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Abstract

The study of radar for human recognition based on deep learning is becoming increasingly

popular. It has been demonstrated that the micro-Doppler (µ-D) spectrograms effect can

reflect walking human gait by capturing the periodic micro-motions of the limbs. The

research scope was extended to include human recognition for variable activities, and

hence, a broad number of applications have been investigated, such as fall detection. In

addition to this, there are two main factors that have introduced the radar as a powerful

sensor for such applications. First is the radar detection capability that is not affected by

any environmental limitations. Second, the multiple-input-multiple-output transmission

protocol that enabled the radar detection and tracking for multiple humans.

Radar sensors are to be investigated for indoor human detection and identification

in this thesis. A short-range analysis (≦ 10𝑚) is the main focus of all of the proposed

approaches. As a start of the research, the main characteristics of the captured walking

µ-D signature are extracted and analyzed. Initial investigations are conducted utilizing

a combined half-simulated signal model that we have developed. The model simulates

a typical single-input-single-output radar for monitoring a single walking target. The

range and velocity are the first two radar features that are investigated. Human-robot

classification is used as a case study to test the viability of the research findings. The

range feature is evaluated to reflect the micro motion behavior to ensure an enhanced

detection capability. Due to the behavior of body parts within the µ-D signatures, the

results of the initial feasibility studies formed the basis of the concept of human detection.

In addition, it drew our attention to the significance of utilizing multiple radar features

for enhanced detection. Walking is the primary activity in all of our investigations; it has

been referred to as the most vital activity for studying the µ-D effect in radar.

Human identification is the second main research goal due to its critical requirement in

most security systems. The walking activity is fixed, and hence, similar µ-D signatures

are expected among humans. Accordingly, this task is regarded as the hardest and most

generic, which can be generalized to other scenarios afterward. As a result, the designed
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approach can be easily applied to other human recognition tasks. For a single decision,

there is always a trade-off between the number of included subjects and the length of

the captured spectrogram for the identification task. As a result, the research goal is to

overcome these limitations by combining multiple radar features to reduce classification

ambiguity while increasing the number of classes and achieving real-time classification. To

accomplish this, the radar’s estimated angle of arrival is investigated in order to generate

a newly-measured micro angular velocity spectrogram that reflects the behavior of the

body’s micro motions on the angle of arrival feature.

Consideration is also given to the significant degradation in spectrogram quality when

captured from different aspect angles with respect to the radar. The main concept is to look

into a feasible deep learning approach to ensure an adaptive solution. The generalization

and robustness of the final approach are assessed by applying it to an activity classification

task that includes fall detection. For this aspect, the thesis work foresees two major aspects.

First, reduce the acquired training dataset. Second, the real-time aspect is taken into

account in such a way that all classification is done on a single occurrence of the activity,

where a single walking step lasts for ≈ 0.5𝑠.
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1 Introduction

There is currently a strong desire to incorporate a smart feature into any technology that

involves human interaction. The human should be recognized with high freedom within the

intended parameters of the application for such intelligent engagement. Due to the human

body’s remarkable flexibility and ability to change shape in a variety of circumstances that

don’t usually call for a human to even move, the recognition task is not seen as a simple

one. An example of this would be to track a person’s vital signs while being stationary to

determine how emotionally and physically stressed they are, as described in Basjaruddin

et al. 2021. As a result, a significant area of research is devoted to examining various

perception systems with an excellent application of artificial intelligence for satisfying the

desired smart features. For a deeper view of sensory systems used for different scopes of

human recognition, e.g., tracking and activity recognition, some surveys are presented in

Zhou & Hu 2008; Teixeira et al. 2010; Filippeschi et al. 2017, and Reich et al. 2020

The perceptual generalization is typically addressed as one key criterion, and this is

done by looking into a stand-alone solution that works in many situations. Smoke, dust,

darkness, and sunlight were among the environmental elements that were thought to have

the most impact on the usefulness of the investigations as discussed in different studies

e.g., Ho et al. 2005; Starr & Lattimer 2014; Zhang et al. 2019, and Zhao et al. 2020. A

multi-sensory solution is frequently looked into due to the significant advancement in the

many sensory solutions in terms of size, effectiveness, and price. Therefore, it is easier

to overcome climatic circumstances or motion compensation for machines with strong

movements by adding a sensor than improving the proposed algorithm as discussed in

Martin et al. 2006, and Cho et al. 2014. In a smart perception system, this indicates that

not all of the sensors will contribute equally, but the main operating sensor will be the

one that can work without being affected by the environment.

Radar sensors have been investigated by many researchers as the main perception sensor

as it is not yet an out-of-the shelve sensor, and they can offer their data in multiple formats

that can be utilized by an endless number of algorithms in the fields of deep learning and
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signal processing as discussed in Pisa et al. 2016; Santra et al. 2018, and Li et al. 2019.

Additionally, the radar capability of operating under any environmental circumstances e.g.,

darkness, dust and smoke never fails to introduce it as a powerful candidate compared to

other perception systems as discussed in Dickmann et al. 2015, and Fischer et al. 2018. For

example, a lighting system must be added to a camera to operate in a lower level of light;

however, even the strong sunlight affects the performance of the camera systems in some

scenarios. Other interesting features are the easiness of integration with other sensors, as

still most of the sensors are in the form of development kits. Also, the harmless radiations,

which introduced it powerfully in the medical sector as explained in Habash 2001. The

radar sensors used for the bio-medical field usually operate at a carrier frequency 𝑓∘ ≥ 10

GHz, which are expected to have a limited penetration effect at the body tissues under

the skin as explained in Laakso et al. 2012; Cho et al. 2007. Finally, the privacy aspect

that is never broken by the radar compared to all other camera-based perception systems.

1.1 Motivation

Identifying a moving target and characterizing its motions is becoming increasingly

important in a variety of industrial fields. Such systems, which are required in many

locations for movement identification, are known as biometric systems. Some applications

target at distinguishing humans from other moving things, such as a robot, while others

require distinguishing between individuals. All of these applications fall under the umbrella

issue of gait recognition. As seen in Kozlowski & James 1977, the primary concern of gait

recognition is identifying the human from the walking style, as each human has a unique

walking style.

Radar has been introduced as an effective technique for gait recognition applications

in safety and surveillance due to its capability of capturing meaningful micro motion

signatures, especially for walking activity, as explained in Chen 2019. Such signatures are

known as micro Doppler (µ-D) signatures and have been proved to be feasible for many

scenarios that require walking human detection, e.g., human and robot differentiation as

discussed in Gurbuz et al. 2007, and Abdulatif et al. 2018. Others have used it for human

identification, i.e., comparing µ-D signatures captured from different walking subjects,
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such as the studies presented in Papanastasiou et al. 2021; Cao et al. 2018; Pegoraro et al.

2020, and Qiao et al. 2020.

The majority of radar-based activity identification applications are anticipated to be

classification jobs, necessitating the deployment of deep learning approaches. The majority

of these applications must be implemented in indoor conditions, where the backscattered

radar signal typically contains a significant amount of noise due to multipath reflections.

The capacity of the signal processing chain to eradicate these artifacts is a vital element

that distinguishes a superior system from a just adequate one. In numerous instances,

signal processing procedures, such as those provided in Du et al. 2013; Kronauge & Rohling

2013; Du et al. 2015, and Foued et al. 2017, have been examined for signal enhancements.

However, relying solely on signal processing will restrict analysis to the investigated

artifacts and hinder adaptation to new environments. Consequently, some researchers

turned to deep learning to incorporate such adaptive sensing into their methods, such as

the research published in Rock et al. 2019; Qu et al. 2019, and Abdulatif et al. 2019.

Another difficulty in the indoor environment is the limited space and the fact that

numerous people are performing comparable activities simultaneously. To circumvent such

limitations, improvements in radar hardware, such as those reported in Klauder 1960;

Rohling & Moller 2008; Choi et al. 2011; Futatsumori et al. 2013, and Bae et al. 2020, are

continually researched with the purpose of enhancing the resolutions of the three primary

radar features, which are the range, velocity, and angle of arrival. However, increasing the

resolution capabilities will always increase the data size and necessitate a more complex

analysis of the acquired data, such as when dealing with the four-dimensional radar

module proposed in Geibig et al. 2016, and Kueppers et al. 2020. To circumvent such

requirements, certain analyses are performed, such as the inclusion of virtual antennas

for improved angular resolution. However, such strategies will still be constrained by

the current hardware capabilities; hence, deep learning has been introduced as a strong

tool to overcome such limitations. For example, the studies published in Armanious et al.

2019; Geiss & Hardin 2020; Qian et al. 2021, and Ma et al. 2022 have demonstrated deep

learning approaches for de-noising and super-resolution tasks. Hence, the focus of our

research is on acquiring useful radar data and employing deep learning techniques to

ensure the adaptability of our offered solutions.
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1.2 Research Objectives

The research objective of the thesis is to analyze the feasibility of using radar sensor

for indoor human detection and identification. Such a task is categorized as a human

recognition task; hence, µ-D spectrograms are the most investigated radar feature. Walking

is considered the main activity for investigation, as all body parts contribute to it in a

periodic manner, and it is always a good indicator of the robustness of any system for

human recognition. All of the proposed methods are intended for short-range analysis,

which does not exceed 10 m. The research begins with the extraction of the primary

characteristics of the captured walking µ-D signature. For such extraction, we have

enhanced the commonly-used simulation signal model for representing the µ-D signatures

in such a way as to give a more realistic µ-D representation. The main research goal was

capturing the walking motion characteristics from the fundamental radar features, which

are the Doppler and the range, as well as the mapped range-Doppler data. The feasibility

study was applied by investigating the capability of machine learning for extracting the

motion trajectories of the different body parts within the walking gait cycle. The feasibility

is then evaluated by applying the research findings to a real-world use case scenario, namely

human-robot classification based on a real radar.

The identification of humans is the second main research objective due to two significant

factors. First, the application has recently become crucial for all security systems, such

as mounting a sensor to detect strangers at a building’s front door. Second, this task is

regarded as the most difficult and generic, as the walking activity is fixed and similar µ-D

signatures are anticipated among humans, making it difficult to classify. Therefore, the

designed approach can be utilized easily afterward for other human detection applications.

For the identification task, there is always a trade-off between the number of included

subjects and the length of the captured spectrogram for a single decision. Therefore, the

objective of the research is to overcome these limitations by combining multiple radar

features to reduce classification ambiguity while increasing the number of classes and

achieving real-time classification. The human identification task was divided into two

phases. The first phase was designing a suitable experimental setup that is capable of

capturing sufficient dataset in a feasible way; thus, a treadmill was utilized for such a task,
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and the extracted µ-D signature was examined to determine if it reflects the walking style

characteristics.

The feasibility study in the first phase was based on a signature of a single walking

step, which is considered the minimum unit of representation for the walking motion. The

number of shared subjects is maximized to overcome what is presented in the state-of-the-

art studies. The second phase addresses the limitations of the free-walking scenario. For

achieving this, the estimated angle of arrival (AoA) by the radar is investigated to derive

a newly-measured micro angular (µ-𝜔) spectrogram reflecting the behavior of the body

micro motions on the AoA feature.

Consideration is also given to the significant degradation in the quality of the captured

spectrograms when captured from different aspect angles with respect to the radar. The

main idea is to investigate a feasible deep learning approach in order to ensure an adaptive

solution. The final approach’s generalization and robustness are evaluated by applying

them to an activity classification task that includes fall detection. Two main aspects are

followed in this thesis work. First, decrease the acquired training dataset as much as

possible. Second, the real-time aspect is considered in such a way that all classification is

performed on a single occurrence of the activity, which lasts for ≈0.5 s for a single step of

walking.

1.3 Thesis Overview

Following is an overview for the major points that are addressed in this thesis:

• Developing a signal model that is half measured and half simulated. The realistic

walking motion is captured by an infrared-based motion capture system, and the

radar signal is simulated by considering the body parts as a group of the connected

ellipsoid as proposed by Chen 2019. The model is named the combined signal model

as it combines both the realistic sense of the real motion and the simulation of the

radar signals. The technique is different from the commonly-used model presented

in Chen 2019 as it mainly relies on synthetic walking signatures based on Boulic

et al. 1990. The idea of combining both realistic motion and synthetic radar data

has been discussed in several publications such as the studies presented in Majumder
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et al. 2006 with a general focus on radar signals, and Erol & Gurbuz 2015 with a

main focus on 𝜇-D signatures. Nevertheless, the presented technique is still different

as the utilized motion capture system is of higher accuracy, and is widely used for

other fields e.g., monitoring complex targets such as horses, as presented in Boye

et al. 2014, Hardeman et al. 2019 and Rhodin et al. 2018. Accordingly, the proposed

signal model can be extended to other fields.

• The radar signal model that is presented in Chen 2019 is adopted to generate Range-

Doppler maps. Those maps were used to test the feasibility of the range feature for

reflecting the micro motion behavior by using them as the main features for the task

of real-time body limbs decomposition based on the complex trees machine learning

approach. The body was divided into four main classes, which are arms, legs, feet,

and base. The class definition was based on the swinging behavior as explained in

Chen 2019. A brief discussion about the combined signal model and the results were

published in Abdulatif et al. 2017.

• The outcomes of the first study were deployed for a real-life scenario involving a real

radar for human-robot differentiation. The task is accomplished based on a single

Range-Doppler map in which the feet displayed the most significant harmonics on

both the range and Doppler features that were used for accurate human detection.

Although the feet behavior does not appear clearly except within the swing phase,

which lasts for ≈ 40% of the walking gait cycle, the utilized neural network approach

showed satisfactory performance in differentiating between a walking human and a

moving mobile robot. The utilized neural network could achieve the classification

task based on a single Range-Doppler map, compared to other machine learning

techniques that required ≈ ten maps to reach acceptable performance. A brief

discussion about the experimental setup and the behavior of the different approaches

is published in Abdulatif et al. 2018.

• Human identification based on walking human targets on a treadmill to capture clear

µ-D signatures was the subject of a feasibility study. The research was conducted on

22 participants while applying the classification task only to half gait cycles based on

the deep neural network architecture presented in He et al. 2016. The study aimed

to test the effect of the walking style on the captured µ-D signatures; thus, the 22
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subjects were of different body dimensions and both genders. The study showed a

direct correlation between the body mass index and the captured µ-D signatures;

thus, classification confusion is expected to occur for persons with comparable body

dimensions. The study, including the utilized radar characteristics, the experimental

setup, and the results, are discussed and published in Abdulatif et al. 2019. All the

research activity till that step was based on a single-input-single-output radar.

• While studying the free-moving artifacts, a thorough feasibility study is conducted

on human identification as the following step for the study presented in Abdulatif

et al. 2019. The µ-D signatures are captured from various aspect angles while

walking freely and not on a treadmill in a line of sight scenario. A multiple-input-

multiple-output radar is used to ensure detection capability from various aspect

angles, and a time-frequency computation is applied to the AoA dimension revealing

a newly-measured micro angular velocity spectrogram. To the best of our knowledge,

such spectrograms were not presented in any other state-of-the-art studies. For

analyzing the characteristics of spectrograms, an adaptive slicing technique is used

to mark the beginning and end of each walking step. As a solution to the issue of

degraded µ-D spectrograms caused by walking at varying aspect angles with respect

to the radar, a metric learning approach is investigated. The study, including the

radar characteristics, the experimental setup, and the results, are discussed and

presented in Weller et al. 2021.

• The robustness of this last architecture, including the radar type, the experimental

setup, the adaptive slicing, and the metric learning approach, is applied to a human

activity recognition task due to the high usefulness of the µ-D signatures for this

research area. The study, including the radar characteristics, the experimental setup,

the network architecture, and the comparison of the different slicing techniques, is

presented in Aziz et al. 2022.

1.4 Thesis Organization

The rest of the thesis is organized as follows:
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• Chapter 2: the research background for all the utilized tools in the practical thesis

work is presented with a discussion about the previous related studies.

• Chapter 3: the radar signal processing for estimating and demonstrating the main

radar features that are used in the practical thesis work is discussed in detail.

• Chapter 4: the main concept of radar-based human detection and a use case scenario

about human-robot classification are discussed in detail.

• Chapter 5: a feasibility study about the concept of radar-based human identification

while walking is presented.

• Chapter 6: a discussion about the last feasibility study that includes utilizing a

metric learning approach for unconstrained human identification. The feasibility of

the approach is tested on a use-case scenario of activity recognition.



2 Background

In this chapter, the theoretical background of the radar system and the utilized algorithms

in this thesis work are discussed. An overview of the radar system and the different

transmission protocols is presented in Section 2.1. The concept of investigating the main

radar features to capture the micro motion behavior is discussed in Section 2.2. Since

the walking is considered the main activity for investigation in this thesis work, the

characteristics and the human body behavior through the walking gait cycle are discussed

in Section 2.3. The theoretical background of the deep learning algorithms that are utilized

in this thesis work is presented in Section 2.4. Finally, an overview of the state-of-the-art

techniques that are related to our tackled research fields is presented in Section 2.5.

2.1 Overview of Radar Systems

The operation concept of radar systems consists of transmitting an electromagnetic signal

at a specific frequency and receiving the scattered echoes reflected from various targets.

The structure of the received signal is recognized to determine whether the target is in

motion or stationary. As explained by Raemer 1996, the radar analysis allows for the

observation of the target’s range, azimuth and elevation angles, size, and speed. Radar

systems should have different block diagrams and processing techniques based on the

desired target characteristics to be extracted. The notation used in the thesis is underlined

𝑥 for vector, bold symbol X for matrices, and ordinary 𝑥 for scalars.

Pulsed radar is a common type of radar system that operates by transmitting a high-

frequency, high-power pulsed signal. It has a pause between each pulse so that it can

receive the echoes reflected back from the target. Pulsed radar can be classified based on

its Pulse Repetition Frequency (PRF) as high, medium, or low. As described by Parker

2011, the low PRF radar can be used for target range identification, while the high PRF

radar can be used for target velocity identification.
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Figure 2.1: In CW radar, the structure of transmitted and received signals.

Continuous Wave (CW) radar is a frequently used type of radar system for gait recogni-

tion applications. The CW radar operates on the principle of continuous transmission and

reception of reflected echoes with no silence intervals. The CW radar is divided into two

primary categories, which are:

• The un-modulated CW radar that is used to determine target velocity.

• The frequency modulation CW (FMCW) radar is used for target joint range-velocity

identification.

As a result, both the pulsed radar and the FMCW radar can determine the target

range and velocity. The preferred radar system is determined by the application. The

pulsed radar can identify a target’s range at greater distances than the FMCW radar.

The operation of frequency-modulated and un-modulated CW radars is discussed in the

following section.

2.1.1 The Un-modulated Continuous Wave Radar

As demonstrated in Figure 2.1, the un-modulated CW radar operates by transmitting

a signal with constant frequency and amplitude. According to Skolnik 2001, due to the

continuous processing of the CW radar, the transmitter (Tx) and the receiver (Rx) should

be perfectly isolated. The CW radar is based on the concept of detecting any frequency

shift caused by the target’s motion in the received signal. This phenomenon is known as

the Doppler effect, which will be covered in the following section.
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Doppler Effect

According to Da Andrade 1959, Christian Doppler discovered and characterized the Doppler

Effect as the frequency change in the sound wave transmitted by a sound source due to the

velocity of the source or the receiver towards the other. For instance, the Doppler effect

can be detected when approaching or moving away from a functioning horn. According

to Hughes & Cowley 2017, as human approaches the horn, the recognized sound pitch

increases, and as the human moves away, the sound pitch decreases. As discussed in Eden

1992, the definition is generalized so that it applies to all propagating waves. Depending

on the direction of motion of a moving light source, the spectrum of light perceived from

such a source can range from red to blue. Therefore, the frequency shift induced due to the

Doppler effect is dependent on the speed and direction of the target’s motion. If the target

is moving with a given radial velocity, it will have a velocity component in the direction of

the radar Line of Sight (LOS), and the received echo will have a Doppler frequency shift

(𝑓𝐷) that is computed by the radar in order to identify the target’s velocity.

In the case of stationary radar, a moving target with radial velocity 𝑣 induces a Doppler

shift (−𝑣/𝜆) in the signal, where 𝜆 is the wavelength of the transmitted radar signal, as

described in Chen 2019. As illustrated in Equation (2.1), 𝑓𝐷 is calculated to be double

the Doppler shift of each individual path. If the target is traveling away from the radar, a

negative 𝑓𝐷 will be produced since the radial velocity will be positive.

𝑓𝐷 = −2 𝑣
𝜆

. (2.1)

Doppler Frequency Shift Estimation in Radar

The time-frequency relationship illustrated in Figure 2.1 explains the signal transmitted

by the CW radar. The operation frequency of the sent signal is constant concerning time.

The radar recognizes the signal received from a moving target away from the target as

having constant frequency 𝑓∘ + 𝑓𝐷.

In the CW radar, a quadrature detector can be used to estimate the 𝑓𝐷 according to

Chen 2019. The received signal is down-converted using a form of the transmitted signal
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and another form of the signal that is 90∘ out of phase. The received signal (𝑠𝑅𝑥(𝑡)) is a

function of both the carrier frequency and the moving target’s induced 𝑓𝐷, according to:

𝑠𝑅𝑥(𝑡) = 𝐴 cos(2𝜋(𝑓∘ + 𝑓𝐷)𝑡)

= 𝐴 cos(2𝜋𝑓∘𝑡 + 𝜓(𝑡)) .
(2.2)

where 𝐴 is the amplitude of the transmitted signal and 𝜓𝑅𝑥(𝑡) is the phase shift caused by

the target’s movement. The down-conversion is performed on both the in-phase (𝐼𝑅𝑥(𝑡))

and quadrature (𝑄𝑅𝑥(𝑡)) channels, and the output signal is taken out after a Low Pass

Filter (LPF), according to:

𝐼𝑅𝑥(𝑡) = 𝐴
2
cos(𝜓(𝑡))

𝑄𝑅𝑥(𝑡) = −𝐴
2
sin(𝜓(𝑡)) ,

(2.3)

The output of the two channels can be combined to form a complex signal (𝑠𝐷(𝑡)) for

𝑓𝐷 extraction, according to:

𝑠𝐷(𝑡) = 𝐼𝑅𝑥(𝑡) + 𝑗𝑄𝑅𝑥(𝑡) = 𝐴
2

𝑒−𝑗𝜓(𝑡) = 𝐴
2

𝑒−𝑗2𝜋𝑓𝐷𝑡 . (2.4)

For efficiency and simplicity of implementation, the 𝑓𝐷 shift can be estimated using

Fast Fourier Transform (FFT) analysis. As explained in Mahafza 2017, zero-padding

can be applied to the signal to increase the resolution of the spectrum. As shown in

Equation (2.5), the 𝑓𝐷 can be defined as the first derivative of any detected phase difference

(𝜓(𝑡)) between the received and transmitted signals.

𝑓𝐷 = 1
2𝜋

𝑑𝜓(𝑡)
𝑑𝑡

. (2.5)

The function proposed in Equation (2.5) cannot be used if the received signal contains

more than one induced 𝑓𝐷. The time-frequency representation described in Section 2.2.1

can then be used to detect all of the induced frequency shifts.
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Figure 2.2: Signal comparison between transmitted and received signals.

2.1.2 Frequency Modulation Continuous Wave Radar

Some applications necessitate not only determining the velocity of a moving target, but

also determining its range. Frequency modulation of the transmitted signal is required for

the radar to detect the range of the target. As a result, this type of radar transmission

architecture is known as the FMCW radar. To detect the range of the target, the radar

must have a time system that can mark the transmitted and received signals, as described

in Da Andrade 1959. The FMCW radar operates by sending periodic chirps while changing

the transmission frequency linearly with respect to time, as illustrated in Figure 2.2. The

frequency changes within each sweep according to the signal bandwidth, as explained

in Lipa & Barrick 1990 and Da Andrade 1959. The frequency of the transmitted signal

(𝑓𝑡(𝑡)) at any time instance can be expressed according to:

𝑓𝑡 = 𝑓∘ + 𝐵
𝑇𝑝

𝑡 , (2.6)

where 𝐵 represents the transmission bandwidth and 𝑇𝑝 represents the sweep time. The

𝑛𝑡ℎ sweep’s transmitted signal (𝑠𝑇 𝑥(𝑡)) can be expressed according to:

𝑠𝑇 𝑥(𝑡) = cos(2𝜋𝑓∘𝑡 + 𝜋𝐵(𝑡 − 𝑛𝑇 )2

𝑇𝑝
) . (2.7)
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The reflected signal from a moving target is time delayed with Δ𝑡, which can be used

for range identification. If the signal is also frequency shifted by 𝑓𝐷, it can be utilized for

velocity calculation, as shown in Figure 2.2. The time delay Δ𝑡 can be described as a

function of the radial velocity of the target 𝑣 and the target’s range (𝑅) according to:

Δ𝑡 = 2(𝑅 + 𝑣𝑡)
𝑐

, (2.8)

where 𝑐 is the speed of light in free space. The received signal (𝑠𝑅𝑥(𝑡)) of the 𝑛𝑡ℎ sweep

has the same form as the transmission signal but is Δ𝑡 delayed. The signal received can

be described according to:

𝑠𝑅𝑥(𝑡) = 1
𝑅2 cos(2𝜋𝑓∘[𝑡 − Δ𝑡] + 𝜋𝐵(𝑡 − Δ𝑡 − 𝑛𝑇𝑃)2

𝑇𝑝
) . (2.9)

To create a down-converted signal, the received signal is mixed with the original form

of the transmitted signal. The mixed signal is passed through the LPF to produce the

intermediate frequency (IF) signal (𝑠𝑖𝑓(𝑡)), after which signal processing techniques can be

used to estimate target range and velocity. The phase of the signal at the intermediate

frequency (𝜓𝐼𝐹(𝑡)) is used for range estimation, which is derived in Winkler 2007 and

given according to:

𝜓𝐼𝐹(𝑡) = 𝜓𝑇 𝑥(𝑡) − 𝜓𝑅𝑥(𝑡)
𝜓𝐼𝐹(𝑡)

2𝜋
= 𝑓∘𝑡 + 𝐵𝑡2

2𝑇𝑝
− 𝑓∘(𝑡 − Δ𝑡) − 𝐵(𝑡 − Δ𝑡)2

2𝑇𝑝

= 𝑓∘Δ𝑡 + 𝐵
𝑇𝑝

𝑡Δ𝑡 − 𝐵
2𝑇𝑝

(Δ𝑡)2 .

(2.10)

A range target 𝑅 = 10𝑚 with 𝑣 = 6𝑚/𝑠 yields a very small Δ𝑡 compared to 𝑇𝑝 for

a radar operating at 𝑓∘ = 25𝐺𝐻𝑧 with 𝐵 = 2𝐺𝐻𝑧 and 𝑇𝑝 = 0.5𝑚𝑠. As a result, the

final term in Equation (2.10) can be ignored as Δ𝑡 ≪ 𝑇𝑝, as explained in Winkler 2007.

The relationship is extended to include the target range and velocity by substituting
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Equation (2.8), which yields:

𝜓𝐼𝐹(𝑡)
2𝜋

= 2𝑓∘𝑅
𝑐

+ (2𝑓∘𝑣
𝑐

+ 2𝐵𝑅
𝑇𝑝𝑐

) 𝑡 + 2𝐵𝑣
𝑇𝑝𝑐

𝑡2 ,

𝜓𝐼𝐹
2𝜋

= 𝜁 + 𝑓𝑟𝑡 + 𝑓𝐷𝑡 + 2𝐵𝑣
𝑇𝑝𝑐

𝑡2 ,
(2.11)

where 𝜁 is a constant phase offset, 𝑓𝑟 is the frequency shift caused by the target range, and

𝑓𝐷 is the frequency shift caused by the target velocity. The last term in Equation (2.11)

can be ignored with the same operating bandwidth, sweep time, and carrier frequency

proposed in previous equations, as assumed in Winkler 2007.

As a result, for target range determination, 𝑓𝑟 will be estimated within one chirp and

for target velocity determination, 𝑓𝐷 will be estimated over multiple chirps. The chirp is

sampled digitally with a sampling frequency of 𝑓𝑠 and a number of samples per chirp of

𝑁𝑠. The number of chirps required for velocity determination is 𝑁𝑝, which must be settled

in a single matrix (xIF). Each matrix element is described below:

𝑥𝐼𝐹(𝑛𝑠, 𝑛𝑝) = 𝐴𝑒
𝑗2𝜋(2𝐵𝑅

𝑇𝑝𝑐 𝑇𝑠𝑛𝑠 + 2𝑓∘𝑣
𝑐 𝑇𝑝𝑛𝑝)

, (2.12)

where 𝑛𝑠 = 0...𝑁𝑠 − 1, 𝑛𝑝 = 0....𝑁𝑝 − 1, and 𝐴 is a constant referring to any amplitude

effect in the received signal to estimate 𝑅 and 𝑣, the approach presented here is based on

applying a 2D-FFT to the time-domain matrix. The signal processing will be explained

into details in Chapter 3, and the matrix is referred to as (XIF). Each matrix element in

the frequency domain is given according to:

𝑋𝐼𝐹(𝑞𝑟, 𝑞𝑣) =
𝑁𝑝−1

∑
𝑛𝑝=0

𝑁𝑠−1

∑
𝑛𝑠=0

[𝑥𝐼𝐹(𝑛𝑠, 𝑛𝑝)𝑒−𝑗2𝜋𝑞𝑟𝑛𝑠/𝑁𝑠𝑒−2𝜋𝑞𝑣𝑛𝑝/𝑁𝑝 ] , (2.13)

where 𝑞𝑟 = 0...𝑁𝑠 − 1 and 𝑞𝑣 = 0...𝑁𝑝 − 1 are spectrum sampling bins. The signal power

will be concentrated at 𝑓𝑟 and 𝑓𝐷 after this 2D processing. As explained in Lipa & Barrick

1990, zero-padding can be applied to the signal to increase the signal to noise ratio (SNR)

of the spectrum against white noise, making estimation of 𝑓𝑟 and 𝑓𝐷 easier. As a result,

the maximum estimated target range (𝑅𝑚𝑎𝑥) and velocity (𝑣𝑚𝑎𝑥) are derived as functions

of the two bins 𝑞𝑟 = 𝑁𝑠 − 1 and 𝑞𝑣 = 𝑁𝑝 − 1 containing the maximum of the spectrum,
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according to:

𝑅𝑚𝑎𝑥 = (𝑁𝑠 − 1)𝑐
2𝐵

, (2.14)

𝑣𝑚𝑎𝑥 =
(𝑁𝑝 − 1)𝑐
2𝑓∘𝑁𝑝𝑇𝑝

. (2.15)

The radar parameters are adjusted and tuned based on the desired tracking target’s

characteristics. After applying 2D-FFT to the measurement matrix, a range-Doppler (RD)

map is produced. In this matrix, each range-velocity cell has the indices 𝑞𝑟 for range and

𝑞𝑣 for velocity. The step sizes of 𝐷𝑒𝑙𝑡𝑎𝑞𝑟 and 𝐷𝑒𝑙𝑡𝑎𝑞𝑣 with reference to Equations 2.14 and

2.15 are used to obtain the resolutions for range (𝑅𝑟𝑒𝑠) and velocity (𝑣𝑟𝑒𝑠) according to:

𝑅𝑟𝑒𝑠 = 𝑐
2𝐵

, (2.16)

𝑣𝑟𝑒𝑠 = 𝑐
2𝑓∘𝑇𝑝𝑁𝑝

. (2.17)

Equations 2.14 and 2.15 can be reformulated to provide the following relations for 𝐵,

𝑇𝑝, 𝑁𝑠 and 𝑁𝑝, which are utilized in radar design:

𝐵 = 𝑐
2𝑅𝑟𝑒𝑠

, (2.18)

𝑇𝑝 = 𝑐
4𝑓∘

̂𝑉𝑚𝑎𝑥
, (2.19)

𝑁𝑠 = 2𝐵𝑅̂𝑚𝑎𝑥
𝑐

, (2.20)

𝑁𝑝 = 𝑐
2𝑓∘𝑇𝑝𝑉𝑟𝑒𝑠

. (2.21)

2.1.3 Multiple-Input-Multiple-Output Transmission Protocol

When an FMCW radar has a single Tx and a single Rx, referred to it as single-input-

single-output (SISO) module, it can be utilized to estimate the target’s range and velocity.

Multiple targets may be included in the detection capability so long as they are separated

by the resolution parameter of either the range or velocity parameter, as described in

Section 2.1.2. As described in Robey et al. 2004, a Multiple-Input-Multiple-Output (MIMO)

communication protocol is utilized to add the capability of tracking multiple targets. As
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Figure 2.3: Angle of arrival (AoA)

depicted in Figure 2.3, the main concept involves equipping the radar with many receivers

to enable the determination of the Angle of Arrival (AoA) of the target. Using several

receivers is also intended to improve the mitigation of signal fading, interference suppression,

and resolution enhancement. As stated in Li & Stoica 2008, an improvement in parameter

estimation, target detection, target recognition, and target tracking is anticipated.

An MIMO radar can be modeled using a variety of transmission protocols, including time

division multiple access (TDMA), frequency division multiple access (FDMA) and code

division multiple access (CDMA). This thesis employs the CDMA protocol, due to the high

capability of this protocol in SNR enhancement, which makes it as the most-commonly

used protocol by the available MIMO radar modules. The CDMA protocol will be explored

in length in the next section, while additional information on the other methodologies can

be found in Sun et al. 2014. According to Bialer et al. 2021, the CDMA protocol is based

on a modulation technique in which various Tx antennas transmit signals based on a series

of orthogonal phase codes. According to Singhal 2012, the Hadmard code, commonly

known as Walsh-Hadmard or Walsh code, is a good representation of the CDMA waveform.

Angle Estimation

The AoA can be estimated if the radar module is featured with a Single-Input-Multiple-

Output (SIMO) protocol that includes a single Tx and multiple Rxs, as described in

Richards et al. 2010. Figure 2.4 depicts an example for one Tx and three Rx, where

𝜃 is the AoA. The reflected signal must travel an additional distance (𝛿) to reach the
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Figure 2.4: Principle of a SIMO radar.

second adjacent Rx antenna in order to be received by the first two adjacent Rx antennas.

This distance induces a phase difference 𝛽 between adjacent Rx antennas, which can be

calculated by means of:

𝛿 = 𝑑𝑎 sin(𝜃) , (2.22)

𝛽 = 2𝜋
𝜆

𝑑𝑎 sin(𝜃) . (2.23)

Consequently, the AoA can be estimated based on the phase difference according to:

𝜃 = arcsin( 𝛽𝜆
2𝜋𝑑𝑎

) . (2.24)

By substituting the limits of 𝛼 for the interval [−𝜋, 𝜋], the unambiguous field of view

(FOV) of the radar can be calculated according to:

𝜃𝐹𝑂𝑉 = ± arcsin( 𝜆
2𝑑𝑎

) . (2.25)

As explained by Li & Stoica 2008, and Instruments 2018, a design aspect is considered for

the antenna spacing (𝑑𝑎 = 𝜆/2) in order to maximize the radar’s FOV to 𝜃𝐹𝑂𝑉 ,𝑚𝑎𝑥 = ±90∘.

However, this perspective is hypothetical. As explained by Tahmoush & Silvious 2009, a

FOV of 𝜃𝐹𝑂𝑉 ,𝑚𝑎𝑥 = ±60∘is used in this thesis because it is feasible for activity recognition.

Generally, radar sensors of the present day have more than two Rx antennas. Figure 2.4

depicts a SIMO system with one Tx antenna and three Rx antennas. As depicted, a

signal received by all three Rx antennas has an additional 𝛽 phase shift at each successive
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Figure 2.5: Spectral angle resolution according to different numbers of Fourier coefficients.

antenna relative to its preceding antenna. This results in a linear phase progression of the

signal across all 𝑁𝑅𝑥 antennas for equidistant Rx antennas. Referring to Figure 2.4, phase

progression is a vector given by 𝛽 = [0, 𝛽, 2𝛽], where 0 denotes the first Rx antenna as

the reference point. Consequently, the AoA can be reliably estimated by sampling the

received signal across the channels, or antennas, and then analyzing the sampled data in

the spectral domain. This can be achieved by applying an FFT to the channel information,

which is one reason why a greater number of Rx antennas results in a higher angular

resolution. The greater the number of channels that can be sampled, the more data

points the FFT has to work with. This permits a greater number of Fourier coefficients,

which ultimately leads to sharper peaks in the spectral domain, thereby increasing the

resolution. Figure 2.5 demonstrates this exact point. While a radar sensor with a low

angular resolution is unable to distinguish between the two objects at 𝜃 ≈ ±9 ∘, one with

a higher angular resolution can.

The angle resolution is derived by considering two point-like targets (A and B): The

first is at AoA of 𝜃 and the second is at an AoA of 𝜃 + Δ𝜃. Signals reflected from these

targets exhibit a phase shift between consecutive Rx antennas according to:

𝛽𝐴 = 2𝜋
𝜆

𝑑𝑎 sin(𝜃) , (2.26)

𝛽𝐵 = 2𝜋
𝜆

𝑑𝑎 sin(𝜃 + Δ𝜃) , (2.27)
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and have a difference that can be approximated by

Δ𝛽 = 𝛽𝐴 − 𝛽𝐵 ,

≈ 2𝜋
𝜆

𝑑𝑎 cos(𝜃)Δ𝜃 . (2.28)

The assumption that two objects separated by Δ𝛽 have distinct peaks in an FFT with

𝑁𝑅𝑥 Fourier coefficients as long as the peaks are separated by more than 2𝜋
𝑁𝑅𝑥

specifies

the condition that must be satisfied to resolve the two individual targets in the spectral

domain. The condition is stated according to:

Δ𝛽 > 2𝜋
𝑁𝑅𝑥

. (2.29)

and can be substituted into Equation (2.28) resulting in:

Δ𝜃 > 𝜆
𝑁𝑅𝑥𝑑𝑎 cos(𝜃)

. (2.30)

The AoA is considered the third main feature that can be captured by the MIMO-FMCW

radar after the range and velocity. Similarly, the resolution aspect is parameterized as the

first two features as discussed in Sec. 2.1.2. Angular resolution (𝜃𝑟𝑒𝑠) can be defined as

the minimum AoA between two targets to be separated as explained in Li & Stoica 2008.

As explained in Milligan 2005, the angular resolution is dependent on the number of Rx

antennas. It can be parameterized according to:

𝜃𝑟𝑒𝑠 = 2
𝑁𝑅𝑥

. (2.31)

Thus, the hardware design may limit the achievable angular resolution. Consequently,

transmission protocols for formulating the waveform, e.g., TDMA or CDMA are utilized

to enhance the angular resolution without the need of featuring the radar hardware with

more physical Rx antennas. For formulating the radar waveform in such a way, the Tx

antennas are included and a MIMO protocol is utilized.

In contrast to SIMO systems, which require twice as many Rx antennas, a MIMO radar

can achieve the same result with only one additional Tx antenna. This provides a simple,
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Figure 2.6: The principle of a MIMO radar.

and cost-effective method for improving angular resolutions. Figure 2.6 depicts a MIMO

radar with two Tx and three Rx antennas. The Tx antenna is positioned at an arbitrary

distance from the first Rx antenna, and the Tx antennas are separated by 3𝑑𝑎. Each Rx

antenna is situated at a distance of 𝑑𝑎 from its neighboring antenna.

A signal transmitted from Tx1 and reflected from a target will result in a phase

progression vector across the Rx antennas of 𝛽
𝑇 𝑥1

= [0, 𝛽, 2𝛽]. Similarly, antenna

Tx2 emits a signal that is reflected by the same target back to the sensor. Since this

antenna is located at 3𝑑𝑎 away from Tx1, its signal must travel 𝛿 = 3𝑑𝑎 sin(𝜃) farther

than the signal from Tx1. Therefore, its phase progression vector is shifted by 3𝛽, yielding

𝛽
𝑇 𝑥2

= [3𝛽, 4𝛽, 5𝛽]. Combining these two vectors yields 𝛽
𝑇 𝑥1,𝑇 𝑥2

= [0, 𝛽, 2𝛽, 3𝛽, 4𝛽, 5𝛽],

which is identical to the phase progression vector of a SIMO radar with one Tx antenna

and six Rx antennas. The MIMO radar depicted in Figure 2.6 generates an antenna array

consisting of one Tx and six Rx antennas as described in Richards 2014.

2.2 Micro-Motion Signatures in Radar

According to Chen 2008, the Micro-Doppler (µ-D) effect is the Doppler effect caused by

rotational, vibrational, or swinging motions of the particles comprising a moving bulk

body. An excellent illustration of this is a person walking: the body may be viewed as a

mass object with a definite translational velocity, while the arms and legs have a periodic

swinging velocity that is contributed to the translational velocity component of the walking

motion. As vibrations create certain micro motions in the Doppler effect, they also induce
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some micro motions in the target range identification, defining the Micro-Range (µ-R)

effect in radar, as described in Abdulatif et al. 2018. Consequently, a moving body that

is accompanied by a number of small vibrating bodies will have an effect on both the

velocity and range dimensions. According to Chen 2019, a moving body can be divided

into two categories: rigid and nonrigid body movement. The µ-D effect can be evaluated

physically in radar using the same techniques as the Doppler effect, as described in the

previous section. In contrast, the µ-D signature is typically represented using the Short

Time Fourier Transform (STFT) analysis described in the next section.

2.2.1 Time-Frequency Representation

The time-frequency representation is frequently employed to examine the µ-D signatures

in order to analyze the movements of various targets. Implementing the time-frequency

representation by applying STFT to the incoming signal. The time-frequency is represented

by spectrograms that reflect the motion characteristics, which are commonly utilized for

human activity recognition, as demonstrated in several research such as Javier & Kim

2014; Kim & Ling 2009; Kim & Ling 2008; Narayanan & Zenaldin 2015, and Tahmoush

2015. In addition, the captured µ-D signatures for walking activity have been investigated

in various studies, such as classifying walking styles as discussed by Saho et al. 2017 and

Seyfioglu et al. 2018 or human identification as discussed in multiple studies, such as

Yang et al. 2019 and Abdulatif et al. 2019. Using the STFT permits the recognition of

the multiple frequency components in the received radar signal, which can be estimated

according to:

𝑋[𝑛, 𝑟] =
∞

∑
𝑘=−∞

𝑥[𝑘]𝑤[𝑘 − 𝑛]𝑒−𝑗2𝜋𝑘𝑟/𝑁, 𝑟 = 0, 1, ...𝑁 − 1 (2.32)

where 𝑛 represents the time index, 𝑟 represents the frequency index, 𝑁 represents the FFT

size, and w[n] represents the Gaussian windowing function. The windowing is implemented

by multiplying w[n] by x[n] and then applying the FFT to the output. The time-frequency

relationship can be identified by adjusting the windowing function to obtain the entire

received signal x[n]. The spectrogram is the most frequent representation of the STFT,

which has been utilized in numerous research, such as Kingsbury et al. 1998, and Greenberg
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& Kingsbury 1997. The spectrogram is defined as the square magnitude of the STFT

output signal and is mathematically expressed according to:

𝑆[𝑛, 𝑟] = |𝑋[𝑛, 𝑟]|2 . (2.33)

The window size should be chosen to match the needs of the application while balancing

the time and frequency resolutions. By decreasing the length of the window function,

greater temporal resolution can be achieved, and vice versa for frequency resolution. In

order to achieve a smoother image of the spectrogram, sliding panes are overlapped. By

utilizing zero-padding, resolution can be improved.

Window Function Types

The degree of window function smoothness is a compromise between spectral leakage and

spectrogram resolution. The spectral leakage is described as the energy diffusion of some

frequency components into adjacent frequency components, which distorts the spectrogram

as explained in Hongwei 2009. Two window functions are offered to represent the degree

of smoothness and spectral leakage of the window function:

• Rectangular window: offers the best resolution but with high spectral leakage effect.

• Hamming window: good compromise between the resolution and the spectral leakage.

The Hamming window is a regularly employed window function for STFT processing

and will be utilized in this thesis for spectrogram representation.

2.2.2 Micro-Motion Signature of a Moving Rigid Body

As detailed in Chen 2019, a moving rigid body is a solid body that is not deformed and

the distance between all of its pieces remains constant during motion. The mass of a rigid

body is equal to the total of the masses of its spinning or vibrating components. The

similar principle applies to the motion of a rigid body, which is typically characterized as

a collection of micro translational and rotational motions. Micro rotational motions alter

the phase of the reflected signal. As detailed in Chen & Ling 2002, the radar can employ

µ-D analysis to determine the rotations of the pieces that comprise a moving rigid body.
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Figure 2.7: Rotation of a rigid body with respect to a space-fixed system (X,Y,Z)

As demonstrated in Figure 2.7, the rigid body motion may be mathematically represented

using two coordinate systems: the space-fixed system (X,Y,Z) and the body-fixed system

for the body itself (x,y,z). The absolute value of the range vector pointing from the

two origins of the space-fixed system and the body-fixed system is represented by 𝑅𝑝.

According to Chen et al. 2006, the origin of the body-fixed system is the target’s center

of mass (CM). If 𝑟 represents the position vector of a random point with respect to the

body-fixed system, then its position with respect to the space-fixed system can be described

as 𝑅𝑝 + 𝑟 and its velocity is expressed according to:

𝑣𝑠 = 𝑑
𝑑𝑡

(𝑅𝑝 + 𝑟) = 𝑣 + 𝜔 × 𝑟 . (2.34)

The CM of the rigid body in motion is moving with translational velocity (𝑉) and angular

velocity (𝜔). According to Equation (2.34), the translational and rotational micro-motions

are combined to form the motion of the moving rigid body’s point. According to Chen

2019, a moving rigid body can be subdivided into a group of scattering points, and the

analysis of the µ-D effect of the body’s movement in radar can be performed by combining

the µ-D effect of each scattering point. As an illustration of the mathematical model,

place the radar at the origin of the space-fixed system. Then, the reflected echo (𝕤(𝑡))
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Figure 2.8: Simulated motion of free oscillating pendulum

from the scattering point is a function of the distance between the radar and the point

𝑅 = |𝑅𝑝 + 𝑟| and can be expressed according to:

𝕤(𝑡) = 𝜌(𝑥, 𝑦, 𝑧)𝑒
𝑗 4𝜋𝑓∘𝑅

𝑐 = 𝜌(𝑥, 𝑦, 𝑧)𝑒𝑗𝜓(𝑡) , (2.35)

where 𝜌(𝑥, 𝑦, 𝑧) is the reflectivity function of the scattering point with respect to the

coordinates of the body-fixed system. The 𝑓𝐷 can be calculated as the phase’s derivative

with respect to time according to:

𝑓𝐷 = 1
2𝜋

𝑑
𝑑𝑡

𝜓(𝑡)

= 2𝑓∘
𝑐

𝑑
𝑑𝑡

𝑅

= 2𝑓∘
𝑐

𝑑
𝑑𝑡

{(𝑅𝑝 + 𝑟)𝑇.𝑣}

= 2𝑓∘
𝑐

[𝑉 + 𝜙 × 𝑟]𝑇.𝑣 ,

(2.36)

where 𝑣 is the radial velocity unit vector, which is used to determine the radar’s LOS

direction. The following additional derivation of 2.36 can be applied:

𝑓𝐷 = 2𝑓∘
𝑐

[𝑉 + 𝜙 × 𝑟]

= 2𝑓∘
𝑐

𝑉 + 𝑓∘
𝑐

𝜙 × 𝑟

= 𝑓𝑇 + 𝑓𝑅 ,

(2.37)
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(b) µ-D signature

Figure 2.9: Simulated motion of damping oscillating pendulum

where 𝑓𝑇 is the Doppler shift induced due to translational motion and 𝑓𝑅 is the Doppler

shift induced due to rotational motion. According to Equation (2.37), the total 𝑓𝐷 induced

by the scattering point is equal to the sum of the Doppler shifts induced by the translational

and rotational motions.

A pendulum that oscillates is an example of a moving rigid body. When a pendulum

structure consists of a heavy weight of a particular shape, such as a sphere or an ellipsoid,

attached to a pivot via a rope. The radar received response from spherical and ellipsoidal

geometries is analyzed using Radar Cross Section (RCS) approximation methods, which

are briefly explained in the following section. The simulation model presented in Chen

2019 distinguishes between the free oscillation and the damping states of the oscillating

pendulum. As depicted in Figure 2.8 and 2.9, the RCS approximation method yields

accurate estimates of the captured µ-R and µ-D signatures.

The µ-R and µ-D signatures can be used to distinguish between various pendulum

motions, such as damping and free oscillation. The simulation of µ-D and µ-R signatures

of a rigid body, such as an oscillating pendulum consisting of an oscillating sphere or

ellipsoid, can be used to simulate a more complex body. A swinging arm is simulated as

a free oscillating pendulum, for example, when walking with constant relative velocity.

When simulating the deceleration action of a human walker, the swinging arm is modeled

as a dampened oscillating pendulum.
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Figure 2.10: µ-D signature induced due to the bird’s flying activity

2.2.3 Micro-Motion Signature of a Moving Nonrigid Body

A deformable moving body can be defined as a nonrigid body. Correspondingly, the

distance between all of its components may change over time as it moves. Radar can

analyze the µ-D effect of a moving nonrigid body as the µ-D effect of a group of moving

rigid bodies connected to each other. Human movement is an important example of a

nonrigid body in motion that must be analyzed by the radar.

A bird’s flying activity is analyzed as periodic motion. A bird typically flies with

the same translational velocity as a human when walking. The flapping wings induce

oscillating Doppler effects around the 𝑓𝐷 induced by the flying bird’s translational velocity.

Based on the model described in Denavit & Hartenberg 1955 and Chen 2019, a simulation

describing the kinematic motion of the bird is presented. A bird’s wing is described as

being composed of two ellipsoids. This approximation provides a precise indication of the

µ-D signatures detected by radar, as illustrated in Figure 2.10.

The µ-D signature received as a result of a flying bird are a scaled-down version of

the µ-D signatures received as a result of a walking human. The human limbs swing

similarly to bird wings, with a few exceptions. The human limbs must undergo the same

translational motion as the human torso when walking. Upon closer inspection, there are

brief moments between each step in which both legs are firmly planted on the ground. In

these instances, the limbs have the same translational velocity as the entire human body.

This makes the relative walking velocity the radar’s strongest received component. For

this thesis, walking is considered to be the primary investigational activity. Thus, the
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Figure 2.11: The two phases of the walking gait cycle for both body sides.

walking motion is explained briefly in the following section, and the simulation model used

in our published feasibility study in Abdulatif et al. 2017 is described in Chapter 4.

2.3 Human Walking Gait Analysis

As explained in Chen 2019, walking is considered the primary activity for investigating

the µ-D signatures captured by the radar because all body parts contribute on a periodic

basis. Consequently, it is selected as the primary activity for investigation in this study,

as it is the primary activity performed by a human in an indoor environment. This is the

same case as other studies that investigated the µ-D signatures for activity recognition,

such as Gurbuz & Amin 2019 and Gurbuz et al. 2017. During walking, the human body

does not maintain a static shape, as the distances between body parts typically change

as the body moves. Therefore, a walking human body can be viewed as a deformable,

nonrigid body, and the analysis of human motion by any device is a complex procedure.

The human gait can often be identified using visual image techniques. However, these

visual techniques have a number of limitations, including distance and light variations

Nixon & Carter 2006. These limitations make the radar a useful instrument for analyzing

human motions in numerous experiments, as it operates normally through walls and is

unaffected by light changes during the day.

Walking is described as a succession of periodic cycles. According to Chen 2019, the

human walking gait cycle can be fully described by the stance and swing states, respectively.

As shown in Figure 2.11, and explained in Mummolo et al. 2013, the stance state accounts
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for sixty percent of the cycle, while the swing state accounts for forty percent. The stance

state is when one foot is completely on the ground and the other foot is swinging or only

touching the ground with its heel or toe. There are three phases used to describe the

stance state:

• Double support: both feet are touching the ground. The start of the stance state in

which one heel is striking the ground.

• Single limb stance: one foot is touching the ground and the other is above the ground

which happens between the double support and the second double support.

• Second double support: last action when both feet are again touching the ground.

The swing state is the acceleration or deceleration phases of the human. The swing

state is including only one foot touching ground and the other foot is swinging. Therefore,

there is no double support phases within the swing state. While taking a step, the human

arms and legs are swinging periodically. However, not all humans have the same walking

motion and this give the idea for differentiating between people from their walking style

as explained in Nixon & Carter 2006 and Cutting & Kozlowski 1977. Thus, identifying

humans while walking is considered one of the main objectives in this thesis work. Human

gait analysis can also be used to recognize the emotional state of a human as explained in

Venture 2010. The walking motion of the human as a nonrigid body can be manipulated

as a group of rigid bodies connected to each others. For this analysis, robotics forward

kinematics can be used, that will be explained in the next section.

2.3.1 Walking Human Kinematics

The mechanical structure of a serial robot arm accurately represents human limbs. As

explained in Michniewicz & Reinhart 2016, the structure of a robot arm manipulator

consists of a series of rigid bodies, commonly referred to as links, that are connected to one

another via robot joints. Therefore, the primary components of a robot manipulator are an

arm that performs the robot’s mobility action, a wrist that provides motion smoothness,

and an end-effector that is responsible for performing the robot’s required action. When

analyzing the mechanical structure of a human arm, the upper and lower arm segments
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can be viewed as robot links, the elbow and wrist as robot joints, and the hand as a robot

end-effector.

Position and orientation are sufficient to completely describe a rigid body in space, as

explained in Siliciano et al. 2010. According to Chen 2019, forward and inverse kinematics

can be used to manipulate human walking motion. The fundamental kinematic parameters

for human motion can be classified as either linear or angular. Position, velocity, and

acceleration are required for a comprehensive description of the translational walking

motion of a human in a three-dimensional space with respect to a reference space. Since

the position of every point on the human body varies with respect to time, these three

linear kinematic parameters can be used to describe the translational motion in its entirety.

The angular orientations of the body’s segments (limbs) should also be taken into

account during movement. For the description of these orientations or segment angles, it is

necessary to calculate the angular velocity and acceleration. The angular velocity can be

described as the rate of change of angular orientations over time and angular acceleration

is described as the rate of change of the angular velocity over time. By detecting and

calculating these angular kinematic parameters, it is possible to completely describe the

rotational motion of any link or segment of the human body.

The linear velocity and acceleration can be calculated by analyzing the angular pa-

rameters of a component of a rigid body that is rotating with an angular velocity and

acceleration. These two angular kinematic parameters adequately describe the angular

rotation of a segment of the human body. Calculating the normal and tangential velocity

components at this point allows one to determine the linear velocity of any point or particle

of this rigid body component. The center of rotation is determined relative to the reference

frame. At any point on a segment of a rotating rigid body, the tangential velocity and

acceleration can be calculated using the point’s position relative to the rotation center,

the angular velocity, and the angular acceleration.

2.3.2 Human Walking Emperical Mathematical Model

According to Chen 2019, the global human walking model created by Boulic et al. 1990

can be combined with a signal model to represent realistic µ-D signatures. This thesis

considers a similar procedure for defining the primary body characteristics that influence
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radar-based human detection, which is briefly discussed in Chapter 4. In this section,

the key features of the empirical model of global human walking are discussed briefly.

The Denavit-Hartenberg (D-H) convention described in Hartenberg & Danavit 1964 is a

kinematic convention that can be used to explain the positions of the rigid components

that make up the flexible human body. The global model of human walking can be used to

determine the kinematic parameters discussed in the previous section. The model divides

the human body into seventeen rigid segments and defines the motion trajectories for each

segment. The model is parameterized with the values proposed by Chen 2019 for better

interpretation, and the motion trajectories are plotted to reflect the reaction of the body

parts during the entire gait cycle.

The global model of human walking is based on the average parameters of a vast

quantity of experimental data. This average perspective presents the model as an efficient

and universal representation of the human body, regardless of body dimensions. The

walking human can be viewed as a collection of interconnected rigid bodies whose positions

change over time. In the presented model, the translational motion and orientations of

certain human body segments must be considered. The model is not based on solving

time-dependent motion equations. The primary objective of the model is to provide the

positions of any segment of a rigid body at any given time. Therefore, the model’s functions

used to determine the positions and orientations of any rigid body part with respect to

time. According to the model, as shown in Table 2.1, 12 trajectories are necessary to

describe the human walking motion. All the presented equations and figures in this section

are based on the study presented in Boulic et al. 1990, which were derived mainly through

capturing the motion of different test subjects more than applying a mathematical proof.

When used, these functions can describe the positions and orientations of body parts at

any point during a human’s walking cycle. Therefore, the determined values are based on

the human walking speed. According to the global walking model presented by Boulic

et al. 1990, the twelve trajectories have two mathematical representations. Six trajectories

are described as sinusoidal functions, and the remaining six as cubic spline functions.

Before beginning the motion, it is necessary to determine several key parameters for

human walking, including the human walking relative velocity (𝑣𝑤𝑟), which is normalized

by the human leg height and given in meters per second. Consequently, it can be used to
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Trajectory Translation Body Rotation left Rotation Right Rotation
Vertical translation 𝑇 𝑟𝑣𝑒𝑟𝑡(𝑡)
Lateral translation 𝑇 𝑟𝑙𝑎𝑡(𝑡)

Translation forward/backward 𝑇 𝑟𝑓/𝑏(𝑡)
Rotation forward/backward 𝜃𝑓/𝑏(𝑡)

Rotation left/right 𝜃𝑙/𝑟(𝑡)
Torsion rotation 𝜃𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝑡)

Stretching of the hip 𝜃ℎ𝑖𝑝(𝑡) 𝜃ℎ𝑖𝑝(𝑡 + 0.5)
Stretching of the knee 𝜃𝑘𝑛𝑒𝑒(𝑡) 𝜃𝑘𝑛𝑒𝑒(𝑡 + 0.5)
Stretching of the ankle 𝜃𝑎𝑛𝑘𝑙𝑒(𝑡) 𝜃𝑎𝑛𝑘𝑙𝑒(𝑡 + 0.5)
Motion of the thorax 𝜃𝑡ℎ𝑜𝑟𝑎𝑥(𝑡)

Stretching of the shoulder 𝜃𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟(𝑡) 𝜃𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟(𝑡 + 0.5)
Stretching of the elbow 𝜃𝑒𝑙𝑏𝑜𝑤(𝑡) 𝜃𝑒𝑙𝑏𝑜𝑤(𝑡 + 0.5)

Table 2.1: Body trajectories based on global human walk Model

determine the walking cycle length, which is expressed as 𝑅𝑐𝑦𝑐 = 1.346√𝑣𝑤𝑟. Therefore,

the cycle duration can be calculated as 𝑇𝑐𝑦𝑐 = 𝑅𝑐𝑦𝑐/𝑣𝑤𝑟. Support and double support can

be expressed as 𝑇𝑠𝑢𝑝𝑝 = 0.752𝑇𝑐𝑦𝑐 − 0.143 and 𝑇𝐷𝑠𝑢𝑝𝑝 = 0.252𝑇𝑐𝑦𝑐 − 0.143, respectively.

During walking, the body must have a local body-fixed coordinate system, as described in

Section 2.2.2, with the human spine base as the origin. The body-fixed origin should be

positioned at 58% of the average human height. As previously explained, trajectories are

divided into translational and rotational trajectories, whose mathematical representations

will be briefly explained in the following sections.

Translational Trajectories

Table 2.1 defines the first translational motion as the vertical displacement between the

base of the spine and the head. It is mathematically expressed according to:

𝑇 𝑟𝑣𝑒𝑟𝑡(𝑡) = −𝑏𝑣 + 𝑏𝑣 sin[2𝜋(2𝑡𝑟𝑒𝑙 − 0.35)] , (2.38)

in which 𝑏𝑣 = 0.015𝑣𝑤𝑟. The relationship described in Equation (2.38) is graphically

represented in Figure 2.12a. The second translational trajectory reflects the lateral

vibration of the spine’s origin and is depicted according to:

𝑇 𝑟𝑙𝑎𝑡(𝑡) = 𝑏1 sin[2𝜋(2𝑡𝑟𝑒𝑙 − 0.1)] , (2.39)
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(a) Vertical translation of the spine base.
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(b) Lateral vibration of the spine origin.
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(c) Translation forward/backward acceleration.

Figure 2.12: Translational trajectories.

𝑏1 =
⎧{
⎨{⎩

−0.128𝑉 2
𝑤𝑟 + 0.128𝑣𝑤𝑟, 𝑣𝑤𝑟 < 0.5

−0.032 𝑣𝑤𝑟 > 0.5
. (2.40)

The trajectory used to describe the human acceleration and deceleration during the

swing phase of the walking gait cycle is forward/backward translation. It is mathematically

expressed according to:

𝑇 𝑟𝑓/𝑏(𝑡) = 𝑏𝑓/𝑏 sin[2𝜋(2𝑡𝑟𝑒𝑙 + 𝜙𝑓/𝑏)] , (2.41)

𝑏𝑓/𝑏 =
⎧{
⎨{⎩

−0.084𝑣2
𝑤𝑟 + 0.084𝑣𝑤𝑟, 𝑣𝑤𝑟 < 0.5

−0.021 𝑣𝑤𝑟 > 0.5
. 𝜙𝑓/𝑏 = 0.625 − 𝑇𝑠𝑢𝑝𝑝 (2.42)
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(a) The back behavior with respect to the pelvis
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(b) The pelvis behavior while taking a step
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(c) Pelvis orientation with respect to the spine

Figure 2.13: Motion trajectories of the pelvis within single gait cycle

The three translational trajectories are represented as sinusoids, as described in Equa-

tions (2.38), (2.39), and (2.41). Figure 2.12 depicts a graphical interpretation of all the

functions, taking into account the average human dimensions for clarity.

Rotational Trajectories

The previous translational trajectories primarily described the major translational move-

ments of the entire body while walking. The back and torso are the primary mass-bearing

parts of a walking human that produce a discernible vibration. The hip, which is a

component of the pelvis, connects the upper body to the lower body limbs, as explained

in Anatomy 2016. Due to the unique vibration of the hip during walking, the first two

discussed rotational trajectories describe the movement of the human body relative to the

pelvis. The first rotational trajectory is the Rotation forward/backward, which describes

the bending behavior of the back relative to the pelvis at the start of a step and is defined
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according to:

𝑅𝑓/𝑏 = −𝑏𝑟𝑓/𝑏 + 𝑏𝑟𝑓/𝑏 sin[2𝜋(2𝑡𝑟𝑒𝑙 − 0.1)] , (2.43)

𝑏𝑟𝑓/𝑏 =
⎧{
⎨{⎩

−8𝑣2
𝑤𝑟 + 8𝑣𝑤𝑟, 𝑣𝑤𝑟 < 0.5

2 𝑣𝑤𝑟 > 0.5
. (2.44)

The pelvis of a walking human typically falls on the side that is being used to take a

step. This bending is characterized by the Rotation left/right trajectory and the following

function describes its behavior:

𝑅𝑙/𝑟 =

⎧
{{{{
⎨
{{{{
⎩

−𝑏𝑟𝑙/𝑟 + 𝑏𝑟𝐿/𝑅 cos[2𝜋(10𝑡𝑟𝑒𝑙/3)] , 0 ≤ 𝑡𝑟𝑒𝑙 < 0.15

−𝑏𝑟𝑙/𝑟 − 𝑏𝑟𝐿/𝑅 cos[2𝜋(10(𝑡𝑟𝑒𝑙 − 0.15)/7)] , 0.15 ≤ 𝑡𝑟𝑒𝑙 < 0.5

−𝑏𝑟𝑙/𝑟 − 𝑏𝑟𝐿/𝑅 cos[2𝜋(10(𝑡𝑟𝑒𝑙 − 0.5)/3)] , 0.5 ≤ 𝑡𝑟𝑒𝑙 < 0.65

−𝑏𝑟𝑙/𝑟 − 𝑏𝑟𝐿/𝑅 cos[2𝜋(10(𝑡𝑟𝑒𝑙 − 0.65)/7)] , 0.65 ≤ 𝑡𝑟𝑒𝑙 < 1

, (2.45)

where 𝑏𝑟𝑙/𝑟 = 1.66𝑣𝑤𝑟 holds. In Figure 2.13, the two functions describing the body’s

rotation behavior with respect to the pelvis are plotted.

The following rotational trajectory is the torsion rotation, which describes the orientation

of the pelvis relative to the spine during a step. The following defines the rotational

behavior describing function:

𝑅𝑇 𝑜𝑟 = −𝑏𝑟𝑇 𝑜𝑟 cos[2𝜋(𝑡𝑟𝑒𝑙)] , (2.46)

where 𝑏𝑟𝑇 𝑜𝑟 = 4𝑣𝑤𝑟. The function presented in Equation (2.46) is plotted and shown in

Figure 2.13c.

The functions used to define trajectories can be described using sinusoids or cubic splines,

which are described as third-order polynomials with a number of control points that the

polynomial must pass through, as explained in Spline 2016. As shown in Figure 2.14, the

next three trajectories are used to describe the bending action of the lower body joints for

the hip, knee, and ankle using cubic splines.

The cubic spline functions are also used to describe the behavior of the last three

trajectories, which define the bending or stretching actions at the thorax, shoulder, and
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(a) Stretching of the hip.
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(b) Stretching of the knee.
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(c) Stretching of the ankle.

Figure 2.14: Stretching trajectories of the lower body joints

elbow of the upper body. The three trajectories consist of the stretching of the thorax,

which has four control points, and the stretching of the shoulder, which has rotational

motion in both the left and right directions.

𝑅𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = 3 − 𝑏𝑟𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 cos[2𝜋(𝑡𝑟𝑒𝑙)] , (2.47)

where 𝑏𝑟𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = 9.88𝑣𝑤𝑟 is true. The final trajectory is the elbow extension. As shown

in Figure 2.15c, the elbow stretches similarly to the shoulder, but only with positive values

and five control points.
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(a) Stretching of the thorax.
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(b) Stretching of the shoulder.
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(c) Stretching of the elbow.

Figure 2.15: Stretching trajectories of the upper body joints.

2.4 Deep Learning Background

In this section, the theoretical background of the deep neural network aspects is discussed

since it is the main approach used in all the applications that are addressed in this thesis.

The section is divided into two main parts as follows:

• The main aspects of the deep feedforward network are presented in Section 2.4.1 as

it is considered the most fundamental network architecture for the deep learning

approaches.

• The main aspects of the deep convolutional neural network are discussed in Sec-

tion 2.4.2 as it is the most commonly used in radar applications and in our thesis as

well.
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2.4.1 Deep Feedforward Network

The most fundamental component of deep learning is the deep feedforward network, which

is sometimes referred to as a feedforward neural network or a multilayer perceptron (MLP).

The purpose of a feedforward network is to get as close as possible to the desired function.

For instance, the formula 𝑦 = 𝑓(𝑥) can be used to transfer a set of inputs to a category. A

feedforward network is one that defines a mapping, such as 𝑦 = 𝑓(𝑥; Θ), and then learns

the values of the parameters (Θ) that produce the most accurate approximation of the

function as described in Goodfellow et al. 2016.

These kind of models are referred to as feedforward models because information travels

from the function that is being evaluated from 𝑥, though the intermediate calculations

that are used to define 𝑓, and then finally to the output 𝑦. There are no feedback

connections at all, thus the model’s outputs are not being fed back into themselves in

any way. While, Recurrent Neural Networks (RNN) refers to the networks that result

when feedforward neural networks are expanded to incorporate feedback connections as

explained in Goodfellow et al. 2016.

Practitioners of machine learning place a significant emphasis on feedforward networks.

They serve as the foundation for a wide variety of significant commercial applications. As

an illustration, the convolutional networks that are utilized for object detection from images

are a specific form of feedforward network. On the conceptual road to recurrent networks,

which are the driving force behind many natural language applications, feedforward

networks serve as a conceptual stepping stone.

The reason why feedforward neural networks are referred as networks is because they

often express themselves by piecing together a wide variety of operators. The model is

connected to a directed graph, which explains how the functions are put together as a

whole. These operators are organized in layers, in which the first layer in the chain is

called the input layer, the last one is called the output layer, and the layers between them

are called the hidden layers. The depth of the model can be determined by the total

length of the chain. This phrase eventually gave rise to the deep learning as mentioned in

Goodfellow et al. 2016.

The intermediate layers are referred to as hidden layers since the training data does

not demonstrate the expected output for each of these levels. During the training of the
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neural network, the main task is match 𝑓(𝑥; Θ) to 𝑓(𝑥). The training data supplies us

with erratic and approximative examples of 𝑓(𝑥) evaluated at a variety of inputs. The

training examples detail what the output layer should accomplish at each point 𝑥. The

learning algorithm is responsible for deciding how to make use of the hidden layers in

order to execute an approximation as effectively as possible.

Finally, these networks are referred to be neural because neuroscientific principles serve

as a general source of inspiration for them. In most cases, the vector values at each hidden

layer of the network are consisting of several units that operate in parallel, with each unit

representing a vector-to-scalar function. This is an alternative way of thinking about the

layer than thinking of it as representing a single vector-to-vector function. Each component

is analogous to a neuron in the sense that it takes in information from a large number of

other components and then calculates its own activation value. In order to extend linear

models such that they can represent nonlinear functions of 𝑥, we can apply the linear

model not to 𝑥 itself but rather to a transformed input instead Φ(𝑥). Thus, the network

tries to learn Φ(𝑥) for a single layer according to:

𝑦 = 𝑓(𝑥, Θ, Ω) = Φ(𝑥; Θ)𝑇Ω + 𝑏 , (2.48)

where Ω is the weight vector for each layer, Φ(𝑥; Θ) is the activation function, and 𝑏 are

the biases. The main task of the activation function is adding a non-linear capability to

the neural network. The selection of the activation function depends on the desired task.

In this section, some commonly used activation functions that may be used in this thesis

work are described.

Sigmoid Activation Function

The sigmoid function was widely used in many use-cases. The sigmoid function converts

the inputs that are being received to a range that varies from zero to one. the sigmoid

function is defined as:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝑒𝑥

1 + 𝑒𝑥 . (2.49)
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The sigmoid function has two main drawbacks. First, it has the problem of vanishing

gradients, which relates to the fact that the activation of the neurons saturates either at

zero or one. A deeper overviews for the gradient definition and the vanishing gradient

problem are presented in Hecht-Nielsen 1992. This can be illustrated as the derivative of

the sigmoid function approaches an extremely low value for large negative and positive

input values. Because of the near-zero derivative, the gradient of the loss function would be

very minimal in this scenario, which would prevent the update to the weights and therefore

the entire learning process. Second, the outputs of the function are not zero-centered,

which is another trait of the sigmoid activation that should be avoided because it is an

undesirable attribute. In most cases, this results in the training of the neural network

being more challenging and unstable.

Tanh Activation Function

The tanh function is another another activation function that is frequently utilized in deep

learning. The following equation describes how a real-valued number can be mapped to

the interval [−1, 1] based on the following function:

𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 . (2.50)

Similar to the sigmoid function, the neurons reach their maximum capacity for both

big negative and positive values, at which point the function’s derivative reaches zero.

However, in contrast to the sigmoid, its outputs are centered around zero. As a result of

this, the tanh non-linearity is usually preferred over the sigmoid non-linearity in practical

applications.

Rectified Linear Unit

Recently, the Rectified Linear Unit (ReLU), has been frequently used. The activation is

limited to zero by setting the threshold according to:

𝑅(𝑥)
⎧{
⎨{⎩

𝑥 𝑖𝑓𝑥 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (2.51)



2 Background 41

One benefit of deploying the ReLU function is that when compared to alternative

activation functions, the use of ReLU in practice speeds up the convergence of gradient

descent towards the local minimum of the loss function. This is owing to the fact that it is

linear and does not saturate. Other benefit is that it doesn’t include very computationally

expensive operations such as exponentials, when compared to other activation functions

such as the tanh and sigmoid.

However, there is also a drawback in the ReLU activation function. As a result of the

fact that the outputs of this function are zero for input values that are less than zero,

the neurons that make up the network can become extremely fragile during the training

process. During the process of updating the weights, it is possible that the weights will be

adjusted in such a way that the inputs for certain neurons will always be less than zero.

Therefore, those neurons are guaranteed to be zero at all times and do not contribute in

any way to the process of training. This indicates that the gradient that is being carried

through these ReLU neurons will also be zero.

Leaky Rectified Linear Unit

Leaky ReLu is only an enhanced variant of the ReLU activation function. In order to

overcome the issue of deactivating some neurons, leaky ReLU includes a minor change in

the function according to:

𝑅(𝑥) =
⎧{
⎨{⎩

𝑥 𝑖𝑓𝑥 ≥ 0

Α𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (2.52)

The main idea behind the leaky ReLU is replacing the horizontal line for values below

zero a non-horizontal linear line. This linear line’s slope can be modified based on the

parameter Α as described in Equation (2.52). Accordingly, when including such leaky

linear line, the zero gradients are avoided.

Softmax Activation Function

Softmax activation function is only used in the last layer of a neural network if the prediction

of probability scores is required to be achieved by the neural network. Accordingly, the
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softmax activation function induces the output neurons values in the range of [0,1], so

they represent probabilities. When classifying input features into distinct classes, the fact

that these classes are mutually exclusive must be taken into account. For such analysis,

the probability scores of all output neurons must accumulate in total to one, which is

achieved by the softmax activation function.

2.4.2 Deep Convolutional Neural Network

Deep convolutional neural network (DCNN) are a type of neural network with a grid-like

structure used to process data. Time-series data, which can be viewed as a 1-D grid

sampling at regular intervals, and image data, which can be viewed as a 2-D grid of pixels,

are two examples. In multiple real life scenarios, convolutional networks have been proved

to be effective. The DCNN suggests that the network performs a mathematical procedure

known as convolution, which is a type of linear operation. Accordingly, DCNN are neural

networks that substitute convolution for ordinary matrix multiplication in at least one

layer.

DCNNs have the benefit over standard feedforward neural networks of capturing spatial

and temporal dependencies in an image and lowering runtime and space complexity. The

convolutional filter, often known as the kernel 𝐾, is the fundamental principle underlying

the calculations of a DCNN. It computes linear convolutions on the data points that covers

a receptive field of the whole input data matrix and computing linear convolutions on

the data points. The kernel traverses the image with a specified stride until the entire

image has been explored. This convolution procedure inherits easily the exploitation of

two invariant properties of the data, which are spatial locality and translational invariance.

Spatial localization describes the topological proximity of relevant information for a given

feature. Translational invariance indicates that visual characteristics can be detected

regardless of their position. While the former is used as a result of the filter covering

an enclosed part of the input data, the latter is achieved by sliding 𝐾 across the entire

image. Thus, a single 𝐾 is reused across the entire image, and a single parameter set is

shared across all of the image’s data points. This is known as parameter sharing, and it

drastically minimizes the quantity of parameters that must be stored. Traditional NNs, on

the other hand, utilize each parameter only once as explained in Ankile et al. 2020. The
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most generic form of convolution can be described as an operation that is applied between

two functions of real-valued parameters, and is commonly symbolized by an asterisk. The

generic mathematical representation can be expressed according to:

𝑠(𝑡) = (𝑥 ∗ 𝐾)(𝑡)

= ∫ 𝑥(𝑎)𝐾(𝑡 − 𝑎)d𝑎 , (2.53)

where 𝑠(𝑡) represents the convoluted signal, 𝑥 represents the function mapping to an input

value, and 𝑎 represents the age of the signal’s value. The convolutional process gives

greater weight to values that are closer to the present time 𝑡 than others. In fact, signals

and their processing chain are time-discrete rather than time-continuous. If 𝑥 and 𝑤 are

defined solely on integer multiples of 𝑡, the discrete convolution can be expressed as:

𝑠(𝑡) = (𝑥 ∗ 𝐾)(𝑡)

=
∞

∑
𝑎=−∞

𝑥(𝑎)𝐾(𝑡 − 𝑎) . (2.54)

The input to the convolution and its kernels in DL applications are typically multidi-

mensional arrays, which are known as tensors as explained in Goodfellow et al. 2016. To

address this, the convolution will be performed using a multidimensional filter on several

dimensions. Within the scope of this thesis, the extracted spectrograms or RD maps are in

the form of two-dimensional grayscale images, in which multiple features may be required

to be concatenated together for some analysis. An example is the metric learning approach

that is investigated for both the human identification and activity recognition tasks that

are presented in Chapter 6. For such architecture, concatenation of both the captured

spectrograms of the Doppler and AoA features is applied. Thus, a three-dimensional

convolution operation must be computed as explained in Goodfellow et al. 2016. For such

specific example, the mathematical relation can be expressed according to:

𝑆(𝑝, 𝑞, 𝑟) = (𝐼 ∗ 𝐾)(𝑝, 𝑞, 𝑟)

= ∑
𝑙

∑
𝑚

∑
𝑛

𝐼(𝑙, 𝑚, 𝑛)𝐾(𝑝 − 𝑙, 𝑞 − 𝑚, 𝑟 − 𝑛) , (2.55)



44 2 Background

where 𝐼 is the image tensor. The typical configuration of a layer in a convolutional network

includes three steps. At the beginning of the process, a layer will carry out a number of

convolutions in parallel in order to generate a set of linear activations. In the second phase,

each linear activation is sent through a nonlinear activation function, such as the ReLU

activation function. This completes the linear activation process. This stage is also referred

to as the detector stage as explained in Goodfellow et al. 2016. The output of the layer is

further modified by the pooling function that is applied in the third step of the process.

Pooling is used to further minimize the spatial dimension of the convoluted features and

reduce the necessary processing power. Additionally, it may extract prominent features

that are rotationally and spatially invariant. There are two distinct types of pooling:

average and maximum. The average pooling function delivers the average of all values

covered by 𝐾, whereas the maximum pooling function returns only its maximum value.

During the training process, the DCNN seeks to extract just the most dominating features

from the input data. If average pooling is currently being utilized, these characteristics

are mixed with non-dominant characteristics, resulting in a counterproductive impact.

However, maximum pooling eliminates all non-dominant features, thereby confirming the

concept behind DCNN training. Due to the fact that it disregards any values other than

the greatest within the current receptive field, it also functions as a noise suppressor as

explained in Ankile et al. 2020.

The final stage of a DCNN is the classifier. It is composed of dense layers, where

each neuron in one layer is coupled to each neuron in the next layer. This classifier is

used to discover the non-linear combinations of high-level characteristics that are output

by the convolutional portion of the network via a potentially non-linear function. The

learning procedure is completed by feeding a tensor through the network and applying

error backpropagation at each iteration step. Traditionally, the responsibility of lower

layers is to capture low-level characteristics such as edges, colors, and gradient orientations.

For the scope of the thesis work, applying deeper layers can be illustrated as the extraction

of higher level characteristics such as the swings induced in the µ-D spectrogram due to

the hands and feet motion as explained in Saha 2018.
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2.5 Literature Review

In recent years, there has been a strong demand to add intelligent capabilities to applications

that require more flexible human-object interaction. Such a feature necessitates a perceptual

system that can recognize humans performing numerous activities, as explained in Dubois &

Charpillet 2013. In indoor environments, the area coverage is typically limited; nonetheless,

there are several factors that affect the detecting capabilities, such as walls and varying

light and temperature conditions as explained in many studies e.g., Bernard et al. 2013,

Falanga et al. 2020 and Arrue et al. 2000. For these reasons, radar has been highly

investigated in the scope of human recognition due to its capturing capability that is

not affected by environmental conditions or strong indoor obstacles such as walls, e.g.,

the studies presented in Chen et al. 2014; Li et al. 2019; Cheng et al. 2020, and Chetty

et al. 2017. Moreover, radar has a great advantage of capturing meaningful signatures

reflecting the micro motion behavior of the human body that have been investigated on

different scales. One aspect was investigating the captured µ-D signatures for defining

its characteristics, e.g., the studies presented in Seifert et al. 2018a; Seifert et al. 2018b;

Seifert et al. 2019a; Seifert et al. 2019b and Seifert et al. 2020. Another research field

has grasped the attention of many researchers for radar-based activity recognition, e.g.,

the studies presented in Erol & Amin 2019; Singh et al. 2019; Zhu et al. 2018; Wang

et al. 2021, and Shah & Fioranelli 2019. However, differentiating the human from another

moving object, e.g., robots as explained in Gurbuz et al. 2007 or the activity recognition

are not considered the hardest tasks as the induced signatures are different. The harder

task that has aroused the attention of multiple researchers is human identification. Such a

task is harder due to the similarity between the captured µ-D signatures as they are all

induced from the same activity, which is normally walking, e.g., the studies presented in

Cao et al. 2018; Dong et al. 2020; Qiao et al. 2020, and Ni & Huang 2021.

This thesis work concludes that radar is the primary perception sensor that should

be investigated because it is not affected by any environmental conditions. In addition,

processing the radar data provides a simpler and more feasible method for capturing

the micro-motion behavior of human body parts. The thesis work focuses primarily

on investigating the possibility of capturing the micro motion signatures on various
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radar features that are commonly used for human detection, identification, and activity

recognition. Consequently, this section discusses the state-of-the-art radar-based techniques

associated with such application fields.

Human Detection

Some camera systems are used for human detection, and they do so by recognizing objects

in the scene based on the feet and heads of those objects as described in Suhr & Jung

2017. In order to improve the effectiveness of night vision human detection in surveillance

applications, the study presented in Takeda et al. 2013 makes use of infrared cameras.

Nevertheless, every single one of the vision-based sensors has restrictions in a variety of

lighting and climatic conditions. LIDAR, which stands for light detection and ranging,

is the standard sensor for safe human detection in industrial safety applications. The

reflections from human legs at knee level are used to determine whether or not there is a

person present in the area that is being scanned, as explained in Taipalus & Ahtiainen 2011.

However, LIDAR suffers from a number of drawbacks, including difficulties in detecting

reflections from dark surfaces and issues with operating in harsh outdoor environments.

The system described in Zhao et al. 2006 is a 3D-based technique that employs multiple

cameras to create a 3D human model in order to bypass the obstacle limitation. For

motion tracking, a local optimization algorithm is used, and recognition is accomplished

through linear time normalization. Consequently, relying on a limited number of sensors

to do the desired task is regarded as an additional key factor by numerous studies. Due to

its ability to see through obstacles, radar is proposed by numerous studies as a possible

replacement for a camera e.g., Zetik et al. 2006, Ram & Ling 2008 and Amin 2017.

When creating a system for gait recognition, the system’s cost and computing efficiency

are two crucial design factors to consider. The application described in Ahmadi et al. 2015

is based on wearable sensors and individualized kinematic modeling. By monitoring the

motion of the lower limbs and describing the 3D trajectories of individual leg segments,

the reported work satisfies these two objectives. A sensor attached to the foot is then

utilized to distinguish between the stance and swinging walking states. The alignment of

the leg joints is then established. Lastly, the detected motion is modified by employing a
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specialized kinematic model. The described technology is economical and computationally

efficient. All processing, however, is performed using advanced methods.

Another use of wearable ultrasonic sensors for the analysis of different walking phases is

provided in Qi et al. 2015. The walking activity is typically separated into two phases,

which are the stance and the swinging, as explained in Chen 2019. During each phase, the

human movement consists of a double support phase in which both feet are on the ground

and a single support phase in which one foot is on the ground while the other is swinging.

By detecting the positions of the ultrasonic sensors, the different states can be identified.

These sensors may be detected using a fixed-anchor network, and their identification is

further improved using the recursive Newton-Gauss technique and Kalman Filter. Using a

commercial optical motion tracking system, the performance of the system is examined.

The device is suitable for use in medical applications to distinguish between damaged and

uninjured individuals. It can also be utilized in the sectors of sports and rehabilitation

engineering. However, wearable sensors are not appropriate for many applications and are

seen as a significant constraint.

A motion capture system may also be utilized for human detection, such as Qualisys

Qualisys 2015, which demonstrates high accuracy by recognizing the fixed infrared markers

on the walking human using high-tech cameras and algorithms. As a result of the

mandatory availability of cameras and infrared markers, the capturing system is viewed as

more laboratory-like. Additionally, Qualisys is expensive compared to competing systems,

and it still has the same restriction as wearable perception systems. It can be inferred that

the cost, computing efficiency, and computational complexity of a competent gait tracking

system limit its use to certain locations and fields of application. In order to circumvent

such limitations, radar has been investigated as a feasible sensor for extracting the body

limb trajectories based on the µ-D signatures as described in Chen 2019. The concept has

been also further evaluated by us in our study published in Abdulatif et al. 2017.

Through-the-Wall radar is a form of radar used in surveillance applications. This

method necessitates the detection of living beings from the exterior of a structure behind

a wall. Radar can detect unique µ-D signals that are produced by human respiration.

Consequently, the µ-D signatures of a human’s breathing can be utilized in conjunction

with such radar to detect a living human, as detailed in Radzicki et al. 2016. The laboratory
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experiment conducted in the study consisted of a constructed concrete wall on both sides,

of which sat the radar and a seated human. The outcomes were examined using the STFT

method.

As described in Wang & Fathy 2011, one application of the discovered µ-D is the

recognition of a moving limb, such as the arm. A hardware radar design capable of

detecting the µ-D signatures of swinging arms is given. Using radar, a comparison was

made between two walking techniques, one arm or two arms swinging. Combining the range

profiles with the µ-D signatures improved the results. Heartbeat recognition demonstrates

that the radar system is also capable of differentiating between stationary and walking

humans.

Through µ-D signature recognition, a variety of human movements may be evaluated.

However, walking recognition is one of the most significant topics of µ-D analysis involved

in a wide range of security and surveillance applications. A difficult aspect of walking µ-D

analysis is the dissection of various bodily components, as discussed in Chen 2019. The

study presented in Guldogan et al. 2011 provides an example of the decomposition of body

segments. The study decomposed body parts using the STFT approach in conjunction

with particle filtration. Utilizing the Monte-Carlo particle filtering technique, the torso

and the legs were successfully distinguished.

Raj and Chen report a study on µ-D signatures decomposition in Raj et al. 2009 and

Raj et al. 2010. The paper provided two approaches based on g-Snake modeling of the

time-frequency representation. The first technique uses a Gaussian g-Snake model to

derive µ-D signatures from the smoothed manifold curves of moving body parts; this is a

parametric method for disentangling body part signatures. The steepest descent method

is used to minimize mean-square error and estimate the values of these curves, which

are represented as functions of various parameters of interest. The first technique relied

on prior knowledge; the second, based on a nonparametric approach, proposes using a

peak tracking algorithm instead. These suggested algorithms require a time frame of at

least half a human gait cycle (≈ 0.5𝑠). Therefore, this approach cannot be utilized in a

real-time safety-critical application.

In radar, the application for recognizing human gait is commonly referred to as µ-D

signature. The µ-D signature received from a walking human is the superposition of the
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effects caused by various body parts. Each bodily part, particularly the human limbs, has

been seen to induce a unique µ-D signature distinct from the others. These characteristics

are investigated using a time-frequency representation, as described in Hornsteiner &

Detlefsen 2008. The proposed work demonstrates that the mobility of human body parts

induces very specific measured velocities, such that even the velocity of the torso, the

largest body part, cannot be seen as a constant velocity. The work is also elucidating the

effectiveness of the spectrogram representation in depicting the velocity change of small

cross-section body parts, such as the legs.

All of the provided state-of-the-art techniques only account for the unique µ-D signatures

created by each body part, as may be deduced. While walking, however, human body

components generate a unique µ-R signature that must be taken into account for the

decomposition of various body parts. Moreover, a unique micro motion signature is

expected on the AoA dimension if a MIMO protocol is used and the AoA can be estimated.

Thus, the main focus of the thesis work is investigating the main characteristics of the

captured micro motion signatures on the main radar features, which are range, Doppler, and

AoA. The human detection is considered the first stage of the research in this dissertation,

where the basic case of single target detection is examined on a SISO radar. The research

outcome is applied to a human-robot classification use case.

Human Identification

Utilizing the properties of millimeter-wave (mm-wave) backscattered radar has become

a concept of keen interest for human identification. The successful adaptation of DL to

this application domain has resulted in significant classification accuracy gains. In Cao

et al. 2018, the authors compare supervised learning techniques such as supported vector

machines (SVM) and naïve Bayes (NB) to one of the earlier NN architecture, AlexNet

presented in Krizhevsky et al. 2012. As the learning dataset for the various techniques,

µ-D signatures of targets running at LOS have been collected for comparison purposes.

In contrast, NNs that perform end-to-end classification techniques such as SVM and

NB heavily rely on manually crafted features. To extract the most descriptive features

from a given dataset, the latter requires a substantial amount of time and specialized

domain knowledge. Consequently, results will vary based on the extracted features. This



50 2 Background

severely restricts the applicability of machine learning techniques such as SVM and NB to

specialists in the relevant fields. Due to the fact that NNs perform all feature extraction

themselves, the obstacles of SVM and NB are circumvented, making NNs frequently the

superior option.

The majority of research conducted in the field of human identification using mm-wave

radar employs µ-D spectrograms and a DCNN architecture. In Papanastasiou et al. 2021,

an X-band radar and a VGG-16 DCNN are utilized to classify the µ-D spectrograms

of targets walking at LOS to the radar sensor. The work in Qiao et al. 2020 utilizes a

LOS dataset of µ-D spectrograms and employs AlexNet for the classification task. In this

instance, the radar sensor’s polarization is aligned along the vertical plane to account

for the human’s vertically elongated body structure. Important to this study is the µ-D

algorithm for separating limb movements from torso movements. Thus, the authors were

able to demonstrate that the limbs’ motions contain more distinct characteristics than the

body’s bulk motion. The research in Vandersmissen et al. 2018 removed the restriction

of only being able to move along LOS path to the radar sensor, allowing for unrestricted

movement along any path. Similar to the previous two studies, they employ a custom-built

DCNN with a basic architecture. Even though human gait is by far the most commonly

used biometric for classification with electromagnetic mm-wave, experiments have been

conducted based on other biometric characteristics, such as the heartbeat as described in

Cao et al. 2019.

Common DCNN network architectures that achieved remarkable results in the ImageNet

large-scale visual recognition challenge (ILSVRC) described in Russakovsky et al. 2015 or

custom DCNN network architectures employing elementary structures have been utilized

in most of the previous studies. However, research has been conducted to evaluate the

advantages of more advanced DCNN architectures for the mm-wave human identification

task based on µ-D spectrograms. Consequently, the authors of Yang et al. 2019 use

an adaptive weight learning strategy that is motivated by the attention mechanism as

explained in Hu et al. 2018, whereas Jalalvand et al. 2019 introduces reservoir computing

networks (RCN) to the topic. These are desirable for time-series data processing, as µ-D

signatures are, due to their high efficiency in capturing temporal information and their

good noise-handling properties. On their dataset, the bi-directional RCN developed in
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Jalalvand et al. 2019 outperforms conventional DCNNs. It was captured by a SISO-FMCW

radar and consisted of five people walking in an unrestricted and spontaneous manner.

The dataset has been made publically accessible and named IDRad dataset. Another

method based on this dataset is described in Addabbo et al. 2020, with the objective of

discovering the causal relationship underlying the evolution of gait signal. Deep temporal

CNNs are employed for this purpose, which are distinguished primarily by their sequence

length and the casualness of their convolutional architecture.

The backscattered radar signal typically contains a fair amount of noise, especially in

indoor environments, due to furniture and multipath reflections. The ability of the signal

processing chain to eliminate these interferences is a crucial element that distinguishes a

superior system from a merely adequate one. Using a maximum energy ridge extraction

method, the research in Ni & Huang 2020 proposes a solution in which the range domain is

used to extract the precise motion trajectory of the target using the range domain described

in Iatsenko et al. 2016. For the subsequent Doppler FFT, only the range bins surrounding

the trajectory path where the actual target exists are utilized, thereby rejecting noise

artifacts and ghost targets. In addition, the paper demonstrates the efficacy of transfer

learning in the context of mm-wave-based person identification. Data-wise, µ-D signatures

and the images comprising the ImageNet dataset are different from each others. Feeding

the spectrograms as RGB images to the network, which was initialized with the ImageNet

weights, alleviated concerns that this would cause issues with the transfer learning of a

previously trained ResNet-50 as explained in He et al. 2016 architecture. As reported,

fine-tuning this pre-trained network significantly outperforms training from scratch.

The study presented in Yang et al. 2020 provides an approach that makes direct use of

the range feature in which only the lower limb movement of the target is considered. The

step length, step duration, instantaneous lower limb velocity, and inter-lower limb distance

are intrinsic to the lower limb movement and can be used as another biometric. The

authors argue that the lower limb motions of humans are more consistent and stable even

over the course of days, as they rarely interfere with actions such as typing on a smartphone,

looking at a watch, carrying various types of bags, or putting hands in pockets. The ability

to identify multiple individuals simultaneously is a benefit that has not been observed in

previous research. Consequently, the same paper implements a spatial-temporal silhouette
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analysis for step segmentation based on AoA data and unsupervised learning techniques

in order to determine the optimal segmentation strategy.

The fact that human motion induces time-variant frequency modulations in the backscat-

tered radar signal enables not only human identification but also the classification of

different types of motion e.g., the studies presented in Zhang et al. 2016; Amin & Erol

2018, and Liu et al. 2020. As both of these tasks have been successfully accomplished

individually, research works such as Lang et al. 2019 and Li et al. 2019 demonstrate the

advantages of combining person identification and motion classification. Therefore, Lang

et al. 2019 proposes a DCNN architecture consisting of three fundamental components:

The first is a backbone subnetwork inspired by the DenseNet architecture described in

Huang et al. 2017. The second component is fundamental to the network’s performance

attention modules, and the third is a hierarchical feature fusion structure. By sharing

weights and jointly learning to classify tasks and identify individuals, the network’s overall

performance can be enhanced. This is supported by the research presented in Li et al.

2019, which describes a multi-scale residual attention network (MRA) with a multi-scale

learning component and a residual attention mechanism. The MRAs are ideally suited

for multi-task learning because they can extract features of varying granularity and thus

learn more accurate representations of the various tasks.

In real-life applications such as access control and surveillance systems, the likelihood

of unidentified individuals entering the frame is high. While closed-set machine learning

systems perform well on the same set they were trained on, they frequently exhibit

erroneous behavior when presented with untrained instances. The authors of Ni & Huang

2021 propose a solution in which an unknown subject is classified as unknown rather

than being mapped to the closest known subject. A probabilistic discriminant model

is utilized for this purpose. It consists of a deep discriminative representation network

(DDRN) with cosine margin loss to map images into an embedding space and a class

inclusion probability (CIP) model to bind known class regions within this embedding space.

The CIP then returns the probability of class membership, which is then thresholded to

determine whether the query sample is a member of a class or has an unknown identity.

For this strategy, it is essential to learn a discriminative embedding space in which samples
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of the same class are mapped to close proximity and those of different classes to distant

locations.

As described in Section 6.1, it is not always possible to collect large amounts of data for

neural networks to learn from. However, all previously presented works relied on large

datasets of µ-D signatures that necessitated extensive data collection time. As a solution,

the research in Niazi et al. 2021 proposes a Gaussian prototypical network architecture

to solve the task of human identification and classification using few-shot learning and

different types of luggage. This is considered an uncommon technique compared to the

other investigated approaches in the state-of-the-art.

The µ-D spectrograms that have been utilized thus far display an equivalent width of

range 1-4 s of spectrogram data, with the majority falling within the three-second range.

While a spectrogram of that size provides the NNs with a wealth of information from

which to learn, it inherits three flaws, the first of which is its size. A three-second µ-D

spectrogram sample contains roughly three complete gait cycles. If only a small amount of

raw data is available and there is no overlap, the dataset will consist of very few samples.

If, however, the continuous spectrogram data were sliced without overlap every half second,

the resulting dataset would be six times larger. The periodic nature of the spectrogram,

which is approximately 2𝐻𝑧, could be utilized as a side effect. A second issue that arises

with non-periodically sliced spectrograms is that gait cycles that lie near one sample’s

outer boundaries may be cut at random within the half gait cycle interval. The result

is a noisier dataset, which can lead to inferior training outcomes. The third issue that

must be addressed is the amount of memory space the NN requires. The larger the input

samples, the greater the required memory capacity. Consequently, hardware constraints

frequently necessitate a small NN architecture, which may not be adequate for satisfactory

performance. Our feasibility study presented in Abdulatif et al. 2019 identifies humans

using half-second µ-D samples. Its primary objective is to comprehend the effect of human

body characteristics on walking style. Targets walk on a treadmill while a radar sensor

is positioned at predetermined distances. ResNet-50 is used for classification, and it has

been discovered that a human’s µ-D signature correlates with its body mass index (BMI).

The study is discussed and presented in details in Chapter 5.
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The next step is to track the in-frame targets in addition to the successful identification

of humans using neural networks primarily trained on large datasets. This is precisely

what the study in Janakaraj et al. 2019 does use two subsystems: one for tracking and

one for the identification task. The tracking is based on RD maps obtained by computing

a two-dimensional FFT on the raw radar data and a sliding window that predicts the

position of the target in the next RD map instance. In addition to tracking, it measures

the distance traveled, which is proportional to the size of the window. A residual DCNN

is then employed for identification purposes. The study presented in Wagner et al. 2017

demonstrates additional work for joint target tracking and human identification based

on conventional spectrum estimation. A clustering stage combines subsequent detections

and generates individual target representations. Features can be extracted from the

representations and then fed to a NN classifier. The tracking is accomplished with a

Kalman filter. The authors of Pegoraro et al. 2020 present an approach comparable to

Wagner et al. 2017 but with more sophisticated algorithms. The tracking is still performed

using a Kalman filter, but the Hungarian algorithm is added to improve track association

capabilities. Utilizing a custom DCNN architecture based on the inception residual network

family, the identification task is completed. By connecting the tracking and identification

modules, significant algorithmic improvements are obtained. Thus, correct labels can be

reassigned even if targets are temporarily unable to be tracked due to factors such as

occlusion or intersecting motion trajectories. Studies on the significance of angle data for

simultaneous tracking and identification have concluded that the range-Doppler-azimuth

space produces better results than the relying only on the range-Doppler space.

The use of spectrogram representations has been the primary focus of research on

mm-wave-based human identification. One reason is the well-known effectiveness of neural

networks in image classification tasks. However, their computation requires intensive

computations through applying multiple FFT operations, resulting in high computational

demands. Therefore, satisfying real-time requirements is frequently challenging. Using

sparse radar point clouds, the method in Zhao et al. 2019 alleviates the computational

burden of the system by proposing a solution to human identification during unrestricted

and spontaneous walking. These are clustered by the density-based spatial clustering

of applications with noise (DBSCAN) algorithm, which employs a modified Euclidean
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distance that accounts for the human’s greater elongation along the vertical axis compared

to their horizontal elongation for improved clustering outcomes. Then, a Kalman filter is

used to predict where the target will move in the subsequent frame, and the Hungarian

algorithm is employed for inter-frame object association. A sequence of occupancy grids is

ultimately utilized by a deep recurrent neural network (DRNN) for human identification.

They are based on the clustering of radar point clouds and their association with an

existing human track. The authors of Pegoraro et al. 2020 refined their system and are

now basing their new research presented in Pegoraro & Rossi 2021 on sparse radar point

cloud sequences. For target tracking, a converted-measurements Kalman filter is now

utilized, which estimates not only the target’s position but also its horizontal extent. In

addition, joint probabilistic data association with the nearest neighbors is a component of

the tracking block, and the Hungarian algorithm is still employed for track association.

The tracking and identification modules are interconnected, with the identification module

consisting of a novel DL classifier that was designed to operate effectively on sparse radar

point clouds. Extensive studies demonstrate the efficacy of the proposed method, which

works well within real-time constraints.

The presented work aims to fill a gap in the literature by establishing a radar mm-wave-

based human identification system that requires only sparse data for training and performs

satisfactorily with only a small amount of gait information for each sample. Consequently,

two types of spectrograms, µ-D and µ-𝜔, are computed from the raw radar data. These

are subsequently sliced into half gait cycle samples and fed to a DCNN network structure

based on the one proposed in Pegoraro et al. 2020. To satisfy the requirements of few-shot

learning, the network is trained using the triplet loss presented in Schroff et al. 2015, an

unheard-of loss function in the thesis’s research field. Lastly, a CIP model similar to that

proposed in Ni & Huang 2021 is applied to determine the class to which a query sample

belongs.

Activity Recognition

Previous studies relied on deploying conventional machine learning techniques with radar

signals for classifying different human activities e.g., the SVM utilized in Zenaldin &

Narayanan 2016, and random forest for gesture recognition in automotive applications in
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Smith et al. 2018. However, traditional machine learning had a number of drawbacks and

limitations that limited the effectiveness of these techniques. Traditional machine learning

techniques require manual feature extraction, which heavily relies on the application domain

expertise of the researchers. Recent advances in computational power and advancements in

the field of deep learning have enabled the achievement of remarkable results in a variety

of fields and the resolution of many of the limitations and issues associated with traditional

machine learning. Recently, a variety of deep learning techniques have been investigated

for radar-based systems.

It has been shown that DL techniques outperform more traditional learning methods,

as indicated in Gurbuz & Amin 2019. It was mentioned that the training dataset’s size

was one of the key challenges. Such an issue necessitated the adoption of transfer learning,

where simulated data were employed as the base for training. In Erol et al. 2019, an

alternative solution was described in which a generative adversarial network (GAN) was

utilized for data augmentation. One of the primary reasons for expanding the training

dataset was to reduce classification confusion between similar behaviors, such as (bending

and sitting) or (standing and walking) or (crawling and creeping). Using additional

radar elements, such as range profiles, was another method for resolving the classification

ambiguity, as explained in Erol & Amin 2019. In the aforementioned investigations, the

classification task was based on a single occurrence of each activity. Thus, operating the

radar to take single snapshots individually, as described in Campbell & Ahmad 2020, and

Gurbuz & Amin 2019. Another approach for extracting single occurrence of each activity

is based on slicing a long-period captured signature as discussed in Li et al. 2019. In

realistic circumstances, the actions are likely to occur sequentially, necessitating adaptive

slicing, such as the recurrent neural network (RNN) proposed in Gurbuz & Amin 2019.

Similarly, in Li et al. 2019, streams of several activities were sliced using a sliding window

with a 50-70% overlap. There are more factors to consider, such as data generalization

and the detection angle, according to Gurbuz & Amin 2019.

Since the research scope of the thesis is directed in extracting meaningful radar features

that can reflect the micro motion behavior; it has a direct correlation with the activity

recognition task. Since both the µ-R and the µ-D signatures have been investigated in

previous studies and were proved to show classification ambiguity for similar activities, the
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feasibility of including our newly measured µ-𝜔 signatures is investigated. Additionally,

such tasks suffer from the obligation of capturing a sufficient dataset size for training,

and hence, our scope is directed towards investigating a metric learning approach for the

classification task. Such an approach is based on the triplet loss architecture, which has a

two-fold benefit. First, it is used by us to test the concept of few shot learning (FSL) for

including hard activities to be collected e.g., falling. Second, the concept of combining

the captured signatures from multiple AoA is tested to extend the classification to more

generic and realistic use-cases and not limited to the LOS scenarios.

2.6 Summary

In this chapter, the theoretical background of both the radar system, as well as the

algorithms that were applied in the work for this is discussed. A general introduction to

the radar system as well as an explanation of the various transmission protocols can be

found in Section 2.1. In the Section 2.2, the idea of studying the primary radar features

in order to capture the micro motion behavior is described in greater detail. Walking is

considered to be the primary activity that is investigated in this thesis work; therefore,

the characteristics of the human body as well as the behavior of the human body during

the walking gait cycle are presented in Section 2.3. The theoretical foundation of the deep

learning algorithms that were used in the work that was done for this thesis can be found

in Section 2.4. A review of the most state-of-the-art approaches in the relevant study

domains that we have focused on can be found in Section 2.5.





3 Radar Signal Processing

In Section 2.1, the estimation of the radar’s primary characteristics has been discussed from

theoretical and physical perspectives. In this section, the signal processing procedure for

estimating the primary radar characteristics will be discussed briefly. The MIMO-FMCW

transmission protocol is discussed in this chapter. The radar receives the reflected chirps

from the radar’s surroundings and processes them as a raw data cube, as depicted in

Figure 3.1. According to Li & Stoica 2008, each dimension of the raw data cube represents

a main radar feature. The first dimension reflects the received chirp with its samples,

as described in Section 2.1.2, which is responsible for the estimation of the range. As

demonstrated in Figure 3.1, the processing within a single chirp is commonly referred

to as the fast time dimension, as described by Richards 2014. The second dimension

is responsible for analyzing consecutive chirps through time, referred to as slow time in

Figure 3.1, and is used to estimate velocity. The third dimension of the radar data cube

represents the simultaneous reception of chirps from multiple Rx antennas. Consequently,

this dimension is responsible for AoA estimation, which in Figure 3.1 is referred to as

spatial sampling. And therefore, processing the radar cube enables the mapping between

any pair of radar features or all three if the application requires it.

Multiple features increase the algorithm’s applicability, as demonstrated in Lin & Ling

2006; Cui & Dahnoun 2021; Ram et al. 2007 and Lin & Ling 2006, in which the Doppler

feature is utilized as an indicator for activity detection and the AoA feature is used for

real-time tracking. Such goals indicate the viability of the MIMO radar for applications

requiring high real-time performance and present the radar as a powerful stand-alone

solution for multiple-human recognition. To preserve computational resources, however,

the radar cube must be processed with great wisdom. We conducted the deployment of

MIMO radar for prosthetic leg integration with traversing objects in a study that was

published in Aziz et al. 2021. Such research reveals that the MIMO radar is ideally suited

for the powerful swinging motion of the human leg during walking. However, evaluating

the entire radar cube necessitates enormous computational resources that are typically
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Figure 3.1: Cubic representation of raw radar data.

unavailable in such circumstances. Consequently, the Constant False Alarm Rate (CFAR)

was utilized for optimized computation efforts.

In the majority of cases, human recognition applications require the use of deep learning,

and MIMO radar is regarded a powerful tool since it can provide data in several formats,

such as 2D maps, 3D matrices, and signals as has been stated in Aziz et al. 2022 or Weller

et al. 2021 or Aziz et al. 2021. The radar is a viable sensor for integration with camera

systems, such as infrared in Ulrich et al. 2018 and RGB cameras in Li et al. 2017, due

to its flexibility in data formats and real-time performance. In this section, therefore,

the signal processing of the data received by the MIMO radar is examined, as it is the

most generalized radar type that may be employed as either a SISO or a MIMO. The

application of AoA for human tracking is outside the scope of this study. To provide the

most effective real-time performance, this section discusses the importance of assessing the

acquired micro motion signatures on all the radar’s primary features for a single instance

of human activity e.g., a single walking step. Consequently, the outcome of the thesis can

be extended to include integration with a tracker or integration of the radar with other

perception systems.
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Figure 3.2: Range Profiles of MIMO-FMCW Radar.

3.1 The Main Radar Features

Analyzing the frequency variation in the IF signal, Section 2.1.2 describes the concept of

range estimation. Consequently, the range can be estimated by applying a direct FFT

operation to the received signal and evaluating the range profile, as depicted in Figure 3.2.

Due to the MIMO transmission protocol, Figure 3.2 displays multiple range profiles, which

are subsequently processed for AoA estimation. Before the FFT is applied, each bin on the

fast time dimension is defined by 𝑅𝑟𝑒𝑠 that is estimated based on Equation (2.16). Following

the application of the FFT, each frequency bin is defined based on the parameterized

number of samples (𝑁𝐹𝐹𝑇), which is solely responsible for the smoothing quality of the

range profiles, as described in Richards 2014. The estimated range profile is constrained

by the parameterized 𝑅𝑚𝑎𝑥 derived from the Equation (2.14).

The second FFT is applied to the slow time dimension in order to revile the phase change

between consecutive range bins, which reflects the Doppler effect described in Section 2.1.2.

To facilitate comprehension, the third dimension of the radar data cube is ignored for the

time being, and an example of a processed RD map is displayed in Figure 3.3. Similar

to the range dimension, the 𝑣𝑟𝑒𝑠 and 𝑣𝑚𝑎𝑥 share the same characteristics. According to

Richards 2014, the velocity characteristic is typically used to distinguish between two

targets located at the same distance from the radar. As discussed in Section 4.3, it can also

be used as an indicator of the micro-motions of the body during walking for the purposes

of the thesis. As will be discussed in Section 4.4, this characteristic has been shown to
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Figure 3.3: Range-Doppler map for walking motion within swinging phase.

be very useful for distinguishing humans from other moving targets, such as robots, as

will be shown in Section 4.4. Figure 3.3 illustrates an example of the Range-Doppler

captured for a walking human during the swing phase, where the micro motions of the

limbs, particularly the feet, can be seen as multiple detected points on both the velocity

and range dimensions.

Similar to how FFT is applied to the first two dimensions to obtain the range and

velocity features, a third FFT is applied to the spatial sampling dimension to estimate

the AoA of approach, as described in Robey et al. 2004. In the majority of instances,

the AoA estimation is used as a scanning feature in the radar, in which a Range-Angle

(RA) map is created. For better understanding the velocity dimension is neglected for

now, and an example for the Range-Azimuth map is shown in Figure 3.4. As described

in Section 2.1.3, the CDMA transmission protocol is utilized to ensure a higher angular

resolution. Moreover, as explained in Chiao et al. 1997, utilizing the CDMA protocol

has a direct effect on improving the SNR. In this thesis, the Hadamard code described

in Section 2.1.3 is utilized. Estimating the initial phase for the available Tx antennas

is performed using the Hadamard code. The MIMO radar utilized for this thesis work

is featured with two Tx and 16 Rx, thus, such structure is used for illustrations in this

section. For the available two Tx, an example of a 2 × 2 Hadamard code is given as:

𝐻 = ⎡⎢
⎣

1 1

1 −1
⎤⎥
⎦

. (3.1)



3 Radar Signal Processing 63

Targets

0 40 80 120 160 200 240 280
−100

−50

0

50

100

Range / cm

A
oA

/
∘

Figure 3.4: Example for an Range-AoA map for a MIMO radar.

For each radar frame, the RA maps are received consecutively based on the parameterized

𝑁𝑝. The process of realizing the virtual antennas starts by separating the received maps

due to the odd (𝑠𝑅𝑥,𝑜𝑑𝑑) and even (𝑠𝑅𝑥,𝑒𝑣𝑒𝑛) antennas according to Equations (3.2), and

(3.3), respectively:

𝑠𝑅𝑥,𝑜𝑑𝑑 = 𝑠𝑇 𝑥1 + 𝑠𝑇 𝑥2 , (3.2)

𝑠𝑅𝑥,𝑒𝑣𝑒𝑛 = 𝑠𝑇 𝑥1 − 𝑠𝑇 𝑥2 . (3.3)

Using these two received signals at their respective Rx antennas, the individual Tx

antenna components (𝑠𝑇 𝑥(𝑡)) , where 𝑛 refers to a Tx antenna, can be distinguished by

means of:

𝑠𝑇 𝑥,1 = 1
2

(𝑠𝑅𝑥,𝑜𝑑𝑑 + 𝑠𝑅𝑥,𝑒𝑣𝑒𝑛) , (3.4)

𝑠𝑇 𝑥,2 = 1
2

(𝑠𝑅𝑥,𝑜𝑑𝑑 − 𝑠𝑅𝑥,𝑒𝑣𝑒𝑛) . (3.5)

As an illustration, this separation process is depicted in Figure 3.5 for four RA maps.

Transposing the matrices improves their visibility. All 16 Rx antennas sample the two

phase-modulated Tx signals at the same time and chirps are concatenated along the

fast-time dimension. This data stream contains the superimposed signal of Tx1 and Tx2.

These equations (3.4), and (3.5) are used to transform the 16 physical Rx channels into

32 virtual ones. The first 16 channels now represent Tx1’s signal, while the second 16
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Figure 3.5: Reformation of radar raw data for CDMA analysis.

channels represent Tx2’s signal. The two channels that overlap and are delineated by the

two white lines carry the same information. Due to the fact that the raw data matrix is

now twice as wide but only half as long as the original data stream, the angular resolution

has been doubled while the maximum unambiguous velocity has been halved.

3.2 Spectrogram Computation

As discussed in Section 2.5, µ-D signatures are the most frequently employed characteristic

for radar-based applications that include human activity recognition, particularly walking.

In stead of applying the second FFT for analyzing the µ-D signatures, the STFT is

applied to the radar data cube to revile µ-D spectrograms. As explained in Chen &

Ling 2002; Chen et al. 2006; Chen 2008 and Chen 2019, the central concept of STFT

is to demonstrate the frequency responses that occur in a short amount of time, which

will reflect the micro-motions of the human body. It is a similar concept of applying a

Zoom-FFT that is explained in Moyer & Stork 1977, in which the extracted frequency

responses are reflecting the micro rate of change occurring on each range bin. A similar

process can be applied to captured AoA bins in which the µ-𝜔 signature is anticipated, as

shown in Figure 2.7. The µ-𝜔 signature is investigated for the first time in this dissertation,

and it has been demonstrated to improve human detection and identification, as will be

discussed in Chapter 6. However, this feature is only advantageous if it does not violate

the radar detection capability of not moving laterally relative to the radar. This must be

distinguished from the technique developed by Nanzer 2010, which estimates the lateral

angular velocity independently of the AoA estimation. In the following sections, the signal
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Figure 3.6: The µ-D spectrogram computation.

processing chains for estimating the µ-D and µ-𝜔 signatures, respectively, are presented

and briefly discussed.

3.2.1 Micro-Doppler Spectrogram

The MIMO transmission protocol is still considered for the creation of the µ-D sigantures,

in which the signal processing chain is described in Figure 3.6. However, analyzing the

chirps received from only one Tx antenna is considered, and a SIMO protocol is considered.

The MIMO feature has been abandoned for this computation as the µ-D signature to

decrease the computation effort, as it is only dependent on the resolution aspects that

were presented in Section 2.2.1. Additionally, the inclusion of multiple Tx antennas in

the process may cause some signal distortion as the initial phase shift is not perfectly of

Δ𝜑 = 𝜋 as explained in Robey et al. 2004. As a first step, the data is reshaped to a raw

data cube similar to the one shown in Figure 3.5. Before processing the first FFT on the

fast time axis, a Hamming window and zero padding are applied to avoid the spectral

leakage and offer a smoothed range profile as proposed by de Jesus Romero-Troncoso 2016

and Mitra & Kuo 2006.
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Figure 3.7: The non-linearity of a gamma correction for different values of 𝛾.

As shown in Figure 3.6b, the data cube dimensions has changed to 𝐷 ∈ D𝑁𝐹𝐹𝑇×𝑁𝑅𝑥×𝑁𝑝 ,

where the first axis represent the range profile. In order to accommodate for the introduced

DC offset due to the Hamming window, the mean amplitude of the zero target is divided

by the sum of all the range bins amplitudes. Then, the range bins that are of no interest

are discarded, which are marked with green in Figure 3.6c representing in this specific

example the far range bins from the radar. Other commonly-used technique, is applying a

CFAR to the range profile for identifying the range bins that include targets as proposed

by many studies e.g., Aziz et al. 2021, Wang et al. 2019 and Kueppers et al. 2020. This

processing has a two-fold benefit of decreasing the computation efforts and diminishing

the received multi-path scattered signals and the range profile dimension changes to 𝑁𝑟𝑏

as noted in Figure 3.6. Afterwards, the STFT is appied to the slow time dimension on

each range bin as described in Section 2.2.1. The STFT is applied on each range bin

included in the range profile along the slow time as explained in Section 2.2.1, and the

data cube is now of size 𝐷 ∈ D𝑁𝑟𝑏×𝑁𝑅𝑥×𝑁𝑆𝑇 𝐹𝑇 as shown in Figure 3.6e. Finally, a dimension

reduction is applied for both 𝑁𝑅𝑋 and 𝑁𝑟𝑏 dimensions giving a single column in the final

µ-D spectrogram as shown in Figure 3.6f. The gamma correction algorithm is applied for

enhancing the SNR, which has a direct effect of suppressing the low magnitude values that

are expected to be noise and enhancing the high magnitude values that are expected to

be the micro-motion harmonics as explained by Guo et al. 2004. The gamma correction

function can be represented by different values of gamma (𝛾) as shown in Figure 3.7.
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Figure 3.8: The µ-𝜔 spectrogram computation.

3.2.2 Micro-Angular Spectrogram

The µ-D spectrograms have been utilized in multiple radar-based human detection ap-

plications, especially when dealing with different DL approaches as was discussed in

Section 2.5. However, the researchers have faced different limitations, when relied only on

the µ-D feature. For example, the study presented by Erol & Amin 2019 have recorded a

magnificent confusion between similar activities e.g., falling and sitting. Another example

for the human identification, in the study presented by Cao et al. 2018, have faced a

trade-off between either increasing the number of classes or increasing the duration for the

µ-D signature for each classification instance. Thus, other studies e.g., Erol et al. 2017

have proposed relying on both the range and Doppler features for enhancing the activity

recognition applications. However, such technique still has limitations for boosting the

possible classes with acceptable performance. For these reasons, in this thesis work, the

AoA in the azimuth dimension is investigated in a similar style to the range dimension.

The main concept is investigating the possibility of the body micro motions to induce

harmonics in the time-frequency representation. To the best of the author’s knowledge,

such signatures were not investigated in any other study.
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The signal processing chain for estimating the µ-𝜔 signatures is presented in Figure 3.8.

Unlike the processing of the µ-D signature, all the available Tx antennas should be included

to ensure the best angular resolution as explained in Section 2.1.3. The utilized MIMO

radar in this thesis work is featured with two Tx antennas as shown in Figure 3.8a. The raw

data is reshaped to a data cube of dimensions 𝐷 ∈ D𝑁𝑠×(2𝑁𝑅𝑥)×𝑁𝑝 as shown in Figure 3.8b.

Afterwards, a similar procedure to realizing the range profile is held on the AoA dimension

as shown in Figure 3.8c. The procedure is based on applying a Hamming window, zero-

padding and FFT for realizing an AoA profile to change the data cube dimensions to

𝐷 ∈ D𝑁𝑠×𝑁𝐹𝐹𝑇×𝑁𝑝 . Since the FFT is applied to real values, a mirroring occurs in the

spectrum domain, and half of the spectrum is discarded as shown in Figure 3.8c, and

explained in Schmid 2012, where the discarded bins are marked with green. In a similar

way to the processing of the µ-D signature, a DC compensation is done to the angle

profile as the range profile. A similar procedure to the one explained in Section 3.2.1, the

only sensible angle and range bins are kept in the data cube to change the dimensions to

𝐷 ∈ D𝑁𝑟𝑏×𝑁𝑎𝑏×𝑁𝑝 as shown in Figure 3.8d, where both 𝑁𝑟𝑏 and 𝑁𝑎𝑏 are standing for the

number of sensible bins on both the range and AoA dimensions, respectively.

The time-frequency analysis represented by the STFT function is applied to each angle

bin to investigate any induced harmonics due to the body micro motions through the fast

time dimension as shown in Figure 3.8e. Finally, a dimension reduction is done to output

a single column for the µ-𝜔 spectrogram as shown in Figure 3.8f. An example for the

extracted micro motion signatures is shown in Figure 3.9, where the full walking gait cycle

in LOS is presented. As can be observed that the µ-𝜔 signature is showing a comparable

characteristics to the µ-D signature. As described in Figure 2.7 and Equation (2.37),

the velocity detected by any swinging human limb is expected to have translational and

rotational velocity components. The latter can be explored by realizing the µ-D signature

as explained by Chen et al. 2006, Chen 2008 and Chen 2019. The newly-realized µ-𝜔

signature is different from the spectrograms derived by Nanzer 2010, in which extra added

feature is added for the radar to be capable of capturing the motions in lateral direction.

As can be observed in those studies that the realized micro angular spectrograms in a

lateral scenario are showing the exactly the same performance as the µ-D signatures

in LOS scenario. This indicates the meaningfulness and the sensibility of the newly
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(b) µ-𝜔 signature fur full walking gait cycle.

Figure 3.9: Micro-motion signatures of a complete walking gait cycle in the LOS direction.

derived µ-𝜔, since it is expected to show a similar behavior to the µ-D signature but not

identical as can be observed in Figure 3.9. Thus, a similar behavior is expected in the

radar-based applications that rely on the µ-D signature as the main feature and combining

both is expected to enhance the performance e.g., decreasing the classification ambiguity

for activity recognition. The feasibility and the reliability of the newly-captured µ-𝜔

sigantures are investigated in Chapter 6 in two applications, which are the walking human

identification and activity recognition. For the µ-𝜔 signature, a non-identical mirroring

effect can be observed around the zero-velocity axis. To the best if the current knowledge,

this is due to the variability of the detected points on the azimuth dimension based on the

available angular resolution. Such mirroring didn’t have any negative effect on the usage

of the µ-𝜔 signatures, nevertheless, it showed a performance enhancement in the use-cases

presented in Chapter 6.

3.3 Activity Adaptive Monitoring

As has been discussed in Gurbuz & Amin 2019, applying the classification on single

occurrence of the activity shows great enhancements in the accuracy. Such segmentation

aspect adds to the algorithm the feature of performing on realistic scenarios as the activities

are expected to happen in series e.g., sitting then standing then walking. This fact is

evaluated by us in this thesis work and applied in differed studies that are published in

Abdulatif et al. 2019 and Weller et al. 2021 for human identification on single walking step.

Moreover, it is evaluated by us in Aziz et al. 2022 for activity recognition including fall
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detection. The concept of the µ-D signature is explained mainly on the walking activity

Chen 2019, in which the realized spectrogram includes the main walking velocity that

is induced by all the body parts and velocity harmonics that are reflecting the swinging

behavior of the different limbs. Such spectrogram structure for walking can be generalized

on different activities as has been discussed in different studies such as Seyfioglu et al. 2018;

Erol & Amin 2019; Aziz et al. 2022, where each activity will have induced harmonics due to

the micro motions that can be tracked for single occurrence extraction. Consequently, the

signal processing aspect is discussed briefly in this section as it will be used in Chapter 6.

For applying the adaptive monitoring to the captured µ-D signatures, the spectrograms

must be processed for enevelope detection that reflects mainly the feet behavior through

the walking gait cycle as has been explained in Sections 2.3, and 3.2. The envelope

detection plays a main role in identifying the start and the end of single walking step;

thus, an adaptive slicing algorithm can be applied. The signal processing algorithm used

in this thesis for adaptive slicing is based on the study presented in Seifert et al. 2018a. In

Section 3.3.1, processing the spectrogram is discussed, the keypoint vector extraction is

explained in Section 3.3.2, and the adaptive segementation of the spectrogram is introduced

in Section 3.3.3.

3.3.1 Spectrogram Preprocessing

The µ-D signatures are usually utilized in DL applications, where the classification is

based on capturing a long period of µ-D signature and then slicing based on the desired

sample length. The slicing technique is considered a main key factor for the classification

accuracy as it defines how many occurrences of each activity is included in the slice as

explained in Gurbuz & Amin 2019. The adaptive slicing is proved to grant the best

performance as explained in many studies e.g., Seyfioglu et al. 2018; Erol & Amin 2019;

Aziz et al. 2022. However, analyzing the µ-D signatures for slicing is not foreseen as an

easy task in most of the studies, and to bypass such process, some researchers relied on

capturing single occurrences as the study presented by Seyfioglu et al. 2018 and Campbell

& Ahmad 2020. Such occurrence-based snapshots is not feasible when dealing with only

the walking activity, and the most of the researchers who dealt with walking-based human

identification relied on a fixed-duration slicing technique as described in Zhang et al. 2016;
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Addabbo et al. 2020; Ni & Huang 2020. Such technique is considered feasible for the

walking human identification, but the adaptive slicing is still highly recommended to ensure

the best performance. Since both the µ-D and µ-𝜔 signatures are timely-synchronized, the

extraction of characteristics for adaptive slicing is performed on the µ-D signatures.

The spectrogram is first converted to grayscale for subsequent binarization by normalizing

its values to [0, 1]. Thresholding is used to get closer to a binary spectrogram. This is

one of the simplest and most computationally efficient methods for distinguishing objects

from the background. Thresholding is classified into two types: histogram-based and local.

The histogram of pixel intensity is used for the former. It is used to make assumptions

about its properties and to define the threshold value. The second category computes the

threshold value locally and makes decisions based solely on neighboring pixels. Because

the latter approach is computationally more expensive than the former, histogram-based

thresholding is used to solve the problem at hand. The Python library skimage.filters

contains implementations of various approaches. All of them are compared in the appendix

in Figure A.2. During the computation, the black represents the value zero and white

represents the value one.

The mean and minimum methods are histogram-based thresholding techniques that

could separate the actual µ-D harmonics from the background as shown in Figure 3.10, and

are thus investigated further. Figure 3.10a shows the original grayscale spectrogram, while

Figures 3.10b and 3.10c show the results of mean and minimum thresholding techniques,

respectively. Figure 3.10d displays the corresponding histogram with the threshold values

for the mean and minimum algorithms. While both methods produce nearly identical

results, the minimum method includes slightly less noise without discarding any relevant

µ-D data points. Its operation is based on iterative smoothing until the histogram has

only two peaks. The threshold value is the minimum value between them. As shown

in Figure 3.10d, the textmu-D data has very evenly distributed intensities when the

background noise peak at the spectrogram’s upper end is ignored. This behavior is

unfavorable for the minimum thresholding approach because it increases the likelihood

of only one peak. After that, the algorithm will fail to complete. On the contrary, the

spectrogram’s mean value is determined solely by the spectrogram matrix and can thus be
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Figure 3.10: Examples of the thresholding techniques on a gray-scale spectrogram.

computed at any time. It is also faster to compute than the minimum approach, and it is

eventually chosen as the thresholding technique.

For analyzing the geometrical characteristics of images, morphological image processing is

commonly utilized as explained in Seifert et al. 2018a. In the case of the µ-D spectrograms,

both the dilation and erosion approaches are combined together to define the region

of interest that contains the main induced harmonics due to body micro motions as

explained in Sundararajan 2017, and an example for the output of the processing is shown

in Figure 3.11. The morphological closing that is applied in this thesis work has a main

functionality for offering a clearer output for the spectrogram to enhance the signature

envelop detection.

3.3.2 Keypoint Vector Extraction

For efficient adaptive slicing, it is necessary to extract the primary motion style character-

istics that reflect body characteristics. As discussed in Section 2.3, the human body can

be divided into two main parts, the bulky body part (torso, shoulders, and hips) and the

swinging limbs (legs and arms), when walking is used as the basic activity for studying the

µ-D signatures. The bulky body part is represented in the µ-D signature as the highest
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(a) Dilated spectrogram (b) Eroded and cleaned-up spectrogram

Figure 3.11: A visualization of the morphological processing chain.

intensity velocity harmonic of the walking relative velocity, whereas the swinging limbs are

represented as swinging frequency harmonics that are primarily represented by the envelope

of the spectrogram. Consequently, when extracting a key point vector, it will incorporate

the center of gravity (CoG), primary and secondary envelopes to reflect the behavior of

the bulky and swinging body parts during the walking gait cycle. The technique can

be applied to other activities, with the CoG reflecting any translational behavior and

the primary and secondary envelopes reflecting any rotational motion. Figure 3.12 is an

example of the extracted key point vector for the walking activity.

Center of Gravity

The gray-scaled spectrogram is multiplied by the morphologically processed spectrogram to

extract the CoG behavior. The primary function of such multiplication is noise reduction.

The CoG behavior corresponds to the relative walking velocity and walking direction.

The expected output of this processing is the values with the highest intensities, which

represent the CoG, while some atypical scenarios are considered for precise extraction.

The algorithm may result in a rough output of the CoG vector, which is refined by an

algorithm for smoothing. This smoothing has been found to be extremely advantageous as

it directly reduces the influence of the swinging limbs on the CoG behavior. This primarily

occurs during walking because, during the stance phase, all swinging limbs have very

minor swings that manifest as small oscillations around the CoG vector.
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Figure 3.12: Visualization of keypoint vectors on a grayscale µ-D spectrogram slice.

Primary and Secondary Envelope

Principal factors affecting the estimation of the primary and secondary envelopes are

the morphologically processed spectrogram and the direction of the target’s motion. As

described in Section 2.1.1, when a human walks towards the radar, the radar induces

a positive velocity value and vice versa when moving away from the radar; this value

can be estimated based on the CoG behavior. The algorithm is based on analyzing the

binary spectrogram that has been morphologically processed. Searching for the points

where a change in state occurs in order to draw the main vector for both the primary

and secondary envelopes is the key concept. The depicted spectrogram is searched in a

double-iterative manner, with the first iteration applied to the rows and the second to

the columns. Figure 3.12 depicts an example of the extraction of both key point vectors,

in which a person walks normally towards the radar during the first period, and then

switches the motion direction during the second period.

3.3.3 Spectrogram Adaptive Segmentation

The spectrogram adaptive segmentation is based on peak detection through interpreting

the extracted key point vectors. For the walking signatures, the frequency peaks are

induced due to the feet swinging as has been discussed in Section 3.3. However, if the
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human is walking away from the radar, the velocity components will be induced by the

radar as peaks in the negative domain that can be bypassed through mirroring the primary

key point vector around the zero axis if detected as shown in Figure 3.12. Thus, the

half gait cycles represented by single occurrence of a peak can be easily monitored and

sliced. A refining for the slicing technique is achieved through taking more arguments into

consideration e.g., height of the peaks, the distance between consecutive peaks and the

peak’s threshold with respect to the neighboring point. This allows an adaptive slicing

algorithm, which is more feasible as a normal human is not expected to show a fixed period

performance for each single occurrence as shown in Figure 3.12.

To further refine the slicing positions for spectrogram segmentation, the peak detection

algorithm accepts arguments such as the height and prominence of the peaks, their

threshold to neighboring data points, and the distance between consecutive peaks, among

others. For the current application, prominence and distance are utilized. The former

indicates the height of a local maxima from the highest point of its surrounding local

minima. While the optimal value for prominence is determined empirically, the distance

between two peaks can be calculated mathematically. The frequency of successive half gait

cycles is approximately 2 Hz. Therefore, one half gait cycle requires ≈ 0.5𝑠 to complete.

This period of time can be converted to an integer number of consecutive µ-D spectrogram

columns, thereby defining the minimum distance between two consecutive slicing positions.

As shown in Figure 3.12, the combination of the CoG, the truthful and mirrored primary

envelopes, and the peak detection algorithm with its two parameters prominence and

distance permits a robust and accurate estimation of half gait cycles.

Only the µ-D spectrogram has been processed thus far. In favor of redoing the entire

spectrogram processing for the µ-𝜔 signature, the slicing positions from the µ-D signature

are transferred without modification to the µ-𝜔 signature. This not only ensures time

synchronization but also saves a substantial amount of computation time, which is ad-

vantageous for a processing chain capable of real-time processing. Due to the absence of

envelopes, it is impossible to isolate the µ-𝜔 signature from its surrounding noise. As DL

has demonstrated an aptitude for dealing with noise such as the studies presented in Yang

et al. 2017, Abdulatif et al. 2019, and Gurbuz et al. 2020, this trade is not considered a

drop.
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3.4 Summary

In this chapter, the radar signal processing algorithms that are used in this thesis in

different studies and phases are explained. In Section 3.1, estimating the main radar

features is explained. In Section 3.2, formulating both the µ-D and the µ-𝜔 spectrograms

is discussed. In Section 3.3, the spectrogram adaptive monitoring for single occurrence

extraction is discussed in detail.
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As discussed in Chapter 3, the µ-D signature of a human body motion can be studied as

the superposition of various body segment trajectories. Human motion can be detected,

categorized, and tracked, in particular for safety applications, through the extraction of

real-time limb µ-D trajectories. In this chapter, we combine two approaches to model a

human walker’s µ-D signatures. A decomposition feasibility study for µ-D limbs is then

presented, using both range and Doppler radar features. The limb decomposition task

is achieved through analyzing the micro motions behavior on the RD maps.Because of

this, micro-Range (µ-R) behavior is induced by human limbs, which is analogous to the

well-known µ-D signatures. The feasibility study uses a decision tree classifier to categorize

human limbs into four groups (base, arms, legs, feet). The classifier has been validated,

and it can separate the µ-D signatures of individual limbs from a signature of a human in

motion. The results of the study is validated through relying on the Range-Doppler maps

for enhanced human-robot classification. The detailed studies about extracting the limbs

trajectories and the human-robot classification are published in Abdulatif et al. 2017 and

Abdulatif et al. 2018.

4.1 Combined Signal Model

As proposed in Chen 2019, a simulation model can be used to investigate the body’s

behavior during the walking motion in detail. Based on the global human model published

in Boulic et al. 1990, which is explained in Section 2.3.2, this model defines the displacement

of the body segments during the walking gait cycle. This simulation provides a good

indication of the structure of the µ-D signature, but it is not realistic and cannot be easily

extended to additional motions because a new model must be defined for each motion.

On the other hand, obtaining a true radar capable of recording relevant µ-D signatures is

not always possible and involves complex processing on occasion. In response, we have

developed a combined measured and simulated signal model in which the realistic motion
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Figure 4.1: Body orientation with respect to the body-fixed system (x,y,z).

of the human body is observed and a signal model is used to simulate the back-scattering

effect for each body part. Our developed Qualisys walking model is based on the global

walking model’s subdivision of the human body into 16 body segments. Consequently, the

segmentation of the body is defined in the subsequent section.

4.1.1 Global Human Walk Model

The global human walk model discussed in Section 2.3.2 is an empirical mathematical

model used to describe the kinematics of a walking human. It is commonly utilized in radar

applications for gait recognition analysis. According to Gurbuz et al. 2007, the model is

utilized to classify the detected target as a person or another moving item. Using the

motion trajectories described in Section 2.3.2, an animated simulation model is constructed

from the global model. Therefore, the human body can be split into 17 major markings.

In a three-dimensional Cartesian coordinate system, the motion trajectories can be used

to determine the positions of the body’s major points at any given moment. As illustrated

in Figure 4.1, the local body-fixed system (x,y,z) of the walking human body has its

beginning at the base of the spine, and the person is traveling in the positive 𝑥 direction.

The 17 primary body markings are divided into three categories:

• The body end-points: five marks representing the head, two hands, and two feet.

• The body joints: 10 markings, which include the shoulders, elbows, hips, knees, and

ankles.
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Figure 4.2: The human body segmentation based on the global human walk model.

• The body centered-points: two marks, the neck and the base of the spine.

The connection between these primary points might form the segments of the human

body. As seen in Winter 2009, the length of each body segment is expressed as a value

standardized to human height. The simulation of the human body’s structure is depicted

in Figure 4.2.

The human body can be viewed as a nonrigid body in motion. As described in

Section 2.2.3, the motion should therefore be expressed as a set of rigid bodies moving in

connection with one another for motion analysis. Each body segment must be represented

by a rigid body in order to create an animated walking human model. Consequently, the

human walking simulation is based on the rigid body motion described in Section 2.2 in

conjunction with the trajectory functions of Boulic et al. 1990 described in Section 2.2. In

the following section, the various depictions of body segments will be discussed.
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(a) Motion capture camera. (b) Infrared martkers.

(c) QTM Visualization.

Figure 4.3: Qualisys tools used for motion capture.

4.1.2 Qualisys Walking Model

Qualisys is an optical motion capture technology that is used to precisely track the positions

and velocities of moving objects. The system consists of three primary components: motion

capture cameras, software required for motion analysis, and infrared markers put on the

objects to be tracked, as depicted in Figure 4.3 and guided by Qualisys 2015. Qualisys

is utilized in numerous application sectors that need the capture of moving objects with

realism and precision. In the science of bio-mechanics, for instance, capturing human

motion is used to detect and prevent accidents. Another illustration is Qualisys sports

performance, which provides a 360∘ analysis of the player, and more information about it

is presented in Qualisys 2015. The precise capture of an athlete’s motion is utilized to

analyze his performance by providing extensive information about his movements.

As illustrated in Figure 4.3, the Qualisys human walk model was created so that infrared

markers are placed on the 17 major body segments recommended by Boulic and Thalmann.



4 Human Detection While Walking 81

0 0.5 1 1.5 2 2.5

0

2

4

6

Left footRight foot

Time / s

V
el

oc
ity

/
m

/s
Head
Neck
R Shoulder
R Elbow
R Hand
R Knee
R Ankle
R Foot
L Foot
Torso

Figure 4.4: Velocity trajectories captured by Qualisys.

The developed chamber for capturing human movements consists of 12 cameras. The

cameras are evenly spaced along the chamber’s 15 m length. Using the software from

Qualisys 2015, the infrared marker becomes a legitimate location point when it is caught

by at least two cameras.

The software used for reading the captured positions of the infrared markers is Qulisys

Track Manager (QTM) that is demonstrated by Qualisys 2015. The captured positions

are measured with respect to one reference origin placed in the middle of the measurement

chamber. According to the Qualisys model, the 12 motion trajectories that were explained

in Section 2.3 are replaced in this simulation with a real motion behavior of each body

segment. Therefore, the analyzed µ-D and µ-R signatures is realistic and dependent on

the captured walking style. The normalized lengths of the body parts with respect to the

human height is also replaced with the real lengths of the different body segments. The

velocity trajectory of each body part is determined based on the captured positions of the

infrared markers as shown in Figure 4.4.

4.1.3 Human Body Segment Representation

The segments of the human body are depicted as rigid bodies. The most common

representational geometrical shapes are spheres, cylinders, and ellipsoids as shown in

Figure 4.5. The depiction of body parts as recognizable geometric shapes facilitates radar
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measurements. These representations, along with the motion trajectories defined in Boulic

et al. 1990, facilitate the construction of a simulation model for radar analysis, as described

in van Dorp & Groen 2003. For radar analysis, the RCS described in the following section

should be utilized.

Radar Cross Section (RCS) Approximation Methods

The scattered waves can be separated into two distinct polarization types. The first portion

of the waves will have the same polarization as the radar antenna, while the second portion

will be orthogonal to it as illustrated in Mahafza 2005. The object’s RCS is estimated

based on the intensity of the signal portion that has the same polarization as the radar

antenna. If the power density of the incident signal is 𝑃𝑖𝑛𝑐, then the reflected power from

a target at a distance 𝑅 from the radar can be defined according to:

𝑃𝑟𝑒𝑓 = 𝜎𝑃𝑖𝑛𝑐 , (4.1)

where 𝜎 represents the RCS of the object. The radar equation presented in Skolnik 2001

can be used to express the relationship between the radar’s received power and the object’s

RCS according to:

𝑃𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑃𝑇 𝑥𝐺2𝜆2𝜎
(4𝜋)3𝑅4𝐿

, (4.2)

where 𝑃𝑇 𝑥 is the average of the transmitted power, 𝐺 is the antenna gain, and 𝐿 refers to the

losses. Using prediction methods, the RCS of known geometries can be precisely estimated.

Due to the scattering effect, however, these prediction techniques must be solved using

complex mathematical techniques and boundary conditions. Therefore, approximated

RCS prediction methods can be used in computer simulation analysis. The method of

approximation prediction depends on the detected target’s shape. If the detected target

shape is an ellipsoid with axes 𝑎, 𝑏, and 𝑐 in the 𝑥, 𝑦, and 𝑧 directions, respectively. The

expression for the ellipsoid RCS approximation method is according to:

𝜎𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 = 𝜋𝑎2𝑏2𝑐2

(𝑎2 sin2(𝜃) cos2(𝜙) + 𝑏′2 sin2(𝜃) sin2(𝜙) + 𝑐′2 cos2(𝜃))2
. (4.3)
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Figure 4.5: The body segment orientation with respect to the radar.

The sphere RCS approximation method corresponds to Equation (4.3) with 𝑎 = 𝑏 = 𝑐

and can be expressed according to:

𝜎𝑠𝑝ℎ𝑒𝑟𝑒 = 𝜋𝑐2 . (4.4)

A circular cylinder with a radius of 𝑟 is the third shape that can be used to represent a

body segment. The RCS method of approximation can be stated according to:

𝜎𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝜋𝑏′4𝑐′2

(𝑎′2 sin2(𝜃) + 𝑐′2 cos2(𝜃))2
. (4.5)

The segments of the human body can be represented by either an ellipsoid or a cylinder,

while the connecting points between them are represented as spheres. The ellipsoidal

representation of body segments in the simulation model is more realistic than the

cylindrical representation as shown in Figure 4.5. Due to the normal orientation with

respect to the radar signal, a body segment represented as a cylinder produces stronger

reflections. According to van Dorp & Groen 2003, the smoother reflections that result from

the ellipsoidal representation of the body segment presents the simulation in a realistic
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way, when compared to the real measurements. As shown in Figure 4.5, the two angles

presented in Equation (4.3) describe the ellipsoid orientation with respect to the radar.

The simulation’s RCS approximation method depends solely on the ellipsoidal body

segment. By referencing the trajectory functions presented in Section 2.2, the body joint

is viewed as a point that is used to obtain the various positions and rotations actions with

respect to time. The aspect angle (𝜃) and azimuth angle (𝜙) are calculated using both the

radar location and the positions of each body segment according to:

𝜃 = arctan(
√𝑥2 + 𝑦2

𝑧
) , (4.6)

𝜙 = arctan(𝑥
𝑦

) , (4.7)

where √𝑥2 + 𝑦2 represents the projection of the range between the rigid body and the

radar in the (X-Y) plane, whereas 𝑧 represents the height of the body segment from the

(X-Y) plane. On the basis of the human body structure depicted in Figure 4.2, the length

of each body segment can be estimated. Therefore, all of the parameters necessary for RCS

approximation as shown in Equation (4.3) are available. The subsequent section explains

the µ-D and µ-R signatures analyzed as a result of the simulation model described.

4.2 Radar Features Interpretation

The presented signal model is capable of estimating µ-D signatures based on both the

global and Qualisys human walking models. This section’s interpretations describe a

person walking toward or away from the radar along the LOS. The µ-D analysis can

make use of the RCS approximations described in Equation (4.3), as the amplitude and

phase of the scattering effect are estimated by the square root of the RCS, as explained in

van Dorp & Groen 2003. At each instance of time, the signal model describing the RCS

approximation method is expressed as 𝐴𝑖 for each body part represented as an ellipsoid.

𝐴𝑖 =
√

𝜎𝑖𝑒
−𝑗4𝜋𝑅𝑖

𝜆 =
√

𝜋𝑎𝑏𝑐
𝑎2 sin2(𝜃𝑖) cos2(𝜙𝑖) + 𝑏2 sin2(𝜃𝑖) sin

2(𝜙𝑖) + 𝑐′2 cos2(𝜃𝑖)
𝑒

−𝑗4𝜋𝑅𝑖
𝜆 .

(4.8)
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(d) Right arm

Figure 4.6: µ-D signatures of upper body parts.

As shown in Figures 4.6, and 4.7 the µ-D signature is periodic, due to the periodic

behavior of each body part through the walking activity. The µ-D signatures of a walking

human with relative walking velocity 𝑣𝑤𝑟 can be separated into those caused by less

swinging body parts and those caused by swinging limbs. The µ-D signatures of the less

mobile body parts, such as the head and torso, can be utilized to detect the 𝑣𝑤𝑟 as shown

in Figures 4.6a, and 4.6b. The µ-D signatures of the swinging arms and legs can indicate

that some parts of the human body have velocities greater than 𝑣𝑤𝑟, which can be used

to adjust the radar parameters based on the maximum velocity detected as shown in

Figures 4.6c, 4.6d, and 4.7. However, none of the µ-D signatures presented in Figure 4.6

can fully describe the human walking locomotion alone. Although the µ-D signatures of

swinging arms in Figures 4.6c and 4.6d, respectively, demonstrate the swinging effect of the
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Figure 4.7: µ-D signatures of lower body parts.

arms, this is insufficient because the feet are expected to demonstrate a more pronounced

swinging effect as shown in Figure 4.7.

The µ-D signature of the leg from the hip to the foot is shown in Figure 4.7. The

states of the walking gait cycle are evident in the µ-D signatures of the legs in Figure 4.7.

During walking, the human body alternates between the single support state and the

double support state. It is possible to analyze the transition between the single support

state, in which only one foot is swinging and the other is touching the ground, and the

double support state, in which both feet are touching the ground. The maximum velocity

component results from the unique motion of the feet, as depicted in Figure 4.7.

Even though the arms and legs are swinging, their µ-D signatures reveal that they induce

the relative walking velocity 𝑣𝑤𝑟 the majority of the time. The detected µ-D signatures of

a human walker consist of the superposition of all body parts involved in walking. Due to

the fact that all body parts induce the same µ-D signatures, the decomposition of body

segments is exceedingly complex. The primary velocity component detected with the most

power is the human walking velocity. The arm and leg swinging effects are analyzed as

periodic velocity components oscillating around the human walking velocity. As shown in

Figure 4.8, the different power values of the velocity components can be clearly analyzed,

as each body part induces velocity components that differ from the other body parts.

Accordingly, relying only on the µ-D signatures for extracting the limbs trajectories is not

enough and the range feature is interpreted in the next section.
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(a) µ-D signatures of the whole walking body.
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(c) Range-Doppler map for a swinging phase.

Figure 4.8: Micro motions interpretations on the main radar features

The signal model presented in Equation (4.8), is used for interpreting the µ-R behavior

through walking. The µ-R signature induced due to each body part can be seen in

Figure 4.8b, in which a periodic micro motion behavior can be seen clearly. Since the range

is usually interpreted in the radar, while being mapped to the velocity in a form of RD

map, the signal model was adopted to get an RD map that is shown in Figure 4.8c. The

RD map is derived through the signal processing operation that is described in Section 3.1,

through applying a second FFT through the derived range profiles through time after

parameterizing the model with a suitable 𝑁𝑝. Such analysis can be applied to both the

global and the Qualisys walking models. As a conclusion, for an enhanced human detection,

both the µ-D and µ-R signatures will be used for the limbs decomposition application

that is presented in Section 4.3, and the human-robot differentiation that is presented in
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(a) µ-D signature due to global human walk.
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(b) µ-D signature due to Qualisys model.
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(c) µ-D signature due to real measurements.

Figure 4.9: Comparison between µ-D signatures of simulations and real measurements.

Section 4.4. A comparison between the models is presented in the following section to test

how our novel combined signal model is realistic, when compared to real measurements.

4.2.1 Comparison Between Simulations and Real Measurements

A comparison is shown in Figure 4.9 between the simulated µ-D signatures of the two

models and a measured µ-D signature from a real radar to determine which simulation

model is more suitable for classification. In the previous section, the µ-R was presented as a

crucial parameter to be included in the human detection procedure. Thus, an FMCW radar

is used to compare the µ-D signature in order to be capable of capturing the µ-r signatures

if needed. The tested human for motion capture in the Qualisys model is the same human

walking towards the radar, so that the same walking style can be analyzed via simulation
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and real measurement. Figure 4.4 depicts a human walking at 𝑣𝑤𝑟 ≈ 1.5𝑚/𝑠 with a

maximum foot velocity of ≈ 4.5𝑚/𝑠. The radar is paramterized based on Equations (2.14),

(2.15), and (2.16). The resulted parameterization is presented in Table 4.1:

As a conclusion from Figure 4.9, the global human walk model is feasible to analyze the

concept of the µ-D signatures. Howvwer, it cannot be considered as a generalized model

as it only relies the human height and the walking relative velocity. On the other hand,

the Qualisys walking model is showing a more realistic signature when compared to the

real-radar measurement. The Qualisys model also is not lacking the sense of the walking

style as it is capturing the real motion of the human. Additionally, the Qualisys model

is not limited to only walking motion, it can be extended to other activities. For these

reasons, the combined model based on combining the Qualisys walking model and the

simulated signal model is utilized in our feasibility study that is published in Abdulatif

et al. 2017, and discussed briefly in the following section.

4.3 Decomposing Limbs Trajectories

As has been discussed in previous sections, the µ-D signature is captured by the radar as

superimposed harmonics induced due to all body limbs. However, the real-time extraction

of those motion trajectories is considered vital for many fields e.g., hand detection for

hazard industrial areas as has been investigated by different studies such as Yu et al. 2020;

Wang et al. 2020, and Ho & Gader 2002. Other example is presented by Seifert et al. 2018a,

where the walking irregularity is detected through analyzing the feet reaction. However,

this is still not considered a pure extraction as the feet trajectory can be monitored

through envelope detection of the captured µ-D signature. Moreover, the perception

systems that are used for capturing the limbs motion e.g., Qualisys are foreseen more as

Table 4.1: Radar module parametrization.

Radar Parametrization Attributes

Carrier frequency 𝑓𝑜 25 GHz Maximum range (𝑅𝑚𝑎𝑥) 19 m
Bandwidth (𝐵) 0.2 GHz Range resolution (𝑅𝑟𝑒𝑠) 7.75 cm
Chirp duration (𝑇𝑝) 0.5 ms
Samples per chirp (𝑁𝑠) 256 𝑣𝑟𝑒𝑠 0.1 m/s
Chirps per frame (𝑁𝑝) 128
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(a) Swinging phase at 𝑡 = 1.4 s
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(b) Swinging phase Otsu at 𝑡 = 1.4 s
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(c) Double support at 𝑡 = 1.7 s
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(d) Double support Otsu at 𝑡 = 1.7 s

Figure 4.10: Examples for the RD maps after power removal.

laboratory devices and they lack the freedom of motion as normally, attaching reflectors or

wearable sensors to the body is required. Thus, a feasibility study about real-time limbs

decomposition is presented in our publication Abdulatif et al. 2017 based on the RD maps

extracted from the combined signal model that is created and briefly described in this

section.

4.3.1 Methodology

The radar combined model is parameterized based on Table 4.1, and real humans of height

≈ 1.7 − 1.9𝑚. The model is utilized afterwards, where RD maps for the walking motion

are derived as shown in Figure 4.10. The color information in the µ-D spectrogram shows

the radar’s received power as a result of different parts of the body moving. However,

limb decomposition is not something that should be viewed in terms of power. For one
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(a) Feature representation for the 4 classes. (b) Scatter plot of the mapped features.

Figure 4.11: Representation of µ-D and µ-R features induced due to Qualisys model.

thing, the µ-D value at any given time is the sum of reflected signals from different parts

of the body. Moreover, the changing human position relative to the radar will result in a

power fading effect in actual radar measurements. Therefore, power will not factor into

the classification procedure.

The power is removed in two stages. First, the Gamma-transformation technique

described in Gonzalez 2009 is applied to the RD map to reduce the noise effect. Afterwards,

the essential µ-D harmonics are then extracted based on the Otsu’s thresholding technique

presented in Otsu 1979. Figure 4.10 demonstrates that both µ-R and µ-D functionality

are maintained upon power loss. The shift in range that results from the human body’s

constant motion is readily apparent. Both the range and the velocity of the swing can be

affected by the movement of the different limbs.

The body is divided into four classes, and the scatter plots depicted for both the µ-D

and the µ-R is shown in Figure 4.11. The classes are divided based on the following:

• Base: minimum velocity and swings induced due to torso, head, and neck.

• Arms: higher swinging effect, which are elbows, upper and lower arms.

• Legs: this class incorporates the knee, lower, and upper legs.

• Feet: the highest swinging inducing the highest velocity component.

As a preprocessing step, the mean is removed from the µ-R data at each time step in

order to extract only the swing effect without the linear regression behavior depicted in
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Figure 4.8b. Our proposed method is independent of time, so features from the entire

duration of the experiment are used to train the classifier. Due to body symmetry, the

right and left body parts with corresponding µ-D and µ-R signatures will be very similar.

This will result in undetermined left and right body part differentiation based solely on

µ-D and µ-R. As shown in Figure 4.7, only the velocity phase shifts distinguish left from

right body parts, as evidenced by the half-cycle difference in the feet’s motion during

the gait cycle. In practice, however, the starting body side of the motion is unknown.

Therefore, it is difficult to identify each side independently without prior knowledge. In

addition, in previous decomposition techniques, the first moving side was treated as prior

knowledge, and a side flip was performed every half cycle as explained in Raj et al. 2009

and Raj et al. 2010. Consequently, the left and right body parts will be grouped together.

4.3.2 Results

Each subject was asked to walk for three minutes so that features could be collected and

labeled before classification for training and validation. The dataset was split into 75% for

training and 25% for validation. The confusion matrix in Table 4.2 is obtained by training

a decision tree classifier. The legs and arms classes are confused at times due to an overlap

in the µ-D and µ-R planes, as depicted in Figure 4.11. However, the feet and legs and

arms classes are confused with equal frequency. The base has the lowest performance due

to the presence of low µ-D and µ-R components, which are also present in the legs and

arms classes.

Table 4.2: Limbs decomposition confusion matrix.
True/Predicted Arms Feet Legs Base

Arms 65% 1% 32% 2%
Feet 14% 73% 13% 0%
Legs 19% 1% 79% 1%
Base 37% 0% 37% 26%
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4.3.3 Conclusion

In this section, a feasibility study is presented about using the captured µ-D for limbs

trajectories decomposition. For such application, our combined signal model presented in

Section 4.1 is utilized. The human body is divided into four main groups based on the

swinging intensity through the walking gait cycle, in which two main points are concluded.

First, the combined signal model is showing a realistic behavior when compared to real

measurements. The combined signal model has been created by us at that time to the

unavailability of radar modules that are capable of capturing meaningful µ-D signatures

at that time. It opens big room for researchers who suffer from the same problem or who

want to simulate some scenarios in a realistic way. It is not used afterwards in the thesis

work as both problems weren’t applied for us. There were our trials for simulating the

radar 𝜇-D signatures that were mentioned, and discussed in Section 4.1. However, using

other techniques for capturing the human motion such as Kinect-based model, presented

by Erol & Gurbuz 2015, will not offer the same accuracy compared to the utilized Qualisys

system. Additionally, it is limited only to human motion and cannot be extended to other

moving objects such as horses. Second, for an enhanced human detection, the mapped

µ-D and µ-R signature have to be used. This has another advantage of adding a real-time

performance as capturing single RD map usually needs less than half a minute as will

be discussed in the next section. Accordingly, the RD maps are investigated as the main

features for human-robot classification application that is discussed in the next section.

Nevertheless, our use-case scenario required a real radar; thus, the next study is based on

a real FMCW radar in order to be capable of capturing both the Doppler and range radar

features.

4.4 Human-Robot Classification

Target classification based on their unique µ-D and µ-R signatures will be possible for a

wide variety of moving targets. Gait recognition, security, and monitoring are only a few

examples of the many potential applications of this kind of categorization. In this section,

our study published in Abdulatif et al. 2018 is discussed briefly in which the robustness

and feasibility of the utilized RD maps for human limbs decomposition is tested for a
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real-life use-case scenario of human-robot classification. The use-case scenario required

integrating a radar in a production line in a factory, in which the area beside the machine

is always required to be human-free, while if a mobile robot approaches the machine for

any reason, the work flow shouldn’t stop. For such task, a 25 GHz SISO radar module is

used and parameterized as shown in Table 4.1. Relying on the RD maps is fulfilling the

real-time constraint of our desired use-case scenario. A detailed analysis is provided that

contrasts conventional learning techniques with those that rely on manually extracted

features, ensemble classifiers, and deep learning. Without performing any additional

feature extraction, ensemble classifiers like gradient boosting and random forest are fed

reconstructed range and velocity profiles. Finally, a DCNN is employed, and RD maps are

fed directly into the network. DCNN identifies humans and robots on a single RD map

with an accuracy of ≈ 99%.

As discussed in Section 2.5, classification in real time was not addressed by earlier

methods. The proposed classifier training dataset is also quite sizable, numbering in the

hundreds of examples. Research shows that when training a DCNN, more training data

leads to better results as explained in Goodfellow et al. 2016. Therefore, this amount is

insufficient for designing robust classifiers, particularly in DCNN. Our presented study

addresses the human-robot classification problem using FMCW radar RD maps that can

be computed in much shorter time intervals (≈ 0.1𝑠) as been utilized in Jokanovic &

Amin 2017. Consequently, the real-time constraint can be satisfied, and the number of

datasets used to train deep models has increased from hundreds to thousands. Finally,

a comparison of various learning strategies is presented. The user manual including the

datasheet for the Ancortek radar module used for this classification task is described in

appendix in Section A.2.

4.4.1 Methodology

Dataset Formulation

The whole procedure of building up the dataset is explained briefly in Abdulatif et al.

2018. To collect the data, measurements were taken on 10 test subjects of varying heights

and genders while they walked. There are innumerable types of machines referred to as
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robots. Due to the proposed task’s focus on industry, two industrial robots are included

for data collection and testing. The first robot is a mobile robot assistant (Care-O-bot)

created by the robotics division at Fraunhofer IPA that can be referred to in Koay et al.

2014. The second robot is a six-axis robotic arm created by Stäubli that can be referred

to at Robots 2017. During each experiment, the subjects moved at random aspect angles

within the radar detectable region. To avoid the extreme radial velocity fading effects

described in Bartsch et al. 2012, however, the case of exact lateral motion was omitted.

Each data sample is labeled with the current target class during data collection, which

is either a human or robot. This labeling is required for supervised learning in order for

models to understand the standard solution and consequently learn the correct model

parameters. The collected data and associated labels are separated into two subsets. The

first subset will be utilized for model construction. The training set is used to learn the

model parameters, while the validation set is used to tune model hyper-parameters, such

as the number of hidden layers and neurons in each layer of a neural network. The second

subset (test set) is used to evaluate the generalization performance of the final model by

comparing model predictions to the actual class labels.

The test set is constructed using the hold-out technique. For a hold-out split, the entire

dataset 𝐷 is divided into two non-overlapping subsets. One is utilized as the training set 𝑆

and the other as the test set 𝑇. It can be expressed mathematically as 𝐷 = 𝑆 ∪ 𝑇 , 𝑆 ∩ 𝑇 =

∅. The models are trained on 𝑆 and evaluated on 𝑇 to determine their generalization

performance. Due to the relatively high sampling frequency, contiguous samples from a

single measurement can be very similar. Therefore, a test on randomly selected samples

from all measurements cannot accurately reflect the generalization performance of the

model. Consequently, separate experiments of each object type are chosen to construct the

test set, with each experiment comprising up to twenty percent of the total data for this

object type. Thus, the entire test set comprises approximately 20% of all collected data.

RD Map Investigation

The RD map interpretation is discussed briefly in Abdulatif et al. 2018. As has been

explained in Section 2.3, the human walking motion is described as a succession of periodic

cycles, with two phases constituting a complete gait cycle. The initial phase (swinging) in
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(b) Human in stance phase.
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(c) Robot in motion.

Figure 4.12: Comparison between RD maps induced due to walking human and moving robot.

which only one foot is in motion and the other is on the ground. As shown in Figure 4.12a,

the human appears on the RD map as a broad distribution along both RD axes during

this phase. This distribution represents a range of velocities due to the bulk moving body

parts (torso and head) as well as the swinging effect of various body limbs (arms, legs and

feet). In the second phase (stance), no swinging limbs are observed and only mass motion

is observed. This phase accounts for 60% of the gait cycle and is the predominant phase.

Comparing the robot motion and human stance phase depicted in Figures 4.12b and

4.12c, respectively. It is evident that the stance phase poses the greatest difficulty in our

human-robot differentiation task, as both RD maps have a narrow horizontal distribution

that is very similar.
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Figure 4.13: Accuracy curves of conventional learning methods.

Conventional Learning on Handcrafted Features

After acquiring the dataset as described in the preceding section, we evaluated several

conventional machine learning techniques using features manually extracted from RD maps.

Prior to feature extraction, the Otsu method is used as an unsupervised image thresholding

on RD maps to separate the RD data corresponding to the target from the background

that is described in Liao et al. 2001. Utilizing this technique, the original continuous RGB

values in each RD map are quantized into 10 discrete levels. The five lowest levels out of

ten are disregarded because they can be considered noise. The performance of the Otsu

algorithm is discussed in Section 4.3, and can be observed in Figure 4.10.

Afterwards, features are extracted from each RD map to represent the desired classifi-

cation between human and robot. To prevent overfitting, the features are also chosen so

that they do not reflect an exact velocity or range. Thus, the extracted features only take

into account the distribution across RD maps. The distribution can be represented as the

difference between the maximum and minimum detected values in both RD dimensions,

which are representing the two features for both range and velocity profiles. In addition,

features such as the variance in velocities 𝜎2
𝑣 and in ranges 𝜎2

𝑅 can be viewed as the

polynomial features of the standard deviation in velocities 𝜎𝑣 and ranges 𝜎𝑅 with a degree

of 2 as described in Zhou 2021. In addition, the covariance between range and Doppler
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values is taken into account as a feature. Finally, we have seven features that have been

utilized with various conventional machine learning techniques.

Several classical machine learning methods were implemented, trained, and evaluated

with the feature data following feature extraction. Decision Tree, Logistic Regression, SVM,

and K-Nearest Neighbors (K-NN) are employed. However, depending on the characteristics

of a single RD map, the performance of each method is subpar. This resulted in the use

of a sequence of feature vectors compiled from several successive RD maps (a so-called

sample buffer). Each sequence of feature vectors is concatenated with feature vectors

extracted from each sample in a buffer. Therefore, the number of utilized features will

increase from 7 (with a buffer size of 1) to 70. (in the case of a buffer of size 10). As

demonstrated in Figure 4.13, the classification accuracies of all methods increase as the

buffer size grows. The highest test accuracy using SVM is 95.3% at a buffer size of 10 bytes.

However, such a large buffer size results in a latency of more than one second, causing

issues in safety-critical real-time applications. It is also can be noticed in Figure 4.13, a

drop in the accuracy performance for both the SVM and the K-NN approaches within the

ninth and the tenth sample; however, it is only a redundant drop, which is less than 2%.

Ensemble Trees with Restructured RD Data

Using conventional machine learning methods with hand-crafted features has two major

drawbacks. On the one hand, manually constructing features from raw data is time

consuming and requires domain expertise. On the other hand, as discussed in the preceding

section, adequate performance can only be achieved at the expense of a large buffer size,

which is directly proportional to the inference latency.

In general, the predictive power obtained by combining multiple models is superior to

using a single model alone. Ensemble learning, a family of machine learning methods that

perform the learning task by constructing a group of individual learners and combining

their outputs, is an illustration of this concept.

Always present in machine learning is the bias-variability trade-off. Bias and variance

are two forms of predictive model error. A simple model is susceptible to underfitting the

training data, resulting in a model with high bias and low variance. In contrast, complex

models have a tendency to overfit the training set, resulting in low bias but high variance.
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From this conundrum, two contradictory strategies for reducing prediction error can be

derived: reducing the variance of complex models and reducing the bias of simple models.

Krogh and Vedelsby demonstrated in Krogh & Vedelsby 1994 that the error of an

ensemble can be calculated according to:

𝐸 = 𝐸 − 𝐷 , (4.9)

where 𝐸 represents the average error of all individual learners and 𝐷 measures the diversity

of individual learners. Diverse learners are required to reduce the predictive error of an

ensemble model. Common ensemble learning techniques include bagging and boosting. To

accommodate the diversity of individual learners, bagging and boosting rely on diverse

training sets for individual learner instruction. The distinction lies in how the different

training sets are acquired.

Bagging comes from the idea of bootstrap aggregating which reduces prediction error

by decreasing the variance of complex individual learners. Bagging entails constructing

distinct training sets by randomly sampling the entire dataset with replacement (bootstrap

sample). Following the construction of 𝐾 predefined training sets, 𝐾 learners will be

trained on these 𝐾 training sets. Therefore, the individual learners can be generated

in parallel, and there is no strong interdependence between them. The hypothesis of

the entire ensemble can be obtained by averaging the hypotheses of all 𝐾 individual

learners without weighting. Consequently, the estimated bias does not change, whereas

the estimated variance decreases by a factor of 𝐾 − 1 as explained in Wang et al. 2016.

The utilized technique in this thesis work is the random forest approach.

Boosting enhances the performance of predictions by reducing the bias of weak individual

learners. It generates diverse training sets by assigning weights iteratively to data samples.

Each data sample’s weight is proportional to how well this data sample can be predicted by

the current ensemble. By doing so, the distribution of training data is modified, resulting

in a greater focus on the data portion that has not been accurately predicted thus far.

Weak learners are simple models that can acquire training data with low accuracy

(< 50%) with a high bias and a low variance. The study presented in Schapire 1990 that

a group of weak learners can be combined to form a strong ensemble capable of arbitrarily

high training accuracy. Boosting employs this concept and sequentially constructs a
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group of weak learners. The current weighted training set obtained in the manner

described previously is used to induce each individual weak learner. After generating

the predetermined number of individual 𝐾 learners, the ensemble hypothesis is obtained

through a weighted vote of all predictions of weak learners. The bias and variance of an

ensemble will gradually decrease as a result of the combination of incompetent learners

who concentrate more on incorrectly predicted samples. The utilized technique in this

thesis work is the gradient boosting approach.

Before feeding the RD map to the classifiers, it must be restructured. Before feeding the

RD map into the ensemble classifiers, it must be flattened to a one-dimensional feature

vector because it has a two-dimensional structure of 512×512. To generate feature vectors

from RD maps, the elements of each RD map are averaged along both dimensions. This

yields two 512-dimensional vectors, one representing the Doppler profile (row vector) and

the other, the range profiles (column vector). The hand crafted features are not applicable

to be included in this case compared to the classical learning techniques as our main aspect

was to reduce the computation effort and time in order always to be offering the best

real-time performance.

Second, to ensure a classification based on the target’s motion dynamics, as opposed

to absolute values such as velocity or range. The information pertaining to absolute

measurement values should be eliminated from the data, leaving only the RD distributions.

We propose a method to eliminate such information containing concrete target motion

parameters as follows: in both Doppler and range profile vectors, the elements corresponding

to high power areas are shifted to the vectors centers. Since the positions of these elements

in both the Doppler profile and range profile correspond to the target’s absolute velocity

and range, respectively. By shifting the large-valued components of both vectors to the

center, information regarding the velocity and range of the target is concealed. This

algorithm obtains a weights vector for both velocity and range profiles by normalizing

their power values to the sum of all their elements, respectively. Then, a weighted average

is applied to the velocity and range indices based on their respective weights in order to

obtain an average value close to the high power region of each profile. Consequently, the

profiles are shifted from the calculated indices to the centers of vectors. In order to reduce

complexity, 128 elements are removed from both ends of the shifted vectors, resulting in
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256 elements per profile. Both restructured Doppler and range profiles are concatenated

into a single 512-dimensional feature vector following dimension reduction.

CNN Network Architecture and Training

CNNs have proven to be highly effective at image classification, and since RD maps are

essentially images as well, this also applies to RD classification. Therefore, the use of

CNNs in this scenario is reasonable. As previously depicted in Figure 4.12, a typical RD

map of a human has a broad horizontal distribution that represents a variety of body part

velocities. A comparison reveals that RD map induced due to robot motion will have a

limited horizontal distribution due to its rigid body motion. The distinction between the

two patterns is already discernible to human eyes. Consequently, a CNN is also capable of

differentiating them.

The proposed CNN model utilizes an input image size of 200 × 200. This provides a

trade-off between processing time and performance. The grayscale color mode is used for

the following reason: in RD maps, the color represents the back-scattered power, which

correlates to the target’s position relative to the radar and can be affected by metallic

components on targets (e.g., wearable metal articles such as watches or rings on human

targets). According to our strategy, none of this information should be considered. The

RGB color mode is more sensitive to noise caused by unwanted objects and clutter than the

grayscale mode. Using one-channel grayscale images as input reduces the computational

complexity of both training and prediction.

The utilized network architecture is inspired by Lecun’s ”LeNet-5” presented in LeCun

et al. 1998 . It has a stack of six convolutional layers with the ReLU activation function.

A max-pooling layer follows each convolutional layer, which consists of 16 convolutional

kernels each measuring 3 × 3 pixels in size. After the convolutional layer stack, there is a

fully connected layer with 16 neurons. One sigmoid-activated neuron in the output layer

at the end is fully coupled to the 16 neurons in the layer above.

The selection of the optimizer has an immediate impact on the training’s outcome

and required time. The modern adaptive optimizer Adam proposed in Kingma & Ba

2014 is used to train our proposed CNN. The Adam optimization algorithm is one of

the most popular training algorithms for DNN. It improves the traditional stochastic
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gradient descent algorithm by allowing the computation of individual adaptive learning

rates for various parameters. Thus, the Adam optimizer achieves excellent optimization

outcomes while maintaining rapid convergence rates. Dropout is a simple yet effective

regularization technique proposed in Srivastava et al. 2014 to prevent a deep learning

model from complex co-adaptations on training data, also known as overfitting. During

training, it ignores neurons according to a predetermined ratio (the dropout rate). During

the forward propagation of each training step, ignored neurons are unable to temporally

contribute to the activation of their connected neurons in the final layer. During back

propagation, the weights of the ignored neurons are not updated. In this instance, dropout

is applied to the final fully-connected layer in all implementations, and a dropout rate of

0.5 is selected. This hyperparameter is determined by trial and error.

Both validation accuracy and loss begin to swing around the same level after the best

validation accuracy, attained in the 30th training period. This shows that the model has

already provided the best match to the data.

4.4.2 Results and Discussion

Random forest and gradient boosting are put to the test to see if ensemble learning on

reconstructed RD maps is practical. They both stand out as excellent examples of bagging

and boosting, respectively. The random forest performs with a classification accuracy of

93.4%, while the gradient boosting ashieved a classification accuracy of 97.85%. There are

two explanations for this:

• According to Caruana et al. 2008, boosted trees outperform random forests for

low-dimensional problems with up to 4000 data dimensions.

• According to Fernández-Delgado et al. 2014, gradient boosting can outperform

random forest in a binary classification scenario.

Gradient boosting is therefore thought to be a superior option for future research and

comparisons. The suggested CNN outperforms the boosting-based technique and obtains

the best performance. Accuracy levels for training and testing were 99.65% and 98.34%,

respectively. As a result, the miss-classification rate for both classes is roughly 0.5%, which

is acceptable for the task at hand.
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4.4.3 Summary

In this section, a use-case scenario of differentiating a walking human from a moving

robot is presented. The main research objective is validating the aspects for enhancing

the human detection that are discussed in Section 4.3, and the study is published by us in

Abdulatif et al. 2018. The study is based on achieving the classification task based on

captured RD maps through comparing classical machine learning techniques with ensemble

techniques, and a CNN approach. The CNN has achieved the bets performance of 99%

for single RD map that needs to be captured ≈0.1 s. In Section 4.4.1, the methodology

is presented including the experimental setup and the different utilized approaches. In

Section 4.4.2, a summarized discussion about the results is presented.





5 Feasibility Study for Human

Identification While Walking

5.1 Human Identification Limitations

Due to its significance within the security domain, human identification was chosen as the

next investigational step. Moreover, the completion of the task based on a radar-based

perception system is anticipated to be of great interest due to the radar’s ability to operate

under any environmental conditions without compromising privacy. In this section, a

feasibility study investigating the effect of human body characteristics on µ-D signature-

based walking human identification is presented. As stated in Chapter 2, walking has

been selected as the primary activity for investigation in this thesis because it is regarded

as the fundamental motion for studying the µ-D behavior. The primary objective of the

feasibility study is to analyze the influence of various factors on the behavior of the µ-D

signature. As described in Chapter 2, the study is conducted on the smallest unit of the

walking gait cycle, a half gait cycle. The following is a summary of the main aspects of

the feasibility study:

• The real-time aspect since the duration of a half gait cycle is ≈ 0.5𝑠 for a normal

walking velocity.

• The effect of the body dimensions on the walking style and the captured µ-D signature.

Accordingly, 22 subjects have been included in the study.

• The main characteristics of the µ-D signature, in which a treadmill was used in the

experimental setup for removing the average walking velocity and capturing only

signatures reflecting the body micro motions.

• The classification ambiguity for multiple persons.

A treadmill is used in our proposed experimental setup to capture µ-D signatures from

22 subjects of both genders with different physiques. The latent space representation is
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then extracted from the µ-D signatures using convolutional autoencoders (CAE). Using

t-distributed stochastic neighbor embedding, it is then interpreted in two dimensions. Our

study states a direct effect of the body mass index (BMI) on the µ-D signature of a walking

subject. On the basis of the µ-D signature, a 50-layer deep residual neural network is

then trained to identify the walking subject. We achieve 98% accuracy on the test set

with a high SNR and 84% accuracy with varying SNR levels. Our study is published in

Abdulatif et al. 2019, including figures, an explanation of the experimental setup, and the

results. The feasibility study wasn’t of a main concentration of comparing the effect of

using multiple lengths of captured 𝜇-D signatures as this was tested in the preliminary

literature that were discussed in Section 2.5. nevertheless, multiple comparisons such as

the effect of the length of the 𝜇-D signatures or the included classes were included in the

latter study that is presented in Weller et al. 2021, and discussed in Section 6.3. Examples

for the comparisons are shown in Fig. 6.10.

5.2 Methodology for Human Identification

Due to the deformability of a moving human body, analyzing human gait is considered

a difficult task. The human walking gait can be studied by measuring the associated

temporal and spatial parameters. The primary characteristics of the human gait motion,

such as stride length, walking velocity, and swing and stance phases, are represented

by these spatio-temporal parameters. As a result, the motion of each body part can be

represented by a translational or rotational trajectory. Then, as explained by the global

human walking model, presented by Boulic et al. 1990, they can be used to determine the

position and orientation of body parts over time. However, this model will only provide

an indication of the body’s behavior, not an accurate simulation. In addition, it is limited

to the walking motion only. On the other hand, the µ-D signature can be used for any

activity that is realistically identical for each individual.

In order to obtain an accurate study of human gait, body weight is also an important

factor. According to Hwang et al. 2017 and Błaszczyk et al. 2011, the spatio-temporal

parameters of the walking gait are influenced by body weight. As a result, if evaluated

correctly, walking style can be a useful metric for human identification, as described in
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Cutting & Kozlowski 1977. In order to obtain a representative sample of µ-D signatures,

22 contributors with varying BMIs based on their weight and height were chosen.

5.2.1 Radar System Parametrization

The proposed experiment employs a CW radar with a carrier frequency of 𝑓𝑜 = 25𝐺𝐻𝑧.

The datasheet for the Ancortek radar module used in the experimental setup is presented

in the appendix, in Section A.2. This study focuses primarily on analyzing the velocity

components induced due to various body parts through the walking activity. Therefore,

no range information is required to be captured, and the µ-D signature can be extracted

without frequency modulation. Table 5.1 demonstrates the radar parameterization consid-

ered for this experiment. The velocity characteristics are computed using the equations

presented in Section 2.1.2.

According to van Dorp & Groen 2003, when studying the µ-D signature of a non-rigid

body motion, such as a walking human, the signature of each individual is anticipated

to be unique due of changes in walking style and recognized RCS. The µ-D signature of

a human gait is the superposition of the signatures coming from the motions of distinct

body parts, such as the arms, legs, and feet. Consequently, the back-scattered radar

signal would contain a multitude of superimposed frequency components with substantial

temporal variations. A time-frequency analysis employing the STFT processing described

in Chapter 2 is utilized to visualize the variations in velocity.

5.2.2 Treadmill Experimental Setup

The study requires a data set containing diverse human body features. Therefore, 22

individuals of varying weights and heights were considered. The sample consists of 5

Table 5.1: The radar parametrization for µ-D acquisition.

Radar Paramaters Velocity Attributes

Center frequency 25 GHz
Sampling frequency 128 kHz Maximum velocity 6 m/s
Pulse frequency 2 kHz Velocity resolution 2 cm/s
Chirp duration 1 ms
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Figure 5.1: BMI-based distribution of both genders participating in the investigation.

(a) The treadmill experimental setup.
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(b) The captured µ-D signature due to the treadmill.

Figure 5.2: Schematic for the treadmill experimental setup, and the corresponding µ-D signature.

females and 17 males with weights ranging from 54 kg to 115 kg and heights between

1.62 m and 1.95 m. To monitor the relationship between height and weight, the BMI is

calculated by dividing weight by height squared for each participant. As explained in

Nuttall 2015, the BMI can be deceiving when measuring the subject’s volume because

it does not account for bone density, body fat, and muscle mass. To mitigate this effect,

participants are selected based on a direct correlation between their BMIs and their body

volumes. Figure 5.1 illustrates the BMI distribution of selected subjects.

As shown in Figure 5.2a, the radar is placed at a certain height and distance from the

back of the treadmill. The subjects are instructed to walk away from the radar at an

average speed of 1.6 m/s on the treadmill. All participants are tested, while the radar is

at the same height and distance, which are 1 m and 3 m, respectively. As a result, the

subject’s micro motion behavior is the only variable in the experiment. As a result, the

µ-D signature should be determined solely by the measured subject’s walking style and
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Figure 5.3: The architecture of the proposed CAE.

RCS. It is expected that a subject’s RCS will correlate with its cross section and, as a

result, BMI.

A full gait cycle’s µ-D signature is interpreted as two main half cycles. Each half gait

represents the fluctuating velocity components of various body parts. In comparison to the

left leg and the right arm, the left foot generates the highest velocity component during

one-half gait. As shown in Figure 5.2b, these effects are reversed in the subsequent half

gait, while the periodicity of the full gait cycle is maintained. Due to the periodicity of

each half gait cycle, the µ-D signature is segmented on a half-gait basis to ensure that the

data accurately reflect the walking motion. Each subject’s experiment acquisition time is

180 s. Depending on a subject’s height, the number of steps taken per second can vary.

However, an average of 0.5 s can be considered for a half gait cycle. Consequently, an

average of 360 half gait cycles are recorded per subject. Each half gait cycle is then saved

as an unsigned 16-bit integer RGB image with a 256 × 256 × 3 dimension for use as an

input for the proposed networks.

5.3 Autoencoder for Signature Investigation

A total of 7920 half gait µ-D images were gathered utilizing the designed experimental setup.

Significant amounts of useful information regarding the motion characteristics can be

extracted from each image. In order to examine the impact of human body characteristics

on the µ-D signature, an unsupervised autoencoder is used to reduce the dimensionality of

the input data to a specific latent space. Since the input µ-D signature is represented in

the time-frequency space, a CAE is used to extract latent image features.

A CAE’s encoder-decoder structure is described and illustrated in Le 2013. Encoder

uses a sequence of convolutional layers to transform a high dimensional input into a latent

space representation or bottleneck (maximum compression point). The Decoder upsamples
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back from the latent space representation to reconstruct the high dimensional input. The

primary objective of CAE is to minimize the cost function, which is represented as the

mean square error between input and output. As shown in Figure 5.3, the proposed CAE

uses a 256 × 256 × 3 input image and a 4-layer convolutional network with a stride of

2 to reduce the input to a 16 × 16 × 8 = 2048 latent space. To reconstruct the input

at the decoder side, a mirrored deconvolutional network is utilized. Consequently, the

2048 dimensional feature vector extracted from the downsampled latent space represents

the essential information in the half gait µ-D signature. This precise feature space size is

obtained by optimizing the hyper-parameters of our proposed CAE. Consequently, further

dimension reduction utilizing additional layers may result in an imperfect reconstruction

of the input image and, consequently, the loss of vital information in the bottleneck latent

space.

To visualize the distribution of the learned latent space representation, the t-SNE

representation introduced in van der Maaten & Hinton 2008 is used to reduce dimensions

further. The t-SNE can be defined as a nonlinear dimension reduction technique that can

be used to visualize the distribution of the 2048 dimensional encoded latent space in a

two-dimensional space. The primary objective of t-SNE is to generate two joint probability

distributions for both the high-dimensional space and the low-dimensional space that has

been mapped. As explained in Joyce 2011, the Kullback–Leibler divergence between the

two distributions is minimized as a metric for measuring the dissimilitude between the two

distributions. Therefore, it is highly probable that high-dimensional samples with similar

global or local structures will be visualized as neighboring points in 2D space.

Based on this method, the dimensions of the encoded half gait signatures can be reduced

to a 2D space that is easily interpretable. In Figure 5.4a, the reduced t-SNE is plotted

for 14 out of 22 subjects in order to facilitate visualization. The t-SNE representation

is capable of classifying each subject as two close, but distinct clusters for the left and

right swing cycles. This demonstrates the efficacy of t-SNE as it identifies each half gait as

distinct clusters within the same 2D space occupied by the subject. Moreover, neighboring

clusters of two distinct subjects may be of different genders and heights or weights. In

most instances, however, the BMI of neighboring clusters is comparable. As depicted in

Figure 5.4b, the 22 subjects can be divided into five BMI groups. Clusters that belong to
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(a) t-SNE of 14 different subjects.
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(b) t-SNE over different BMI groups.

Figure 5.4: Two clusters are observed on each subject from the right and left body sides.

Figure 5.5: Architecture of the utilized ResNet-50 network.

the same BMI group are typically distributed over the same area in 2D space. Due to the

fact that walking style can have a substantial effect on the µ-D signature outline and local

structure, some BMI groups tend to congregate in two major areas of the restricted space.

The latent space distribution of the solitary participant belonging to the obese category

(BMI over 30) can also be observed as a distinct cluster in 2D space.

5.4 Person Identification Network Architecture

On the basis of the presented study, it can be concluded that subjects with comparable

BMI and walking styles are likely to have comparable µ-D signatures. In order to classify

them as distinct subjects, a more complex architecture that can utilize local spectrum

details is required. This was observed when the authors of Cao et al. 2018 employed

a shallow 6-layer architecture to classify 20 subjects with a BMI range of 18 Kg/m2
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and achieved an acceptable performance with only 4 subjects. Increasing the number of

subjects causes BMIs and walking styles to become more similar, resulting in a decline in

classification performance to 68.9% for 20 participants.

In this feasibility study, a more sophisticated architecture is used to classify the 22

participants based on their collected half gait µ-D signatures. Due to the importance

of the real-time aspect, an architecture with fewer computations and a short inference

time is required. Therefore, the ResNet-50 architecture presented in He et al. 2016 is

utilized, as its number of parameters and operations is significantly lower than that of the

VGG-19 network presented in Simonyan & Zisserman 2014. As depicted in Figure 5.5, the

ResNet-50 architecture is based on residual blocks with a skip connection at every second

layer defined as:

𝑎[𝑙 + 2] = RELU(𝑎[𝑙] + 𝑧[𝑙 + 2]) , (5.1)

where 𝑙 is the index of the layer, 𝑎[.] is the activation of the layer, and 𝑧[.] is the output of

the layer prior to ReLU activation. These connections enable the training of extremely

deep networks without performance degradation. This can be explained as the network

learning the identity mapping of the activation 𝑎[𝑙] in the case of low output weights

𝑧[𝑙 + 2]. In other instances, the network is capable of learning weights and biases that

enhance performance. Therefore, the skip connections will either stabilize or enhance the

network’s performance.

Dimensional agreement is required for skip connections to be valid, which is not always

the case. To address this issue, a zero padding is utilized to enable residual operations over

these layers. Moreover, it is known that extremely deep networks can experience problems

with vanishing gradients, which can be mitigated by batch normalization Ioffe & Szegedy

2015. The output of the final convolutional layer is then passed to a fully connected layer

after being flattened. The likelihood of 22 classes corresponding to participants is then

generated by a softmax output layer.

5.5 Results and Discussion

An Adam optimizer is used to train the ResNet-50 architecture on 7920 labeled half gait

µ-D signatures. On a single NIVIDIA Titan X GPU, the training of the model took
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Figure 5.6: Examples of half gait µ-D signatures due to different BMIs.
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(a) Confusion on high SNR dataset.
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(b) Confusion on varying SNR dataset.

Figure 5.7: A classification accuracy of 98% and 84% for the high and varying SNR, respectively.

approximately 30 minutes. In Figure 5.6a, examples of collected signatures from various

BMI groups are displayed. Due to a relatively lower RCS, subjects with a low BMI tend

to have less power within the signature local structure. In contrast, the global structure of

the signature is primarily related to the velocity components of the swinging limbs and

thus to the walking style.

To evaluate the performance of ResNet-50, a second experiment is conducted with

the same 22 subjects, treadmill speed, and experiment duration in order to collect an

additional 7920 signatures for testing. The radar is placed at the same distance from the

treadmill, which is 3m. The network’s overall accuracy on the unseen test set was 98%.

The model inference time, or the time required to classify one half gait signature, is only

200 ms.

In Figure 5.7a, a normalized confusion matrix for the collected test set is displayed.

It can be concluded that adding more layers to the proposed ResNet-50 architecture

improved the classification performance for multiple subjects (> 20), despite the fact that
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the majority of the participants belonged to the same BMI group (21𝐾𝑔/𝑚2) and had

comparable walking styles.

To validate the hypothesis demonstrated in the previous section that a subject’s BMI can

influence its signature, a more realistic experiment on person identification is conducted.

In this experiment, the radar is placed 10 m further away from the treadmill. According

to the equations presented in Richards 2014, increasing the target range from the radar

causes a decrease in SNR. This is primarily observed in individuals with a lower BMI

due to the lower RCS detected. In addition, the µ-D signatures of individuals with

comparable BMI have partially lost their distinctive global and local structures. As shown

in Figure 5.6b, the increased similarity between the half gait signatures is anticipated to

make the classification task more difficult.

On the basis of this setup, an additional dataset is collected for all 22 subjects in order to

evaluate the effect of the lower SNR. All other experimental conditions, including walking

speed and data collection duration, are identical. The low-SNR and high-SNR datasets are

combined and then divided into train and test sets. Consequently, the combined dataset

contains more images with varying SNR values, making person identification more difficult.

The variation in SNR forces the network to acquire more complex local µ-D structures to

differentiate between distinct subjects. The mixed-SNR training set was used to train the

same network structure described in Section 5.4. On the unknown test set, it achieves an

accuracy of 84%. As depicted in Figure 5.7b, the confusion is greatest between subjects

with comparable BMI values.

5.6 Summary

In this chapter, an experimental study illustrating the effect of human body characteristics

on the µ-D signatures of walking individuals is presented. Using a CW radar, the µ-D

signatures of 22 subjects of various genders and body types walking on a treadmill are

measured. Consequently, the RCS and walking style of the moving subject are the primary

factors that influence the measured µ-D signatures. The BMI is used as a metric for the

body volume of selected participants, ranging from lean bodies starting from [18-20] kg/𝑚2

to obese levels at 37 kg/𝑚2. A CAE is utilized to encode the µ-D signatures of the half
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gait into a latent space representation. To visualize the latent space distribution in 2D, a

nonlinear dimension reduction based on t-SNE is applied. On the basis of visual analysis,

the BMI of the subjects and their walking styles are found to have a direct effect on their

µ-D signatures. A deep ResNet-50 architecture is trained on µ-D signatures for person

identification. The architecture correctly identifies µ-D signatures with a 98% accuracy at

low SNR values and an 84% accuracy at different SNR values, with confusions occurring

predominantly in subjects with comparable BMIs.

On the basis of this setup, an additional dataset is collected for all 22 subjects in order to

evaluate the effect of the lower SNR. All other experimental conditions, including walking

speed and data collection duration, are identical. The low-SNR and high-SNR datasets are

combined and then divided into train and test sets. Consequently, the combined dataset

contains more images with varying SNR values, making person identification more difficult.

The variation in SNR forces the network to acquire more complex local µ-D structures

to differentiate between distinct subjects. The mixed-SNR training set was used to train

the same network structure as in Section 5.4. On the unknown test set, it achieves an

accuracy of 84%. As depicted in Figure 5.7b, the confusion is greatest between subjects

with comparable BMI values. Nevertheless, the BMI is not considered of the only effect on

the human identification task, but it was investigated as it has a direct correlation with

the RCS. The feasibility study helped in putting the guidelines for the experimental setup

for designing an experiment for human identification through unconstrained walking.





6 Metric Learning for Free-motion Person

Recognition

MIMO radar modules have been employed for people identification, in which the interfero-

metric analysis between separate receiving antennas is utilized to estimate the target’s AoA

as explained in Milligan 2005, and a tracking function is introduced to µ-D-based human-ID

applications as described in Pegoraro et al. 2020, and Zhao et al. 2019. However, the rate

of change of AoA profiles can be tracked over time to reveal the micro-motions of angular

velocity. As far as we are aware, this was not previously examined as an additional element

for improving the human-ID task. This method differs from the one described in Nanzer

2010, in which the tangential angular velocity was calculated independently of the angle of

attack due to hardware restrictions. The primary objective was to increase the field of view

(FOV) to incorporate tangential circumstances. Nonetheless, classification uncertainty

between classes is still anticipated, since the newly-measured micro angular spectrogram

in the tangential dimension demonstrates identical performance to the commonly-used

µ-D signatures in the LOS, as detailed in Nanzer 2010; Nanzer & Zilevu 2014 and Nanzer

2016. In addition, the provided technique is based on estimating the micro angular velocity

while remaining independent of the AoA.

This chapter evaluates the viability of depending on the µ-𝜔 signature to improve

human identification. In addition, the concept of employing a metric learning approach for

overcoming restrictions such as detection from numerous aspect angles other than LOS,

increasing the number of classes, and real-time classification is investigated. The real-time

classification is based on the adaptive µ-D slicing described in Section 3.3.3, in which

classification is performed only on a single walking step or half gait cycle, which lasts

≊ 0.5𝑠. The algorithm is initially applied to the task of human identification, for which

the whole study and results are published in Weller et al. 2021. Then, the same method,

comprising the metric learning approach, the µ-𝜔 utilization, and the adaptive technique,
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was utilized in a subsequent investigation for activity recognition, the results of which were

reported in Aziz et al. 2022. Accordingly, the algorithm and context of metric learning

are explained first. The problem analysis, experimental design, and outcomes for both

use-case situations are then provided. The datasheet for the Radarbook2 module used for

all the experiments held in this chapter is presented in the appendix, in Section A.4.

6.1 Metric Learning Approach

Relying on metric learning approaches has a main function of obtaining satisfactory

classification compared to conventional DL techniques, but with a less amount of labeled

data. The basis of metric learning is a similarity score between two or more provided

examples as explained in Li et al. 2012 and Kaya & Bilge 2019. This similarity score

is derived based on the embedding space representation of input data, which is trained

to contain only the most significant characteristics. In contrast to standard learning

techniques, these features do not mirror the structure of the input data, but instead focus

on distinguishing characteristics across samples of various classes. Thus, an embedding

space is generated in which intrinsic data points are mapped to near proximity while

extrinsic data points are pushed further away.

6.1.1 Fundamentals of Triplet Loss

Typically, the number of classes in supervised learning is fixed. Common loss functions,

such as the categorical cross-entropy loss, are only applicable to a limited number of classes,

and NNs must be constructed accordingly. In certain circumstances, such as surveillance or

access control systems, the ability to process a variable number of classes is essential. One

approach to accomplish this is by comparing one sample to another and calculating their

similarity score. Triplet loss is a loss function that can accomplish the aforementioned

with a triplet of samples as described in Hermans et al. 2017.

The triplet loss was introduced in Schroff et al. 2015, where it was utilized to achieve

face verification, recognition, and clustering. The datasets were comprised of facial images

captured from widely varying angles, and the state-of-the-art performance was achieved

with only 128 bytes per face, whereas previous systems required thousands. Triplet loss is
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therefore a loss function that can learn an embedding space with high representational

efficiency. Accordingly, it was selected for the (µ-D)-based human identification due to

the availability of common constraints e.g., the limited amount of data and the urge of

detecting from multiple AoA.

Triplet loss is built on the concept of metric learning and provides a loss function that

is ideally suited to our thesis work. It is necessary to learn an embedding space in which

embeddings of the same class are mapped to close proximity and those of different classes

are kept well apart. The objective is not to merge embeddings of the same class into a

single point. The only criteria is that, given two samples of the same class and one of a

different class, the sample of the different class must be at least as distant as the sample of

the same class. Samples of the same class will be referred to as positives (𝑝) and samples

of different classes will be referred to as negatives (𝑛). The sample on which 𝑝 and 𝑛 are

based is known as anchor (𝑎). For fulfilling the aforementioned condition in the embedding

space, a distance between the three samples should satisfy:

𝑑(𝑎, 𝑝) − 𝑑(𝑎, 𝑛) ≤ 0 . (6.1)

However, Equation (6.1) can be easily satisfied in two ways that do not require the

network to acquire any useful information. The first procedure may involve mapping each

sample to the same point in the embedding space. Subsequently, the embedding vector

of each sample will be identical. The second possibility is that each sample’s embedding

vector equals zero. In order to prevent this, a margin (𝛼) is included such that:

𝑑(𝑎, 𝑝) − 𝑑(𝑎, 𝑛) + 𝛼 ≤ 0 (6.2)

In order to effectively cluster the samples in the embedding space, the network must

now learn a nontrivial solution. From this, the loss over a triplet is calculated:

ℓ(𝑎, 𝑝, 𝑛) ∶= max [𝑑(𝑎, 𝑝) − 𝑑(𝑎, 𝑛) + 𝛼, 0] . (6.3)

Figure 6.1 provides a visual representation of the complete DCNN network architecture.

The DCNN network is fed a concatenation of both the µ-D and µ-𝜔 spectrograms for slices
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Figure 6.1: The architecture of the triplet loss.

of single steps, as depicted in Figure 6.1. As the triplet loss requires the embeddings of 𝑎,

𝑝, and 𝑛 for each iteration, the DCNN processes all three concatenations. This can be

shown as three DCNNs with identical weights, one for each concatenation. Each network

is now identical to the other two. The embeddings are sent to the triplet loss, and the loss

scalar is backpropagated through the network.

6.1.2 Implementation of Triplet Loss

According to the definition of the triplet loss, there are three types of triplets that may

occur:

• Easy triplets with zero loss since 𝑑(𝑎, 𝑝) + 𝛼 < 𝑑(𝑎, 𝑛).

• Hard triplets in which the positive is farther from the anchor than the negative

𝑑(𝑎, 𝑝) > 𝑑(𝑎, 𝑛).

• Semi-hard triplets in which the positive is closer to the anchor than the negative,

but not by more than the margin 𝑑(𝑎, 𝑝) < 𝑑(𝑎, 𝑛) < 𝑑(𝑎, 𝑝) + 𝛼.

The definitions of the three categories depend on the relationship between 𝑑(𝑎, 𝑛) and

𝑑(𝑎, 𝑝). Thus, they can be converted to the negatives, which are classified as easy, hard,

and semi-hard. The regions of the embedding space that correspond to the three negative

types can be seen in Figure 6.2.

The sampling of triplets is a different process from the training of neural networks.

Consequently, it adds a computational expense that should be kept to a minimum. Choosing
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Figure 6.2: The three different types of negative samples: hard, semi-hard and easy.

𝐵 triplets and stacking the associated 3𝐵 samples into the batch is the most basic method

for sampling a batch. To determine whether a negative is easy, semi-hard, or hard, it

is necessary to compute the embeddings of all 3𝐵 samples. These are then utilized to

construct the 𝐵 triplets that contribute to the loss. Considering that 3𝐵 samples can be

joined in 6𝐵2 − 4𝐵 different ways to generate valid triplets as explained in Hermans et al.

2017. Thus, it is not feasible to employ only 𝐵 contributors to the loss. For this reason,

the authors in Hermans et al. 2017 recommended organizing the triplet loss for more

effective performance. The main concept fo their approach is based on applying a random

selection for 𝐾 classes and 𝑁 samples for each class. This will result in a mini-batch of

size 𝐵 = 𝐾𝑁. The most basic way to train the NN is describe in Hermans et al. 2017,

and called the batch all, where all the valid triplets (𝑉𝑏𝑎) are used and can be evaluated as

(𝑉𝑏𝑎 = 𝐾𝑁(𝑁 − 1)(𝐾𝑁 − 𝑁)).

However, the batch all technique is not considered the most feasible as it will include

all the easy triplets that don’t contribute to the learning process. As a solution another

technique is applied known as the batch hard. This technique is based on selecting the

most challenging positives and negatives for each anchor within the mini-batch. This

results in producing only moderately challenging triplets, as they are the most challenging

inside their mini-batch. Accordingly, the available triplets (𝑉𝑏ℎ) can now be evaluated

as (𝑉𝑏ℎ = 𝐾𝑁), and hence, it contributes to the loss as three times greater than the

traditional technique. In the context of the human identification, the hardest triplets are
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expected to occur between the µ-D signatures induced due to comparable BMI as has

been presented by in our study in Abdulatif et al. 2019, and discussed in Chapter 5.

The implementation of batch all and batch hard triplet loss is based on the blog article

presented in Schroff et al. 2015 and the corresponding Github repository in Moindrot 2018.

To keep the overhead of triplet sampling to a minimum, computations are performed as

efficiently as possible. Even though it requires slightly more computational effort, the

non-squared version of the triplet loss is utilized in this thesis work. It is demonstrated in

Wu et al. 2017 that the squared version has a negative effect on the relationship between

the attractive and repulsive gradients of hard positive and hard negative pairs, respectively.

It is straightforward to implement the batch all triplet loss. For each batch of size

𝐵, 𝑁 samples of 𝐾 classes are selected and organized into a three-dimensional tensor.

Nonetheless, not all triplets are valid. The result is a mask that is true if and only if

the triplet is valid. The entries of all invalid triplets in the tensor are set to zero, and

the sum of all tensor elements is calculated. However, not all triplets are valid, so a

filtering for valid tensors is carried out. The entries of all invalid triplets in the tensor

are set to zero, and the sum of all tensor elements is calculated. The implementation of

batch hard triplet loss is more complicated because hard positives and negatives must be

determined beforehand. To accomplish this, the Euclidean distance is first computed for

each embedding of the 𝐵 samples.

6.1.3 Triplet Mining

Good quality embeddings are the foundation of a well-performing system in metric learning.

A considerable amount of research has been conducted solely on loss functions to obtain

these. Their job is to extract all of the model’s positive and negative characteristics and, in

doing so, significantly affect the embedding space. Nevertheless, there is more to designing

the optimal system for a given task. The authors of Wu et al. 2017 demonstrate that the

selection of appropriate training samples is at least as important as the selection of an

appropriate loss function. Experiments they conduct reveal that different loss functions

behave similarly when sampling strategies are appropriate. It is demonstrated that the

same loss function produces radically different solutions when combined with different

sampling strategies.
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Sampling in DL describes the logic used to determine which samples to select from which

batches are constructed. These batches are subsequently used for training, validation,

and testing. Sampling weights data points effectively and defines a heuristic objective

function implicitly. This makes it difficult to apply and reproduce the insights to diverse

architectures, optimization frameworks, and data sets. Different sampling strategies and

loss functions are therefore implemented and evaluated empirically to determine the

optimal combination.

Offline Mining

Offline mining is the most primitive method for locating triplets and identifies them

offline. For example, mining can be performed prior to each epoch. During the mining

process, embeddings are computed for every sample in the entire training dataset, and

invalid triplets are discarded. In the subsequent step, semi-hard or difficult triplets can be

appended. When completed, found triplets are stacked into batches and then fed into the

NN. This technique is not very efficient because it requires computing 3𝐵 embeddings to

obtain 𝐵 triplets that contribute to the loss scalar. In addition, offline triplet mining must

regularly update the offline mined triplets. Otherwise, the network won’t generalize, and

the mined triplets will quickly become simple ones.

Online Mining

The online mining of triplets is more complex and was first introduced in Schroff et al.

2015. The central concept is to compute triplets in real-time in parallel with the training

process. To accomplish this, 𝐵 embeddings are computed for each batch of size 𝐵, and a

maximum of 𝐵3 triplets are discovered. Evidently, the majority of them will be invalid

and therefore will be discarded. To obtain the desired triplets, one of the two mining

strategies batch all or batch hard can now be implemented. Compared to offline mining,

online triplet mining requires the computation of a great deal fewer embeddings, making

it significantly more efficient and requiring less memory and computational resources.

Another advantage is that the embeddings are always computed using the most recently

parameterized DCNN, even within epochs. Therefore, the definitions of easy, semi-difficult,
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and difficult negatives change with each backpropagation cycle. It guarantees true easy,

semi-difficult, and difficult triplets at every stage of the training process.

The online mining of triplets is contingent on the fulfillment of certain preconditions.

Therefore, a meaningful representation of anchor-positive distances is essential for mining

success. Specifying a minimum number of samples 𝑁 of each class 𝐾 to be present in each

mini-batch 𝐵 can ensure that this meaningful representation is maintained. Consequently,

the batch size cannot be chosen arbitrarily and is instead defined by 𝐵 = 𝐾𝑁. In

the practical work for this thesis, the online mining strategy for batch-hard triplets is

implemented.

Distance-Weighted Mining

The study presented in Wu et al. 2017 proposes another suitable mining strategy for metric

learning approaches called distance-weighted mining. It is based on two factors, the first

of which is that gradients expose high variances and low SNRs when negatives are too

intense. The second consideration is that completely random samples are frequently too

far apart, making it difficult to provide the optimization algorithm with useful information.

Therefore, distance-weighted mining draws samples uniformly based on their distances.

This results in samples that are dispersed across the entire range of distances rather than

concentrated in a small region. Typically, both ends of the distance range contain noisy

samples. As they have a negative impact on the training process, these regions will be

clipped.

The authors of Schroff et al. 2015 report that their semi-hard triplet loss scalar decreases

at a slower rate after a period of training. This may be the result of their mining strategy

no longer discovering informative triplets. Distance-weighted sampling, on the other hand,

consistently produces informative samples while controlling the variance. Aside from this,

distance-weighted mining has two major benefits. Firstly, it corrects the bias introduced by

the geometry of the embedding space, and secondly, it ensures that every data point has a

chance of being sampled. This allows for a reduction in gradient variance, resulting in

more stable training. Regardless of the loss function, distance-weighted mining is capable

of producing embeddings that are qualitatively superior.
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6.2 Neural Network Overview

In this section, an overview about the utilized neural network is presented. This network

architecture is used for both studies, which are the free walking human identification that

is discussed in Weller et al. 2021, and activity classification from multiple aspect angles

that is discussed in Aziz et al. 2022. In Section 6.2.1, the structure of the inception network

is presented and the main concept of formulating the network in a wider architecture in

stead of a deeper one is discussed. Afterwards in Section 6.2.2, the idea of combining both

the residual and inception architectures is presented and discussed.

6.2.1 Inception Architecture

Similar to residual architectures, the multi-path methodology can also be attributed to

inception networks. They are founded on the principle of going wider rather than deeper,

and is full described in Szegedy et al. 2015. To accomplish this, they first divide the input

into parallel branches and then apply convolutions of varying scales. The data is then

independently convoluted for each branch before being merged back together. The size of

the convolutional kernels within each branch varies. This enables the extraction of spatial

information at multiple scales. In addition, the convolution process is separated into two

operations, allowing cross-channel and spatial correlations to be evaluated independently.

Typically, a 1 × 1 convolution comes before convolutions with intermediate and larger

kernel sizes. It is utilized to reduce computational complexity without compromising

generalization abilities. Since convolutional layers are the fundamental building block of

inception networks, sparse connectivity is utilized and redundant information is effectively

omitted. Therefore, inception blocks enable a network to acquire more accurate repre-

sentations of input data with fewer parameters and are less susceptible to over-fitting as

described in Szegedy et al. 2015.

Figure 6.3 depicts the inception block utilized in the practical work of this thesis. It

is based on the original research on inception networks described in Szegedy et al. 2015

and consists of four parallel branches. The first only uses one 1 × 1 convolution to extract

spatial information with fine-grained resolution. The second and third branches reduce

computational complexity by employing a 1 × 1 convolution. The subsequent 3 × 3 and
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Figure 6.3: The inception network main building block.

5 × 5 convolutions extract spatial information at medium and large scales, respectively. A

3 × 3 max-pooling operation is followed by a 1 × 1 convolution to form the last branch.

The max-pooling layer extracts dominant features from the input mapping, and the 1 × 1

convolution ensures that the size of this branch’s data is comparable to the other three.

The output of the inception block is the concatenation of the mappings of the individual

branches along the dimension of the filter.

6.2.2 Deep Convolutional Residual Inception Network

The concept of combining residual and inception structures was proposed by Szegedy et al.

2015. Experiments demonstrated that residual connections are not inherently required

to train very deep NNs successfully. Nonetheless, they significantly reduce the time until

training converges, which is a compelling argument for their use. The training results

consistently outperformed those of simple residual and inception architectures.

The residual inception network deployed for this thesis work is inspired by the architecture

described in Pegoraro et al. 2020 and is depicted in Figure 6.4. The concatenated half

gait cycle µ-D and µ-𝜔 spectrograms are initially fed into the initial stage of the network.

The inception block, which is depicted in Figure 6.3, now processes the concatenations. A

residual skip connection adds to its output the mappings preceding the inception block.

In contrast to the skip connection depicted in Figure 6.4, the current connection computes

a 1 × 1 convolution rather than feeding an exact identity mapping further down the
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Figure 6.4: The residual inception network architecture.

network. This is required to match the dimensions of the skip connection mapping to

those of the inception block output. After the element-by-element addition, a max-pooling

operation with a 1 × 1 kernel is executed. It suppresses noise and results in a diminution

of spatial dimension. This concludes the first stage, which is repeated three times more.

The obtained fully convolutional network architecture can be viewed as an encoder at

this point. The input data is mapped to an N-dimensional embedding space containing

only its most distinctive characteristics. These mappings are flattened and fed through a

two-layer deep fully connected (FC) network before they are presented to the loss function.

Combining the encoder and FC network results in the DCNN architecture.

6.3 Human-ID Task

In this section, an overview of the human identification task based on free walking is

presented. The study is discussed and published in details in Weller et al. 2021. This

study is considered the following step to our feasibility study published in Abdulatif et al.

2019, and discussed in Chapter 5. Our main objective in the study is accomplishing the

human identification task based on a free walking scenario in stead of the treadmill-based

experimental setup used in Abdulatif et al. 2019 and discussed in Section 5.2.2. The

limitations discussed in Section 5.1 were taken into consideration, when the experimental

setup was designed and the utilized neural network was selected. Those limitations can

be summarized as the real-time performance, effect of the body characteristics, capturing

meaningful µ-D signatures and the classification ambiguity between different classes. The

problem analysis is stated and discussed in Section 6.3.1. The radar paramterization and
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the experimental setup are presented in Sections 6.3.2, and 6.3.3 , respectively. Afterwards,

the results are presented and discussed in Section 6.3.4.

6.3.1 Problem Analysis

Deep learning has been successfully adapted to the topic of radar-based human identifica-

tion, which has resulted in leaps in classification accuracy, as demonstrated by the study

presented in Cao et al. 2018. The majority of current research utilizes µ-D spectrograms

and DCNN architectures, such as Papanastasiou et al. 2021; Qiao et al. 2020 and Vander-

smissen et al. 2018. The advantage of more advanced DCNNs has been studied in Yang

et al. 2019; Jalalvand et al. 2019 and Addabbo et al. 2020, while an explicit application of

range-Doppler maps is presented in Yang et al. 2020 and Ni & Huang 2020. The latter

demonstrates the efficacy of transfer learning in relation to radar-based human-ID. Thus,

transfer learning is presented as a solution to the need for massive amounts of data for

training DL approaches that can also be used for activity recognition. Few-shot learning

(FSL) is utilized for human-ID in Niazi et al. 2021 for the same reason. FSL has the

benefit of requiring fewer labeled samples to successfully train a DCNN and performing

better with unseen data. Using µ-D signatures, however, reduces the observation window

and increases the number of classes.

All the mentioned papers solved the radar-based human-ID task using at least 1 s

of µ-D spectrogram data (one full gait cycle), with the majority falling within the 3

s range. Longer observation windows allow for the inclusion of additional classes and

the identification of a less constrained walking style. Alternatively, our feasibility study,

which is described in Chapter 5 and published in Abdulatif et al. 2019, completed the

classification task on only half of the gait cycle, which lasts ≊ 0.5𝑠. However, the study was

conducted on treadmills with restricted motion in LOS scenario. The research proposes

residual neural networks as a viable alternative to relying on deep neural networks to solve

such complex classification tasks. The study also revealed a correlation between the BMI

and the µ-D signature, indicating that similar BMI can lead to classification ambiguity

due to the similarity of the walking style. In conclusion, there is a trade-off between the

real-time analysis and radar features, as well as the number of classes and unrestricted

walking. Furthermore, it is recommended to rely on less training data as the human-ID
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µ-D – Horizontal – LOS µ-D – Vertical – LOS

µ-𝜔 – Horizontal – LOS

(a)

µ-𝜔 – Vertical – LOS

(b)

Figure 6.5: Comparison between vertical and horizontal radar polarization for walking in LOS.

application always requires the addition of new classes. Therefore, walking for extended

periods of time and retraining the entire network are not applicable in the real world.

In this section, the methodology for the human-ID task is described, in which 22 subjects

walk unconstrained according to their natural gait. The framework is designed based on a

MIMO radar capable of capturing both µ-𝜔 and µ-D spectrograms. The overall captured

signatures are divided into half walking gait cycles utilizing an adaptive technique. The

experimental setup consists of walking at various aspect angles relative to the radar. The

proposed method is based on a similarity score methodology that calculates a correlation

between the walking signatures from various angles.

6.3.2 Radar Setup and Paramaterization

The utilized radar is a MIMO-FMCW module that is featured with a linear uniform

antenna (LUA) in which the direction of orientation has to be chosen carefully to ensure

capturing the micro motion signatures with th best SNR. Thus, a comparison is held
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µ-D – Horizontal – 30 ° µ-D – Vertical – 30 °

µ-𝜔 – Horizontal – 30 °

(a)

µ-𝜔 – Vertical – 30 °

(b)

Figure 6.6: Comparison between vertical and horizontal radar polarization for walking in 30∘.

between the vertical and horizontal orientations for both the LOS and the 30∘ from the

LOS. As shown in Figures 6.5, for the LOS, the vertical orientation is showing a better SNR

for both the µ-D and the µ-𝜔 signatures, which is expected as most of the antenna power

is utilized in the vertical scanning and reflected back from multiple points of the human

body. On the other hand, the horizontal orientation is showing a better performance

for the 30∘ direction as shown in Figure 6.6. Since, one of the main targets of the study

is achieving an enhanced performance for the human-ID on multiple aspect angles, the

horizontal orientation was selected.

The radar height was the second parameter that was taken into consideration, as most

of the µ-D signatures is induced due to the lower part of the human body. This aspect

is presented in Chapter 4 based on the results that we have presented in Abdulatif et al.

2017 and Abdulatif et al. 2018. To ensure that the captured micro motion signatures are

reflecting the micro behavior of the whole body, the hand height is taken as a reference

for the radar height. According to DIN 33402-2 and DIN EN ISO 14738, this is ≈ 0.75𝑚

for women and ≈ 0.82𝑚 for men as described in Körpermasse – Überblick. These defined
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heights refer to people aging from 18-65 years old in Germany. Thus, the radar was set up

at ≈ 0.7𝑚 to ensure meaningful captured micro motion signatures for the short people as

long as the taller ones.

Rotating the antenna has also been tested to show a direct impact on the quality of

the captured micro motion signatures as shown in Figure 6.7. Rotating the antenna

upside-dowm has shown a better SNR performance than the upright one as can be seen

in column (a), in which the lower body part is captured better. Moreover, the ghosting

behavior of the torso’s motion is more noticeable for the (a) column compared to the (b)

column. Thus, the radar is set up for horizontal orientation at a height of ≈ 0.7𝑚 when

rotated upside-down.

The radar is parameterized, in which the captured µ-D and µ-𝜔 signatures are fully

reflecting the micro motions behavior. As has been explained in Section 2.1.2, there is

a trade-off between both the vres and the Rres as shown in Figure 2.2. The radar is

parameterized to be able to fully detect the induced velocities due to the human body,

in which the walking velocity is estimated to be of ≈ 1.5m/s as has been explained in

Willen et al. 2013. However, the feet have been proved to induce a velocity component

of 4 multiples of the walking velocity as has been explained in Chapter 4, and our

study published in Abdulatif et al. 2017. Thus, Tp has been calculated to ensure a

reasonable vmax and an Np has been tested to result a meaningful µ-D signature with a

vres ≈ 0.5cm/s.

In order to support such fast chirp parametrization, the radar is parametrized with a

small bandwidth of 250 MHz, in which a Rres ≈ 60cm is revealed that is reasonable for

the average length of a single step. The last two parameters, which are the Ns and the

Table 6.1: The parameterization for the utilized MIMO radar.

Radar Parametrization Attributes

Start frequency fstrt 76.875 GHz
Bandwidth B 250 MHz Rres = 59.96 cm
Chirp repetition interval Tp 80 s vmax = 6.08 m

s

Number of samples per chirp Ns 128 Rmax = 19.19 m
Number of Tx antennas NTx 2 vres = 47.53 mm

s
Number of Rx antennas NRx 16 𝜃𝑟𝑒𝑠 = 0.0625∘

(Ethernet data rate) ℛ = 409.6 Mbit
s
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µ-D – Upright µ-D – Upside Down

µ-𝜔 – Upright

(a) Upright rotation.

µ-𝜔 – Upside Down

(b) Upside-Down rotation

Figure 6.7: The effect of the rotation of the radar sensor frontend on the captured spectrograms.

NRx, were calculated carefully in order not to exceed the maximum possible data rate

of the utilized radar module. The presented data path is based on Ethernet connection

that is capable of data speed of 500 Mbit/s. However, the realistic data speed is tested

to be ≈ 410Mbit/s. The data rate ℛ is affected by both parameters the Ns and the

NRx as the utilized radar is a MIMO-FMCW module. All the available 16 NRx antennas

are used to ensure capturing µ-𝜔 signature with the best SNR as has been explained in

Section 2.1.3. Hence, an Ns is calculated to fulfill the maximum achievable ℛ with an

Rmax ≈ 20m, which is satisfactory for our indoor applications. The entire radar sensor

parameterization is given in table 6.1. The left half states the parameters and their exact

values, and the right half shows the resulting resolutions and maximum ratings. These are

calculated with equations (2.16) through (2.15) and (2.31).

6.3.3 Experimental Setup

As described in Tahmoush & Silvious 2009, walking with an aspect angle to the radar LOS

degrades the quality of the captured micro-motion signatures. In order to test the viability

of the proposed triplet-loss method, walking at different aspect angles was considered.



6 Metric Learning for Free-motion Person Recognition 133

CoG

Zero velocity

(a) µ-D due to walking on a treadmill.

CoG

Zero velocity

(b) µ-D due to free LOS walking.

Figure 6.8: Comparison of the µ-D captured due to walking activity.

1
m

5 m

Figure 6.9: Experimental setup for the non-constrained walking.

Accordingly, the 22 subjects walked along predefined linear paths using their unrestricted,

natural gait at the aspect angles [±50∘, ±30∘, ±10∘, 0∘] with regard to LOS. As shown in

Figure 6.9, each path begins at a distance of 1 m from the radar and has a radial length of

5 m. The total recording duration per target is 6 min. The primary objective is to achieve

human-ID on a larger FOV with improved unrestricted walking. The entire dataset is

divided into 70% for training and 30% for validation. A separate test dataset consisting of

70 s per subject was also collected. The employed radar is parameterized according to

Table 5.1. For comparison with our first feasibility study, which was published in Abdulatif

et al. 2019 and described in Chapter 5, a treadmill-based dataset was collected on the

same individuals using the same setup and aspect angles.

As depicted in Figure 6.8, the radar configuration is capable of capturing meaningful

µ-D signatures. As depicted in Figure 6.8, relying solely on the treadmill configuration

yields realistic signatures that will vary between individuals. However, the other major
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effects that are induced by the free-walking scenarios, such as the SNR effect in relation

to the distance from the radar, are not captured. Moreover, as depicted in Figure 6.8, the

forced motion of the treadmill will induce a similar behavior for all the half gait cycles

that occur during walking. The data for each subject are collected for the duration of

time allotted, and then the STFT analysis is performed as a post-processing step. The

adaptive slicing discussed in Section 3.3 is then applied.

6.3.4 Results and Discussion

Spectrogram Constellations

Human-ID has been primarily based on the µ-D signature. Departing from this, the pre-

sented method permits training on different spectrogram constellations. The unrestricted

walking dataset is used for three training sessions. Initially, training on the µ-D and µ-𝜔

are conducted independently. The feasibility of cohesive µ-D and µ-𝜔 concatenation is

subsequently evaluated. Each training includes all 22 classes. The respective error rates

are 15.2% for the µ-D, 11.2% for the µ-𝜔, and 10.1% for concatenating both. The µ-𝜔

spectrogram appears to capture more discriminative features than the well-explored µ-D

spectrogram, despite the fact that both spectrograms display information that is closely

related. The concatenated training reduces error relative to the µ-D and 𝜔 only cases

by 33.6% and 9.8%, respectively. This demonstrates the effectiveness of spectrogram

concatenation, which is employed in all subsequent experiments.

Dataset Complexity

According to previous research presented in Cao et al. 2018; Qiao et al. 2020, and Van-

dersmissen et al. 2018 the number of classes in the dataset has a significant effect on the

accuracy of DCNN architectures that are based on conventional DL techniques. These

difficulties arise from their fundamental working principle, which is to immediately classify

a query sample into a particular class. Since FSL learns a distance function over given

samples in an embedding space, it is possible to extract meaningful features as long

as naturally related data is presented. Thus, the performance of classification is less

affected by the dataset complexity. This behavior can be observed on the presented DCNN
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Figure 6.10: Error rate performance due to the dataset complexity and the observation window
length.

architecture when given concatenations of coherent µ-D and µ-𝜔 spectrograms from the

dataset of unconstrained movement of 5 to 22 different targets, as depicted in Figure 6.10.

The presented method produces an error of 5.5% for five different classes in the test set,

which increases to 10.1% for 22 different classes. While the error rate still increases with

increasing dataset complexity, the correlation between the two is less distinct than in

previous research.

Dataset Size

Since FSL is primarily concerned with the limited availability of data, the presented DCNN

architecture is evaluated on various data sizes. Recent studies collect on average ≈20 min

of data per subject. Consequently, our collected data regarding unrestricted walking for 6

min per target is foreseen as limited. In order to test the system’s capabilities, the dataset

size is reduced further. Table 6.2 provides an overview of the training dataset sizes and

associated error rates. Only 1 min of training data would result in an error rate of 24.9%,

according to reports. By doubling this amount to 2 min, however, an error rate of 11.3%

is achieved, which was not significantly impacted by larger training data sizes of 3.15 min

and 4.20 min. This demonstrates the value of the proposed FSL method, which provides

robust accuracy on unseen data despite a brief training period.

Table 6.2: Performance of the error rate due to training dataset sizes.

Amount of data / min

1.05 2.10 3.15 4.20

Error rates / % 24.9 11.3 10.4 10.1
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(b) t-SNE after training.

Figure 6.11: t-SNE visualizations of the embedding space.

Observation Window

To demonstrate the viability of half-gait-cycle-based human identification, a series of tests

are conducted with varying observation window lengths. In order to minimize the impact

of varying dataset sizes, the overlap between successive windows is modified throughout

the experiments to maintain roughly the same size for each dataset. The results are shown

in Figure 6.10. In addition to the proposed half gait cycle method, it can be observed that

error rates decrease as the length of the observation window increases. This is because

fixing the length of the observation window cannot account for the shape consistency of

extracted signatures. This inconsistency in signatures increases the error rate for smaller

observation windows. The utilized µ-D spectrogram adaptive segmentation results in

the accurate extraction of the consistent shape of the captured gait cycles. As described

previously, our proposed framework for the half gait cycle ≈ 0.5𝑠 yields a classification

error comparable to the fixed observation window of 2 s.

6.3.5 Embedding Space

The performance of the FSL architecture highly relies on the quality of its embedding

space. Thus, a t-SNE representation is used for visualization as shown in Figure 6.11. The

various hues represent the 22 distinct classes. Before training, two widely dispersed but

well-separated clusters of randomly mixed classes can be observed. The direction of relative

movement towards or away from the radar causes the two clusters. Intra-class variances are

greater than inter-class variances, as indicated by the randomly mixed samples. Individual
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classes are tightly clustered and well-separated in the embedding space following training,

reflecting the classification error of 11.3%.

6.4 Activity Recognition task

Since the µ-D signature analysis is widely used in the research domain of human activity

recognition, such task was investigated by us for testing the robustness of our proposed

algorithm for free walking human identification. Our study including the experimental

setup, the utilized neural network approach and the results are discussed and published

in Aziz et al. 2022. Similar architecture is used, since both the human identification and

activity recognition tasks suffer from the same limitations as both are sub topics under the

main aspect of using the radar micro motion signatures for human detection. Accordingly,

the same architecture is used, which can be summarized in the following points:

• A MIMO radar is used in order to be capable of capturing from multiple aspect

angles and the study can be extended to include detecting humans simultaneously

at the same time.

• The data were collected from different aspect angles and different persons were

included to ensure data generalization.

• The triplet loss approach introduced in Section 6.1 is used.

• The µ-𝜔 is combined with the µ-D signatures for enhanced activity recognition.

• The adaptive slicing technique, which is used for extracting single occurrences

The study addressed ten activities that are very common to occur in homes. The

experimental setup is presented in Section 6.4.1. The results discussion is presented in

Section 6.4.3, which is divided into three main sub sections discussing the main aspects

that are addressed by us, which are the adaptive slicing, combining both the µ-D and µ-𝜔

signatures, and the few-shot learning approach.

6.4.1 Experimental Setup

The presented study is based on ten activities that are essential for home applications and

have been extensively studied in other studies such as Erol & Amin 2019 and Gurbuz &
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Figure 6.12: An example for the adaptive extraction of single instant of bending activity.

Amin 2019. Figure 6.12 displays both the µ-D and µ-𝜔 signatures for the various activities,

which can be classified as follows:

• Sitting, standing, and walking, which typically occur sequentially and involve the

participation of the entire body.

• Gesture and reaching, which are essential for smart home applications, rely solely

on the arm.

• Bending, kneeling, and jumping, all of which involve the lower body.

• As fall detection is vital for the elderly, the elderly must be able to detect and recover

from falls.

To ensure generalization, signatures were collected from eight different human subjects

ranging in height range 155-192 cm and weight range 70-105 Kg. Each subject performed

each activity in front of the radar for 30 s at a distance range of 1-3 m, with the exception

of walking, which was performed at a distance range of 1-5 m. Due to the fact that

detection at side angles diminishes the radar signals as explained in Tahmoush & Silvious

2009, the data was collected at various side angles, including LOS, ±30∘ and ±50∘, to

ensure ubiquitous recognition. To ensure data generalization and avoid redundancy, the

detection range and aspect angles for each target were not fixed. Consequently, each

subject was required to perform each task at four training locations and two test locations,

with the line of sight and randomly selected aspect angles of ±30∘ and ±50∘. Both the µ-D

and µ-𝜔 signatures were recorded, and then the spectrograms were separated into single

instances of each activity using various techniques. The sitting and standing activities

were recorded sequentially, and the recording time was doubled to ensure that all classes

received comparable data. Due to the complexity of the experiment, falling and standing
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from falling data were collected sequentially and resulted in fewer data samples than other

activities. The final two activities were not collected from different aspect angles; rather,

each subject sequentially fell and stood on all four sides of the body (front, back, left and

right sides). The duration of 30 s is the same for each record.

The measurements are based on the same MIMO radar module with the same parama-

terization that was presented in Section 6.3.2. Thus, the maximum achievable angular

resolution is ensured, and activities such as gesture and reaching can be detected, which

require high angle and range resolutions. The radar’s parameters are specified in Table+6.1.

The final two activities, falling and getting up after falling, are collected to test the viability

of the metric learning strategy for FSL. As shown in Figure 6.14, the full sequence of

falling and standing lasts for ≈ 5𝑠, whereas a single occurrence of other activities lasts

≈ 1.5𝑠. Consequently, both the falling and standing from falling activities couldn’t be

included in the training process from the beginning as they will induce much less samples

compared to other activities.

6.4.2 Slicing Techniques

To extract a single occurrence of each activity from the captured spectrograms, three

techniques were applied. First, a 1.5 s fixed-time window is employed, as this was

determined to be the average duration of a single cycle for the majority of the activities.

As the different activities are anticipated to occur sequentially and a single slice may

contain half-cycles from two distinct activities or a period of inactivity, such a technique

is not applicable to realistic situations. For improved data analysis, a 1.5 s sliding window

was applied. This technique functions as a data augmentation technique in which the

network is guaranteed to observe the full cycle of each activity from multiple perspectives,

and the size of the training data is increased. The third technique is adaptive slicing,

which accurately extracts a single instance of each activity, as depicted in Figure 6.12. It

detects the behavior of the CoG in the captured spectrogram using the algorithm presented

in Seifert et al. 2020, and described in Section 3.3. The CoG is used to determine the

movement direction, which is then combined with the envelope of the motion cycles to

determine the slicing locations. In addition, the frequency of slicing is adjustable and

fixed for each activity to ensure generalization. The metric learning approach is highly
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Figure 6.13: The μ-D and μ-𝜔 signatures for the main 8 activities.

applicable to applications such as fall detection where only a small training dataset is

available and FSL is required. For the purpose of this study, the model is initially trained

on the primary eight activities that are shown in Figure 6.13 and can adapt to two unseen

activities without additional training that are shown in Figure 6.14.

6.4.3 Results and Discussion

Slicing Techniques

The performance of the three slicing techniques is compared in terms of the size of the

training data, the consistency of the data, and the classification precision. The proposed

network is trained on the resulting µ-D sliced signatures, as this training method is the

most prevalent. All reported classification accuracy for all activities is based on the test

dataset. As mentioned in the previous section, the test dataset was collected independently.

As shown in Table 6.3, the minimum number of samples is produced by the first technique

of applying a constant window of 1.5 s. Despite the fact that 1.5 s is estimated to be

the average duration of a single occurrence for all activities, this technique does not

demonstrate a high level of consistency for the sliced samples, particularly for the sitting

and standing that were collected sequentially. Consequently, this technique yields the

lowest classification accuracy of 53.43%.

Using a sliding window of 1.5 s with an overlap of 80%, the second method yields a

total of 6288 augmented samples. This technique has demonstrated an overall accuracy

of 78.22%. This accuracy is nearly identical to that of the augmented dataset presented

in Erol & Amin 2019 for comparable tasks and training dataset sizes. Moreover, the

performance of our metric learning method is comparable to that of the study presented in
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Figure 6.14: Falling/Standing from falling signatures.

Li et al. 2019, which employs SVM with a similar sliding window algorithm. Nonetheless,

such a study has a real-time limitation due to the sliding window’s 3-5 s duration and 70%

overlap. Our study and the study presented in Li et al. 2019 indicate greater confusion

between sitting and standing, which are captured sequentially as they are expected to

occur sequentially. Consequently, adaptive slicing is necessary to reduce this classification

ambiguity.

The third technique simulates the behavioral slicing by introducing the concept of

adaptive slicing for each activity. This technique achieved the highest classification

accuracy of 82.14% on a training dataset of 680 samples, which is comparable in size to

the dataset utilized by the transfer learning approach described in Gurbuz & Amin 2019.

Despite the fact that our study was not conducted on all 12 activities presented in Gurbuz

& Amin 2019, our proposed metric learning approach provides a good indication based on

the limited dataset available. In addition, the activities were captured from a variety of

perspectives, as opposed to the majority of previous studies that only considered LOS.
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(c) µ-D / µ-𝜔 (89.0%).

Figure 6.15: Confusion matrix for all the micro-motion signatures constellations.

Moreover, the adaptive slicing technique demonstrates a high degree of applicability for

both standing and sitting activities, which can be extended to multiple activity streams.

Micro-motion Signatures Constellations

Adaptive slicing is used to slice both the µ-D and µ-𝜔 signatures, as both are timely-

synchronized. Training on the µ-𝜔 yielded an overall accuracy of only 83.63%. As shown in

Figure 6.15, relying solely on the µ-D or the µ-𝜔 will result in a decrease in classification for

certain activities. In the case of the µ-D, for instance, jumping is confused with kneeling,

reaching with gesture, and standing with sitting. In contrast, the µ-𝜔 confuses bending
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Figure 6.16: t-SNE for the adaptive-sliced and combined µ-D and µ-𝜔 signatures.

with sitting, and jumping with both kneeling and standing from sitting. Accordingly,

another training was conducted based on the combination of the µ-D and µ-𝜔. As depicted

in Figure 6.15c, this training yielded the best performance of 89%, with classification

accuracy for each class exceeding ≥ 80%.

The quality of the embedding space influences the effectiveness of metric learning. For

the embedding space visualization illustrated in Figure 6.16, the t-SNE approach can

be used. As depicted in Figure 6.16a, the dataset is complex because all the classes are

confused with one another. As illustrated in Figure 6.16b, our proposed network resulted

in well-separated classes. The t-SNE representation is consistent with the confusion matrix

of the combined micro-motion signatures, as displayed in Figure 6.15c. The bending,

walking, standing, and sitting form distinct clusters, whereas each gesture forms a cluster

with reaching and each kneeling with jumping. Consequently, it is evident that the metric

learning strategy could reduce the inter-class variances.

Table 6.3: The classification performance due to different slicing techniques.

Slicing technique

Time (discrete) Time (sliding) Adaptive

Samples/Class 60 786 85
Total data 472 6288 680
Accuracy / % 53.43 78.22 82.14
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Figure 6.17: Confusion matrix after applying FSL including the 10 activities.

Few-Shot Learning

FSL has demonstrated acceptable performance for human identification based on walking

activity using µ-D as presented in Ni & Huang 2021 and Yang et al. 2019. The task

of human identification necessitates a large amount of data, as classification must be

performed on the same activity for numerous subjects. FSL and transfer learning were

proposed as methods for collecting massive datasets. Similarly, distinguishing between

multiple activities is plagued by the same issues. In our study, we selected falling and

standing from falling to test the feasibility of FSL. For the elderly, fall detection is of

utmost importance, and radar has been foreseen as a viable solution because it protects

privacy and can be installed anywhere, such as in bathrooms. Other studies have included

falling as a primary activity, necessitating the collection of more data than our method.

The adaptive slicing method has demonstrated remarkable consistency in slicing both

activities sequentially.

The eight-activity-trained network is fine-tuned to include the two new classes. Using a

combination of the µ-D and µ-𝜔 signatures, the training was conducted on only 15 samples

for each of the two classes. The test dataset was evenly distributed across the ten classes,

with each class containing 42 samples. The classification accuracy of the FSL procedure

was 86.42%. As illustrated in Figure 6.17, both falling and standing from falling can be

classified with overall accuracy of 95% and 88%, respectively. Moreover, the addition of
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the last two activities had no effect on the classification accuracy of the eight primary

classes.

6.4.4 Summary

In this section, the robustness of the discussed architecture in Section 6.3 for the human

identification task is extended for a use-case of activity recognition. The performance

of combining a newly-formulated µ-𝜔 signature with the commonly-used µ-D signature

is tested using a MIMO radar. The presented study is published in Aziz et al. 2022,

and addressed eight critical activities for home use. The experimental setup is based on

capturing data on multiple aspect angles ranging and LOS. The data was collected in

30 s intervals for different subjects, and three slicing techniques were tested: a constant

window of 1.5 s, a sliding window with an overlap of 80%, and adaptive slicing based on

activity behavior. Both the µ-D and the µ-𝜔 produced comparable classification results

of 82.14% for the µ-D and 83.63% for the µ-𝜔. The best accuracy of 89% is obtained by

combining both micro-motion signatures. Finally, with only 15 samples for each activity,

the FSL was trained on falling and standing from falling, yielding a classification accuracy

of 86.42% for the ten activities.
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In this thesis, the use of radar sensors for indoor human detection and identification is

examined. The primary focus of the presented methods is a short-range analysis (≦ 10𝑚).

Investigating the µ-D signatures has started by developing a novel real-time µ-D limb

decomposition technique for a walking human. A combination of two simulations is used

to model a walking human target approaching a radar. The foundation of the initial

simulation is an empirical mathematical model. In the second simulation, infrared cameras

are used to track the positions of infrared-reflective markers placed on a real walking

subject. Independent of a particular walking target range scenario, power-free µ-D and

mean-free µ-R are deemed to be the most relevant classification features. The body is

subsequently divided into four primary classes (base, arms, legs, and feet). Body parts

are grouped into these four classes based on their relative velocity trajectories. Over

time, the µ-D and µ-R are extracted from the employed model and then used as features

for a decision tree classifier. The gathered characteristics are used to train the decision

tree classifier, and a new data set is generated for validation. Implementing an outliers

removal algorithm improves the true classification rates of the classifier. The full study is

published in Abdulatif et al. 2017. The research outcome was examined on a human-robot

classification use case. The CNN has shown the best performance compared to other

learning techniques with a classification accuracy of ≈ 99%, and the results were published

in Abdulatif et al. 2018

As the second main focus of this thesis, human fingerprinting while walking is examined.

The identification of humans is considered the most difficult task, and the results can

then be generalized to other applications of human recognition. Experimental research

illustrating the effect of human body characteristics on the µ-D signatures of walking

individuals is provided. Using a CW radar, the µ-D signatures of 22 participants of various

genders and body types walking on a treadmill are measured. Consequently, the RCS and

walking style of the moving subject are the primary factors that influence the measured µ-D

signatures. The BMI is employed as a metric for the body volume of selected participants,
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ranging from lean bodies between 18-20 kg/m2 to obese levels at 37 kg2. A CAE is utilized

for encoding the µ-D signatures of the half gait into a latent space representation. To

depict the latent space distribution in 2D, a nonlinear dimension reduction based on t-SNE

is employed. On the basis of visual analysis, the BMI of the participants and their walking

methods are found to have a direct effect on their µ-D signatures. A deep ResNet-50

architecture is trained on µ-D signatures for person identification. The presented approach

accurately recognizes µ-D signatures with a 98 % accuracy at low SNR levels and an

84 % at varying SNR levels, with confusions occurring predominantly in participants

with comparable BMIs. A full discussion, including the results of the feasibility study is

published in Abdulatif et al. 2019

The results of the preliminary feasibility study elaborated on the key factors for increasing

the number of included subjects, where the ResNet-50 network was presented as a remedy.

In addition, it suggested that confusion may occur because of the similarity in body shape

and demonstrated a direct correlation between body characteristics and walking style.

However, this was constrained by the treadmill’s motion. Consequently, the results and

employed network architecture served as guidelines for the design of an experimental

setup for unrestricted human recognition. The following study proposes a radar-based,

inception-residual DCNN-based human identification framework. By leveraging FSL, the

requirement for large training datasets is eliminated, and the triplet loss is successfully used

to learn a discriminative embedding space on challenging data. In addition, the duration

of individual data samples is reduced to half a gait cycle (≈ 0.5𝑠). Each sample consists of

time-synchronized µ-D and newly-measured µ-𝜔 spectrograms, the latter of which reflects

the micro-motion behavior of the angular velocity in the elevation plane. The half gait

cycles of walking are segmented in an adaptive manner. Using only 2 min of training data,

an error rate of 11.3% can be achieved. Implementing open-set capabilities and executing

the framework in real-time will be the subject of additional investigation. Previous research

identified ±60∘ as the dividing line between radial and tangential movements. This is

considered a limitation of using micro-motion signatures for human identification. In these

situations, a 3D point cloud radar can be useful for capturing more descriptive features

that can aid in human identification in both static and dynamic scenarios.
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The robustness and feasibility of the proposed metric learning approach are examined

in human activity recognition. The performance of combining a newly-formulated µ-𝜔

signature with the commonly-used µ-D signature is evaluated using a MIMO radar. The

research is conducted on eight essential activities that are highly probable to occur in

homes. The experimental design is predicated on the collection of data for multiple aspect

angles within the range of [±10∘-±50∘] and LOS. Three slicing techniques, including a

constant window of 1.5 s, a sliding window with an overlap of 80%, and adaptive slicing

based on the behavior of each activity, were tested on the data collected for different

subjects over periods of 30 s. Comparable classification performance was achieved by the

µ-D and the µ-𝜔, where classification accuracy of 82.14% for the µ-D and 83.63% for the

µ-𝜔 is achieved. Combining the two micro-motion signatures yields the highest accuracy of

89%. Finally, the FSL is trained on falling and standing from falling using only 15 samples

for each activity, resulting in a classification accuracy of 86.4% for the ten activities.

7.1 Research Limitations and Future Work

The presented work is based on proposing a single walking step as the classification sample

for all the presented studies, which introduces the results as feasible for real-time analysis

since a single step lasts for ≈ 0.5𝑠. For all the analysis, the utilized µ-D signatures are

demonstrated through post-processing, but it can be generated by concatenating the

captured velocity profiles through frame-by-frame processing. However, the algorithm of

adaptive slicing is not tested yet for such frame-by-frame processing. The feasibility of

integrating the presented algorithms with a tracker is not yet tested. Demonstrating the µ-D

and µ-𝜔 signatures through a tracker is expected to have a little different processing chain by

considering only the bins that are expected to contain targets to save computational power.

Other environmental conditions e.g., noise mitigation and the limited radar hardware

capabilities, were not discussed in this dissertation as they are out of scope. Nevertheless,

we have shared two studies about the µ-D de-noising and the radar super-resolution that

were published in Abdulatif et al. 2019, and Armanious et al. 2019, respectively. Relying

on the MIMO module enables the possibility of sensor fusion e.g., with any camera type

for enhanced detection, and this can be the next step.
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A Appendix
A.1 Description of the Limb Decomposition Process
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Figure A.1: Algorithm of limbs decomposition presented in Section 4.3 and published in Abdulatif
et al. 2017

A.2 Datasheet of Ancortek Radar

In this section, the user manual for the Ancortek radar is presented. This radar module is

used in this thesis work in two phases. First, it was used for the human-robot classification

use-case that is discussed briefly in Section 4.4, and published in Abdulatif et al. 2018.

Second, it was used by us for conducting a feasibility study on human identification that

is presented in Chapter 5, and published in Abdulatif et al. 2019.
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1 System Specification 

1.1 Scope 

Ancortek Inc has built compact-size, light-weight and low-power software defined RF modules 

and FPGA-based processor modules in S, C, X, and K bands operating at 2.4 GHz, 5.8 GHz, 6.2 

GHz, 9.8 GHz and 25 GHz.  Our SDR Evaluation Kits offer the ability of integrating transmitter-

receiver systems for applications to industry automation, medical monitoring, public safety and 

security and academic research.  

1.2 Features 

 Support FMCW, FSK, and CW Signal Waveforms.  

 Expandable Bandwidth. 

 Selectable Operation Parameters. 

 Selectable Stream Filtering. 

 Selectable Display Mode. 

 Recording of Complex (I & Q) Data. 

 USB 2.0 Interface to Host Computer. 

 Multifunctional Graphical User Interface (GUI). 

1.3 Parameters 

 An overview of the current SDR-KITs is shown in Table 1.  

 The parameters of 2.4 GHz, 5.8 GHz, 6.2 GHz, 9.8 GHz and 25 GHz SDR-KITs are 

illustrated in Table 2-6.   

 The parameters of the FPGA-based SDR-PM processor module are listed in Table 7. 
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Table 1 Overview of the SDR-KITs 

 

 

 

 

 

 

 

 

 

 

SDR 

Evaluation Kits

SDR-KIT 240B SDR-KIT 580B SDR-KIT 620B SDR-KIT 980B SDR-KIT 2500B

Waveforms FMCW/FSK/CW FMCW/FSK/CW FMCW/FSK/CW FMCW/FSK/CW FMCW/FSK/CW

Frequency 

Range

2.25 - 2.65 GHz 5.6 - 6.0 GHz 6.0 - 6.4 GHz 9.6 – 10.0 GHz 24 – 26 GHz

Expandable 

Frequency 

Range

2.05 - 2.65 GHz 5.2 - 6.0 GHz 5.6 – 6.4 GHz 9.2 – 10.2 GHz 23 – 26 GHz

Beam Width 

Horz/Vert

Patched Antenna

38°/38°

Patched Antenna

40°/20°

Patched Antenna

40°/20°

Patched Antenna

40°/20°

Horn Antenna

30°/20°

Bandwidth 100/150/300/400 

MHz

100/150/300/400 

MHz

100/150/300/400 

MHz

100/150/300/400 

MHz

0.5/0.75/1.5/2 GHz

Expandable 

Bandwidth

600 MHz 800 MHz 800 MHz 1 GHz 3 GHz

Power Output 22 dBm 19 dBm 19 dBm 18 dBm 16 dBm

Noise Figure 2.8 dB   3.4 dB 3.4 dB 3.4 dB 6.4 dB

Application

Through-Wall,

Ground Penetration

Industry, Medical, 

Security, Through-

Wall

Industry, Medical, 

Security, Through-

Wall

Industry, Medical, 

Security

Industry, Medical, 

Security
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Table 2 SDR-RF 240 Module Parameters 

Parameter  Min. Typ. Max. units 

Frequency Range 2.25  2.65 GHz 

Expandable Frequency Range 2.05  2.65 GHz 

Tune Voltage 0  5 V 

Tuning  Sensitivity @RF Port  0.1  GHz/V 

Power Output  21 22 23 dBm 

SSB Phase Noise @10KHz offset  -80  dBc 

SSB Phase Noise @1MHz offset  -130  dBc 

Conversion Gain Over Rx Channel 28 30 32 dB 

Noise Figure over Rx channel 2.6 2.8 3.0 dB 

Maximum input power  10  dBm 

Input 1dB power compression  -15  dBm 

Supply voltage 4.75 5 5.25 V 

Supply current 650 670 700 mA 

Operating temperature -40    85 C° 

Storage temperature -65   150 C° 

Dimensions L=79    W=56   H=13 mm 
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Table 3 SDR-RF 580 Module Parameters 

Parameter  Min. Typ. Max. units 

Frequency Range 5.6  6.0 GHz 

Expandable Frequency Range 5.2  6.0 GHz 

Tune Voltage 0  5 V 

Tuning  Sensitivity @RF Port  0.13  GHz/V 

Power Output  18 19 20 dBm 

SSB Phase Noise @10KHz offset  -80  dBc 

SSB Phase Noise @1MHz offset  -130  dBc 

Conversion Gain Over Rx Channel 26 28 30 dB 

Noise Figure over Rx channel 3.2 3.4 3.6 dB 

Maximum input power  10  dBm 

Input 1dB power compression  -11  dBm 

Supply voltage 4.75 5 5.25 V 

Supply current 650 670 700 mA 

Operating temperature -40    85 C° 

Storage temperature -65   150 C° 

Dimensions L=79    W=56   H=13 mm 
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Table 4 SDR-RF 620 Module Parameters 

Parameter  Min. Typ. Max. units 

Frequency Range 6.0  6.4 GHz 

Expandable Frequency Range 5.6  6.4 GHz 

Tune Voltage 0  5 V 

Tuning  Sensitivity @RF Port  0.13  GHz/V 

Power Output  18 19 20 dBm 

SSB Phase Noise @10KHz offset  -80  dBc 

SSB Phase Noise @1MHz offset  -130  dBc 

Conversion Gain Over Rx Channel 26 28 30 dB 

Noise Figure over Rx channel 3.2 3.4 3.6 dB 

Maximum input power  10  dBm 

Input 1dB power compression  -11  dBm 

Supply voltage 4.75 5 5.25 V 

Supply current 650 670 700 mA 

Operating temperature -40    85 C° 

Storage temperature -65   150 C° 

Dimensions L=79    W=56   H=13 mm 
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Table 5 SDR-RF 980 Module Parameters 

Parameter  Min. Typ. Max. units 

Frequency Range 9.6  10.0 GHz 

Expandable Frequency Range 9.2  10.2 GHz 

Tune Voltage 0  5 V 

Tuning  Sensitivity @RF Port  0.2  GHz/V 

Power Output  17 18 19 dBm 

SSB Phase Noise @10KHz offset  -80  dBc 

SSB Phase Noise @1MHz offset  -130  dBc 

Conversion Gain Over Rx Channel 26 28 30 dB 

Noise Figure over Rx channel 3.2 3.4 3.6 dB 

Maximum input power  10  dBm 

Input 1dB power compression  -13  dBm 

Supply voltage 4.75 5 5.25 V 

Supply current 650 670 700 mA 

Operating temperature -40    85 C° 

Storage temperature -65   150 C° 

Dimensions L=79    W=56   H=13 mm 
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Table 6 SDR-RF 2500 Module Parameters 

Parameter  Min. Typ. Max. units 

Frequency Range 24  26 GHz 

Expandable Frequency Range 23  26 GHz 

Tune Voltage 0  5 V 

Tuning  Sensitivity @RF Port  1.5  GHz/V 

Power Output  14 16 18 dBm 

SSB Phase Noise @1MHz offset  -100  dBc 

Conversion Gain Over Rx Channel 18 26 31 dB 

Noise Figure over Rx channel  6.4  dB 

Maximum input power  0  dBm 

Input 1dB power compression  -12  dBm 

Supply voltage 4.75 5 5.25 V 

Supply current 750 800 850 mA 

Operating temperature -40    85 C° 

Storage temperature -65   150 C° 

Dimensions L=79    W=56   H=13 mm 

 

Table 7 SDR-PM 402 Module Parameters 

Parameter  Min. Typ. Max. units 

Supply voltage 4.75 5 5.25 V 

Supply current 180 200 220 mA 

Operating temperature -40  to  +85 C° 

Storage temperature -65  to  +150 C° 

Dimensions L=79 W=76 H=13 mm 
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2 Operation Instruction 

2.1 Equipment List 

The Ancortek SDR Evaluation Kit comes with SDR-RF module and SDR-PM processor module. 

For complete operation and data collection, you will also need  

1. AC/DC power adapter +5V. 

2. USB 2.0 A to Mini-B cable. 

3. SMA-M to SMA-M cables. 

4. Transmitting and receiving antennas. 

5. Ancortek Graphical User Interface: SDR-GUI or MATLAB-based SDR-GUI. 

6. PC Windows Operating System.  

 

 
Figure 1 - Equipment List. 
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2.2 System Description 

Figure 2 is a high level block diagram of the SDR Evaluation Kit. A graphical user interface (SDR-

GUI) is used to control the configuration of the SDR via a USB 2.0 cable. Digital samples of 

control voltage are generated by the FPGA firmware. After D/A converter, an analog control 

voltage is directly sent to the voltage controlled oscillator (VCO). The output of the mixer in the 

receive chain is digitized and streamed to host computer for further processing. 

 

 
 

Figure 2 - System Block Diagram. 

  

TX 
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2.3 Getting Started 

1. Run setup.exe to install the Ancortek SDR-GUI. 

2. Plug in the Ancortek transceiver and go to the “Device Manager” (see Figure 3), right click 

“Unknown Device”. 

 

 

 
Figure 3 - Device Manager Window. 
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3. Click “Update Driver” (see Figure 4). 

  

Figure 4 - Update Driver. 

 

4. Click “Browse my computer for driver software” (see Figure 5). 

 
Figure 5 - Browse Computer for Driver Software. 
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5. Select the driver in the installation directory “Ancortek SDR/driver” according to  

Figure 6 below. 

 

Figure 6 - Update Driver Software. 

6. Driver software installed successfully. 

 
Figure 7 - Driver Software Installed Successfully. 

 

7. Open the SDR-GUI. 

8. MATLAB-based SDR-GUI is available for academic research groups upon request. 

 

  



 

15 

 

2.4 Graphical User Interface 

 Ancortek SDR-GUI 

After running setup.exe and updating the driver software, Ancortek SDR-GUI, as shown in Figure 

8, will appear. The GUI gives users access to selecting of waveforms, operating parameters, 

filtering types, and recording. It is capable of showing graphical representation of signals in time 

and frequency domain. 

 

1. Control Panel 

The Control Panel includes selecting of waveforms, operating parameters, filtering types, and 

recording. 

 Active Device 

1) The upper-left pop-up menu: List of detected Ancortek devices. 

2) The upper-right pop-up menu: Center frequency or channel selection. Please choose the 

corresponding center frequency of the SDR-KIT before activating it. When using SDR-

2400AD2, please choose CH1 or CH2 to select which channel to display. 

3) Activate: Start the data stream and plotting. This button is also used to stop the data 

stream or plotting. 

4) Refresh: Find Ancortek devices and list them in the upper-left pop-up menu. 

 Operating Parameters: Operating Mode 

1) FMCW Sawtooth: Range and Doppler measurements. 

2) FSK: Range and Doppler measurements of moving targets. 

3) CW: Doppler measurement. 

 Operating Parameters: Signal Parameters 

1) Bandwidth: Sweep bandwidth for FMCW Sawtooth waveform. 

2) Samples per Sweep: Number of time samples per sweep.  

3) Sweep Time: Length of one sweep. Changing the Sweep Time and  

Samples per Sweep will change the sampling rate. 
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 Operating Parameters: Display Mode 

1) Range & Time Scope: Range obtained by FFT of the beat signal in FMCW Sawtooth 

mode. 

2) Velocity Scope: Velocity obtained by FFT of the complex signal in FSK & CW modes. 

3) Range-Velocity Map: Range-Doppler map in FMCW Sawtooth mode. 

4) Range Waterfall: Waterfall of Range & Time Scope in FMCW Sawtooth mode and 

waterfall of detected range in FSK mode. 

5) Velocity Waterfall: Waterfall of Velocity in FMCW Sawtooth, FSK, and CW modes. 

 Stream Filtering 

1) DC Subtraction: Remove the mean value of the signal waveform. 

2) Amplitude Correction: Normalize the amplitude of signal waveform. 

3) Hamming Window: Using Hamming Window before taking FFTs. 

4) Direct Clutter Cancellation: Background subtraction for FMCW-Sawtooth mode.  

Please make sure that there is no target of interest on the scene at the very beginning to 

collect clutter data when Direct Clutter Cancellation is enabled. 

5) Outdoor Range Weighting: Correct range-based signal attenuation via radar equation.  

6) Range Windowing: Select range to be displayed. 

7) Velocity Windowing: Select velocity to be displayed. 

 Display Parameters: Dynamic Range 

1) Dynamic Range Auto: Automatic calculate the color limits using minimum and  

maximum data values.  

2) Dynamic Range: Sets the color limits to specified minimum and maximum values when 

Auto is unchecked. 

Note: Data values less than minimum or greater than maximum map to minimum and 

maximum, respectively. Values between minimum and maximum linearly map to the current 

color map. 

 Display Parameters: Update Rate 

Update Rate: Set update rate of graphical plots. Data processing time will affect the actual 

update rate. 
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 Display Parameters: Doppler Parameters 

Sweep Count: Number of pulses collected for signal processing. Decrease this value will 

ease processing burden, thus, may increase update rate of graphical plots. 

 Display Parameters: Waterfall Parameters 

1) History Size: Number of rows in data for waterfall display. 

2) Display Method: Resampling algorithm used for matrix data. 

3) Color Scheme: Change the color map.  

Note: In FSK mode, we suggest using Standard or B&W color scheme for Range Waterfall. 

 Export 

1) Screen Capture: Save the Top or Bottom View of graphical results into a file. 

2) Duration: Raw data length to record. 

3) Record Data Stream: Start recording. The raw data will be saved into .dat file for post- 

processing. Below listed is MATLAB sample codes for reading the *.dat file. Data is the raw 

data in (I + j Q) format. 

filename = '2015-03-25-10-08-12.dat'; % File name 

fileID = fopen(filename, 'r'); 

dataArray = textscan(fileID, '%f'); 

fclose(fileID); 

radarData = dataArray{1}; 

clearvars fileID dataArray ans; 

  

fc = radarData(1); % Center frequency 

Tsweep = radarData(2); % Sweep time in ms 

NTS = radarData(3); % Number of time samples per sweep 

Bw = radarData(4); % FMCW Bandwidth. For FSK, it is frequency step;  

For CW, it is 0. 

Data = radarData(5:end); % raw data in I+j*Q format 

 

For SDR-KIT 2400AD2, please use the following codes: 

% 24GHz two channel radar data read 
filename = '2016-04-25-16-22-16.dat'; % File name 
fileID = fopen(filename, 'r'); 
dataArray = textscan(fileID, '%f'); 
fclose(fileID); 
radarData = dataArray{1}; 
clearvars fileID dataArray ans; 

  
fc = radarData(1); % Center frequency 
Tsweep = radarData(2); % Sweep time in ms 
NTS = radarData(3); % Number of time samples per sweep 
Bw = radarData(4); % FMCW Bandwidth. For FSK, it is frequency step; For 

CW, it is 0. 
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Data = radarData(5:end); % raw data in I+j*Q format 
Data_1 = Data(1:2:end); % Data of channel 1  
Data_2 = Data(2:2:end); % Data of channel 2 

 

4) Record Status: When recording and saving are done, success information will appear. 

 Camera Controls 

1) Current Camera: Refresh Devices to show available cameras, and choose one from the 

listed cameras. 

2) Camera Status: Press DISABLED to activate the camera. Press ENABLED to deactivate. 

NOTE : Please resize the Camera window to your preferred size at start up. You could drag 

the Camera window or Radar Controls window to a different position.  



 

19 

 

2. Graphic Panel 

The Graphic Panel shows the graphical representation of signals in time and frequency domain. 

 

 
Figure 8 - Ancortek SDR-GUI. 

  

 MATLAB-based SDR-GUI 

MATLAB-based SDR-GUI is available upon request. It is shown in Figure 9.  

  

1. Control Panel 

The Control Panel includes selecting of waveforms, operating parameters, filtering types, and 

recording. 

 Start/Stop 

Start: Start the data stream and plotting. Please remember to choose the right center 

frequency from the pop-up menu on the right. When using SDR-2400AD2, please choose 

CH1 or CH2 to select which channel to display. 

Control Panel Graphic Panel

Photo
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Stop: Stop the data stream or plotting. 

 Waveforms 

1) FMCW_Sawtooth: Range and Doppler estimation. 

2) FMCW_Triangle: Range and Doppler estimation without range-Doppler coupling effect. 

3) FSK: Range and Doppler estimation of moving targets.  

4) CW: Doppler estimation. 

 Parameters 

1) Bandwidth: Sweep bandwidth for FMCW. 

2) Sweep Time: Length of one sweep or pulse. 

3) Sampling Number: Number of time samples per sweep. Changing the Sweep Time  

and Sampling Number will change the sampling rate. 

4) Frequency: Frequency of transmitted signal.  

 Filtering 

1) Direct Clutter Cancellation: Background subtraction for FMCW-Sawtooth and FMCW- 

Triangle. Please make sure that there is no target at the scene at the very beginning to 

collect clutter data when Direct Clutter Cancellation is enabled. Just after a few 

milliseconds, the target could enter the scene. 

2) Range Notch Filter: Filter out the clutter nearby when the target of interest is far from  

the transceiver for FMCW-Sawtooth and FMCW-Triangle. Please change notch width 

according to the distance of target of interest. 

3) Doppler Notch Filter: Filter out unwanted Doppler for range-Doppler map of FMCW- 

Sawtooth. Please change notch width according to the velocity of target of interest. 

 RawData 

1) Record: Record up to 8 seconds worth of raw data. Micro-Doppler analysis of the 

recorded raw data will appear in the Graphic Panel.  

2) Save: Save the recorded raw data into .mat file for post-processing. Below is Matlab 

sample codes for reading the .mat file. Data is the raw data in (I+jQ) format. 

raw = load('fmcw.mat');  

Data = raw.DATA; 

SweepTime = raw.SWEEPTIME; 

NTS = raw.samplenumberpersweep; 

BandWidth = raw.BANDWIDTH; 
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samp_rate =1/SweepTime*NTS*1000; 

 

For SDR-KIT 2400AD2, please use the following codes: 

% 24GHz two channel radar data read 
raw = load('two_channel.mat');  
Data_1 = raw.DATA1; % data of channel 1 
Data_2 = raw.DATA2; % data of channel 2 
SweepTime = raw.SWEEPTIME; 
NTS = raw.samplenumberpersweep; 
BandWidth = raw.BANDWIDTH; 
samp_rate =1/SweepTime*NTS*1000; 

 

3) Replay: Reshow the micro-Doppler analysis of the selected raw data. 

 

2. Graphic Panel 

The Graphic Panel includes selecting of graphical representation of signals in time and 

frequency domain. 

 FMCW_Sawtooth graphical results 

1) Stream: I & Q data. 

2) Waterfall: Waterfall of range profile. 

3) Range Profile: Range obtained from FFT of the beat signal. 

4) Range Doppler: Range-Doppler map. 

 FMCW_Triangle graphical results 

1) Stream: I & Q data. 

2) Range History: History of detected range. 

3) Velocity History: History of detected velocity. 

 FSK graphical results 

1) Stream: I & Q data. 

2) Velocity History: History of detected velocity. 

  3) Range History: History of detected range. 

 CW graphical results 

1) Stream: I & Q data. 

2) Waterfall: Waterfall of velocity profile.  

3) Velocity Profile: Velocity obtained from the FFT of the (I + jQ) 
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4) Velocity History: History of detected velocity. 

 

 
 

Figure 9 - MATLAB version of the SDR-GUI. 

Control Panel Graphic Panel
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A.3 Histogram-based Thresholding
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Figure A.2: Histogram-based thresholding techniques of Python library skimage.filters.

A.4 Datasheet of Radarbook2 Radar

In this section, the datasheet for the Radarbook2 module is presented. This radar module is

used in this thesis work for two use-cases. First, the free walking human-ID task presented

in Section 6.3, and published in Weller et al. 2021. Second, the activity recognition task

presented in Section 6.4, and published in Aziz et al. 2022.
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AN77-02 FMCW Basics

1 FMCW Basics

This application note shows how to perform FMCW measurements with the Radarbook2 (RBK2)
equipped with a 77-GHZ MIMO frontend.

Goal of The Application Note

� Configure RF frontend and collect FMCW raw data.

To configure the RF board the Rbk2IfxTx2Rx16 class design is provided. The implementation is
inherited from the Rbk2 class. Therefore it offers all methods specified in the base class and in
addition methods for configuring the frontend are provided. The Rbk2 class implements methods
to configure the baseband board and the signal processing inside the Arria 10 SoC. The Rbk2 class
is inherited from the Connection class. The Connection class implements the TCP/IP commu-
nication to the board and it also can be used to communicate with the RadServe software.

In Fig. 1 a block diagram of the frontend is shown. In the following paragraph the configuration
of the frontend and the transceiver chips with the RBK2 are described in detail. This application
note highlights how to perform FMCW measurements without the need to handle the configuration
of all the registers of the transceiver chips.

Figure 1: Block diagram of the fronted.

In the first step the RBK2 with the MIMO frontend must be powered on and connected to the
PC. Check the status LEDs on the RBK2 to verify that the board has booted successfully and
that the HPS system is running and the application loaded. In addition the RBK2, SeqTrig, and
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Rbk2IfxTx2Rx16 classes must be added to the Matlab path. After generating a class object

Brd = Rbk2IfxTx2Rx16('PNet','192.168.1.1');,

the frontend and the sampling chain can be configured. In this application note we show how to
perform FMCW measurements. The desired timing for the instantaneous transmit frequency ft(t)
is shown in Fig. 2. In the current example, upchirps with a start frequency fStrt, a stop frequency
fStop, a chirp duration TRampUp are generated and repeated in an interval TInt. The sampling chain

Figure 2: Measurement timing with instantaneous transmit frequency ft(t).

is configured to record the IF signals of all receive channels during the upchirp as shown in Fig. 2.
At first the timing unit in the FPGA is put into reset.

Brd.BrdRst();

This is required to disable ongoing measurements, in case a previous measurement script was inter-
rupted unexpectedly. In order to configure the frontend it is required to enable the frontend supply
on the RBK2.

Brd.BrdPwrEna();

The supply LEDs on the baseboard indicate that the frontend supply is turned on, as shown in
Fig. 3. The 77-GHz frontend requires both supplies and hence both LEDs are turned on after
enabling the supply.

The frontends for the RBK2 support different clocking and trigger sources in order to enable radar
networks. In this example we operate the board as master (MS) and we use its own clock signal. In
addition the clock signal for the ADCs is set to 40 MHz. Currently 20 and 40 MHz are supported
for the ADC clock fAdc. The clock should be set to 40 MHz because this ensures that the sampling
is synchronous to the programmed frequency ramps.
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Figure 3: Power LEDs indicate the state of the frontend supply.

Brd.BrdSetRole('Ms', 40e6);

In the next step the receivers (IFRX1 - IFRX4) are enabled. The method

Brd.RfRxEna();

configures all IF channels of the four receive chips. In the next step the transmit chip is enabled

Brd.RfTxEna(1, 63);

The first argument specifies the transmit antenna to be activated and the second argument specifies
the output power. The argument for the transmit antenna can be in the range from 0 to 2. The
transmit path is deactivated by specifying 0 for the transmit antenna. If the value for the transmit
antenna is non zero, then the specified transmit antenna is turned on permanently. The second
argument is used to define the output power for the activated transmit channel. According to the
datasheet a value in the range from 0 to 63 is allowed. Thereafter the timing of the transmit signal
is specified with the following structure.

Cfg.fStrt = 76e9;

Cfg.fStop = 77e9;

Cfg.TRampUp = 512e-6;

Cfg.TRampDo = 64e-6;

Cfg.TInt = 200e-3;

Cfg.N = 1000;

The parameter TRampUp defines the duration of the upchirp and the chirp repetition interval is
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specified with the parameter TInt. The number of samples during a single upchirp is defined by
the field N. Sampling is only performed during the upchirp sequence. The duration of the downchirp
is specified by TRampDo. To configure the synthesizer and program the timing unit in the FPGA
the method

Brd.RfMeas('ExtTrigUp',Cfg);

is called with the first argument 'ExtTrigUp' and the second argument being the previously
defined configuration structure. The 'ExtTrigUp' measurement mode generates a trigger for the
RCC1010 in the defined interval TInt. In addition, the sampling chain of the RBK2 is triggered to
record the data during the upchirp. The method automatically configures the sampling frequency
and the CIC filters in the sampling chain. The Get method Brd.Get('fs') can be used to read
the configured sampling frequency. The desired sampling rate

fs,des =
N

TRampUp

is defined by the chirp duration and the number of samples. Only if the fAdc is an integer multiple
of the desired sampling rate, then the actual sampling rate is the desired one. If not the firmware
selects the sampling rate reduction

R = floor

(
fAdcTRampUp

N

)
by trancating the fractional part and hence the actual sampling rate

fs =
fAdc

R

is higher than the desired one. In this case only the first part of the ramp is sampled. The actual
sampling rate can be readback with Brd.Get('fs').

After the configuration is programmed, the method

Data = Brd.BrdGetData();

can be used to read back the sampled IF signals. Every call of Brd.BrdGetData() returns the IF
signals for a single upchirp and all receive channel. In the default configuration the first values of
every column contains the frame counter, which numbers the adjacent measurements. The frame
counter numbers all frames recorded and if one or multiple values are missing, this indicates that
the data transfer could not forward all the measured frames. In Fig. 4 the sampled signals for a
single frame are plotted.
After finishing measurements the power supply of the frontend can be disabled again.

Brd.BrdPwrDi();

Moreover the timing unit can be put into reset with the method
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Figure 4: Sampled IF signals for a single upchirp and eight data channels (plot(Data)).

Brd.BrdRst();

Measurement Mode: ExtTrigUp

The 'ExtTrigUp' measurement mode is a basic mode, where the timing is generated by the timing
unit (SeqTrig) in the FPGA. The timing unit generates a trigger signal for the RF synthesizer and
for the ADC interface that collects the ADC data. The configuration structure provides additional
entries that can be used to configure the timing.

Cfg.IniEve = 0;

Cfg.IniTim = 100e-3;

Cfg.CfgTim = 40e-6;

Cfg.ExtEve = 0;

Cfg.Strt = 1;

These entries are optional and need not be specified before calling RfMeas. The parameters IniEve
and IniTim can be used to delay the start of the measurement. If IniEve is zero then the IniTim is
the time before the measurement sequence is started as shown in Fig. 5. At the end of the RfMeas
method the function BrdSampStrt() is executed. If Cfg.Strt is zero, then BrdSampStrt() is
not called at the end of RfMeas and the user can start the timing manually. The BrdSampStrt()

function starts the timing unit in the FPGA. After the period specified by IniTim the measure-
ment sequence is started. At first in the configuration interval (mcodeCfg.CfgTim) the synthesizer
is configured with an SPI command and after the configuration time a trigger is generated to start
the upchirp and the sampling of the IF data. The duration of the configuration interval can be
altered with Cfg.CfgTim. The measurement time is selected so that the configuration time and
the measurement time add up to TInt.
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Figure 5: Measurement timing with IniEve and ExtEve set to zero.

If IniEve is set, then the timing unit waits for an event before measurements are started. In the
master mode the event source is set to the firmware function BrdSampTrig(). Hence, the event
can be triggered by the application script. In Fig. 6 the timing is started with an event after
the selected IniTim. The event is only recognized at the end of the initialization interval. If the
initialization interval is not finished an event is ignored. The user has to ensure that the event is
generated after IniTim.

Figure 6: Measurement timing with IniEve set and ExtEve cleared.

If ExtEve is set, then the timing unit waits for an event at the end of every ramp as shown in
Fig. 7. In the master mode the event for the measurements can be generated with the firmware
function BrdSampTrig().

Figure 7: Measurement timing with IniEve and ExtEve set.
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Kurzfassung

Das Studium von Radar zur menschlichen Erkennung basierend auf Deep Learning wird

immer populärer. Es wurde gezeigt, dass der Mikro-Doppler (µ-D) Spektrogrammeffekt

den Gang eines gehenden Menschen durch Erfassung der periodischen Mikrobewegungen

der Gliedmaßen widerspiegeln kann. Der Forschungsbereich wurde erweitert, um die

Erkennung von Menschen bei variablen Aktivitäten einzubeziehen, wodurch eine Vielzahl

von Anwendungen untersucht wurde, wie z.B. Sturzerkennung. Zudem gibt es zwei Haupt-

faktoren, die das Radar als leistungsstarken Sensor für solche Anwendungen etabliert haben.

Erstens, die Radarerkennungsfähigkeit, die nicht durch Umweltbedingungen beeinträchtigt

wird. Zweitens, das Mehrfach-Eingabe-Mehrfach-Ausgabe Übertragungsprotokoll, das die

Radarerfassung und -verfolgung mehrerer Menschen ermöglicht.

In dieser Arbeit werden Radarsensoren für die indoor Erkennung und Identifikation

von Menschen untersucht. Eine Kurzstreckenanalyse (≦ 10𝑚) steht im Mittelpunkt aller

vorgeschlagenen Ansätze. Zu Beginn der Forschung werden die Hauptmerkmale der er-

fassten gehenden µ-D Signatur extrahiert und analysiert. Erste Untersuchungen werden

mit einem kombinierten halb-simulierten Signalmodell durchgeführt, das wir entwickelt

haben. Das Modell simuliert ein typisches Einzel-Eingabe-Einzel-Ausgabe Radar zur

Überwachung eines einzelnen gehenden Ziels. Reichweite und Geschwindigkeit sind die er-

sten beiden Radarmerkmale, die untersucht werden. Die Klassifizierung von Menschen und

Robotern dient als Fallstudie zur Überprüfung der Ergebnisse. Das Reichweitenmerkmal

wird bewertet, um das Mikrobewegungsverhalten zu reflektieren und so eine verbesserte

Erkennungsfähigkeit zu gewährleisten. Aufgrund des Verhaltens von Körperteilen innerhalb

der µ-D Signaturen bildeten die Ergebnisse der ersten Machbarkeitsstudien die Grundlage

für das Konzept der menschlichen Erkennung. Zudem lenkte es unsere Aufmerksamkeit

auf die Bedeutung der Nutzung mehrerer Radarmerkmale zur verbesserten Erkennung.

Gehen ist die Hauptaktivität in all unseren Untersuchungen und wird als die wichtigste

Aktivität für das Studium des µ-D Effekts im Radar betrachtet.



Die menschliche Identifikation ist das zweite Hauptforschungsziel aufgrund ihrer kritis-

chen Anforderung in den meisten Sicherheitssystemen. Die Gehaktivität ist festgelegt, und

daher werden ähnliche µ-D Signaturen unter Menschen erwartet. Daher gilt diese Aufgabe

als die schwierigste und allgemeinste, die später auf andere Szenarien verallgemeinert

werden kann. Das entwickelte Verfahren kann daher leicht auf andere Aufgaben zur men-

schlichen Erkennung angewendet werden. Für eine einzige Entscheidung besteht immer

ein Kompromiss zwischen der Anzahl der einbezogenen Subjekte und der Länge des für die

Identifikationsaufgabe erfassten Spektrogramms. Daher besteht das Forschungsziel darin,

diese Einschränkungen durch Kombination mehrerer Radarmerkmale zu überwinden, um

die Klassifizierungsambiguität zu reduzieren und die Klassenanzahl zu erhöhen, während

eine Echtzeitklassifikation erreicht wird. Dafür wird der geschätzte Einfalls winkel des

Radars untersucht, um ein neu gemessenes Mikro-Winkelgeschwindigkeitsspektrogramm zu

erstellen, das das Verhalten der Mikrobewegungen des Körpers im Einfallswinkelmerkmal

widerspiegelt.

Es wird auch berücksichtigt, dass die Qualität des Spektrogramms erheblich abnimmt,

wenn es aus verschiedenen Betrachtungswinkeln in Bezug auf das Radar erfasst wird.

Der Hauptgedanke ist, einen machbaren Deep Learning Ansatz zu untersuchen, um eine

adaptive Lösung zu gewährleisten. Die Generalisierung und Robustheit des endgültigen

Ansatzes werden durch seine Anwendung auf eine Aktivitätsklassifikationsaufgabe bewertet,

die die Sturzerkennung einschließt. In diesem Zusammenhang sieht die Arbeit zwei

Hauptaspekte vor. Erstens, Verringerung des erworbenen Trainingsdatensatzes. Zweitens

wird der Echtzeitaspekt berücksichtigt, sodass alle Klassifizierungen bei einem einzigen

Vorkommnis der Aktivität erfolgen, wobei ein einzelner Gehschritt ≈ 0.5𝑠 dauert.






	Dissertation Outline
	Acknowledgements
	Table of Contents
	List of Acrynomes
	List of Symbols
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Thesis Overview
	1.4 Thesis Organization

	2 Background
	2.1 Overview of Radar Systems
	2.1.1 The Un-modulated Continuous Wave Radar
	2.1.2 Frequency Modulation Continuous Wave Radar
	2.1.3 Multiple-Input-Multiple-Output Transmission Protocol

	2.2 Micro-Motion Signatures in Radar
	2.2.1 Time-Frequency Representation
	2.2.2 Micro-Motion Signature of a Moving Rigid Body
	2.2.3 Micro-Motion Signature of a Moving Nonrigid Body

	2.3 Human Walking Gait Analysis
	2.3.1 Walking Human Kinematics
	2.3.2 Human Walking Emperical Mathematical Model

	2.4 Deep Learning Background
	2.4.1 Deep Feedforward Network
	2.4.2 Deep Convolutional Neural Network

	2.5 Literature Review
	2.6 Summary

	3 Radar Signal Processing
	3.1 The Main Radar Features
	3.2 Spectrogram Computation
	3.2.1 Micro-Doppler Spectrogram
	3.2.2 Micro-Angular Spectrogram

	3.3 Activity Adaptive Monitoring
	3.3.1 Spectrogram Preprocessing
	3.3.2 Keypoint Vector Extraction
	3.3.3 Spectrogram Adaptive Segmentation

	3.4 Summary

	4 Human Detection While Walking
	4.1 Combined Signal Model
	4.1.1 Global Human Walk Model
	4.1.2 Qualisys Walking Model
	4.1.3 Human Body Segment Representation

	4.2 Radar Features Interpretation
	4.2.1 Comparison Between Simulations and Real Measurements

	4.3 Decomposing Limbs Trajectories
	4.3.1 Methodology
	4.3.2 Results
	4.3.3 Conclusion

	4.4 Human-Robot Classification
	4.4.1 Methodology
	4.4.2 Results and Discussion
	4.4.3 Summary


	5 Feasibility Study for Human Identification While Walking
	5.1 Human Identification Limitations
	5.2 Methodology for Human Identification
	5.2.1 Radar System Parametrization
	5.2.2 Treadmill Experimental Setup

	5.3 Autoencoder for Signature Investigation 
	5.4 Person Identification Network Architecture 
	5.5 Results and Discussion
	5.6 Summary

	6 Metric Learning for Free-motion Person Recognition
	6.1 Metric Learning Approach
	6.1.1 Fundamentals of Triplet Loss
	6.1.2 Implementation of Triplet Loss
	6.1.3 Triplet Mining

	6.2 Neural Network Overview
	6.2.1 Inception Architecture
	6.2.2 Deep Convolutional Residual Inception Network

	6.3 Human-ID Task
	6.3.1 Problem Analysis
	6.3.2 Radar Setup and Paramaterization
	6.3.3 Experimental Setup
	6.3.4 Results and Discussion
	6.3.5 Embedding Space

	6.4 Activity Recognition task
	6.4.1 Experimental Setup
	6.4.2 Slicing Techniques
	6.4.3 Results and Discussion
	6.4.4 Summary


	7 Summary
	7.1 Research Limitations and Future Work

	Bibliography
	A Appendix
	A.1 Description of the Limb Decomposition Process 
	A.2 Datasheet of Ancortek Radar
	A.3 Histogram-based Thresholding
	A.4 Datasheet of Radarbook2 Radar





