. any quantities which consume
signiVcant CPU time, is unnecessary to obtain a KIE. Only the analysis changes and the
Hessian has to be diagonalized again. The validity of the FPA has been shown in [222].
Thus, approximations to the KIEs can be calculated with hardly any computational
eUort, which allows a fast scan of the KIEs for diUerent combinations of isotopes.

4.2.2 Adaptive integration grids: numerical tests

In this section the variable step-size discretization on a collapsed path will be given.
Then follows a discussion on how to choose the step-size in order to obtain a roughly
uniform distribution of the images in Euclidean space. A short comment on improve-
ments by using updated Hessians is given as well. Finally, the results of testing with
diUerent systems are summarized.

By introducing the Wexibility of variable step-size discretization of the integral over the
instanton path γinst, instead of a constant step-size the accumulation of images at the
turning points of the path can be avoided. Therefore, fewer images are required for an
accurate sampling of the path and accurate rates.

A possible approach towards a more uniform distribution of the images based on an
extension of the nudged-elastic band method [273] has been derived recently [274, 275].
It requires to set the tunneling energy prior to the calculation. Generally in the
application of instanton theory, and also in this work, the temperature is set rather
than the tunneling energy. In the following, adaptive step-size of integration will be
used to avoid the accumulation of images along the instanton path which will allow
to calculate rates with signiVcantly fewer images. The method can be continuously
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transformed back to the traditional instanton theory with constant step-size, see [109].
The rate will be calculated according to equation (3.107).

Variable step-size discretization on the collapsed path

The variable step-size discretization looks slightly diUerent for the collapsed path than
in Chapter 3, for more details see [109]. Another trick for a computable form of the
determinant of the second variation of the Euclidean action is to split SE into its two
components, SE = S0/2 + Spot, see (2.46). The kinetic energy part S0 is twice the part of
the Euclidean action depending on the length of the path:

S0 =
J+1
∑
j=1

∣γ inst(tj) − γ inst(tj−1)∣2
hj

= 2
P

∑
j=2

∣γ inst(tj) − γ inst(tj−1)∣2
hj

. (4.5)

The second equality exploits the fact that each converged instanton path is reduced to
one line traversed backwards and forwards. The discretizations of S0 and Spot into J +1
intervals in t can in principle be chosen independently of each other. Here V (γ inst(tj))
is chosen to be equally assigned to each neighboring interval.

Spot =
J+1
∑
j=1

hj + hj+1
2

V (γ inst(tj)) =
P

∑
j=1

(hj + hj+1)V (γ inst(tj)). (4.6)

Finding an instanton path by optimization techniques requires gradients and Hessians
of the Euclidean action. The discrete expressions (4.5) and (4.6) can be used to derive
the gradient and the Hessian of SE with respect to the coordinates of the atoms of
each image. The result is slightly diUerent from the formulation of the gradients and
Hessians presented in Section 3.2.1. For more details see [109]. The variable step-size
formulation of the gradients and the Hessians of the Euclidean action can be calculated
similarly to the traditional way with constant step size.

Choice of the step-size to obtain a more uniform distribution of the images

By choosing the hj individually for each interval of the discretization the distribution
of images (discretization points) along the instanton path γinst(t) are controlled. There
is some freedom for the appropriate choice of hj . In the following two possibilities
to choose the step-size hj will be presented. These two choices lead to more or less
uniform distributions of discretization points along the path.

As the discretization is in t ∈ [0, βh̵], the condition
J+1
∑
j=1
hj = βh̵, hj > 0 (4.7)
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has to hold. With the energy conservation of the system moving on the upside-down
potential follows, see [109], one choice for the step-size

hj =
∣xj −xj−1∣√
2(V[j−1,j] − Vb)

(4.8)

with Vb being the potential at the turning points of the instanton path, the tunneling
energy. And V[j−1,j] indicates a value of the potential in the interval [tj−1, tj] chosen
for V (t). Additionally, ∣xj − xj−1∣ is chosen such that the instanton path has a total
length of βh̵. For possible choices of Vb and V[j−1,j], e.g., via sequential cooling, see
[109]. At low temperature the energy Vb can for example be approximated by its lower
bound VRS as there is no need for an exactly equal distribution of images in practical
calculations.

Instead of the approximately uniform distribution of images obtained that way by equa-
tion (4.8), the images can also be forced to remain exactly uniformly distributed. Start
with an equally-spaced initial path and calculate V ′(xj) for all j = 1, . . . , P . The result
is then inserted in the formula for the gradient of the action. Setting the gradient equal
to zero leads to a nonlinear system of equations for the hj . These hj are then used
for the instanton path optimizations. An example of the truly uniform distribution of
images obtained by that method is depicted in Fig. 4.8 (lower panel) for T = 0.3 Tc. The
other paths at the lower panel are calculated based on equation (4.8).

However, the truly equally-spaced discretization leads to a less accurate rate, as the
resulting hj at the end points of the path becomes very large compared to the other
step-sizes. This signiVcantly deteriorates the rates and leads to worse results than
equation (4.8). Both cases can gradually be converted back to the traditional constant
step-size if required, which allows to choose other combinations.

The choice of hj inWuences the rate of convergence with the number discretization
points, but not the Vnal converged value, see [109]. Independent of the choice of the hj ,
as long as they are chosen in an appropriate range, the rates obtained in the limit of
many images will be the same.

Updated Hessians for rate calculations

The main aim of this section is to make instanton optimization faster and more eXcient
also for larger systems by demanding fewer energy and gradient calculations. In the
following, the reduction of accuracy by saving explicit evaluations of the Hessians
V ′′(xj) of the individual images xj , j = 1, . . . , P will be discussed brieWy. These
Hessians are blocks of the matrix V , see page 55. They are all used (i) in the Newton–
Raphson algorithm to locate instanton paths by optimizations and (ii) to calculate the
instanton rate, equation (3.107).
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Figure 4.8: Comparison of the traditional discretization with a constant step-size in
t (top) and a variable step-size (bottom). Instanton geometries for P = 20 images of
the Müller–Brown potential are shown. At low temperature (blue curves) images
accumulate at the minimum (bottom right corner of each graph) when using a constant
step-size, while they keep uniformly distributed with a variable step-size.

After changing the coordinates at one imagexj , the Hessian V ′′(xj) can be recalculated
or approximated by an update based on the previous Hessian and the gradients at both
points [266, 272, 276]. Calculations of potential energies by quantum chemical methods
result in computationally expensive Hessians calculations. In that case updating
strategies are valuable alternatives. As discussed in Sections 4.1.3 and 4.1.5 the Hessians
V ′′(xj) are updated during the optimization. However, for rate calculations the
Hessians are recalculated to obtain a higher accuracy in the rates. Updated Hessians are
certainly less accurate than recalculated ones. However, especially for a QM/MM energy
expression, where analytical Hessians are computationally expensive, if available at all,
this approximation is advantageous.

In rates estimated from updated Hessians the eigenvalue λ0 corresponding to the zero-
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mode u0(t) was frequently found to be signiVcantly diUerent from zero. Therefore,
it was problematic to choose which eigenvalues to ignore in the second product of
equation (3.107). On the other hand, the eigenvector corresponding to the zero-mode
u0 is just the tangent to the instanton path

u0(t) =
dγinst(t)
dt

(4.9)

which can be approximated by

u0(tj) ≈ uapprox(tj) =
γinst(tj+1) − γinst(tj−1)

hj + hj+1
, for all j = 1, . . . , P. (4.10)

Thus, the eigenvalue of the matrix M that corresponds to the eigenvector with the
largest overlap with uapprox is ignored in equation (3.107). In addition, the N0 eigenvec-
tors corresponding to rotation and translation have to be ignored in case of molecules
as described in Section 3.3. That procedure lead to improved instanton rates. See [109]
for more details. There the results of numerical tests

(a) of the analytic two-dimensional Müller–Brown potential,

(b) of malonaldehyde described by PM3 (same parameters as in Section 4.1.4), and

(c) of the hydrogen addition to benzene described by Density Functional Theory (DFT)
can be found as well.

Testing the approaches described above in this Section with (a) to (c) results in a reduc-
tion of the computational eUorts by more than one order of magnitude in computational
time. This beneVt is due to three reasons:

1. the improved geometry optimization algorithm (NR vs. mode-following),

2. the reduced number of images (discretization points) due to the variable step-size,

3. the updating strategies for the Hessians instead of their explicit re-evaluation.

Only the third reason leads to a loss in accuracy. The Vrst two reasons save more than a
factor of 12 in the number of energy and gradient evaluations in one case [109]. While
the computational costs for an analytic Hessian calculation compared to a gradient
calculation depends on the details of the implementation and can only with diXculties
be compared, the new algorithms result in a speedup of about a factor of 20. The
numerical tests of the variable step-size instanton optimization and rate calculation,
formulated in Chapter 3, showed that the accumulation of images at the ends of
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the instanton path observed with the traditional constant step-size discretization are
avoided. Additionally, all beneVts of the instanton method are retained. For example,
the problem of locating the instanton as a saddle point in the space of closed Feynman
paths can still be solved with quadratic convergence.
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5
The Reaction Mechanism of the

Enzyme Glutamate Mutase

The enzyme glutamate mutase catalyses the reversible interconversion of Glu to MA, as
shown in the introduction, see Section 1.1. From experiment, it is unclear which steps
is rate-limiting. While some studies observed large 1H/2H KIEs [21–23], which indicate
the hydrogen-transfer steps to be rate-limiting, more recent work found smaller KIEs
and concludes that neither of the hydrogen-transfer steps is cleanly rate-limiting
[24, 25]. Since the measured primary deuterium KIEs range from 4.1 to 35 at 283 K the
importance of tunneling during the reaction is unclear, see Sections 1.1.1 and 1.1.2.

To simulate enzymatic reactions the combination of quantum chemical approaches
with empiric force Velds (QM/MM) [277, 278], reviewed in [249, 279–282], is a promis-
ing approach. All previous QM/MM calculations performed on GM considered only
the activating, but not rate-limiting, Co–C bond cleavage [14–16]. The dissociation
enthalpy for the homolytic cleavage was experimentally estimated in methylmalonyl-
CoA mutase, a similar coenzyme B12-dependent enzyme, to be about 59 kJ mol−1 [283].
Calculations investigating the rearrangement reaction have been done in gas-phase
models considering diUerent protonation states [17, 284]. Several reaction mechanisms

Parts of this Chapter have been used in:
J. B. Rommel, J. Kästner, The Fragmentation–Recombination Mechanism of the Enzyme Glutamate
Mutase Studied by QM/MM Simulations, J. Am. Chem. Soc. 133, 10195, 2011, see [20].
J. B. Rommel, Y. Liu, H.-J. Werner, J. Kästner, The Role of Tunneling in the Enzyme Glutamate Mutase,
to be submitted, 2012.
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have been proposed for GM, e.g., removal of a hydride ion or a not very likely addition–
elimination pathway [17]. Experimental and the computational results support the
fragmentation–recombination pathway for GM. The following investigations empha-
size on the fragmentation–recombination mechanism proposed based on experimental
data [18, 19].

The Chapter is organized as follows: in Section 5.1 methodological and technical
details for QM/MM simulations of GM, the level of theory, and the method employed
to study tunneling in the enzyme based on rates and KIEs are given. In Section 5.2
the computational results concerning the energetics of the rearrangement reaction
catalyzed by the enzyme are discussed including a comparison of energies obtained
with diUerent functionals used for DFT calculations and coupled cluster. Then a
detailed discussion of the enzyme environment and its inWuence on the reaction
follows. Emphasis is given on individual amino acids and their contribution to a
productive catalysis. Overall, insights into the reaction mechanism on the level of
atoms and electrons will be presented. In Section 5.3 rates based on coupled cluster
energy calculations, primary and secondary KIEs will be presented and compared to
experimental results. Instanton theory is applicable with any kind of potential energy
surface. In the previous Chapter 4 it was be applied to test systems with diUerent
methods (for example semiempirical methods, DFT). In this chapter potential energies
obtained on the Wy from QM/MM calculations will be used to investigate the changes
in the active center of GM during the process of tunneling. All atoms included in
the optimization of the instanton tunneling path are allowed to tunnel. Thus, the
movement of more than one atom is quantized. The relevance of tunneling in GM will
be discussed.

5.1 Methods and technical details

5.1.1 System preparation for QM/MM simulations

The enzyme GM from Clostridium cochlearium in complex with AdoCbl and substrate
was modeled based on X-ray diUraction results at 1.9 Å resolution (PDB entry 1I9C) [6].
The X-ray data include the whole tetramer with two σε-subunits, and the substrates
Glu as well as MA. The enzyme consists of two identical subunits without any covalent
connections between them. The reactive parts are remote from each other. Experimen-
tal investigations carried out with a mutant containing only one σε-subunit also show
independence of the subunits [285]. Thus, only one σε-subunit was simulated.

After protonation and solvatization (both with VMD [271] version 1.8.7) in a cubic box
of TIP3P [286] water molecules, see Fig. 5.1, the system was extensively equilibrated
on an MM-only level. This allows all cavities within the enzyme to be Vlled with
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water. Na+ and Cl− ions (each about 0.05 mol L−1) were added to ensure an overall
charge neutrality of the system. The initial size of the rectangular solvent box was
90.5 Å × 80.5 Å × 95 Å.

Figure 5.1: The protein GM in a cubic solvent box of water molecules and ions: σ-
subunit (blue) and ε-subunit (red).

In the following classical molecular dynamics (MD) simulations with periodic boundary
conditions were performed using the CHARMM22 [287–290] force Veld in the code
NAMD, version 2.6 [291]. The Langevin piston Nosé–Hoover method [292, 293] was
used to keep the system at 300 K and 1 bar. The time step was 2 fs. Note that the
temperature of the MD simulations are independent of the temperature used in the
rate calculations later on where optimized geomtries will be used to calculate QM/MM
potential energies. In the equilibration phase, constraints followed by position restraints
by springs were applied to the whole protein, the cofactor, and the substrate. All water
molecules, also those contained in the crystal structure, were unrestrained. The volume
was kept constant in the equilibration. At Vrst the solute atoms were completely frozen
for 2000 conjugate gradient optimization steps and 0.1 ns of MD simulation. Next,
restraints with a force constant of 5.0 kcal mol−1 Å−2 were applied to the solute again
for 2000 optimization steps and 0.1 ns of MD simulation. This was followed by 0.1 ns of
MD simulation each with force constants of 2.0 kcal mol−1 Å−2 and 0.1 kcal mol−1 Å−2 to
gradually relax the protein with the cofactor and the substrate. In one run the binding
pocket of the enzyme contained the Glu substrate (50 ns of sampling). Another run
was performed for 26 ns for GM containing the product MA in the binding pocket.
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For the MD run with Glu in the binding pocket, the protein in solvent comprised 63 411
atoms, including 17 899 water molecules and 50 Na+ and Cl− ions. Snapshots were
taken from that MD run after 9 ns, 20 ns, 41 ns, 32 ns, 13 ns, and 25 ns of simulation as
initial structures for the following QM/MM calculations. They are labeled as SN-Glu-1
to SN-Glu-6. Note that these snapshots were not taken sequentially from the MD
trajectory. The snapshots were chosen to cover a range of diUerent C–C-distances
(from 3.2 Å to 5.12 Å) for the hydrogen-transfer reaction between the substrate and
the cofactor. Aditionally, three snapshots were taken from a separate MD simulation
run with MA in the binding pocket (SN-MA-1 to SN-MA-3) after 6 ns, 11 ns, and 15 ns.
These snapshots served as starting conVgurations for the following QM/MM geometry
optimizations and transition state searches. Force Veld parameters for nonstandard
residues (cobalamin andMA) were derived by analogy to similar parameterized residues,
see Supporting Information of [20]. For the adenosyl part of coenzyme B12, which
is completely contained in the QM part, the standard adenosyl parameters with the
phosphate group deleted were used.

MM-part (frozen)

MM-part (active)

QM-part

Figure 5.2: The three diUerent regions for QM/MM simulations with GM: in the outer
part the frozen MM-region, then the active MM-region, and in the inner part the
QM-region consisting of Ado (cyan), the Glu substrate (yellow), and part of Glu 171
(black).

To prepare the snapshots for simulation, all nonprotein atoms having a distance
greater than 17 Å from the oxygen atom in the ribose ring of Ado were deleted from
the model. This procedure removed the box of water except molecules in the inner
part of the enzyme. During the calculations all residues that were entirely outside a
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range of 8 Å from any substrate or Ado atom were frozen, see Fig. 5.2. Additionally,
all atoms of the adenosyl tail of cobalamin further away than 12 Å from Ado were
frozen. That procedure resulted in 96 to 135 water molecules included in the diUerent
snapshots. Thus, all residues belonging to the Vrst and the second solvation shells of
the environment of the active center were optimized. Additionally, in all snapshots
except SN-Glu-1, 14 charged glutamate or aspartate residues on the surface of the
protein were protonated to obtain a neutral system. All snapshots comprised about
10,200 atoms in the end. They contained water, protein, cofactor, substrate but no Na+

and Cl− ions from the solvatization.

5.1.2 Biochemical multiscale simulations: QM/MM

The chemical steps of the reaction mechanism were investigated using QM/MM [277,
278] geometry optimizations. Moreover to scrutinize the role of tunneling during the
catalysis QM/MM instanton geometry optimizations were used, see Chapters 3 and 4.
The chemically active center was treated with DFT [294, 295] or with coupled cluster,
combined with the environment described by force Veld calculations. The QM/MM
(potential energy) calculations were done with ChemShell [249], using electrostatic
embedding, where the MM charges of the force Veld polarize the QM part. Covalent
bonds between the QM part and the MM part were truncated on the QM side by
hydrogen link atoms. The charge-shift scheme [249, 296] was employed in order to
avoid overpolarization of the QM density near the link. The CHARMM22 force Veld
[287–290] in DL_POLY [297] as included in ChemShell [249] was used for the MM part.

Unless noted otherwise, the QM-region contained the substrate, the Ado radical as part
of the cofactor, and the side chain of Glu 171, see Fig. 5.3. The QM part carries a charge
of −2 and a spin multiplicity of 2. The truncation of the QM subsystem was done by
cutting through the Cβ–Cγ bond of Glu 171. This resulted in a total of 54 QM atoms
plus one hydrogen link atom. The choice of the truncation is well justiVed because
only one single bond has been cut, and the distance between the cut and the chemically
active atoms is three bonds at the minimum. Any possible charge transfer between the
regions designated as QM and MM regions is neglected. In some calculations Glu 171
was left out (48 atoms) or histidine (His) 150 was added (74 atoms) to the QM part to
investigate speciVc eUects. The homolytic cleavage in the cofactor is fast compared
to the hydrogen-transfer between Ado and Glu substrate; this Co–C bond homolytic
cleavage is not rate limiting [14–16]. Thus, cobalamin can be excluded from the QM
part.
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Ado substrate Glu 171

HN

O

N
C5’ Cα

CβCγ
Ha

Figure 5.3: The QM region (in ball and stick representation) containing Ado (left), Glu
substrate (middle), and the side chain of Glu 171 (right). Carbon is shown in gray,
oxygen in red, hydrogen in white, and nitrogen in blue. Atoms mentioned in the text
are labeled.

5.1.3 Quantum mechanical methods

The QM region was described with DFT with BP86 [298–302], BP86-D [303], and B3LYP
[304] functionals as implemented in TURBOMOLE version 6.0.2 [305]. Density Vtting
(resolution of the identity [306]) was used throughout. Additionally, the energies
on the BP86-optimized geometry were calculated with the M06 functional [307] in
NWChem version 5.1.1 [308, 309]. After a comparison of the def2-SVP [310], cc-pVDZ
[311], def2-TZVP [312], def2-TZVPP [312], cc-pVTZ [311], aug-cc-pVTZ [311], cc-pVQZ
[311], and cc-pV5Z [311] basis sets, all computations were performed with the cc-pVTZ
basis set, as larger basis sets led to insigniVcant changes in the energies. For cc-pVTZ
calculations the number of basis functions was 1282. Of the three functionals used, BP86,
B3LYP, and M06, the latter can be expected to provide the most accurate results [313].
Additionally, the relative M06 energies were validated against local Coupled Cluster
(CC) reference calculations: the energies on the sd-LUCCSD(T) (Local Unrestricted
open-shell CC with Single and Double excitations and perturbative treatment of the
Triple excitations) level [314, 315] with the aug-cc-pVTZ [311] basis set were calculated.
The sd-localization scheme, in which singly occupied and doubly occupied orbital space
are treated separately, was used to avoid a mixing of the occupied RHF (Restricted open-
shell Hartree Fock) orbital subspaces. The calculations were performed with Molpro
version 2010.2 [316]. In local correlation methods a domain error is introduced by
restricting the virtual space to the individual localized molecular orbitals. The domain
error was determined by the diUerence between the results for sd-LRMP2 (Local spin
Restricted open-shell 2nd order Møller–Plesset perturbation theory) [314, 315] and RMP2
(canonical spin Restricted open-shell 2nd order Møller–Plesset perturbation theory)
[317] to the LUCCSD(T) results, see Table 5.1.
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Structure HF RMP2 sd-LRMP2 Dom. err.
A 0.00 0.00 0.00 0.00

TS-AB 42.20 21.50 19.59 −1.91
B 3.37 2.25 0.10 −2.15

TS-BC 30.97 20.81 16.98 −3.83
C 5.90 8.50 5.03 −3.47

TS-CD 32.99 18.07 15.25 −2.82
D 5.65 5.39 2.67 −2.71

TS-DE 47.93 24.79 22.17 −2.62
E 2.81 3.39 2.18 −1.21

Table 5.1: Relative QM energies (in kcal/mol) obtained with Hartree Fock (HF), RMP2,
and sd-LRMP2. The deviations of sd-LRMP2 from RMP2 values are given as domain
error, numbers from [314].

Dispersion correction

Table 5.2 compares the empirical dispersion-corrected functional BP86-D to the usual
BP86 functional. They diUer, apart from D and E, by less than 3 kJ mol−1. Thus,
dispersion within the QM part yields an insigniVcant inWuence on the energies.

BP86-D BP86 diUerence

A 0.0 0.0 0.0
TS-AB 44.3 44.3 0.0
B −18.0 −18.9 −0.9

TS-BC 64.3 65.6 1.3
C 45.0 42.0 −3.0

TS-CD 71.5 69.6 −1.9
D 8.9 1.4 −7.5

TS-DE 68.3 64.8 −3.5
E 10.3 4.3 −6.0

Table 5.2: Empiric dispersion corrected BP86-D versus BP86, both with a def2-SVP basis
set (relative energies in kJ mol−1, QM-region with 48 atoms).

Basis set comparison

Convergence of the results with respect to the basis set was tested by comparing energy
minima obtained with larger basis sets. To test the basis set convergence, energies at
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Figure 5.4: EUect of the basis set size: cc-pVDZ, cc-pVTZ, cc-pVQZ compared to
cc-pV5Z (QM-region with 48 atoms).
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Figure 5.5: EUect of polarization functions: def2-TZVP compared to def2-TZVPP, and
eUect of augmentation functions: cc-pVTZ compared to aug-cc-pVTZ (QM-region with
48 atoms).

the cc-pVTZ geometry of SN-Glu-1 were calculated with correlation-consistent basis
sets of diUerent cardinal numbers. The cc-pVDZ basis set shows a maximum deviation
of about −16 kJ mol−1, the cc-pVTZ basis set of about −3 kJ mol−1, and the cc-pVQZ
basis set of about −1.6 kJ mol−1 from the cc-pV5Z basis set, see Fig. 5.4. The correlation-



5.1. Methods and technical details 99

consistent triple-zeta basis was chosen for all further calculations as these results lie
well within the accuracy which can be expected from DFT QM/MM calculations.

Fig. 5.5 shows energy diUerences (from energy calculations at the cc-pVTZ geometry
of SN-Glu-1) due to augmentation of the cc-pVTZ basis. The maximum error of
about −3 kJ mol−1 arising from omitting augmentation functions can be neglected. To
estimate the importance of polarization functions, def2-TZVP and def2-TZVPP single-
point calculations were compared. The results (see Fig. 5.5) indicate that negligence
of additional polarization functions contributes only a marginal error of maximal
−1.5 kJ mol−1.

5.1.4 Geometry optimizations

Geometries were optimized with DL-FIND [248] in ChemShell [249]. Hybrid delocalized
internal coordinates (HDLC) [318] were used throughout the investigations of the
fragmentation–recombination mechanism. Minima were located by a quasi-Newton
L-BFGS method in ChemShell. This algorithm necessarily converges to minima, as
the step is reversed, should it point uphill [248]. Transition states were located with
the superlinearly converging variant [253] of the dimer method [250–252]. Scans over
bond lengths (for C–C-rearrangement steps) or bond-length diUerences (for hydrogen-
transfer steps) were performed. All other degrees of freedom were relaxed. In each
rearrangement step the two structures having the highest energies during the scans
were chosen as starting guess for the dimer calculations. The dimer method requires
two initial structures. By construction it converges to Vrst-order saddle points. Weights
of 1 were used for all atoms in the QM part and weights of 0 for all other atoms in an
algorithm described previously [253], which eUectively restricts the transition mode to
the QM atoms. The energy is minimized with respect to the coordinates of all atoms
with weight 0.

5.1.5 Exploring the inWuence of the protein environment

To investigate the inWuence of the protein environment on the chemically active center,
Conductor-like Screening Model (COSMO) [319] calculations, which model a water
environment, were performed in TURBOMOLE [305] (default parameters for COSMO)
for the Glu substrate. Additionally, the isolated Glu substrate was investigated in the
gas-phase.

To analyze the results of the optimizations, means of the potential energy barriers of
the snapshots were calculated by exponential averages [320, 321]:

⟨∆E⟩ = −kBT ln ⟨exp(−∆E 1
kBT

)⟩ (5.1)
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with T = 300 K, and kB referring to Boltzmann’s constant. According to Jarzynski’s
equation [322], the free energy ∆A of a process equals the exponential average, ∆A =
−kBT ln⟨exp(−∆W /kBT )⟩, of the work ∆W (which can be approximated by potential
energy diUerences ∆E) drawn from a canonical ensemble. Of course, a sample of nine
snapshots cannot be expected to provide an accurate average. Taking an exponential
average results in a barrier dominated by the smallest barrier which represents the
most likely path. Therefore, energies are reported as potential energies rather than free
energies.

For further analysis of the reaction mechanism and to investigate the electrostatic
inWuence of each single amino acid on the activation energy, the full QM density of
SN-Glu-1 was replaced by electrostatically Vtted charges (ESP) [323], which were Vtted
to reproduce the electrostatic potential of the full DFT (BP86) density polarized by the
charges of the MM environment, as these can be expected to result in a quite accurate
electrostatic energy at hugely reduced costs compared to the full QM density. The
change in the activation energy barrier ∆∆‡Ei due to the charge on residue i can be
determined as

∆∆‡Ei = ∆‡E0 −∆‡Ei. (5.2)

where ∆‡E0 is the electrostatic component of the activation energy (calculated using
ESP charges instead of the QM density), and ∆‡Ei is the electrostatic component of
the activation energy with all charges on residue i set to zero. In these calculations,
the geometries of both the reactant and the transition state (TS) are kept unchanged.
Thus, the self-energy of the QM part is constant and drops out of ∆∆‡Ei. Note that
∆∆‡Ei contains contributions from MM–MM interactions as well as from QM–MM
interactions. If ∆∆‡Ei is positive, then the atom charges of residue i increase the
barrier (destabilize the TS). Otherwise these charges stabilize the TS. ∆∆‡Ei estimated
in this way is a semiquantitative measure of the electrostatic inWuence of individual
residues, helpful to determine which residues play a role in the catalytic activity.
However, ∆∆‡Ei is certainly a too crude approximation to be compared to the eUect
of a mutation of the respective residue on the reactivity. Among the eUects not covered
by ∆∆‡Ei are the substitution of residue i by other moieties and changes in the
geometries as well as changes in the polarization of the QM part.
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A: Glutamate substrate and Ado B: Glutamyl radical and Ado-H

C: Glycyl radical, acrylate, and Ado-H D: Methylaspartyl radical and Ado-H

E: Methylaspartate and Ado

Figure 5.6: The fragmentation–recombination mechanism of GM: intermediates A
to E, QM part (left: Ado, middle: Glu substrate, right: Glu 171) in ball and stick
representation with 54 atoms. The yellow blobs denote the spin density. In the
background the arginine claw can be seen.



102 Chapter 5 — The Reaction Mechanism of the Enzyme Glutamate Mutase

5.2 The fragmentation–recombination mechanism

The mechanism discussed in the following consists of: (1) a hydrogen-transfer from
Glu substrate to Ado, (2) a rearrangement of the (S)-glutamyl radical to a (2S,3S)-3-
methylaspartyl radical, and (3) a hydrogen-transfer back from Ado to form the MA
product, see Fig. 5.6.

The intermediates considered in this study are labeled as follows: homolytic cleavage of
the Co–C bond leads to the Ado radical and Glu substrate, stateA. Hydrogen transfer
generates the glutamyl radical, stateB. It fragments into acrylate and a glycyl radical,
state C . Glycyl binding to acrylate results in the methylaspartyl radical, stateD. At
the end, the back transfer of the radical to Ado creates MA, state E, see Fig. 1.2 on
page 5 and Fig. 5.6. All transition states between the intermediates are abbreviated by
TS, e.g., TS-DE denotes the transition state betweenD and E.

Energetic data for the diUerent elementary reactions are given in Table 5.5. Energetic
data comparing M06 and sd-LUCCSD(T) for the diUerent elementary reactions are
given in Fig. 5.11. Relative energies were consistently calculated with respect to the
energy of the state A obtained for the same snapshot, unless noted otherwise. Key
bond distances which changed during the reaction are given in Table 5.6.

InWuence of the density functional on the computational results

The energy proVle of the fragmentation–recombination mechanism was validated by
performing calculations with the M06 functional as well as the B3LYP functional at
geometries optimized with the BP86 functional in the Vrst snapshot (Table 5.3 and
Table 5.4). Barriers are generally several kJ mol−1 higher with B3LYP and M06 than
with BP86, which is in agreement with a generally observed trend caused by the
Hartree–Fock exchange in B3LYP and M06 but not in BP86. Table 5.3 and Table 5.4 show
negligible inWuence of B3LYP geometry optimizations. M06 energies at BP86 geometries
deviate only by about 1 kJ mol−1 from the M06 energies at B3LYP geometries, well
within the error bar for QM/MM calculations. The M06 results are shown in Table 5.5
and will be discussed in Section 5.2.1. For technical reasons, calculations with the BP86
functional are much faster than calculations with the B3LYP functional, which are in
turn faster than M06 calculations. Thus, BP86 geometries were used throughout, as
they hardly diUer from those obtained by B3LYP, to calculate QM/MM energies with
the M06 functional. In Section 5.2.2 the M06 results will be compared to sd-LUCCSD(T)
results at the same geometries.
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Energy M06 BP86 B3LYP B3LYP
Geometry BP86 BP86 BP86 B3LYP
SN-Glu-1 79.7 54.2 75.5 74.4
SN-Glu-2 93.0 87.2 110.3
SN-Glu-3 121.6
SN-Glu-4 117.8
SN-Glu-5 98.2 72.6 96.0 95.8
SN-Glu-6 136.0
SN-MA-1 192.4 165.3 191.5 191.9
SN-MA-2 190.5 147.1 169.8
SN-MA-3 83.8 56.0 77.9 77.8

Table 5.3: Comparison of diUerent functionals (M06 and B3LYP at BP86 geometry, BP86
and B3LYP after optimizations) for QM/MM energy barriers in kJ mol−1 for the reaction
A →B (QM-region with 54 atoms).

Energy B3LYP M06 M06
Geometry B3LYP B3LYP BP86

A 0.0 0.0 0.0
TS-AB 74.4 78.3 79.7
B −13.8 −22.1 −21.6

TS-BC 59.5 62.4 61.3
C 20.0 21.6 21.7

TS-CD 68.6 70.2 70.9
D 6.1 8.8 9.2

TS-DE 98.6 108.8 110.9
E 5.4 13.1 13.5

Table 5.4: Comparison between M06 and B3LYP functionals: M06 at BP86 and B3LYP
geometries of SN-Glu-1 (QM-region with 54 atoms).

5.2.1 Energy proVle of the catalytic reaction

The barriers given in Table 5.5 are signiVcantly higher for the hydrogen transfers
A → B and E → D than for the rearrangement reactions B to D. There is a sub-
stantial spread in the hydrogen-transfer barriers between the diUerent snapshots.
They range from 79.7 kJ mol−1 to 192.4 kJ mol−1 in A → B and from 97.4 kJ mol−1 to
192.4 kJ mol−1 in E →D. Thus, they show a strong dependence on the environment.
The smallest barriers are found in SN-Glu-1 (79.7 kJ mol−1 and 97.4 kJ mol−1), suggesting
that the reaction will most probably proceed via this path. SN-MA-3 and SN-Glu-1
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Structure SN-Glu-1 SN-Glu-2 SN-Glu-5
A 0.0 0.0 0.0

TS-AB 79.7 93.0 98.2
B −21.6 −23.3 −29.7

TS-BC 61.3 56.7 51.9
C 21.7 40.7 14.5

TS-CD 70.9 78.5 46.1
D 9.2 7.6 −12.3

TS-DE 110.9 129.3 153.7
E 13.5 17.9 −1.5

Structure SN-MA-1 SN-MA-2 SN-MA-3
A 0.0 0.0 0.0

TS-AB 192.4 190.5 83.8
B −37.0 −42.0 −36.9

TS-BC 38.9 43.5 43.9
C −11.4 −19.2 −3.4

TS-CD 34.1 15.1 27.2
D −26.1 −57.2 −49.6

TS-DE 110.2 140.1 60.7
E −14.1 −51.3 −36.7

Table 5.5: Relative QM/MM energies of six snapshots (M06 energies in kJ mol−1 at BP86
geometries, QM-region with 54 atoms)

Structure N–O N–HN C5’–Cγ Ha–Cγ Cβ–Cα Cγ–Cα
A 2.589 1.145 3.638 1.097 1.540 2.575

TS-AB 2.579 1.449 2.746 1.320 1.561 2.563
B 2.552 1.402 3.689 2.718 1.568 2.537

TS-BC 2.690 1.651 2.254 2.949
C 2.772 1.760 3.322 3.051

TS-CD 2.704 1.661 C5’–Cβ Ha–Cβ 2.849 2.156
D 2.546 1.165 4.105 3.083 2.544 1.571

TS-DE 2.594 1.151 2.751 1.360 2.603 1.571
E 2.552 1.160 4.180 1.096 2.578 1.555

Table 5.6: Bond distances in Å during the reaction in SN-Glu-1 (QM-region with 54
atoms)
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both have a barrier height of 97.4 kJ mol−1 for the transition E → D. However, the
barrier for A → B is slightly lower (74.7 kJ mol−1) in SN-Glu-1 than in SN-MA-3
(83.8 kJ mol−1). Accordingly, further investigation of the protein will mainly be per-
formed with SN-Glu-1. The exponentially averaged barrier at T = 300 K is 84.8 kJ mol−1

for A → B and 101.1 kJ mol−1 for E → D. The barriers for hydrogen-transfer and
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Figure 5.7: Energy proVle, M06 at BP86 geometry (relative toA); QM-region with 54
atoms.

recombination of the fragments seem to depend stronger on the snapshot than the
barriers for the fragmentation (see Fig. 5.7 and Fig. 5.8). Thus, the hydrogen-transfer
reactions depend much more on the enzyme environment than the carbon skeleton
rearrangement. The exponentially averaged barriers for the hydrogen transfers range
from 58.7 kJ mol−1 with BP86 over 80.1 kJ mol−1 with B3LYP to 84.8 kJ mol−1 with M06
for the reactionA→B and from 73.2 kJ mol−1 with BP86 over 93.4 kJ mol−1 with B3LYP
to 101.1 kJ mol−1 with M06 for the transitionE →D. All of these results were obtained
at BP86 optimized geometries. The exponential average is smaller with 84.8 kJ mol−1

for the reaction A → B than for E → D with 101.1 kJ mol−1. The lowest barriers
contribute most to the exponential average. So, a similar diUerence is obtained when
just comparing the lowest values for the two mechanisms: 79.7 kJ mol−1 for the former
and 97.4 kJ mol−1 for the latter case. For coenzyme B12-dependent diol dehydratase, an
enzyme similar to GM, the rate-limiting step was predicted [17] to exhibit a barrier
between 60 and 75 kJ mol−1 based on theoretical and experimental studies [324–326].
In GM, the barrier is found to be about 25 kJ mol−1 higher. The wide range of barriers
found in the diUerent snapshots is due to the varying geometries of the snapshots.
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A TS-AB TS-BC TS-CD TS-DEB C D E

Q
M
/M

M
en
er
gy

[k
Jm

ol
−1
]

Glu-1
Glu-2
Glu-5
MA-1
MA-2
MA-3

Figure 5.8: Energy proVle, M06 at BP86 geometry (relative to E); QM-region with 54
atoms.

DiUerences will be discussed in more detail in Section 5.2.4. Comparison of the reaction
B → D in Fig. 5.7 and Fig. 5.8 leads to the insight that the barriers from B → C
(average: 80.1 kJ mol−1) as well as the barriers fromD → C (average: 62.4 kJ mol−1)
are about the same height in all snapshots. The inWuence of the protein on the carbon
skeleton rearrangement will be discussed in Section 5.2.3.

Hydrogen-transfers and C–C-distance

Fig. 5.9 shows the barriers versus the C–C distance between the hydrogen donor and
acceptor inA and E. Independent of the snapshots and of the substrate in the binding
pocket at the beginning of the simulations, A tends to have shorter distances than
D. Distances refer to the minimized structures. In many cases the distance can be
decreased without signiVcantly increasing the energy. Promoting vibrations may lead
to shorter hydrogen-transfer distances. The large distances (> 5 Å) are associated with
large barriers. The reaction will not proceed via these paths. SN-Glu-3, SN-Glu-4, and
SN-Glu-6 show signiVcantly higher barriers than the other snapshots already with the
BP86 functional (which underestimates the barrier heights), see Fig. 5.10. Thus, these
snapshots have not been investigated in more detail. In one case a large barrier is found
for a short distance. In the respective snapshot (SN-Glu-3) one catalytic hydrogen bond
is broken, see Section 5.2.4, which causes the large barrier.
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Figure 5.9: Barrier heights of both hydrogen-transfers versus C–C-distance (C5’–Cγ
forA, red diamonds; C5’–Cβ for E, blue plus signs) at energetic minima of Glu and
MA substrate (M06); QM-region with 54 atoms.
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Figure 5.10: Energy proVle, BP86 (relative toA); QM-region with 54 atoms.
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5.2.2 Coupled cluster energies

The H-transfers

The LUCCSD(T)/MM energies are compared to the DFT/MM results for SN-Glu-1 in
Fig. 5.11 and Table 5.7. The barriers for the transitions A → B and E → D remain
almost unchanged. They diUer by only 1.9 and 1.6 kJ mol−1, respectively, see Table 5.7.
Tunneling can play a role during these two isotopically sensitive steps. More details
on tunneling will be given in Section 5.3. The hydrogen transfers have the highest
barriers, with the transferD → E having a higher barrier than A → B, see Fig. 5.7.
The coupled cluster results yield the same picture. In both cases, DFT and coupled
cluster,B is the most stable intermediate, despite an energy diUerence of 19.3 kJ mol−1

between the coupled cluster and DFT results. The coupled cluster barriers forA →B
and D → E diUer by 29.4 kJ mol−1 whereas the experimental investigations where
tritium was transferred from Ado-H to form either Glu (substrate) or MA (product)
resulted in a 1:1 distribution of tritium in the substrate and the product which would
mean that both barriers for transferring hydrogens are nearly equal [22]. The MD
simulations to prepare the QM/MM snapshot used here (SN-Glu-1) contained Glu in
the binding pocket, i.e., the QM/MM simulations started at A. The snapshots taken
from MD simulations are frozen in the outer part of the enzyme which might cause a
bias increasingD → E relative toA →B.
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Figure 5.11: Comparison of the QM/MM energy proVle with DFT (M06) and LUCCSD(T),
SN-Glu-1 (QM-region with 54 atoms).
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Structure M06 LUCCSD(T)
cc-pVTZ aug- cc-pVTZ

A 0.0 0.0
TS-AB 79.7 81.6
B −21.6 −2.3

TS-BC 61.3 95.1
C 21.7 52.6

TS-CD 70.9 94.6
D 9.2 13.6

TS-DE 110.9 111.0
E 13.5 12.0

Table 5.7: Comparison of LUCCSD(T) to DFT with M06 functional (QM/MM potential
energies in kJ mol−1 at BP86 geometries, SN-Glu-1, QM-region with 54 atoms).

The carbon skeleton rearrangement

For the carbon skeleton rearrangement the DFT and coupled cluster energies diUer by
19.3 to 33.8 kJ mol−1. The barriers for the fragmentation and recombination are about
the same, 95.1 kJ mol−1 for B → C and 94.6 kJ mol−1 for C → D. In contrast to the
experimental conclusion that “no single step was cleanly rate-limiting” [24, 25], the
computed energy diUerences between the barriers of the hydrogen transferD → E
and the carbon skeleton rearrangement diUer by 15.9 kJ mol−1 and 16.4 kJ mol−1.

The diUerences between DFT and coupled cluster for the potential energies of the
carbon skeleton rearrangement are due to diUerent electronic structures as both en-
ergies were calculated on BP86 geometries. The similar barrier heights found for
all conversions of the intermediates with coupled cluster calculations hint that the
enzyme is optimized to lower energy barriers until a threshold of about 80 to 100
kJ mol−1 is reached. Lowering barriers below the threshold is then nearly impossi-
ble and unfavorable for the enzyme, since it would require to lower several barriers
simultaneously.

5.2.3 Catalytic eUect of the protein

The catalytic role of Glu 171

The side chain of Glu 171 is positioned next to the ammonium group (NH+
3 ) of the Glu

substrate. During the fragmentation–recombination process a proton is transferred
from the ammonium group to Glu 171 in all snapshots, see Fig. 5.3. In the simulations
transfer of protons between the QM part and the MM part is impossible. Thus, the
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Figure 5.12: Energy proVle (BP86) comparing QM parts with (black) and without (red)
the inclusion of the neighboring amino acid Glu 171.

inclusion of neighboring amino acids in the QM part allows such acid-base reactions to
take place, whereas the exclusion prevents them. The barriers of the rearrangement
of the carbon skeleton are about 30 to 40 kJ mol−1 higher, see Fig. 5.12, if the proton
transfer to Glu 171 is forbidden by the choice of the QM part in SN-Glu-1, which
has the lowest hydrogen-transfer barriers, see Table 5.8. This is in agreement with
mutation studies in which Glu 171 was replaced by glutamine (Gln) and other amino
acids. These show a dramatic decrease in reactivity, and, thus, the importance of Glu
171 [11]. Further investigations including His 150 in the QM part showed that His 150
does not act as a proton acceptor.

A captodative stabilization, i.e., a proton transfer from the ammonium group to the
carboxyl group of the glycyl radical in C was proposed by gas-phase calculations [17].
This is energetically unfavorable by about 50, 15, and 60 kJ mol−1 for B, C , and D,
respectively, in a QM/MM environment (SN-Glu-1), see Table 5.8 columns 2 and 5. The
protein stabilizes the zwitterionic state.

Variation of the protein environment

Variation in the protein environment has a signiVcant inWuence on the energy barriers
for the hydrogen-transfers. This causes a large spread in the barriers between the
snapshots (Fig. 5.7, Fig. 5.8). The reaction will predominantly proceed via the paths
with the lowest barriers. IntermediateB, containing the glutamyl radical, is the most
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QM part: substrate substrate substrate captodative
+ Ado + Ado + Ado stabilization

+ Glu 171 + Glu 171 (substrate)
+ His 150 + Ado

+ Glu 171)
A 0.0 0.0 0.0 0.0

TS-AB 54.2 54.5 52.6
B −17.1 −14.4 −18.5 32.3

TS-BC 53.2 87.3 49.3
C 30.1 76.4 28.7 14.4

TS-CD 61.5 87.3 61.2
D 3.3 4.2 4.3 60.4

TS-DE 77.3 80.1 77.9
E 2.6 4.4 3.8

Table 5.8: Energy proVles of SN-Glu-1 with proton transfer form the substrate to the
environment being selectively allowed by the choice of the QM part (BP86 energies in
kJ mol−1).

stable structure along the part of the reaction path under study, in agreement with
experimental results [22]. In all calculations, in protein as well as in gas-phase and in
water,B has the lowest energy along the reaction path. The barrier for fragmentation
is similar in the gas-phase (69.9 kJ mol−1), in water (69.1 kJ mol−1), Table 5.9, and in
the protein (70.1 kJ mol−1) for calculations with BP86 functional, see Fig. 5.13. The
rearrangement of the carbon skeleton is less inWuenced by the protein environment
than the hydrogen-transfers. All snapshots show barriers within 75.9 and 82.9 kJ mol−1

for the fragmentation (B →C) and within 30.6 and 49.2 kJ mol−1 for the recombination
(C →D), see Table 5.5. The enantioselective catalysis by suppressing the formation of
the (R)-enantiomer happens in step C →D.

The C–C-rearrangement is hardly inWuenced by a water environment compared to
gas-phase calculations. Comparison of the energies of the substrate in the enzyme
environment, water (COSMO), and the gas-phase is given in Table 5.9. The enzyme
sterically destabilizes the fragments, state C . C is about as stable as B in water
or the gas phase, see Table 5.9, while it is 43.3 kJ mol−1 (see Table 5.5, which gives
the M06 values; the BP86 value is 47.1 kJ mol−1) less stable in the enzyme. C is
destabilized predominantly sterically. This reduces the barriers to recombine the
fragments ( C → D) from 75.2 kJ mol−1 in the gas-phase and 80.6 kJ mol−1 in water
down to 31.4 kJ mol−1 (all BP86) in the enzyme environment. In gas-phase and water
the fragments lie parallel to each other, while in the enzyme environment they are
rotated and in a staggered position. The two fragments are held in place by the enzyme
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environment: The arginine claw prevents the fragments acrylate and glycyl to move
into a parallel position. This raises the energy of the intermediate C but avoids the
rotation of the acrylate and, thus, ensures the enantioselectivity. Additionally, the
formation of a bond between glycyl and the acrylate is facilitated.

Table 5.9 compares the reaction energies of isolated Glu in the gas-phase and in water
(COSMO) at diUerent levels of theory. Compared to the G3(MP2)-RAD(p) level at a
diUerent protonation state [17], calculations with BP86 result in a larger barrier. The
reaction of the isolated Glu in the gas-phase is overall endothermic (Table 5.9). The
enzyme can save this intrinsic energy for the last step of the reaction.

gas-phase COSMO
G3(MP2)–RAD(p)[17] BP86 BP86

B 0.0 0.0 0.0
TS-BC 59.9 69.9 69.1
C 34.4 2.8 3.6

TS-CD 66.5 78.0 84.2
D 20.3 24.9 31.1

Table 5.9: Relative energies of the isolated substrate radical optimized in the gas-phase
and in water (COSMO) (kJ mol−1).
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Figure 5.13: Comparison of energy proVles with the QM part in enzyme, water
(COSMO), and gas phase environment.
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5.2.4 InWuence of individual residues on the reactivity

After having located the transition states and the reactant states connected to them,
the electrostatic inWuence of individual residues (neighboring amino acids and wa-
ter molecules) on the activation barriers using static structures was estimated. The
resulting values for ∆∆‡Ei both for the reactions A → B and D → E are given
in Table 5.10. The residues with larger values of ∆∆‡Ei are depicted in Fig. 5.14 to
Fig. 5.17. In the following, individual amino acids and their inWuence on the reactivity
will be discussed, Vrst for the reaction A → B, then for D → E. In the following,
hydrogen bond distances are given between the hydrogen atom and the heavy atom
(acceptor).

Arginine claw

Arg 66, 100, and 149 form the arginine claw, see Fig. 5.14. Arg 100 builds a salt bridge
to the carboxyl group of the side chain of the Glu substrate, while Arg 66 and Arg
149 are bound to its “backbone” carboxyl group (which is not, in fact, a part of any
protein backbone, here it is refered to the carboxyl group bound to the Cα atom).
Since each arginine donates two hydrogen bonds, a total of six such bonds make up
the arginine claw. Their electrostatic eUect on the barriers for hydrogen-transfer is
moderate, see Table 5.10. This is mainly due to the fact that the interaction between
the substrate and the arginine claw is hardly altered during the mechanism in the
snapshot for which the electrostatic contributions were calculated (SN-Glu-1). A slight
tightening of the arginine claw is observed during the fragmentation. Qualitatively the
same behavior is observed for SN-Glu-2 and SN-Glu-5. During the hydrogen-transfer
reactions, the Glu substrate moves slightly toward Ado, which means it moves away
from Arg 149. Consequently, in two snapshots (SN-MA-1 and SN-MA-3) Arg 149 forms
one hydrogen bond to the carboxyl group of Glu 171, while one to the substrate is
absent in the structure derived from the MD simulation (E). The other hydrogen bond
between Arg 149 is stable in those cases, though. During the reaction mechanism also
the second hydrogen bond establishes. In one snapshot (SN-Glu-3), the arginine claw
is opened even further. Only one hydrogen bond between Arg 100 and Glu remains
stable, the other one is broken. This particular snapshot shows the highest energies of
the intermediates TS-BC to E, about 50 kJ mol−1 higher than in the other snapshots,
on a BP86 level. This can be interpreted as a clear indication that an intact arginine
claw is crucial for the catalytic activity.
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∆∆‡Ei (kJ mol−1)
Residue Charge A →B D → E

σ−subunit
Asp 14 −1 0.2 −3.4
His 16 0 −3.7 −8.2

cobalamin 0 −7.0 −6.7
ε−subunit
Arg 66 +1 −3.7 3.2
Arg 100 +1 −4.7 −1.2
Gln 147 0 3.2 0.7
Arg 149 +1 2.4 6.2
His 150 0 10.9 −1.2
Tyr 177 0 10.5 −1.7
Asp 198 −1 −4.9 −1.1
Arg 213 +1 7.3 2.0
Glu 214 −1 −14.5 −5.8
Phe 216 0 4.4 −0.2
Glu 236 −1 −4.8 −1.6
Met 294 0 1.1 3.0
Lys 322 +1 8.4 2.9
Lys 326 +1 −8.2 −2.6
Glu 330 −1 13.9 12.2
water 632 0 3.9 6.0
water 635 0 −0.5 −3.0
water 637 0 −6.6 −6.8
water 642 0 3.4 4.2
water 648 0 3.9 2.5
water 654 0 −5.3 −7.5

Table 5.10: Residues of the environment with an electrostatic inWuence on the activation
barrier of ∣∆∆‡Ei∣ > 3 kJ mol−1 in either TS-AB or TS-DE (SN-Glu-1).

Environment of the glutamate substrate

Here the residues Arg 213, Glu 214, lysine (Lys) 322, and Gln 147, connected to the Glu
substrate via Arg 149 (which is part of the arginine claw) are discussed, see Fig. 5.15.
In the reaction fromA →B a proton is transferred form the Glu substrate to Glu 171.
Its charge changes from −1 to zero. The dipole moment of the whole reactive center
changes. Thus, negatively charged residues (Glu 214, Glu 236, and aspartic acid (Asp)
198) in the vicinity of Glu 171 stabilize the transition state, while positive ones (Lys 322
and Arg 213) destabilize it. Despite their large distance, these residues seem to have a
signiVcant electrostatic inWuence on the reaction. For example Lys 322 is 8 Å (closest
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Figure 5.14: Arginine claw of the Glu substrate (intermediate A). Residues with
7 > ∣∆∆‡Ei∣ > 3 kJ mol−1 are shown in cyan. They stabilize the transition state.
Additionally, the QM part comprising Ado, the Glu substrate, and Glu 171 is shown
(ball-and-stick).

atom) away from the transferred proton and increases the barrier by 8.4 kJ mol−1,
see Table 5.10. Glu 214 is 5.2 Å away (4.9 Å in TS-AB) and decreases the barrier by
14.5 kJ mol−1. InD the proton is already back at the substrate, so the above-mentioned
residues have a weaker eUect on the barrier fromD → E.

Tyrosine (Tyr) 177 provides a hydrogen bond to Glu 171 via its phenol group, see
Fig. 5.16. This bond is elongated during the reaction fromA →B which destabilizes
the transition state in SN-Glu-1. This is in contrast to the other snapshots where that
hydrogen bond is hardly altered in the stepsA →B andD → E.

His 150 provides a hydrogen bond via its backbone oxygen to a proton of the ammonium
group of the Glu substrate, see Fig. 5.16. The bond is present in SN-Glu-1 and SN-MA-
2 and absent (>2.2 Å) in the other snapshots. In both, SN-Glu-1 and SN-MA-2, the
hydrogen bond elongates during the carbon skeleton rearrangement.

Environment of Ado

Glu 330, Lys 326 and four water molecules change their bonding pattern to Ado during
the hydrogen-transfer reactions. The carboxyl side chain of Glu 330 accepts a hydrogen
bond from each of the two OH-groups of the ribose ring. In some of the snapshots (SN-
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Glu 171
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Gln 147

Lys 322
Arg 149

Figure 5.15: Environment of the Glu substrate (intermediate A): residues with
∣∆∆‡Ei∣ > 7 kJ mol−1 are shown as thicker sticks with darker colors. Thinner sticks
and lighter colors denote residues with 7 > ∣∆∆‡Ei∣ > 3 kJ mol−1. Additionally, the QM
part comprising Ado, the Glu substrate, and Glu 171 is shown (ball-and-stick). Residues
shown in blue stabilize the transition state, and residues shown in red destabilize the
transition state with respect to the resting state.

MA-2, SN-Glu-2, SN-Glu5) one of these hydrogen bonds opens during the transitions
A → B and D → E. In SN-MA-1 one of the bonds is open in structures A to C ,
resulting in a large barrier (192.4 kJ mol−1) for hydrogen-transfer and closed in the
further structures. In summary, in the snapshots with the lowest barriers (SN-Glu-1
and SN-MA-3) both hydrogen bonds between Glu 330 and the ribose ring remain stable.

Glu 330 was found to destabilize TS-AB by 13.9 kJ mol−1 and TS-DE by 12.2 kJ mol−1.
Lys 326 stabilizes TS-AB by 8.2 kJ mol−1 but stabilizes TS-DE by only 2.6 kJ mol−1.
Two water molecules (water 654 and 637) stabilize TS-AB by more than 3 kJ mol−1

through shortening their hydrogen bonds to Glu 330. Another water molecule (642)
increases the barrier by 3.4 kJ mol−1 by elongating its hydrogen bond to one OH-group
of the ribose ring in Ado.

The amino acid Met 294

The side chain of methionine (Met) 294 has to move to enable the hydrogen-transfer
from Ado to the substrate and back, see Fig. 5.16. That requires energy and, thus,
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Tyr 177

Phe 216

Met 294

His 150

Glu 171
Ado

Glu
H2O 632 substrate

Figure 5.16: Environment of Glu 171 (intermediate A): residues with ∣∆∆‡Ei∣ >
7 kJ mol−1 are shown as thicker sticks with darker colors. Thinner sticks and lighter
colors denote residues with 7 > ∣∆∆‡Ei∣ > 3 kJ mol−1. Additionally, the QM part
comprising Ado, the Glu substrate, and Glu 171 is shown (ball-and-stick). Residues
shown in red destabilize the transition state with respect to the resting state.

increases the barrier. It plays a more important role inD → E where it increases the
barrier by 3 kJ mol−1, than in A → B. Table 5.11 shows a dihedral angle in Met 294
that indicates the movement of a methyl group located between the substrate and Ado.
The strongest movement is found in SN-Glu-1, which has the lowest barriers for the
hydrogen-transfers. Noteworthy, Met 294 is not in direct contact with the reactive
center, but it inWuences the reaction barriers.

5.3 Kinetic isotope eUects and hydrogen tunneling in glu-
tamate mutase

Here the results of experimental studies of GM are brieWy summarized. Experimental
measurements of rates and KIEs in GM were conducted with various techniques,
see 1.1.2. The rates measured for GM are 5.8 ± 0.3 s−1 for the complete interconversion
of Glu, A0, to MA, E0 [47]. Measurements considering the hydrogen transfer step
separately resulted in uni-molecular rate contributions ranging from 64 ± 11 s−1 (for
the H-abstraction from Glu substrate) to 97 ± 5 s−1 (for the H-abstraction from MA
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Glu 171

Lys 326

H2O 648

H2O 642
H2O 637

H2O 654
Ado

Glu substrate
Glu 330

Figure 5.17: Environment of Ado (intermediateA): Residues with ∣∆∆‡Ei∣ > 7 kJ mol−1

are shown as thicker sticks with darker colors. Thinner sticks and lighter colors denote
residues with 7 > ∣∆∆‡Ei∣ > 3 kJ mol−1. Additionally, the QM part comprising Ado, the
Glu substrate, and Glu 171 is shown (ball-and-stick). Residues shown in blue stabilize
the transition state, and residues shown in red destabilize the transition state with
respect to the resting state.

substrate) [21, 23, 46].

The primary 1H/2H KIEs were measured by diUerent techniques. The deuterium KIE
at a temperature of T=283.15 K was measured for the complete interconversion from
MA to Glu to be 6.3 ± 0.5 [47]. For the hydrogen abstraction from MA measured with
an internal competition experiment it is 4.1 [24, 25]. The KIE of the formation of
Ado-H (A0 toB) measured directly by a competition experiment with trideuterated
and unlabeled substrate in the same vessel was 10 ± 0.4 [21]. However, the formation
of cob(II)alamin (E0 to E) shows a KIE of 35 at T =283.15 K [23]. As the primary
deuterium KIEs measured in GM range from 4.1 to 35 at T =283.15 K, it is unclear
whether tunneling is involved in the catalysis by GM. Experiments investigating tritium
isotope eUects, based on rapid quench techniques [21, 54, 55], considered both primary
and secondary tritium KIEs. All variants of experimental KIE measurements described
in the introduction will be compared to the calculational results in the following
Sections. The calculations are all based on a snapshot taken after 9 ns of classical
molecular dynamics [20] with 126 water molecules included in the system.

Experimental studies always measure apparent rates and KIEs that can be masked
by experimental side eUects, like for example detection methods being insensitive to
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SN-Glu-1 SN-Glu-2 SN-Glu-3 SN-Glu-5
A 0 0 0 0

TS-AB 7.2 1.2 −2.1 0.4
B −0.8 0.5 −0.4 −0.2

TS-BC −2.4 0.9 0.2 2.1
C −10.4 −0.9 −0.6 1.5

TS-CD −10.5 −0.3 3.9 2.2
D −5.0 0.8 3.3 1.8

TS-DE −2.2 0.4 3.7 3.7
E −4.3 −0.7 3.4 2.5

SN-MA-1 SN-MA-2 SN-MA-3
A 0 0 0

TS-AB −1.0 −0.2 0.9
B 0.5 −0.1 0.7

TS-BC −0.1 0.0 1.3
C −0.6 0.8 2.7

TS-CD −1.1 −0.6 2.6
D −1.6 −0.1 0.5

TS-DE −2.6 −5.4 0.3
E −1.3 0.3 −0.0

Table 5.11: DiUerence of the dihedral Cβ–Cγ–Sδ–Cε of Met 294 in diUerent snapshots
compared to intermediateA to describe the movement of the methyl group of Met 294
located between Ado and the Glu substrate.

deuterium content below a certain threshold. Artifacts are also caused by multiple
transfers of deuterium to the cofactor, which stays undetected when following the
formation of cob(II)alamin. At a temperature below 283.15 K the multiply deuterated
Ado-H contributed negligibly (<1%) to the measured rates [21]. Above 283.15 K the
dideuteration increased rapidly to more than 2% of the yield which makes correct
measurements of KIEs impossible. The measurements are also limited to certain time
frames as the threshold in concentration for detecting the substance of interest (e.g. the
product) must be exceeded. In experimental investigations the reverse reaction aUects
the results, as GM catalyzes an reversible conversion. Thus, the measured rates are
apparent rates leading to apparent KIEs. The intrinsic KIEs, real KIEs without masking
side eUects, can be obtained only indirectly by experiment.

On the other hand computational approaches allow to predict the intrinsic KIEs. In
contrast to experimental measurements which always include tunneling contributions,
calculations allow to switch tunneling on and oU [35, 36, 96, 327, 328].
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In the following the rates based on both, M06 barriers and coupled cluster barriers will
be discussed. Then the primary and secondary KIEs will be presented and compared to
experimental results. Then the inWuence and contributions to a productive catalysis
during the tunneling event by the neighboring atoms and amino acids will be discussed.
In the last part a speculation about a possible modulation of the rate determining step
by the enzyme will be presented.

5.3.1 QM/MM instanton tunneling rate calculations

To calculate instanton rates in enzymes the Vrst step is to optimize an instanton
path, i.e., locate the dominant tunneling path [108]. The classical TS served a starting
guess. Instanton geometries were optimized using DFT with the BP86 functional. The
instanton geometry optimizations were performed at a convergence criterion of 10−8

atomic units for the maximum component of the gradient in mass weighted Cartesian
coordinates based on the electron mass [108]. The convergence criterion for the SCF
calculations with Turbomole was 10−9 Hartree and the grid size m4 was used. The
subsequent rate calculations require to determine the Vnite diUerence QM/MM Hessian
of the potential energy at each sampling point (also image or bead) along the path
[109].

Rates were calculated at the BP86/MM level with corrections for the barrier height by
M06 and coupled cluster, throughout. That is, instanton optimizations, the calculations
of Hessians along the instanton path, as well as the harmonic frequencies at the minima
and saddle points were calculated by QM/MM based on the BP86 functional. Barrier
heights from M06/MM and coupled cluster/MM were used for the rates. KIEs are
independent of barrier-height corrections as they cancel out in the ratio. So the KIEs
are obtained on the pure BP86/MM level. For the calculations of secondary tritium
KIEs the Vxed path approximation (FPA) to the instanton rates was used [222]. In the
FPA the instanton path is kept Vxed at its geometry for protium despite an isotopic
substitution to calculate rates, see Section 4.2.1.

It should be noted that the computational treatment of the electrons (atoms in the QM
part vs. the MM part) is independent of the computational treatment of the atomic
movement (i.e. whether an atom is allowed to contribute to the tunneling). Throughout
all the rate calculations the QM part consisted of 54 atoms. However, to allow all
atoms involved in the hydrogen transfer to tunnel the number of actively quantized
atoms varied during the instanton optimizations and rate calculations. The number
of tunneling atoms ranged from one, only the transferred hydrogen atom, to 78 (sets
of 1, 7, 11, 23, ,34, 48, 54, 78 active atoms). All these are subsets of the active space
of atoms in the geometry optimizations for the QM/MM energy proVle calculations.
The set of seven active atoms comprised the two carbon atoms between which the
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hydrogen atom is transferred and all Vve hydrogen atoms bound to them. For the
calculations with 11 atoms additionally the two neighboring CH-groups at both, the
substrate and the adenosyl part of the cofactor, were added. The 23-atom-set contained
the complete substrate and the same CH2CH-group of Ado as the 11-atom-set. The
34-atom-set comprised the substrate and all atoms belonging to the ribose ring of Ado.
In the calculations with 48 atoms the active part contained the complete substrate and
the complete adenosyl radical as part of the cofactor. In calculations with 54 atoms the
active part was extended by the COO-CH2 sidechain of the neighboring amino acid Glu
171, to match the QM part. Then, after a thorough analysis of the classical transition
modes of atoms in the neighborhood of the active center, Vnally the guanidine part (-
NH-C-(NH2)2) of the amino acids Arg 66, Arg 100, Arg 194, and the COO-CH2 sidechain
of Glu 330 were included in the set of 78 active atoms as well, see Fig. 5.21 on page 133.

Technical details on rate calculations

The comparison of the diUerent active subspaces with respect to instanton rates, rates
without tunneling corrections, and deuterium KIEs is given in Table 5.15 and Table 5.21.
The instanton rates in Table 5.15 are 12.30 to 14.66 times higher than the non-tunneling
rates. For active subspaces including 11 and 23 atoms the factor between tunneling
rates and non-tunneling rates is much higher (about 14.6) than in the other cases which
indicates that the larger active parts are important to ensure good predictions. A similar
eUect is noticeable in the deuterium KIEs, see Table 5.21. While the smaller active
space with 7 atoms still gives reasonably good results it makes investigations of the
geometrical changes at the active site during the tunneling process impossible. Thus,
the active part consisting of 78 atoms was used for the Vnal rate and KIE calculations.
In the following, results for rates and KIEs will refer to an active part consisting of 78
atoms unless stated otherwise.

The instanton method breaks down at the crossover temperature Tc, deVned in Sec-
tion 1.2. Tc can be interpreted as the temperature below which tunneling signiVcantly
contributes to the rate. In the following investigations we apply instanton theory for all
conVgurations possible. However, deuterium and tritium transfers have crossover tem-
peratures below the temperatures used in our simulations (273.15 K and 300 K), which
makes instanton theory inapplicable in these cases. As mentioned in the introduction,
see Section 1.2, there are corrections to incorporate tunneling near the top of the barrier
in the classical TST reaction rate, e.g. Wigner corrections [329]. These corrections can
also be used above the crossover temperature Tc, where instanton theory breaks down.
The full Wigner correction factor which is multiplied with the rate to include tunneling
eUects is

κ(T ) = βh̵ωb/2
sin(βh̵ωb/2)

. (5.3)
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A second-order approximation via a Taylor-expansion in β at β = 0 reads

κ(T ) = 1 + 1
24

(βh̵ωb)2 +O(β4) = 1 + 1
24

(2πTc
T

)
2

+O(β4). (5.4)

Higher order terms are

κ(T ) = 1 + 1
6
b2 + 7

15
1
4!b

4 + 31
21

1
6!b

6 +O(β8), (5.5)

where b = βh̵ωb/2. The full Wigner correction describes the reWection at a barrier
exactly for parabolic barriers [329]. When comparing diUerent orders of Wigner
corrections to the instanton rates with protium the sixth order approximation turned
out to be the best choice to calculate rates above the crossover temperature, see
Table 5.12. The rates for deuterium and tritium transfers are given in Table 5.13
and Table 5.14.

In the following tunneling rates refer to instanton rates below the crossover temper-
ature and rates obtained with sixth-order Wigner corrections above the crossover
temperature. Non-tunneling rates denote rates by transition state theory with all
vibrational modes of the QM/MM system treated as quantum mechanical harmonic
oscillators, see equation (1.2) page 13. These account for the zero-point energy, but not
for tunneling.

Number of Order of approximation: Instanton No
active atoms 2nd 4th 6th 8th Rate Tunneling

1 1.959 2.261 2.483 2.664 2.128 1.467
7 0.873 1.244 1.537 1.793 1.413 0.311
11 0.540 0.909 1.200 1.453 1.145 −0.021
23 0.609 0.979 1.270 1.523 1.213 0.049
34 0.725 1.095 1.386 1.640 1.258 0.164
48 0.817 1.186 1.478 1.732 1.362 0.256
54 0.770 1.140 1.431 1.685 1.300 0.209
78 0.670 1.039 1.331 1.584 1.199 0.109

Table 5.12: Wigner corrected hydrogen transfer rates (BP86/MM) obtained by transition
state theory for diUerent active spaces at 273.15 K as log10(rate per second) for the
transition formD → E. “No tunneling” referes to classical TST rates including zero-
point vibrations.

5.3.2 Rates

The Section starts with the discussion of the rates for the H-transfers A → B and
E →D. The sd-LUCCSD(T) tunneling rate for the transition E →D is 3.5⋅10−4 s−1 at
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Number of Order of approximation: No
active atoms 2nd 4th 6th 8th full tunneling

1 0.892 1.031 1.104 1.146 1.212 1.467
7 −0.070 0.140 0.274 0.368 0.819 −0.466
11 −0.402 −0.193 −0.060 0.033 0.466 −0.796
23 −0.332 −0.124 0.009 0.102 1.253 −0.726
34 −0.216 −0.007 0.125 0.219 0.655 −0.611
48 −0.124 0.084 0.217 0.310 0.747 −0.519
54 −0.171 0.038 0.170 0.264 0.700 −0.566
78 −0.272 −0.063 0.070 0.163 0.600 −0.666

Table 5.13: Wigner corrected deuterium rates (BP86/MM) obtained by transition state
theory for diUerent active spaces at 273.15 K as log10(rate per second) for the transition
fromD → E. (deuterium in primary position)

Number of Order of approximation: No
active atoms 2nd 4th 6th 8th full tunneling

1 0.414 0.495 0.526 0.539 0.549 0.182
7 −0.481 −0.339 −0.263 −0.220 −0.149 −0.797
11 −0.812 −0.670 −0.596 −0.553 −0.484 −1.126
23 −0.742 −0.601 −0.526 −0.484 −0.414 −1.057
34 −0.626 −0.484 −0.410 −0.367 −0.297 −0.941
48 −0.534 −0.392 −0.318 −0.275 −0.205 −0.849
54 −0.581 −0.439 −0.364 −0.322 −0.252 −0.896
78 −0.681 −0.539 −0.465 −0.422 −0.352 −0.996

Table 5.14: Wigner corrected tritium rates (BP86/MM) obtained by transition state
theory for diUerent active spaces at 273.15 K as log10(rate per second) for the transition
formD → E. (tritium in primary position)

273.15 K. It is 12.3 times larger than the non-tunneling rate. At 300 K these rates diUer
by a factor of 9.2 and the tunneling rate is 7.8⋅10−3 s−1, see Table 5.16. Notably, for the
transitionA →B tunneling speeds up the reaction only by factors of 5.7 at 273.15 K
and by 5.9 at 300 K, see Table 5.17. Thus, tunneling seems to be less important for the
hydrogen abstraction from Glu than from MA. Comparing the non-tunneling with the
tunneling rates the reaction is enhanced by tunneling in the transition from E →D.
However, tunneling is unessential for the reaction to take place at all.

The crossover temperatures Tc for the transitions fromA →B are 307 K for protium,
232 K for deuterium, and 198 K for tritium transfers, consistent with the notion that
tunneling is less important for the heavier isotopes. For the transitions form E →D
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the corresponding crossover temperatures are 346 K, 259 K, and 220 K. For the transition
E →D deuterium rates are increased by tunneling by a factor of 5.4 and tritium rates
by a factor of 3.4 at T=273.15 K. A summary of the multiplicative factors between
tunneling and non-tunneling rates is given in Table 5.15.

Active ktunnel/kno-tunnel
atoms log10(ktunnel(1H)) log10(kno-tunnel(1H)) MeU

1H 2H 3H
1 2.128 1.467 1.007825 4.58 3.36 2.21
7 1.413 0.311 1.159765 12.65 5.49 3.42
11 1.145 −0.021 1.160989 14.66 5.44 3.39
23 1.213 0.049 1.159192 14.59 5.44 3.39
34 1.258 0.164 1.163579 12.42 5.44 3.40
48 1.362 0.256 1.163305 12.76 5.44 3.40
54 1.300 0.209 1.163641 12.33 5.45 3.40
78 1.199 0.109 1.163371 12.30 5.45 3.40

Table 5.15: Tunneling rates (BP86/MM) for hydrogen transfer from E →D at 273.15 K
with monodeuterated substrate in comparison to non-tunneling rates (TST rates in-
cluding zero-point vibrations), rates are given as log10(rate per second). The last three
columns contain the multiplicative factor of how much faster the tunneling rates with
diUerent isotopologues are compared to the non-tunneling rate. The eUective mass for
proton tunneling in a.m.u. is MeU.

Considering the rates for the carbon skeleton rearrangement, B →D, the DFT and
coupled cluster energies diUer by 19.2 to 33.9 kJ mol−1. The energies of the transition
states of the fragmentation and the recombination are about the same, 95.1 kJ mol−1 for
B →C and 94.6 kJ mol−1 for C →D. In contrast to the experimental conclusion that
no single step was cleanly rate-limiting [24, 25] the energy diUerences between the
barriers of the hydrogen transfer E →D and the carbon skeleton rearrangement diUer
by 15.9 kJ mol−1 and 16.4 kJ mol−1. However, the direct reaction E →C , when ignoring
the barriers for the hydrogen transfer, has calculated rates based on LUCCSD(T) barriers
that are only 15.5 and 16.8 times higher (at 273.15 K and 300 K, respectively) thanE →D.
Note that rates are measured and calculated in the direction of E →D and not from
D → E. This translates to an energy diUerence of only 7 kJ mol−1 from the Arrhenius
factor which is possibly smaller than the accuracy of the QM/MM energies. Noteworthy,
a rather large diUerence of 16.4 kJ mol−1 in the potential energies accomplishes the
small diUerence in the rate: the zero-point energy reduces the barrier for E →D by
12.3 kJ mol−1 while it reduces the barrierD → C by only 3.8 kJ mol−1. The rates, of
course, include tunneling additionally to the zero-point energy.

The calculated tunneling rates are higher than the non-tunneling rates, see Table 5.17
and Table 5.16. However, they are very low compared to rates measured experimentally.
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Temperature BP86 M06 LUCCSDT
kno-tunnel
300 K 14.81 0.001 659 0.000 845
273.15 K 1.28 0.000 144 0.000 028
ktunnel
300 K 136.08 0.015 250 0.007 764
273.15 K 15.81 0.001 772 0.000 345
ktunnel/kno-tunnel
300 K 9.19 9.19 9.19
273.15 K 12.30 12.30 12.30

Table 5.16: QM/MM non-tunneling and instanton tunneling rates (protium transfer)
for the transition E →D (78 atoms) with diUerent QM energy expressions (DFT and
Coupled Cluster) at diUerent temperatures.

Temperature BP86 M06 sd-LUCCSDT
kno-tunnel
300 K 550 000 19.64 9.44
273.15 K 120 000 1.54 0.69
ktunnel
300 K 3 290 000 115.30 55.44
273.15 K 68 000 8.82 3.94
ktunnel/kno-tunnel
300 K 5.87 5.87 5.87
273.15 K 5.74 5.74 5.74

Table 5.17: QM/MM non-tunneling and instanton tunneling rates (protium transfer)
for the transitionA →B (78 atoms) with diUerent QM energy expressions (DFT and
Coupled Cluster) at diUerent temperatures.

The measured rates have a great spread ranging from 5.8 s−1 to 97 ± 5 s−1 as mentioned
in the introduction [21, 23, 46, 47]. The calculated overall rates are smaller than the
measured ones by about four orders of magnitude. This translates to an error in the
barrier height of about 26 kJ mol−1 despite the eUorts to use the highest level of theory
currently achievable for enzymatic systems. It should be emphasized, however, that
inaccuracies in the barrier height cancel when KIEs are calculated, which increases the
reliability of the predicted KIEs.
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5.3.3 Primary KIEs

Calculations and experimental measurements of KIEs are more accurate than rates.
An isotopic substitution at an atom directly involved in establishing or breaking
bonds during the reaction results in a primary KIE. In the following the results of
primary KIE calculations will be discussed and compared to experiment, for a summary
see Table 5.18.

With per- and trideuterated Glu substrate the value of the calculated primary deuterium
KIE of 10.3 at 273.15 K for the transition A → B is in good agreement with the
experimental result of 10 ± 0.4 [21] which was obtained by a competitive measurement
(with both deuterated and unlabeled substrate in the same vessel) at 283 K, see Table 5.18.
The higher KIE of 16.8 for E →D with per- and trideuterated MA substrate supports
the notion that tunneling is more important for the hydrogen abstraction from MA.

This work Experiment
Substrate 273.15 K 300 K 283 K 273 K

TransitionA →B
2H3-Glu 10.3 11.3

10 ± 0.4 [21]
28[23]

2H-Glu 9.0 10.0
Transition E →D

2H3-MA 16.8 14.0 35 [23]
2H-MA 13.5 11.5 4.1 [24] 6 [25]

Table 5.18: Primary deuterium KIEs for the hydrogen transfersA →B and E →D on
the formation of Ado-H [21, 24, 25] or cob(II)alamin [23], respectively.

This work Experiment
273.15 K 300 K 283 K

A →B 28.4 27.8 21 [22]
E →D 46.1 34.7 19 [22]

Table 5.19: Primary tritium KIEs with monotritiated substrate.

The calculated KIEs are somewhat higher than most experimental values, see Table 5.18.
The measured rates can be masked by experimental side eUects such as undetection
through measuring instruments of a deuterium or tritium content below a certain
threshold or multiply deuterated substrate. The measured rates and KIEs are always
apparent or observed rates under certain conditions without excluding back and forth
reactions at the same time. The intrinsic (the true) KIEs are derived from these. The
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simulations determined intrinsic rates with exactly one deuterium as substitute for one
protium. The calculated deuterium KIEs for the transitionE →D lie between the high
and low measured KIEs given in Table 5.18. The large measured KIEs [23] seem to be
sensitive to several side eUects during the reaction and suUering from systematic error
[21].

The primary tritium KIEs are compared to experiment in Table 5.19. Again, the calcu-
lated values are slightly higher than the measured ones, which may again be attributed
to masking eUects. The measurements of primary tritium KIEs used monotritiated
AdoCbl and considered the transfer of tritium from Ado-H to Glu or MA substrate. At
283 K the experimental primary tritium KIE for Glu substrate (A → B) was 21 and
for MA substrate 19 (E → D) [22]. The computational results at 273.15 K are 28 for
A → B and 46 for E →D. The results for primary deuterium as well as for tritium
KIEs conVrm the conclusion drawn from the rates, that tunneling is more important
for the transition from E →D than forA →B.

5.3.4 Secondary KIEs

Hb

Ha

Hc

Cβ
C5’

Ado
(cofactor)

MA
(substrate)

Figure 5.18: The hydrogen transfer between Ado and the MA substrate, E → D.
Atoms mentioned in the text are labeled. The transparent spheres show the instanton
indicating the dominant tunneling motion.

Secondary KIEs result from isotopic substitution of atom which keep their bonds intact
during the reaction, see Section 1.1.2. These KIEs allow to characterize such coupled
motions. Secondary KIEs help to Vnd out whether motions in the neighborhood of
the transferred hydrogen atoms mask the primary KIEs and allow to characterize such
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coupled motions. Here computational and experimental results for secondary tritium
KIEs will be compared, see Table 5.20. The tritium was placed at the 5’-carbon of the
Ado in the calculational and the previous experimental investigations.[21, 54, 55] When
replacing two diUerent hydrogen atoms by tritium diUerent KIEs for each of them
were obeserved. In Fig. 5.18 the replaced atoms in primary and secondary positions are
labeled.

Primary Secondary Tunneling Non-tunneling Experiment
Ha 273.15 K 300 K 273.15 K 283 K

TransitionA →B
1H Hb 0.857 0.856 0.76 ± 0.02 [54]
1H Hc 0.945 0.926 0.76 ± 0.02 [54]
2H Hb 0.803 0.827 0.818 1.05 ± 0.08 [55]
2H Hc 0.894 0.910 0.897 1.05 ± 0.08 [55]

Transition E →D
1H Hb 0.978 0.879
1H Hc 0.900 0.933
2H Hb 0.793 0.819 0.782
2H Hc 0.839 0.863 0.822

Table 5.20: Secondary tritium kinetic isotope eUects for the hydrogen transfersA →B
andE →D with monotritiated Ado. The substrate was perdeuterated for investigations
of deuterium in primary position. See Fig. 5.18 for atom labeling.

An inverse KIE means that deuterium or tritium increase the reaction rate compared
to protium, which leads to a KIE smaller than 1. Replacing Hb with tritium (protium
in primary position) results in inverse KIEs. The calculation of secondary KIEs with
protium in the primary position (Ha) in principle requires to optimize another instanton
– a signiVcant computational demand. It can be avoided by keeping the instanton
path Vxed despite the substitution of the nucleus, the Vxed-path approximation, see
Section 4.2.1. The approximation is tested on two secondary KIEs at 273.15 K. Using
the FPA the calculated KIEs are 0.857 and 0.978, compared to the KIEs of 0.901 and
0.852 for full instanton optimization (A → B and E →D, respectively). The values
are similar, the FPA is a valid approximation and is used in all the following KIEs with
protium in primary position. With deuterium in the primary position the inverse KIEs
are larger (closer to zero) than with protium, which is in contrast to the experimental
results. When substituting Hc instead of Hb with tritium the inverse KIEs with protium
and deuterium in the primary position decreases (becomes closer to 1) in the case of
A → B. The same is observed for E → D except for the KIE with protium in the
primary position at 273.15 K. The experimental values are expected to be an average
of both values (Hb and Hc). However, for the secondary tritium KIE with protium in
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primary position, A → B, an experimental value of 0.76 ± 0.02 was found [54]. The
use of purely non-tunneling rates results in secondary tritium KIEs (Hb replaced) and
protium in the primary position at 273.15 K of 0.796 (A → B) and of 0.782 (E →D).
These values are closer to the experimental results than the KIEs based on tunneling
rates. Experimentally, the large inverse secondary tritium kinetic isotope eUect of 0.76
± 0.02[54] was interpreted as the C5′-H bonds becoming stiUer during the reaction from
Ado to Ado-H. The secondary tritium KIEs forA →B with deuterium in the primary
position based on non-tunneling rates at 273.15 K are 0.897 (Hc replaced) and 0.818
(Hb replaced). These and the calculated secondary KIEs for E →D with deuterium
in primary position remain essentially unchanged when using non-tunneling instead
of tunneling rates: 0.782 for Hb=3H and 0.822 for Hc=3H. The experimental measured
secondary KIEs for E →D include implicitly the eUects of the Co–C bond homolysis
E0 → E which could cause the diUerence between calculations and experiments.

The formation of Ado-H is a reversible reaction. Thus, the apparent rate constants
measured to determine the secondary isotope eUect with deuterium in the primary
position include forward and reverse rate constants [54, 55]. However, the KIEs are
less error-prone than the apparent rate constant, as some errors cancel in the ratio of
the rates. The apparent KIE measured with deuterium in primary position is close to
unity, see 5.20, which diUers from the calculated KIEs [55]. The diUerences between
experimental and computed results can be due to side eUects in measurements, to
Vtting problems of the experimental data, or geometrical eUects of the environment
which will be discussed in the next section.

5.3.5 Participation of the environment in the tunneling process

Number of active atoms
1 7 11 23 34 48 54 78

2H 10.6 13.8 16.1 16.0 13.6 14.0 13.5 13.5
3H 39.9 47.5 55.1 54.9 46.5 47.9 46.2 46.1

Table 5.21: Deuterium and tritium kinetic isotope eUects for the hydrogen transfer from
E →D at 273.15 K with monodeuterated or -tritiated substrate and diUerent active
subspaces.

The instanton optimizations provide the most-likely tunneling path. The most-likely
reaction path from a minimum to the start of the tunneling path is provided by the
intrinsic reaction coordinate (minimum-energy path) between these points. On average,
the system is expected to move classically along the intrinsic reaction coordinate to the
Vrst caustic point, the start of the instanton path, tunnel to the second caustic point,
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the end of the instanton path, and proceed along the intrinsic reaction coordinate to the
product minimum. This combined path is visualized in Fig. 5.19 for E →D at 273.15 K.
The energy proVle along that path (BP86/MM level) is illustrated in Fig. 5.20. The heavy
atoms dominate the classical movement. The system optimizes the tunneling path
to mainly consist of hydrogen-atom movement. In Fig. 5.19 this becomes apparent
by the tunneling paths being of signiVcant length only for the transferred hydrogen
atom, while the red and green curves (classical paths) are long also for carbon atoms.
Fig. 5.20 compares the reaction path for all atoms in Cartesian coordinates to the path in
mass-weighted Cartesian coordinates. The fact that the tunneling motion is dominated
by hydrogen shortens the section of this motion in the mass-weighted path compared
to the Cartesian path length. The mass-weighted path length is the relevant quantity
for the reaction rate.

Tunneling is rather weak, only a rather short portion of the reaction path is covered
by tunneling motion. Also energetically, the system moves up most of the barrier
classically, while only tunneling though the top. At much lower temperature (not
accessible by enzymatic reactions) a larger fraction of the path would be covered by
tunneling. The instanton path proceeds through a point slightly (1 kJ mol−1) higher
than the classical transition state, see Fig. 5.20. This expense comes at the beneVt of a
shorter tunneling path – an eUect known as corner cutting [112].

It should be noted, of course, that what is shown here is only the most-likely reac-
tion path including tunneling. In reality, the path as well as the tunneling energy
will Wuctuate. The most-likely tunneling energies for deuterium and tritium in the
primary position lie above the classical barrier height, which makes instanton theory
inapplicable in these cases, see Section 5.3.1.

The atoms in the direct neighborhood of the transferred hydrogen at the Glu substrate
and at the ribose ring of the adenosyl radical, and also several hydrogen atoms on Arg 66
are involved in the most likely tunneling process E →D, as illustrated in Fig. 5.21.

The hydrogen atoms Hb and Hc, the secondary hydrogen atoms at the 5’-carbon atom,
inWuence the motions of the transferred primary hydrogen atom Ha. These atoms move
from planar sp2 to tetrahedral sp3 geometry around the 5’-carbon. Their motions are
coupled during the transition, see Fig. 5.21. Such movements increase the eUective mass
(deVned analogously to the eUective mass MeU in molecular vibrations, see page 134)
and reduce the tunneling eXciency. For the transitionA →B the eUective tunneling
mass is MeU = 1.139 a.m.u. (instead of MH = 1.008 a.m.u.) and in E →D it is slightly
higher MeU = 1.163 a.m.u. The motions are coupled to all transferred nuclides (protium,
deuterium, and tritium), but have the highest eUect on protium. The calculations hint
that coupled motions are less important during the tunneling motion than previously
thought, as the secondary tritium KIEs, see Table 5.20, were found to be about the same
irrespectively of protium or deuterium in the primary position.
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Ado
(cofactor)

MA
(substrate)

Figure 5.19: The most likely reaction path (intrinsic reaction coordinate and instanton
path) of the transitionD → E. The non-tunneling paths are denoted in red (start at
D) and green (end at E). The blue balls between the red and green paths denote the
instanton tunneling path.

To explore the inWuence of motions in the direct neighborhood of the active center the
tunneling motion was restriced to smaller sets of atoms, see description in Section 5.3.1.
The results are summarized in Table 5.15 and Table 5.21. The larger the active subspace
the higher the eUective mass during the transitions. The primary tritium KIE for
E →D with only Ha allowed to tunnel is 39.9 at 273.15 K. This KIE is slightly smaller
than the KIE of 46.1, see Table 5.19, for 78 tunneling atoms. The multiplicative factors
between tunneling and non-tunneling rates with only Ha allowed to tunnel are 3.36
for deuterium and 2.21 for tritium. Much smaller than for the 78-atom-set (with
factors of 5.45 for 2H and 3.40 for 3H). Thus, for a successful tunneling contribution the
motions of the neighboring atoms are crucial to enhance the deuterium and tritium
rates. For these two heavier isotopes the factors between tunneling and non-tunneling
rates are the same for all sets of tunneling atoms except for the set with only Ha

included. The motions of the neighboring atoms are much more important for protium
transfers than for its heavier nuclides. For 1H the tunneling rate for one active atom
is 4.58 times faster than the non-tunneling rate. For the large active space with 78
atoms the factor is 12.30. Thus, forbidding coupled motions by restricting the set of
tunneling atoms to one atom lowers the tunneling enhancement. On the other hand,
this restriction increases the contributions of zero-point vibrations to the tunneling
and non-tunneling rates and, therefore, the rates are larger than in the greater set of
tunneling atoms. The contributions of zero-point vibrations are larger for one atom,
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Figure 5.20: Energy proVle (BP86/MM) along the most likely reaction path (intrinsic
reaction coordinate, red and green dots, and instanton path, blue) of the transition
D → E. The path length covers all atoms.

as the frozen environment is like a rigid wall with a steep potential energy valley in
contrast to the softer and more Wexible C-H-skeleton environment of the 78-atom-
set. Allowing tunneling movements of Cβ and C5′, and their hydrogen atoms (active
subspace with 7 atoms) results in a tunneling enhancement by a factor of 12.65, similar
to the enhancement in the 78-atom-set (factor 12.30). Extending the tunneling region
to 11 and 23 atoms increases the enhancement factor to 14.6 and the KIE to about 16
instead of 14, see 5.15. Including the ribose ring of the adenosyl radical to the active
subset (34- to 78-atom-sets) yielded smaller enhancement factors and primary KIEs
(2H and 3H), all similar to the results of the 78-atom-set. With 34 atoms the eUective
mass, MeU = 1.1636 a.m.u., for the hydrogen transfers is basically the same as with 78
atoms, MeU = 1.1634 a.m.u., whereas with 7, 11, and 23 active atoms it is slightly lower
(MeU = 1.1598 for 7 tunneling atoms). Thus, motions of the ring play a central role
during the tunneling of the hydrogen transfers.

These coupled motions can, on the one hand, transfer energy from the atoms moving at
the ring into the movements of the transferred hydrogen atom, which would enhance
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Glu 330

Glu 171
MA

Arg 66

Arg 100

Arg 149

(cofactor)
Ado

substrate

Figure 5.21: The large active region (78 atoms,E →D) including the QM region (in ball
and stick representation) consisting of Ado (left), MA substrate (middle), and the side
chain of Glu 171 (right). Carbon is shown in gray, oxygen in red, nitrogen in blue, and
hydrogen in white. Transparent spheres denote the movements of tunneling atoms.

the rate, and on the other hand increase the mass and reduce the tunnel rate. Two
types of motions are involved in the hydrogen transfers. The classical motions (1) of
the heavier carbon and oxygen atoms prepare the tunneling motions of the lighter
hydrogen atoms. The larger these classical motions are, the less important is the
tunneling eUect. The coupled motions (2) of the ribose ring at Ado and the motions of
the hydrogen atoms in the neighborhood of Ha which reduce the tunneling rate, see
results given above. These motions are coupled in the transition state and part of the
tunneling motions.

Another reason for the tunneling enhancement to be smaller with one active atom is
that the environment is tensed when the movement of carbon atoms (Cβ and C5′) is
forbidden. A highly tensed environment leads to smaller rates for all isotopologues. The
rates for 11 and 23 tunneling atoms with the ribose ring excluded from the tunneling
motion (the delocalization) are smaller, see Fig. 5.21 and 5.15, than for the larger sets of
atoms. Therefore, the tunneling eUects dominate over the tensions when the active
subspace comprises more than 34 atoms.

The simulations conVrm the experimental conclusion from secondary tritium KIE
measurements [54], that the rehybridization of the C5′, from planar to tetrahedral,
occurs before or during the transition state for the hydrogen abstraction from substrate.
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In the transition state both carbon atoms (Cβ and C5′) have a distorted tetrahedral
coordination close to sp3 geometry, see Fig. 5.18, Fig. 5.19, and Fig. 5.22.
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Figure 5.22: Dihedral angles around C5′ and Cβ showing the transition from an almost
planar geometry to a distorted tetrahedral geometry during the transitionD →E. The
segment of the path highlighted with blue background is the tunneling motion. The
path length covers all atoms, as in Fig. 5.20.

The eUective mass in harmonic vibrations

In this section the eUective mass in harmonic vibrations is brieWy derived. The eUective
tunneling mass is deVned analogously. Given a one-dimensional system with two
atoms of position x1 and x2. The masses of the atoms are M1 and M2. Let the potential
energy be:

V (x1,x2) =
k

2
(x1 −x2)2, (5.6)

where k is the spring constant. Mass-weighted coordinates are deVned as yj =
√
Mjxj .

From that one obtains two diUerent Hessians for non-mass-weighted Hx and mass-
weighted Hy coordinates:

Hx = ( k −k
−k k

) Hy = (
k
M1

− k√
M1M2

− k√
M1M2

k
M2

) . (5.7)
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The eigenvectors of Hy are easy to obtain. From the Cartesian eigenvector of the
translation tx = (11)T follows

ty = (
√
M1√
M2

) . (5.8)

The only orthogonal vector to ty is the eigenvector of the vibration:

vy = (−
√
M2√
M1

) ⇒ vx = (−
√
M2/

√
M1√

M1/
√
M2

) . (5.9)

Elongation along vx conserves the center of mass: vx,1M1 = −vx,2M2. The vector vx
can be normalized to v̄x:

v̄x =
1√

M2
1 +M2

2

(−M2

M1
) . (5.10)

The second directional derivative of V in the direction of vx is the force constant of
the vibration kv . This constant is related to the vibrational frequency ω by ω2 = kv/MeU

which deVnes the eUective mass MeU. kv is obtained by

kv = v̄TxHxv̄x =
1

M2
1 +M2

2
(−M2

M1
)
T

( k −k
−k k

)(−M2

M1
) = k (M1 +M2)2

M2
1 +M2

2
. (5.11)

By calculating the eigenvalues of Hy the frequency ω can be obtained:

( k

M1
− ω2)( k

M2
− ω2) − k2

M1M2
= 0⇒ ω2 = k (M1 +M2)2

M2
1 +M2

2
. (5.12)

The same results yields ω2 = v̄TyHyv̄y. Combining the later two equation with ω2 =
kv/MeU results in

v̄TyHyv̄y = v̄TxHxv̄x/MeU. (5.13)

Thus, the eUective mass is given as

MeU =
M1M2(M1 +M2)

M2
1 +M2

2
(5.14)

which is diUerent form the general assignment of

MeU =
M1M2

M1 +M2
.

The general assignment either neglects the fact that the directional derivative of V is
not k or ignores the norm of vx. The extension of equation (5.14) to more dimensions
is straightforward. Using vy = diag(

√
M)vx and equation (5.13) we obtain for a

normalized vy, with vTy vy = 1:

1
MeU

= vTy diag(
1
M

)vy. (5.15)

After this short theoretical digression the discussion of the results of the tunneling rate
calculations in GM continues.
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5.3.6 Does a diUerent step become rate-determining through a 1H/2H
substitution?

The (measured) primary KIEs can be masked by other intermediate steps, causing the
measured KIEs to be smaller than the intrinsic KIEs. A step other than hydrogen trans-
fer could be rate limiting for protium transfer. Substitution of protium by deuterium
or tritium could then render the hydrogen transfer rate-limiting. As mentioned in
Section 5.3.2, the rate for E →D is only 16 times lower than for the direct transition
E → C , when the hydrogen transfer barrier is ignored. Thus, the carbon skeleton
rearrangement would become rate-limiting if the calculations underestimated its bar-
rier by only 7 kJ mol−1. This may well be within the error bar of QM/MM simulations,
despite the quite high level of theory (sd-LUCCSD(T)/MM) used to obtain the barriers.
Deuterium transfer is slower by another factor of 11.5–16.8. Thus, deuterium transfer
is clearly rate-limiting. The isotopically sensitive step not being fully rate-limiting is
one form of masking of KIEs. It may explain why the calculated KIEs are generally
somewhat larger than the experimental ones.

Despite the frequencies being based on BP86, which underestimates the energy barriers
and frequencies compared to the M06 functional or LUCCSD(T), the calculated rates
reproduce the qualitative behavior of the system. Higher frequencies would result in
a larger rate. Also some rapid quench measurements hint that a slower step could
mask the isotopically sensitive step in GM [18, 21, 22, 46, 53], which would reduce the
measured KIE from its intrinsic value. The change of the rate limiting step through a
conformational change in the protein can be excluded as the protein moves negligibly
during the catalytic cycle. The enzyme seems to modulate the transition states for the
hydrogen transfers while changing the isotope eUect. In the active enzyme the protein
is already in a pre-organized form that allows the enzyme to modulate tunneling
motions, vibrations, and coupled motions. On the other hand, A is a high energy
intermediate not accumulating during the reaction [21, 23]. Therefore it is unlikely that
the homolytic cleavage of AdoCbl can become rate-limiting. Further, starting atA0 or
E0 could result in a much higher barrier for A0 → B or E0 →D. Then it would be
even less likely that the carbon skeleton rearrangement could become rate-limiting.

The results of all caluclations with GM will be summarized in Chapter 6.
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6
Summary and Conclusions

6.1 Improvements of the instanton technique to
calculate tunneling rates in large systems

In instanton theory the main object of interest is the instanton, the most-likely tun-
neling path at a given temperature solving Euler’s equation of motion. The instanton
(pseudoparticle) is also a Vrst-order saddle point of the Euclidean action in the space
of closed Feynman paths. Due to a mathematical analogy, the so-called Wick rotation
from Minkowski space to Euclidean space, see Chapter 2, an instanton can also be
considered as an unstable closed orbit of a particle moving on an upside-down po-
tential energy surface in negative imaginary time. The time discretized instanton is
represented by a chain of particles (replicas or images). Each discretization point of the
imaginary time corresponds to an image of the considered molecule.

In Chapter 3 a stringent formulation of the imaginary F instanton rate theory in
variable step-size discretization of the Feynman paths by applying a rigorous time-
slicing deVnition of the path integration was derived. This is to my knowledge the
Vrst step-by-step derivation of the instanton rate prefactor with a variable step-size
discretization in d dimensions. The basic deVnitions of the used mathematical objects
are presented in Chapter 2. The variable step-size discretization along the imaginary
time, presented in Chapter 3 and tested in Section 4.2, is an extension of the existing
instanton method.
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Chapter 4 starts with a comparison of four algorithms implemented to locate instantons.
Instanton theory allows to calculate reaction rates, including atom-tunneling, down
to very low temperature. The problem of Vnding an instanton is adressed as a saddle-
point search problem. The Newton–Raphson method was compared to the partitioned
rational function optimization (P-RFO) algorithm, the dimer method, and a newly
proposed mode-following algorithm, where the unstable mode is directly estimated
from the instanton path. The algorithms were tested on three chemical systems, see
Section 4.1.4 on page 74, each including a hydrogen transfer, at diUerent temperatures.
Overall, the Newton–Raphson turned out to be the most promising method, consistently
eXcient and stable, with the dimer and the newly proposed mode following, being the
fall-back option.

The results of Section 4.1.5, page 80, show that instantons can be optimized rather
eXciently. The geometry optimization generally requires fewer evaluations of energy
and its gradients than subsequent Hessian calculations at each image, at least if the
latter are done by Vnite-diUerence calculations of gradients using the two-point formula.
EXciency in the Hessian calculations can of course be improved by using analytic
Hessians instead. At lower temperature an additional challenge in instanton theory is
that more and more images of the discretized path tend to accumulate at one end of
the instanton path (the one with the smaller slope of the energy along the path). Up
to some point, this can be accounted for by using more and more images. However,
to apply instanton theory to really low temperature, or to calculate the limit at T → 0,
methods are required that allow to calculate the rate using the Hessian at fewer points
along the instanton.

In Chapter 4 the expressions to locate instantons and calculate reaction rates for
instanton paths reduced to a line, as it is the case in molecular systems, are derived.
The adaptation of the variable step-size to the temperature is demonstrated which
allows to apply instanton theory at low temperature while avoiding the accumulation
of images at the ends of the instanton path observed with the traditional constant
step-size discretization. The applicability and accuracy of the method was tested, see
Section 4.2.2 on page 85. The new algorithms save more than one order of magnitude
in CPU time.

The improved instanton method allows eXcient calculations of tunneling rates at
various temperatures. The combination of Hessian-based instanton optimization with
updating strategies, like for example BoVll updates, is the most imporant contribu-
tion. The instanton method can be applied in combination with high-level theories,
e.g., coupled cluster or density functional theory, to obtain rates based on quantum
mechanical energies including a correct description of forming and breaking bonds.
It can in principle be used with any potential enery surface. Finally, instanton theory
allows to calculate tunneling rates involving several quantized atoms. This is especially
interesting in systems like enzymes in order to Vnd out which atoms are involved in
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the tunneling motion.

6.2 Application to the enzyme glutamate mutase

I studied the radical conversion mechanism of glutamate to methylaspartate catalyzed
by glutamate mutase (GM) in atomistic detail using a QM/MM approach based on DFT
and local coupled cluster methods, see Chapter 5. The conversion of glutamate to
methylaspartate was found to proceed via a fragmentation–recombination mechanism,
see Section 5.2. For a detailed overview of the reaction and the labeling of the diUerent
intermediates see Fig. 1.2, page 5 or Fig. 5.6, page 101. The enzymatic reaction was
compared to the uncatalyzed reaction in water and in the gas-phase. The hydrogen
atom transfer steps exhibit the highest barriers. Here, the transition from an almost
planar coordination to a distorted tetrahedral coordination of C5′ and Cβ occurs before
and during the transition state. With a barrier of 101.1 kJ mol−1 (M06 functional), the
transfer E →D has the highest barrier. However, the barrier fromA →B is similar
with 84.8 kJ mol−1 (M06 functional). The barriers for the hydrogen transfersA→B and
E →D match for DFT (M06 functional) and coupled cluster (LUCCSD(T)) which shows
the good predictive value of the results based on the M06 functional, see Section 5.2.1
on page 103.

The thourogh comparison of the reactions in gas phase, water (COSMO), and protein
leads to the conclusion that the enzyme environment has a stronger impact on the
hydrogen-transfersA →B and E →D than on the carbon skeleton rearrangement,
sturcturesB toD. The inWuence of the enzyme is mostly electrostatical and to a lesser
degree sterical, see Section 5.2.3 on page 109.

The calculations shed light on the atomistic details of the reaction mechanism. The
well-known arginine claw and Glu 171 are found to have the strongest inWuence on
the reaction. The arginine claw (Arg 66, Arg 100, and Arg 149) keeps the intermediate
fragments in place. It raises the energy of intermediate C by steric eUects and, thus,
facilitates the recombination process. An open arginine claw was found to lead to much
higher energies of the intermediates, whereas a closed arginine claw is associated with
reaction paths exhibiting the lowest reaction barriers. The arginine claw is crucial for a
successful catalysis.

Glu 171, in the vicinity of the glutamate substrate, acts as a catalytic residue by
temporarily abstracting a proton from the ammonium group of the substrate. This
facilitates the carbon skeleton rearrangement steps (B to D). The proton-transfer
changes the dipole moment of the whole active site, an eUect being electrostatically
buUered by the protein environment.
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Careful investigations of the enzyme environment of the active center lead to the
identiVcation of additional residues important for the reaction. SigniVcant catalytic
roles of Glu 214, Lys 322, Gln 147, Glu 330, Lys 326, and Met 294 are found as well, see
Section 5.2.4 on page 113. For example, Glu 330 reduces the barrier of the hydrogen-
transfer by establishing stable hydrogen bonds to the ribose ring of Ado. These results
highlight new promising experimental targets. Amino acids in considerable distance to
the active center were found to have a noticeable inWuence on the reaction.

The role of tunneling in the enzyme GM was investigated by QM/MM-instanton
simulations, see Section 5.3 on page 117. The transition E →D has the higher primary
KIEs than A → B. Also the speed-up between non-tunneling and tunneling rates
is larger for E →D. Thus, tunneling is more important in E →D than in A → B.
Primary deuterium KIEs are in good agreement with experiment.

The secondary tritium KIEs, see Section 5.3.4 on page 127, hint that coupled motions on
the ribose ring of Ado are part of the tunneling motions. Classical movements of the
enzyme are important to prepare the system for the tunneling motions. The heavier
atoms like oxygen or carbon display small tunneling and large classical motions during
the hydrogen transfer E →D. Allowing tunneling in diUerent sub-sets of the active
center showed that the motions at the ribose ring of Ado play a central role during the
tunneling enhancement of the hydrogen transfers. The enzyme uses both classical and
tunneling motions for a successful catalysis.

These simulations lead to an improved understanding of the catalysis of the carbon
skeleton rearrangement of Glu or MA substrate by glutamate mutase.
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Supporting Material: Reaction
Mechanism of Glutamate Mutase

Epsilon inVnity 80 10 4

A 0.0 0.0 0.0 0.0
TS-AB 34.6 34.1 30.9 25.3
B −33.0 −33.3 −35.2 −38.1

TS-BC 46.0 46.1 46.5 46.7
C 21.5 21.5 21.3 20.5

TS-CD 43.0 42.9 42.4 41.7
D −17.4 −18.0 −21.7 −26.4

TS-DE 41.6 40.9 36.9 31.1
E −9.0 −9.4 −11.6 −14.1

Table A.1: DiUerent dielectric constants for COSMO calculations with BP86 and cc-
pVTZ (relative energies in kJ mol−1).
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A.1 Data for all snapshots

Structure SN-Glu-1 SN-Glu-2 SN-Glu-5
A −1679.509479 −1681.538948 −1680.388094

TS-AB −1679.479110 −1681.503543 −1680.350696
B −1679.517693 −1681.547825 −1680.399394

TS-BC −1679.486116 −1681.517351 −1680.368323
C −1679.501210 −1681.523456 −1680.382552

TS-CD −1679.482484 −1681.509053 −1680.370519
D −1679.505967 −1681.536070 −1680.392792

TS-DE −1679.467238 −1681.489689 −1680.329563
E −1679.504325 −1681.532140 −1680.388667

Structure SN-MA-1 SN-MA-2 SN-MA-3
A −1680.736409 −1680.403903 −1680.109763

TS-AB −1680.689040 −1680.330998 −1680.072679
B −1680.740966 −1680.406146 −1680.114692

TS-BC −1680.718030 −1680.378611 −1680.085426
C −1680.735381 −1680.391672 −1680.097073

TS-CD −1680.716203 −1680.367774 −1680.079078
D −1680.745113 −1680.400359 −1680.109852

TS-DE −1680.657732 −1680.311812 −1680.063893
E −1680.731028 −1680.384358 −1680.095796

Table A.2: QM/MM energies of six snapshots (M06 energies in Hartree at BP86 geome-
tries)
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Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.643 1.098 3.911 1.097 2.155 1.541 2.589

TS-AB 2.690 1.098 2.772 1.342 2.384 1.561 2.550
B 2.636 1.102 4.120 3.298 4.191 1.559 2.520

TS-BC 2.639 1.581 3.902 3.087 3.594 2.217 2.936
C 2.653 1.612 3.923 3.109 2.944 3.235 3.356

TS-CD 2.628 1.558 4.518 3.542 3.117 2.839 2.103
D 2.639 1.098 4.820 3.839 3.368 2.538 1.576

TS-DE 2.695 1.097 3.774 2.396 1.376 2.606 1.576
E 2.650 1.095 4.821 2.156 1.096 2.573 1.555

Table A.3: Distances in Å changing during the reaction SN-Glu-2

Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.596 1.115 4.448 1.099 2.148 1.546 2.591

TS-AB 2.616 1.117 2.765 1.355 2.322 1.562 2.572
B 2.586 1.125 4.627 3.843 4.219 1.567 2.529

TS-BC 2.603 1.528 4.545 3.781 3.788 2.246 2.928
C 2.628 1.568 4.369 3.708 3.088 3.344 3.476

TS-CD 2.664 1.614 5.024 4.139 3.261 2.909 2.113
D 2.629 1.110 5.405 4.492 3.568 2.560 1.580

TS-DE 2.730 1.097 3.917 2.502 1.410 2.639 1.586
E 2.627 1.107 5.468 2.170 1.097 2.572 1.557

Table A.4: Distances in Å changing during the reaction SN-Glu-5

Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.660 1.081 4.185 1.100 2.175 1.529 2.616

TS-AB 2.667 1.087 2.821 1.407 2.674 1.528 2.726
B 2.656 1.078 4.551 3.741 4.897 1.526 2.572

Table A.5: Distances in Å changing during the reaction SN-Glu-6
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Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.603 1.091 4.420 1.104 2.174 1.529 2.567

TS-AB 2.627 1.099 2.761 1.396 2.535 1.530 2.632
B 2.596 1.095 4.472 4.017 4.561 1.529 2.554

Table A.6: Distances in Å changing during the reaction SN-Glu-4

Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.664 1.079 4.106 1.103 2.179 1.530 2.583

TS-AB 2.698 1.083 2.798 1.408 2.580 1.535 2.680
B 2.660 1.082 4.212 3.500 4.428 1.529 2.564

TS-BC 2.623 1.566 4.503 3.880 4.593 2.293 3.125
C 2.675 1.642 4.864 4.187 4.927 3.222 3.261

TS-CD 2.605 1.514 5.392 4.558 5.279 2.759 2.169
D 2.664 1.097 5.646 4.789 5.373 2.470 1.544

TS-DE 2.818 1.065 3.806 2.478 1.379 2.603 1.567
E 2.668 1.095 5.710 2.178 1.091 2.510 1.542

Table A.7: Distances in Å changing during the reaction SN-Glu-3

Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.552 1.398 5.421 2.406 1.481 3.580 3.737

TS-AB 2.627 1.539 5.578 2.498 1.472 3.578 3.758
B 2.580 1.473 5.487 2.424 1.469 3.598 3.792

TS-BC 2.711 1.678 5.681 2.456 1.398 3.608 3.986
C 2.790 1.772 5.661 2.417 1.379 3.604 4.096

TS-CD 2.732 1.692 5.322 2.465 1.403 3.597 3.951
D 2.699 1.096 4.733 2.094 1.493 3.595 3.610

TS-DE 2.727 1.094 4.617 2.083 1.497 3.595 3.602
E 2.695 1.098 4.714 2.097 1.497 3.588 3.593

Table A.8: Distances in Å changing during the reaction SN-MA-1
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Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.526 1.190 3.401 1.097 2.150 1.545 2.519

TS-AB 2.561 1.435 2.775 1.339 2.324 1.569 2.495
B 2.525 1.369 3.505 2.759 3.079 1.576 2.461

TS-BC 2.628 1.588 3.416 2.709 2.780 2.264 2.805
C 2.663 1.641 3.469 2.840 2.857 3.404 2.845

TS-CD 2.616 1.566 3.707 2.922 2.725 2.891 2.156
D 2.622 1.104 4.009 3.158 2.707 2.545 1.565

TS-DE 2.653 1.105 3.689 2.371 1.372 2.607 1.566
E 2.616 1.108 4.067 2.161 1.095 2.584 1.553

Table A.9: Distances in Å changing during the reaction SN-MA-3

Structure N–O N–HN C5’–Cγ Hγ–Cγ Hγ–Cβ Cβ–Cα Cγ–Cα
A 2.624 1.143 4.661 1.102 2.138 1.549 2.632

TS-AB 2.603 1.137 2.729 1.408 2.382 1.564 2.649
B 2.622 1.138 4.729 4.246 3.918 1.549 2.569

TS-BC 2.624 1.563 4.259 3.706 3.685 2.235 2.805
C 2.736 1.708 4.346 3.823 3.503 3.535 2.880

TS-CD 2.657 1.601 4.750 4.127 3.620 2.937 2.193
D 2.605 1.132 5.192 4.515 3.838 2.545 1.563

TS-DE 2.633 1.136 3.840 2.454 1.411 2.634 1.572
E 2.600 1.136 5.223 2.161 1.097 2.580 1.552

Table A.10: Distances in Å changing during the reaction SN-MA-2
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Mathematical Approaches

B.1 Short note on Dirac delta function and Gaussian in-
tegration

The Dirac δ-function is given as

δ(x) = { 0 x ≠ 0
+∞, x = 0

(B.1)

for x ∈ R and ∫
∞
−∞ δ(x)dx = 1. It has the following properties:

1. Scaling property: ∫
∞
−∞ δ(αx)dx = ∫

∞
−∞ δ(u)du∣α∣ = 1

∣α∣ and thus δ(αx) = δ(x)
∣α∣ .

2. Symmetry: δ(−x) = δ(x).

3. Further deVning properties: y(t) = ∫ δ(t − s)y(s)ds, δy(t) = ∫ δ(t − s)δy(s)ds,
and δy(t)

δy(s) = δ(t − s).

The symbol δ′(t), which means the derivative of the Dirac delta function with respect
to t, is properly deVned by its behavior in an integral (with integration by parts)

∫
b

a
δ′(t − s)f(s)ds =∫

b

a

d

dt
δ(t − s)f(s)ds (B.2)

= − ∫
b

a
f(s) d

dt
δ(t − s)ds = ∫

b

a
f ′(s)δ(t − s)ds = f ′(t). (B.3)
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The manipulations here are purely formal, and serve only to motivate the deVning
property

∫
b

a
δ′(t − s)f(s)ds = f ′(t). (B.4)

The determinant in the steepest descent approach is designed in analogy to the evalua-
tion of Gaussian integrals. Consider the following one-dimensional example:

∫
∞

−∞
dx exp(−iax2) =

√
π

ia
=
√
π

a
exp(−iπ

4
). (B.5)

The variable 0 < a ∈ R is analog to the eigenvalues of the Jacobi operator J , see equa-
tion (3.14) page 47, and x ∈ C is analog to the Wuctuations y(t), see equation (3.15)
page 47. Thus, in the result on the right hand side we have the square root over a
fraction with the eigenvalues of J in the denominator, which is equal to detJ .

B.2 The Faddeev-Popov Trick: basic ideas

x

y

Ox

(a)

x′

y′ Ox′

θ

(b)

Figure B.1: Periodic orbits and rotation symmetry

The following example of an simple orbit summation will explain the basic ideas behind
the Faddeev-Popov trick for Gauge Vxing [243, 330]. The problem is how to simplify
the following 2-dimensional integral

I = ∫
R2

exp−x2−y2 dxdy (B.6)
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by eliminating the contributions coming from equivalent points. The integrand is
invariant under the rotation

x′ = x cos θ + y sin θ, y′ = y cos θ − x sin θ (B.7)

of the (x, y)-coordinate system. These rotations about the origin are called gauge
transformations, which form the group SO(2). An orbit is obtained by rotating a given
point (x, 0) in all possible ways. Equivalent points are all points belonging to the same
orbit Ox, see Fig. B.1a. In the following the question, how to eliminate these equivalent
points, will be discussed more detailed.

Special gauge Vxing: Choosing the special gauge angle θ ∶= 0, which plays the role
of a generalized coordinate, and using polar coordinates leads to

I = ∫
∞

0
r exp−r2 dr∫

π

−π
dθ. (B.8)

By writing in terms of orbits the orbit summation is obtained:

I = ∫
∞

0
exp−x2 x(∫

Ox

dθ)dx, (B.9)

which is equivalent to

I = π∫
∞

−∞
exp−x2 ∣x∣dx. (B.10)

Using the Dirac delta function, having in mind that ∫R f(x, y)δ(y)dy = f(x, 0), the
formula can be rewritten as

I = π∫
∞

−∞
∫

∞

−∞
exp−x2−y2 δ(y) ∣x∣dxdy. (B.11)

General gauge Vxing: After Vxing the angle θ (see Fig. B.1b) introduce the function

y′ = f(x, y, θ) = y cos θ − x sin θ, (B.12)

that describes the periodic orbit Ox. The gauge condition is given as

f(x, y, θ) = 0. (B.13)

Thus, the contributions from the periodic orbit are zero. Equivalently, the stationary
action path γinst fulVlls the Euler-Lagrange Equation and, thus, the Vrst variation
δSE[γinst] = 0. The gauge condition determines the x′-axis. The partial derivative with
respect to Θ is

d

dθ
y′ = fθ(x, y, θ) = −y sin θ − x cos θ = −x′. (B.14)



152 Appendix B — Mathematical Approaches

Then follows analog to equation (B.11)

I = π∫
R2

exp−(x′)2−(y′)2 δ(y′) ∣x′∣dx′dy′. (B.15)

Transforming into the variables x, y with the observation that

x′2 + y′2 = x2 + y2, ∂(x′, y′)
∂(x, y) = 1 (B.16)

leads to I = π ∫
∞
0 exp−x2−y2 δ(y′) ∣x′∣dxdy.

Thus, the Faddeev-Popov trick results in

I = π∫
R2

exp−x2−y2 δ(f(x, y, θ)) ∣fθ(x, y, θ)∣dxdy. (B.17)

In higher dimensional cases the absolute value in the last equation is replaced by the
so-called Faddeev–Popov determinant.
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