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The separation of computing units and memory in the computer architecture mandates
energy-intensive data transfers creating the von Neumann bottleneck. This bottleneck is
exposed at the application level by the steady growth of IoT and data-centric deep learning
algorithms demanding extraordinary throughput. On the hardware level, analog
Processing-in-Memory (PiM) schemes are used to build platforms that eliminate the
compute-memory gap to overcome the von Neumann bottleneck. PiM can be
efficiently implemented with ferroelectric transistors (FeFET), an emerging non-volatile
memory technology. However, PiM and FeFET are heavily impacted by process variation,
especially in sub 14 nm technology nodes, reducing the reliability and thus inducing errors.
Brain-inspired Hyperdimensional Computing (HDC) is robust against such errors. Further,
it is able to learn from very little data cutting energy-intensive transfers. Hence, HDC, in
combination with PiM, tackles the von Neumann bottleneck at both levels. Nevertheless,
the analog nature of PiM schemes necessitates the conversion of results to digital, which is
often not considered. Yet, the conversion introduces large overheads and diminishes the
PiM efficiency. In this paper, we propose an all-in-memory scheme performing
computation and conversion at once, utilizing programmable FeFET synapses to build
the comparator used for the conversion. Our experimental setup is first calibrated against
Intel 14 nm FinFET technology for both transistor electrical characteristics and variability.
Then, a physics-based model of ferroelectric is included to realize the Fe-FinFETs. Using
this setup, we analyze the circuit’s susceptibility to process variation, derive a
comprehensive error probability model, and inject it into the inference algorithm of
HDC. The robustness of HDC against noise and errors is able to withstand the high
error probabilities with a loss of merely 0.3% inference accuracy.

Keywords: hyperdimensional computing (HDC), processing-in-memory (PIM), emerging technology, brain-inspired
computing, ternary content addressable memory (TCAM), HW/SW codesign, ferroelectric transistors (FeFET)

1 INTRODUCTION

The recent trend towards data-centric applications, like deep neural networks and big data analysis,
challenges the current computer architectures. The large energy cost of data transfers renders the von
Neumann architecture inefficient for such data-centric workloads. A result of this separation
between compute and memory units is the “memory wall”. To tackle this problem effectively,
advances across the whole technology stack are asked for. On one side, brain-inspired algorithms are
rapidly emerging due to the ability to perform deep learning tasks with very little data. On the other
side, architectures unifying compute and memory units reduce the number of data transfers.
Combining these two sides creates an efficient holistic solution.
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Processing-in-Memory overcomes the expensive data
transfers necessitated by the von Neumann architecture. The
radical idea is to merge compute units with memory, enabling the
memories to perform computational tasks eliminating data
transfers. Most Processing-in-Memory (PiM) schemes carry
out the computation in analog Ielmini and Wong (2018) and
thus face the challenge of converting the result back to the digital
domain for further processing (Imani et al., 2017; Ni et al., 2019;
Karunaratne et al., 2020). Although Analog Digital Converters
(ADCs) are fundamental building blocks and therefore heavily
researched and optimized, they are still huge and power-hungry
Kull et al. (2018), significantly reducing the gains from PiM
schemes. Fully digital PiM is still in its infancy.

Brain-Inspired Hyperdimensional Computing (HDC) is a
promising, rapidly emerging computation paradigm Kanerva
(2009). High-dimensional vectors mimic our understanding of
the brain, which uses patterns and neural activity. HDC has been
applied in several domains, like language classification Rahimi
et al. (2016b), gesture recognition Rahimi et al. (2016a), wafer
map defect pattern detection Genssler and Amrouch (2021), and
more (Dua and Graff, 2017; Kleyko et al., 2017; Burrello et al.,
2018; Lobov et al., 2018; Kim et al., 2020). Classical machine
learning algorithms, especially Deep Neural Networks (DNNs),
require lots of training samples to generalize the data. In contrast,
one-shot learning has been demonstrated with HDC, learning
from few samples in a single iteration Burrello et al. (2018).
Further, the high dimension of the hypervectors makes them
inherently resilient to errors Imani et al. (2017). Such robustness
is essential if less reliable, yet more efficient emerging
technologies are employed.

Ferroelectric Transistors are an emerging non-volatile
memory (NVM) technology. Prototypes have been
demonstrated by major players in the semiconductor industry,
like Intel Banerjee et al. (2020) and GlobalFoundries Beyer et al.
(2020). Interest in academia is also rapidly increasing (Jerry et al.,
2017; Si et al., 2019; Genssler et al., 2021). A single Ferroelectric
Field Effect Transistor (FET) (FeFET) is a fully functional
memory cell and does not require additional access transistors
enabling ultra-dense on-chip memories compared to 6T Static
Random Access Memory (SRAM) cells Sharma and Roy (2018).
To create a FeFET, the gate stack of a conventional CMOS
transistor only needs slight modifications since it already
includes a layer of ferroelectric (FE) material as a dielectric.
Merely increasing the thickness of this layer transforms the
logic transistor into a NVM transistor. The polarization
direction affects the VTH of the underlying transistor which, in
turn, can be used to represent logic states. As the material is well-
established in the fabrication process, such a FeFET is fully
CMOS compatible in contrast to other emerging NVM
technologies (Alzate et al., 2019; Gallagher et al., 2019; Lee
et al., 2019).

Content Addressable Memory, in particular Ternary Content
Addressable Memory (TCAM), is used in many applications,
traditionally for search engine accelerators or network processors
due to its high parallelism (Pagiamtzis and Sheikholeslami, 2006;
Chang, 2009; Kohonen, 2012). TCAM cells are implemented
using SRAM or FeFET, whereas the latter has an ≈ 8× higher bit

density Yin et al. (2019). Additionally, FeFET is non-volatile,
reducing energy demands and increasing compatibility with PiM
on the transistor level. Recently, this compatibility has been
utilized and TCAM-based PiM implementations have been
proposed (Karam et al., 2015; Ni et al., 2019; Yin et al., 2019;
Li et al., 2020; Thomann et al., 2021). However, most proposals
using TCAM for PiM do not describe the conversion of the
analog TCAM output into the digital domain (Ni et al., 2019;
Thomann et al., 2021). If such a concept is described, the sensing
or ADC circuitry consumes more transistors than the actual
computation, reducing the efficiency Imani et al. (2017).

Complexity from Technology increases with every new
technology node. The effects on transistor characteristics
worsen due to the inherent variability Wang et al. (2011),
which is further exacerbated when novel technologies are
employed, as more sources of variation are added Ni et al.
(2020). Most analog PiM schemes are inherently inaccurate
and susceptible to noise, worsened by the increase in variation.
At the same time, ADCs are similarly impacted, adding more
challenges when designing such systems. Therefore, it is now the
right time to explore emerging technologies, PiM schemes, and
algorithms jointly to overcome the challenges of increased
complexity and variation. To fully exploit this potential, it is
indispensable to investigate the whole system across all the layers
of the stack, from transistor level all the way up to the application
as shown in Figure 1.

Our novel contributions within this paper are as follows:

1) We propose, design, and accurately simulate the first FeFET-
based synapse circuit employed as an ADC. A resolution of N
levels requires N FeFETs minimizing the sensing overhead
and maintaining a high area efficiency.

2) The FeFET-based sensing circuitry enables an all-in-memory
analog system. Not only is the computation done in a Fe-
TCAM but also the accumulation of results by exploiting
Kirchhoff’s law and the A/D conversion in the FeFET-based
synapses.

3) We evaluate the whole system from transistor level all the way
up to the application. Our accurate simulations with
calibrated models enable us to investigate the impact of
process variation at the transistor level on the inference
performance at the application level.

1.1 Background
Efficient system design necessitates to cover the whole stack, from
a single transistor all the way up to the application level. In this
section, the principal concepts of each level are introduced,
starting with HDC as the application, FeFET technology at the
transistor level, and based on that the Fe-TCAM.

1.1.1 Hyperdimensional Computing
Brain-inspired HDC is a rapidly emerging alternative to
traditional machine-learning methods Kanerva (2009). It has
been successfully applied to several domains, like language
recognition Rahimi et al. (2016b), image classification Kleyko
et al. (2017), gesture recognition Rahimi et al. (2016a), wafer map
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defect pattern classification Genssler and Amrouch (2021), and
more (Dua and Graff, 2017; Burrello et al., 2018; Lobov et al.,
2018; Kim et al., 2020). Instead of large neural networks, the
concept is based on vectors with high dimensionality, with 10,000
being a typical dimension D. The individual components of such
a hypervector can have different data types, such as simple bits,
integer, or real numbers. Hypervectors are randomly generated
and represent real-world data, such as voltage levels, pixels in an
image, or letters in the alphabet. To map complex data into
hyperspace, multiple simple value-representing hypervectors are
combined with three basic operations. The implementation of
each operation depends on the components’ data type. The focus
of this work is on binary hypervectors; a comparison of other data
types is provided in Schlegel et al. (2020).

The first operation is bundling, with which multiple
hypervectors are combined into a single hypervector of the
same dimension D. Each bit in the resulting hypervector is
determined through a majority operation. Ties can be decided
randomly or by XOR’ing the first two input hypervectors. The
second operation associates two hypervectors together by
XOR’ing them, which is called binding. Third, the
permutation operation rotates the hypervector, which is useful
to encode sequences. All computations can be fully parallelized
because each component is independent.

To encode, for example, a text into hyperspace, each letter is
first associated with a different randomly-generated hypervector.
This association is stored in the ItemMemory (IM), a dictionary-
like structure. Then, the first n letters are mapped into hyperspace
with the IM. The i-th hypervector is permuted i times to encode
its position. The permuted hypervectors are bundled into a single
hypervector representing this n-gram. These steps are repeated
until the whole text is represented by such n-grams. Finally, all n-
gram hypervectors are bundled again into a single hypervector
encoding the whole text. The process is repeated for different
texts from different languages. The association between each
hypervector with the language of its text is stored in the
Associative Memory (AM).

To classify the language of an unknown text, it is first encoded
through the same process into a query hypervector. In the AM,
the similarity of the query hypervector to the stored class
hypervectors, representing their associated language, is
computed. For binary hypervectors, the Hamming distance is
employed as a similarity metric. The bits in each position of the
query and class hypervector are compared. If they do not match,

the distance is increased by one. In other words, the Hamming
distance is the number of mismatched bits. The higher the
Hamming distance, the less similar are two hypervectors.
Hence, the language associated with the class hypervector with
the lowest Hamming distance is the classification result.

The achievable inference accuracy depends heavily on the
application and the encoding. On the one hand are the underlying
operations, such as bundling or Hamming distance computation,
application-independent. Consequently, a circuit implementing
such an operation is also application-agnostic. On the other hand,
impact errors in the underlying hardware applications differently
Hernandez-Cane et al. (2021). Thanks to the high dimensionality
of the hypervectors, HDC is very robust against noise (Wu et al.,
2018; Karunaratne et al., 2020; Hernandez-Cane et al., 2021).

1.1.2 Ferroelectric Field-Effect Transistor
FeFETs based on Hafnium Oxide (HfO2) have emerged as a
promising on-chip memory in recent years Böscke et al. (2011).
One key advantage over other NVM technologies is their full
compatibility with conventional CMOS manufacturing processes
(Böscke et al., 2011; Dünkel et al., 2017). HfO2-based FeFET
technology does not require new materials or process steps. Since
the introduction of 45 nm, HfO2 is used to construct high-κ
dielectrics Bohr et al. (2007) and thus the manufacturing
processes are mature. A conventional MOSFET (depicted in
Figure 2A) can be turned into an NVM transistor by
increasing the thickness of the HfO2-based high-κ dielectric
layer and doping it with Zirconium (Figure 2B). Due to this
enhanceability of the gate stack, conventional Fin Field Effect
Transistors (FinFETs) can also be used as base for Ferroelectric
FinFETs (Fe-FinFETs) as they are used in this work. Thickening
this layer can be omitted for logic transistors without impacting
their performance Dünkel et al. (2017). In other words, logic and
memory can be manufactured jointly with a single process.
Hence, FeFET is a fully CMOS-compatible NVM.

The HfO2-based FE layer contains dipoles that can be
polarized into a desired direction. An electric field through the
gate (e.g., VG = ±4 V) flips the polarization of those dipoles to
either “up” or “down”. Depending on the direction of the
polarization, an applied VG is amplified or dampened. Hence,
the transistor exhibits either a low threshold voltage (low−VTH)
or a high threshold voltage (high−VTH). This difference in VTH

changes the drive current ID, which is sensed at with a low VG

(e.g., 0.7 V). Figure 2C demonstrates the difference in ID and the

FIGURE 1 | Depicts the abstract concept and flow of the used all-in-memory scheme with addition of our Fe-FinFET-based A/D conversion (bottom), and the
equivalent conventional digital CMOS alternative (top). The highlighted parts show our contribution and which section we evaluate.
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width of the opening between the two opposing states is called
“memory window”. Based on this large difference (around six
orders of magnitude), two logic states can be distinguished. The
polarization is retained for more than 10 years Muller et al.
(2012), making the transistor an NVM.

Through the low−VTH and high−VTH states, the FeFET acts as
a binary memory. The “up” or “down” polarization is saturated to
achieve a reliable operation. A high VG is applied for 1 µs to
ensure this saturation (Muller et al., 2012; Dünkel et al., 2017).
However, by shortening the time or reducing the voltage, the
polarization is only partially saturated (Jerry et al., 2017;
Mulaosmanovic et al., 2017). Consequently, an applied VG is
partially amplified or dampened, and the FeFET exhibits a VTH

between low−VTH and high−VTH. Such an intermediate VTH can

be interpreted as a non-binary intermediate state. Jerry et al.
experimentally demonstrated 32 states in a single FeFET Jerry
et al. (2017). Partial polarization can be achieved by adopting
different polarizing schemes based on manipulating voltage
through the temporal or amplitude dimension. The FeFET can
also be partially polarized by applying multiple pulses to the gate.
Figure 3 depicts the relation between those three methods. The
ability of a memory cell to represent non-binary states is also
known as a multi-level cell (MLC) and has been demonstrated for
other memory technologies (Bedeschi et al., 2008; Ahmad et al.,
2017; Zahoor et al., 2020).

The main focus in the literature is on n-type FeFET. As shown
in Figures 2A,C higher VG increases ID. In p-type FeFET, this
relationship is reversed; a higher VG reduces ID. Prototypes
featuring both transistor types have been experimentally
demonstrated Lederer et al. (2020). Kleimaier et al.
demonstrates that the switching behaviour of both transistor
types is very similar Kleimaier et al. (2021). The availability of
both transistor types offers more possibilities to design circuits for
Processing-in-Memory.

1.1.3 Ferroelectric Field-Effect Transistor-Based
Ternary Content Addressable Memory
In conventional memory architectures, data is accessed based on
an address. In a TCAM, the data itself is supplied and returns the
address if the data is present. TCAMs are used already in network
routers or CPU caches (Pagiamtzis and Sheikholeslami, 2006;
Chang, 2009; Kohonen, 2012) and have been proposed to realize
an AM Ni et al. (2019). Traditionally, a single TCAM cell is
implemented with two SRAM cells and access logic, in total
16 CMOS-transistors. In contrast, FeFET-based designs require
only two FeFETs due to their inherent non-volatility Ni et al.
(2019).

FIGURE 2 | (A) Sketch of planar transistor. (B) Sketch of FeFET with a thick HfO2 layer (e.g., 10 nm). (C) ID-VG loop showing two distinguishable states (low − VTH
and high−VTH) due to the polarization of the FE layer in the transistor. (D) Single TCAM cell implemented with FeFET and the storing scheme. (E) TCAM block example
with twomismatches, forming two discharge paths (i.e., Hamming distance = 2). (F) TCAM block example with nomismatches, wherefore no conducting path is formed.

FIGURE 3 | Relation of the three different polarization schemes. Write
amplitude has a fixed duration of 1 µs, write duration a fixed amplitude of 4 V.
The fixed pulse scheme uses 4 V with a 50 ns duration and 50 ns pause in-
between pulses.
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Figure 2D depicts an n-type FeFET-based TCAM cell
consisting of two FeFETs (FeFET1 and FeFET2). Each TCAM
cell is programmed individually by writing the FeFETs in a
complementary manner. For instance, to store a logical ‘0’ (A
in Figure 2D), FeFET1 is set into the low−VTH state by a 10 µs
pulse of +4 V to node B. In contrast, FeFET2 is set into a
high − VTH state by a −4 V pulse to �B. Note that a 10 µs pulse
ensures a saturated polarization and hence a good conductance
during the inference operation. To store a logical “1” in the
TCAM cell, the FeFETs are set into inverse states. Before the cell is
queried, the output of the cell is precharged to VDD. The query bit
is applied in a complementary fashion asVG to the FeFETs’ nodes
B and �B. In case of a mismatch, the FeFET in the low−VTH state is
activated by VG = 1.0 V forming a channel from the output to
GND. The FeFET in the high−VTH state is not activated since the
complementary VG is applied (i.e., VG = 0 V). The output is
discharged through the activated low−VTH FeFET. In case of a
match, VG is applied to the FeFET in the high−VTH state.
However, no conducting path is formed because VG = 1.0 V is
too low to activate a FeFET in the high−VTH state (Figure 2C).
The output is not discharged. This holds also when Fe-FinFETs
are used for the Fe-TCAM implementation.

The output of N TCAM cells can be connected as a single
Match Lines (MLs) as shown in Figure 4C. N bits of query data
are applied in parallel to the N cells. As described above, a cell
forms a conducting path in case of a mismatch. The resulting
discharge rate of the output ML is proportional to the number of
cells reporting a mismatch, as more parallel paths to GND will
cause a faster discharge. In other words, the TCAM array
calculates the mismatches between the stored and query data

and accumulates them as the discharge rate. Calculating the
number of mismatches realizes the Hamming distance
operation making FeFET-based TCAM arrays an interesting
option to implement HDC. In the example in Figure 2E, an
N = 3 TCAM array stores “001” and is queried with “010”. Two
conducting paths are formed by C2 and C3, resulting in a high
discharge rate corresponding to a Hamming distance of two bits.
In Figure 2F, the stored and queried data is equal, i.e., Hamming
distance of zero. Hence, no conducting paths are formed, and the
ML is not discharged.

A key challenge of such an implementation is the correlation
between the discharge rate and the number of mismatches. The
discharge rate saturates and does not scale linearly, limiting the
number of mismatches that can be differentiated. To reduce the
impact of this non-linearity, the size of a TCAM array is
restricted. Long data words, like hypervectors, cannot be
stored in a single TCAM array but have to be split into
multiple N-bit blocks. Each block is mapped to a separate N-
cell array.

1.2 Related Work
Various emerging technologies have been studied to
implement HDC. Karunaratne et al. manufactured a chip
featuring two phase change memory (PCM) arrays and
CMOS logic Karunaratne et al. (2020). For encoding, the
query hypervectors were created with a 2-min term strategy
where the item hypervectors are stored in the two arrays. For
classification, the dot product is computed in a PCM-based
AM and a winner-takes-all CMOS-based circuit determines
the class index. They did not report specific variation levels but

FIGURE 4 | (A) Sketch of possible layout withC rows for the class HD vectors each of dimensionD cut into blocks of sizeN Imani et al. (2017). (B) ID-VG plot with the
intermediate states of the p-type FeFET synapse. (C) Single Fe-TCAM block withN cells. (D)Our proposed synaptic comparator decoding the analog discharge rate of a
N cell TCAM block into digital.
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emphasized the robustness of HDC against errors enabling
analog PiM inference.

Resistive RAM (ReRAM)-based PiM implementations are
frequently proposed as a technology to implement the AM
(Imani et al., 2017; Wu et al., 2018; Wu et al., 2018; Liu et al.,
2019; Halawani et al., 2021b) exploited the combined variability
in CNFET and ReRAM to generate orthogonal item hypervectors.
Other components of a HDC system, like the encoder and AM,
were also implemented. Even if 78% of the bits in the query
hypervector are stuck, the inference accuracy for language
classification droped by less than 2% for a binary decision
between two languages.

Halawani et al. used an XNOR array to compute the Hamming
distance between a query and the stored class hypervectors
Halawani et al. (2021b). The XNOR operation was similarly
implemented with TCAM cells, with memristors instead of
FeFETs. The output voltage response was linear and covered
almost the full voltage range from 0 V toVDD for a block size of 16
cells, i.e., 16 bits. Nevertheless, they reported voltage saturation
with more cells. To convert the output voltage of the array, they
employed a voltage-to-time converter (VTC), generating a pulse
with a width corresponding to the XNOR result. The Hamming
distances were accumulated through a tree-like structure in the
time domain. They demonstrated a whole inference step for a
dimension of 1000 bits in a single clock cycle of 10 ns. However,
their results are reported without taking variation into account,
which impacts ReRAM heavily Fang et al. (2018).

Imani et al. proposed three different AM designs Imani et al.
(2017). One was based on regular CMOS memory storing the
class hypervectors, an XOR array, binary counters to compute the
Hamming distance, and comparators to select the smallest
distance. The second design replaced the CMOS memory and
XOR array with an ReRAM-based crossbar and a delay-sensing
circuit. Due to the non-linearity in this delay, the size of the
crossbar, a block, was limited toN = 4 bits. They proposed voltage
overscaling to reduce the impact of non-linearity. The third
design is fully analog and again used an ReRAM CAM array.
Per bit in a class hypervector, a regular CMOS transistor is
activated by the query’s bit. If the ReRAM was programmed
into a low resistance state (class bit “0”), a conductive path to
GND is formed. The sensing circuitry tracked the current, and a
loser takes all network outputs the class with the nearest
Hamming distance. In their second and third design, Imani
et al. considered process variation in their 45 nm technology,
which had less of an impact compared to a 14 nm Fe-FinFET
considered in this work Imani et al. (2017). Further, their error
modeling was static and did not model the connection between
different applications and incorrect Hamming distance
computations.

Ni et al. and Thomann et al. used a Fe-TCAM block to
calculate the Hamming distance in a analog way similar to
this work (Ni et al., 2019; Thomann et al., 2021). Both
assumed a clocked self-referenced sense amplifier (CSRSA)
translating the discharge current into the temporal domain
and finally digital values, but no such circuit was presented.
While both used ferroelectric-based transistors, Ni et al. used a
planar FeFET and Thomann et al. a Fe-FinFET. The specific

implementation of the sense amplification scheme with a CSRSA
has been unique to these two works, as Imani et al. used a different
circuit to achieve a similar result Imani et al. (2017). In this work,
a novel Fe-FinFET-based synaptic comparator is proposed to
convert the analog results from a TCAM array into the digital
domain. Kazemi et al. used a multi-level Fe-TCAM cell to
increase bit density further. They discussed the influence of an
ADC on several figures of merit yet do not disclose how or what
kind of ADC is used Kazemi et al. (2021).

Humood et al. combined ReRAM devices with a conventional
flash ADC scheme. In a flash ADC, resistors are used to generate
fixed reference voltages to which the input is compared Humood
et al. (2019). Humood et al. replaced the resistors with ReRAM
devices, which can be programmed, resulting in a post-fabrication
tunable ADC. Further, they stated in the future work to also
replace the conventional voltage comparators with ReRAM
devices, which is presumably very close to the idea we follow
in this work.

Hersche et al. investigated the impact of erroneous PCM cells
in the AM on the inference accuracy Hersche et al. (2020). They
reported an inference accuracy loss of 21.5% for language
classification at a failure rate of 48.5%. Their proposed
unsupervised method recreates the class hypervectors from a
second training data set. The accuracy was almost fully restored.
Their error model considered only faults in the underlying
memory of the AM, not in the computations of the Hamming
distance.

2 MATERIALS AND METHODS

This section describes the structure and concept of an AM build
with a FeFET-based synaptic comparator connected to Fe-TCAM
cells. Those cells are grouped into blocks and store N bits of the
class hypervector as shown in Figure 4. When queried, the
mismatching cells form a conducting path lowering the
voltage of the ML. A FeFET-based synaptic comparator,
described in Section 2.1, is connected to this ML. In contrast
to an n-type FeFET, the reduction in voltage causes this p-type
FeFET to open and thus charge a capacitor. The speed of the
charging depends on the FeFET’s programmed VTH. If, after a
sampling period, the capacitor’s charge is above a threshold, then
a certain number of Fe-TCAM cells are mismatched; in other
words, the query has at least a certain Hamming distance to the
class hypervector. To increase the resolution from a binary
threshold with one synapse to the actual Hamming distance,
N synapses are combined into the N-way synaptic comparator
described in Section 2.2. The joined Fe-TCAM and N-way
comparator are introduced in Section 2.3, whole AM circuit is
described in Section 2.4 and the error modeling in Section 2.5.

2.1 Ferroelectric Field-Effect
Transistor-Based Synapse
The neuromorphic-computing community shaped the notion of
a synapse and defined it from an electrical engineering
perspective as a conductance modulatable circuit element
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(Jerry et al., 2017; Mulaosmanovic et al., 2017). A FeFET’s VTH

can be modulated by partially polarizing domains in the FE layer,
turning it into a non-volatile conductance modulatable circuit
element Jerry et al. (2017). This concept of a multi-level cell is
explained in detail in Section 1.1.2. In a FeFET, the different
levels of saturation correspond to a different VTH. As depicted in
Figure 2C for two different VTH, the VTH determines the drive
current ID when a VG is applied. If the FeFET is used as a memory
cell, then ID is measured and represents the cell’s state or stored
value. However, the FeFET is not used as a memory cell in this
work. Instead, it is employed as a programmable non-binary
switch.

The FeFET is “programmed” the same way as a multi-level
memory cell by saturating the polarization of the FE layer to
distinct levels. The resulting ID − VG curves are shown in
Figure 4B. Note that in this work, a p-type FeFET is used,
which has been experimentally demonstrated recently and
gains more attention Lederer et al. (2020). In contrast to the
more common n-type, the p-type is in the active state at VG = 0 V
and in the cut-off state when VG is increased above VTH.
However, as the FeFET is employed as a non-binary switch, it
does not have these two states but is always considered active.
Further, VG is not fixed to a predefined Vread. Instead, VG is
treated as a variable input controlling the output ID. Connected to
the drain is a capacitor that is constantly being charged during a
query operation. The charge rate depends on ID, which in turn
depends on both, VG (non-binary) and VTH (the
“programming”).

In this work, the purpose of a FeFET-based synapse is to
measure if VG is above a programmable threshold. To derive this
binary decision from the charge of the capacitor, a D latch is
connected. By charging the capacitor, the voltage at the input of
the latch VCap is increased and approaches VDD. After the
sampling period tsample, the latch activates and captures a
logical “1” if VCap is above approximately VDD/2, otherwise a
logical “0”. In other words, the capacitor and latch discretize the
analog FeFET-based synapse. This logical value captured by the
latch is later used for further processing. After the latch has
captured the value, the capacitor is discharged and reset for the
next query operation.

Our FeFET-based synapse circuit features various tuneable
parameters, including 1) the metal workfunction of the FeFET
itself, 2) the resistor connecting supply voltage andML, 3) the size
of the capacitor, and 4) the sampling period tsample. The
parameters impact the energy, area, and accuracy of the
circuit. The metal workfunction 1) of a FeFET-based synapse
is a tradeoff between its leakage and the adaptation to voltages
coming from the ML. With the metal workfunction parameter,
the ID−VG characteristic can be shifted horizontally (i.e., the VTH)
but is permanent after fabrication. On the one side, it is used to
shift the memory window (like in Figure 2C) such that it matches
the input range coming from the ML and is capable of
distinguishing them. On the flip side, the transistor has to be
able to produce sufficient current to charge the capacitor fast
enough, which may lead to a leaky transistor (ID−VG curve is
close to 0 V in Figure 4B). The consequence of the metal
workfunction engineering on the energy consumption is

discussed in Section 3.4. The other synapse parameters
(resistor, capacitor, and sampling period) are discussed in the
context of the AM and whole ADC circuit in the following
sections.

2.2 N-Way Synaptic Comparator
A single FeFET-based synapse can be programmed to measure if
VG is above a threshold. This threshold can be changed at runtime
by reprogramming it, and a single synapse could differentiate
between different thresholds. However, reprogramming and
measuring take time and energy. Alternatively, N FeFET-based
synapses are combined into a single circuit as shown in 4D. The
synapses are programmed with an increasing VTH so that synapse
“1” has the lowest and synapse “N” the highest VTH. Hence,
similar to a flash ADC Kumar and Ch (2020), each synapse
detects a different threshold. All gates of the FeFET-based
synapses are connected and subject to the same VG.
Depending on their programmed VTH, each capacitor is
charged and VCap changes at a different rate. After the
sampling period tsample, the number of D latches storing a
logical “1” correlates with the voltage level of VG.

2.3 All-in-Memory Hamming Distance
Computation
A Fe-TCAM block, described in Section 1.1.3 and depicted in
Figure 4C, is used to compute the Hamming distance between N
bits of the class hypervector and N bits of the query hypervector.
For each mismatching bit, a Fe-TCAM cell establishes a
conducting path from the ML to GND. The more mismatches
occur, the lower is the voltage of the match line VML. This VML is
measured with the proposed N-way synaptic comparator. For
that purpose, theML is connected to the gates of the FeFET-based
synapses, i.e., VML = VG. Since the synaptic comparator is
implemented based on p-type FeFETs, a reduction in VML

(VG) will activate the synapses. The lower VML (VG) is, the
more synapses are activated, and the higher the Hamming
distance is. Hence, there is a direct correlation between the
mismatches in the Fe-TCAM block and the Hamming
distance reported by the synaptic comparator. After the
sampling period tsample, N-many latches store a logical “1”
representing a Hamming distance of N.

Determining the drive current of each FeFET-based synapse at
a given VG is an important step during the design of the circuit.
The drive current determines the time it takes the synapse to
charge the connected capacitor. Only if VCap exceeds VDD/2 does
the D latch store “1” and signals the synapses activation. All the
drive currents of the FeFET-based synapses have to be carefully
calibrated so that the mismatch level is equal to the number of
activated synapses. In the first step of this calibration, all
mismatch levels are simulated in Simulation with Integrated
Circuit Emphasis (SPICE) individually to extract the respective
VML of the Fe-TCAM array. Second, for each extracted VML (VG),
a synapse’s VTH has to be found at which its drive current is
sufficient to charge the capacitor and activate. In this work, the
voltage amplitude-based programming scheme is employed and
thus the write voltage is swept to explore VTH. The swept write
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voltage ranges from 2.5 to 4.0 V, often used values in the literature
(Jerry et al., 2017; Luo et al., 2019; Xiao et al., 2019), with a
constant duration of 1 µs. As a final step, the explorations of VML

and write voltage are combined so that the mismatch level is equal
to the number of activated synapses.

The calibration is summarized in Figure 5. The write voltage is
swept from 2.5 to 4.0 V in 0.1 V steps for a single synapse. The 10-
bit Fe-TCAM array is configured to output a mismatch level of
one. Despite the highVML (compare Figure 6), the p-type FeFET-
based synapse still drives enough current to sufficiently charge the
capacitor at the sampling time. By increasing the write voltage
and thus VTH, the synapse drives less current. After polarizing
being polarized with 3.1 V, it does not activate with the mismatch
level of one. At this point, the mismatch level is increased by one
and the synapse activates again. The write voltage sweep
continues until a mismatch level of ten is reached creating the
staircase-like pattern.

In the SPICE simulations, ideal multiplexers are employed to
decouple the ML from the individual gates of the FeFETs during
the write scheme. An ideal multiplexer does not interfere with the
circuit operation in the computation step and does not affect the
reported energies. This limitation is discussed in Section 4. For an
actual implementation, double-gated FeFETs are available and
can be used to decouple the write from read port Kim et al. (2021).
Such a scheme would not impact the reported results
significantly.

One challenge imposed by the Fe-TCAM block is the non-
linearity in the VML reduction. The ΔVML for two neighboring
Hamming distances is exponentially decreasing with an increase
in the Hamming distance. Due to the limited resolution of the
synaptic comparator, two too similar VG can cause errors. To
counteract the non-linearity, a resistor is added between the ML
and VDD charging the ML. Furthermore, this gives the designer
control and tunability of the VML distribution. This and
interaction with other parameters is discussed in Section 3.2.1.

Another design parameter of the proposed circuit is the size of
the capacitor and the sampling period tsample. A larger capacitance
increases the charging time and consequently requires an increase

in tsample. On the one hand, such an increase improves the
margins between the different synapses reducing the likelihood
of errors. On the other hand, the whole circuit has a high leakage
power, and a higher tsample increases the total energy
consumption. This tradeoff is explored in Section 3.2.2.

The described circuit is referred to as an N-bit block. For large
N, the non-linearity renders high Hamming distances
indistinguishable. To reduce unnecessary area and energy
costs, the concept of precision is introduced. No synapse is
deployed to detect such indistinguishable Hamming distances.
Hence, the number of synapses NSynaptic is smaller than the bits
stored by the TCAMNTCAM. This creates a fundamental
compromise between block size and precision. Two
implementations of this concept are possible. In the first, the
highest detectable Hamming distance is limited to the NSynaptic

levels the synaptic comparator offers instead of the full
NTCAM bits. The FeFET-based synapses are programmed to
differentiate only NSynaptic levels of Hamming distance. If the
number of mismatches on the Fe-TCAM block is higher than
NSynaptic, then these values are limited to NSynaptic. The maximum
expected error is NTCAM−NSynaptic bits in Hamming distance.
Second, the spacing between the FeFET-based synapses’ VTH is
increased so that theminimum andmaximumVTH correspond to
a Hamming distance of one and NTCAM, respectively.
Intermediate distances are reported as a neighboring one with
a maximum expected error of NTCAM/NSynaptic bits in Hamming
distance. The actual inference accuracy loss of both schemes is
application-dependent since the similarity of their hypervectors
determines the final accuracy loss.

2.4 Our Proposed Ferroelectric Field-Effect
Transistor-Based Associative Memory
The analog Hamming distance computation results in a number
of logical “1”s stored in the D latches of a block, forming an N-bit
subsection of a single class hypervector. Hence, for each class, D/
N blocks are required. Accumulating the block results gives the
total Hamming distance of the whole query to the class
hypervector. Such an accumulation is performed by the
priority blocks followed by adders, which are not modeled in

FIGURE 5 | Mapping of the write amplitude to the output Hamming
distance used for calibration of the synaptic comparator. Vertical lines indicate
the selected amplitudes that maximize margins.

FIGURE 6 | Historgram of the VML distribution at different mismatch
levels for a block size of 10 bit. The nominal VML for no mismatches is 1.0 V.
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this work but can be implemented as shown in the literature
Imani et al. (2017). The priority blocks interpret the highest firing
D latch and translate it into a binary encoded number. To
compute for C classes in parallel, the AM features a total of
C*(D/N) blocks and C accumulation units. Lastly, a digital
comparator outputs the index of the lowest Hamming distance
as depicted in Figure 4A. This index has been associated with a
class label during setup and is the result of the inference.

2.5 Process Variation Effects and Error
Probability Modeling
To accurately evaluate our proposed circuit, the industry standard
BSIM-CMG Chauhan et al. (2015) compact model is used. The
employed transistor model is calibrated to reproduce the
production-quality Intel 14 nm FinFET process Natarajan
et al. (2014). Measurements and calibrated results are in
excellent agreement, including transistor characteristics, in
ID−VG as well as ID−VD for both nFinFET and pFinFET

(Figures 7A,B). Furthermore, transistor-to-transistor
variability is captured by the model through calibration
against the measurements Amrouch et al. (2020). For a
comprehensive representation of process variation, all
important sources of manufacturing variability (gate work
function, fin height, fin thickness, channel length, and effective
oxide thickness) are modeled, and benchmarked against
measurements from the same targeted technology (i.e., Intel
14 nm FinFET). The compact model and SPICE Monte-Carlo
simulations build the foundation to calibrate the standard
deviations for each mentioned source of variability. Again,
excellent agreement is demonstrated in the ION vs. IOFF results
through Monte-Carlo SPICE simulations (Figures 7C,D).

As the transition from a regular MOSFET to FeFET is
enhancing the gate stack, the solid foundation of the FinFET
described previously is inherited by the used Fe-FinFET. The
Preisach model is incorporated into the compact model to extend
the FinFET with the ferroelectric behavior Ni et al. (2018). By
assuming independent domains within the FE layer and the

FIGURE 7 | Calibration and validation of the compact model against Intel 14 nm FinFET measurements extracted from Natarajan et al. (2014). For all different
biasing conditions both nMOS and pMOS are considered (A,B). Similarly, variability is validated against Intel 14 nm FinFET, again for nMOS and pMOS in (C,D),
respectively. Details on device and variability calibrations are available in \cite{TCASI20_2} Amrouch et al. (2020).
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unique history tracking of the hysteresis loop, the Fe-FinFET
characteristics are captured. As a result, the multi-domain FE
model reproduces qualitatively the experimentally observed
binary and multi-level properties of Fe-FinFET. The
ferroelectric specific parameters have been calibrated against
measurements of a ferroelectric capacitor Gupta et al. (2020).
Not considered in this work are the variation sources introduced
by the FE layer itself (saturation polarization, remnant
polarization, and coercive field), resulting in a more optimistic
analysis Ni et al. (2020). However, the underlying FinFET model
includes variability enabling the analysis of the circuit under the
influence of process variation.

Due to variability, the VTH and consequently the drive current
of the Fe-FinFETs is altered. This affects the proposed circuit
twofold since the two subcircuits both employ Fe-FinFETs. For
one, the Fe-TCAM block’s results form the Hamming distance
computation as different voltage levels on the ML. Changing the
drive current of the Fe-FinFETs in the Fe-TCAM cells also
changes the VML. As the VML is used to activate the synapses
of the comparator, the charging speed of the capacitor is affected.
A reduction in VML can therefore prevent the activation of the D
latch, which incorrectly reports a “0” instead of a “1”.
Analogously is an incorrect Hamming distance computed if
the VML is too high, charging the capacitor too fast, and
incorrectly activating the synapse. The synaptic comparator
represents the computed Hamming distance in a digital form
through the D latches. The Hamming distance is determined by
the highest distance represented by any of the activated synapses.
This interpretation of the outputs by the comparators is common
practice in conventional flash ADC designs, wherefore we adopt it
here as well Kumar and Ch (2020). Due to the variability-induced
errors, the highest activated synapse is not necessarily the
Hamming distance. For example, the distance is three, but the
synapses representing “1”, “2”, and “4” are activated. The result is
considered to be “4” as the highest is prioritized.

The second subcircuit impacted by variation are the Fe-
FinFET-based synapses themselves. Similarly, the drive
current, thus the charging speed, and the ultimately computed
Hamming distance are affected. Even with an ideal VML (nominal
Fe-TCAM cells), variability in the comparator can cause incorrect
Hamming distance results through similar effects described
above. As the Fe-TCAM block and the synaptic comparator
work in unison, variation in one affects the other and vice
versa. Therefore, the effects of process variation are jointly
analyzed using Monte-Carlo SPICE simulations of the whole
circuit.

For the error model, all N possible mismatch levels of the Fe-
TCAM block are simulated with 1,000 samples each. For each
mismatch level, the potentially incorrect Hamming distances
reported by the comparator are collected. Normalizing these
results yields a joint probability distribution describing the
likelihood of input mismatch level X being reported as
Hamming distance Y. Such a 2D matrix fully describes the
error model of an N-bit block with a comparator. The circuit-
level model is used in an application-level analysis to calculate the
inference accuracy for various benchmarks. Class and query
hypervectors are created from the data sets. Each class

hypervector is partitioned and stored into D/N N-bit blocks.
For each block, the correct Hamming distances between the
stored class to all queries are computed. The error model is
queried with the correct Hamming distance to emulate the
expected variation-induced errors of the circuit. The
potentially incorrect Hamming distances are summed up for
all classes. If the induced error is large enough, the query
hypervector appears to be more similar to another class than
initially computed. Such a change is likely to result in a wrong
inference since the baseline HDC model correctly infers the large
majority of queries. The loss in inference accuracy shown in
Figure 8 is calculated against the inference accuracy of this
baseline HDC model with respect to the dimension.

The whole computation of the inference accuracy loss is
repeated 100 times to minimize the inherent randomness of
the error model. This number of repetitions is sufficient to
observe major and minor trends in the results with a high
confidence. According to the Z-test and Bartlett’s test, the
distribution of the results from 100 repetitions is statistically
equal to the distribution of 1,000 repetitions using the example of
language recognition.

3 RESULTS

Various parameters can be tuned to improve and explore the
proposed circuit. Furthermore, the variability-induced errors are
modeled at circuit level and used at the application level to
evaluate the impact on the inference accuracy. The circuit is
evaluated at a capacity of 5 fF, tsample of 1 ns, and resistances of
4.3, 2, 1.3 kΩ for a block with 5 bit, 10 bit, 15 bit, respectively.

3.1 Error Probability Model
Each pair of query and class hypervector has a defined Hamming
distance, a part of which is computed in each block. However, due
to process variation, a block does not always compute the correct
distance. Instead, the error model assigns probabilities to
compute an (incorrect) Hamming distance for a given
mismatch level input. Such a model is visualized as a stacked
bar chart in Figure 9 for a 10-bit block. The marked corridor in
the middle represents a correct computation. In the case of
zero mismatches, no Fe-TCAM conducts, the VML is not
reduced and thus no capacitor is charged. Errors will not
occur, since the margins are too high. As the mismatch
level increases, the shrinking margins (due to non-linearity)
cause the probability distribution for the correct result to
shrink, leading to a funnel-like effect. The likelihood of a
wrong result is summarized in the error probability graph
in Figure 10. Developing such an error model bridges the gap
between the transistor and application level. The model allows
to analyze the impact of changes in the underlying hardware
on the inference.

3.2 Impact of Circuit Tuning Parameters
The impact of four circuit parameters is investigated in this work.
Each offers tradeoffs that can be exploited by circuit designers to
optimize for their specific needs.
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3.2.1 Impact of the Resistance
Reducing the resistance value of the resistor between the ML and
GND has the strongest influence of the non-linearity of the Fe-
TCAM array. As shown in Figure 11, a low value of 0.5 kΩ

creates an almost linear dependency between Hamming distance
and VML (R2 = 0.9985). In contrast, 10 kΩ exhibits a reciprocal
relationship and R2 = 0.9085. However, the drawback of a small
resistance is the actual differences in VML between the Hamming

FIGURE 8 | Inference accuracy loss of five different applications based on the 10-bit block with 10-bit precision error model. We use language recognition, image
classification (MNIST), gesture detection (EMG), voice recognition (ISOLET), and heart disease detection (CARDIO).

FIGURE 9 | Probability distribution modeling the output of the synaptic
comparator for a given input under process variation. The funnel-like shape by
the probability mass of the correct outputs is highlighted with the black lines.
10-bit block with a precision of 10 bit.

FIGURE 10 | Error probability of our four circuit configurations. The error probability is the summary of how likely it is to get the wrong result for a given input.
Analysis is done at respective block size (N) and precision (P).

FIGURE 11 | Analysis of the resistance connecting the supply voltage
and the ML. It shows the development of VML over the different mismatch
levels for a block size of 10 bit.
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distances. For 0.5 kΩ, the total ΔVML is 135 mV, the minimum
and average ΔVML between Hamming distances is 13 and 15 mV,
respectively. For 10 kΩ, the total ΔVML is 592 mV, the minimum
and average ΔVML is 22 and 66 mV, respectively. However, the
resistance cannot be arbitrarily increased because the ΔVML will
converge to 0 V for the higher Hamming distances. In summary,
the high resistance offer a 70% higher minimum and 340% higher
ΔVML margin on average. But the isolated analysis is insufficient
as it leaves the other parts of the circuit out of the picture. With
higher resistances, the staircase in Figure 5 shifts to the right and
pushes stairs over the 4 V write voltage boundary. This issue can
be tackled by engineering the metal work-function of the Fe-
FinFETs constructing the synapses to shift the memory window
such that it fits theVML range. Themetal work-function value was
chosen beforehand and the tuning of the other parameters is
done after.

3.2.2 Impact of the Capacitance
The proposed circuit is evaluated with two different capacities,
1000 fF and 5 fF. To ensure proper functionality, tsample is set to
100 and 1 ns, respectively. The higher capacity and tsample should
offer more margins to compensate for variation. However, the
average error probability is only reduced by 5% from 45.65 to
43.43% for a 10-bit block. The average inference accuracy loss at
D = 10,000 is reduced by 9% from 0.576 to 0.525%. The cost of the
9% improvement is a 100× larger delay and almost 100× higher
energy consumption.

3.2.3 FeTCAM Block Size
The size of a block is a tradeoff between inference accuracy and
energy. In larger blocks, more mismatch levels have to be
distinguished within the same voltage range. The decreased
margins between the levels make the comparator more
susceptible to variation. The impact of this decrease on four
circuit configurations is demonstrated in Figure 10 by the higher
error probability. At the application level, the loss in inference
accuracy increases proportionally to the error probability, shown
in Figure 12 for the example of language recognition. Utilizing
three times as many 5-bit blocks as 15-bit blocks improves the

accuracy by 1.6 to 0.2 percentage points for dimensions from
1000 to 10000 bits, respectively. The energy consumption
increases by 6.8% on average, additional overhead for the
extra counters is not yet considered. Another limit to the
block size is the non-linearity of the discharge rate which
can be partially counteracted by scaling the resistor
(Section 3.2.1).

3.2.4 Block Precision
In HDC, hypervectors of the same class should have the smallest
Hamming distance among each other. By finding this smallest
distance, a query hypervector is assigned to its matching class.
Consequently, the query has a high distance to other class
hypervectors. Thus, the computed Hamming distance in a
block will be on average half of the block size. Hence, it is
more important to be accurate in the lower than in the upper
distances. This HDC-specific property aligns well with the
concept of precision. Reducing the precision reduces the
hardware cost and increases the margins towards a lower error
probability (compare Figure 10). Figure 12 shows the marginal
impact on the inference accuracy loss of language recognition
through the precision reduction.

3.3 Impact of Process Variation on
Inference Accuracy
The Fe-TCAM array and the Fe-FinFET-based synaptic
comparator are both impacted by processes variation. To
analyze their individual contribution to the error probability
and by extension inference accuracy, variation is disable in the
other subcircuit. The methodology described in Section 2.5 is
applied to extract the error model. First, process variation is only
considered in the Fe-TCAM array. The variations in the
underlying electrical properties change VG for each Fe-FinFET.
Consequently, their effect on VML in case of a mismatch changes.
The full circuit with a 10-bit block is simulated for each mismatch
level 200 times. The distribution of VML is depicted in Figure 6.
The overlap for a mismatch level of six and lower is insignificant
to non-existent. Thus, in combination with an idealistic
conversion, the Fe-TCAM subcircuit has little to no errors.
The probability of an error is given in Figure 13A. For
mismatch levels of six to ten, the overlap increases due to the
non-linearity. An overlap indicates that two fabricated devices
can report the same VML for two different mismatch levels due to
variation. An ADC has fixed threshold voltages across all devices.
In one of the fabricated devices, the ADC inadvertently reports an
incorrect mismatch level, a variation-induced error occurred. The
probability of such an error is captured in Figure 13D, which is
very low with at most 6%. Hence, the loss in inference accuracy
for language recognition is limited to 0.48%.

In the Fe-FinFET-based synaptic comparator, the input
voltage range is with 440 mV approximately half as wide as
for the Fe-TCAM. Additionally, the synapses have less distinct
VTH levels. Both factors combined result in significantly smaller
margins making the comparator more susceptible to variation.
The error probability reaches 64% and averages 51%. Despite
these high numbers, the inference accuracy for language

FIGURE 12 | Influence of block size and precision on inference accuracy
at the example of the Language. Analysis is done at respective block size (N)
and precision (P).
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recognition is reduced by 3.7% at most, for dimensions above
5000 bits by 0.6% on average.

Process variation is considered jointly for both subcircuits in
Figure 8 for five different applications. The joined error model
does not result in significantly different inference accuracy losses
since the Fe-TCAM array contributes little. The solid bars are the
mean, and the error bars represent the minimum and maximum,
respectively. The different applications react differently to the
errors induced by process variation. The variance is large with
several outliers and the inference accuracy loss correlates only
slightly with dimension. Figure 8 also shows some negative losses

indicating an accuracy gain, which is indeed possible due to the
randomness in the error model. A detailed analysis of the
accuracy gain and the high variance of some applications is
not within the scope of this work.

3.4 Energy Consumption Analysis
The higher the Hamming distance, the more Fe-TCAM cells form
together a conducting path. The current ION flowing through
those cells is the major source of energy consumption. Even
though a larger block has more cells, if they are not activated then
they do not contribute in a significant way due to their low IOFF, as
depicted in Figure 14. For the same Hamming distance, the
configuration with N = 10 consumes virtually the same energy as
N = 15 for a single query operation. A second contributor is the
energy spent charging the capacitors. Hence, the number of
synapses (i.e., the precision) is another important parameter.
For N = 15, the increase in energy consumption from precision
ten to fifteen by 44 fJ on average is due to the five additional
capacitors. This difference increases with the Hamming distance
from 16 fJ to 75 fJ because the Fe-FinFET-based synapses have a
lower VTH charging more capacitors sooner. However, the loss in
inference accuracy is marginal as described in Section 3.2.3.

Despite the increase in energy for larger blocks, they are more
efficient per bit. With N = 15 as a baseline, 5-bit or 10-bit blocks
consume on average 6.8% or 1.9% more energy, respectively. Not
considered are the additional counters to accumulate the results
from all the blocks. However, during hold, the circuit can be
power gated, as Fe-TCAM blocks and synapses are both non-
volatile and retain their data and programmed VTH, respectively.

FIGURE 13 | Analysis of the impact of variation on the two main components in our circuit and its consequences. Variability in the Fe-TCAM block results in almost
no erroneous calculations whereas the synaptic comparator is the main source of errors when affected by variation, as shown in (A,B), respectively. (C) shows the error
model with both components under process variation (PV). (D) shows the summary in form of the error probability. (E) finally shows the resulting inference accuracy
losses at the example of language recognition. All the analyses are done with a 10-bit Fe-TCAM block at a precision of 10 bit.

FIGURE 14 | Energy consumption of the Fe-TCAM block with synaptic
comparator at given circuit configuration. Analysis is done at respective block
size (N) and precision (P).
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To put the results into context, a similar circuit based on traditional
CMOS is simulated. N regular XOR gates and an adder tree with
respective depth form a special function block in a CPU. In such a
scenario, the energy consumed through the memory access by the
CPU has to be considered as well. Reading 512bits from the L2 cache
consumes 288 pJ, or scaled to 10 bits 5,625 fJ (ITRS 32 nm, Chen et al.
(2012)). The actual computation of 10-bit block consumes 118 fJ
compared to 186 fJ of the proposed Fe-FinFET-based circuit. The
cache access alone costs an order of magnitude more energy than the
actual computation. Thus, achieving the same order of magnitude for
the computation compared to a CMOS implementation will lead to
massive savings through the PiM scheme.

3.5 Area Requirements
Each N-bit block consists of two parts, the Fe-TCAM block and the
synaptic comparator. The number of transistors per block scales
linearly with its size N, in other words the number of bits. The Fe-
TCAM requires two Fe-FinFETs per bit, the synaptic comparator
one Fe-FinFET, one capacitor, and 18 CMOS transistors for the D
latch. Hence, the total number of transistors is 21*N plus one
resistor. For example, a 5-bit block needs 10 Fe-FinFET for the
Fe-TCAM cells, 5 Fe-FinFET for the synaptic comparator, and 90
CMOS transistors for the D latches, giving in total 105 transistors.
The main contributor are the CMOS-based D latches in the
comparator. As discussed in Section 3.2.4, reducing the precision
does not impact the inference accuracy significantly and at the same
time offers themost potential to reduce the area requirements. Given
a precision P, the total number of transistors is 2*N + 19*P. For a 15-
bit block, a reduced precision of 10 saves 30% in area.

3.6 Comparison With Related Work
Imani et al. used a conventional sense amplifier which translated
the discharge rate into the temporal domain and sampled the
respective output with different timings Imani et al. (2017). The
sampling times are generated with a seed clock signal and parallel
buffer chains (details in Section 3.5) of various lengths. This
approach leads to a linear progression in sampling times as the
number of chained buffers is discrete. To cope with the issue of non-
linearity, the block size is limited to just 4 bits, obtaining a roughly
linear output relation of the signals. This reduces the implementation
complexity of the circuit, as there is no need to adapt to the non-linear
behavior. However, keeping the block size small enough (e.g., 4 bits)
to be able to assume linearity, the scaleability is strongly limited as
discussed in Section 3.5. Due to the use of different technology nodes,
a comparison to their proposed layout is only possible by counting
the number of used transistors. For an N-bit block, decoding the
Hamming distance requires 6N + 2N(N−1) transistors Imani et al.
(2017). The chained buffers to delay the clock signal cause the
quadratic relation. In contrast, the proposed circuit in this work
scales linearly and thus requires less transistors for N > = 8.

In (Ni et al., 2019; Thomann et al., 2021) a similar approach is
used as in Imani et al. (2017) with a CSRSA, which also translates
the discharge rate into the temporal domain. In these two works
the conversion of the analog result to a digital one is not
discussed. In case a regular ADC (e.g., SAR-ADC) is
applicable, based on their results, such an ADC would need a
sampling rate between 10 and 100 GHz.

Halawani et al. employed a Voltage-to-Time-Converter
(VTC) to translates the Hamming distance result encoded as
voltage level into a voltage pulse of proportional width Halawani
et al. (2021a). The VTC with 12T is a constant hardware cost per
block aside from the ReRAM elements for the TCAM cells. The
pulses are accumulated over the row with a tree-like structure,
and the winning class is found. The accumulation happens in the
time-based dimension, which Halawani et al. claim is more
variation and noise resilient compared to the voltage-
(/analog)-domain where the signal to noise ratio is degraded
due to voltage scaling. The hardware cost of a single block is the
ReRAM elements plus the VTC compared to the Fe-TCAM cells
and the synaptic comparator in this work. As both ReRAM and
Fe-TCAM use two elements per cell, this work does not scale as
well due to the more complex comparator. Their VTC requires
twelve transistors whereas the proposed synaptic comparator uses
N Fe-FinFETs plus 18*N CMOS transistors. They report that the
whole inference takes a in single clock cycle of 10 ns (10 classes,
D = 1,000, block size of 16 bits). In this work, the results on the
block level are present after tsample which is 1 ns, giving a similar
time complexity considering the accumulation and winner
selection. Unfortunately, variability is not discussed by
Halawani et al. Therefore, their claim of better robustness
against variation and noise cannot be evaluated.

A state-of-the-art flash ADC design Kumar and Ch (2020)
employs ten CMOS transistors per comparator, four per NAND,
and M + M/2 for the priority encoder with M as the number of
bits in the output. A 4-bit (M = 4) flash ADC has 24 = 16
comparators and thus requires 320 CMOS transistors in total (20
per comparator). To achieve the same output resolution, our
proposed Fe-FinFET-based design requires 16 synaptic
comparators. Each consists of one Fe-FinFET and 18 CMOS
transistors for a total of 304 transistors, a 5% reduction. Hence, both
designs require a similar number of transistors with a slight
advantage for our proposed design. A fair comparison of energy
and latency requires both designs to be implemented in the same
technology, in this work 14 nm FinFET. In the literature, most
designs employ either larger technology nodes (e.g., 180 nm Kumar
and Ch (2020) or use different ADC designs with a higher resolution
(e.g., 16-bit SAR-ADC Luu et al. (2018). Comparing our SPICE
simulation results with measurements from a fabricated device Nam
and Cho (2021) is also misleading since the latter contains layout
parasitics and other factors not considered by our simulations.
Further, the employed 14 nm FinFET model, which is calibrated
to replicate measurements from Intel, is different from other
manufactures’ 14 nm technology and adds additional uncertainty
to a comparison. In summary, energy and latency cannot be
compared in a fair way because no Intel 14 nm 4-bit flash ADC
design is publicly available.

4 DISCUSSION

Process variation is the main source of errors in the proposed
circuit because it exceeds the available margins between the
mismatch levels. Hence, reducing variation will also reduce the
loss in inference accuracy. A back-gated FeFET, produced with
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the recently proposed channel-last fabrication technique, has
demonstrated reduced variation at lower write voltages and
better scalability at fast programming speeds Sharma et al.
(2020). Yet, in contrast to mature CMOS, FeFET technology is
still in its infancy. Like any other emerging technology, it suffers
from increased variation in those early stages. Nevertheless, it is
now the right time to investigate such technologies and harvest
their efficiency gains. Hence, HW/SW codesign is key to ensure
the applicability of the proposed concepts in the face of further
technological development. Our cross-layer modeling linking the
underlying technology with running applications is indispensable
towards increasing the robustness against errors. Additionally,
dedicated hypervector encoding methods have to be investigated,
which target specific error pattern stemming from the block and
precision concept.

In the presented experiments, the variation in the thickness of
the FE layer is not considered due to the lack of publicly available
variability measurements for advanced Fe-FinFET. To provide a
perspective on the potential impact, we consider a conservative
scenario in which the variation in the FE thickness (TFE),
remnant polarization (PR), and coercive field (EC) is 1% (σ/μ).
This, in turn, represents about 3×more variation compared to the
metal work-function (0.34%). Figure 15 summarizes the results
for language recognition with a block size of 10 bits and a
precision of 10. With 1% variation in the FE layer, the error
probability increases by up to 7.7%. This is reflected in the
inference accuracy loss, which increases notability by up to
0.3 p.p. for a dimension of 2000 bits (2.37–2.67%). For higher
dimensions, the absolute loss does not increase as much, at 10000
bits from 0.58 to 0.64%. The relative increase in inference

accuracy loss compared the FinFET baseline is about 13%
without a correlation with dimension.

Compared to CMOS-based SRAM, FeFET has low endurance.
The reported numbers in the literature vary widely from 105

Mulaosmanovic et al. (2019), over 1010 Tan et al. (2021) to 1012

Sharma et al. (2020) program/erase cycles. However, the FeFETs
in the proposed circuit experience only one full programming
cycle during setup. Yet, every query operation to the Fe-TCAM is
similar to a full read. The sensing of the ADC is similar to a read,
although with lower voltages. Chatterjee et al. does not report a
break down of the FeFET after 1010 reads Chatterjee et al. (2017).
Nevertheless, further studies on the endurance of Fe-TCAM and
FeFET-based synapses are necessary.

As discussed in Section 1.1.2, three methods to change the
polarization of a FeFET are known. One of them applies repeated
pulses, which is also known as accumulated switching
Mulaosmanovic et al. (2020). Mulaosmanovic et al. reported a
change in VTH after an accumulated pulse time of 100 ms which
corresponds to 108 query operations at 1 ns for a voltage of 1 V.
Their results suggest that the Fe-TCAM has to be refreshed from
time to time. The implications for the synapses are unclear. The
voltage is lower than 1 V, but the non-binary synapses are more
susceptible to changes of VTH than a binary Fe-TCAM.

In the experiments, an ideal MUX, in which only the
behavioral function is simulated, is assumed. For a proper
implementation, the required multiplexer circuit should be
able to select a certain voltage level from multiple received
voltage rails. Such a MUX circuit might be different from a
conventional MUX circuit, which is typically used to select a
certain logic value among different received logic inputs.
Nevertheless, to quantify the potential impact of the additional
capacitance induced by MUXes, the capacitance associated with a
single convectional MUX is ~ 0.6 fF using the employed 14 nm
FinFET technology node. This additional capacitance of 6 fF is
added to the ML in a modified Fe-TCAM circuit. Such a value
represents the total capacitance that 10 MUXes connected to the
10 Fe-FinFET synapses add to the ML (note that the block size is
10 bits in the Fe-TCAM array). SPICE simulations report that
such an additional capacitance connected to the ML reduces the
charging time of the Fe-FinFET synapses by about 3.2%. To
account for such a change, the circuit designer needs to carefully
calculate the required safety margin (e.g., timing guardband) to
ensure that variation effects will not lead to errors in the presence
of the induced reduction in the charging time.

5 CONCLUSION

In this work, an all-in-memory system for efficient brain-inspired
computing is proposed. The Hamming distance of two
hypervectors is processed in memory. An analog Fe-TCAM
array XNORs the two inputs, the mismatches are accumulated
in analog, and a Fe-FinFET-based synaptic comparator translates
the analog result into the digital domain. Effects at the transistor
level are accurately captured to design and evaluate the proposed
circuit. Additionally, the variation-induced errors are modeled to
bridge the gap between transistor and application level. With the

FIGURE 15 | Ferro variability analysis through variation of ferro thickness
(TFE), remnant polarization (PR) and coercive field (EC) on top of the variation of
the underlying FinFET. (A) Error probability of the different variation setups. (B)
Inference accuracy loss due to the injected error of the variation setups.
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model, the impact on the inference accuracy is determined. The
proposed PiM scheme is with almost 80% error probability
heavily impacted by process variation. Nevertheless,
Hyperdimensional Computing’s robustness against noise also
applies to computations and thus the inference accuracy loss is
reduced as little as 0.3% for language recognition. Depending on
the application and various circuit parameters, the loss is on
average 1%–2%. The energy consumption is similar to a CMOS-
based implementation but does not require expensive data
transfers thanks to the PiM approach.
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