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Surface-water divides can be delineated by analyzing digital elevation models. They might,
however, significantly differ from groundwater divides because the groundwater surface
does not necessarily follow the surface topography. Thus, in order to delineate a
groundwater divide, hydraulic-head measurements are needed. Because installing
piezometers is cost- and labor-intensive, it is vital to optimize their placement. In this
work, we introduce an optimal design analysis that can identify the best spatial
configuration of piezometers. The method is based on formal minimization of the
expected posterior uncertainty in localizing the groundwater divide. It is based on the
preposterior data impact assessor, a Bayesian framework that uses a random sample of
models (here: steady-state groundwater flow models) in a fully non-linear analysis. For
each realization, we compute virtual hydraulic-head measurements at all potential well
installation points and delineate the groundwater divide by particle tracking. Then, for each
set of virtual measurements and their possible measurement values, we assess the
uncertainty of the groundwater-divide location after Bayesian updating, and finally
marginalize over all possible measurement values. We test the method mimicking an
aquifer in South-West Germany. Previous works in this aquifer indicated a groundwater
divide that substantially differs from the surface-water divide. Our analysis shows that the
uncertainty in the localization of the groundwater divide can be reduced with each
additional monitoring well. In our case study, the optimal configuration of three
monitoring points involves the first well being close to the topographic surface water
divide, the second one on the hillslope toward the valley, and the third one in between.

Keywords: gaussian process emulation, preposterior data impact assessor, bayesian analysis, uncertainty
quantification, optimal design of measurements, delineation, groundwater divide

1. INTRODUCTION

Groundwater divides are curves separating different subsurface catchments. Water entering the
subsurface on one side of the groundwater divide ends up in a different receptor than water
infiltrating on the other side of the divide. Delineating groundwater divides is therefore important for
the analysis of aquifer water budgets, for investigating contaminant fate, and other applications of
groundwater management. Groundwater divides also represent attractive geometries for setting
second-type boundaries of hydrogeological models, since the water flux across the divide is zero (e.g.,
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Pöschke et al., 2018; Erdal and Cirpka, 2019; Qiu et al., 2019).
Obviously, a natural stream network contains many nested
surface water and groundwater divides of different order
(i.e., a catchment can be subdivided into sub-catchments).
That is why for the mentioned research areas, it is always
important to define the scale of investigation to identify which
groundwater divides are relevant and which sub-catchments can
be attributed to a higher-order catchment.

A common assumption when delineating groundwater divides
is that the groundwater table is a subdued representation of the
surface topography (Tóth, 1963; Haitjema and Mitchell-Bruker,
2005). This simplifies the delineation to finding the surface water
divides, which can be derived directly from digital elevation
models using geographic information systems (Tarboton et al.,
1991). However, the topography of a phreatic groundwater
surface may substantially differ from the land surface so that
the groundwater and surface water divides do not coincide
(Haitjema and Mitchell-Bruker, 2005; Bloxom and Burbey,
2015; Han et al., 2019). In fact, Haitjema and Mitchell-Bruker
(2005) reported on a whole class of aquifers naturally exhibiting
such shifts between surface and subsurface water divides. They
demonstrated under which conditions a groundwater table is
mainly controlled by surface topography or by recharge. These
authors concluded that a shifted groundwater divide may be
caused by relatively high hydraulic conductivity in conjunction
with a difference between the elevation of drainage points in
neighboring valleys. Additional factors contributing to shifts in
groundwater divides include tilted aquifer strata, spatial
heterogeneity in the recharge rate, and anisotropy in hydraulic
conductivity. Of course, anthropogenic influence (e.g., drinking
water extraction wells) can also contribute to shifted groundwater
divides.

The location of groundwater divides can be constrained by
hydraulic-head measurements. Theoretically speaking, a very
dense network of piezometers could be used to accurately
interpolate the groundwater-table map, which could
subsequently be analyzed by the same tools as used for
delineating surface-water divides. In practice, this is not
advisable as the number of observation wells is restricted by
financial costs, labor intensity, and legal restrictions. That is,
groundwater divides must be delineated with head measurements
from a limited number of piezometers. A classical way of doing
this is by calibrating groundwater flow-and-transport models to
the head measurements, which explicitly uses all information fed
into the model construction (e.g., the geometry and parameter
ranges of geological units and boundary conditions) and leads to
hydraulic-head fields that are consistent with conservation
principles.

As only a limited number of observation wells is affordable,
their placements should be specifically optimized for delineating a
particular groundwater divide. Either, one wants to find the best
possible piezometer configuration for a fixed number of wells, in
which the optimum is defined by minimizing the uncertainty of
the divide’s position, or one wants to find the well configuration
requiring the least number of wells for a fixed target uncertainty
of the divide’s location. In both cases, the objective is to maximize
the information-to-costs ratio, which is a general problem

well-known under the name of “optimal design of
experiments” (Pukelsheim, 2006; Fedorov, 1972).

In this study, we solve the described optimization problem.
We provide a framework to identify the best set of points to
delineate a particular groundwater divide. The “goodness” of such
a point set is defined by how much the uncertainty in the divide’s
location is reduced, if hydraulic-head measurements were
available at these points. The best set of points might then be
implemented as real-world monitoring wells, whose
measurements can be used to calibrate a flow model for
actually delineating the divide of interest.

Of course, during the stage of identifying promising
measurement locations it is unknown which measurement
values would be obtained at these locations. To circumvent
this problem, we apply a specific technique of optimal
experimental design, called Preposterior Data Impact Assessor
(PreDIA, Leube et al., 2012). We feed it with a sample of steady-
state groundwater models that is efficiently pre-selected to
include only plausible subsurface flow fields (Erdal et al.,
2020). By means of delineating the groundwater divide for
each individual realization and virtually conducting all possible
measurements, we can quantify both, the total uncertainty of the
groundwater divide’s location across the domain and by how
much this scalar quantity can be reduced with a specific
measurement configuration.

The main contributions of the present study are the
formulation of the problem and the development of a suitable
objective function for delineating a groundwater divide, as well as
the combination of PreDIA with the pre-selection of plausible
model results.

The motivation behind our work originates from a real field
site. During the investigation of a floodplain, it was discovered
that the observed lateral groundwater influxes from the hillslope
are too small to drain the water quantities gained by the hillslope’s
expected recharge. This imbalance of in- and outfluxes has led to
the conclusion that the groundwater divide underneath the
hillslope is shifted in a way that the contributing area draining
toward the floodplain is much smaller than expected, when
considering the surface water divide as contributing boundary.
The phenomenon of flow crossing surface water divides has been
referred to as “interbasin groundwater flow”. It needs to be
quantitatively estimated, before detailed studies focusing on
the hillslope or floodplain can be conducted. The information
of whether or not such interbasin flow occurs in a domain and
how pronounced it is can furthermore be of utter importance, for
example if contamination occurs in one basin and a sensitive
receptor (e.g., a drinking water supply well) is located in the
other one.

We developed our framework for cases, where the (suspected)
shift of a groundwater divide is the phenomenon of interest that
needs to be quantified. In reality, such a shifted divide might
additionally be subject to transient processes (i.e., it might move
with time). This is not covered by our methodology, but we
believe our analysis might still be useful in such cases (see section
4.5). We want to emphasize that a shifted divide does not imply
its movement over time. A groundwater divide can very well be at
a (quasi-)steady state while being shifted due to the geological
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setting, which does not change significantly over time scales
relevant for groundwater management.

Section 2 introduces and explains the underlying framework.
Real data from a site in Southwest Germany are used in section 3
to test the method.We want to highlight that we separate our site-
specific implementation details (application) from the general
approach of our framework (Methods). The results of our
example study are presented and discussed in section 4.
Finally, we draw conclusions and give an outlook in section 5.

2. METHODS

2.1. Subsurface Flow Equations
The optimal experimental design method we use later on (section
2.4) is based on stochastic runs of a steady-state subsurface flow
model. To model saturated and unsaturated parts of the
subsurface, we solve the steady-state version of the Richards
equation for variably saturated flow in porous media
(Richards, 1931):

−∇ · q � Q (1)

q � −Kkrel(hp)∇htot (2)

hp � htot − z (3)

in which q is the specific discharge vector (dim q � LT−1), Q
represents volumetric source (Q< 0) or sink (Q> 0) terms
(dim Q � T−1), htot is the total head (dim htot � L), K is the
hydraulic-conductivity tensor (dim K � LT−1) under water-
saturated conditions, krel is the dimensionless relative
permeability, hp is the pressure head (dim hp � L), and z is
the geodetic height (dim z � L).

The relative permeability krel and the dimensionless effective
saturation Se are parameterized by the Mualem/van-Genuchten
relationships (Mualem, 1976; van Genuchten, 1980):

Se �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 + (α∣∣∣∣hp∣∣∣∣)N)
1−N
N

if hp < 0

1 otherwise

(4)

krel(Se(hp)) � ��
Se

√ (1 − (1 − S
N

N−1
e )N− 1

N )2

(5)

Θw � Θr + (Θs − Θr)Se (6)

in which Θw, Θr, and Θs are the actual, residual, and saturated
dimensionless (volumetric) water contents, α is a van-Genuchten
parameter similar to the inverse entry-pressure head
(dim α � L−1), and N is the associated dimensionless pore-
distribution index.

By including the Mualem/van-Genuchten parametrization,
the Richards equation holds for variably saturated flow
(i.e., both the saturated and unsaturated zone). In the
saturated zone (hp > 0), both the effective saturation and the
relative permeability become unity. Here, the Richards
equation naturally simplifies to the groundwater-flow equation
based on Darcy’s law and the continuity equation. In the
unsaturated zone (hp < 0), the effective saturation and relative

permeability are subject to nonlinear equations depending on
the pressure head. The groundwater table is located at the
transition from saturated to unsaturated zone (hp � 0). Since
the used parametrization does not define a clear entry pressure,
there is no capillary fringe in a strict sense. However, the
parameter α serves a similar purpose meaning that only if the
capillary head (equals −hp in the unsaturated zone) is well above
1
α
, the saturation drops significantly. That is, the model includes a
zone above the groundwater table where the effective water
saturation is close to unity, which resembles the capillary fringe.
Using the Richards equation coupled to Mualem/van-
Genuchten relationships to model saturated and unsaturated
parts of the subsurface simultaneously has been common
practice for decades (e.g., Tocci et al., 1998; Farthing et al.,
2003; Suk and Park, 2019).

We apply the following boundary conditions:

htot � hfix on ΓD (7)

n · q � qfix on ΓN (8)

htot � min[hsim, zsurf] on ΓS (9)

Q � CL

V
· (htot − hriv) on ΓL (10)

Q �
⎧⎪⎨⎪⎩

CD

V
· (htot − zsurf) if htot − zsurf >Δz

0 otherwise
on ΓT (11)

in which hfix is a known hydraulic head (dim hfix � L), n is the
dimensionless unit normal vector, qfix is a known normal flux
(dim qfix � LT−1), hsim is the simulated head if the boundary
was considered a no-flow boundary (hsim � L), zsurf is the
surface elevation (dim zsurf � L), CL is a river conductance
(dim CL � L2 T−1), V is the volume related to the source/sink
term (dim V � L3), hriv is a known river head (dim hriv � L),
CD is a drainage conductance (dim CD � L2 T−1) and Δz is a
pressure difference threshold (dimΔz � L). Here, ΓD denotes a
Dirichlet boundary, ΓN a Neumann boundary, ΓS a seepage
boundary, ΓL a leaky (e.g., river) boundary and ΓT a top
drainage boundary.

The leaky boundary condition can account for interactions
between groundwater and river water. The respective exchange
flux is driven by the head difference htot − hriv and a conductance CL:

CL � Lriv · wriv

Lsed
· Ksed, (12)

where Lriv and wriv are the associated river stretch length and
width (dim Lriv � dim wriv � L), Lsed is the thickness of the
sediment bed (dim Lsed � L), and Ksed is the sediment’s
hydraulic conductivity (dim Ksed � LT−1).

A similar conductance CD regulates the drainage flux at
surficial drainage boundary conditions:

CD � A
Llay

· Klay , (13)

where A is the associated surface area (dim A � L2), Llay is the
thickness of the intermediate layer (dim Llay � L) and Klay is its
hydraulic conductivity (dim Klay � LT−1).
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After simulating subsurface flow, we use particle tracking to
determine the groundwater divide as explained in section 2.3.
Toward this end, we introduce particles at the land surface, track
their advective movement according to the advective velocity v,
and analyze on which side of the groundwater system they end.
This approach is a common procedure for delineating subsurface
water divides (e.g., Hunt et al., 2001; Han et al., 2019):

dxi
dt

� v(xi(t)) (14)

subject to xi(t � 0) � xinii (15)

with v � q
Θw

(16)

in which v is the linear velocity (dim v � LT−1), xi(t) is the
position vector (dim xi(t) � L) of particle i at time t (dim t � T),
and xinii is the starting location (dim xinii � L).

The approach of delineating the groundwater divide by
particle tracking obviously implies that the divide is located
within the modeling domain. This is in contrast to many
practical groundwater-modeling studies, where the domain is
bounded by the assumed groundwater divides. Under such
conditions, these groundwater divides are fixed by the model
choice. Since we want to study the uncertainty of the groundwater
divide, we require a model domain where the divide is in the
interior so that the model has the freedom to shift it.

2.2. Generation of a Plausible Model Sample
In order to capture the uncertainty of the divide’s location (prior
to any measurements and after hypothetical measurements), our
framework makes use of ensemble-modeling. This implies the
repeated simulation of the same conceptual model with different
numerical representations. These can be formally identical,
differing only, for example, in some material property values.
They could also differ in more fundamental properties, like the
internal structure. We call the final group of model entities a
“sample”, to avoid confusion with the term “ensemble” referring
to such a group of infinite size. Each entity of the sample is termed
a realization or sample member.

Formally, a sample member is defined both, by the
formulation of the general model itself (common to all
members) and by a member-specific set of parameters. In
addition to that, the sample member also comprises its
deterministic modeling results (after the model was evaluated),
which can be reproduced from the general model by using the
same parameter set. We denote these parameter sets S, a vector of
all individual properties that differ between realizations. The
vector S may include not only material properties, but also
boundary conditions or geometric descriptors (for an example,
we refer to our application in section 3.2.3).

In theory, we could create a sample of sufficient size just by
drawing random parameter sets from appropriate prior
distributions and subsequent numerical modeling of
subsurface-flow. These prior distributions could be derived
from measurements (e.g., pumping tests for hydraulic
conductivities), other models (e.g., recharge rates) or expert
knowledge (e.g., anisotropies). Afterward, particle-tracking

would obtain one groundwater divide for each realization. In
practice however, we need to exclude parameter sets that lead to
implausible model results (e.g., wrong signs of fluxes across
boundaries; more examples in context of our application,
section 3.3), because that would ignore obvious insight into
the correct system behavior and thus overstretch uncertainty.
Conversely, we do not want to restrict the parameter ranges too
much because we want to assess the full space of plausible model
parameters. Therefore, we keep the prior parameter ranges
untouched, but rely on the exclusion of models with obviously
unrealistic results (denoted unbehavioral or implausible).

While excluding unbehavioral realizations is a conditioning
step, we would not yet consider it a model calibration, but rather a
plausibility check or pre-selection (see Erdal and Cirpka, 2019;
Erdal and Cirpka, 2020; Erdal et al., 2020). In a rigorous
conditioning step (i.e., “stochastic calibration”) that could
follow on this pre-selection, we would modify the parameters
of sample members to better meet the exact measurement values.
A potential method to do that would be an ensemble Kalman
smoother. However, a full stochastic calibration on the existing
data would be computationally expensive, but not informative
about the quantity of interest, namely the position of the
groundwater divide. The lack of hydraulic-head measurements
that are informative about the delineation of the groundwater
divide is the very reason why we perform the optimal design of
experiments to begin with.

The decision about the plausibility and ultimately its
acceptance or rejection of a candidate model is based on a set
of criteria. Each plausibility criterion compares a scalar model
outcome (e.g., the flux across a specific boundary) with a target
value that must not be exceeded or fallen below. Only if a model
realization fulfills all plausibility criteria, it will be included in the
sample for further analysis.

A key problem of the pre-selection is that more than 94% of
randomly drawn parameter sets in our application miss at least
one criterion. If we performed full runs of the numerical
subsurface-flow model for each model candidate, we would
thus waste more than 94% of the computing time on model
runs that must be discarded. To overcome this problem
efficiently, we have adopted the pre-selection method of Erdal
et al. (2020) (based on Erdal and Cirpka, 2019). It is based on
relating the plausibility criteria with the model parameters S by
means of interpolation, to estimate whether a new parameter set
is likely to be plausible or not. Toward this end, it follows these
steps:

(1) We create a small initial sample of S by Latin Hypercube
sampling from appropriate priors and perform numerical
subsurface-flow modeling for all sample members. We
compute the respective values of the plausibility criteria
for each realization.

(2) We train one Gaussian process emulator per plausibility
criterion with the initial sample of full model runs. A
Gaussian process emulator is a kriging interpolator in
parameter space (a “proxy model” or “surrogate model”)
that estimates the expected value of the plausibility criterion
and quantifies its estimation variance, provided that the
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assumptions of kriging (e.g., statistical stationarity) hold. We
want to emphasize here that this is not a spatial interpolation,
but an interpolation of the model response to parameter
values.

(3) We then draw further random samples of S. For each of
them, we apply the Gaussian process emulators to compute
the compliance probability with each plausibility criterion. If
a realization’s product of all individual compliance
probabilities (i.e., its overall probability) does not exceed a
certain threshold value (in our case 50%), we discard it and
draw a new sample. This evaluation is comparably quick
(fraction of a second) and saves us modeling time that would
be wasted by running a model that would probably need to be
rejected due to implausible results.

(4) For a model candidate where this product exceeds the
threshold probability (a “stage-1-accepted” realization), we
perform the simulation of the full subsurface-flow model. A
small percentage of sample members (we use 5%) is run
directly without checking against the Gaussian process
emulator estimates first.

(5) If the model candidate also meets the plausibility criteria after
running the full numerical model, it is “stage-2-accepted”
(i.e., included in the sample of physically plausible models),
and particle-tracking simulations are performed to obtain the
groundwater divide. Otherwise, it is discarded.

(6) With an increasingly large set of full model runs, the
Gaussian process emulator model is regularly retrained to
improve its accuracy in predicting the behavioral status of
subsequent model candidates.

With this procedure, we were able to increase the overall
acceptance ratio, that is, the number of stage-2-accepted full-
model runs over the total number of full-model runs. In the initial
small sample (full Monte Carlo), only 6% of the realizations
passed the plausibility check (111 out of 2000). With the

interpolation method, we were able to achieve an acceptance
ratio of 69% of realizations subject to a full model run (50,000 of
72,481 stage-1-accepted parameter sets; a large number of
randomly drawn parameter sets was rejected in stage 1).
Figure 1 schematically illustrates the whole sample-generation
procedure. It results in nsample stage-2-accepted realizations that
will actually be used in the following analysis.

2.3. Uncertainty in Delineating a
Groundwater Divide
For each stage-1-accepted parameter realization (see step 4 in
section 2.2), we determine the scalar model outcomes of the
plausibility check. Additionally, we simulate virtual measurement
values of hydraulic heads at all potential measurement locations,
by determining the respective elevations of the groundwater table
at these locations. The number and location of such potential
measurements is known prior to the analysis and part of the
problem statement.

Only for the nsample stage-2-accepted realizations, we compute
via particle tracking a vector z of particle fates for a regular map of
starting locations: We introduce npar particles at the model
domain’s surface. These particles are tracked through the
domain until they exit the domain through a groundwater
outlet. This tracking allows us to classify the particles into two
categories summarized by the classification vector z with
zi ∈ {0, 1} and i � 1, . . . , npar. A particle i that ends up in one
outlet (A) is assigned the value zi � 1, while a particle ending up
in the other outlet (B) obtains a value of zi � 0. Since each particle
is related to a starting point in two-dimensional space, z
represents what we call the binary particle-fate map. This
binary classification is sufficient to delineate the boundary of a
single subdomain, but it cannot be used to delineate all
groundwater divides between more than two subdomains (e.g.,
due to groundwater extraction wells). In the appendix (section

FIGURE 1 | Procedure used to generate a sample of physically plausible model realizations for the optimal experimental design analysis.
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5.1) we include a generalization to an arbitrary number of
subdomains. In the following, we will focus on binary systems,
because this is the most common scenario.

Other approaches than particle tracking for the delineation of
groundwater divides exist. They are typically based on locating
the “ridge of the groundwater table”. However, they have been
shown to be less reliable (Han et al., 2019).

The fate of a particle i depends on the parameter vector S
(including all variable model decisions). The probability of zi
being one (that is, of the associated starting point to be within the
catchment of outlet A) is computed by integrating over the space
ΩS of the parameter vector S, weighted with the probability
density of S:

P(zi) � ∫
ΩS

zi(S)p(S) dS

≈ ∑
j�1

nsample

zi(Sj)P(Sj), (17)

in which zi(S) is the binary fate of particle i for the given
parameter vector S, p(S) is the probability density of S, and
the second row of Eq. 17 is the Monte-Carlo approximation of
P(zi) by the sample of discrete S-values with the probability P(Sj)
given to the S-value of the jth realization. In our initial sample, all
accepted realizations are equally likely, implying
P(Sj) � 1/nsample ∀j. Upon conditioning on (virtual) head
measurements, P(Sj) will become a Bayesian weight (see
below). Franzetti and Guadagnini (1996) and Hunt et al.
(2001) used a similar approach to estimate the uncertainty of
capture-zone delineations.

We can now compute the probability Pmc(zi) of misclassifying
the fate of particle i:

Pmc(zi) � 2P(zi)(1 − P(zi)). (18)

This equation expresses the probability that particle i, which
actually ends up in outlet A, is estimated to end up in outlet B or
vice versa. Pmc ranges from zero (full certainty) to 0.5 (maximum
uncertainty). The underlying assumption is that the decision
threshold for classification is at 50%. That is the reason for
0.5 being the largest value of Pmc. P(z) and Pmc(z) can be
visualized as maps of probability all over the catchment. We
integrate the probability of misclassification over all starting
locations xini of particles to obtain an integral metric U of
describing the uncertainty of the groundwater divide:

U(z) � 1
A2D

∫
A2D

Pmc(z(xini)) dxini

≈
1

A2D
∑
i�1

npar

Pmc(zi)Aini
i

(19)

in whichA2D is the two-dimensional top surface area of the model
domain and Aini

i is the contributing area of particle i, which may
be computed by Voronoi tesselation of all starting locations (e.g.,
Brassel and Reif, 1979). Large values of U(z) express that the
outlet destination of particles is uncertain on a large fraction of
the domain’s surface, which is not desirable.

As discussed in the context of Eq. 17, the probability P(zi) of
starting location xinii being in the catchment of outlet A, and thus
the associated probability of misclassification Pmc(zi) and
ultimately the overall uncertainty U(z), depends on the
probabilities P(Sj) of individual parameter realizations j. This
implies that conditioning the parameter vector S on head
observations will change the overall uncertainty U of
delineating the groundwater divide. The following optimal
design analysis aims at minimizing U.

2.4. Prospective Optimal Experimental
Design
To find the optimal placement of piezometers in order to
delineate a groundwater divide, we apply the optimal
experimental design method PreDIA (the Preposterior Data
Impact Assessor, Leube et al., 2012), which we briefly review
in the given context.

The scientific question of optimal design is to find the
combination of measurements or experiments with the largest
information content regarding a target quantity, before the
experiment itself is carried out. Formally, the objective is to
identify the single design dopt of a set of ndes possible designs
d in the design space d ∈ D that maximizes a utility function ϕ(d)
(Leube et al., 2012):

dopt � argmax
d ∈ D

[ϕ(d)] (20)

A design in this notation is a vector containing information about
how measurements are taken in time and space. The utility
function ϕ(d) is a measure of the usefulness of data obtained
with an experiment using design d. The evaluation of ϕ obviously
requires knowledge about the measurement results of a particular
design, which is unknown at the stage of the optimal-
experimental-design analysis. PreDIA can circumvent this
problem by means of ensemble-based modeling.

As previously described, S denotes the input parameter vector,
comprising all uncertain model decisions, such as material
properties (e.g., hydraulic conductivity), boundary conditions
(e.g., recharge), geometric parameters (e.g., thickness of
geological units), or structural modeling parameters (e.g.,
presence of layers). As outlined above, we create a sample of
members with physically plausible behavior. The variability in
model input S leads to interdependent variability of model
output, both with respect to simulated measurements and
simulated target quantities (the particle-fate maps).

For a given realization Si, we can simulate virtual observations
fy(Si, d) for a specific design d, in which fy denotes the simulation
outcome of the measured quantities. To account for
measurement error, we add a random error term εy to
fy(Si, d) to obtain virtual measurements yi(d) of a specific
design d and parameter realization i:

yi(d) � fy(Si, d) + εy (21)

To answer the optimal-experimental-design question, we use
the stage-2-accepted realizations to compute the 1 × npar
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vector of prediction variables z (binary particle-fate map) as
discussed above. The prediction solely depends on the input
parameter vector S and is independent of the measurement
design d. In our particular application, the prediction variable
is binary, namely whether a particle introduced into the
subsurface at a given location belongs to one out of two
catchments. The binary nature of z implies that the sample
average of it equals the vector of probabilities that the
individual elements of z are one.

After acquiring nsample stage-2-accepted sample members
of the parameter vector S and computing the associated
virtual measurements and prediction variables, we have
nsample × ndes sets of y(d) and nsample sets of z (which can be
summarized in a nsample × npar matrix Z). As illustrated in
Figure 2, PreDIA proceeds in the following way to identify
the best design:

(1) Compute the unconditional sample mean P(zi) of all target
variables zi by Eq. 17 with equal probabilities of all
realizations.

(2) Compute the vector of unconditional probabilities of
misclassification Pmc(zi) by Eq. 18 and the associated
overall prior uncertainty of groundwater-divide delineation
U(z) by Eq. 19.

(3) Select a random subset of nsub realizations used to define
virtual truths. Its distribution of virtually measured values y
should be similar to the corresponding distribution using the
full sample (across all designs). When computationally
feasible, select all nsample sample members such that nsub �
nsample.

(4) Loop over all designs d:
a. Loop over the nsub realizations with index j:

(1) Realization j with the virtual observations yj(d) and
the virtual prediction variable zj is temporarily
declared as truth.

(2) Each realization i≠ j of the full set of nsample

realizations is assigned a Bayesian weight
depending on how close the respective
observations yi(d) are to yj(d). The weights are

computed by the likelihoods Lij of observation yi(d)
using the observation yj(d) as temporary truth:

wij � Lij

∑iLij
(22)

Lij�

1���������(2π)ny |Rε|
√
exp(−1

2
(yi(d)−yj(d))TR−1

ε (yi(d)−yj(d))) if i≠j

0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(23)

in which ny is the number of virtual measurements
according to the current design d, and Rε is the ny ×
ny covariance matrix of measurement errors, here
assumed to be a diagonal matrix, which implies that
the measurement errors are uncorrelated.

The weights are summarized in a nsample × 1
vector wj of weights.

(3) Compute the mean of all prediction variables in Z,
conditioned on the observations yj(d) of the
temporary true parameter set Sj according to the
current design d by Eq. 17 with the probability of
realization i set to the weight wij:

P(z∣∣∣∣∣yj(d)) � wT
j Z � ∑

nsample

i

wijzi (24)

The 1 × nz vector P(z
∣∣∣∣∣yj(d)) is the vector of

probabilities that the individual elements of z are
one, conditioned on the vector of observations yj(d)
of realization j using the design d.

(4) Compute the conditional probability of misclassification
Pmc(z

∣∣∣∣∣yj(d)) by substitutingP(z
∣∣∣∣∣yj(d)) rather than the

vector of unconditional probabilities P(z), into Eq. 18.
(5) From the vectors of conditional and unconditional

probabilities of misclassification, Pmc(z
∣∣∣∣∣yj(d)) and

Pmc(z), respectively, compute a scalar metric
Φ(yj(d)) summarizing the relative reduction of
uncertainty U in classifying all elements of z by

FIGURE 2 | Schematic illustration of the general preposterior data impact assessor procedure. Inner loop in dark blue, outer loop in light blue.
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considering the observations yj(d) belonging to
design d:

Φ(yj(d)) � 1 − U(z∣∣∣∣∣yj(d))
U(z) (25)

by using Eq. 19. Steps 4. a (1) to 4. a (5) define the
inner loop, illustrated by dark blue shading in
Figure 2. In the inner loop, each of the nsub
virtual observations for the currently chosen
design d are temporarily considered the truth.
The inner loop results in nsub objective-function
values for a given design d.

b. Marginalize the objective function over the nsub
realizations:

ϕ(d) � 1
nsub

∑nsub
j�1

Φ(yj(d)) (26)

in which we have assumed that all “temporary truth”
realizations j are equally likely. ϕ(d) is the utility
function of design d. Steps 4. a and 4. b define the
outer loop over all designs d ∈ D, which is illustrated
by light blue shading in Figure 2).

(5) Identify the design dopt maximizing ϕ(d) according to
Eq. 20.

The two loops of PreDIA require large sample sizes to make
reliable statements about design performances. To estimate
whether the chosen sample is large enough for the results to
be meaningful, one can use the averaged effective sample size
AESS (Leube et al., 2012, adapted from; Liu, 2008). It is a measure
of how many realizations actually contribute to the analysis,
where low values indicate filter degeneracy, which needs to be
mitigated by increasing the ensemble size.

PreDIA has fundamental advantages over other optimal-
experimental-design techniques. It is applicable to inherently
non-linear problems without the need of a linearization. It is
also very versatile because it imposes few restrictions on the
numerical model. Besides the definition and reading of some pre-
run input and post-run output quantities, the actual numerical
simulation code is independent of PreDIA. This independence
makes it trivial to couple any numerical model with PreDIA. It
can be seen as a post-processing routine for any modeling sample.
PreDIA can capture all kinds of known or estimated uncertainties
in boundary conditions, material properties, model structure, or
any other model parameters due to its ensemble-based nature.

The disadvantage of PreDIA lies in its computational cost. The
analysis requires large sample sizes (i.e., tens of thousands of
model runs) and is computationally expensive itself. These
difficulties, however, can be overcome with parallel computing
techniques (i.e., running multiple realizations at the same time)
and simplified models that are comparably quick.

2.5. Numerical Implementation
Our framework does not depend on the choice of any specific
software, neither for the flow simulation nor for the optimal-design

analysis. In the following application, we use HydroGeoSphere to
solve for three-dimensional subsurface flow using standard finite
elements on triangular prisms (Therrien et al., 2010; Brunner and
Simmons, 2012). Because of the Richards equation’s nonlinearity,
we do not directly solve for steady-state flow. Instead, we use the
transient solver of HydroGeoSphere with constant forcings over a
simulation time of 3 · 1012 s ≈ 100 000 years using adaptive
discretization in time. It is reasonable to assume that steady state
is achieved within this time.

The velocity field of HydroGeoSphere is transferred to Tecplot
to perform advective particle tracking with Tecplot’s streamtracing
routine in its command line mode (Tecplot Inc., 2019).

The stochastic engine responsible for the sampling of the
parameter space and performing the plausibility check of
sample members by the Gaussian process emulator-based
surrogate model is written in Matlab (The MathWorks Inc.,
2019) and based on the code of Erdal and Cirpka (2019). We
execute the stochastic sampler on a mid-size high-performance
computing cluster with 24 Intel Xeon L5530 nodes (8 cores per
node; 2.4GHz and 8MB per chip).

The optimal design analysis using PreDIA is implemented as a
separate Matlab code that acts on the full sample of stage-2-
accepted realizations after its acquisition.

3. APPLICATION TO A FIELD SITE

3.1. Description of the Study Site
We apply the presented framework to delineate the groundwater
divide between the Ammer and Neckar catchments north and
south of the Wurmlingen Saddle, respectively, close to Tübingen
in South-West Germany. Figure 3 shows a map of the area
outlining the model domain (solid black line), the surface-water
divide (dashed black line), and streams/drainage features (blue
lines). The area of interest comprises a floodplain in the Ammer
catchment, which is part of ongoing hydrogeologic and geophysical
research (e.g., Martin et al., 2020). Previous modeling studies
suggested a shift of the groundwater divide in this area toward
the Ammer catchment in the north (Kortunov, 2018). This
hypothesis was supported by the Neckar valley being about 10m
lower than the Ammer valley and dipping of the strata toward the
south. However, no piezometers currently exist along the decisive
hillslope so that the hypothesis of a shifted groundwater divide is
fairly uncertain. Delineating the groundwater divide with higher
certainty would help to determine the Ammer floodplain’s water
budget more accurately.

In order to test the hypothesis of a shifted groundwater divide,
installing up to three piezometers is planned. Due to legal and
logistical reasons, all new groundwater observation points need to
be placed on a transect parallel to the street fromUnterjesingen to
Wurmlingen (see Figure 3). We use the presented method to
determine the best configuration of piezometers along this
transect.

The model domain contains parts of both the Ammer and
Neckar catchments, so that the groundwater divide emerges from
the model instead of being set as a boundary condition. The
surface elevation ranges from approximately 330m to 475m
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above sea level. In the East of the model domain, the surface-
water divide is on a ridge (“Spitzberg”) formed by a sequence of
mud- and sandstones that most likely does not allow groundwater
recharge to the main aquifer. Likewise, in the West, the surface-
water divide is on a plateau (“Pfaffenberg”). In the center of the
model domain, by contrast, the topographic surface-water divide
is a saddle with gentle slopes both toward the north and south.

The model domain includes the floodplain of the Ammer river
with the river itself and a network of artificial drainage channels.
The drainage features running south-north on the hillslope are
typically dry, unless during storm events. On the southern side,
the model domain includes parts of the Neckar floodplain, but
does not reach River Neckar. The only surface water on this side
of the hills is a small creek (“Arbach”). However, a dense network
of observation wells in the Neckar valley allowed us to define a
fixed-head boundary condition along the southern boundary of
the model domain.

The bedrock geology in the area is governed by sequences of
sandstones and mudstones belonging to the Upper Triassic
Keuper formation (Aigner and Bachmann, 1992). The regional
geology has been subject to many (hydro-)geological
investigations (e.g., Kekeisen, 1913; Harreß, 1973; D’Affonseca
et al., 2020). The Ammer and Neckar rivers have carved small
basins into the bedrock (Martin et al., 2020), which are filled with
Quaternary sediments forming the floodplains. In total, we
distinguish twelve hydrostratigraphic units, which we briefly
characterize in the following from bottom to top:

(1) lower Erfurt formation (kuE): The kuE unit is roughly 20m
thick. Being made of thin layers of mudstones and
dolostones, it acts as an aquitard, separating the shallow
groundwater system from the underlying middle Triassic

Muschelkalk formation, a regional karstified aquifer
(D’Affonseca et al., 2020).

(2) upper kuE: We divide the kuE into two subunits of similar
thickness to account for its heterogeneity in hydraulic
conductivity.

(3) unweathered Grabfeld formation (kmGr): The kmGr is a
mudstone unit bearing gypsum, anhydrite, mudstones, and
shales. It can reach thicknesses of up to 100m (Schmidt et al.,
2005). Its hydraulic properties vary strongly depending on its
degree of weathering. The unweathered, anhydrite-bearing
kmGr is considered tight but may be fractured to allow some
water circulation.

(4) weathered kmGr: Water contact has transformed anhydrite
to gypsum within the kmGr. Upon further weathering, the
gypsum dissolves (Ufrecht, 2017), which can increase the
hydraulic conductivity by orders of magnitude (Kirchholtes
and Ufrecht, 2015). Due to the strong contrast in hydraulic
conductivity, we divide kmGr into the unweathered and
weathered rock.

(5) mud- and sandstone formations (km2345): We lump the
remaining bedrock formations Stuttgart formation (kmSt),
Steigerwald/Hassberge/Mainhardt formation (kmSw/kmHb/
kmMh), Löwenstein formation (kmLw), and Trossingen
formation (kmTr), which are made of interbedded
mudstones, silty mudrocks, dolomite layers, sandstones,
and clay conglomerates, to a single unit with uniform
hydraulic properties. These strata occur only at the
outskirts of our model domain where they cover the kmGr.

(6) hillslope-hollow fillings: hillslope hollows on the southern
hillslopes of the Ammer valley are cut into the kmGr. They
are partially filled with poorly sorted sediments deposited by
mudflows.

FIGURE 3 | Two-dimensional overview of the model domain and its location in Germany.
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(7) Neckar-valley gravel: The floodplain material on the Neckar
side mostly consists of Quaternary sandy gravel sediments of
several meter thickness.

(8) Ammer-valley Quaternary: The Ammer floodplain
comprises five distinct layers (Martin et al., 2020):
a. Ammer-valley gravel: The lowest floodplain unit in the

Ammer valley consists of a Pleistocene clayey gravel
body, acting as a local aquifer. Its thickness is in the
range of 5m to 10m.

b. Ammer-valley clay: A clay unit of approximately 2m to
3m thickness forms an aquitard between the two
floodplain aquifers.

c. Ammer-valley tufa: This Holocene unit consists mostly
of autochthonous limestone aggregates. It has a
thickness of several meters. Slug tests conducted by
Martin et al. (2020) identified this layer as an aquifer.

d. Ammer-valley alluvial clay: The top of the Quaternary
filling of the Ammer floodplain is a several meter thick
colluvium of silty and clayey fines.

e. riverbed of the Ammer river: Underneath River
Ammer, a layer of recent river sediments with
different grain size than the surrounding sediments
can be found. This layer could have an increased
hydraulic conductivity, due to consisting of coarse
sediments deposited by the river. However, it is also
possible that this layer has a reduced conductivity due
to colmation of clayey deposits.

Figure 4 illustrates the considered hydrostratigraphic units in
three-dimensional renderings.

3.2. Details of the Subsurface-Flow Model
3.2.1. Discretization
Figure 5 shows a plan view of the model discretization and
boundary conditions. The model domain covers an area of
approximately 13 km2. We discretize the two-dimensional area
by 3,959 triangles arranged in a conforming unstructured grid.
These triangles are extruded in the vertical dimension to generate
triangular prisms. Using 35 prism layers from the bottom of the
lower kuE formation to the surface elevation results in a grid of
138,565 three-dimensional elements with 74,412 nodes. The
number of layers is constant throughout the domain, whereas
the layer thicknesses vary. The topmost layers of the domain are
discretized more finely, in order to better resolve the unsaturated
zone. The chosen mesh is a compromise between numerical
accuracy and computational effort. A comparison between
models set up on this grid with models defined on an eightfold
refined version revealed some deviations at the coarser parts (mostly
on the Neckar side and in the deeper subsurface of the domain).
However, we deem these acceptable because they occur where the
exact hydraulic heads are of little interest to us anyway and because
they are minor compared to the variance between different model
realizations. For future applications we suggest to perform a grid
convergence analysis with a range of different discretizations. The
coarsest grid providing adequate accuracy should be selected.

FIGURE 4 | Three-dimensional overview of the subsurface-flow model. The vertical dimension is exaggerated by a factor of five to enhance distinctness.
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3.2.2. Boundary Conditions
Along different parts of the boundary, we apply different
boundary conditions:

(1) If not specified otherwise, all outer mesh faces are assigned a
no-flux (Neumann) boundary condition. These boundaries
are either in formations of very low conductivity (particularly
the bottom) or the boundaries are far away from the area of
interest like the northern boundary, which is derived from a
secondary surface water divide on the far side of the Ammer
valley. The eastern and western boundaries are
approximately parallel to the estimated flow field.

(2) Three fixed-head boundary sections are defined at the
western, eastern, and southern sides of the domain to
allow regional groundwater flow (see Figure 5). To obtain
the fixed-head values, we interpolate between observation
well data. In the Ammer valley, the Dirichlet boundaries
extend over the Quaternary fillings, while on the Neckar side,
they extend over the whole depth of the model, where the
formation consists of a thin, highly conductive gravel that
ends at the municipality of Wurmlingen. Because of the high
hydraulic conductivity and the absence of significant vertical
hydraulic gradients here, we average the interpolated head
values over depth for the Dirichlet assignment.

(3) On the top surface of the domain, we apply recharge as a fixed-
flux (Neumann) boundary condition across element faces.
Recharge rates in different zones depend on land use
(cropland, floodplain, urban areas, and km2345-covered
parts). By providing recharge as a model boundary we
lump the dynamic interaction of evaporation, transpiration,
precipitation and soil water storage into a single stationary
quantity, which is of course a simplification. However, since

we are interested in the effective, long-term behavior and not
the high-resolution fluctuations, we consider this
simplification justified. We base our range of possible
recharge rates on previous work conducted in our domain
or in comparable aquifers in close proximity (Holzwarth, 1980;
Wegehenkel and Selg, 2002; Selle et al., 2013).

(4) We use a leaky boundary condition to simulate the
interaction between groundwater and the Ammer river.

(5) For the network of drainage ditches in the Ammer valley and
the small surface water creek in the Neckar valley, we apply
seepage boundaries.

(6) Drainage boundary conditions are applied to all other surface
nodes, allowing water to drain whenever the groundwater
table is above the ground surface. We distinguish between
elements that belong to the Ammer floodplain (highlighted
in light brown in Figure 5) and the remaining surface.

Note that there are no groundwater abstractions within the
model domain so that we do not need to consider corresponding
internal boundary conditions.

We tested different initial conditions for the flow solution (e.g.,
a hydraulic head field interpolated frommeasurements, hydraulic
heads equaling the surface elevation, a constant depth to the water
table). The choice of initial condition affected mostly the run time
needed to reach convergence to steady-state, but influenced the
steady-state flow field itself only marginally. We settled with initial
hydraulic heads equal to the surface elevation. For other
applications, we recommend a similar comparison procedure to
identify a useful initial condition. Choices that are too far away
from a realistic flow field (e.g., a completely dry domain) can lead to
convergence problems due to the nonlinearity of Richards’
equation.

FIGURE 5 | Boundary conditions and two-dimensional discretization of the underlying subsurface flow model.
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3.2.3. Uncertain Parameters and Prior Information
Each discretized spatial element (i.e., triangular prism) has a set
of parameters defining the hydraulic properties of its material.
All elements belonging to the same hydrostratigraphic unit
share the same set of parameters, including the horizontal and
vertical hydraulic conductivities Kh and Kv, respectively, the
van-Genuchten parameters α and N and the residual water
saturation Swr � Θr/Θs. For the transient calculations, we also
need storage-related parameters (i.e., porosity or specific
storativity), but they do not affect the final steady-state
solution.

Table 1 summarizes all material properties considered
random. These parameters are the first part of the parameter
set S, sampled by the stochastic engine. Prior to the pre-selection/
conditioning, we assume a uniform distribution of each
parameter between a minimum and a maximum value. These
distributions reflect unbiased estimates within a range of
plausibility based on hydrogeological knowledge about the
formations and other uncertain expert knowledge.

The values in Table 1 are grouped by horizontal saturated
hydraulic-conductivity values Kh, anisotropy ratios Kv/Kh, and
the van-Genuchten parameters α andN. The indices represent the
hydrostratigraphic unit using the numbering scheme of section
3.1. In total, we consider 30 variable material properties (named
#P1 to #P30), which is less than the number of units times the
number of hydraulic properties (12 × 4 � 48) because we chose
some parameters to be identical in several geological units. The
hydrostratigraphic units 1 to 6 share the same van-Genuchten
properties, and the units 7 and 8a do not require these
unsaturated properties because the gravel aquifers of the
Neckar and Ammer valleys are always fully water saturated.

We do not treat the residual water saturations as random
variables. Instead, we apply the following values in all model runs:
Swr,1−8 � 5%, Swr,9 � 17%, Swr,10 � 18%, Swr,11−12 � 25%.

In total, we use nine random parameters (#B1 to #B9) related
to boundary conditions, listed in Table 2. We again assume
uniform priors within given bounds. Parameters #B1 to #B4
regulate the groundwater recharge R [m s−1] on the four types of
land use. Here we take the random recharge rate Rcropland on
undisturbed cropland as reference, which is reduced by random
factors for the other land-use types (floodplain material, areas
covered by mud-/sandstone, urban areas).

The parameters #B5 to #B8 modify the fixed-head values at
Dirichlet and river boundaries. The base values for the fixed heads
used on the southern boundary in the Neckar valley (hNeckar) and
the stage of River Ammer (hAmmer) vary in space. In the stochastic
setup, we consider random constant shifts of ΔhNeckar and ΔhAmmer

to all nodes belonging to the respective boundaries. The fixed-
head values on the groundwater in- and outflow faces in the
Ammer floodplain are spatially constant but uncertain, so that the
stochastic model directly treats these values, hAmmer,in and
hAmmer,out, as random variables. We have chosen the ranges of
these values from time series of hydraulic head measured in
existing piezometers close to the boundaries.

At last, #B9 represents the uncertain thickness of the drainage
boundary in Eq. 13 for all floodplain elements. The respective
hydraulic conductivity is K8d,h. For the drainage boundaries

outside of the floodplain, we assume a soil layer of 0.20m
thickness and a hydraulic conductivity of 1 · 10− 6 m s−1. The
river boundary condition (see Eq. 12) uses K8e for its
conductivity and the geometry parameters Lriv � 40m,
wriv � 3m, and Lsed � 0.5m.

Finally, we consider a total of five random parameters (#S1 to
#S5) describing uncertain geometry of structural units. Table 3
lists the ranges of the parameters. #S1 controls the maximum
depth L4 of the weathered kmGr formation (hydrostratigraphic
unit 4): Wherever kmGr is the outcropping geological formation,
the top layer with thickness L4 is considered weathered, that is
attributed to the hydrostratigraphic unit 4. The parameters #S2
and #S3 describe the three-dimensional extent of the hillslope-
hollows. #S2 controls the lateral extent of the hollows by
expanding or contracting their width by a constant factor. #S3
defines the bottom slope of the hollows, which thereby also
controls their maximum depth. The total volume of the
hydrostratigraphic unit 6 depends on both #S2 and #S3. The
final two parameters #S4 and #S5 are converted to binary flags,
deciding whether the hillslope hollows (#S4) and explicit river
beds (#5) are considered at all. Negative values of #S4 and #5
indicate that the respective features are not considered, whereas
positive values lead to realizations including these features. We
have introduced these switches because the existence and
hydraulic relevance of these hydrogeological elements is
uncertain at the real field site. A full parameter set S is the
concatenation of all #P, #B and #S values.

3.3. Plausibility Criteria for Model
Pre-Selection
We define seven criteria to decide whether the flow solution of a
model realization is plausible (i.e., stage-2-accepted). These
criteria are listed in the following:

(1) To keep the realizations close to data observed in the field, the
simulated hydraulic heads are compared to real head
measurements obtained in the valleys (see section 3.4). As
the model assumes steady-state flow, we time-average the
available series of measured heads at 51 observation wells and
compute the root mean square error (RMSE) of the
corresponding simulated steady-state heads. For a model
realization to be stage-2-accepted, its RMSE has to be
smaller than 1.5m. This reflects the order of magnitude of
the measured annual fluctuations in hydraulic head, which
are in the range of 0.5 m–2 m.

(2) The total groundwater flux Qin crossing the fixed-head
boundary at the western inflow end of the Ammer-
floodplain aquifers must be positive.

(3) The total groundwater flux Qout crossing the fixed-head
boundary at the eastern outflow end of the Ammer-
floodplain aquifers must be negative.

(4) The magnitude of the two fluxes, Qin and Qout, must be
similar. It is unclear which of the boundaries exhibits the
larger groundwater discharge at the field site. Both scenarios
(increase of discharge from in-to outflow due to recharge and
input from the hillslopes or decrease of discharge due to
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drainage into the rivers and channels) are possible.
Therefore, we only evaluate the ratio γ of the absolute flux
difference over the mean flux:

c � 2
||Qin| − |Qout||
(|Qin| + |Qout|) (27)

This ratio can take values between c � 0 (both fluxes are
identical) and c � 2 (one flux is zero). For a stage-2-accepted
model realization, we require c≤ 1, which is equivalent to
requiring 1

3≤
|Qin|
|Qout|≤ 3.

(5) The sum of all exchange fluxes between the subsurface and
rivers must be negative (i.e., net groundwater discharge into
rivers). Field data on the exchange fluxes are difficult to
obtain because the change of river discharge due to surface-
water/groundwater exchange is very small along the
investigated stretch. Nonetheless we expect that the rivers
are net gaining as there are no groundwater abstractions
within the domain. Losing conditions might occur only
locally on short stretches of the rivers and channels.

(6) A typical behavior shown in many models with randomly
drawn parameters is extensive flooding of the model
domain. At the real floodplain, by contrast, we do not
observe permanent flooding outside of ditches. To

exclude flooding of the floodplain under steady-state
flow conditions, we require that the total flux across all
drainage nodes is small (see section 3.2.2). As plausibility
we set that the total flux leaving at the surface must be
smaller than 10% of the total flux produced by the
recharge boundaries.

(7) Finally, the water flux leaving at the drainage ditches should
not be excessive. In the real floodplain, these ditches carry
water only seasonally and in small quantities. Since the actual
fluxes are unknown and hard to estimate, we require a stage-
2-accepted realization to drain less than 50% of the
recharged water through the ditches.

3.4. Tested Experimental Designs
Currently, there are 35 piezometers already installed at the field
site, for which a decent-quality dataset of hydraulic head in one or
multiple depths is available. Figure 5 shows the location of these
observation wells by gray circular dots with black edges.
Accounting for different depths in multi-level wells, hydraulic
heads are measured at 51 points. However, there are no
piezometers located on the hillslope between the two valleys.
This lack of observation points results in high uncertainty
regarding groundwater flow underneath the hillslope and in
the location of the groundwater divide.

In order to fill this gap, the installation of up to three additional
piezometers is planned on a transect. We identified twenty
potential piezometer locations along this transect, coinciding
with edges of the computational grid. These locations are
marked in Figure 5 as gray circular dots without an edge. The
line of points extends longer on the North than the South, because
we expect the divide to be shifted toward the North. This is so,
because the northern valley is at a higher elevation than the
southern valley, and also the geological units dip toward the

TABLE 2 | Prior ranges of parameters describing boundary conditions of
the model.

ID Name Minimum Maximum Unit Comment

#B1 Rcropland 1.5 · 10−9 8.0 · 10− 9 m s−1 —

#B2 Rfloodplain/Rcropland 0 1 — Coupled to #B1
#B3 Rmud/sandstone/Rcropland 0 1 — Coupled to #B1
#B4 Rurban/Rcropland 0.25 1 — Coupled to #B1
#B5 ΔhNeckar −0.50 0.50 m —

#B6 Δhriver −0.25 0.25 m —

#B7 hAmmer,in 346.0 347.0 m —

#B8 hAmmer,out − hAmmer,in −8.6 −7.6 m Coupled to #B7
#B9 L8d 0.10 1.50 m —

TABLE 3 | Prior ranges of structural parameters.

ID Name Minimum Maximum Unit Comment

#S1 L4 0 50 m —

#S2 Size factor hollows 0.5 1.5 — —

#S3 Bottom slope hollows 0.0 0.7 % —

#S4 Switch hollows −0.5 0.5 — No hollows if <0
#S5 Switch riverbed −0.5 0.5 — No riverbed if <0

TABLE 1 | Prior parameter ranges of random material properties of
hydrostratigraphic units considered in the model.

ID Name Minimum Maximum Unit Comment

#P1 log10K1,h −8.0 −6.0 ms−1 —

#P2 K2,h 1/250 · K1,h 1/2 · K1,h m s−1 —

#P3 log10K3,h −9.0 −6.3 ms−1 —

#P4 K4,h K3,h 103 · K3,h m s−1 —

#P5 log10K5,h −8.3 −7.0 ms−1 —

#P6 log10K6,h −9.0 −3.0 ms−1 —

#P7 log10K7,h −5.3 −3.0 ms−1 —

#P8 log10K8a,h −5.3 −3.0 ms−1 —

#P9 log10K8b,h −10.0 −7.0 ms−1 —

#P10 log10K8c,h −5.3 −3.0 ms−1 —

#P11 log10K8d,h −9.0 −5.3 ms−1 —

#P12 log10K8e −8.0 −3.0 ms−1 —

#P13 K1,v/K1,h 1/15 1 — —

— K2,v/K2,h 1/15 1 — Coupled to #P13
#P14 K3,v/K3,h 1/15 1 — —

#P15 K4,v/K4,h 1/15 1 — —

#P16 K5,v/K5,h 1/15 1 — —

#P17 K6,v/K6,h 1/5 1 — —

#P18 K7,v/K7,h 1/5 1 — —

#P19 K8a,v/K8a,h 1/5 1 — —

#P20 K8b,v/K8b,h 1/15 1 — —

#P21 K8c,v/K8c,h 1/15 1 — —

#P22 K8d,v/K8d,h 1/15 1 — —

#P23 α1−6 0.50 5.00 m−1 —

#P24 α8b 0.01 0.10 m−1 —

#P25 α8c 8.00 12.00 m−1 —

#P26 α8d 0.50 0.70 m−1 —

#P27 N1-6 1.50 6.00 — —

#P28 N8b 1.40 1.70 — —

#P29 N8c 1.80 2.20 — —

#P30 N8d 1.50 2.10 — —
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south-west. Furthermore, a preliminary study conducted by
Kortunov (2018) also suggested a shift in this direction.

The optimal experimental design analysis considers designs
consisting of one, two, or three new wells, each placed on one of
the twenty locations. Our design space D consists of all possible
combinations. The total number of possible designs ndes for 1, 2,
and 3 locations out of a set of npts can be evaluated by:

ndes � npts + 1
2
npts(npts − 1) + 1

6
npts(npts − 1)(npts − 2), (28)

in which npts is the number of potential observation points. With
npts � 20, Eq. 28 results in a total of ndes � 20 + 190 + 1140 �
1350 individual designs, out of which we need to identify the
best one.

While the optimal three-well design will obviously outperform
the optimal two- and one-well designs, we want to investigate which
information gain (e.g., reduction in uncertainty of delineating the
groundwater divide) is achieved by installing more or fewer wells.
However, we do not perform a full cost-benefit analysis, as the
(financial) costs are difficult to compare to the benefit of reducing
the uncertainty in the groundwater-divide delineation.

4. RESULTS AND DISCUSSION

Of 72,481 stage-1-accepted realizations, 20,600 needed to be
rejected, because they yielded implausible results according to
the given criteria. Another 1881 model runs were rejected,
because they did not converge within 40 min of wall-clock
time, set as limit to use the available computational resources
efficiently. The remaining sample consists of nsample � 50 000
accepted realizations. Among the successful realizations, the
model run times roughly followed a log-normal distribution
with a mean of 20.7min, a median of 19.5min, and a
standard deviation of 6.9min (not shown here). Due to
parallelization of up to 57 simultaneous model runs, the total

wall-clock time for all realizations was approximately three
weeks. For computational speed-up, we only used
nsub � 10 000 realizations as virtual truths for the optimal
design analysis. We checked the validity of this subset size by
comparing the average binary fate maps of the whole sample and
the subset. There were no significant deviations.

4.1. Uncertainty and Sensitivity of Head
Observations to Parameters
Figure 6 shows the distributions of the simulated groundwater-
table measurements at the twenty proposed locations. Each
profile relates to one suggested observation-well location and
includes, 1) a histogram of simulated head values of all 50,000
accepted sample members, 2) the median of the simulated head
(hmedian, yellow-brown dash markers), and 3) the position of the
land surface (zsurf , black dash markers). The longitudinal distance
is evaluated along the line connecting the proposed locations
from south to north (i.e., the index zero corresponds to the first,
southernmost investigated point).

At the southern end of the transect, which is close to the
surface-water divide, the statistical distributions of the
groundwater table are very wide, whereas at the northern end
in the Ammer floodplain they become quite narrow. This
behavior can be explained with the plausibility constraints put
onto the model selection. As Figure 5 shows, most existing
observation wells are within the Ammer floodplain, restricting
the variability of hydraulic heads by plausibility criterion 1. Also
plausibility criterion 6, excluding realizations showing extended
flooding, contributes to narrowing the variability of hydraulic
heads within the floodplain. By contrast, there are no piezometers
to constrain the models along the southern hillslope. Observation
wells further away from the hydraulic-head-constraining
floodplain show larger uncertainty than those close by, which
reflects the uncertainty in groundwater recharge and
transmissivity of the weathered part of the Grabfeld formation

FIGURE 6 | Distributions of virtual hydraulic-head observations using the sample of stage-2-accepted realizations at all twenty potential locations along the
transect.
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kmGr. The conditioning by the pre-selection procedure might
also explain why the shape of the head histograms in Figure 6
transforms from near-Gaussian for the northern wells to multi-
modal wide distributions toward the southern end.

As indicated by the black dashes in Figure 6, the topography
along the transect is not strictly monotonic. At about one quarter
along the length of the profile, a hillslope hollow oriented in the
WSW-ENE direction crosses the transect. Along the transect, the
median of the simulated hydraulic head follows the topography to
some extent, but with a much smaller range. At the southern end,
the median profile of hydraulic head drops toward the south
along a distance of 200m, whereas the surface elevation profile
increases. The median groundwater table dipping toward the
south of the transect might indicate that the groundwater divide is
shifted toward the north, as hypothesized by Kortunov (2018).
However, not all individual realizations show the same trend as
the median, indicating that the general statement of Kortunov
(2018) may be uncertain. This is why we performed the ensemble-
based particle-tracking analysis to evaluate the location of the
groundwater divide and its uncertainty in the following section.

To gain insights in how the head observations depend on the
input parameters, we performed a global sensitivity analysis using
the framework developed by Erdal et al. (2020) applying the
method of active subspaces (Constantine et al., 2014; Constantine
and Diaz, 2017) supported by a Gaussian process emulation of the

target quantity. The active-subspace method results in activity
scores, expressing the relative importance of all input parameters
for a selected target variable. We performed this analysis for the
simulated hydraulic-heads at the 20 potential locations for the
new piezometers along the transect. At the 14 southern-most
locations, which are all located along the hillslope in the
weathered Grabfeld formation, the activity scores were the
highest for the conductivities in the unweathered and
weathered Grabfeld formation, the thickness of the weathering
layer, and the recharge rate of cropland. At the six northern-most
locations, located closer to/within the floodplain, we saw a shift
toward conductivities of floodplain sediments and recharge in the
floodplain. Similar observations on global sensitivity patterns
have been made by Erdal and Cirpka (2019) in a study on a
neighboring catchment with similar geology.

4.2. Maps of Misclassification Probability
Figure 7 shows maps of the misclassification probability Pmc

according to Eq. 18. It quantifies how likely it is that any point on
the map is considered part of one subsurface catchment while
belonging in reality to the other one. The 1,526 polygons were
constructed by Voronoi tesselation based on the set of starting
points for particle tracking. The resolution is higher in a stripe
within a few hundred meters north and south of the surface water
divide (shown as a black line) because we suspect the

FIGURE 7 | Probability maps of misclassifying the attribution to the Ammer and Neckar subsurface-catchments Pmc � 2P · (1 − P). (A) Prior Pmc; (B): Pmc for the
best design with one additional piezometer; (C): with two additional piezometers; (D): with three additional piezometers.
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groundwater divide to be within this area. The colors of the
polygons reflect the misclassification probability Pmc of a particle
released in the center of the polygon. As explained in section 2.3,
Pmc ranges between zero and 0.5 (wrong attribution in half of the
cases).

Figure 7A shows the map prior to installing any new
piezometers. The highest values of the misclassification
probability occur close to the surface-water divide. On the
Neckar (southern) side of the surface-water divide, the
misclassification probability drops rapidly. Here, all model
realizations agree that these points belong to the Neckar
subsurface catchment. On the Ammer (northern) side of the
surface-water divide, by contrast, the misclassification probability
decreases gradually, overall resulting in an uncertainty belt of the
groundwater divide with a width ranging between 100m and
800m. This confirms the hypothesis of Kortunov (2018) that the
groundwater divide might be shifted in this direction. At the foot
of the hillslope within the Ammer valley, the misclassification
probability is again practically zero, because these points belong
to the Ammer subsurface catchment in almost all stage-2-
accepted model realizations.

The width of the identified uncertainty belt is comparably
small at the steeper hillslopes toward the east and at the very
western end, where the topmost geological layer is the low
conductive km2345 (see Figure 4, layer 5). In contrast to that,
the width is large on the gentle saddle in the western and middle
parts of the domain, where the top subsurface-layer consists of
weathered kmGr, which has a higher hydraulic conductivity. This
observation agrees with the findings of Haitjema and Mitchell-
Bruker (2005), stating that groundwater and surface water divides
are more likely to differ in aquifers with high transmissivities (for
a given recharge rate and geometry). The transect of the twenty
proposed piezometer locations crosses the broadest part of the
uncertainty zone perpendicular to the course of the belt. This is
fortunate for the optimal experimental design, since we can
acquire information just within the most uncertain parts of
the system.

Figures 7B–D show the maps of the misclassification
probability after performing the optimal-experimental-design
analysis for one, two, and three additional piezometers,
respectively. In each of these figures, the identified optimal
piezometer locations are marked by circles with black filling,
while the unused potential piezometer locations are depicted as
white-filled circles.

Figure 7B reveals how the misclassification probability is
expected to be reduced by placing a single additional
piezometer. The optimal location is the southernmost point
along the transect close to the surface-water divide.
Unsurprisingly, the location of this piezometer coincides with
the location that shows the highest uncertainty of hydraulic heads
in Figure 6. A comparison between Figures 7A,B shows that the
misclassification probability is not only reduced in the direct
vicinity of the chosen new piezometer, but essentially over the
entire width of the Wurmlingen saddle, whereas the effect at the
eastern end of the model domain is negligible. This pattern
reflects the smoothness of hydraulic heads, but is strongly
affected by the assumption that each lithostratigraphic unit

has a uniform set of hydraulic parameters (only the
groundwater-recharge values are subdivided by land-use). The
latter implies that conditioning the model on a single observation
point in a particular unit, here the weathered kmGr, affects the
model outcome at all other points within this unit. However, if we
had considered internal variability within the units, individual
head measurements would not have reduced the uncertainty at
distant points within that unit to the same extent. Consistent to
these arguments, the eastern end of the uncertainty belt (where
the topmost geological unit is km2345 rather than weathered
kmGr) is not affected by placing a piezometer along the transect.

Further reduction of the misclassification probability can be
achieved by placing a second additional piezometer at the
northern fringe of the uncertainty belt (Figure7C), whereas
the uncertainty pattern does not visually change when placing
a third additional piezometer between the first and second
piezometers (Figure 7D).

4.3. Performance of Designs
Figure 8 summarizes the performance of all 1,350 investigated
piezometer configurations (grouped by one-, two- and three-
additional-piezometer designs). All plots use the design number
on the abscissa. In the following discussion, we use the notation
“(first piez. | second piez. | third piez.)” to describe a given design,
in which the numbers of the piezometer locations are sorted from
south to north, and the missing piezometers in the one- and two-
piezometer designs are marked by a dash. The designs are
numbered in the following way: The first twenty designs
contain only one additional piezometer, ranging from (1| − |−)
to (20| − |−). The designs 21 to 210 are two-piezometer designs,
starting with the combination (1|2|−), incrementing the second
location in steps of one to (1|20|−), then moving from (2|3|−) to
(2|20|−) and so forth, until (19|20|−) is reached. In order to
exclude replicates, the index of the second piezometer is always
larger than that of the first. Finally, the designs 211 to 1,350 start
with (1|2|3) and increment the third location first, then the
second, and then the first one, until reaching the final design
(18|19|20). Again we avoid replicates by requiring that the
piezometer indices increase from the first to the third
piezometer within all designs. Figures 8D–F visualize the
piezometer designs by displaying the selected piezometers of
each design as rectangles.

The top row of Figure 8A-C shows the values of the utility
function ϕ(d) of the given designs d according to Eq. 26. It
quantifies the expected relative reduction of the spatial mean of
Pmc applying the measurement design d. Theoretically, this
metric can range between zero (no reduction of uncertainty at
all) to one (perfect identification of the groundwater divide).

In the single-piezometer designs (Figure 8A), the performance
declines with increasing design number (placing the new
piezometer further north along the transect). While the first
three designs result in a similar relative uncertainty reduction
of ≈ 36%, ϕ(d) gradually decreases to a negligible low value
of ≈ 3% at location 20. The optimal design is (1| − |−), resulting
in a performance of ϕ � 36.6%. The best locations for placing a
single piezometer coincide with the points at which the prior
uncertainty of hydraulic head is the highest (see Figure 6), so that
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constraining the model by taking a single head measurement at
these points yields the highest information gain. As the hydraulic
heads at the northern end of the transect are already constrained
by the plausibility criteria of the model pre-selection, additional
piezometers in this part of the transect hardly pay off.

Figure 8B shows the performances of all two-piezometer
designs. Like in the one-piezometer designs, configurations
including southern piezometer locations (design numbers 21
to ≈ 100) perform better than other designs. For a given first
piezometer location, the performance depends on the distance
between the two piezometers. At least for the well-performing
designs 21 to 100, the optimal distance between the two
piezometers is on the order of several hundred meters. Such a
configuration performs better than designs in which the two new
piezometers are further apart or closer to each other. The best
two-piezometer configuration is (2|7|−), leading to an
uncertainty reduction of ϕ � 50.2%.

The optimal two-piezometer designs may be explained by the
combined effects of having the highest prior uncertainty of
hydraulic head at the southern end of the transect (discussed
in the context of the one-piezometer designs) and the inherent
spatial correlation of hydraulic head caused by the groundwater-
flow equation itself: One piezometer should be located at the most
informative southern end; placing two piezometers to close to
each other would yield redundant information (and observing a
small head difference would drown in the measurement error),
while placing the second piezometer at the northern end would be
of little use because here the hydraulic heads are already
constrained by the plausibility criteria.

In the three-piezometer designs (Figure 8C), this pattern is
maintained, with the best location of the third piezometer being
in the middle of the other two new observation wells. Thus,
placing the third well further north, where the head-uncertainty is
low, is less beneficial than refining the spatial resolution of head

measurements in the southern third of the transect. The best three-
piezometer configuration is (1|7|15) with ϕ � 54.2%, which is not
drastically better than the best two-piezometer configuration. We
conjecture that adding a fourth piezometer along the transect would
yield an even lower increase of performance. Thus, in a practical
application, it might be better to invest the money needed to install
such a well in other investigations like elaborate well tests, or in
entirely different locations (see section 4.4).

As a quality check, we determined the average effective sample
size for the three optimal designs. The values are comparably
large (AESS1 � 859.7, AESS2 � 179.7 and AESS3 � 68.1), which
means the sample of nsample � 50 000 was large enough to make
reliable statements about the results.

Notably, all three optimal designs use very similar locations.
Each larger optimal configuration basically includes the smaller
ones as a subset (with the exception of switching between
locations 2 and 1 in the two-location design). This means that,
in the given application, one could decide whether and where to
install the next observation well after installing the preceding
ones, yielding essentially the same optimal designs. Such behavior
is beneficial from a practical standpoint of view as, in real-world
applications, the decision about extending a measurement
network is often made only after realizing that the existing
network is not (yet) sufficient. However, we cannot generalize
that such a behavior occurs in all cases. In other applications, the
optimal designs of many piezometers may not be a superset of the
designs with fewer piezometers. Also, the information gained by
the actual data value obtained by a first well could change the
current state of knowledge, hence leading to (slightly) different
later design decisions (Geiges et al., 2015). In such cases, deciding
the number of observation wells would be necessary ahead of the
first drilling in order to achieve optimal results.

We may compare the performance of the optimal designs with
those of intuitive choices using the same number of new

FIGURE 8 | Performance of all 1,350 investigated monitoring designs. Top row (A–C): normalized utility function ϕ(d) of the given design according to Eq. 26;
bottom row (D–F): piezometer combination of the given design. (A,D) Designs with one additional piezometer; (B,D) with two additional piezometers; (C,F): with three
additional piezometers.
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piezometers. When installing a single piezometer, one might
place it on the middle of the transect using the design
(10| − |−). The uncertainty reduction of this particular design
is ϕ � 22.9%, which is considerably smaller than the optimal
performance of ϕ � 36.6%. When placing installing two
piezometers, one could either maximize the distance along the
full transect with design (1|20|−) or subdivide the transect into
three similarly long sections with the design (7|14|−). The
performances of these scenarios are ϕ � 37.2% and
ϕ � 25.1%, respectively, while the best two-piezometer design
achieved ϕ � 50.2%. Actually, the best single-piezometer design
performs almost as good as the intuitive two-piezometer design
taken the two end points of the transect, and is considerably better
than the intuitive design using identical section lengths. Finally,
intuitive choices for the three-piezometer designs would be
design (1|10|20), which includes the two end points of the
transect, and design (5|10|15), subdividing the transect into
sections of similar length. The respective uncertainty
reductions are ϕ � 50.5% and ϕ � 42.0% compared to a
reduction of ϕ � 54.2% obtained by the optimal design. These
calculations exemplify the benefit of an optimal-design-
evaluation over intuitive choices.

4.4. Designs With the Third Piezometer
being Placed Off the Transect
As shown in Figure 7, installing new piezometers along the
suggested transect reduces the misclassification probability
Pmc(x) on the hillslope parallel to the transect, but hardly
affects Pmc(x) at the eastern end of the uncertainty belt. This
part of the high-uncertainty belt is covered by the
lithostratigraphic units km2345. Therefore, this uncertainty
depends on the hydraulic properties and groundwater recharge
of this model layer, and can only be reduced by observations that
are sensitive to these properties. Because installing a third
piezometer along the transect does not reduce Pmc(x) in this
zone, the difference between the two- and three-piezometer
designs is rather small. We thus hypothesize that placing a
third piezometer somewhere else would yield a better
performance. We tested this hypothesis by defining an
alternative design space: we keep the best two piezometer
locations along the transect fixed and then allow the third
piezometer to be placed at any node of the two-dimensional
computational grid. This resulted in 2067 additional designs.

Figure 9A shows which performance ϕ can be achieved as a
function of the location of the third piezometer. The maximum
performance of ϕ � 69.3% is obtained by placing the third
piezometer in the eastern part of the domain, roughly 400m
north of the highest-uncertainty region remaining after installing
two piezometers (see 7C). This point is located in a hillslope
hollow (see Figure 5) that collects groundwater recharged in the
km2345 unit. The corresponding hydraulic head is sensitive to
the hydraulic properties and groundwater recharge of the
km2345 unit, which affects Pmc(x) in the eastern section of
the uncertainty belt. The latter is confirmed by Figure 9B,
displaying the resulting map of misclassification probability
Pmc(x) for this newly defined optimal design, indicating that

the new location of the third piezometer indeed reduces Pmc(x) in
the eastern section of the uncertainty belt, which was hardly
influenced by installing wells exclusively along the transect.

The average effective sample size of the optimal design in this
substudy is comparably low (AESS*3 � 4.4). This drop is caused by
the large information gain by the freely moving third well, so that
only few realizations achieve significant likelihoods when
compared to the hypothetical data values. Given this low
number, a larger sample would be necessary to validate the
statistical significance of the interpretations. However, given
the high computational costs and because this is only a
substudy offset from our actual objectives, we refrain from
doing so.

Figure 9A includes an interesting and instructive artifact of
the model: According to our model, hydraulic-head
measurements on the northern hillslope appear to be
beneficial for delineating the groundwater divide at the
southern boundary of the Ammer valley. Most likely this is
caused by the assumed uniformity of hydraulic parameters
within each lithostratigraphic unit. In the very north of the
model domain, the km2345 unit crops out, implying the same
values of hydraulic conductivity and groundwater recharge as in
the zone of interest at the souther boundary. Thus, a hydraulic-
head measurement within this northern zone constrains model
parameters of the km2345 unit, reducing the misclassification
probability in the eastern part of the uncertainty belt. However,
we are doubtful that this would be confirmed in a real-world
application.

4.5. Strengths and Limitations of the
Framework
Our framework is easily adaptable to other cases and applications,
with the underlying groundwater-flow model being trivially
exchangeable. This flexibility makes it convenient to apply the
presented technique to other sites. Both interfaces, from the
stochastic sampler to the numerical model, and from the
numerical model to the optimal experimental design analysis,
require only basic input/output operations of parameter values
and virtual observations. While we have implemented the
stochastic sampler and PreDIA as Matlab scripts, the approach
could easily be transferred to other programming environments.
However, a particle tracking tool is a necessary requirement for
our framework to work.

Among the most labor-intensive parts of the framework is the
initial model development, which is needed in quantitative
hydrogeological consultancy anyway. Computationally, the
creation of the plausible sample is the most costly step, but this
can largely be parallelized. To obtain reasonable uncertainty
estimates, several thousand model realizations are needed. This
may not be affordable by everybody whomight be interested in the
uncertainty of groundwater-divide delineation. These computer-
time limitations may be overcome by cloud computing.

In practical applications, the costs related to elaborate
modeling in the planning phase of a new observation-well
needs to be compared to the other expenses. This includes
filing the application for legal approval, advertising for bids,
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planning of the fieldwork, and the drilling and completion
expenses themselves. If the presented optimal-experimental-
design method is initiated at the beginning of this process, it
becomes an integral part of the decision-making process of how
many new piezometers to install and where to place them.

Thewaywe use the chosen optimal-designmethodPreDIA,we can
only rank experimental designswithin a givenfinite set. The number of
elements in this set determines the computational costs of the optimal-
design part of the analysis. In our application, we confined the design
space by restricting the piezometer locations to a transect, reflecting the
legal constraints at the given field site. With three piezometers at
twenty potential locations, we had to consider 1,350 configurations. In
the additional study presented in section 4.4, we removed the
constraint to stay on the transect for one piezometer, considering
2067 potential locations. Allowing all three piezometers to be placed at
any of these 2067 locations, would have resulted inmore than 1.4 · 109
designs (see Eq. 28), which is computationally prohibitive. Tackling
such a problem would need to involve an optimization algorithm
around PreDIA to iteratively find a best-performing design without
exhaustingly testing all of them. For the resulting search problem, the
literature offers many suitable algorithms.

Our application was restricted to steady-state flow. Of course,
real flow systems are never fully stationary, since they are always
subject to transient forcings. Depending on the investigated site,
this can include climatic influences, weather, tides or anthropogenic
impacts (e.g., drinking water supply wells), all of which could affect
the position of groundwater divides (e.g., Rodriguez-Pretelin and
Nowak, 2018). Aquifers, where the expected movement of the
groundwater flow divide over time is the main research question
obviously need to account for this. Characteristics of such systems
might be a significant abstraction of groundwater due to pumping
wells, a known imbalance of the groundwate flow field or severe
temporal fluctuations in groundwater recharge (e.g., Sanz et al.,
2009). An interesting extension of our framework would be a
transient analysis for such systems, by using transient simulations
and time-dependent observations. Consequently, the underlying
objective function would need to be redefined. We provide a
possible extension toward dynamic systems in the appendix
(section 5.2). However, the higher uncertainties related to

inherently more complex transient models would require a
larger sample and would most likely deteriorate the performance
of the pre-selection method. In the context of transient data and
models, a worthwhile avenue would be to combine optimal
experimental design techniques with data-assimilation methods,
but this is beyond the scope of the present study.

For most cases, where the divide is suspected to be shifted but
not dramatically moving over time, our steady-state framework is
applicable, with the interpretation of the steady-state as a “most
representative state”. We also want to highlight that the goal of
our framework is not to derive the position of groundwater
divides themselves. Instead, we want to identify those locations
that are best suited to conduct measurements providing insight
for this delineation. The actual delineation, for example, can then
be carried out by calibrating a groundwater flow model to the
obtained measurement data. This second model can be more
detailed, more finely discretized and even transient, as probably
fewer model runs are necessary. If not already done, a rigorous
grid convercence analysis should be performed ahead of the
calibration to validate the numerical accuracy of the model.

As with every model, the performance of the method depends
on the validity of underlying assumptions. In particular, we have
assumed that the hydraulic parameters are uniform within each
lithostratigraphic unit and that groundwater recharge is spatially
uniform in zones defined by the topmost geological layer and
land-use. Neglecting spatial variability within these zones
expands the spatial ranges over which intended measurements
are informative. We may also have missed discrete features
altogether, which affect the position of the groundwater divide
but do not influence the existing measurements. The latter would
lead to a systematic bias.

The optimal-experimental-design method chosen in this study
can accommodate any kind of uncertain parameters or uncertain
model choices, provided that a prior uncertainty range is given.
Both identifying the sources of uncertainty and defining the
related prior distributions require expert knowledge, thus
questioning the objectivity of the analysis. However, as with all
Bayesian methods, such choices are at least made transparent. We
have made good experience by initially setting fairly wide prior

FIGURE 9 | Assessment of measurement designs with the third piezometer being placed outside the transect. (A) Performance ϕ of the design as a function of
where the third observation well is placed; (B) map of the misclassification probability Pmc for the optimal three-piezometer design with one additional piezometer not
being restricted to the transect (same colormap as in Figure 7).
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parameter ranges and then constraining the parameter space to
behavioral models by the Gaussian-process-emulation supported
pre-selection method (Erdal et al., 2020).

In the given application, we restricted the observations to
hydraulic-head measurements, but this is not a limitation of the
method. It is easy to augment the virtual observation vector by
other data, such as hydraulic tests to be performed using the new
observation wells, borehole dilution or tracer tests. Like with the
extension to transient flow, the consideration of additional data
typesmay also requiremore (uncertain) parameters. Systematically
analyzing which type of data is most informative for which type of
question is an ongoing issue of stochastic subsurface hydrology and
optimal experimental design beyond the scope of the current study.

5. CONCLUSION

In this work we have presented a framework to identify the best
piezometer configuration froma set of possible layouts to delineate local
groundwater divides. Through the combination of filtered ensemble-
based modeling of steady-state subsurface flow, particle tracking, and
the application of the optimal-experimental-design technique PreDIA
(Leube et al., 2012), we could identify the piezometer configuration for
which we expect the largest reduction in the uncertainty of the
groundwater divide. We have applied the method to an appropriate
case study, which revealed the following insights:

(1) Configurations involving new measurement locations that
are far away from existing ones perform better, because then
the variability of hydraulic head, consistent with the existing
data, is higher.

(2) In our application, a medium spacing of a few hundred
meters between multiple new piezometers was optimal.
Closer points would have led to redundant information
due to the spatial auto-correlation of hydraulic head.
Larger distances would have pushed observation points
into non-informative regions close to existing measurements.

(3) The designs, defined as optimal by the presented framework,
perform better than intuitive equidistant piezometer
placements. In fact, the identified optimal design for a
single piezometer provides similar information content as
the tested intuitive equidistant placing of two piezometers,
implying significant savings in real-world applications.

(4) Additional information obtained by adding more
piezometers leads to further reduction of uncertainty, but
the additional gain of information decreases with each new
piezometer.

(5) Our procedure may be used to estimate whether the
additional information gain is worth the effort of
installing an additional observation well or not. The
actual decision depends on the case at hand and involves
a tradeoff between desired certainty and available resources.
In our case, sequential optimization of one piezometer
location after the other led to practically the same
designs as jointly optimizing multiple piezometer
designs, but this observation cannot be generalized.

A worthwhile follow-up study would be the extension of the
presented framework to transient flow systems.
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APPENDIX

5.1. Generalization to Non-Binary Systems
In cases where one wants to delineate not only a particular (sub-)
catchment’s boundary, but the (potentially intersecting)
groundwater divides between more than two of such
catchments, the formulation of our objective functon (Eq. 26)
based on binary particle fate maps (Eq. 18) is insufficient. Here,
the particle fates cannot be described with the binary Bernoulli
distributions, where the outcome for particle i is zi ∈ {0, 1}.
Instead, one could rely on categorical distributions, which can
have more than two outcomes. For example, in a domain with
three outlets the fate of particle i can be described with
zi ∈ {1, 2, . . . , k}. Each of the outcomes would correspond to
one outlet/subcatchment/receptor. We denote the total number
of outcomes nfates. To adapt our objective function to these cases,
we need to formulate the overall probability of misclassifying the
fate of a particle i. This can be done as described in the following.

We denote the probability that particle i belongs to the
receptor k is P(zi � k). Then, the overall probability of
misclassification becomes:

Pmc(zi) � ∑nfates
k�1

P(zi � k) · (1 − P(zi � k)). (29)

All other steps of the method remain as outlined above.

5.2. Possible Generalization to Transient
Systems
A potential transient implementation of our framework
would require a new formulation of the objective
function. In such applications both, the modeled
subsurface flow-field and the observations would change
over time. This means that also the particle fate maps are
transient, since the fate probabilities might change
throughout the simulation period. This results in dynamic
maps of misclassification probability, that is Pmc(z) becomes
Pmc(z, t), which is a function of time t.

One potential way to define a metric quantifying the
uncertainty of a transient groundwater divide would be to
perform an additional integration/averaging over the
simulation modeling duration τ.

U(z) � 1
τ · A2D

∫
τ

∫
A2D

Pmc(z(xini), t) dxini dt

� 1
τ · A2D

∫
A2D

∫
τ

Pmc(z(xini), t) dt dxini
(30)
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