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Abstract

Electronic voting (e-voting) refers to casting and counting votes electronically, typically through
computers or other digital interfaces. E-voting systems aim to make voting secure, efficient,
convenient, and accessible. Modern e-voting systems are designed to keep the votes confidential
and provide verifiability, i.e., everyone can check that the published election result corresponds
to how voters intended to vote. Several verifiable e-voting systems have been proposed in the
literature, with Helios being one of the most prominent ones.

However, almost all verifiable e-voting systems reveal not just the voting result but also the
tally, consisting of the exact number of votes per candidate or even all single votes. Publishing
the tally causes several issues. For example, in elections with only a few voters (e.g., boardroom
or jury votings), exposing the tally prevents ballots from being anonymous, thus deterring
voters from voting for their actual preference. Furthermore, attackers can exploit the tally for
so-called Italian attacks that allow for easily coercing voters. Often, the voting result merely
consists of a single winner or a ranking of candidates, so disclosing only this information, not the
tally, is sufficient. Revealing the tally unnecessarily embarrasses defeated candidates and causes
them a severe loss of reputation. For these reasons, there are several real-world elections where
authorities do not publish the tally but only the result – while the current systems for this do
not ensure verifiability. We call the property of disclosing the tally tally-hiding. Tally-hiding
offers entirely new opportunities for voting. However, a secure e-voting system that combines
tally-hiding and verifiability does not exist in the literature.

Therefore, this thesis presents the first provable secure e-voting systems that achieve both
tally-hiding and verifiability. Our Ordinos framework achieves the strongest notion of tally-hiding:
it only reveals the election result. Many real-world elections follow an alternative variant of
tally-hiding: they reveal the tally to the voting authorities and only publish the election result
to the public – so far without achieving verifiability. We, for the first time, formalize this
concept and coin it public tally-hiding. We propose Kryvos, which is the first provable secure
e-voting system that combines public tally-hiding and verifiability. Kryvos offers a new trade-off
between privacy and efficiency that differs from all previous tally-hiding systems and allows
for a radically new protocol design, resulting in a practical e-voting system. We implemented
and benchmarked Ordinos and Kryvos, showing the practicability of our systems for real-world
elections for significant numbers of candidates, complex voting methods, and result functions.
Moreover, we extensively analyze the impact of tally-hiding on privacy compared to existing
practices for various elections and show that applying tally-hiding improves privacy drastically.
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Kurzzusammenfassung

E-Voting ist die elektronische Abgabe und Zählung von Stimmen über digitale Schnittstellen.
Systeme für E-Voting sollen Wahlen sicher, effizient und zugänglich machen. Moderne E-Voting-
Systeme schützen die Vertraulichkeit der Wählerstimmen und sind verifizierbar, d.h., man kann
prüfen, dass die veröffentlichten Wahlergebnisse mit den tatsächlichen Stimmen übereinstimmen.

Bei den meisten Wahlsystemen wird nicht nur das endgültige Wahlergebnis veröffentlicht,
sondern auch die genaue Anzahl der einzelnen Stimmen pro Kandidat oder sogar die Einzel-
stimmen. Die Veröffentlichung der Auszählung führt zu mehreren Problemen, wie mögliche
Stigmatisierung oder Imageverlust von Wählern und Kandidaten. Insbesondere bei Wahlen mit
einer geringen Anzahl von Wählern, wie Vorstandswahlen oder Juryabstimmungen, kann die
Offenlegung der Gesamtzahl der Stimmen die Anonymität dieser beeinträchtigen und Wähler
davon abhalten, ihre tatsächlichen Präferenzen zu wählen. Zudem kann die Veröffentlichung der
genauen Stimmenauszählung zu einem schwerwiegenden Imageverlust für unterlegene Kandidaten
führen. Deshalb veröffentlichen viele Wahlbehörden in realen Wahlen nur das Endergebnis, um
die Vertraulichkeit zu wahren, allerdings auf Kosten der Verifizierbarkeit.

Die Eigenschaft des “Tally-Hiding” bezieht sich auf die Möglichkeit, lediglich das Endergebnis,
wie den (oder die) Gewinner, und nicht die genaue Stimmenauszählung zu veröffentlichen.
Dieser Ansatz eröffnet neue Möglichkeiten für elektronische Wahlen. Bisher gibt es in der
Literatur jedoch kein sicheres E-Voting-System, das sowohl Tally-Hiding als auch Verifizierbarkeit
sicherstellt.

Diese Dissertation stellt die ersten beweisbar sicheren E-Voting-Systeme vor, welche sowohl
Tally-Hiding als auch Verifizierbarkeit gewährleisten. Das Ordinos-Framework gewährleistet die
stärkste Form von Tally-Hiding, indem nur das Endergebnis offengelegt wird. Im Gegensatz dazu
implementiert das Kryvos-Framework eine alternative Form des Tally-Hiding, die wir erstmals
als “public tally-hiding” formalisieren. Es reflektiert die Praxis vieler realer Wahlen, bei denen
nur das Ergebnis öffentlich bekannt gegeben wird, bei denen allerdings keine Verifizierbarkeit
gewährleistet wird. Kryvos ist das erste beweisbar sichere E-Voting-System, das public tally-
hiding und Verifizierbarkeit kombiniert. Dafür folgt Kryvos einem komplett neuen Protokolldesign.
Wir haben sowohl Ordinos als auch Kryvos implementiert und Benchmarking unterzogen, um die
Praktikabilität für reale Wahlen mit einer großen Anzahl von Kandidaten, komplexen Wahl-
methoden und Ergebnisfunktionen aufzuzeigen. Diese Dissertation analysiert zudem ausführlich
die Auswirkungen von Tally-Hiding in Bezug auf Vertraulichkeit und Anonymität im Vergleich
zu bestehenden Verfahren für eine Vielzahl von Wahlen und zeigt, dass die Anwendung von
Tally-Hiding die Privatsphäre deutlich verbessert.
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1. Introduction

Voting is a fundamental democratic right that empowers people to shape their societies. By
voting, we participate in the democratic process, ensuring our voices are heard and our opinions
are represented. Every vote has the potential to make a difference, influence politics, and elect
leaders who align with our values and aspirations.

We regularly conduct real-world elections for various purposes using different types of elections.
These elections range from simple to highly complex ones. An election type consists of a choice
space and an election result function. The choice space determines the possible ballots that the
voters can cast, and the election result function determines how the election result is computed
based on these ballots. Some of the most commonly used choice spaces and election result
functions include:

Single-vote and multi-vote are the most basic choice spaces where voters can assign a single or
multiple votes to a set of candidates. In its simplest form, we combine these choice spaces with the
election result function that declares the candidate with the most votes as the election’s winner or
the ranked/unranked list of candidates with the most votes. This approach is commonly used in
small to medium-sized elections in companies and associations to decide on one or more winners.
Political elections also use single-/multi-vote but employ an additional election result function
for computing the final seat distribution from the tally of all votes. Examples of such functions
include the Hare-Niemeyer method (e.g., used in political elections in Luxembourg [Gal92] and
Tunesia [fDI14]) and the Sainte-Laguë (e.g., used in political elections in Germany [Bun20],
Indonesia [Okt22], Nepal [Kam22], and Norway [fDI23]). Another type of multi-vote choice
space is Borda voting, where voters assign specific points among candidates according to a
predetermined list of permitted point numbers. Borda is used to elect the winner of the Eurovision
Song Contest (ESC) [Eur20] and national elections in the Republic of Nauru [Rep16].

A more involved election result function is called majority judgment, combined with a grading-
based choice space where voters assign grades to each candidate instead of a specific number of
votes. The winner is then the candidate with the best mean grade. This voting method is used,
e.g., in political research polling in France, Germany, and the USA (see [BL10,BL14]).

Prominent examples of highly complex election result functions are the Condorcet methods,
combined with ranking-based choice spaces where voters rank the candidates according to
their preferences. The plain Condorcet criteria declares the candidate that would win against
every other candidate in direct comparison as the winner. The Schulze method is a more
complex Condorcet method used for internal elections by the Debian (Debian GNU/Linux)
Project [Deb12]. Another prominent example of highly complex election result functions is

17



instant-runoff voting (IRV). IRV is also compatible with a ranking-based choice space. IRV
computes the winner via an iterative process that mimics a multi-round election by progressively
eliminating the candidate preferred by the least number of voters until a single winner remains.
IRV is used, e.g., in political elections in Australia [NSW20], India [Gov20], the UK [The11],
and the USA [Mai20].

The use of electronic voting systems provides many advantages over traditional paper-based
elections. By using electronic voting systems, we can ensure greater accessibility and convenience
for all voters, regardless of their physical location or mobility limitations. It allows for the
seamless integration of modern technology, streamlining the voting process and reducing the
likelihood of errors or discrepancies. Electronic voting can provide faster and more accurate
results than paper-based elections, enabling a timely and efficient declaration of election results.
Compared to paper-based elections, e-voting offers enhanced security controls, such as encryption
and authentication, that help safeguard the security of the voting process. Furthermore,
electronic elections can drastically reduce the carbon footprint compared to their paper-based
counterparts [WK23].

There are two primary methods of electronic voting:

1. Physical e-voting involves electronic voting machines placed in polling stations and super-
vised by representatives of governmental or independent electoral authorities. Such elections
have been performed, e.g., in Germany [Bun09], India [Rao10], the Netherlands [Hae08] on
a federal level, and in the following states in the USA: California [Bow07], Florida [ctV23],
Mississippi [Vot07], Pennsylvania [Com07], and Virginia [Vir15].

2. Remote e-voting, the focus of this thesis, allows voters to submit their votes electroni-
cally to the election authorities from any location via the Internet using their personal
devices. Compared to voting machines at polling stations, the Internet does not provide
secure communication channels, making security guarantees even more challenging. Such
elections have been performed, e.g., in Australia [scy17a], Estonia [DM04], and the Swiss
Confederation [Bow07] on a federal level, but also widely in companies, organizations, and
associations (see, e.g., [ACM20,Cro19,Deu19,Soc19]).

When using e-voting systems for elections, these systems must meet specific security require-
ments, which are as follows:

• Verifiability (see [CGK+16]): The essential requirement of any election is verifiability, which
we will explain below.

• Accountability (see [KTV10]): If we detect that the election result is incorrect, it becomes
necessary to identify and hold any parties accountable that may have misbehaved. Thus,
accountability motivates parties not to temper the election since misbehaving parties will be
held responsible.
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• (Vote-)Privacy (see [BCG+15b]): When it comes to electronic voting systems, it is essential
to maintain individual votes confidential to ensure the voting process’s secrecy. To measure
the advantage that an attacker can gain in accessing the plain votes of voters, we use the
concept of δ-privacy (see Section 2.5 and [KTV11]).

Another crucial feature of e-voting systems is feasibility/practicalibility. We must ensure
that the e-voting scheme is efficient enough to allow voters to create and cast their ballots
promptly, without delays and long waiting times. In addition, the system shall be designed in
such a way that it can tally the election results accurately within a reasonable timeframe. This
requires thorough consideration of the technical capabilities of the system, as well as the size
and complexity of the election being conducted.

1.1. Verifiabiliy

The essential requirement of an election is verifiability. Verifiability states that we can detect
and identify any issues or discrepancies, allowing for a fair and just outcome. E-voting systems
have faced significant issues worldwide, such as undetected loss or incorrect counting of votes. In
the following, we present real-world examples of elections that suffered from inadequate security,
including two elections that used voting machines and two remote elections.

1.1.1. Insecurity of Electronic Voting Machines employed in India

Since their introduction in the 1990s, the so-called electronic voting machines (EVMs) [ASI06]
are used extensively in India for conducting various types of elections, including local government
elections, national parliamentary elections, state legislative assembly elections, municipal elec-
tions, Panchayat (various local governments) elections, and legislative council elections [Rao10].
EVMs are a significant part of India’s election infrastructure and have streamlined the voting
process in the country. However, there have been debates and discussions about their security
and transparency, with some concerns raised by various groups about the trustworthiness of
EVMs and the need for paper trails or other forms of verification.

The study in [WWH+10] focuses on understanding the weaknesses and potential risks associated
with EVMs employed in India. The authors present their findings by analyzing a randomly
selected EMV. They demonstrate a successful attack on the EMV’s security by replacing the
microcontroller with a modified version. The manipulated EMV can alter the voting results
without being detected. The paper emphasizes that the security controls implemented in the
EMV are inadequate to prevent such attacks. Therefore, these elections do not provide integrity
and thus possess no verifiability guarantees [WWH+10].

1.1.2. Insecurity of Electronic Elections conducted in Estonia

In 2003, Estonia made history by being the first country to offer remote online voting for a
parliamentary election [Ins23,DM04]. Before, the system was tested in local elections earlier
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that year. Since 2005, e-voting has also been used in local elections, marking the second time
online voting was employed in Estonia. Additionally, e-voting has been successfully implemented
in European Parliament elections since 2007 in Estonia. See [Ins23] for an overview. However,
in 2013, researchers expressed concerns about the trustworthiness of Estonia’s e-voting system,
highlighting vulnerabilities and potential risks that break verifiability.

The study [SFD+14] highlights the feasibility of an attacker at the state level, a sophisticated
criminal, or a dishonest insider manipulating election results by bypassing technical and orga-
nizational controls. Even if the attacker does not go that far, there are several ways in which
they could interfere with the voting process or cast doubt on the correctness of the results. The
election system in question featured an insecure build system and insecure software. Furthermore,
it used peripheral devices like personal USB sticks, for which no security guarantees were given.
Moreover, official videos of the October 2013 municipal elections show Wi-Fi credentials, national
ID PINs, and keystrokes of the root password, which can be used to alter the election results
without being detected.

In summary, this study shows that there are no guarantees of verifiability for Estonia’s election
in 2013.

1.1.3. Insecurity of WinVote Machines employed in the USA

Advanced Voting Solutions (AVS) [Uni19] was a company that sold WinVote voting machines
[Ver23]. These machines were utilized during elections in Mississippi [Vot07], Pennsylvania
[Com07], and Virginia [Vir15]. The AVS WinVote machine’s architecture included a touchscreen
that ran on Windows XP. It also had a thermal paper printer and a USB port behind a lock.
Unfortunately, as shown in [Eps15], the system had several weaknesses. For instance, for the
elections in 2014 held in Virginia, the AVS machines use an outdated version of Windows XP
that has not received any patches since 2004. Additionally, it had weak wireless security with
hardcoded passwords, no option to turn off wireless, and lax physical security.

It was shown in [Eps15] that election results can be tampered with using a laptop and free
tools without being detected. An attacker could intercept network traffic, gain access to the
voting machine through an easily obtainable admin password, manipulate the Microsoft Access
database that holds the votes, and then upload the modified database back onto the machine.
Even without factoring in any software or hardware vulnerabilities, the AVS WinVote system
has been demonstrated to be fundamentally insecure.

1.1.4. Insecurity of Electronic Elections in Switzerland and Australia

Scytl’s voting system, sVote [scy23b], has been certified and used in four Swiss cantons since
2016 [scy17b]. It is also utilized for Swiss referendums and federal elections in 2019 [Tea19], as
well as state elections in New South Wales, Australia [scy17a].

According to the analysis in [HLPT20], sVote version 2.1 has severe issues with its underlying
cryptographic primitives. It uses these primitives in settings where they are not secure and
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employs cryptographic protocols that do not provide the required level of security. Additionally,
the system lacks evidence of how specific values are generated, allowing malicious parties to
cheat by exploiting potential trapdoors. As a result, using sVote version 2.1, it is possible to
change the election outcome without being detected.

1.1.5. Achieving Verifiability

As these examples show, achieving verifiability is not trivial. E-voting systems are very complex,
involving several hardware and software components. Due to the high complexity of these systems,
identifying, assessing, and addressing vulnerabilities is not easy. Even minor implementation
errors and security flaws can significantly affect the voting process’s accuracy and integrity.
Therefore, it is essential to have thorough validation and verification protocols in place to ensure
that e-voting systems are secure, reliable, and trustworthy.

Verifiability is the fundamental security property not just necessary in traditional paper-based
elections, where multiple entities and observers can monitor the tallying process, but also in
electronic voting systems. Verifiability is essential in detecting any irregularities that may arise
during the election process, such as voter suppression, manipulation of voting machines, or
miscounting ballots.

Verifiability should be possible even when the voting devices or servers have programming errors
or are malicious. It helps maintain transparency, democracy, public trust, and accountability. It
is the foundation of the electoral process’s integrity and legitimacy, contributing to the stability
and proper functioning of democratic societies.

To achieve verifiability, the majority of current e-voting systems adopt a method similar
to traditional paper-based elections. They calculate and then publish the aggregated tally,
which contains the number of votes each candidate received or individual votes. Additionally,
they provide supplementary information showing the aggregated tally’s correctness. With this
information, anyone can independently compute the election result using a specific election result
function, such as determining the winning candidate (the one that received the most votes) or
identifying the top n candidates. Assuming that we can detect any errors occurring to obtain the
aggregated tally (e.g., voters can check whether their intended votes are part of the aggregated
tally), this approach leads to a verifiable system since computing the election result is solely
based on verified public information.

Although this approach is commonly employed and may be deemed necessary in the absence
of alternative methods, disclosing the aggregated tally as an intermediate value for determining
the election result carries various disadvantages:

• Biased voters: When elections are carried out over multiple rounds, it is vital to consider
the potential ramifications of disclosing intermediate tallies of previous rounds. Publicizing
these tallies may inadvertently introduce bias or sway voters’ decisions for subsequent rounds
of voting. This poses a significant problem if voters perceive their preferred candidate as
unlikely to win based on the current tallies and consequently alter their vote in a manner that
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does not align with their true preferences, altering the election result. By maintaining the
confidentiality of intermediate tallies, the electoral process upholds fairness and impartiality
and enables all candidates to compete equitably.

• Embarrassed candidates: When considering the publication of election results, it is crucial to
acknowledge the potential impacts. In particular settings, such as businesses or associations,
disclosing the exact number of votes the candidates received may be unwise. This is due to
causing a loss of reputation or discomfort for the losing candidates, who may feel exposed
or vulnerable. Additionally, if the margin of victory is narrow, releasing the aggregated
tally undermines the authority of the elected individual and results in a weak mandate.
These outcomes might be undesirable for any organization or group. Therefore, carefully
considering the implications of publishing election results is necessary, weighing the potential
advantages against the potential drawbacks.

• Gerrymandering: Gerrymandering refers to intentionally altering the boundaries of electoral
districts to gain an advantage for a particular political party or group. In other words, it is a
deliberate manipulation of voting district boundaries aimed at maximizing electoral gains or
minimizing the influence of rival parties. Gerrymandering can be facilitated by the public
release of voting data, which can then be used to redraw district boundaries to favor one
party over the other. Gerrymandering happens world-wide, for example, in Australia [Sto33],
India [Ind19,TRT22], Hungary [Eco22], and in California, USA [Pro11].

• Confidentiality of votes: The confidentiality of votes is fundamental to democratic elections.
If the tally is made public or exposed, it could harm the election results. This is because
voters may be hesitant to vote for their actual preference, fearing their choice will be known
and possibly used against them. The secrecy of voting is essential for ensuring that voters
can express their choices without fear of repercussions. By protecting the confidentiality of
the votes, we can help to ensure that democratic elections are free, fair, and democratic.

• Italian attacks: Italian attacks arise from the issues mentioned in the point above. In
preferential voting systems such as instant-runoff voting (IRV), each voter’s choice can be
a unique identifier even when only a few candidates exist. This means that the privacy of
each voter is diminished, which adversaries can exploit through a technique called Italian
attacks [RCPT19]. With access to the aggregated tally, the adversary can examine the data
and coerce any voter to vote for an unlikely option. The adversary can then verify whether
or not the voter followed the coercion. Such attacks seriously threaten the integrity of the
voting process and must be considered when implementing preferential voting systems.

These issues arise from publishing the aggregated tally, which reveals the number of votes
each candidate receives or individual votes. To mitigate these issues, some elections have
put restrictions in place to prevent the disclosure of the aggregated tally. An example is the
elections for the Special Interest Groups (SIGs) in the Association for Computing Machinery
(ACM) [ACM20]. These elections announce only the winner and do not publish the aggregated
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tally. Similarly, the Gremienwahl of the Deutsche Forschungsgesellschaft (DFG) keeps the
number of votes received by the losing candidates confidential [Deu19]. Civica Election Services
(CES), a renowned e-voting provider, conducts several dozen elections annually where customers
request only the actual election result from CES. According to CES, this approach is implemented
to minimize the possibility of weak mandates or gerrymandering issues CES. Further examples
are the elections carried out in CrossRef [Cro19] and in Society for Industrial and Applied
Mathematics (SIAM) [Soc19]. However, since these elections only publish the results, external
observers cannot verify the claimed results. These real-world elections are not verifiable, and so
far, no method is known to achieve verifiability in such voting schemes.

1.2. Tally-Hiding

Following [SP15], we refer to e-voting systems that only disclose the election result as tally-hiding
systems. Previous proposals for tally-hiding e-voting systems, such as those by Benaloh [Ben86],
Hevia and Kiwi [HK04], and Wen and Buckland [WB09], were limited in their applicability to
specific voting methods and lacked formal proofs of security, making them impractical solutions.

We can divide tally-hiding into three categories:

1. Full tally-hiding. Fully tally-hiding e-voting systems offer the highest level of privacy for
the tally and ballots. These systems guarantee that no one, not even external observers,
voters, election officials, or trustees, can access any information regarding the election
except for the final result. Full tally-hiding ensures that the actual tally is kept hidden,
and any interim values used to calculate the election outcome are inaccessible to all parties.
The work of [SP15] formalized this notion for the first time.

2. Partial tally-hiding. While fully tally-hiding e-voting systems conceal all information
beyond the final election result, research has proposed e-voting systems that only hide
specific parts of the tally in order to address particular issues. Partially tally-hiding systems
are designed to hide only certain aspects of the tally and thus reveal some information
besides the election’s result. For example, consider a multi-round runoff election between
three candidates, A, B, and C, where the candidate with the least votes is eliminated in
each round. A fully tally-hiding voting scheme reveals the winner of the election, e.g.,
candidate B. In comparison, a partially tally-hiding voting scheme could reveal which
candidate is eliminated in each round, e.g., the election result (C,A) denotes that candidate
C is eliminated in the first round and candidate A in the second round, leading to candidate
B as the winner of the election.

3. Public tally-hiding. As explained above, in many real-world elections, the voting authorities
compute the election result internally by learning the aggregated tally and then only publish
the final result. This concept differs from full and partial tally-hiding in that it essentially
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ensures full tally-hiding towards the public but reveals the aggregated tally towards some
designated parties running the election.

As the abovementioned real-world examples demonstrate, constructing an e-voting system that
only achieves tally-hiding is not difficult. These voting systems only publish the election results.
However, the real challenge is integrating tally-hiding and verifiability to enable observers to
confirm the outcome without revealing any extra information about the tally. Unfortunately, a
provably secure e-voting system combining verifiability and tally-hiding does so far not exist in
the literature. Our work of [KLM+20a] is the first to propose a secure verifiable and tally-hiding
e-voting system, called Ordinos. Ordinos is a generic framework that can be instantiated for
choice spaces and election result functions. In the work of [KLM+20a], we lay the foundation to
verifiable fully tally-hiding e-voting by instantiating the Ordinos framework for relatively simple
single- and multi-vote elections. It remains an open question whether and how efficiently we can
conduct more complex elections in a verifiable and tally-hiding manner.

1.3. Goal and Contributions of This Thesis

There are four major goals for this thesis:

1. We want to instantiate the Ordinos framework to construct verifiable and fully tally-hiding
e-voting systems covering the Hare-Niemeyer and Sainte-Laguë methods, several Condorcet
methods, and instant-runoff voting.

2. We want to explore the impact of tally-hiding regarding the secrecy of the tally and
confidentiality of individual votes.

3. We want to formalize the concept of public tally-hiding.

4. We want to construct the first secure e-voting system that provides verifiability and public
tally-hiding following the concept of existing public tally-hiding practices. We want to
construct such systems supporting various elections. This includes various choice spaces
like single- and multi-vote, Borda, ranked- and grading-based voting methods, and several
election result functions like Condorcet methods, majority judgment, and instant-runoff
voting.

In what follows, we present our contributions categorized into the three types of tally-hiding.

Part I – Full Tally-Hiding

First, we explore the possibilities of constructing a secure, verifiable, and fully tally-hiding
e-voting system. Advanced cryptographic techniques such as fully homomorphic encryption
(FHE) and universally verifiable and accountable multi-party computation (MPC) are required
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to achieve this level of privacy. These techniques enable the trustees to compute the election
result without accessing any information that could compromise the confidentiality of ballots
and the tally.

Our work of [KLM+20a] is the first to propose a secure verifiable and tally-hiding e-voting
system, the Ordinos framework, which we instantiated for relatively simple single- and multi-vote
elections.

Our Contributions. Our work in Chapter 3 instantiates the Ordinos framework to securely
and efficiently support a variety of real-world elections.

Ordinos is the first provably secure, verifiable, and fully tally-hiding remote e-voting protocol,
achieving verifiability and accountability. Unlike previous protocols, Ordinos is a modular
framework for fully tally-hiding e-voting that can be instantiated for supporting a wide range
of election types, including essentially arbitrary voting methods. Our security analysis and
proof are performed generically for the Ordinos framework itself and, therefore, carry over to
all such instantiations. Creating an instantiation of Ordinos mainly boils down to constructing
a universally verifiable/accountable MPC component for computing the result of the desired
voting method. It is challenging to develop an MPC protocol that enjoys all necessary security
properties, is sufficiently efficient in practice, and is compatible with the rest of the system.

We propose and implement various instantiations of Ordinos for commonly used single- and
multi-vote elections. We also include several other complex voting methods like the Hare-
Niemeyer and Sainte-Laguë methods, several Condorcet methods, and instant-runoff voting.
This requires designing multiple new universally verifiable MPC protocols. We make appropriate
design decisions to ensure practical performance in everyday, real-world settings. Our extensive
evaluations demonstrate that these instantiations achieve practical performance in everyday
real-world settings.

We design an Ordinos instantiation that performs the entire election process for the German
federal parliament (Bundestag) in a verifiable and fully tally-hiding manner. The German federal
election is one of the most complicated real-world elections, with millions of voters, dozens of
parties, hundreds of individual candidates, and hundreds of electoral constituencies. The election
process involves using sophisticated multi-step algorithms to compute the election result, which
includes assigning seats to individual candidates. The process involves combining the results of
different constituencies, distributing seats that are directly allocated to individual candidates
instead of parties, taking into account minimum vote counts for parties before they receive
any seats, including particular exceptions for minorities, possibly increasing the size of the
parliament, and assigning party seats to individual candidates according to party candidate lists
for each constituency and weighted by how many votes a party has obtained in the respective
constituency. We have tested our system on the data from the 2021 election and demonstrated
that we can perform even such a complex election on a real-world scale in a fully tally-hiding
manner. This powerful insight highlights the potential for using Ordinos in significant and
complex real-world elections.
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Finally, we provide a web framework of Ordinos that supports all steps of the voting process,
including setting up elections, the vote submission (including voter authentication), the secure
tally-hiding evaluation of the election result, and all verification steps necessary to verify the
result of the election. The web framework fully supports all our Ordinos instantiations and
voting methods, except for the German Bundestag elections.

Moreover, we provide insights into the impact of tally-hiding by analyzing and comparing
privacy in different elections with and without tally-hiding. Our analysis shows that tally-hiding
improves privacy severely.

Part II – Partial Tally-Hiding

In contrast to fully tally-hiding e-voting systems, which aim to hide all information beyond the
final election result, research proposed several partial tally-hiding e-voting systems that attempt
to hide only specific parts of the tally (from everyone, including trustees) to solve certain specific
issues, most notably Italian attacks (e.g., [RCPT19] for IRV and [BMN+09,Hea07] for single
transferable vote, see Section 2.7). Such systems can be more efficient than fully tally-hiding
systems since not all intermediate information (e.g., the ranking of losing candidates) must be
kept secret. Hence, partial tally-hiding is a relaxation of full tally-hiding to improve efficiency.

Our Contributions. In Chapter 4, we extend the privacy analysis of voting systems by
computing privacy values for partial tally-hiding election result functions and comparing them
with their tally-hiding and non-tally-hiding counterparts.

We constructed the Ordinos framework for full tally-hiding, but we can apply it for partial
tally-hiding by using suitable election result functions. For example, considering the multi-round
runoff election introduced above, we can construct a fully tally-hiding instantiation of the
Ordinos framework that computes the eliminated candidate per round. We can then use this
fully tally-hiding instantiation for the elimination result function to compute the election result
function that outputs just the winner in a tally-hiding manner.

Applying the Ordinos framework, we propose several partial tally-hiding Ordinos instantiations
and analyze their trade-off between privacy and efficiency in comparison to their corresponding
full tally-hiding Ordinos instantiations.

Combining the privacy analysis and the partially tally-hiding Ordinos instantiations, we show
that by employing particular partial tally-hiding functions, we can achieve privacy levels similar
to the full tally-hiding counterparts while significantly improving the performance of the election.

Part III – Public Tally-Hiding

The concept of public tally-hiding is motivated by existing practices: As presented above,
there are many cases where voting authorities chose to compute internally but not publish
the aggregated tally; instead, they revealed only the election result to avoid issues regarding
privacy. Hence, while the trustees learn the aggregated tally, the public only learns the election
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result. While publicly tally-hiding elections are standard, they currently do not offer verifiability:
Neither voters nor external observers can confirm the correctness of the election results.

The concept of public tally-hiding is further motivated by allowing for more efficient design
choices compared to full tally-hiding. Fully tally-hiding e-voting systems require heavy-weight
cryptography, such as FHE and MPC, to conceal the tally and all intermediate results, even
from the trustees. Consequently, these systems are computationally expensive and may not
scale well for highly complex voting methods or the desired number of candidates. Allowing the
trustees to learn the aggregated tally might allow for more efficient solutions.

Our Contributions. In Chapter 5, we propose and study publicly tally-hiding techniques.
These differ from all previous tally-hiding approaches and offer a new trade-off between privacy
and efficiency. More specifically, we contribute the following:

• Since the concept of (verifiable) publicly tally-hiding elections is novel and has not been
investigated so far, this thesis develops a general definitional security model for publicly tally-
hiding e-voting, thereby also providing the first formal definition of the public tally-hiding
property. With this, we enable the rigorous and formal modeling of publicly tally-hiding
e-voting systems and their security properties, including vote privacy and verifiability.

• We analyzed privacy for public tally-hiding. We show that the privacy results regarding full
tally-hiding also apply to public tally-hiding regarding the public. Moreover, we extend our
results regarding privacy regarding full tally-hiding by analyzing further and more complex
voting methods.

• Another main contribution of this thesis is the Kryvos framework, which is the first provably
secure verifiable publicly tally-hiding e-voting system. The Kryvos framework is a flexible
voting scheme that can be customized for different types of elections by designing or fixing
appropriate cryptographic building blocks, just like Ordinos. The framework uses general-
purpose proof systems (GPPSs, see, e.g., [Set20]) to ensure the verifiability of the final
result without revealing the tally. It is a versatile system that does not require a specific
GPPS but can work with any standard instantiation, including succinct non-interactive
arguments of knowledge (SNARKs, see, e.g., [GMO16,Gro16,AHIV17,BBC+18,BBHR18,
BBB+18, BCR+19, ESLL19, ESS+19, GWC19, MBKM19, AC20, ALS20, BFH+20, BLNS20,
COS20, ENS20, Set20, ACK21, AL21, BCS21, ISW21, LNPS21, ACC+22, ACL+22, CHJ+22,
Eag22,LNP22,BS23,ABST23,CBBZ23,CGG+23,CGI+23,GLS+23,Zha23]). To implement
Kryvos for a specific voting method, we need to propose an instance of the GPPS that proves
the correct computation of the result of that voting method.

• To carry out elections using Kryvos, we develop and implement optimized versions of the
state-of-the-art Groth16 SNARK [Gro16] for a wide range of elections, including single- and
multi-vote, Borda, ranking and grading choice spaces, as well as Condorcet methods, IRV,
and majority judgment. With these Groth16 instances, we have created instantiations of
Kryvos for many commonly used voting methods, from simple to complex. Via thorough
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performance testing, conforming our hypothesis, we demonstrate that our publicly tally-
hiding Kryvos framework performs significantly better than Ordinos instances. In particular,
for highly complex voting methods such as Condorcet and IRV, our Kryvos instances support
more candidates than Ordinos instances. Moreover, our Kryvos scheme outperforms even
the state-of-the-art IRV partial tally-hiding e-voting scheme of [RCPT19], while achieving
incompatible privacy properties (see Section 5.4).

• As a significant byproduct, we provide highly efficient zero-knowledge proofs (ZKPs) for
showing ballot validity for several choice spaces. We do not only construct ZKPs for relatively
simple choice spaces like single- and multi-vote, but most impactfully for very complex choice
spaces, for which no ZKPs exist so far. For instance, we are the first to propose ZKPs for
the choice space of Borda tournament style (see Section 2.6). Our constructions offer high
performance, allowing voters to prove the validity of their ballots very efficiently. These
outcomes are not limited to public tally-hiding. They can be used in other e-voting schemes,
providing a new foundation to handle choice spaces.

Publications

This thesis is based on five publications published in international security conferences. The
underlying ideas have been developed during joint discussions and meetings with the co-authors
of the publications listed below. We list the contributions of Julian Liedtke in detail below.

• Ordinos: A Verifiable Tally-Hiding E-Voting System (EuroS&P 2020) [KLM+20a] (with
a technical report [KLM+20b]). This work lays the foundation of the Ordinos framework,
including a proof-of-concept implementation of plurality voting (and slight variants thereof)
and the security proofs. The proof of verifiability/accountability and the proof of privacy
were done by Johannes Müller and are part of his PhD thesis [Mül19]. Andreas Vogt did the
proof of the ideal privacy level. Andreas Vogt also computed the privacy values provided
in [KLM+20a, KLM+20b] (Figures 3.2 to 3.5 in this thesis). Julian Liedtke constructed
the instantiations provided in this work and implemented them based on an initial proof-
of-concept implementation by Johannes Müller. Chapter 3 in this thesis, in particular the
description of the Ordinos framework in Section 3.2.1, covers the content and is based on
this publication and the corresponding technical report, with some parts taken verbatim
from [KLM+20a,KLM+20b].

• Extending the Tally-Hiding Ordinos System: Implementations for Borda, Hare-Niemeyer,
Condorcet, and Instant-Runoff Voting (E-Vote-ID 2021) [HHK+21a] (with a technical report
[HHK+21b]). This work instantiates the Ordinos framework for several (real-world) elections.
Fabian Hertel and Jonas Kittelberger supported Julian Liedtke in implementing and creating
benchmarks. Chapter 3 in this thesis, in particular various instantiations of the Ordinos
framework presented in Section 3.2.3, covers the content and is based on this publication
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and the corresponding technical report, with some parts taken verbatim from [HHK+21a,
HHK+21b].

• Fully Tally-Hiding Verifiable E-Voting for Real-World Elections with Seat-Allocations (ES-
ORICS 2023) [WLH+23a] (with technical report [WLH+23b]). This work studies seat-
allocation methods and constructs further instantiations of the Ordinos framework for such
voting schemes. Julian Liedtke modified the Ordinos framework for elections using multiple
constituencies and has done the formal proofs. Carmen Wabartha (under the guidance of
Julian Liedtke) and Julian Liedtke jointly constructed and implemented the instantiation
for the German Bundestag. Chapter 3, in particular the extension of the Ordinos framework
for multiple constituencies presented in Section 3.2.4, covers the content and is based on
this publication and the corresponding technical report, with some parts taken verbatim
from [WLH+23a,WLH+23b].

• Ordinos: Remote Verifiable Tally-Hiding E-Voting - A Fully-Fledged Web-Based Implementa-
tion (E-Vote-ID 2023) [LAA+23b]. This work provides a full-fledged web-based implementa-
tion of the Ordinos framework. Several students supported Julian Liedtke in implementing
the system. Section 3.2.5 in this thesis covers the content and is based on this publication,
with some parts taken verbatim from [LAA+23b].

• Kryvos: Publicly Tally-Hiding Verifiable E-Voting [HKK+22a] (with a technical report
[HKK+22b]). This work contains the Kryvos framework. Johannes Müller supported Julian
Liedtke in proving security. Andreas Vogt computed privacy values for IRV (Figure 3.7 in
this thesis). Chapter 5 and appendices B.1 and B.2 in this thesis cover the content and are
based on this publication and the corresponding technical report, with some parts taken
verbatim from [HKK+22a,HKK+22b].

In addition to the privacy values computed by Andreas Vogt in the above publications, Julian
Liedtke has computed further privacy values as part of writing this thesis. The privacy values of
Figures 3.2 to 3.5 and 3.7 in this thesis are computed by Andreas Vogt, all other privacy values
are computed by Julian Liedtke.

In addition to the above works, Julian Liedtke has also collaborated on the work of [RLH+23],
which is not part of this thesis.

1.4. Structure of This Thesis

We lay the foundation of electronic voting (e-voting) in Chapter 2. That is, we present a typical
(e-)voting flow and then define security notions in the context of e-voting. Furthermore, this
section presents vital components of every election, namely various choice spaces and election
result functions. Furthermore, we describe real-world elections.

In the following three chapters, we present the different types of tally-hiding. In Chapter 3,
we present full tally-hiding and Ordinos, the first provable secure fully tally-hiding e-voting
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system. In Chapter 4, we present partial tally-hiding and variants of Ordinos that fulfill this
property. In Chapter 5, we present public tally-hiding and Kryvos, the first provable secure
publicly tally-hiding e-voting system. We conclude in Chapter 6.
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2. Electronic Voting

Elections are crucial for democracy. Politics, companies, organizations, associations, political par-
ties, non-profit, and religious institutions regularly held elections (see, e.g., [BL10, fCR10,Rao10,
BL14,Cro19,Deu19,KTV+19,Soc19,ACM20,deb22,Ins23,Pol23,Scy23a]). Different voting meth-
ods and election result functions exist to determine the election winner. Voting methods range
from simple, like plurality/single-choice, to complex, like cumulative and preferential/multi-round
voting. In practice, elections commonly utilize simple voting methods, but more complicated
ones can better reflect the voters’ preferences. For instance, instant-runoff voting (IRV) is a
preferential voting method many countries use for municipal or national political elections,
including Australia [NSW20], India [Gov20], the UK [The11], and the US [Mai20]. We define
the valid votes/choices a voter can cast as a choice space C. Different result functions are used
in elections, such as determining the winner (e.g., in presidential elections), selecting the n best
or worst candidates (ranked or not ranked) for positions, or deciding who advances to a runoff
election. We denote election result functions with f res.

There is rising interest in performing this wide variety of elections via electronic voting
(e-voting) systems, particularly remote e-voting via the Internet. More and more companies,
organizations, associations, and even political bodies have adopted remote e-voting systems for
their elections (see, e.g., [ACM20]). Internet voting has been employed in numerous official and
binding elections across various government levels worldwide. For example, over two million
remote Internet voting opportunities have been in over 90 local Canadian elections [Goo14].

This demand has further increased due to the recent COVID-19 pandemic [HGM+22]. In
order to meet the increasing demand for e-voting solutions, many IT companies offer their
services [Hei17], including, for example, Microsoft [Bur19]. Several e-voting systems have already
been deployed in binding elections (see, e.g., [Adi08, CCC+08, AdMPQ09, BCH+12, CRST15,
GGP15]), with Helios [Adi08] being one of the most prominent (remote) e-voting systems used
in practice.

Two main types of e-voting systems are currently in use. The first type requires the voter
to physically go to a polling station and cast their vote using a voting machine. The second
type, which is the main focus of this thesis, allows the voter to vote remotely over the Internet
using their device. This type of e-voting system is becoming increasingly popular due to its
convenience and accessibility.

The structure of this chapter is as follows. In Section 2.1, we present the typical (e-)voting flow.
In order to formally define the security of e-voting systems, we present the general computational
model for capturing e-voting systems in Section 2.2. We formally define verifiability in Section 2.3.
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Then, in Section 2.4 we define accountability, and finally, we define the privacy of e-voting
systems in Section 2.5. We then present various commonly used choice spaces (Section 2.6) and
election result functions (Section 2.7). In Section 2.8, we describe and explain real-world elections
and show which choice spaces and election result functions they use. Finally, in Section 2.9,
we briefly present existing e-voting systems that we will discuss later at suitable places in this
thesis.

2.1. Voting Flow

The Helios [Adi08] remote e-voting system is commonly used as a framework for other e-voting
schemes. Our e-voting schemes in this thesis also apply the Helios framework. As a result, this
section will outline a typical election procedure employing Helios.

The following participants typically participate in a Helios-like e-voting protocol: a voting
authority Auth, (human) voters v1, . . . , vnvoters , their voter-supporting devices VSD1, . . . ,VSDnvoters ,
trustees T1, . . . ,Tntrustees (also called talliers), an authentication server AS, and an append-only
bulletin board BB.

A vital building block of Helios is a homomorphic, IND-CPA-secure (t, ntrustees)-threshold public-
key encryption scheme E = (KeyShareGen,PublicKeyGen, Epk, decshare, dec) (formally defined in
Appendix A.1), e.g., the exponential ElGamal or Paillier encryption scheme. The shares of the
secret key are distributed among the trustees T1, . . . ,Tntrustees such that at least t trustees need
to cooperate in order to decrypt a ciphertext. Furthermore, the homomorphic property of the
encryption schemes allows to operate on the ciphertexts that add the corresponding plaintexts,
i.e., the operation Epk(a) ⊕ Epk(b) creates a ciphertext with plaintext value a + b, where pk
denotes the public key. Likewise, we write ⨁︁n

i=1Epk(ai) to denote the operation that creates a
ciphertext with plaintext value a1 + · · ·+ an.

At its core, electronic voting operates as a decentralized system involving the participants
stated above. The voter vi utilizes her voter-supporting device (VSDi), such as a desktop
computer or smartphone, connected to the voting system via a web browser or a dedicated
application, to generate a ballot representing her choice cchoice

i ∈ C. Such choices can be simple
(e.g., voting for one candidate) or complex (e.g., ranking a selected subset of candidates). All
possible choices a voter can select are captured in the choice space C. The choice space determines
the valid choices for which voters can cast ballots. For this, the parameters ncomponents ∈ N
denote the number of (choice) components of an election and a set of valid voting choices
C ⊆ Nncomponents . Both parameters, ncomponents and C, are instantiated depending on the voting
method.

We present the following two phases (the voting and the tallying phase) as a sequence diagram
in Figure 2.1.
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Figure 2.1.: Sequence diagram of the voting and tallying phases.

2.1.1. Voting Phase

A voter vi selects her choice cchoice
i = (ccomponent

1,i , . . . , ccomponent
ncomponents,i) ∈ C. For example, in an

election between ncand candidates, where the voters are allowed to vote for exactly one can-
didate, the choice space is defined as {(ccomponent

i )ncomponents
i=1 | ncomponents = ncand, c

component
i ∈

{0, 1},∑︁ncomponents
i=1 ccomponent

i = 1}. In this case, a (choice) component represents a candidate. We
present various choice spaces in Section 2.6. In summary, every voter vi can decide to abstain
from voting or to vote for some choice cchoice

i = (ccomponent
1,i , . . . , ccomponent

ncomponents,i) ∈ C ⊆ Nncomponents . In
the latter case, the voter inputs cchoice

i to her voter-supporting device VSDi, which proceeds as
follows. First, VSDi encrypts each (choice component) of cchoice

i separately under the public
key pk and obtains a ciphertext vector EVector

pk (cchoice
i ) = (Epk(ccomponent

1,i ), . . . , Epk(ccomponent
ncomponents,i)).

That is, the j-th ciphertext in EVector
pk (cchoice

i ) encrypts the number of votes/points assigned
by voter vi to (choice) component j. After that, in addition to EVector

pk (cchoice
i ), VSDi creates a

non-interactive zero-knowledge proof (NIZKP, see Appendix A.4) πCi in order to prove that it
knows which choice cchoice

i the vector EVector
pk (cchoice

i ) encrypts and that cchoice
i ∈ C. Finally, VSDi

sends the ballot bi = (id, EVector
pk (cchoice

i ), πCi ) to AS where id is an identifier of the election. The
authentication server AS checks the ballot format and sends an acknowledgment to VSDi.
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2.1.2. Tallying Phase

After the voting phase is closed, the AS sends the list of ballots b⃗ to the bulletin board BB.
This list of ballots b⃗ on BB is the input to the tallying phase. In the tallying phase, the
trustees aggregate the votes. Each trustee Tk reads b⃗ from the bulletin board BB and verifies
its correctness (i.e., the trustee verifies that the tally does not include duplicates and invalid
ballots). Tk homomorphically aggregates all vectors EVector

pk (cchoice
i ) in b⃗ entry-wise and obtains a

ciphertext vector EVector
pk (cchoice

agg ) = (EVector
pk (cchoice

agg )1, . . . , E
Vector
pk (cchoice

agg )ncomponents) with ncomponents

entries each of which encrypts the number of votes/points of the respective (choice) component:
EVector

pk (cchoice
agg )j = ⨁︁nvoters

i=1 Epk(ccomponent
j,i ) for j ∈ {1, . . . , ncomponents}. We call this the aggregated

tally and denote the function aggregating individual votes with fagg. The ciphertext vector
EVector

pk (cchoice
agg ) now contains the number of votes each (choice) component received. The trustees

verifiable decrypt EVector
pk (cchoice

agg ) and publish the values (ccomponent
1,agg , . . . , ccomponent

ncomponents,agg), together
with a NIZKP πdec proving the correctness of the decryption, on BB. With the public information
on the number of votes for each (choice) component, everyone can calculate the election result
function f res, for example, by determining which candidate received the most votes.

2.1.3. Verifiability of Helios

Intuitively, Helios achieves verifiability in the following way. It employs NIZKPs to ensure
ballot validity. The aggregation process does not involve confidential data; thus, anyone can
double-check the results. The decryption of the aggregated tally is also made verifiable thanks
to NIZKPs. Finally, the election result function is computed based on the decrypted aggregated
tally; thus, anyone can recompute and confirm the result.

To protect the privacy of the voter’s ballots Helios uses aggregation and does not decrypt
individual ballots. However, as we show later in this thesis, this leads to a relatively low level of
privacy.

In order to assess the security properties of a voting process, we need to establish a clear
definition of voting processes within a computational framework. This will enable us to specify
our security controls accurately. The following section will introduce a general computational
model for which we will outline our security notions in the next section.

2.2. General Computational Model

To define security notions in the context of e-voting systems, we first need to define a framework
to capture voting schemes. In order to do so, we model e-voting systems using the general
computational model proposed in [CGK+16]. This model introduces processes, protocols,
instances, and properties. In this section, we recall these terms.

34



2.2.1. Process

A process is a set of probabilistic polynomial-time interactive turing machines (ITMs, also called
programs). Each ITM has named tapes (also called channels), which connect these ITMs in
the process. A channel connects two programs if it appears in both ITMs but with opposite
directions (input/output). A process may have external input/output channels, those that are
not connected internally. At any time of a process run, only one program is active. The active
program may send a message to another program via a channel. This program then becomes
active and, after some computation, can send a message to another program, and so on. Each
process contains a master program, which is the first program to be activated and also activated
if the active program did not produce output (hence, did not activate another program). If the
master program is active but does not produce output, a run stops.

We write a process P as P = p1∥ · · · ∥pn, where p1, . . . , pn are programs. If P1 and P2 are
processes (or programs), then P1∥P2 is a process, provided that the processes are connectable:
two processes are connectable if common external channels, i.e., channels with the same name,
have opposite directions (input/output); we rename internal channels, if necessary. A process P

where all programs have the security parameter 1η as input is denoted by P(η). In the processes
we consider, the length of a run is always polynomially bounded in η. The random coins the
programs use in P uniquely determine the run.

2.2.2. Protocol

A protocol P is defined by a set of agents Σ (also called parties or protocol participants), and for
each agent a ∈ Σ, a program pa which is supposed to be run by this agent. This program is the
honest program of a. Agents are pairwise connected by channels; every agent has a channel to
the adversary (see below).

Typically, a protocol contains a scheduler S as one of its participants, which acts as the master
program of the protocol process (see below). The scheduler’s task is to trigger the protocol
participants and the adversary in the appropriate order. For example, in the context of e-voting,
the scheduler would trigger protocol participants according to the phases of an election.

If pa1 , . . . , pan are the honest programs of the agents in P, then we denote the process
pa1∥ . . . ∥pan by PP.

The process PP is always run with an adversary A. The adversary may run an arbitrary
probabilistic polynomial-time program with channels to all protocol participants in PP. Hence,
a run r of P with adversary (adversary program) pA is a run of the process PP∥pA. We consider
PP∥pA to be part of the description of r, such that it is always clear to which process, including
the adversary, the run r belongs.

The typical specification of honest programs of the agents of P is such that the adversary A
can corrupt the programs by sending the special message corrupt. Upon receiving a corrupt

message, the agent reveals all or some of its internal state to the adversary, and then the
adversary takes over control of the agent. However, specific agents like schedulers are usually
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immune to corruption and would ignore corrupt messages. Additionally, some agents may
only accept corrupt messages during initialization, representing static corruption. This thesis’
security analysis uses static corruption.

We specify that an agent a is honest in a protocol run r if the agent is not corrupted in this
run, i.e., has not accepted a corrupt message throughout the run. An agent a is honest if for
all adversarial programs pA the agent is honest in all runs of PP∥pA, i.e., a always ignores all
corrupt messages.

2.2.3. Property

A property γ of P is a subset of the set of all runs of P. We denote the complement of γ by
¬γ. Recall that the description of a run r of P contains the description of the process PP∥pA

(and hence, in particular the adversary) from which r originates. Therefore, γ can be formulated
independently of a specific adversary.

2.2.4. Negligible, overwhelming, δ-bounded

This thesis will need the notions of negligible, overwhelming, and δ-bounded functions, which
we define in the following.

• A function f from the natural numbers to the interval [0, 1] is negligible if, for every c > 0,
there exists η0 such that f(η) ≤ 1

ηc for all η > η0.

• The function f is overwhelming if the function 1− f is negligible.

• A function f is δ-bounded if, for every c > 0 there exists η0 such that f(η) ≤ δ + 1
ηc for all

η > η0.

2.3. Verifiability

Ensuring verifiability is essential for traditional paper-based elections and e-voting systems.
Since e-voting systems are complex software and hardware systems, it is inevitable to encounter
implementation errors, which can compromise the accuracy of the voting process. In addition,
detecting intentional manipulation of these systems is often daunting, if not impossible. This
poses a significant risk as the final election result may not accurately reflect the choices made by
voters (see, e.g., the examples presented in Chapter 1, [WWH+10,SFD+14,Eps15,HLPT20] and
references therein).

It is crucial to mitigate these risks to ensure the integrity of the democratic process. Therefore,
a fundamental security property of elections is verifiability [Ben87,JCJ05,CCM08,Adi08,CCC+08,
BBB+13,CGGI14,KZZ15a,KZZ15b,KMST16], i.e., voters should be able to verify that their votes
were counted and every observer, including voters, election officials, and external observers, should
be able to verify whether the final election outcome indeed corresponds to the votes submitted by
the voters, even if voting devices and servers have implementation errors or are outright malicious.
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Verifiability is deemed crucial by the Council of Europe in their recommendation on e-voting
standards [Cou13]. The Swiss Federal Chancellery Ordinance on Electronic Voting [The13], the
Estonian Riigikogu Election Act [Rii02], elections in Norway [Gjø11], and non-political elections
in Germany [BSI21] also mandate individual verifiability requirements.

Numerous jurisdictions worldwide have aimed to implement online voting systems that
offer verifiability [HAM22]. For instance, the Netherlands used an online voting system with
individual verifiability in the 2004 waterschappen elections in Rijnland and Dommel [Pie10].
Norway employed an online voting system that was individually and universally verifiable in the
2011 and 2013 local elections [PCGK17]. In Estonia, individual verifiability has been supported
since 2013, and universal verifiability has been implemented since 2017 [HMVW16].

In order to formally define verifiability of e-voting systems, we first recall the generic verifiability
framework by Küsters, Truderung, and Vogt (KTV framework, originally presented in [KTV10]
with some refinements in [CGK+16]) that we use to analyze the verifiability level of the voting
protocols presented in this thesis. Beyond its expressiveness, the KTV framework is particularly
suitable to analyze our voting protocols because it does not make any specific assumptions on
the choice space C or the result function f res of the voting protocol. Thus, we can apply the
KTV verifiability definition without any further modifications.

2.3.1. Judge

The KTV verifiability definition assumes a judge J whose role is to accept or reject a protocol run
by writing accept or reject on a dedicated channel decisionJ. To make a decision, the judge
runs a so-called judging procedure, which performs certain checks (depending on the protocol
specification), such as verification of all zero-knowledge proofs (see Appendix A.4). Intuitively,
J accepts a run if the protocol run looks as expected. The input to the judge is solely public
information, including all information and complaints (e.g., by voters) posted on the bulletin
board. Therefore, the judge can be considered a virtual entity: the judging procedure can be
carried out by any party, including external observers and voters.

2.3.2. Goal

The KTV verifiability definition of a protocol centers around the notion of a goal. Formally, a
goal is simply a property γ of the protocol, i.e., a set of runs (see Section 2.2). Intuitively, such
a goal specifies correct runs in some protocol-specific sense. For e-voting, the goal would contain
those runs where the announced election result corresponds to the voters’ actual choices. In
what follows, we present the goal γ(k, φ) proposed in [CGK+16] that we apply in this thesis.
The parameter k is a non-negative integer, and φ is a formula that precisely models the trust
assumptions. Roughly speaking, the goal γ(k, φ) contains all those runs in which the distance
between the produced result and the ideal one (obtained when counting the actual choices
of honest voters and one valid choice for every dishonest voter) is bounded by k under the
assumption that φ holds.
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More precisely, we consider a specific distance function fdist. In order to define fdist, we first
define a function fcount : Cn → N|C| which, for a vector (cchoice

1 , . . . , cchoice
n ) ∈ Cn (representing

a multiset of voters’ choices), counts how many times each choice occurs in this vector. For
example, fcount(A,A,C) assigns 2 to A, 1 to C, and 0 to all the remaining choices. Now, for two
vectors of choices

−−−→
cchoice

0 ,
−−−→
cchoice

1 , the distance function fdist is defined by

fdist(
−−−→
cchoice

0 ,
−−−→
cchoice

1 ) =
∑︂

cchoice
i ∈C

⃓⃓⃓⃓
fcount(

−−−→
cchoice

0 )[cchoice
i ]− fcount(

−−−→
cchoice

1 )[cchoice
i ]

⃓⃓⃓⃓
.

For example, fdist((A,A,C), (A,B,C,C)) = 3.
Now, let f res ◦ fagg : C∗ → {0, 1}∗ be the result function of the election and consider a protocol

run r. With Vhonest, we denote the set of honest voters in r, i.e., the set of voters that did not
receive a corrupt message from the adversary in the run r. Likewise, we define with Vdishonest

the set of dishonest voters, i.e., the set of voters that did receive a corrupt message from the
adversary in run r. As explained in Section 2.2, in this thesis, we use static corruption.

Then, the goal γ(k, φ) is satisfied in r if either (a) the trust assumption φ does not hold true in
r, or if (b) φ holds true in r and there exist valid choices (cchoice

i )i∈Vdishonest (representing possible
choices of dishonest voters) and choices

−−−→
cchoice

real = (cchoice,real
i )i≤nvoters such that:

(i) an election result is published, and it is equal to f res ◦ fagg(
−−−→
cchoice

real ), and

(ii) fdist(
−−−→
cchoice

ideal ,
−−−→
cchoice

real ) ≤ k,

where
−−−→
cchoice

ideal consists of the actual choices (cchoice
i )i∈Thonest made by the honest voters and the

possible choices (cchoice
i )i∈Vdishonest made by the dishonest voters.

Note that when an adversary drops one honest vote, this increases the distance in condition
(ii) by one, but when he replaces an honest vote by another one, this increases the distance by
two. The replacement corresponds to the actual effect of manipulation on the final result.

2.3.3. Definition of Verifiability

The concept of the verifiability definition is as follows. The judge J should accept a run only if
it meets the goal γ(k, φ); hence, the published election result corresponds to the voters’ actual
choices. More precisely, the definition requires that the probability (over the set of all protocol
runs) that the goal γ(k, φ) is not satisfied, but the judge accepts the run is δ-bounded. Although
δ = 0 is desirable, this would be too strong for almost all e-voting protocols. For example, not
all voters typically check whether their ballot appears on the bulletin board, giving an adversary
A the opportunity to manipulate or drop some ballots without being detected. Therefore, we
generally cannot achieve δ = 0.

By Pr[P(η) ↦→ (J : accept)] we denote the probability that P, with security parameter 1η,
produces a run which is accepted by J. Analogously, by Pr[P(η) ↦→ ¬γ, (J : accept)] we denote
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the probability that P, with security parameter 1η, produces a run which is not in γ but
nevertheless accepted by J.

Definition 2.1 (Verifiability). Let P be a protocol with a set of agents Σ. Let δ ∈ [0, 1] be
the tolerance, J ∈ Σ be the judge, and γ be a goal. Then, we define that the protocol P is
(γ, δ)-verifiable by the judge J if for all adversaries PA and P = (pP∥PA), the probability

Pr[P(η) ↦→ ¬γ, (J : accept)]

is δ-bounded as a function of η.

A protocol P could trivially satisfy verifiability with a judge who never accepts a run. Therefore,
one would also require a soundness or fairness condition. At the very least, one would expect
that if the protocol runs with an adversary, which would not corrupt parties, then the judge
accepts a run. Formally, for such an adversary PA, we require that Pr[P(η) ↦→ (J : accept)] is
overwhelming.

2.4. Accountability

A closely related and stronger property than verifiability is accountability [KTV10], which some
systems also provide. Accountability requires that misbehavior leading to incorrect election
results be detected and that misbehaving parties can be held accountable.

This section provides an overview of the general definition of accountability [KTV10], indepen-
dent of any domain, and its specific application to e-voting. According to the paper, verifiability
is a weaker form of accountability. In the case of verifiability, if the protocol fails to achieve a
specific goal, the judge will not accept such a run, but misbehaving parties are not necessarily
blamed. On the other hand, accountability requires the judge to hold misbehaving parties
responsible.

As emphasized in the introduction and other work (e.g., [KTV10]), e-voting schemes must
ensure accountability, not just verifiability. Accountability demands that the judge blames those
participants who misbehave, or at least some of them, in case a run fails to achieve the desired
goal of the protocol due to the misbehavior of one or more protocol participants.

In the case of voting protocols, a desired goal is to ensure that the published election result
corresponds to the votes the voters cast. Accountability guarantees that if the published result
of the election does not match the votes cast by the voters (due to the misbehavior of one or
more protocol participants), then the judge holds one or more participants accountable.

We use the following notions of verdicts and accountability properties to specify accountability.

2.4.1. Verdicts

The judge can give a verdict (on a dedicated output channel) and state which parties to blame
(that is, which ones, according to the judge, have misbehaved). In the simplest case, a verdict
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can state that a specific party misbehaved (behaved dishonestly). Such an atomic verdict is
denoted by dis(a). It is also useful to state more fine-grained or weaker verdicts, such as ai

or aj misbehaved. Therefore, in the general case, we will consider verdicts, which are boolean
combinations of atomic verdicts. In fact, in our formal analysis carried out in this thesis, we
use in some cases verdicts of the form dis(vi) ∨ dis(AS) stating that either the i-th voter vi or
the authentication server AS misbehaved (but the verdict leaves open, as it might not be clear,
which one of them). Given the process PP of a protocol P, a verdict ψ is true in PP, written
PP |= ψ, if and only if the formula ψ evaluates to true with the proposition dis(a) set to false if
a is honest in PP (as defined in Section 2.2), and set to true otherwise.

2.4.2. Accountability Constraints

An accountability constraint is a tuple (α,ψ1, . . . , ψn), written (α⇒ ψ1 | · · · | ψn), where α is a
property of P (recall that, formally, this is a set of runs of PP) and ψ1, . . . , ψn are verdicts. Such
a constraint covers a run r if r ∈ α. Intuitively, in a constraint Γ = (α⇒ ψ1 | · · · | ψn) the set
α contains runs in which some desired goal of the protocol is not met (due to the misbehavior of
some protocol participants). The formulas ψ1, . . . , ψn are the possible (minimal) verdicts that
are supposed to be stated by J in such a case; J is free to state stronger verdicts. Formally, for a
run r, J ensures Γ in r, if either r /∈ α or J states a verdict ψ in r that implies one of the verdicts
ψ1, . . . , ψn (in the sense of propositional logic).

2.4.3. Individual Accountability

In practice, so-called individual accountability is highly desirable to deter parties from misbehaving.
Formally, (α⇒ ψ1 | · · · | ψn) provides individual accountability, if for every i ∈ {1, . . . , n}, there
exists a party a such that ψi implies dis(a). In other words, ψ1, . . . , ψn determines at least one
misbehaving party.

2.4.4. Accountability Property

A set Φ of accountability constraints for a protocol P is called an accountability property of P.
One should define an accountability property Φ in such a way that it covers all relevant cases in
which a desired goal for P is not met, i.e., whenever some desired goal of P is not satisfied in a
given run r due to some misbehavior of some protocol participants, then there exists a constraint
in Φ which covers r. In particular, in this case, the judge must state a verdict.

2.4.5. Definition of Accountability

Let P be a protocol with the set of agents Σ and an accountability property Φ of P. Let PP

be the process of P and J ∈ Σ be an agent of P. We write Pr[P(η)
P ↦→ ¬(J : Φ)] to denote the

probability that PP, with security parameter 1η, produces a run such that J does not ensure Γ
in this run for some Γ ∈ Φ.
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Definition 2.2 (Accountability). Let P be a protocol with a set of agents Σ. Let δ ∈ [0, 1]
be the tolerance, J ∈ Σ be the judge, and Φ be an accountability property of P. Then, we
define that the protocol P is (Φ, δ)-accountable w.r.t. the judge J if for all adversaries PA and
PP = (Pa1∥ . . . ∥Pan∥PA), the probability

Pr[P(η)
P ↦→ ¬(J : Φ)]

is δ-bounded as a function of η.

Similarly to the verifiability definition, we also require that the judge J is computationally
fair in P, i.e., for PP corresponding to P, the judge J states false verdicts only with negligible
probability.

2.5. Privacy

Ensuring the privacy of votes is crucial for democratic elections. It is essential to protect
individuals’ autonomy to vote based on their beliefs and values without fear of coercion or
retribution. The secrecy of the ballot helps maintain the integrity of the electoral process,
enabling citizens to vote freely and independently and preventing vote-buying and coercion.
When voters know their choices remain confidential, they are more likely to vote and trust the
electoral process, encouraging participation.

In this section, we define the privacy of e-voting schemes. Our privacy result states that no
adversary can distinguish whether a voter (called the voter under observation) voted for cchoice

0
or cchoice

1 when running the honest voter program.
In what follows, we introduce the class of adversaries we consider and then present our privacy

definition.

2.5.1. Risk-Avoiding Adversaries

An adversary with control over the authentication server could manipulate the election by
discarding or altering all ballots except for the voter’s ballot under observation, compromising
the privacy of the voters’ choice.

However, such an attack involves a risk: Recall that the probability of being caught grows
exponentially in k of manipulated honest votes (see Section 2.3). Thus, in the above attack
where k is significant, the probability of the adversary getting caught would be close to 1. In the
context of e-voting, caught misbehaving parties have to face severe penalties or loss of reputation;
therefore, this attack seems completely unreasonable.

A more reasonable adversary could consider dropping some small number of votes, for which
the degree of being caught is not that huge, to weaken privacy to some degree. We use the
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notion of k-risk-avoiding adversaries (initially introduced in [KMST16]) to analyze this trade-
off. Intuitively, a k-risk-avoiding adversary produces runs in which the goal γ(k, φ) holds (see
Section 2.3) for those voters who did not abstain from voting. In other words, the distance
between the ideal input (provided by the honest voters who submitted a ballot, plus one choice
per dishonest voter) and the real one is bounded by k.

More precisely, we define a goal γ′(k, φ) exactly in the same way as γ(k, φ), except that when
measuring the distance, we only take into account valid choices that are not abstain, i.e.,

fdist(
−−−→
cchoice

0 ,
−−−→
cchoice

1 ) =
∑︂

cchoice
i ∈C′

⃓⃓⃓⃓
fcount(

−−−→
cchoice

0 )[cchoice
i ]− fcount(

−−−→
cchoice

1 )[cchoice
i ]

⃓⃓⃓⃓
,

where C′ = C \ {abstain}. An adversary is k-risk-avoiding in a run of P if the property γ′(k, φ)
is satisfied. An adversary (of the process PP of P) is k-risk-avoiding if it is k-risk-avoiding with
overwhelming probability (over the set of all runs of PP).

Since γ(k, φ) is stronger than γ′(k, φ), the accountability property guarantees that each
adversary who is not k-risk-avoiding gets caught with probability 1− δk(pverify) which converges
exponentially fast to 1. Here, with pverify ∈ [0, 1], we denote the probability that an honest
voter vi performs the necessary checks to verify that her ballot was included correctly in the
tally. Therefore, assuming that the adversary knows this risk, it is reasonable for him to be
k-risk-avoiding if he does not want to be held accountable. However, increasing k does not help
the adversary much in breaking privacy, as argued below.

2.5.2. Definition of Privacy

In the analysis carried out in this thesis, we use the privacy definition for e-voting protocols
proposed in [KTV11], which allows us to measure the level of privacy a protocol provides (as
opposed to binary privacy notions, such as [KMW12]).

As briefly mentioned above, we formalize the privacy of an e-voting protocol as the inability
of an adversary to distinguish whether some voter vobs (the voter under observation), who runs
her honest program pvobs , voted for cchoice

0 or cchoice
1 .

To define this notion formally, we first introduce the following notation. Let P be an e-voting
protocol (in the sense of Section 2.2 with voters, authorities, choice space, result function, and
the other voting components). Given a voter vobs and cchoice

i ∈ C, the protocol P induces a
process of the form (pvobs(cchoice

i )∥P∗) where pvobs(cchoice
i ) is the honest program of the voter vobs

under observation which takes cchoice
i as the choice for which vobs votes and where P∗ is the

composition of programs of the remaining parties. In the case of the voting schemes in this
thesis, P∗ would include the scheduler, the bulletin board, the authentication server, all other
voters, and all trustees.

Let Pr[(pvobs(cchoice
i )∥P∗)(η) ↦→ 1] denote the probability that the adversary, i.e., the dishonest

agents in P∗, writes the output 1 on some dedicated channel in a run of (pvobs(cchoice
i )∥P∗) with
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security parameter η and some cchoice
∈ C, where we take the probability over the random coins

used by the agents in (pvobs(cchoice
i )∥P∗).

Now, we define privacy for k-risk-avoiding adversaries.

Definition 2.3 (Privacy). Let P be a protocol with a voter under observation vobs and let
δ ∈ [0, 1]. We define that P with nhonest

voters honest voters achieves δ-privacy w.r.t. k-risk-avoiding
adversaries, if for all cchoice

0 , cchoice
1 ∈ C\{abstain}, all programs P∗ of the remaining parties such

that at least nhonest
voters are honest in P∗ and such that the adversary is k-risk-avoiding, we have that

|Pr[(pvobs(cchoice
0 )∥P∗)(η) ↦→ 1]− Pr[(pvobs(cchoice

1 )∥P∗)(η) ↦→ 1]|

is δ-bounded as a function of η.

The requirement cchoice
0 , cchoice

1 ≠ abstain allows the adversary to distinguish whether a voter
voted.

Since δ typically depends on the number nhonest
voters of honest voters, we formulate privacy

w.r.t. this number. Note that a smaller δ means a higher level of privacy. However, even for an
ideal e-voting protocol, where voters enter their votes in secret, and the adversary sees only the
election outcome, δ cannot be 0: there is, for example, a non-negligible chance that all honest
voters, including the voter under observation, voted for the same candidate, in which case the
adversary can see how the voter under observation voted. We denote the privacy level of the
ideal protocol with the result function f res by δideal

nvoters,nhonest
voters ,µ

(C, f res), where nhonest
voters is the number

of honest voters and µ the probability distribution used by honest voters to determine their
choices.

2.6. Choice Spaces

Numerous voting methods exist, each offering its unique approach to capturing and representing
the will of the voters. From simple single choice to more complex voting methods like ranking
candidates, these methods provide different mechanisms to reflect voters’ preferences and allow
various election result functions.

We formalize a voting method using a choice space C, a set of all possible choices from
which the voters can choose. The choice space C determines the valid choices for voters to
cast ballots. As explained in Section 2.1, the parameter ncomponents ∈ N denotes the number of
(choice) components of an election and possible voting choices C ⊆ Nncomponents . Both parameters,
ncomponents and C, are instantiated depending on the voting method.

In this section, we present various choice spaces supported by the election systems we present
in this thesis.
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2.6.1. Single Choice

Single choice, also known as plurality voting or first-past-the-post, is a voting method where
each voter is allowed to select exactly one option from the available choices. Many elections,
particularly in systems prioritizing simplicity and ease of understanding, use single-choice voting.
However, single-choice voting can sometimes lead to outcomes that do not accurately represent
the overall preferences of the electorate, especially in situations with multiple candidates or
diverse viewpoints. The choice space CSingle for single-vote is given by

CSingle =
{︄

(x1, . . . , xncand) | xi ∈ {0, 1},
ncand∑︂
i=1

xi = 1
}︄

For this choice space, we have ncomponents = ncand.

2.6.2. Multiple Choice

Multiple-choice voting (also called multi-vote) is a voting method that allows voters to select more
than one option from the available choices. Using this voting method, each voter can indicate
their preferences by choosing multiple candidates or options, typically within a predefined
limit. Multiple-choice voting allows voters to support multiple candidates or express nuanced
preferences. It can be advantageous for filling multiple positions, such as electing multiple
representatives or ranking preferences. This method allows for a more diverse range of voices and
can help ensure that the elected outcome better reflects the varied perspectives and preferences
of the voters than a single choice. However, it can lead to vote-splitting or strategic voting, where
voters concentrate their support on a limited number of candidates to maximize the chances of
their preferred choices winning. In the general case of multi-vote, a voter has to distribute a
previously defined number nvotes of votes among the candidates, with the restriction that only a
bounded number b of votes is allowed to be given to each candidate. The following choice space
captures multiple-choice voting:

CMulti,ocomp,nvotes,b :=
{︄

(x1, . . . , xncomponents) | xi ∈ {0, 1, . . . , b},

ocomp ∈ {=,≤},
ncomponents∑︂

i=1
xi ocomp nvotes

}︄
.

If ocomp is to equal (=), the voters most distribute nvotes votes. If we set ocomp to less than or
equal to (≤) instead, the voters can distribute up to nvotes. The most common use is b = 1, i.e.,
voters can only give one vote to each candidate.
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2.6.3. Borda

Borda voting is a prominent ranked voting method. The Eurovision Song Contest (ESC) uses
Borda voting to determine the winner of its grand final [Eur20]. Also, national elections, e.g.,
parliamentary elections in the Republic of Nauru [Rep16] apply Borda voting. We present
both elections in Section 2.8. In Borda voting, a voter ranks the candidates according to her
preferences, and each candidate receives several points that depend on the position in the ranking.
There are many options to determine these points. Here, we present the two most famous options:
the point list variant and the tournament style variant. While ties are typically only allowed for
the last place in the ranking of Borda elections, we generalize these such that arbitrary ties are
allowed in both variants. All Borda variants aggregate the points for each candidate, and any
result function can be applied to determine the election winner (for example, the candidate with
the most points wins).

2.6.3.1. Point List

The point list ballot format works as follows. Each rank corresponds to a unique number of
points defined via a list P ∈ Nnpoints , wherein the standard case, npoints = ncand = ncomponents

is the number of candidates and P[1] is the number of points assigned to the candidate that
is ranked first and so on. The standard version of Borda requires candidates to be assigned a
unique rank (i.e., a unique number of points); advanced variants allow for assigning multiple
candidates the same rank, i.e., the same number of points. In that case, if i candidates are
assigned the same rank r, then the next lower candidate is required to start at rank r+ i (instead
of r + 1, as is the case when ranks are assigned uniquely).

The choice space CBordaPointList(P) captures the above behavior, where we interpret P as a list
and a set. Note that for simplicity, we assume that npoints = ncand.

CBordaPointList(P) =
{︄

(x1, . . . , xncand)
⃓⃓⃓
∀i : xi ∈ P ∧ ∀r ∈ {1, . . . , npoints},∀i ∈ {2, . . . , σ(r)} :

∄j ∈ {1, . . . , ncand} : xj = P[r + i− 1]

∧
(︃
r + σ(r) ≤ npoints ⇒ ∃j ∈ {1, . . . , ncand} : xj = P[r + σ(r)]

)︃}︄
,

where σ(r) ∈ {1, . . . , ncand} denotes the number of occurrences of P[r] in (x1, . . . , xncand).
Using CBordaPointList(P), standard Borda can be derived by additionally requiring σ(r) = 1 for
all values of r. Further straightforward variations include allowing the voter to submit only a
partial ranking.

45



2.6.3.2. Tournament Style

The tournament style ballot format works as follows. Based on the ranking of the candidates by
a voter, each candidate receives two points per candidate that is ranked lower and one point for
each other candidate with the same rank. The following choice space captures this:

CBordaTournamentStyle =
{︂

(x1, . . . , xncand)
⃓⃓⃓
∃(r1 . . . , rncand) ∈ Nncand s.t. ∀i ∈ {1, . . . , ncand} :

xi = 2 · |{j ∈ {1, . . . , ncand} : rj < ri}|

+ |{j ∈ {1, . . . , ncand} \ {i} : rj = ri}|
}︂
.

2.6.4. Grading

Majority judgment is an alternative voting method designed to capture more nuanced preferences
of voters [BL07]. In this method, instead of simply selecting a single candidate or option, voters
assess each candidate on a predefined scale of grades, typically ranging from excellent to poor or
acceptable to unacceptable. Voters assign judgments to each candidate based on their evaluation.

Majority judgment promotes a more comprehensive understanding of voter preferences and
allows for a more fine-grained evaluation of candidates. It allows voters to express nuanced
opinions and preferences, considering various aspects of each candidate’s qualities or performance.
This method emphasizes the evaluation of candidates rather than a direct comparison or ranking
of preferences. However, implementing majority judgment in large-scale elections can present
challenges, such as accurately aggregating and interpreting the judgments.

In order to allow for aggregation of such ballots, the ballots are a matrix of the candidates
and grades, where entry Aij is set to one if candidates i receives grade j, and zero otherwise.
The choice space CMajorityJudgment captures this:

CMajorityJudgment =
{︄
A ∈ {0, 1}ncand×ngrades

⃓⃓⃓
∀i ∈ {1, . . . , ncand} :

∑︂
j∈{1,...,ngrades}

Aij = 1
}︄

2.6.5. Duel Matrix

Voters are allowed to compare the candidates to each other. That is, for every pair of candidates
ccand

i , ccand
j , a so-called duel takes place, where the voter can decide whether she prefers ccand

i or
ccand

j .
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Such options are captured using a duel matrix DM ∈ {0, 1}ncand×ncand , which denotes in each
entry DMij whether the voter prefers ccand

i over ccand
j (DMij = 1 if that is the case, DMij = 0

otherwise). We define the choice space CDuelMatrix as follows:

CDuelMatrix =
{︂

DM ∈ {0, 1}ncand×ncand
⃓⃓⃓
∀i, j ∈ {1, . . . , ncand} : i ̸= j =⇒ DMij + DMji = 1

}︂
.

These duel matrices of the voters DM1, . . . ,DMnvoters can be aggregated entry-wise to obtain
the aggregated duel matrix DMagg, i.e., DMagg

ij := ∑︁nvoters
k=1 DMk

ij . Therefore, DMagg
ij denotes how

often candidate i was preferred over candidate j.
This choice space sets ncomponents to ncand · ncand. In particular, the number of (choice)

components is quadratic in the number of candidates.
Several sophisticated result functions exist to select a suitable election result based on this

choice space. We will explain them in Section 2.7.

2.6.6. Ranking Matrix

Allowing the voters to rank the candidates is considered a more comprehensive method than
other voting systems like plurality voting, as it considers the relative preferences of voters for all
candidates rather than just the top choice. While the duel matrix does not take transitivity into
account, e.g., if a voter prefers ccand

i over ccand
j , and ccand

j over ccand
k , then this does not imply that

the voter does prefer ccand
i over ccand

k . In order to create a ranking of the candidates, we allow
transitivity to obtain a ranking matrix ψ. We define the choice space CRankingMatrix as follows:

CRankingMatrix =
{︂

DM ∈ {0, 1}ncand×ncand
⃓⃓⃓
∀i, j, k ∈ {1, . . . , ncand} : i ̸= j =⇒(︁

DMij + DMji = 1 ∧ DMij = 1 ∧ DMjk = 1⇒ DMik = 1
)︁}︂
.

Just as the duel matrices, these ranking matrices of the voters ψ1, . . . , ψnvoters can be aggregated
entry-wise to obtain the aggregated ranking matrix Ψ, i.e., Ψij := ∑︁nvoters

k=1 ψk
ij . Therefore, Ψij

denotes how often candidate i was preferred over candidate j.
This choice space sets ncomponents to ncand · ncand. In particular, the number of (choice)

components is quadratic in the number of candidates.
Again, several sophisticated result functions exist to select a suitable election result based on

this choice space. We will explain them in Section 2.7.

2.6.7. Ranking Permutation

In comparison to the ranking matrix, another way to capture a ranking of candidates is to use a
permutation of the list of candidates.
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ncand
# Rankings

Complete Partial
1 1 2
2 2 5
3 6 16
4 24 65
5 120 326
6 720 1,957
7 5,040 13,700
8 40,320 109,601
9 362,880 986,410

10 3,628,800 9,864,101

Table 2.1.: Number of complete and partial rankings of ncand many candidates.

We interpret a ranking as a (potentially partial) permutation of the ncand candidates and
consider a vote as a vote for a particular permutation. Thus, we can represent a ballot to a
ranking as a single-choice ballot that selects a permutation of the candidates.

If we only allow complete rankings (the voter has to rank all candidates), there are ncand!
many possible rankings. However, if we allow partial rankings (a ranking of a freely selected
subset of the candidates), there are ∑︁ncand

i=0
ncand!

(ncand−i)! possible rankings. We present the number
of possible complete and partial rankings on various numbers of candidates in Table 2.1. We
remark that using this approach, the number of (choice) components grows factorially in the
number of candidates.

2.7. Election Result Functions

Election result functions determine the outcome of the election. Different election result functions
yield distinct interpretations of voter preferences and influence the composition of elected bodies.
Examples of election result functions include simple plurality, where the candidate with the
most votes wins, and proportional representation, which allocates seats based on each party’s
votes. Other functions, such as runoff elections and Condorcet methods, introduce more complex
mechanisms for ranking and weighting voter preferences. The diversity of election result functions
allows for flexibility in designing electoral systems that align with specific goals and values.

Formally, an election result function is a deterministic polynomial election result function
f res : C∗ → {0, 1}∗ that computes the election outcome based on the voters’ votes. Usually, the
function outputs a list of indices (b1, . . . , bncand), b ∈ {0, 1} that indicates for each candidate (or
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party, depending on the context) ccand
i whether this candidate won the election (which might

have different meanings depending on the concrete election result function).
The complexity of evaluating election result functions based on individual votes scales in

the number of voters, which is inefficient in typical settings with more voters than the number
of candidates. Therefore, we usually make use of homomorphic aggregation. That is, we
homomorphically aggregate all ballots cchoice

j in (cchoice
j )nvoters

j=1 entry-wise to obtain a vector
cchoice

agg = (ccomponent
1,agg , . . . , ccomponent

ncomponents,agg) with ncomponents entries each of which contains the number
of votes/points of the respective (choice) component: ccomponent

i,agg = ∑︁nvoters
j=1 ccomponent

i,j for i ∈
{1, . . . , ncomponents}. As in Section 2.1, we denote the function that aggregated the individual
votes with fagg. Then, we use this aggregated tally cchoice

agg to compute the election result.
With this, the complexity no longer depends on the number of voters since we can now define
f res : (ccomponent

i,agg )ncomponents
i=1 → {0, 1}∗.

As presented in Section 2.1, voting schemes typically use aggregation to increase vote privacy:
E-voting systems that follow the structure of Helios decrypt and publish this aggregated tally,
such that every party can compute the election result function in plain based on the aggregated
tally. If one would instead decrypt and publish the individual ballots, everyone could see how
each voter voted. However, employing tally-hiding, we only reveal the election result. The
following election result functions all start with the aggregated tally.

In this section, we present various election results functions f res, explaining unique properties,
for example, if and how the result function differs from the above scheme.

2.7.1. Aggregated Tally

The typical election result function used in practice is fAggTally. Using the aggregated tally as
input, this function is the identity: the election result function takes as input the aggregated
tally n1

votes, . . . , n
ncand
votes and outputs the aggregated tally n1

votes, . . . , n
ncand
votes, i.e., it outputs for every

candidate how many votes this candidate received. However, the aggregated tally is typically
not the election result function of interest. However, based on the result on fAggTally, everyone
can compute the actual voting result, for example, which candidate received the most votes.

2.7.2. Plurality Voting

In plurality voting (or first-past-the-post voting), the election winners are the candidates with
the most votes, regardless of whether they secure an absolute majority (more than 50% of the
total number of votes) or not. Plurality voting is a straightforward and widely used method in
many elections. The principle of plurality voting is that the candidate with the most individual
support should be declared the winner, even if it is not a majority. While simplicity and ease of
understanding are advantages of this method, it can lead to outcomes where the winner does
not necessarily represent the majority’s preferences or enjoy broad support. This phenomenon is
particularly evident in cases with multiple candidates, where the winning candidate may have
received fewer votes than the combined total of other candidates.
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The election result function f res
Plurality takes as input the aggregated tally n1

votes, . . . , n
ncand
votes

and outputs a list of bits (b1, . . . , bncand), b ∈ {0, 1} such that bi = 1 if (and only if) ni
votes =

maxi=1,...,ncand n
i
votes. This election result function outputs the candidates that received the most

votes.

2.7.3. Threshold

We refer to election methods where every candidate surpasses a certain threshold of votes wins
as threshold-based systems. In such systems, we establish a predetermined threshold, and any
candidate who receives votes exceeding this threshold is declared a winner. We can set the
threshold differently, such as a specific number of votes or a percentage of the total votes cast.
Typically, proportional representation systems employ this method, where the goal is to ensure
fair representation for various parties or groups. By allowing candidates who meet or exceed
the threshold to secure seats or positions, this method allocates representation proportionately
to the support received. Using a threshold-based system promotes inclusively and provides
opportunities for smaller parties or candidates to gain representation, fostering a diverse and
representative political landscape.

The election result function f res
Threshold,t uses as parameter a number t. This result function takes

as input the aggregated tally n1
votes, . . . , n

ncand
votes and outputs a list of bits (b1, . . . , bncand), b ∈ {0, 1}

such that bi = 1 if (and only if) ni
votes ≥ t. This election result function outputs all candidates

with at least t many votes.

2.7.4. Ranking

The election result function f res
Ranking : (N)ncand

i=1 → {0, . . . , ncand − 1}ncand takes as input the
aggregated tally n1

votes, . . . , n
ncand
votes and outputs a list of ranks (r1, . . . , rncand) such that each rank

states against how many other candidates a candidate wins or ties a direct comparison. That is,
ri = k means that there are k other candidates that received less or equal many votes than ccand

i .
This method reveals more information than f res

Plurality.

2.7.5. Partial Ranking

While f res
Ranking outputs the ranking of all candidates, we can also output only a partial ranking.

We only output the ranks of the n best candidates. The election result function f res
PartialRanking,n :

(N)ncand
i=1 → {0, ncand − n, . . . , ncand − 1}ncand takes as input the aggregated tally and outputs a list

of ranks (r1, . . . , rncand), where the function distributes the ranks ncand − 1 to ncand − n and sets
the ranks of all remaining candidates to zero.

2.7.6. Best

The election result function f res
Best,n represents the plurality-at-large or block voting method. In

this electoral system, a predetermined number, n, of candidates with the highest number of votes
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Candidate Grade
A B C D E

ccand
1 0 12 0 0 11
ccand

2 10 0 2 0 10

Table 2.2.: Example of an aggregated tally for f res
MJMedian.

are declared winners. Elections in multi-seat constituencies or elections for multiple positions
often employ this method. The candidates who secure the highest individual vote counts, up
to the specified number of winners, are elected. However, this method can result in a lack
of proportional representation, as it may not accurately reflect the overall preferences of the
electorate.

The election result function f res
Best,n : (N)ncand

i=1 → {0, 1}ncand takes as input the aggregated tally
n1

votes, . . . , n
ncand
votes and outputs a list of bits (b1, . . . , bncand), b ∈ {0, 1} such that bi = 1 if (and only

if) the rank of ccand
i is at least ncand − n.

In other words, this election result function outputs a partial ranking f res
PartialRanking,n but hides

the individual ranks.

2.7.7. Ranking with Aggregated Votes of Best

There exist arbitrary combinations on which rankings to reveal. The Deutsche Forschungsge-
sellschaft (DFG) uses a variant for the elections of the Fachkollegien (review boards) that works
as follows. The election result function f res

RankingVotesBest,n, parameterized by a value n, outputs the
ranking of all candidates and the number of votes each of the best n candidates have received.

2.7.8. Majority Judgment

Majority judgment aims to go beyond a simple tally of votes by considering the quality or
acceptability of each candidate according to the judgments voters assign. There are multiple
possible procedures to evaluate the election result. In the following, we present two variants.

2.7.8.1. Median Grade

This majority judgment variant calculates and outputs each candidate’s average judgment. That
is, f res

MJMedian computes the median grade per candidate.
For example, consider the candidates ccand

1 , ccand
2 and the set of grades A,B,C,D,E, where the

grades are ordered A > B > C > D > E. Table 2.2 shows an example of a possible aggregated
tally, for instance, ccand

1 receives the grade B 12 times and the grade E 11 times. Using Table 2.2,
the median grade of ccand

1 is B and the median grade of ccand
2 is C. Thus, the result is (B,C).
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2.7.8.2. Full Majority Judgment

One can find the candidate with the best median grade to get one winning candidate. If no
such unique candidate exists, this evaluation method (what we will call full majority judgment,
denoted as f res

MJFull) uses multiple rounds. In each round, the best obtained median grade is
computed. It eliminates all candidates that currently have a worse median grade. Then, it
removes one vote from this median grade for every remaining candidate. For the next round, it
updates the median grades accordingly to the removal of the single vote. The method repeats
this procedure until only one candidate, the election winner, is left.

The algorithm described above is highly inefficient because the number of iterations scales
in the number of voters (it removes a single vote in each iteration step). Balinski et al. [BL07]
describe an alternative algorithm that only scales in the number of candidates and grades, not
the number of voters. The algorithm still computes the same winner as the algorithm above
does. Even more, this algorithm allows for aggregation of the votes by using CMajorityJudgment.
In this choice space, the ballots are a matrix of the candidates and grades, where entry Aij

is set to one if candidates i receive grade j, and zero otherwise. Then, in each iteration, the
algorithm eliminates all votes to the median grade according to f res

MJMedian and then computes
the new median grade.

2.7.9. Condorcet Methods

Condorcet methods are voting methods that (initially) share the aim of determining a so-called
Condorcet winner, i.e., a candidate that would beat all other candidates in a runoff voting
between them. That is, ccand

i is the Condorcet winner if ∀j ∈ {1, . . . , ncand} \ {i} : ni
votes > nj

votes.
We will call these pairwise runoffs duels.

However, there are cases where no Condorcet winner can be determined. This situation
is known as a Condorcet paradox or Condorcet cycle. It occurs when no candidate can win
against every other candidate in pairwise comparisons. In such cases, additional methods may
be employed to determine the winner, such as applying specific tie-breaking rules. Hence, several
variations loosen this aim to make it more likely to output a winner. Namely, in these variations,
the election result usually consists of the Condorcet winner if such a candidate exists. However,
they can still generate an election result if no Condorcet winner exists.

Condorcet voting is a more comprehensive method than other voting systems like plurality
voting, as it considers the relative preferences of voters for all candidates rather than just the
top choice.

The voters cast as ballot a ncand × ncand ranking matrix ψ (see Section 2.6.3.2), which denotes
in each entry ψij whether the voter prefers ccand

i over ccand
j (ψij = 1 if that is the case, ψij = 0

otherwise). As input for the Condorcet election result functions, we use the aggregated ranking
matrix Ψ, which is an entry-wise addition of all voters’ duel matrices, i.e., Ψij denotes how often
candidate ccand

i was preferred over candidate ccand
j .

In the following, we present various Condorcet variants.
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2.7.9.1. Plain Condorcet

The vanilla/plain Condorcet method (denoted as f res
CondorcetPlain) outputs a single Condorcet winner,

i.e., a single candidate that wins all duels. This result function takes as input the aggregated
duel matrix DMagg and outputs a list of bits (b1, . . . , bncand), b ∈ {0, 1} such that b = 1 if (and
only if) ccand

i is the Condorcet winner, i.e. it holds that ∀j ∈ {1, . . . , ncand} \ {i} : Ψij > Ψji.
This method is not guaranteed to output a result. For example, consider three candidates
ccand

1 , ccand
2 , and ccand

3 such that ccand
1 wins the direct comparison against ccand

2 , ccand
2 wins the

direct comparison against ccand
3 , and ccand

3 wins the direct comparison against ccand
1 . Then, no

single candidate wins against each other; thus, no single Condorcet winner exists.

2.7.9.2. Weak Condorcet

In this method f res
CondorcetWeak, all candidates that do not lose duels are output. That is, ccand

i is a
weak Condorcet winner if it holds true that ∀j ∈ {1, . . . , ncand} \ {i} : Ψij ≥ Ψji. In contrast to
the plain Condorcet method, the weak Condorcet method can output multiple candidates. Such
outputs can happen if multiple candidates are tied and win against every other candidate. If
there is a (necessarily unique) Condorcet winner, this method will only output the Condorcet
winner. As plain Condorcet, this method does not guarantee winning candidates since each
candidate could lose some duel. This method is also not guaranteed to output winner(s); applying
the example presented for plain Condorcet, no candidate does not lose any duel.

2.7.9.3. Copeland

This method f res
CondorcetCopeland, as opposed to the previous two methods, is guaranteed to output

some winning candidate(s). To do so, it considers the wins and losses of each candidate in
their duels and outputs all candidates with the highest difference between wins and losses. A
Condorcet winner – if existent – would reach the highest possible difference; hence, the Copeland
method will output the Condorcet winner if such a candidate exists. Using the example from
above, the Copeland method outputs the set {ccand

1 , ccand
2 , ccand

3 } as the election result.

2.7.9.4. Smith Set

In this method f res
CondorcetSmithSet, a set of winners is output, the so-called Smith set. The Smith

set is the set of candidates of minimal size such that each candidate from the Smith set wins the
duels against every candidate outside the Smith set. If a Condorcet winner exists, the Smith set
will consist of this candidate. Otherwise, it will necessarily contain multiple candidates.

2.7.9.5. Minimax

The Minimax method f res
CondorcetMiniMax,κ uses a metric κ, and the idea of this method is only to

consider the worst duel of each candidate and then declare all candidates that have the best of
these worst duels as winners. For this purpose, one needs to define some metric κ to assign
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scores θ ∈ {0, . . . , nvotes} to the duels, i.e., the worst (or best) duel is the one with the lowest (or
highest) score. The selection of this metric κ defines a concrete instantiation of the minimax
method. The minimax election result function computes for each candidate the score of the
worst duel (according to the given metric) and then finds the candidate with the best worst
score. Here, we present the minimax method with two metrics, namely margins and winning
votes. Minimax does output a Condorcet winner for these two scores if it exists. However, using
other score functions, this is not necessarily the case.
Minimax Margins. In the case of margins, denoted by MarginMetric, the score of the candidate
ccand

i ’s duel versus candidate ccand
j is the difference between the number of duels won by ccand

i

versus ccand
j minus the number of duels lost by ccand

i versus ccand
j .

Minimax Winning Votes. In the case of winning votes, denoted by WinningVotesMetric,
the score of ccand

i ’s duel versus ccand
j is 0 if ccand

i wins more duels versus ccand
j than ccand

i loses.
Otherwise, it is given by the negative number of won duels of ccand

j versus ccand
i .

2.7.9.6. Schulze

The Schulze method f res
CondorcetSchulze is a slightly more complicated but commonly used Condorcet

method (see Section 2.8). In this method, we also consider a score function for the duels. Since,
in practice, elections use the score function of the Copeland method, we will use this function in
this thesis. We represent the candidates and the duels between them as a complete directed
weighted graph Γ, where the nodes of Γ represent the candidates and an arrow ccand

i → ccand
j

is weighted with the score of ccand
i ’s duel versus ccand

j . Now, for any path p in Γ, we define the
value of p as the lowest weight among the arrows involved in p. We then consider the path value
matrix Ω, an (ncand × ncand)-matrix with entry Ωij being the highest path value among paths
from ccand

i to ccand
j . The Schulze method then outputs all candidates ccand

i such that Ωij ≥ Ωji

for each j ∈ {1, . . . , ncand} \ {i}. This algorithm is called Floyd-Warshall algorithm [Hou10].
The Schulze method guarantees to output some candidate(s). With the metrics described in the
Copeland method, this candidate is the unique Condorcet winner, if existent.

We present an example of the Schulze evaluation in Figure 2.2. For this example, we consider
the candidates A, B, C, and D with the following aggregated tally. The ranking (A,C,D,B)
(ordered from first to last preference) received two votes, the ranking (B,C,D,A) received three
votes, the ranking (C,B,A,D) received seven votes, the ranking (C,D,A,B) received four votes,
the ranking (D,B,A,C), and all remaining rankings received no votes. For this example, the
set of winners is the set containing C, since only for this candidate it holds that ΩCj ≥ ΩjC for
all candidates.

2.7.10. Instant-Runoff Voting (IRV)

Instant-runoff voting (IRV) is a complex, often-used ranked voting method that runs over
multiple rounds. It is, for example, used in the elections for the News South Wales Legislative
Assembly in Australia [NSW20], India [Gov20], the UK [The11], and for governor and congress
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(a) Directed weighted Schulze graph Γ.
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(b) Graph of the path value matrix Ω.

Figure 2.2.: Example of a Schulze evaluation.

elections in the state of Maine in the US [Mai20] (see Section 2.8). For IRV, the voters rank
the candidates. Then, we evaluate one or more rounds until we find the election’s winner.
With f res

IRVRoundTally, we denote the function that takes as input the current aggregated tally
and eliminated candidates and outputs how many first preferences each remaining candidate
currently receives, and f res

IRVRoundEliminated denotes the function that, on the same input, outputs
the candidate to eliminate in the current round. In each round of the evaluation, we eliminate
the candidate with the smallest number of first preferences. This process repeats until one of
the candidates has received the absolute majority of votes in a round (which is the case if only
one candidate remains). In the most common setting, only two rounds, and the two leading
candidates of the first round proceed to the second round. This particular case is also known as
runoff voting. An example of this is the French presidential elections [Ely12].

We differentiate between two types of ballots: In some cases, the voters must rank all
candidates, casting a complete ranking as a ballot. Some IRV instantiations (for example, the
election for the New South Wales Legislative Assembly [NSW20]) allow the voters to cast ballots
with partial rankings.

If a candidate is ranked first by an absolute majority of voters, this candidate immediately
wins the election. Otherwise, the evaluation function eliminates the candidate who has received
the lowest first rankings, i.e., removed from the pool of candidates. Then, all votes that ranked
an eliminated candidate first are redistributed and now counted according to the non-eliminated
candidate they ranked highest. If a vote at some point only consists of ranks assigned to already
eliminated candidates, the counting procedure will no longer consider this vote. This process
repeats until one of the remaining candidates has received the majority of votes and thus wins
the election.

An intrinsic issue regarding this voting method is how to deal with ties. More precisely, we
need some regulation on which candidate to eliminate in any intermediate round if two (or more)
candidates have the same first rankings. This issue has been addressed differently in various
instantiations of IRV. For example, in the IRV method used in Maine [Mai20], ties are by default
broken by lot. A random candidate is chosen and eliminated from the tied candidates. We
denote this variant of IRV as f res

IRVLotComplete with a complete ranking as input and f res
IRVLotPartial
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with a partial ranking as input. Under certain circumstances, however, the electoral law of
Maine allows for eliminating multiple tied candidates at once. The New South Wales Legislative
Assembly election uses a more complex method of breaking ties than eliminating a random tied
candidate, as explained in Section 2.8.

2.7.11. Parliamentary Elections with Party-Based Seat Allocation

In practice, a fundamental class of elections is parliamentary elections with party-based seat
allocation as carried out by many countries worldwide. These are among the most complex types
of elections: They usually involve millions of voters, dozens of parties, hundreds of individual
candidates, and hundreds of electoral constituencies. In some cases, voters have not just one but
multiple votes that they can distribute among parties and possibly also individual candidates.
Sophisticated multi-step algorithms compute the election result, i.e., assigning seats to individual
candidates. An essential component for this process is a so-called seat allocation method, which
inputs the number of available seats and a set of parties with their total number of votes and
then computes the number of seats assigned to each party.

Mixed electoral systems are voting methods that combine plurality or majority voting and
proportional representation to combine the advantages of both methods. Usually, in a mixed
electoral system, a voter has two votes - one for proportionality and one for such a system’s
plurality/majority aspect.

Typical examples of mixed electoral systems, such as the ones used in the German federal
elections [Bun20], cover the proportional aspect of such a mixed system by a proportional party
list voting, while the plurality/majority aspect is (for example) covered by first-past-the-post-
voting among the parties’ candidates from respective electoral districts.

The two main classes of mixed electoral systems are non-compensatory and compensatory sys-
tems. Non-compensatory systems treat the results from the proportional and plurality/majority
aspects independently. For example, one could imagine an election to fill 200 seats - 100 through
the proportional component and 100 via the majority/plurality component. In non-compensatory
methods, the complete distribution of the 200 seats usually does not represent the proportions
of the proportional component anymore. Using two independent votes is also known as parallel
voting. Ukraine, Japan, and Lithuania (see [BG13]) use this variant of a mixed electoral system.

In contrast, compensatory systems first count the votes from the majority/plurality components
and then award the seat(s) to the respective winning representative(s). Next, compensatory
systems award further seats to the respective parties to recover the proportions from the
proportional aspect. Hence, in a way, the proportional component is used to compensate any
imbalances from the majority/plurality component.

Instantiations of non-compensatory systems mainly differ in the concrete choice of voting
method for the majority/plurality component and the method used for allocating seats propor-
tionally in the proportional component. A famous class of instantiations called mixed-member
proportional representation (MMPR) is used, for example, for the federal elections and the
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election of many state parliaments in Germany [Bun20], the elections for the Scottish and Welsh
parliaments (see [UK 21], note that in the UK the term additional member system is used to
describe MMPR) and the elections for the New Zealand House of Representatives [MoJ93]. The
majority/plurality component is typically instantiated here via first-pass-the-post-voting, where
a single representative from the respective electoral district is elected. For the proportional
component, there are several methods of allocating seats. In the following, we present two of
them, namely the Hare-Niemeyer method, used, e.g., in Ukraine and Italy, and the Sainte-Laguë
method, used, e.g., in Indonesia and Germany.

2.7.11.1. Hare-Niemeyer Method

Many elections use the Hare-Niemeyer method, e.g., parliamentary elections in Ukraine and Italy,
and also the German federal elections used this method until 2005 [Deu]. The Hare-Niemeyer
method works as follows: Assume we assign nseats. Then, if there are a total of vtotal valid votes
and party cparty

i has received ni
votes votes, we compute the number of seats we award to cparty

i

using the ideal quota given by

qi := ni
votes · nseats
vtotal

.

We award cparty
i initially s̃i := ⌊qi⌋ seats. However, since these s̃i usually do not add up to

nseats, we distribute the remaining k ∈ {1, . . . , nparties−1} seats in order of the highest remainders
of ni

votes·nseats
vtotal

. The k parties with the highest decimal places qi − s̃i receive an additional seat.

2.7.11.2. Sainte-Laguë

The Sainte-Laguë method (also called Webster method) is a seat allocation method, i.e., a
procedure that describes how to allocate a given number of seats to a set of parties depending on
the number of votes each party has received. The Sainte-Laguë method is used by parliamentary
elections in many countries, for example, Indonesia, New Zealand, Nepal, Sweden, Norway,
Germany, and Kosovo. As part of computing the election result, these elections run the Sainte-
Laguë method multiple times on different inputs. For example, the official evaluation of the
final seat distribution of the German Bundestag of the election in 2021 required to run the
Sainte-Laguë method 23 times (in addition to several other steps, as explained in Section 2.8).

There are essentially two distinct (but provably equivalent [Lij83]) algorithms for computing
the seat allocation following the Sainte-Laguë method, one based on highest quotients and one
on finding suitable denominators. Both algorithms take as input the number of seats nseats and,
for each party j ∈ {1, . . . , nparties}, the total number of votes nj

votes that party j has received.
They return the number of seats assigned to each party.
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• Highest-Quotients. For i ∈ {1, . . . , nseats}, j ∈ {1, . . . , nparties} compute the quotients qj
i :=

nj
votes

2(i−1)+1 . Let M be the list of the nseats highest quotients. Then party j is assigned k

seats, where k is the number of quotients in M that belong to j, i.e., quotients of the form
qj

i , i ∈ {1, . . . , nseats}.

• Suitable-Denominator. Given a suitable denominator d, party j receives nj
seats = ⌊nj

votes
d ⌉ seats,

where ⌊·⌉ denotes rounding to the closest integer (rounding of .5 can be chosen to be either
up or down and can be chosen differently for each j). A denominator d is suitable if the
result of this computation leads to the number of desired total seats, i.e., if ∑︁j n

j
seats = nseats.

To find a suitable denominator, one generally starts with an arbitrary denominator d, e.g.,
d =

⌊︃∑︁
j

nj
votes

nseats

⌉︃
, checks the corresponding number of seats that would be assigned, and then

tweaks d until finding a suitable value.

Ties can occur in both of these algorithms. In the highest-quotients algorithm, there might be
two equal quotients, but only sufficient seats are available to distribute them. In the suitable-
denominator algorithm, all suitable denominators may be such that the quotients of multiple
parties end on .5, some rounded up, and others rounded down to achieve an overall sum of
nseats. The Sainte-Laguë method does not define any specific tie-breaking mechanism. Instead,
elections using this method additionally need to specify how they handle ties.

2.8. Real-World Elections

This section presents real-world elections that use the above-presented voting methods and
election result functions. In this thesis, we will construct e-voting systems for these elections.
We provide the instantiation (C, f res) used to perform real-world elections.

2.8.1. House of Commons

The House of Commons is the lower house of the Parliament of the United Kingdom, and its
650 members are elected through a general election held every five years. However, the Prime
Minister has the power to call an early election if they have the support of two-thirds of the
House of Commons or if a vote of no confidence is passed against the government. The electoral
system used in the House of Commons is known as first-past-the-post-voting. Therefore, each
of the 650 geographical constituencies in the UK elects one Member of Parliament (MP). The
candidate who receives the highest number of votes in a constituency becomes the representative
for that area in the House of Commons. Political parties and independent candidates nominate
individuals to stand as candidates in each constituency. Parties usually select candidates through
a selection process, such as primary elections or party members’ votes.

On election day, eligible voters in each constituency cast their votes at designated polling
stations. Voters mark their preferred candidate on the ballot paper (using CSingle). After the
polls close, local authorities count the votes in each constituency. The candidate who receives

58



the highest number of votes in a constituency is declared the winner (ties are broken by lot)
and becomes the Member of Parliament for that area. The results from all constituencies are
collected to determine the overall outcome of the election. The political party that wins the
majority of seats in the House of Commons forms the government. If no party secures a majority,
it results in a hung parliament. Parties may form coalitions or alliances to establish a working
majority and create a government. Once elected, MPs represent their constituencies in the
House of Commons. They participate in debates, vote on legislation, scrutinize the government,
and represent the interests and concerns of their constituents.

Formally, this election uses CSingle and f res
Plurality in each of the 650 constituencies with tie-

breaking by lot. In the general elections in 2019, no constituency had more than 77, 062 eligible
voters.

2.8.2. Elections for the Fachkollegien in the Deutsche Forschungsgesellschaft

The Deutsche Forschungsgesellschaft (DFG) runs elections for their Fachkollegien (review
boards) [Deu19]. The elections in 2019 had 410 Fachkollegien, each elected using f res

RankingVotesBest,n
with around 1, 000 voters for each election and at most 32 candidates (FK 201 Grundlagen der
Biologie und Medizin).

2.8.3. Grand Final of the Eurovision Song Contest

The Eurovision Song Contest (ESC) [Eur20] is an annual international music competition
where participating European countries (and some from outside Europe) send representatives
to perform original songs. The process of selecting the winner of the Grand Final of the ESC
involves several stages:

1. Each participating country holds its national selection process to choose its representative
and song for the ESC. The methods for selecting the representative can vary, ranging from
public televoting to expert juries or a combination of both.

2. The ESC typically includes two semi-finals before the Grand Final. These semi-finals
serve as a place in the final. The Big Five countries (France, Germany, Italy, Spain, and
the United Kingdom) and the host country (the previous year’s winner) automatically
qualify for the Grand Final. Thus, they do not compete in the semi-finals. The number of
countries that advance to the qualifying rounds, where the participating countries compete
for a final from each semi-final, is determined by a combination of televoting and jury
voting. The best ten counties of each semi-final advance to the Grand Final of the ESC.

3. In the Grand Final, viewers from each participating country can vote for their favorite
songs through televoting or SMS. Additionally, each country has a jury panel of music
industry professionals who provide their rankings and votes. The televoting results and
jury votes are combined to determine the final scores for each participating country.
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During the voting segment of the Grand Final, spokespersons from each country announce
the points awarded by their country’s jury and televoting results. The points are on a 12-point
scale, with countries awarding points from the list PESC := (12, 10, 8, 7, 6, 5, 4, 3, 2, 1) to their
top ten favorite songs, both from the jury and televoting, where no points may be awarded for
the entry of their own country. The combined scores from all participating countries are then
tallied. The winner of the ESC is the country with the highest combined score from the jury
and televoting. The winner’s announcement usually creates suspense as the broadcast gradually
reveals the points.

If two or more participants end up with the same number of points, further differentiation
criteria apply to ensure a unique ranking. First, the number of countries from which the
respective participants have received points is decisive. If this does not allow a unique ranking,
the number of maximum scores awarded to the respective participants is considered. In this
case, the number of 12-point scores is evaluated first, followed by the number of 10-point scores
in the event of a tie, and so on. If there is no difference by comparing all the individual scores,
the countries concerned will be placed according to the order of the starting numbers.

Formally, the ESC uses the choice space CESC = CBordaPointList(PESC) with the restriction that
if the voter is also a candidate, she may not assign points to herself. The election result function
is f res

Plurality, without considering the above tie-breaking mechanism. There are 26 candidates (the
Big Five countries, the country that won the ESC last year, and ten countries each from the
two semi-finals). In 2023, there were 37 countries that participated in the voting, and thus
nvoters = 37.

2.8.4. Parliamentary Elections in the Republic of Nauru

Borda voting is a prominent ranked voting method, which is famously used for national elections,
e.g., for parliamentary elections in the Republic of Nauru [Rep16].

Nauru follows a unicameral system with a single legislative body called the Parliament. The
Parliament consists of 19 members who are elected from eight constituencies by the citizens
of Nauru. Eligible voters in Nauru, typically Nauruan citizens aged 20 years or older, have
the right to participate in the parliamentary elections. However, specific requirements and
eligibility criteria may apply. Before the election, individuals interested in running for Parliament
can submit their nominations within a specified time frame. They may need to fulfill specific
qualifications, such as being a citizen of Nauru or meeting residency requirements. Once the
candidates are nominated and approved, they can campaign to seek support from the voters.
Registered voters go to their designated polling stations on election day to vote. The electoral
authorities of Nauru can determine the exact voting procedures, including using voting booths
or electronic voting machines. After the voting concludes, the ballots are collected, and the
vote-counting process begins. The electoral authorities count the votes, and the candidates who
receive the highest number of votes are declared the winners.
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The election for the parliament of Nauru uses the Dowdall system, a special case of Borda
voting: The voter ranks the candidates according to the point list PDowdall := {1, 1

2 ,
1
3 , . . . ,

1
ncand
}.

The election is then defined by the choice space CDowdall = CBordaPointList(PDowdall) and f res
Best,19.

In the elections of 2022, Ubenide, the largest of the eight constituencies, had 18 candidates and
1, 630 voters.

2.8.5. Debian Project

The Debian Project, a renowned open-source, community-driven initiative, utilizes elections as
an integral part of its governance structure. Debian is a widely popular operating system and
software ecosystem developed and maintained by a global community of volunteers. The project
organizes elections to choose individuals for leadership roles, such as the Debian Project Leader
(DPL). The DPL is responsible for representing the project, coordinating with developers, making
important decisions, and maintaining the project’s overall direction. Through these elections,
Debian ensures that its leadership positions are filled through a democratic process, allowing
community members to have a say in shaping the project’s future and ensuring accountability
and transparency in its governance. The Debian Project uses CRankingPermutation as choice space
and Condorcet Schulze f res

CondorcetSchulze as election result function [Deb12]. The elections of the
DPL use this method. The elections in 2023 had 2 candidates, while the elections in 2022 had 4
candidates.

Nevertheless, other elections also use this method. For example, in 2022, a general resolution
regarding non-free firmware was elected. This election consisted of 7 choices. Elections in the
Debian Project usually consist of about 300 voters.

2.8.6. The New South Wales Legislative Assembly

The New South Wales Legislative Assembly is the lower house of the Parliament of New South
Wales, Australia [NSW20]. Elections for the Legislative Assembly are held every four years. The
voting method used in this election allows voters to rank candidates in order of preference, but
they also have the option to vote for only one candidate without ranking the rest. Therefore, we
model this voting method with partial ranking permutations, which are represented using CSingle

(see Section 2.6). New South Wales is divided into electoral districts, also known as electorates,
which a single Member of the Legislative Assembly represents. There are 93 electorates in total,
and each electorate elects one member. Political parties and independent candidates nominate
individuals to stand as candidates in each electorate. Parties usually select candidates through
internal processes, such as pre-selection, while independent candidates can nominate themselves.
On election day, eligible voters in each electorate cast their votes at designated polling stations.
Voters mark their preferred candidate by placing a number ”1” next to their chosen candidate
and can continue to rank other candidates if they wish. Alternatively, they can vote for one
candidate without ranking the rest. Tallying the votes is done using IRV. However, with a
sophisticated tie-breaking mechanism, if there is a tie between two (or more) candidates for
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elimination in any evaluation round r, the candidates are compared based on the ballots from
round r − 1. The election process eliminates the candidate ranked first by the least votes in
that round. If there is still a tie between the candidates in that round, the process is repeated
with round r − 2, iterating through all previous rounds. In rare cases where the tie cannot be
resolved this way because there is a tie between the candidates in all previous rounds, a lot
decides who is eliminated. We denote this variant of IRV as f res

IRVNSWCompelte with a complete
ranking as input and f res

IRVLotPartial with a partial ranking as input.
The number of candidates per electorate varies between 5 (e.g., the electorates of Newtown,

Tockdale, Terrigal, Winston Hills) and 10 (the electorate of Murray), with about 55, 000 voters
per electorate.

2.8.7. The Maine House of Representatives

The Maine House of Representatives in the USA consists of 155 members plus three additional
seats for local minorities, elected for two years [Mai20]. The elections consist of 155 districts with
one victor each, determined by IRV. Tied candidates are eliminated by lot, and mathematically
impossible candidates (as defined in [Sta19]) are eliminated in each round. This procedure
employs CSingle and f res

IRVLotPartial (see Section 2.6). Each district has approximately 8, 000 eligible
voters and three candidates.

In Maine, voters elect the US President and Senator, with about five nominees for the latter.
In 2020, there were six USA Presidential contenders with around 800,000 eligible voters.

2.8.8. Bundestagswahl (Germany)

Complex real-world elections for which we construct secure tally-hiding e-voting systems are the
elections for the German Bundestag. This section explains these elections.

The German people directly elect the German federal parliament in an election combining
proportional representation and first-past-the-post voting. This large-scale election uses multiple
steps to determine how many seats the parliament will have (the initial number of 598 seats
increases to represent the proportion of the votes) and which candidates obtain a seat. The
2021 election of the German Bundestag had 61, 181, 072 eligible voters and 47 parties with 6, 211
candidates, distributed over 299 constituencies.

Each voter has two votes: a constituency vote (called first vote) and a party list vote (called
second vote), both using CSingle. The first votes are individually evaluated for each of the 299
constituencies: The candidate with the most votes wins the constituency and a seat in the
parliament. The remaining seats of the parliament are distributed between the 16 German
states in proportion to the number of inhabitants. The second votes are then used to obtain a
proportional number of seats per party, first on a national layer, then in the states. In more
detail, the election for the German Bundestag works as follows.
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Notation. Let L be the set of all German states. We denote with sd
j,l the number of direct

seats that party j received in state l, and with sq
j,l we denote the number of quota seats of party

j in state l.
Single-member constituency seats. In each constituency, the candidate that receives the most

constituency votes (first votes) wins this constituency and obtains a direct seat in the Bundestag.
Possible ties are broken by lot. The number of candidates per constituency varies between 7 and
18.

Determine which parties enter the Bundestag. A party enters the Bundestag if it gets at least
5% of the party list votes (second votes) or won at least 3 constituencies. An exception to this
rule is parties representing minorities in Germany. They do not have to meet these criteria
to enter the Bundestag [Bun23]. In the election of the German Bundestag in 2021, the South
Schleswig Voters’ Association (Südschleswigscher Wählerverband, SSW, in German) obtained
one seat as a party representing a minority. Nevertheless, if a candidate wins a constituency,
he is guaranteed a seat in the parliament, even if his party is not considered in the subsequent
evaluation.

First top distribution: seat contingents of the states based on their inhabitants. The first
distribution assigns the initial 598 seats of the Bundestag to the 16 German states such that each
state has a seat contingent. This computation is done using an execution of the Sainte-Laguë
method. This Sainte-Laguë method uses the number of inhabitants of each state as input.

First low distribution: distribution of the seat contingents to the parties’ state lists. Knowing
how many seats are assigned to each state, these seats are now distributed to the state’s parties
in proportion to the second votes in the state. A Sainte-Laguë method is executed for each state,
with the number of second votes per party in this state as input. The number of seats that party
j receives in the state by this method is called quota seats and denoted with sq

j in the following.
Typically, between 5 and 127 seats must be distributed between about 6 parties.

Minimal number of seats per party. Now, for each party j the minimum number of seats smin
j

that the party receives in the Bundestag is computed. For this, we compute smin
j,l , which denotes

for party j and state l, how many seats party j receives in state l. This value is computed as
follows:

smin
j,l := max

(︄⌈︄
sd

j,l + sq
j,l

2

⌉︄
, sd

j,l

)︄

Now, party j receives at minimum smin
j = ∑︁

l∈L s
min
j,l seats in the Bundestag. Additionally,

each party has a threatening overhang: If party j won more direct seats sd
j,l in state l than

quota seats sq
j,l, this party has a threatening overhang of the difference between these two values.

The threatening overhang is zero if the party wins at least as many quota seats as direct seats.
Threatening overhang seats denote direct seats that a party won in a state but are not covered
by their quota seats. Awarding the party these seats breaks the proportional representation of
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the voting result. Therefore, the overall number of seats in the Bundestag is increased such that
these overhang seats do not change the proportion of the votes too much.

Second top distribution: increasing the number of seats of the Bundestag. Now, a second
top distribution is computed that determines how to handle the threatening overhang seats by
increasing the number of seats in the Bundestag. On an intuitive level, in this step, the number
of seats of the Bundestag is increased until the Sainte-Laguë method outputs a seat distribution
in which every party j obtains their respective minimal number of seats smin

j except three seats
in total. During this step, ties are not broken by lot, but all parties in the tie obtain a seat.
Therefore, more seats will be distributed among the parties in case of ties.

Moreover, in this step, we only consider parties that enter the Bundestag, i.e., parties that do
not obtain any seat in the Bundestag are excluded from the following calculations since they do
not influence the election result. We denote the set of parties that enter the Bundestag with PBT.
Instead of increasing the number of seats one by one until a suitable seat distribution is found,
a more efficient algorithm is applied. That is, a suitable divisor for the Suitable-Denominator
Sainte-Laguë method (see Section 2.7), that fulfills all requirements is determined. To find this
divisor d, a divisor dno that does not take overhang seats into account and a divisor doverh that
does take overhang seats into account is computed first:

• The divisor dno, which does not take overhang seats into account, is determined as follows:

dno = min
j∈P BT

(︄
vj

smin
j − 0.5

)︄

where vj denotes the number of second votes for party j on the national level.

• The divisor doverh, which takes overhang seats into account, is determined as follows. If
party j has threatening overhang, the set of possible overhang values Doverh is constructed
as follows:

Doverh =
{︄

vj

smin
j − i

⃓⃓⃓⃓
⃓ i ∈ {0.5, 1.5, 2.5, 3.5}, j ∈ PBT and j has overhang seats

}︄

where vj denotes the number of second votes for party j nationally. Note that 2.5 and 3.5 are
only used if the party has 2 or 3 overhang seats. The formula includes four possible values
since the first three overhang seats must not be balanced. The value doverh is the fourth
smallest element of Doverh.

The suitable divisor d is the minimum of both divisors: d = min(dno, doverh). This divisor
satisfies the requirements, ensuring that every party j obtains at least smin

j seats in the parliament,
except at most three.
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Second low distribution. Executing the Sainte-Laguë method with the divisor d selected in
the previous step might lead to a number of seats larger than the initial size of 598 seats of
the Bundestag. As only the total seats for each party are calculated so far, these seats are
distributed among the states. This is done by distributing the seats for each party j with the
Sainte-Laguë method to the states using the number of second votes for j in each state as input.

Assigning overhang seats. The previous steps exclude up to three overhang seats. Thus, they
must be assigned separately to suitable state lists of the parties. For each party j with such an
overhang seat, the overhang set Oj

overh is computed as

Oj
overh =

{︄
vj,l

smin
j,l − i

⃓⃓⃓⃓
⃓ i ∈ {0.5, 1.5, 2.5}, l ∈ L

}︄
,

where 1.5 and 2.5 are only used if the party has 2 or 3 overhang seats.
For n such overhang seat that party j receives, the minimal n values in Oj

overh are selected,
and the corresponding states obtain the overhang seat.

Computing the final result. The resulting seat allocations are computed per party per state.
First, the winning candidates of each constituency obtain a seat, and the remaining seats of the
party in that state are assigned to the state list, starting from the top, excluding candidates
that already have a seat.

2.9. Related Work

This section briefly presents related e-voting systems designed to be tally-hiding or protect
against Italian attacks. We will discuss and compare them to our systems in the respective
sections. Since we are the first to propose the concept of public tally-hiding and the first to
construct such a (verifiable) system, no prior e-voting schemes follow this direction.

2.9.1. Fully Tally-Hiding E-Voting

In 1986, Benaloh proposed full tally-hiding and the first such system [Ben86]. Hevia and Kiwi
tailored a tally-hiding e-voting system for jury voting [HK02]. Wen and Buckland showed how
to perform tally-hiding for instant-runoff elections [WB09]. However, none of these protocols
were formally proven secure or implemented to show practicality.

Szepieniec and Preneel proposed another fully tally-hiding e-voting protocol [SP15], but the
system leaks information and is therefore not tally-hiding.

Canard et al. [CPST18] proposed a fully tally-hiding e-voting system for f res
MJFull. However, the

underlying evaluation algorithm may not produce a result for every possible tally, which results
in no verifiability guarantees. Furthermore, their implementation was not tested in a distributed
network but on a single computer. Their protocol’s performance in real-world distributed tallying
scenarios is unclear due to the online complexity of the underlying MPC protocol.
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Cortier et al. [CGY22] proposed fully tally-hiding MPC components for various election result
functions, and they provide benchmarks for f res

CondorcetSchulze.

2.9.2. Partially Tally-Hiding E-Voting

Several protocols have been proposed to address the issue of Italian attacks in complex voting
methods such as Condorcet, Borda, IRV, and single transferable vote (see, e.g., [CM05,Hea07,
BMN+09,JRRS19,RCPT19]). All current systems mitigate Italian attacks, and some are efficient
enough to be used in real-world elections. For instance, a protocol proposed by Ramchen et
al. [RCPT19] was benchmarked using the 2015 New South Wales instant-runoff elections.
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3. Full Tally-Hiding: Ordinos

Fully tally-hiding e-voting systems offer the highest level of confidentiality for the tally. These
systems ensure that no party involved, including voters, election authorities, trustees, and even
external observers, can gain any knowledge about the tally other than the election’s result. Full
tally-hiding ensures that the actual tally remains secret, and any intermediate values used for
computing the election result are inaccessible to any party as long as there are sufficient many
honest trustees. Even from the trustees who compute the election result, achieving this level
of secrecy requires advanced heavy-weight cryptographic techniques like fully homomorphic
encryption (FHE) and universally verifiable multi-party computation (MPC).

In our work of [KLM+20a], we propose Ordinos, the first provable secure full tally-hiding
e-voting framework, which we instantiated for relatively simple single- and multi-vote elections.

In this chapter, we present the Ordinos framework. We then instantiate the Ordinos framework
for further, more complex real-world elections. For this, we employ suitable cryptographic
primitives, including an MPC protocol for greater-than tests. We implemented our resulting
Ordinos instantiations and evaluated the performance, demonstrating the practicality of our
instantiations.

We propose several innovative tally-hiding building blocks for the Ordinos framework, which we
can utilize for parliamentary elections. Prior to our research, it was unclear whether and how we
could perform parliamentary elections with party-based seat allocations in a tally-hiding manner.
The Ordinos framework does not provide direct support for such elections, as constituencies,
which are a crucial part of parliamentary elections, are not included. Hence, we modify the
Ordinos framework and prove that the security properties of the original framework are still
intact in our modified version. As a result, we propose the first verifiable and accountable
tally-hiding voting system for a parliamentary election, specifically for the German parliament.
Our findings from this study demonstrate, for the first time, that we can perform even a complex
and large-scale real-world election in a verifiable and fully tally-hiding manner.

Our instantiations are integral for carrying out real-world elections using Ordinos. However,
more is needed: additional aspects, such as client and verification interfaces, are out of scope.
To bridge this gap, we offer a complete e-voting system that provides full tally-hiding and
is ready for deployment in real-world elections. This web-based system supports all Ordinos
instantiations except for the German Bundestag. The system comprises multiple components,
each thoroughly documented and implemented, with graphical user interfaces accessible through
the user’s browser. Voters can cast their votes directly through their browser without downloading
additional software. To perform Benaloh challenges [Ben07], we have developed an Android
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application as a vote verification device. The verification process is fully automated and similar
to that of [KMST16], and it is automatically triggered when the user opens the election result.
This process happens in the user’s browser, requiring no further user interaction.

Moreover, we provide a deeper understanding of tally-hiding in general, particularly in how
far tally-hiding affects the level of ballot privacy of e-voting systems.

As explained in the introduction, this chapter covers the content and is based on the pub-
lications [KLM+20a, HHK+21a, WLH+23a, LAA+23b] and their corresponding technical re-
ports [KLM+20b, HHK+21b, WLH+23b], and some parts of this chapter are taken verbatim
from them.

We structure this chapter as follows. Section 3.1 presents the framework of full tally-hiding.
In Section 3.2, we present Ordinos, the first provable secure fully tally-hiding e-voting system,
including our instantiations of the Ordinos framework. We discuss related fully tally-hiding work
in Section 3.3.

3.1. Fully Tally-Hiding Framework

We now introduce the notion of full tally-hiding e-voting. Intuitively, an e-voting protocol P
is full tally-hiding for some voting method (C, f res) if the following condition holds: Under
the assumption that fewer trustees than a certain threshold t are dishonest, P provides the
same level of privacy as the ideal voting protocol Ivoting(C, f res, nvoters, n

honest
voters , µ) (which we will

formally define in Section 3.1.1) for voting method (C, f res), that reveals nothing but the actual
election result by definition. That is, no one learns anything beyond the published election result.
We will construct this ideal voting protocol in Section 3.1.1 and present and discuss the ideal
privacy in Section 3.1.2. Based on these results, we evaluate the impacts of (full) tally-hiding in
Section 3.1.3. Last, we formally define full tally-hiding in Section 3.1.4.

3.1.1. The Ideal Voting Protocol

In order to formally capture how the concept of tally-hiding affects elections, we first have
to define an ideal voting protocol Ivoting(C, f res, nvoters, n

honest
voters , µ). We present this ideal voting

protocol in Figure 3.1. In this protocol, honest voters vote according to the vote distribution µ.
Every run has nhonest

voters many honest voters and nvoters voters overall. The ideal protocol collects
the votes of the honest voters and the dishonest ones (where the latter ones are independent of
the votes of the honest voters) and outputs the result according to the result function f res. We
note that the ideal voting protocol does not take the aggregated tally as input but all individual
votes and computes fagg as a first step before applying f res.

3.1.2. Ideal Privacy

The privacy level δ (as defined in Definition 2.3) is larger than zero for virtually every voting
protocol, as the result of the election always leaks some information. In order to have a lower
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Ivoting(C, f res, nvoters, n
honest
voters , µ)

Parameters:

• Function f res : {0, 1}∗ → {0, 1}∗

• Probability distribution µ over C

• Numbers of voters nvoters and honest voters nhonest
voters

• I ← ∅ (initially)

On (init, honest) from S do:

1. ∀i ∈ {1, . . . , nhonest
voters }: store cchoice

i
µ←− C

2. I ← I ∪ {1, . . . , nhonest
voters }

3. Return success

On (setChoice, i, cchoice) from S do:

1. If i /∈ {nhonest
voters + 1, . . . , nvoters} or cchoice /∈ C, return ⊥.

2. Store cchoice
i ← cchoice

3. I ← I ∪ {i}

4. Return success

On (compute, b) from S do:

1. If b = 0, return ⊥.

2. Return res← f res(fagg((cchoice
i )i∈I))

Figure 3.1.: Ideal voting protocol.

bound on δ for all tallying-hiding voting protocols (where the results are of the form considered
below), we now determine the optimal value of δ for the ideal (tally-hiding) voting protocol.

We have already presented the ideal voting protocol Ivoting(C, f res, nvoters, n
honest
voters , µ) in Sec-

tion 3.1.1. We now formally analyze how the privacy level δideal
nvoters,nhonest

voters ,µ
(C, f res) of the ideal voting

protocol depends on the specific result function f res concerning the number of voters nvoters, the
number of honest voters nhonest

voters , and the probability distribution µ according to which the honest
voters select their choices. In the following, we will define the function δideal

nvoters,nhonest
voters ,µ

(C, f res).
Recall that privacy is defined w.r.t. an honest voter, called the voter under observation, for

which the adversary has to decide whether this voter voted for cchoice
0 or cchoice

1 , for any choices
cchoice

i and cchoice
j from C.

Let Vhonest be the set of honest voters, which does not include the voter under observation.
This set is of size |Vhonest| = nhonest

voters . These honest voters will vote using the vote distribution µ.
Furthermore, with Vdishonest, we denote the set of dishonest voters.

69



In the following, we will capture all possible choices of the voters from the choice space C

in a modified single-choice choice space CSingle(C) with |C| many choice components, where we
interpret the first choice component as abstain. Using CSingle(C) allows to notate the set of votes
of the honest voters (cchoice

j )j∈Vhonest as an aggregated tally H⃗ = (H⃗ i)|C|
i=0 = (ccomponent

i,agg )|C|
i=0 over

the equivalent votes in CSingle(C), where H⃗ i denotes the i-th entry of H⃗, ccomponent
0,agg denotes the

number of abstains, and for i > 0, ccomponent
i,agg denotes the number of votes for the corresponding

choice in C. In the same way, with D⃗, we denote the aggregated tally of the votes of the dishonest
voters (cchoice

j )j∈Vdishonest .
We are interested in the probability that, given the fixed choice cchoice

i of the voter under
observation, and votes of the dishonest voters D⃗, the votes of the honest voters H⃗ lead in
combination with the votes of the dishonest voters to the election result elecres under the election
result function f res. This probability depends on the vote distribution µ, and we denote this
probability with p

cchoice
i ,D⃗,µ

elecres .
Essentially, pcchoice

i ,D⃗,µ
elecres denotes the probability, that the votes of the honest voters lead to a

voting vector H⃗ such that H⃗, in combination with the votes of the dishonest voters D⃗ (denoted
as H⃗ + D⃗), results in elecres. We denote the probability that the votes of the honest voters lead
to an aggregated tally H⃗ over CSingle(C) with p

cchoice
i ,µ

H⃗
.

Now, we have

p
cchoice

i ,D⃗,µ
elecres =

∑︂
H⃗ : f res(H⃗+D⃗)=elecres

p
cchoice

i ,µ

H⃗

and

p
cchoice

i ,µ

H⃗
=
(︄

nhonest
voters

H⃗0, . . . , H⃗ i−1, H⃗ i − 1, H⃗ i+1, . . . , H⃗ |C|

)︄
· pH⃗0

µ,0 · . . . · p
H⃗i−1
µ,i · pH⃗i−1

µ,i · pH⃗i+1
µ,i · . . . · pH⃗|C|

µ,|C|

= nhonest
voters !

H⃗1! · . . . · H⃗ |C|!
· pH⃗0

µ,0 · . . . · p
H⃗|C|
µ,|C| ·

H⃗ i

pµ,i

Moreover, let M D⃗,µ

cchoice
i ,cchoice

j

= {elecres | pcchoice
i ,D⃗,µ

elecres ≤ p
cchoice

j ,D⃗,µ

elecres }. Then, the intuition behind the
definition of δideal

nvoters,nhonest
voters ,µ

(C, f res) is as follows: If the observer, given an output elecres, wants
to decide whether the observed voter voted for choice cchoice

i or cchoice
j , the best strategy of the

observer is to opt for cchoice
j if elecres ∈ M D⃗,µ

cchoice
i ,cchoice

j

, i.e., the output is more likely if the voter
voted for choice cchoice

j . We formalize this setting in the following definition:

δideal
nvoters,nhonest

voters ,µ
(C, f res) := max

i,j∈{1,...,nchoice}
max

D⃗

∑︂
elecres∈MD⃗,µ

cchoice
i

,cchoice
j

(︃
p

cchoice
j ,D⃗,µ

elecres − pcchoice
i ,D⃗,µ

elecres

)︃
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Theorem 3.1. The ideal protocol Ivoting(C, f res, nvoters, n
honest
voters , µ) achieves a privacy level of

δideal
nvoters,nhonest

voters ,µ
(C, f res). Moreover, it does not achieve δ-privacy for any δ < δideal

nvoters,nhonest
voters ,µ

(C, f res).

Proof. See [KLM+20a].

Theorem 3.1 states this privacy level is ideal. More precisely, we show in [KLM+20a] that
the ideal voting protocol achieves δideal

nvoters,nhonest
voters ,µ

(C, f res)-privacy and this privacy level is ideal,
namely there exists no δ < δideal

nvoters,nhonest
voters ,µ

(C, f res) such that the ideal protocol achieves δ-privacy.
In what follows, we give more examples to illustrate the effect of hiding the tally on the ideal

privacy level. We prove that the derived formula is ideal in [KLM+20a].

3.1.3. Impact of Hiding the Tally

In this comparison, we assess the levels of privacy provided by the ideal protocol for three
commonly used result functions computed in a tally-hiding manner:

1. The first function fAggTally publishes the entire election result, including the number of
votes per candidate. This function is commonly used in verifiable e-voting systems like
Helios. We refer to the level of privacy with δ

fAggTally
ideal .

2. The second function is f res
Ranking, which publishes the ranking of all candidates but not the

number of votes per candidate. We refer to the level of privacy with δ
f res

Ranking
ideal .

3. The third and final function f res
Plurality only publishes the election’s winner without revealing

the number of votes. We refer to the level of privacy with δ
f res

Plurality
ideal .

In general, more information means less privacy. Depending on the distribution on the
candidates, in general δfAggTally

ideal is bigger than δ
f res

Ranking
ideal which in turn is bigger than δ

f res
Plurality

ideal ; see
Figure 3.2 for an example.

Revealing the aggregated tally can lead to much worse privacy. Figure 3.2 already demonstrates
that revealing the complete result leads to worse privacy. Figure 3.3 is another more extreme
example. In both cases, honest voters favor one candidate.

The balancing attack. In some cases, there can be a massive difference between the privacy
level of a voting system that uses tally-hiding functions and one that does not. This difference
can be particularly significant if one choice has a higher probability. However, an adversary
can use a balancing attack to cancel out the advantage of tally-hiding functions in terms of the
privacy of single voters.

The balancing attack involves using dishonest voters to balance the probabilities for candidates.
For example, consider an election with ten honest voters and two candidates, where the first
candidate has a probability of 0.9. If an adversary instructs eight dishonest voters to vote for
the second candidate, the expected total number of votes for each candidate is nine. In this case,
the voter’s choice under observation is crucial for the election’s outcome.
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1 ) = 0.6, µ(ccand
2 ) = 0.3,

µ(ccand
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Although the number of dishonest voters is typically small compared to the number of honest
voters, this balancing attack can be practical in small-scale elections with a few voters and
candidates. Figure 3.4 illustrates an example of this.

Sometimes ranking is not better than the aggregated tally. If µ is a uniform distribution over
the candidates, it is easy to show that δfAggTally

ideal = δ
f res

Ranking
ideal . The reason is that the best strategy

for the adversary to decide whether the observed voter voted for ccand
i or ccand

j is to choose ccand
i

if ccand
i gets more votes than ccand

j , and this strategy is applicable even if only the ranking is
published. We note that f res

Plurality is still better, i.e., δ
f res

Plurality
ideal < δ

fAggTally
ideal = δ

f res
Ranking

ideal . Figure 3.5
provides a concrete example.

In summary, as illustrated, even with only 15 honest voters, the level of privacy does not
decrease much when the adversary changes the honest votes by only a few. Conversely, the
result function can very well affect the level of privacy of a tally-hiding system: whether only the
winner of an election is announced or the complete result typically significantly affects privacy.

Furthermore, we instantiate δideal
nvoters,nhonest

voters ,µ
for complex ranked-choice voting methods. We

present ideal privacy levels for several Condorcet methods in Figure 3.6.
Additionally, we instantiate δideal

nvoters,nhonest
voters ,µ

for IRV. We depict concrete values of the ideal
privacy level for the instant-runoff election function for two different distributions in Figure 3.7.
While one distribution is uniform, we model the other more realistically: we sorted the candidates
into a political spectrum. We assumed that if a voter chooses a candidate as her first preference,
she will likely rank a candidate with a political opinion high in her ranking.
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In detail, the non-uniform distribution in Figure 3.7 is as follows: the probabilities for the first
rank are (0.3, 0.2, 0.2, 0.12, 0.18). If the first rank is candidate 1, the probability that the second
rank is candidate 2 is 0.95. Analogously for the pairs of first and second rank (2, 1), (4, 5), (5, 4).
All remaining choices are taken uniformly at random. More precisely:

Pr(1, 2, ∗, ∗, ∗) = 0.3 · 0.95 · 3−1 · 2−1

Pr(2, 1, ∗, ∗, ∗) = 0.2 · 0.95 · 3−1 · 2−1

Pr(1, 3/4/5, ∗, ∗, ∗) = 0.3 · 0.05 · 3−1 · 3−1 · 2−1

Pr(2, 3/4/5, ∗, ∗, ∗) = 0.2 · 0.05 · 3−1 · 3−1 · 2−1

Pr(3, ∗, ∗, ∗, ∗) = 0.2 · 4−1 · 3−1 · 2−1

Pr(4, 1/2/3, ∗, ∗, ∗) = 0.12 · 0.05 · 3−1 · 3−1 · 2−1

Pr(4, 5, ∗, ∗, ∗) = 0.12 · 0.95 · 3−1 · 2−1

Pr(5, 1/2/3, ∗, ∗, ∗) = 0.18 · 0.05 · 3−1 · 3−1 · 2−1

Pr(5, 4, ∗, ∗, ∗) = 0.18 · 0.95 · 3−1 · 2−1.

As the figure demonstrates, disclosing the aggregated tally leads to a deficient level of privacy,
yielding severe privacy issues, such as Italian attacks. Comparing these levels with the ones
revealing only the winner confirms that voting systems that hide the tally for ranked-choice
voting methods provide dramatically more favorable vote privacy than those that always publicize
the aggregated tally. Even more, we witness that hiding the tally is, in fact necessary to achieve
a proper privacy level for instant-runoff elections that include more than a few candidates.
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We finally note that these results yield a lower bound for the privacy level of fully tally-hiding
systems in general.

3.1.4. Formal Definition of Full Tally-Hiding

We now define this notion formally. We assume some set T of trustees and some threshold t.

Definition 3.1 (Full Tally-Hiding). Let P be a voting protocol with a set of trustees T and
t ≤ |T|. We define that P is full tally-hiding w.r.t. f res and (T, t) if (and only if), under the
condition that at most t− 1 parties in T are dishonest, P achieves δideal

nvoters,nhonest
voters ,µ

(C, f res)-privacy.

If a voting scheme achieves full tally-hiding, its privacy level is as good as the ideal voting
protocol. Moreover, the election result function highly influences privacy, as demonstrated in
Section 3.1.3.

3.2. Ordinos

This section presents the first provably secure, verifiable, and accountable fully tally-hiding
e-voting system, called Ordinos. Conceptually, Ordinos is a framework following the general
structure of the Helios remote e-voting system, at least in its first phase, but strictly extends
Helios’ functionality: Helios computes fAggTally, that is, Helios always reveals the aggregated
tally (see Section 2.7), no matter what the actual desired election result is. In contrast, Ordinos
supports several election result functions in a fully tally-hiding fashion. That is, as explained
in Section 3.1.4, beyond the result of the election according to the election result function f res,
Ordinos does not reveal any further information. In particular, Ordinos, unlike Helios, does not
publish the aggregated tally (e.g., the number of votes per candidate) if not required by the
result function.

Ordinos works as follows: Voters encrypt their votes and send their ciphertexts to a bulletin
board. The trustees homomorphically aggregate the ciphertexts to obtain ciphertexts that
encrypt the number of votes per candidate. Then, by an MPC protocol, the trustees evaluate
the desired result function on these ciphertexts and publish the election result.

Compared to Helios, Ordinos uses different (instantiations of) cryptographic primitives and
also additional primitives, in particular, a suitable MPC component, to obtain a tally-hiding
system.

We carry out a detailed cryptographic analysis proving that Ordinos provides privacy, ver-
ifiability, and accountability: We show that Ordinos preserves the same level of verifiabil-
ity/accountability as Helios under the same trust assumptions (namely that adversary does not
corrupt the verification devices and the bulletin board), independently of the result function
considered. More generally, this demonstrates that the standard definitions of verifiability and
accountability can be achieved independently of whether we compute a result function in a
tally-hiding way. Conversely, due to full tally-hiding, the level of privacy of Ordinos can be much
better than for Helios, e.g., if only the winner or the ranking of candidates is to be published.
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Our cryptographic analysis of Ordinos (for privacy and verifiability/accountability) is based
on generic properties of the employed cryptographic primitives. Hence, it is general and does not
rely on specific instantiations. To obtain a workable system, we carefully crafted instantiations
using, among others, Paillier encryption [Pai99], an MPC protocol for greater-than tests by
Lipmaa and Toft [LT13], as well as NIZKPs by Schoenmakers and Veeningen [SV15]. Based
on this instantiation, we provide a proof-of-concept implementation of Ordinos and evaluate its
performance, demonstrating its practicability, available at [LAA+23a].

We organize this section as follows. In Section 3.2.1, we present the Ordinos voting protocol
on the conceptual level. In Section 3.2.2, we prove that Ordinos is verifiable, accountable, and
full tally-hiding. In Section 3.2.3, we instantiate the Ordinos framework for various (real-world)
elections. In Section 3.2.4, we modify the Ordinos framework to support voting in constituencies,
and in Section 3.2.5, we present a web-based instantiation of Ordinos.

3.2.1. The Ordinos Framework

In this section, we present the Ordinos voting protocol on the conceptual level. Instead of relying
on specific primitives, the security of Ordinos can be guaranteed under certain assumptions
these primitives must satisfy. In particular, we can instantiate them with the most appropriate
primitives available.

Ordinos extends the prominent Helios e-voting protocol. While Helios computes fAggTally,
that is, the complete election result is published (the number of votes per candidate/party),
Ordinos supports tally-hiding elections. More specifically, the generic version of Ordinos, which
we prove secure, supports arbitrary result functions evaluated over the aggregated votes per
candidate/party and computes these result functions in a tally-hiding way. Our concrete
instantiation then realizes many such practically relevant functions, see Section 3.2.3.

3.2.1.1. Protocol Participants

We run the Ordinos protocol among the following participants: a voting authority Auth, (human)
voters v1, . . . , vnvoters , voter-supporting devices VSD1, . . . ,VSDnvoters , voter-verification devices
VVD1, . . . ,VVDnvoters , trustees T1, . . . ,Tntrustees , an authentication server AS, and an append-only
bulletin board BB.

As further described below, the role of each (untrusted) voter-supporting device VSD is to
generate and submit the voter’s ballot, whereas the (trusted) voter-verification device VVD
checks that the VSD behaved correctly. The role of the trustees is to tally the voters’ ballots. In
order to avoid a single trustee knowing how every single voter voted, the secret tallying key is
distributed among all of them so that t out of ntrustees trustees need to collaborate to tally the
ballots.

We assume the existence of the following authenticated channels:
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• All parties have unilaterally authenticated channels to the bulletin board BB, ensuring that
all parties have the same view on the bulletin board.

• For all VSDi, an authenticated channel between this device and the authentication server
AS, allowing AS to ensure that only eligible voters can cast their ballots.

• Each voter vi has authenticated channels to the corresponding VSDi as well as the VVDi,
modeling direct interaction.

By assuming such authenticated channels, we abstract away from the exact method the voters
use to authenticate; in practice, several methods can be used, such as one-time codes, passwords,
or external authentication services.

3.2.1.2. Protocol Overview

A protocol run consists of the following phases: In the setup phase, parameters and key
shares are fixed and generated, and the public key shares are published. In the voting phase,
voter vi picks her choice cchoice

i = (ccomponent
1,i , . . . , ccomponent

ncomponents,i) ∈ C accordingly to the choice
space C, encrypts the choice EVector

pk (cchoice
i ) = (Epk(ccomponent

1,i ), . . . , Epk(ccomponent
ncomponents,i)), and then

either audit or submit her ballot. Now or later, in the voter verification phase, voters verify
that the authentication server has published their ballots. In the tallying phase, the trustees
homomorphically aggregate the ballots to obtain EVector

pk (cchoice
agg )i = ⨁︁nvoters

j=1 Epk(ccomponent
i,j ) for

i ∈ {1, . . . , ncomponents}, and then run a publicly accountable MPC protocol Pf res on input
EVector

pk (cchoice
agg )1, . . . , E

Vector
pk (cchoice

agg )ncomponents in order to secretly compute, and publish the election
result according to the result function f res so that not even the trustees learn anything beyond
the final result (which guarantees tally-hiding). Finally, in the public verification phase, everyone
can verify that the trustees had tallied correctly.

We now explain each phase in more detail.

3.2.1.3. Setup Phase

In this phase, all election parameters are fixed and posted on the bulletin board by the voting
authority Auth: the list id⃗ of eligible voters, opening and closing times, the election ID idelection,
etc. as, well as the set C ⊆ Nncomponents ∪ {abstain} of valid choices where ncomponents denotes
the number of (choice) components and abstain models that a voter abstains from voting.
Furthermore, the Ordinos framework uses as a parameter a deterministic polynomial time
function f res : {0, 1}∗ → {0, 1}∗ which computes the final result of the election based on a set
of aggregated votes, i.e., the tally of the election. In Section 3.2.3 presents the election result
functions that our instantiations of the Ordinos framework support.

The authentication server AS and each trustee Tk run the key generation algorithm of the
digital signature scheme S to generate their public/private (verification/signing) keys. The
verification keys are published on the bulletin board BB. In what follows, we implicitly assume
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that whenever the authentication server AS or a trustee Tk publishes information, they sign this
data with their signing keys.

Every trustee Tk runs the key share generation algorithm of the public-key encryption scheme
E to generate its public/private (encryption/decryption) key share pair (pkk, skk). Additionally,
each trustee Tk creates a NIZKP πKeyShareGen

k to prove knowledge of skk and validity of (pkk, skk).
Each trustee Tk then posts (pkk, π

KeyShareGen
k ) on the bulletin board BB. With PublicKeyGen,

everyone can compute the (overall) public key pk.

3.2.1.4. Voting Phase

In this phase, every voter vi can decide to abstain from voting or to vote for some choice
cchoice

i = (ccomponent
1,i , . . . , ccomponent

ncomponents,i) ∈ C ⊆ Nncomponents . In the latter case, the voter inputs cchoice
i

to her voter-supporting device VSDi, which proceeds as follows. First, VSDi encrypts each entry
of cchoice

i separately under the public key pk and obtains a ciphertext vector EVector
pk (cchoice

i ) =
(Epk(ccomponent

1,i ), . . . , Epk(ccomponent
ncomponents,i)). That is, the j-th ciphertext in EVector

pk (cchoice
i ) encrypts

the number of votes/points assigned by voter vi to (choice) component j. After that, in addition
to EVector

pk (cchoice
i ), VSDi creates a NIZKP πCi in order to prove that it knows which choice cchoice

i

the vector EVector
pk (cchoice

i ) encrypts and that cchoice
i ∈ C. Finally, VSDi sends a message to vi

to indicate that a ballot bi = (id, EVector
pk (cchoice

i ), πCi ) is ready for submission, where id ∈ id⃗
is the voter’s identifier. Upon receiving this message, the voter vi can decide to either audit
or submit the ballot bi (Benaloh challenge [Ben07]), as described in what follows. We note
that, beyond Benaloh challenges, several techniques exist in the literature (e.g., verification
codes) to enable human voters to verify whether their ballots were cast by the voting devices
as intended. Since these techniques are (typically) independent from whether the full tally is
revealed or hidden, Ordinos could also be equipped with a different cast-as-intended mechanism
than Benaloh challenges.

If vi wants to audit bi, vi inputs an audit command to VSDi who is supposed to reveal all the
random coins that it had used to encrypt vi’s choice and to generate the NIZKPs. After that, vi

forwards this data and her choice cchoice
i to her verification device VVDi which is supposed to

check the correctness of the ballot, i.e., whether cchoice
i chosen by vi and the revealed randomness

by VSDi yield bi. The voter can not cast a ballot that she audited. Therefore, the voter is asked
to vote again.

If vi wants to submit bi, vi inputs a cast command to VSDi, which is supposed to send bi to
the authentication server AS on an authenticated channel. If AS receives a ballot in the correct
format (i.e., id ∈ id⃗ and id belongs to vi, and the voter tagged bi with the correct election ID
idelection) and the NIZKP πCi is valid, then AS responds with an acknowledgment consisting of a
signature on the ballot bi; otherwise, it does not output anything. Just as for Helios, variants of
the protocol are conceivable where the voter’s ID is not part of the ballot and not put on the
bulletin board or at least not next to her ballot (see, e.g., [KTV12]). After that, VSDi forwards
the ballot bi as well as the acknowledgment to VVDi for verification purposes later on. If the
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voter tried to re-vote and AS already sent out an acknowledgment, then AS returns the old
acknowledgment only and does not accept the new vote. If VVDi does not receive a correct
acknowledgment from AS via VSDi, it outputs a message to vi who then tries to re-vote, and, if
this does not succeed, files an authentication complaint on the bulletin board. If a party posts
such a complaint, it is, in general, impossible to resolve the dispute and decide whom exactly to
blame: (i) AS who might not have replied as expected (but claims, for instance, that the voter
did not cast the ballot), or (ii) VSDi who might not have submitted a ballot or forwarded the
(correct) acknowledgment to VVDi, or (iii) the voter who might not have cast a ballot but claims
that she has. Note that this general problem applies to virtually any remote voting protocol. In
practice, the voter could ask the voting authority Auth to resolve the problem.

When the voting phase is over, AS creates the list of submitted and valid ballots b⃗. Then AS
removes all ballots from b⃗ that are duplicates w.r.t. the pair (EVector

pk (cchoice
i ), πCi ) only keeping

the first one in order to protect against replay attacks, which jeopardize vote privacy [CS11].
Afterward, AS signs b⃗ and publishes it on the bulletin board.

3.2.1.5. Voter Verification Phase

After the AS publishes the list of ballots b⃗, each voter vi can use her VVDi to check whether (i)
her ballot bi appears in b⃗ in the case she voted (if not, vi can publish the acknowledgment she
received from AS on the bulletin board which serves as binding evidence that AS misbehaved),
or (ii) none of the ballots in b⃗ contain her id in the case she abstained. In the latter case, the
dispute cannot be resolved without further means: Did vi vote but claim that she did not or
did vi not vote but AS used her id dishonestly? Variants of the protocol are conceivable where
a voter is supposed to sign her ballot, and the authentication server presents such a signature
in the case of a dispute (see, e.g., [CGGI14]). These methods also help in preventing so-called
ballot stuffing.

In both cases, however, it is well-known that, realistically, not all voters are motivated
enough to perform these verification procedures, and even if they are, they often fail to do so
(see, e.g., [KOKV11]). In our security analysis of Ordinos, we assume that voters perform the
verification procedures with a certain probability. In order to increase verification rates, fully
automated verification, as deployed in the sElect voting system [KMST16], turned out to be
helpful and could be implemented in Ordinos as well.

3.2.1.6. Tallying Phase

The list of ballots b⃗ posted by AS is the input to the tallying phase, which works as follows.

1. Homomorphic Aggregation. Each trustee Tk reads b⃗ from the bulletin board BB and verifies
its correctness (i.e., whether AS removed duplicates and invalid ballots). If this check fails,
Tk aborts since AS should guarantee this. Otherwise, Tk homomorphically aggregates
all vectors EVector

pk (cchoice
i ) in b⃗ entrywise and obtains a ciphertext vector EVector

pk (cchoice
agg ) =
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(EVector
pk (cchoice

agg )1, . . . , E
Vector
pk (cchoice

agg )ncomponents) with ncomponents entries each of which encrypts
the number of votes/points of the respective (choice) component: EVector

pk (cchoice
agg )i =⨁︁nvoters

j=1 Epk(ccomponent
i,j ) for i ∈ {1, . . . , ncomponents}.

2. Secure Function Evaluation. The trustees T1, . . . , Tntrustees run the publicly accountable
MPC protocol Pf res with input EVector

pk (cchoice
agg ) to securely evaluate the result function f res.

They then output the election result according to f res and a NIZKP of correct evaluation
πMPC. This NIZKP πMPC typically consists of several NIZKPs, e.g., NIZKPs of correct
decryption.

In our instantiation, we realized tallying functions f res that we build on top of a secure
greater-than MPC protocol.

3.2.1.7. Public Verification Phase

In this phase, every participant, including the voters or external observers, can verify the
correctness of the tallying procedure, particularly the correctness of all NIZKPs.

3.2.2. Security of Ordinos

Many of the components that an Ordinos instantiation uses are not fixed by the Ordinos
framework because they strongly depend on the specific election to apply. Specifically, the
following parameters and components have to be specified or constructed by a protocol designer
to create an instantiation of Ordinos for a concrete election: (i) the choice space C and election
result function f res, (ii) a threshold encryption scheme E , (iii) NIZKPs πKeyShareGen and πC, (iv) a
EUF-CMA-secure signature scheme S, and (v) a publicly accountable MPC protocol Pf res for
computing the election result function f res.

In this section, we show that if the above component defined by protocol designers meets
specific properties, the resulting Ordinos instance achieves verifiability, accountability, privacy,
and full tally-hiding. We start by formally defining the Ordinos voting protocol.

3.2.2.1. Formal Protocol Model of Ordinos

In this section, we precisely define the honest programs of all agents in Ordinos.
Set of agents in Ordinos. The set of agents of POrdinos consists of all agents described in

Section 3.2.1, i.e., the bulletin board BB, nvoters (human) voters v1, . . . , vnvoters , voter supporting
devices VSD1, . . . ,VSDnvoters , voter verification devices VVD1, . . . ,VVDnvoters , the authentication
server AS, ntrustees trustees T1, . . . ,Tntrustees , and in addition, a scheduler S. The latter party
plays the role of the voting authority Auth and schedules all other agents in a run according
to the protocol phases. Also, it is the master program of POrdinos. Channels connect all agents
with all other agents; honest agents will not use all these channels, but dishonest agents might.
The honest programs pa of honest agents a are defined in the way according to the description
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of the agents in Section 3.2.1. We assume that the scheduler S and the bulletin board BB
are honest. All other agents can be dishonest. These agents can run arbitrary probabilistic
(polynomial-time) programs. We note that the scheduler is only a modeling tool. It does not
exist in real systems. The assumption that the bulletin board is honest is common; Helios makes
this assumption, too. In reality, the bulletin board should be implemented in a distributed way
(see, e.g., [CS14,KKL+18]).

Scheduler S. In the protocol POrdinos, the honest program pS of S plays the role of the master
program. We assume that the scheduler knows which agents are honest and which are dishonest
to schedule the agents appropriately. In what follows, we implicitly assume that the scheduler
triggers the adversary (any dishonest party) at the beginning and end of the protocol run. Also,
the adversary is triggered each time an honest party finishes its computations (after being
triggered by the scheduler in some protocol step). Therefore, the adversary is up to date and
can output its decision at the end of the run. By this, we obtain stronger security guarantees.

Similarly, we assume that the scheduler triggers the judge each time any other party (honest or
dishonest) finishes its computation (after being triggered by the scheduler). Therefore, the judge
can give its verdict after each protocol step. Suppose the judge posts a message on the bulletin
board BB, which indicates to stop the whole protocol. In that case, the scheduler triggers the
adversary once more (to allow it to output its decision) and then halts the entire system. We
also let the scheduler create common reference strings (CRSs) for all the required NIZKPs. We
call the setup algorithm of the non-interactive zero-knowledge proof systems used in the protocol
and provide them to all parties.

In the remaining part of the section, we precisely describe the honest program of the scheduler
depending on the voting phase.

Scheduling the setup phase. At the beginning of the election, the scheduler determines the set
of possible choices defined as C ⊆ Nncomponents ∪ {abstain} of valid choices where abstain models
that a voter abstains from voting. Then, the scheduler generates a random number idelection, the
election identifier, with the length of the security parameter η and sends it to the bulletin board
BB, which publishes idelection and C. Whenever a party computes a signature on some message
m, this implicitly means that we calculate a signature on the tuple (idelection, tag,m) where
idelection is an election identifier (different for distinct elections) and tag is a tag distinguishable
for signatures with dissimilar purposes (for example, a signature on a list of voters uses a different
tag than a signature on a list of ballots).

After that, the scheduler first triggers all honest trustees Tk, which are supposed to generate
their verification/signing key pairs (verifyk, signk) and publish the public verification keys verifyk

on the bulletin board BB, and then all the dishonest ones. In what follows, we implicitly assume
that each trustee Tk is supposed to sign all its messages to the bulletin board under signk.

Next, the scheduler triggers all honest trustees again, and then all dishonest ones, to run
the key share generation algorithm KeyShareGen of the public-key encryption scheme E . As a
result, each trustee publishes a public key share pkk (together with a NIZKP of correctness and

82



knowledge of the respective secret key share skk) so that we can obtain the public key pk by
running PublicKeyGen on the published public key shares.

Scheduling the voting phase. The scheduler triggers all the honest voters and then the dishonest
ones, allowing them to cast their ballots to the authentication server AS. After each step (when
the voters and the authentication server finish their computations), the scheduler triggers the
voter again to allow the voter to post a complaint if she does not get a valid acknowledgment
from the authentication server. As specified below, we model the authentication server AS to
provide all collected ballots (even before AS publishes them on the bulletin board BB) to an
arbitrary participant who requests them. Afterward, the scheduler triggers the authentication
server, which is supposed to publish the list of ballots b⃗ (containing the (first) valid ballot cast
by each eligible voter) on the bulletin board BB.

Scheduling the voter verification phase. Similarly to the voting phase, the scheduler triggers
first the honest voters who are supposed to verify (with probability pverify) the input to the
tallying phase. See below for details. Afterward, the scheduler triggers all the dishonest voters.

Scheduling the tallying phase. The scheduler runs the scheduling procedure of the given MPC
protocol.

Authentication Server AS. The authentication server AS, when triggered by the scheduler S
in the key generation phase for the signature scheme, runs the key generation algorithm KeyGen
of S to obtain a verification/signing key pair (verifyAS, signAS). Then, the authentication server
sends the verification key to the bulletin board BB.

When the authentication server AS receives a ballot bi from an eligible voter vi via an
authenticated channel, the server checks whether (i) the voter tagged the received ballot with the
correct election identifier, (ii) the voter id belongs to the authenticated voter and has not been
used before, (iii) the ciphertext vector EVector

pk (cchoice
i ) has not been submitted before, (iv) the

NIZKPs are correct. If this holds, the acknowledgment consists of a signature under signAS on
the ballot bi; otherwise, it does not output anything. The authentication server adds bi together
with the voter id to the (initially empty) list of ballots b⃗. If a voter tried to re-vote and AS
already sent out an acknowledgment, then AS returns the old acknowledgment only and does
not consider the new vote.

When the scheduler S triggers the authentication server at the end of the voting phase, AS
signs the list b⃗ with signAS, and sends it, together with the signature, to the bulletin board.

Furthermore, to model the assumption that the channel from the voter to AS is authenticated
but not (necessarily) secret, the authentication server AS is also supposed to provide all ballots
collected so far to any requesting agent (even before AS published them on the bulletin board
BB).

Bulletin Board BB. Running its honest program, the bulletin board BB accepts messages from
all agents. If the bulletin board BB receives a message via an authenticated channel, it stores
the message in a list along with the identifier of the agent who posted the message. Otherwise, if
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the message is sent anonymously, it only stores the message. The bulletin board sends its stored
content to the requesting agent upon request.

Voter vi. A voter vi, when triggered by the scheduler S in the voting phase, picks cchoice
i from

C according to the probability distribution µ. A choice may be a distinct value abstain, which
expresses abstention from voting, or an integer vector from Nncomponents . The voter program stops
if cchoice

i = abstain. Otherwise, if cchoice
i = (ccomponent

1,i , . . . , ccomponent
ncomponents,i) ∈ C, the voter enters cchoice

i

to her voter-supporting device VSDi. The voter expects a message from VSDi indicating that a
ballot bi is ready for submission. After that, the voter decides (with a certain probability paudit)
whether she wants to audit or submit the bi.

If vi decides to submit bi, she enters a message to her VSD indicating submission. The voter
expects an acknowledgment from the authentication server AS via VSDi. After that, the voter
enters the acknowledgment to her verification device VVDi, which checks its correctness. If the
voter did not obtain an acknowledgment or VVDi reports that the acknowledgment is invalid,
the voter posts a complaint on the bulletin board via her authenticated channel. Note that the
program of the voter may not get any response from VSDi in case AS or VSDi are dishonest. To
enable the voter, in this case, to post a complaint on the bulletin board, the scheduler triggers
the voter again (still in the voting phase).

If vi decides to audit bi, she enters a message to her VSD indicating auditing. The voter
expects a list of random coins from VSDi. After that, the voter enters her choice cchoice

i , the ballot
bi, and the list of random coins to her verification device VVDi, which checks its correctness.
If VVDi returns that verification was unsuccessful, the voter posts a complaint on the bulletin
board via her authenticated channel. In any case, the voter program returns to the start of the
voting phase.

The voter vi, when triggered by the scheduler S in the verification phase, carries out the
following steps with probability pverify. If cchoice

i was abstain, the voter verifies that her id is not
listed in the list of ballots b⃗ output by the authentication server. She will file a complaint if this
is not the case. If cchoice

i ̸= abstain, the voter checks that her id and her ballot bi appear in the
list of ballots b⃗, output by the authentication server. As before, she files a complaint if this is
not the case.

Voter-supporting device VSDi. If the voter supporting device obtains the vote cchoice
i =

(ccomponent
1,i , . . . , ccomponent

ncomponents,i) ∈ C from vi, then VSDi encrypts each integer ccomponent
j,i under the

public key pk to obtain a ciphertext vector EVector
pk (cchoice

i ). Afterward, the voter creates a NIZKP
πCi of knowledge and correctness for the ncomponents-ary relation over the plaintext space which
holds if and only if (ccomponent

1,i , . . . , ccomponent
ncomponents,i) ∈ C \ {abstain}. The voter-supporting device

VSDi stores all the random coins used to encrypt the vote and create the NIZKP. After that,
VSDi creates the ballot

bi = (id, EVector
pk (cchoice

i ), πCi ),
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and returns a message to vi indicating that her ballot bi is ready for submission.

The VSD expects a message from the voter indicating submission or auditing. If the voter
wants to submit bi, then VSDi sends bi to the authentication server AS. VSDi expects to get
back an acknowledgment (a signature of AS on the submitted ballot) which it returns to vi. If
the voter wants to audit bi, then VSDi returns all the random coins that it used to create bi and
removes them from its internal storage afterward.

Voter-verification device VVDi. If the voter verification device VVDi gets as input a choice
cchoice

i , a ballot bi, and a list of random coins, then VVDi verifies whether cchoice
i together with

these random coins yield bi. After that, VVDi returns the result of this check.

Suppose the voter-verification device VVDi gets as input an acknowledgment and a ballot
bi from vi. In that case, it checks whether the acknowledgment is valid for bi (i.e., that the
acknowledgment is a valid signature by AS for bi). After that, VVDi returns the result of this
check.

Trustee Tk. A trustee Tk, when triggered by the scheduler S in the key generation phase for the
signature scheme, runs the key generation algorithm KeyGen of S to obtain a verification/signing
key pair (verifyk, signk). Then, the trustee sends the verification key to the bulletin board BB.

When triggered by the scheduler S in the key generation phase for the encryption scheme,
the trustee Tk runs the key share generation algorithm KeyShareGen of E to obtain a secret key
share skk and a public key share pkk. Then, the trustee Tk creates a NIZKP πKeyShareGen

k for
proving correctness of the public key share pkk including knowledge of an adequate secret key
share skk. The trustee signs (pkk, π

KeyShareGen
k ) with the signing key signk and sends it, together

with signature, to the bulletin board BB.

When triggered by the scheduler S in the tallying phase, the trustee Tk reads the list of ballots
b⃗ published and signed by the authentication server AS from the bulletin board BB. If no such
list exists, the signature is incorrect, or if the list is incorrect (see above), the trustee aborts.
Otherwise, Tk calculates

EVector
pk (cchoice

agg ) = (EVector
pk (cchoice

agg )1, . . . , E
Vector
pk (cchoice

agg )ncomponents)

where

EVector
pk (cchoice

agg )i =
nvoters⨁︂
j=1

Epk(ccomponent
i,j )

Up to this step, Ordinos is identical to Helios.

Then, the trustees run the MPC protocol Pf res with the input EVector
pk (cchoice

agg ). The output of
Pf res is the overall election result of Ordinos, plus some NIZKP of correct evaluation πMPC.
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Judge J. We assume that J is honest. We note that the honest program pJ of J, as defined
below, uses only publicly available information, and therefore, every party, including the voters
and external observers, can run the judging procedure.

The program pJ, whenever triggered by the scheduler S, reads data from the bulletin board
and verifies its correctness, including the correctness of posted complaints. The judge outputs
verdicts (as described below) on a distinct tape. More precisely, the judge outputs a verdict in
the following situations:

(J1) If a party a deviates from the protocol specification in an obvious way, then J blames
a individually by outputting the verdict dis(a). This is the case if the party a, for
example, (i) does not publish data when expected, or (ii) publishes data that is not in
the expected format, or (iii) publishes a NIZKP which is not correct.

(J2) If a voter vi posts an authenticated complaint in the voting phase that she has not
received a valid acknowledgment from the authentication server AS, then the judge
outputs the verdict dis(vi) ∨ dis(VSDi) ∨ dis(AS), which means that (the judge believes
that) one of the parties vi, VSDi, AS is dishonest but cannot determine which of them.

(J3) If a voter vi posts an authenticated complaint claiming that she did not vote, but her
name was posted by the authentication server AS in one of the ballots in b⃗, the judge
outputs the verdict dis(AS) ∨ dis(vi).

(J4) If, in the verification phase, a valid complaint is posted containing an acknowledgment
of AS, i.e., the complaint contains a signature of AS on a ballot that is not in the list of
ballots b⃗ published by AS, then the judge blames AS individually by outputting the
verdict dis(AS).

(J5) During the execution of Pf res the judge runs the judging procedure JMPC of Pf res . If
JMPC outputs a verdict, then J also outputs this verdict.

(J6) If, in the submission phase, a voter vi posts an authenticated complaint claiming that
her VSDi did not produce a correct ballot bi for her chosen input, then the judge
outputs the verdict dis(vi) ∨ dis(VSDi), which means that (the judge believes that)
either vi or VSDi is dishonest but cannot determine which of them.

If none of these situations occur, the judge J outputs accept on a distinct tape.
Based on this formal model of the Ordinos voting framework, we now analyze the accountability

and privacy level of Ordinos.

3.2.2.2. Accountability of Ordinos

Now, we can precisely analyze the accountability level (see Section 2.4) of Ordinos. For this, we
first define the accountability constraints and property of Ordinos. Then, we state and prove the
accountability theorem.

Accountability constraints. For Ordinos, we use the following accountability constraints:
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• Let χi denote the set of runs of an instance of POrdinos where voter vi complains that she did
not get a receipt from AS via VSDi. In such runs, the judge cannot be sure who to blame
individually:

– AS who might not have replied as expected (but claims, for instance, that the voter did
not cast the ballot) or

– VSDi who might not have submitted a ballot or forwarded the (correct) acknowledgment
to VVDi or

– the voter who might not have cast a ballot but claims that she has. We note that this is
a general problem that applies to virtually any remote voting protocol. In practice, the
voter could ask the voting authority Auth to resolve the problem. This is captured by the
accountability constraint χi ⇒ dis(vi) ∨ dis(VSDi) ∨ dis(AS). Recall that we define that
the judge J ensures this constraint in a run r if r ̸∈ χi or the verdict output by the J in r
implies dis(vi) ∨ dis(VSDi) ∨ dis(AS) in the sense of propositional logic.

• Let χ′
i contain all runs of POrdinos where the voter vi complains that she did not vote, a

ballot in b⃗ published by AS contains her name. Then, the accountability constraint for this
situation is χ′

i ⇒ dis(vi) ∨ dis(AS).

• Let χ′′
i contain all runs of POrdinos where the voter vi complains that the ballot auditing was

unsuccessful. Then, the accountability constraint for this situation is χ′′
i ⇒ dis(vi)∨dis(VSDi).

The accountability theorem for Ordinos (see below) states that if the adversary breaks the
goal γ(k, φ) (as defined in Section 2.3) in a run of POrdinos but neither χi, χ

′
i nor χ′′

i occur (for
some voter vi), then (at least) one misbehaving party can be blamed individually (with a certain
probability). The accountability constraint for this situation is

¬γ(k, φ) ∧ ¬χ⇒ dis(AS) | dis(T1) | . . . | dis(Tntrustees),

where χ = ⋃︁
i∈{1,...,nvoters}(χi ∪ χ′

i ∪ χ′′
i ). Now, the judge J ensures this constraint in a run r if

r ̸∈ ¬γ(k, φ) ∧ ¬χ or the verdict output by J in r implies dis(a) for some party a mentioned in
the constraint.

Accountability property. For POrdinos and the goal γ(k, φ), we define the accountability
property ΦOrdinos

k to consist of the constraints mentioned above for the cases χi, χ′
i, χ′′

i (for
all i ∈ {1, . . . , nvoters}), and ¬γ(k, φ) ∧ ¬χ. This accountability property covers ¬γ(k, φ) by
construction, i.e., if γ(k, φ) is not satisfied, these constraints require the judge J to blame some
party. Note that all verdicts are atomic in the runs covered by the last constraint of ΦOrdinos

k .
Thus, ΦOrdinos

k requires that except for the cases where χ occurs, whenever a run violates the
goal γ(k, φ), an individual party is blamed, so-called individual accountability. The NIZKPs and
signatures used in Ordinos allow us to achieve individual accountability.

For the accountability theorem, we make the following assumptions:
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(A1) The public-key encryption scheme E is correct (for verifiability, IND-CPA-security is
not needed), πKeyShareGen and πE

pk are NIZKPs, and the signature scheme S is EUF-
CMA-secure.

(A2) The scheduler S, the bulletin board BB, the judge J, and all voter-verification devices
VVDi are honest, i.e., φ = hon(S) ∧ hon(J) ∧ hon(BB) ∧⋀︁nvoters

i=1 hon(VVDi).

(A3) The MPC protocol Pf res enjoys individual accountability (w.r.t. the goal γ(0, φ) and
accountability level 0), meaning that if the outcome of the protocol does not correspond
to f res, then the judge always can blame at least one of the trustees individually, because
in this case the NIZKP πMPC fails. Our instantiations presented in Section 3.2.3 fulfill
this assumption.

Now, the following theorem states the accountability result of Ordinos.

Theorem 3.2 (Accountability of Ordinos). Under the assumptions (A1) to (A3) and the
judging procedure run by the judge J stated above, POrdinos(nvoters, ntrustees, µ, pverify, paudit,C, f

res)
is (ΦOrdinos

k , δk(pverify, paudit))-accountable w.r.t. the judge J where

δk(pverify, paudit) = max (1− pverify, 1− paudit)⌈ k+1
2 ⌉ .

Proof. See [Mül19].

Verifiability follows directly from the fact that accountability implies verifiability. However,
we can guarantee verifiability under weaker assumptions. That is, the MPC protocol must only
be verifiable (instead of accountable), which we capture in the following modification of (A3)
from above:

(V3) The MPC protocol Pf res is (γ(0, φ), 0)-verifiable, meaning that if the output of Pf res

does not correspond to its input, then we can always detect this publicly.

Theorem 3.3 (Verifiability of Ordinos). Under the assumptions (A1), (A2), (V3) and the
judging procedure run by the judge J stated above, POrdinos(nvoters, ntrustees, µ, pverify, paudit,C, f

res)
is (γ(k, φ), δk(pverify, paudit))-verifiable w.r.t. the judge J where

δk(pverify, paudit) = max (1− pverify, 1− paudit)⌈ k+1
2 ⌉ .

Proof. Directly follows the proof of Theorem 3.2.

3.2.2.3. Privacy and Tally-Hiding of Ordinos

We now prove that Ordinos provides a high level of privacy w.r.t. k-risk-avoiding adversaries
and in the case that at most t− 1 trustees are dishonest, where t is the decryption threshold of
the underlying encryption scheme. If t trustees were dishonest, privacy cannot be guaranteed
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because an adversary could decrypt every ciphertext in the list of ballots. By high level of
privacy, we denote that Ordinos provides δ-privacy for a δ close to the ideal one.

More specifically, we formulate the formal privacy result for Ordinos w.r.t. the ideal voting
protocol Ivoting(C, f res, nvoters, n

honest
voters , µ), presented in Figure 3.1. Recall that in this protocol,

honest voters pick their choices according to the distribution µ, and in every run, there are
nhonest

voters many honest voters and nvoters voters overall. The ideal protocol collects the votes of the
honest voters and the dishonest ones (where the latter ones are independent of the votes of the
honest voters) and outputs the result according to the result function f res. In Section 3.1.2, we
analyze the privacy level δideal

nvoters,nhonest
voters ,µ

(C, f res). This ideal protocol has to depend on the given
parameters.

Assumptions. In our analysis, we assume that honest voters do not abstain from voting to
have a guaranteed number of votes by honest voters. Note that the adversary would know which
voters abstained and which did not. To prove that the privacy level of Ordinos is essentially the
ideal one, we make the following assumptions about the primitives we use:

(P1) The public-key encryption scheme E is IND-CPA-secure, the signatures are EUF-CMA-
secure, and πKeyShareGen and πC are NIZKPs.

(P2) The MPC protocol Pf res realizes (in the sense of universal composability [Can01,Küs06])
the ideal MPC protocol presented in Figure 3.8 which essentially takes as input a vector
of ciphertexts and returns f res ◦ fagg evaluated on the corresponding plaintexts. The
level of privacy of Ordinos depends on the number of ballots cast by honest voters.

(P3) The probability of abstention is 0 in µ.

(P4) The process PPOrdinos of POrdinos, the set A(PPOrdinos) of admissible adversaries for PPOrdinos

is defined as follows. An adversary A belongs to A(PPOrdinos) if (and only if) it satisfies
the following conditions:

– pA is k-risk-avoiding for PPOrdinos ,

– the probability that pA corrupts more than t− 1 trustees in a run of PPOrdinos∥pA is
negligible,

– the probability that pA corrupts more than nhonest
voters voters in a run of PPOrdinos∥pA is

negligible, and

– the probability that pA corrupts an honest voter’s supporting or verification device
is negligible.

We note that, in principle, the following privacy result also holds if the honest voters’
verification devices are dishonest because, in our model, an honest voter chooses a fresh
candidate according to µ each time after auditing her ballot. If, however, an honest
voter always used her actual candidate when auditing her ballot, then the verification
device needs to be honest for vote privacy, too.
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IMPC(E , fMPC)

Parameters:

• A (t, ntrustees)-threshold public-key encryption scheme E =
(KeyShareGen,PublicKeyGen, Epk, decshare, dec)

• Choice Space C

• Function fMPC : {0, 1}∗ → {0, 1}∗

• Set of trustees T = {T1, . . . ,Tntrustees}
• Bulletin Board BB

KeyGen: On input KeyGen by each Tk ∈ T:

1. ∀Tk ∈ T:
a) (pkk, skk)← KeyShareGen
b) Send (pkk, skk) to Tk and pkk to Sim

Compute: On input (Compute, pkk, skk) from each Tk ∈ T and input
(Compute, (cchoice

i ∈ C)nvoters
i=1 from BB:

1. ∀i ∈ {1, . . . , nvoters}:
a) ∀k ∈ {1, . . . , ntrustees} : decskk

(i)← decskk
(EVector

pk (cchoice
agg )i)

b) cchoice
i ← dec(decsk1(i), . . . , decskntrustees (i))

2. Return res← fMPC(fagg((cchoice
i )nvoters

i=1 )) to Sim.

Figure 3.8.: Ideal MPC protocol.

Now, the privacy theorem for Ordinos says that the level of privacy of Ordinos for this class of
adversaries is the same as the one for the ideal protocol with nhonest

voters − k honest voters.

Theorem 3.4 (Privacy of Ordinos). Under the assumptions (P1) to (P4) and with the mapping
A(PPOrdinos) as defined above, POrdinos(nvoters, ntrustees, µ, pverify, paudit,C, f

res) achieves a privacy
level of δideal

nvoters,nhonest
voters ,µ

(C, f res) w.r.t. A(PPOrdinos).

Proof. The proof is provided in [Mül19], where we reduce the privacy game for Ordinos with
nhonest

voters honest voters, as specified in Definition 2.3, to the privacy game for the ideal voting
protocol with nhonest

voters − k voters, by a sequence of games.

Remark 3.1. Recall that in Ordinos, the trustees evaluate the election result function f res

over the homomorphically aggregated votes, i.e., the vector that encrypts the total number of
votes for each (choice) component. Conversely, the more general result function of the ideal
voting protocol receives the voters’ choices as input. Hence, this generalized result function must
aggregate the votes to apply f res.
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Since the risk of being caught cheating increases exponentially with k, the number of changed
votes k will be relatively small in practice. Nevertheless, the privacy theorem suggests that
manipulating just a few votes of honest voters does not buy the adversary much to weaken
privacy, as illustrated in Section 3.1.3. Conversely, the result function can very well affect the
level of privacy of a tally-hiding system: whether we only announce the winner of an election
or the complete result typically significantly affects privacy. As the following theorem states,
Ordinos achieves full tally-hiding.

Theorem 3.5 (Full Tally-Hiding of Ordinos). Under the assumptions (P1) to (P4) and with
the mapping A(PPOrdinos) as defined above, POrdinos(nvoters, ntrustees, µ, pverify, paudit,C, f

res) achieves
full tally-hiding w.r.t. (f res) and (T, t).

Proof. This theorem directly follows Theorem 3.4.

3.2.3. Instantiations

This section presents our instantiations of the Ordinos framework. We must specify multiple
components to instantiate the Ordinos framework. As cryptographic primitives, we need a
homomorphic, IND-CPA-secure (t, ntrustees)-threshold public-key encryption scheme defined as
E = (KeyShareGen,PublicKeyGen, Epk, decshare, dec), such as exponential ElGamal or Paillier.
A non-interactive zero-knowledge proof (NIZKP) πC for proving knowledge and correctness
of a plaintext vector given ciphertext vector, a public key, and a choice space C; a NIZKP
πKeyShareGen for proving knowledge and correctness of a private key share given a public key
share (see Appendix A.4 for details). A multi-party computation (MPC) protocol Pf res that
takes as input a ciphertext vector of encrypted integers (encrypted using E from above) and
securely evaluates a given function f res over the plain integers and outputs the result on a
bulletin board. For example, we can use the function f res

Plurality that outputs the index(s) of the
ciphertext(s) with the highest integer to determine and publish the winner of an election, see
Section 2.7. We precisely define the exact security properties Pf res has to satisfy to achieve
privacy and verifiability/accountability for Ordinos in Section 3.2.2. Our work’s main challenge
and core contribution is demonstrating that these components are suitable for constructing
protocols for simple and complex voting methods and result functions. Finally, one needs an
EUF-CMA-secure signature scheme S.

We obtained all our benchmarks using an ESPRIMO Q957 (64 bit, i5-7500T CPU @ 2.70GHz,
16 GB RAM). We do not use parallelism; we use just a single core to make the results independent
of the specific core count, making it easier to compare with other benchmarks.

3.2.3.1. Existing Cryptographic Primitives

This section presents how we instantiate the cryptographic primitives needed for the Ordinos
framework.
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We use a threshold variant of the Paillier encryption scheme [DJN10] with a key size of 2, 048
bits to implement E .

The works of Nishide and Sakurai [NS10] (refined and implemented by Veugen et al. [VAS19])
and Hazay et al. [HMR+19] present secure distributed key generation for the Paillier cryptosystem
(and these works also define πKeyShareGen):

• The MPC protocol proposed by Nishide and Sakurai [NS10] employs verifiable secret sharing
with Pedersen commitments. The parties of the MPC protocol prove that they behaved
correctly at every protocol step using zero-knowledge proofs proofs for committed values.

• In the MPC protocol proposed by Hazay et al. [HMR+19], the parties use a shared key for
exponential ElGamal for joint computations and engage in two-party protocols based on the
Paillier cryptosystem for each pair of parties. The parties employ zero-knowledge proofs to
ensure that encrypted values are chosen and used correctly in each step.

The main difference between both proposals is that Nishide and Sakurai’s protocol is secure
in the malicious setting with an honest majority, while Hazay et al. present a solution secure
against a dishonest majority. Specifically, [NS10] is secure against the corruption of all but one
of the parties. To securely create distributed key shares for a Paillier encryption scheme with
a key size of 2, 048 bits, the protocol of [NS10, VAS19] requires about 15 minutes, while the
protocol of [HMR+19] requires only about a single minute. We implemented the protocol of
Nishide and Sakuarai [NS10,VAS19] for our Ordinos instantiations.

As for the signature scheme S, we can use any EUF-CMA-secure instantiation. We make use
of DSS [NIS23] for Ordinos.

3.2.3.2. Choice Space NIZKPs

We realize NIZKPs of choice spaces using existing NIZKPs from the literature. For example,
the works of [CDS94,SV15] provide NIZKPs for CSingle, which can also applied in the setting of
CDuelMatrix, Cmulti,=,nvotes,b, and CRankingPermutation. Furthermore, the work of [HPT19] presents a
NIZKP for CRankingMatrix.

3.2.3.3. Existing Building Blocks of Pf res

We have chosen the components presented in this section not only because they meet the
necessary security requirements but also due to their efficiency, which facilitates constructing
practical instantiations.

As stated above, we use a threshold variant of the additively homomorphic Paillier encryption
scheme [DJN10] with a key size of 2, 048 bits to implement E . Given a public key pk for this
encryption scheme, we distribute the secret key among the ntrustees trustees, and at least t
many trustees need to cooperate in order to decrypt a ciphertext. We can compute several
functions over the plaintexts solely based on the ciphertexts due to the homomorphic property
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of the Paillier encryption scheme. While we can compute basic operations locally, i.e., without
interaction between the trustees, more complex operations need the trustees to work together.
They do so by running publicly accountable MPC building blocks that require the participation
of the owners of the corresponding secret key shares. In the following, we present these basic
and more complex operations for a, b, c ∈ Zn (all operations are mod n where n is determined
by pk):

Basic Arithmetic Operations. Using the additive homomorphic property of the Paillier
encryption scheme [Pai99], we can locally, without any interaction with other key shareholders,
perform additions based on the ciphertexts: Epk(c) = fadd(Epk(a), Epk(b)) s.t. c = a + b; for
brevity we denote this operation by ⊕. Additionally, the Paillier encryption scheme supports
local multiplication with a publicly known constant: Epk(c) = fmulpub(Epk(a), b) s.t. c = a · b.

Shared Decryption. The most simple operation that requires interaction between the trustees
that hold the secret key shares is the shared decryption: c = fdec(Epk(c)) s.t. Epk(c) is an
encryption of c. This operation is performed by letting each trustee Ti creating a decryption
share decshare

i,Epk(c) by running decshare(ski, c). Additionally, the trustee creates a NIZKP of correct
decryption. We can reconstruct the plaintext c using at least t many such decryption shares.

Multiplication. The shared decryption is used as a sub-step to realize the following operations.
In particular, using shared decryption, it is possible to multiply two plaintexts based on their
ciphertexts, that is, Epk(c) = fmul(Epk(a), Epk(b)) s.t. c = a · b, for brevity we denote this
operation by ⊙. This protocol is described [DJN10].

Comparisons. More complex functions can be crafted using the operations presented above.
For example, Lipmaa and Toft [LT13] realize comparisons. That is, a greater-than test Epk(c) =
fgt(Epk(a), Epk(b)) s.t. c = 1 if (and only if) a ≥ b and 0 otherwise, and a test for equality
Epk(c) = feq(Epk(a), Epk(b)) s.t. c = 1 iff a = b and 0 otherwise. These comparison protocols
offer sublinear runtime as long as an upper bound < n for both input values a and b is known;
hence, performance drastically increases as long as a, b are known to remain small. With smaller
values of n, these comparison protocols become faster because the length of encrypted integers
to be compared by fgt() determines the number of recursive calls of fgt() from [53]. In essence,
this protocol splits the inputs into an upper and lower half and recursively calls itself using one
of those halves, depending on the output of the previous comparison. Hence, we use powers of
2 for the bit length of the integers. On a high level, this is also the reason for the logarithmic
online complexity of fgt(). In contrast, feq() does not use recursion. We note that fgt() and
feq() can, in principle, also be used with exponential ElGamal; both functions use decryption for
an (upper-bounded but still) relatively large plaintext space and, hence, would perform poorly
with exponential ElGamal.

Figure 3.9 presents benchmarks of fdec(), fmul(), feq(), fgt() for values of different bit sizes,
with five trustees communicating over a local network and a threshold of two. Because of the
recursive protocols, bit sizes that are not powers of 2 have the same runtime as the next power
of 2. The benchmarks demonstrate the independence of the runtime of fdec() and fmul() to the
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Figure 3.9.: Benchmarks of fdec(), fmul(), feq(), fgt().

bit size. The runtime of feq() barely increases with increasing bit size. Only the benchmarks of
fgt() are majorly affected by the bit size.

The bit size of the values determines how many voters the instantiation of Ordinos supports:
The values of the aggregated votes per component must not exceed the maximum supported
value. Thus, with values of 16 bits and CSingle, the Ordinos instantiation supports up to 216

voters. These numbers might differ for other choice spaces, as voters can give more than one
vote to a component, for example, for CMulti,ocomp,nvotes,b or CBordaPointList.

Figure 3.10 presents benchmarks of fdec(), fmul(), feq(), fgt() using different thresholds of
the encryption scheme. We employed twelve trustees to communicate over a local network for
these benchmarks. We used three systems described above, each running four trustees, one
per core. The threshold barely impacts the runtimes of fdec(), fmul(): To conduct a decryption
or a multiplication, a trustee requires input from t − 1 many other trustees and must verify
the received messages, which, incorporates verifying ZKPs. Consequently, raising the threshold
increases the computation complexity of each trustee. The protocols feq() and fgt() utilize
fdec(), fmul() multiple times as sub-protocols; hence the threshold also influences their runtime.
Nevertheless, the increase in the runtime is diminutive and mainly noticeable for fgt() and more
significant thresholds.

Our electronic voting system requires not only MPC protocols with appropriate computational
complexity but also optimized communication between the trustees. This is because the trustees
communicate over a network during the MPC protocol, and we need to minimize communication
between them to avoid slowing down the overall computation due to slow connections. The
sublinear comparison protocols developed by Lipmaa and Toft [LT13] not only offer sublinear
computation complexity but are also optimized in terms of communication complexity.
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We conducted runtime measurements of the MPC building blocks in Figure 3.11. For this, we
set up two communication channels – one over a local network and another over the Internet.
The differences in runtime are relatively minor: performing 1, 000 greater-than tests increases the
overall runtime by only 12% when switching from a local network to the Internet. This difference
decreases for equality tests, and there is almost no noticeable difference for multiplications and
decryptions.

The MPC building blocks for computing the above operations have a valuable property.
Namely, we can use encrypted outputs from one building block as inputs for another such that
the resulting combined protocol is still a secure, publicly accountable MPC protocol [LT13]. In
other words, they allow for building more complex protocols such as Pf res for Ordinos that meet
the requirements of Theorems 3.2, 3.4, and 3.5.

Secure Offline Phase. The building blocks presented above, the building blocks presented next,
and our MPC protocols often require ciphertexts that contain specific values, e.g., a random value
chosen uniformly and another ciphertext with the inverse of this random value as plaintext. Before
the election, we compute such ciphertexts, with plaintexts independent of the inputs of the MPC
protocol (in our case, the tally). We securely compute these ciphertexts for various plaintexts
with specific properties using MPC protocols proposed in [CFL83a,CFL83b,BB89,DFK+06].
These works cover all of our use cases. The runtime of these MPC is not time-critical since we
can execute them before the election.

3.2.3.4. Novel Building Blocks of Pf res

This section describes new publicly verifiable and accountable MPC building blocks needed to
construct Pf res for various election result functions f res, based on the primitives and existing
building blocks introduced above.

Before we present the multi-party computation protocols for specific election result functions,
we present various protocols serving as building blocks.

Comparison Matrix. A valuable tool for many of the following MPC components when
comparing n values (ai)n

i=1 is a comparison matrix EMatrix
pk (C) of size n × n, which denotes

in each entry EMatrix
pk (C)ij whether value ai is greater than (or equal to) value aj , indicated

by EMatrix
pk (C)ij = Epk(1) if this is the case, and EMatrix

pk (C)ij = Epk(0) otherwise. The MPC
component PComparisonMatrix to compute EMatrix

pk (C) is presented in Algorithm 3.1. Since this
algorithm compares each pairing of the candidates, it has a quadratic runtime in the number of
candidates.

Comparison Vector. Based on the comparison matrix consisting of encryptions of zero and
one, we can compute a ciphertext for each ai that contains the number of comparisons that this
entry has won, i.e., how many j ̸= i exist with ai ≥ aj . Algorithm 3.2 presents PComparisonVector

that computes the comparison vector EVector
pk (V ) of size n such that EVector

pk (V )i denotes against
how many other elements in (ai)n

i=1 the element ai wins (or ties) a direct comparison. Since this
algorithm calls PComparisonMatrix as a sub-routine, it also has a quadratic runtime.
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Algorithm 3.1: PComparisonMatrix

Input: (EVector
pk (a)i)n

i=1
1 EMatrix

pk (C) = CreateEncMatrix(1, n, n)
2 for i ∈ {1, . . . , n} do
3 for j ∈ {i+ 1, . . . , n} do
4 Epk(g) = fgt(EVector

pk (a)i, E
Vector
pk (a)j)

5 EMatrix
pk (C)ij = Epk(g) ▷ Cij = ai ≥ aj

6 EMatrix
pk (C)ji = Epk(1)⊖ Epk(g)⊕ feq(EVector

pk (a)i, E
Vector
pk (a)j) ▷ Cji = aj ≥ ai

7 return EMatrix
pk (C)

Algorithm 3.2: PComparisonVector

Input: (EVector
pk (a)i)n

i=1
1 EMatrix

pk (C) = PComparisonMatrix(EVector
pk (a))

2 EVector
pk (V ) = (EMatrix

pk (C)i1 ⊕ · · · ⊕ EMatrix
pk (C)in)n

i=1
3 return EVector

pk (V )

Minimum and Maximum Values. Repeatedly, we have a vector EVector
pk (a) of n elements

and want to find the k indices of largest (or smallest) values. That is, we want to compute n
ciphertexts EVector

pk (b) such that bi = 1 if ai is one the k largest (or smallest) values in (ai)n
i=1

and bi = 0 otherwise. We can do so by making use of PComparisonVector presented above and
then applying fgt() to compare the ciphertexts of the comparison vector (containing the results
for ai) with a ciphertext on the number n− k and obtain EVector

pk (b)i. If there are multiple ai

with the same value, there might be more than k entries bi that are 1. In cases where exactly
k such values are required, one can use a tie-breaking mechanism such as the one described
in [CGY22]. Analogously, we can proceed in order to find the smallest k values. Note that this
algorithm can also be applied if k is not publicly known but only available as a ciphertext; in
this situation, k is also not revealed by the algorithm. We use this property later in the context
of the Hare-Niemeyer method. We denote these algorithms for computing the vectors EVector

pk (b)i

by PMaxk, (or PMink) presented in Algorithm 3.3, (or Algorithm 3.4). These algorithms have
runtime O(n2).

(Index of) Maximum. If we are just interested in obtaining a ciphertext EVector
pk (a)i of the

maximum value ai in the vector (EVector
pk (a)i)n

i=1, we can do so more efficiently in linear runtime.
That is, we start with the possible maximumm = EVector

pk (a)0 and iterate through all ai’s. For each
ai we test whether it is greater than the current maximum with Epk(g) = fgt(EVector

pk (a)i, Epk(m))
and adapt the maximum accordingly with Epk(m) = g⊙EVector

pk (a)i⊕(Epk(1)⊖Epk(g))⊙Epk(m).
This MPC component PMaxVal iterates through all elements and stores the current maximum
value. We can compute the minimum PMinVal accordingly. Extending this algorithm allows finding
an index of the largest (or smallest) value. The MPC component presented in Algorithm 3.6 uses
the same approach as PMaxVal but also stores the largest value’s index. With that, if multiple
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Algorithm 3.3: PMaxk

Input: l = (EVector
pk (a)i)n

i=1
1 EVector

pk (V ) = PComparisonVector(l)
2 Epk(g′) = Epk(n)⊖ Epk(k)⊖ Epk(1)
3 return (fgt(EVector

pk (V )i, Epk(g′)))n
i=1

Algorithm 3.4: PMink

Input: l = (EVector
pk (a)i)n

i=1, Epk(k)
1 EVector

pk (V ) = PComparisonVector(l)
2 return (Epk(1)⊖ fgt(EVector

pk (V )i, Epk(k)))n
i=1

such values of maximum value exist, the last index is returned. These algorithms have runtime
O(n).

Floor Division. Given a ciphertext Epk(a) of some a ∈ N and a ciphertext Epk(b) for some
b ∈ N>1, this algorithm, described in Algorithm 3.7, is used to compute a ciphertext Epk(i)
with i = ⌊a

b ⌋. The algorithm also requires a value u ∈ N, s.t. u · b does not exceed the plaintext
space size and i ∈ {0, . . . , u}. The algorithm performs a binary search to find the correct result.
Suppose we know the plaintext value of the divisor b. In that case, we can optimize the algorithm
by replacing the multiplication Epk(j)⊙Epk(b) with fmulpub(Epk(j), b), allowing us to save an
encrypted multiplication per bit of the input values.

Fractions. Election methods for parliamentary elections often employ divisions that produce
fractions, an issue for encryption schemes, and MPC protocols that operate on natural numbers,
such as those presented and employed in this thesis. One common approach [HHK+21a,CGY22]
to deal with divisions is to multiply all values by the least common multiple of all divisors used
in a computation such that divisions are always guaranteed to produce natural numbers. Scaling
can drastically increase the size of numbers, severely reducing the efficiency gain of the sublinear
comparisons protocols fgt() and feq(). Therefore, we propose an alternative approach to deal
with fractions by representing values, where needed, as rational numbers. Let a be a rational
number consisting of a numerator n and denominator d. We denote an encrypted rational number
as EFrac

pk (a) := (Epk(n), Epk(d)), and with EFrac
pk (a).num we denote the encrypted numerator and

with EFrac
pk (a).den the encrypted denominator of a. We denote by CreateEncFraction(n, d) the

operation that creates an encrypted rational number with numerator n and denominator d (if
the inputs n or d are not already encrypted, then they are first encrypted with public constant
randomness). Based on this representation, we design and implement MPC components for
basic arithmetic computations on encrypted rational numbers, including addition, multiplication,
and comparisons.

Based on PMaxLastIdx (see Algorithm 3.6), we propose the protocol PMaxFractionLastIdx that
takes a list of n encrypted fractions and returns another list of the same length with Epk(1)
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Algorithm 3.5: PMaxVal

Input: (EVector
pk (a)i)n

i=1
Result: EVector

pk (a)i such that ai = max((ai)n
i=1)

1 Epk(m) = EVector
pk (a)1 ▷ m contains the (current) maximum value

2 for j ∈ {2, . . . , n} do
3 Epk(g) = fgt(EVector

pk (a)j , Epk(m))
4 Epk(m) = Epk(g)⊙ EVector

pk (a)j ⊕ (Epk(1)⊖ Epk(g))⊙ Epk(m) ▷ Update m
5 return Epk(m)

Algorithm 3.6: PMaxLastIdx

Input: (EVector
pk (a)i)n

i=1
Result: Index of maximum value

1 Epk(m) = EVector
pk (a)0 ▷ m contains the (current) maximum value

2 Epk(i) = Epk(0) ▷ i contains the index of the maximum value
3 for j ∈ {2, . . . , n} do
4 Epk(g) = fgt(EVector

pk (a)j , Epk(m))
5 Epk(m) = Epk(g)⊙ EVector

pk (a)j ⊕ (Epk(1)⊖ Epk(g))⊙ Epk(m) ▷ Update m
6 Epk(i) = Epk(g)⊙ Epk(j)⊕ (Epk(1)⊖ Epk(g))⊙ Epk(i) ▷ Update i
7 return Epk(i)

at the index of the maximal fraction and Epk(0) everywhere else, where if there are multiple
maxima, only the last one in the list is marked Epk(1).

Election methods often need to deal with breaking ties. For this purpose, Cortier et al. [CGY22]
proposed an algorithm that finds the maximum in a list and takes care of tie-breaking by scaling
values and adding small tie-breaking values. While this scaling idea is conceptually simple, it
requires care to obtain a correct implementation. For example, in the method proposed by
Cortier et al., we compute a score for each cparty

j as mj = 2⌈log nparties+1⌉ · qj + rj . We then compare
the values qj . Here, rj ∈ {1, . . . , nparties} denotes a tie-breaking value (or rank) uniquely assigned
to cparty

j . The values qj are the values that one would compare without tie-breaking (if qi > qj

then party i should always win this comparison). However, suppose the values qj are fractions
of very close values. In that case, one can construct examples where this tie-breaking approach
fails, i.e., mi > mj but qi < qj . In this situation, we consider the ranks, although the values
qi and qj are different; hence, we require no tie-breaking. These cases can occur in applying
the Sainte-Laguë method. For this reason, we present a new protocol PMaxFractionByRank for
breaking ties that does not run into this issue. This algorithm additionally takes encrypted ranks
EVector

pk (r) = (Epk(ri))n
i=1 as input, where the (r1, . . . , rn) form a permutation of 0, . . . , n− 1, and

first scales all ciphertexts EVector
pk (q)i by a certain value, adds the encrypted ranking EVector

pk (r)i

to the scaled EVector
pk (q)i, and then continues just as PMaxFractionLastIdx. By scaling, adding ri

does not change the output if the qj are not tied. However, if any of the inputs qj are equal, the
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Algorithm 3.7: PFloorDiv

Input: Epk(a), Epk(b), u
1 length = bitLength(u)
2 Epk(lower) = Epk(0)
3 for i ∈ {1, . . . , length} do
4 Epk(j) = Epk(lower)⊕ Epk(2length−i)
5 Epk(gt) = fgt(Epk(a), Epk(j)⊙ Epk(b)) ▷ Check if a ≥ j · b
6 Epk(lower) = Epk(lower)⊕ (2length−i ⊙ Epk(gt)) ▷ Update lower accordingly
7 return Epk(lower)

Algorithm 3.8: PMaxFractionByRank

Input: (EFracVector
pk (v)i)n

i=1, (EVector
pk (r)i)n

i=1
1 EFrac

pk (vmax) = EFracVector
pk (v)1

2 Epk(iidx) = Epk(1)
3 Epk(rmax) = EVector

pk (r)1
4 for i ∈ {2, . . . , n} do
5 Epk(mi) = EFracVector

pk (v)i ⊙ EFracVector
pk (v)i.den⊙ EFrac

pk (vmax).den⊙ n⊕ EVector
pk (r)i

6 Epk(mmax) = EFrac
pk (vmax)⊙ EFrac

pk (vmax).den⊙ EFracVector
pk (v)i.den⊙ n⊕ Epk(rmax)

7 Epk(w) = fgt(Epk(mi), Epk(mmax))
8 EFrac

pk (vmax) = Epk(w)⊙ EFracVector
pk (v)i ⊕ (Epk(1)⊖ Epk(w))⊙ EFrac

pk (vmax)
9 Epk(iidx) = Epk(w)⊙ Epk(i)⊕ (Epk(1)⊖ Epk(w))⊙ Epk(iidx)

10 Epk(rmax) = Epk(w)⊙ EVector
pk (r)i ⊕ (Epk(1)⊖ Epk(w))⊙ Epk(rmax)

11 return (feq(Epk(i), Epk(iidx)))n
i=1

party with the highest rank ri will have the greater (encrypted) value after the addition. We
present the algorithm in Algorithm 3.8.

3.2.3.5. MPC Components for Election Result Functions

We instantiate the Ordinos framework with a deterministic polynomial election result function
f res : {0, 1} → {0, 1} that computes the final election result based on the (aggregated) tally (see
Section 3.2.1).

Depending on the election result function f res, the Ordinos system uses a publicly accountable
MPC protocol Pf res that computes f res in a secure and tally-hiding way. That is, Pf res takes as
input the encrypted aggregated tally EVector

pk (cchoice
agg ) and then computes the election result such

that

Pf res(EVector
pk (cchoice

agg )) = f res(cchoice
agg ).

This section presents various secure MPC instantiations Pf res that evaluate f res. Section 2.7
presents various election result functions. We note that the Ordinos framework currently supports
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Algorithm 3.9: Pf res
Plurality

Input: EVector
pk (cchoice

agg )
1 Epk(vmax) = PMaxVal(EVector

pk (cchoice
agg ))

2 return (fdec(feq(EVector
pk (cchoice

agg )i, Epk(vmax))))ncomponents
i=1
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Figure 3.12.: Benchmarks of Ordinos evaluating Pf res
Plurality with ntrustees = 12.

the result functions presented in this section, including several variants. At the end of this
section, we prove security for all of these instantiations of Ordinos.

3.2.3.6. Plurality Voting

The f res
Plurality function outputs (choice) component with the most votes. The Pf res

Plurality MPC
protocol, defined in Algorithm 3.9, finds the maximum value of votes per (choice) component
and checks for each (choice) component whether it received the most votes. Using PMaxVal to
find the maximum value leads to a linear runtime in ncand.

Figure 3.12 presents the benchmarks of Ordinos evaluating Pf res
Plurality for various bit sizes and

thresholds. We used 12 trustees for all benchmarks. The benchmarks validate that the runtime
is linear in the number of candidates. Furthermore, they reveal that the bit size of the values
(which determine the number of recursive calls) is the main factor contributing to the runtime.
Regarding the threshold t, although the differences in runtime for basic operations are barely
noticeable (see Figure 3.10), protocols for election result functions require multiple calls of these
basic operations, resulting in evident differences in runtime.

Using Ordinos, we can evaluate f res
Plurality with 100 candidates in about 51 minutes, using values

of 64 bits, 12 trustees, and a threshold of 12. Most elections do not require values of 64 bits,
as they are larger than the number of voters in all cases. However, we could need values of
larger bit sizes for elections that allow voters to assign points to candidates. Using 16 bits and
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Algorithm 3.10: Pf res
Threshold,t

Input: EVector
pk (cchoice

agg )
1 return (fdec(fgt(EVector

pk (cchoice
agg )i, t)))ncand

i=1
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Figure 3.13.: Benchmarks of Ordinos evaluating Pf res
Threshold,t with ntrustees = 12.

maintaining the same threshold and number of trustees, we can evaluate a plurality vote with
100 candidates in approximately 34 minutes.

3.2.3.7. Threshold

The election result function f res
Threshold,t outputs all candidates that received at least t many votes.

We present the secure tally-hiding MPC realization Pf res
Threshold,t in Algorithm 3.10. It computes

(fdec(fgt(EVector
pk (cchoice

agg )i, Epk(t))))ncand
i=1 and outputs this list. Therefore, the complexity of this

protocol is linear in the number of candidates and dominated by running fgt() per candidate.
Figure 3.13 presents the benchmarks of Ordinos evaluating f res

Threshold,t for various bit sizes and
thresholds. As usual, we used 12 trustees for all benchmarks.

Using Ordinos, we can evaluate f res
Threshold,t with 100 candidates in about 34 minutes, using

values of 32 bits, 12 trustees, and a threshold of 12.

3.2.3.8. Ranking, Parital Ranking, Best, and Ranking with Aggregated Votes of Best

Our Ordinos instantiations for the election result functions f res
Ranking, f res

PartialRanking,n, f res
Best,n, and

f res
RankingVotesBest,n are quite similar and only differ in minor aspects. Therefore, we will present

them together in this section.
The core of the multi-party protocols for these instantiations is PComparisonVector. This build-

ing block essentially computes the ranking of the candidates, and our instantiation Pf res
Ranking

calls PComparisonVector and decrypts the resulting vector EVector
pk (V ). We realize Pf res

PartialRanking,n by
modifying EVector

pk (V ) in the following way before decryption. We check for each entry via a
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Algorithm 3.11: Pf res
Best,n

Input: EVector
pk (cchoice

agg )
1 EVector

pk (l) = PMaxk((EVector
pk (cchoice

agg )), n)
2 return (fdec(EVector

pk (l)i))ncand
i=1
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Figure 3.14.: Benchmarks of Ordinos evaluating Pf res
Best,n with ntrustees = 12. The benchmarks of

f res
Ranking, f res

PartialRanking,n, and f res
RankingVotesBest,n only differ for up to a minute at maximum.

greater-than test fgt() whether this entry is at least n and set every entry that does not pass
this check to zero using a multiplication fmul() for the respective tally-hiding assignment. The
secure tally-hiding MPC realization Pf res

Best,n operates similarly but sets all values that pass the
check to one and all others to zero before decryption.

The protocol Pf res
RankingVotesBest,n uses the same idea but does not make changes to the comparison

vector EVector
pk (V ) but instead adapts the vote counts of each candidate. Using the above check,

if the candidate is among the n candidates, her vote count is not updated; otherwise, we set it
to zero. In addition to the ranking, the trustees decrypt the updated vote count.

We present Pf res
Best,n in Algorithm 3.11 and omit the formal description of the other protocols,

due to their similarity to this protocol.

The protocols have similar runtimes that only differ up to a minute. We present the benchmarks
of Pf res

Best,n in Figure 3.14 for various bit sizes and thresholds. As usual, we used 12 trustees for
all benchmarks. The benchmarks show the quadratic scaling of the runtime in the number of
candidates due to the underlying protocol PComparisonVector.

Using Ordinos, we can evaluate the ranking-based election result function with 15 candidates
in about 47 minutes, using values of 32 bits, 12 trustees, and a threshold of 12.
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3.2.3.9. Condorcet

Condorcet methods are more complex than the election result function from the previous sections.
The candidates do not receive votes that we aggregate; instead, the voters rank them with
direct comparisons. We obtain an aggregated comparison matrix as input for the Condorcet
election result functions, opening different and sophisticated mechanisms to select the election’s
winner(s).

Condorcet methods operate with computing scores for each candidate depending on her direct
comparisons with the other candidates. Then, algorithms that select the election’s winners based
on these scores can be applied. For example, the Condorcet Schulze method creates a weighted
graph between the candidates and searches for paths with optimal values.

These complex algorithms are demanding to compute for traditional elections, particularly for
tally-hiding systems relying on heavy-weight cryptography. Therefore, a significant challenge for
us is constructing full tally-hiding MPC protocols leading to efficient Ordinos instantiations.

3.2.3.10. Condorcet Helper

As input for the following Condorcet methods, we use the aggregated ranking matrix Ψ (see
Section 2.6). To compute the comparison matrix and comparison vector, we need to adapt
PComparisonMatrix and PComparisonVector accordingly to support the modified input. Therefore, we
construct a helper method for the Condorcet methods, denoted as PCondorcetHelper, that computes
the strict comparison matrix D, which indicates in each entry Dij whether candidate i has
strictly won more comparisons with candidate j (Dij = 1) or not (Dij = 0). Furthermore, for
each ccand

i , the variable dgteq
i denotes the number of comparisons she has won or tied, while dgt

i

only counts the winning comparisons. We present the MPC protocol in Algorithm 3.12.

3.2.3.11. Plain Condorcet

The vanilla/plain Condorcet method, f res
CondorcetPlain, yields a unique winner who wins all pairwise

comparisons. We present the tally-hiding realization Pf res
CondorcetPlain in Algorithm 3.13. The MPC

protocol searches the candidate that won ncand − 1 duels, i.e., won against all other candidates.
For this, it employs PCondorcetHelper as a sub-protocol and then checks whether dgt

i equals ncand−1.
Figure 3.15 presents the benchmarks of Pf res

CondorcetPlain . The benchmarks show the quadratic
scaling of PCondorcetHelper in ncand.

3.2.3.12. Weak Condorcet

In this method f res
CondorcetWeak, all candidates that do not lose duels are output. Executing the

algorithm for (plain) Condorcet allows a straightforward computation of the weak Condorcet
winner. That is, for each candidate ccand

i we test whether fdec(fgt(EVector
pk (dgteq)i, Epk(ncand −

1))) = 1. Algorithm 3.14 presents the tally-hiding realization.
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Algorithm 3.12: PCondorcetHelper

Input: EMatrix
pk (DMagg)

1 EMatrix
pk (D) = CreateEncMatrix(0, ncand, ncand) ▷ Strict comparison matrix

2 EVector
pk (dgteq) = CreateEncVector(0, ncand) ▷ Number of comparisons won or tied

3 EVector
pk (dgt) = CreateEncVector(0, ncand) ▷ Number of comparisons won

4 for i ∈ {1, . . . , ncand} do
5 for j ∈ {i+ 1, . . . , ncand} do
6 Epk(g) = fgt(EMatrix

pk (DMagg)ij , E
Matrix
pk (DMagg)ji)

7 Epk(e) = feq(EMatrix
pk (DMagg)ij , E

Matrix
pk (DMagg)ji)

8 Epk(g′) = Epk(g)⊖ Epk(e)
9 EMatrix

pk (D)ij = Epk(g′)
10 EMatrix

pk (D)ji = Epk(1)⊖ Epk(g)
11 EVector

pk (dgteq)i = EVector
pk (dgteq)i ⊕ Epk(g)

12 EVector
pk (dgteq)j = EVector

pk (dgteq)j ⊕ Epk(1)⊖ Epk(g′)
13 EVector

pk (dgt)i = EVector
pk (dgt)i ⊕ Epk(g′)

14 EVector
pk (dgt)j = EVector

pk (dgt)j ⊕ Epk(1)⊖ Epk(g)
15 return EMatrix

pk (D), EVector
pk (dgteq), EVector

pk (dgt)

Algorithm 3.13: Pf res
CondorcetPlain

Input: EMatrix
pk (DMagg)

1 EMatrix
pk (D), EVector

pk (dgteq), EVector
pk (dgt) = PCondorcetHelper(EMatrix

pk (DMagg))
2 return (fdec(feq(EVector

pk (dgt)i, Epk(ncomponents − 1))))ncand
i=1
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Figure 3.15.: Benchmarks of Ordinos evaluating Pf res
CondorcetPlain with ntrustees = 12.

We present the benchmarks of Pf res
CondorcetWeak in Figure 3.16, which are similar to the benchmarks

of Pf res
CondorcetPlain .
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Algorithm 3.14: Pf res
CondorcetWeak

Input: EMatrix
pk (DMagg)

1 EMatrix
pk (D), EVector

pk (dgteq), EVector
pk (dgt) = PCondorcetHelper(EMatrix

pk (DMagg))
2 return (fdec(feq(EVector

pk (dgteq)i, Epk(ncand − 1))))ncand
i=1
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Figure 3.16.: Benchmarks of Ordinos evaluating Pf res
CondorcetWeak with ntrustees = 12.

3.2.3.13. Copeland

This method f res
CondorcetCopeland considers the wins and losses of each candidate in their duels and

outputs all candidates with the highest difference between wins and losses. For this evaluation
method, we first compute the Copeland points of each candidate, which are defined as follows.

Definition 3.2 (Copeland Points). Let C = {ccand
1 , . . . , ccand

ncand} be a set of candidates and let
n1

votes, . . . , n
ncand
votes be the number of votes that these candidates received. The Copeland points of

ccand
i , denoted as pCopeland

i , are defined as follows. The candidate receives two points for every
other candidate she wins the duel and one for each tied candidate. We formally define the
Copeland points as

pCopeland
i :=

∑︂
ccand

j ∈C,ccand
j ̸=ccand

i ,ni
votes>nj

votes

2 +
∑︂

ccand
j ∈C,ccand

j ̸=ccand
i ,ni

votes=nj
votes

1.

Furthermore, let S ⊆ C. With pCopeland
S we denote the sum of the Copeland points of the

candidates in S, that is pCopeland
S := ∑︁

ccand
i ∈S p

Copeland
i .

The maximum Copeland points possible are 2 · (ncand − 1) when the candidate wins the duel
against every other candidate.

Using the results from the (plain) Condorcet evaluation, we compute the Copeland points of
ccand

i via pCopeland
i = dgt

i + dgteq
i . Since these comparisons do not include the comparison with the
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Algorithm 3.15: Pf res
CondorcetCopeland

Input: EMatrix
pk (DMagg)

Result: Test
1 EMatrix

pk (D), EVector
pk (dgteq), EVector

pk (dgt) = PCondorcetHelper(EMatrix
pk (DMagg))

2 EVector
pk (l) = (EVector

pk (dgt)i + EVector
pk (dgteq)i)ncand

i=1 ▷ Compute Copeland points
3 Epk(vmax) = PMaxVal(EVector

pk (l))
4 return (fdec(feq(EVector

pk (l)i, Epk(vmax))))ncand
i=1
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Figure 3.17.: Benchmarks of Ordinos evaluating Pf res
CondorcetCopeland with ntrustees = 12.

candidate itself, the maximum Copeland points that a candidate can receive is 2 · (ncand − 1),
which occurs if the candidate strictly wins all of its ncand − 1 duels. The tally-hiding realization
Pf res

CondorcetCopeland then computes the candidate with the most Copeland points with the help of the
algorithm for the maximum. We present the algorithm in Algorithm 3.15.

Figure 3.17 presents the benchmarks of Pf res
CondorcetCopeland , which are slightly slower as the runtime

of Pf res
CondorcetPlain .

3.2.3.14. Smith Set

In this method f res
CondorcetSmithSet, a set of winners is output, the so-called Smith set. It is defined

as the smallest set of candidates such that each candidate from the Smith set wins the duels
against every candidate outside the Smith set. Otherwise, it will necessarily contain multiple
candidates. In order to compute the Smith set in a tally-hiding way, we use the Copeland points
(see Definition 3.2) to find the smallest dominating set, as defined below.

Definition 3.3 (Dominating Set). Let C = {ccand
1 , . . . , ccand

ncand} be a set of candidates and let
n1

votes, . . . , n
ncand
votes be the number of votes that these candidates received. A subset Φ ⊆ C is called

dominating set (of C) if (and only if) such that each candidate in Φ wins the direct duel against
every candidate not in Φ, i.e., it holds that
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∀ccand
i ∈ Φ ∀ccand

j ∈ C \ Φ : ni
votes > nj

votes.

Lemma 3.1 (Copeland Points of a Dominating Set). If Φ ⊆ C is a dominating set of C, then
it holds true that

pCopeland
Φ = |Φ| · (2 · ncand − |Φ| − 1).

Proof. Let Φ be a dominating set. Consider a duel between the candidates ccand
i , ccand

j ∈ C:

1. None of the candidates is part of the dominating set, i.e., ccand
i , ccand

j ∈ C \ Φ. Such duels
do not affect the Copeland points of Φ.

2. Both are part of the dominating set, i.e., ccand
i , ccand

j ∈ Φ. Then, this duel contributes two
points to pCopeland

Φ : Either one candidate received more votes than the other, then this
candidate receives two points, and the other none, of both candidates received the same
number of votes, them both candidates receive one point each.

3. Exactly one of them is part of the dominating set, i.e., ccand
i ∈ Φ, ccand

j ∈ C \ Φ. Since Φ
is a dominating set, we have that ni

votes > nj
votes and thus duel contributes two points to

pCopeland
Φ .

There are |Φ|·(|Φ|−1)
2 duels of the second case and |Φ| · (ncand−|Φ|) duels of the third case. thus

pCopeland
Φ = 2 · |Φ| · (|Φ| − 1)

2 + 2 · |Φ| · (ncand − |Φ|)

= |Φ| · (|Φ| − 1) + 2 · |Φ| · (ncand − |Φ|)

= |Φ| · (|Φ| − 1 + 2 · ncand − 2 · |Φ|))

= |Φ| · (2 · ncand − |Φ| − 1))

For the other direction, let S ⊆ C such that pCopeland
S = |S| · (2 · ncand − |S| − 1). Again, we

consider duels between all possible candidates ccand
i , ccand

j ∈ C, as done above:

1. None of the candidates is part of the set, i.e., ccand
i , ccand

j ∈ C \ S. Such duels do not affect
the Copeland points of S.

2. Both are part of the set, i.e., ccand
i , ccand

j ∈ S. Then, this duel contributes two points to
pCopeland

S , with the same argumentation as above.

3. Exactly one of them is part of the set, i.e., ccand
i ∈ S, ccand

j ∈ C \ S. Let p∗ be the sum of
all points of this case.
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Figure 3.18.: Benchmarks of Ordinos evaluating Pf res
CondorcetSmithSet with ntrustees = 12.

Again, there are |S|·(|S|−1)
2 duels of the second case. Since there are no other cases left, it must

hold that p∗ = pCopeland
S − 2 · |C|·(|C|−1)

2 .

p∗ = pCopeland
S − 2 · |S| · (|S| − 1)

2

= |S| · (2 · ncand − |S| − 1)− 2 · |S| · (|S| − 1)
2

= |S| · (2 · ncand − |S| − 1− |S|+ 1)

= |S| · (2 · ncand − 2 · |S|)

= 2 · |S| · (ncand − |S|)

Since there are |S| · (ncand− |S|) of this case, on average, each such duel must contribute to p∗

with 2·|S|·(ncand−|S|)
|S|·(ncand−|S|) = 2 points. Since there is no possibility of obtaining more than two points

with one duel, each such duel must contribute precisely two points, and thus, each candidate in
S wins every duel against all candidates not in S. Therefore, S is a dominating set.

The secure tally-hiding MPC realization Pf res
CondorcetSmithSet for the Smith set makes use of Lemma 3.1

works as follows. Starting with the highest Condorcet points possible and iterating down to one,
it adds all candidates that received this number of Copeland points to the current set. If the
current set satisfies the requirement of Lemma 3.1, this set is the smallest possible dominating
set and is, therefore, the Smith set. We present the complete protocol in Algorithm 3.16.

Figure 3.18 presents the benchmarks of Pf res
CondorcetSmithSet , which scale quadratic in ncand.
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Algorithm 3.16: Pf res
CondorcetSmithSet

Input: EMatrix
pk (DMagg)

1 EMatrix
pk (D), EVector

pk (dgteq), EVector
pk (dgt) = PCondorcetHelper(EMatrix

pk (DMagg))
2 EVector

pk (b) = CreateEncVector(0, ncand) ▷ Initialize result vector
3 Epk(n) = Epk(0)
4 EVector

pk (pCopeland) = (EVector
pk (dgt)i + EVector

pk (dgteq)i)ncand
i=1 ▷ Compute Copeland points

5 Epk(pΦ) = Epk(0)
6 Epk(f) = Epk(0) ▷ f saves whether the Smith set is found
7 for t = 2 · (ncand − 1) downto 1 do ▷ Iterate over possible Copeland points
8 for i ∈ {1, . . . , ncand} do
9 Epk(e) = feq(EVector

pk (pCopeland)i, Epk(t)) ▷ Check Copeland points of candidate
10 EVector

pk (b)i = EVector
pk (b)i ⊕ (Epk(1)⊖ Epk(f))⊙ Epk(e)

11 Epk(n) = Epk(n)⊕ EVector
pk (b)i ▷ Update size of dominating set

12 Epk(pΦ) = Epk(pΦ)⊕ (Epk(t)⊙ EVector
pk (b)i)i ▷ Update Copeland points

13 Epk(ttmp) = Epk(n)⊙ (Epk(2)⊙ Epk(ncand)⊖ Epk(n)⊖ Epk(1))
14 Epk(f) = Epk(f)⊕ feq(Epk(pΦ), Epk(ttmp)) ▷ Check if Smith set is found
15 return (fdec(EVector

pk (b)i))ncand
i=1

3.2.3.15. Minimax

The method f res
CondorcetMiniMax,κ is parameterized by some metric κ, and the idea of this method

is only to consider the worst duel of each candidate and then output all candidates that have
the best of these worst duels. For this purpose, one needs to define some metric κ to assign
scores θ ∈ {0, . . . , nvotes} to the duels, i.e., the worst (or best) duel is the one with the lowest (or
highest) score. The selection of this metric κ defines a concrete instantiation of the minimax
method. The tally-hiding minimax MPC protocol Pf res

CondorcetMiniMax,κ for a generic metric κ is
presented in Algorithm 3.17. This protocol computes for each candidate the score of the worst
duel (according to the given metric) and then finds the candidate with the best worst score.
We have implemented the minimax method with two metrics for Ordinos, namely margins and
winning votes.

MiniMax Margins. The metric margins, denoted by fMarginMetric, sets the score of candidate
ccand

i ’s duel versus candidate ccand
j to the difference between the number of duels won by ccand

i

versus ccand
j minus the number of duels lost by ccand

i versus ccand
j . In order to scale the score

in the correct range, we add the number of votes to this score. The tally-hiding realization is
presented in Algorithm 3.18.

MiniMax Winning Votes. The metric winning votes, denoted by fWinningVotesMetric, sets the
score of ccand

i ’s duel versus ccand
j to 0 if ccand

i wins more duels versus ccand
j than ccand

i loses.
Otherwise, it is given by the negative number of won duels of ccand

j versus ccand
i . We scale

this score in the correct range by adding the number of votes. The tally-hiding realization is
presented in Algorithm 3.19.
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Algorithm 3.17: Pf res
CondorcetMiniMax,κ

Input: EMatrix
pk (DMagg)

1 EMatrix
pk (D), EVector

pk (dgteq), EVector
pk (dgt) = PCondorcetHelper(EMatrix

pk (DMagg))
2 EVector

pk (lθ) = (Epk(nvotes))ncand
i=1 ▷ Initialize result vector

3 for i ∈ {1, . . . , ncand} do
4 for j ∈ {1, . . . , ncand} \ {i} do
5 Epk(θ) = κ(EMatrix

pk (DMagg)ij , E
Matrix
pk (DMagg)ji, Epk(nvotes)) ▷ Compute score

6 Epk(b) = EMatrix
pk (D)ji ▷ Indicator for update

7 Epk(θ) = Epk(b)⊙ Epk(θ)⊕ (Epk(1)⊖ Epk(b))⊙ Epk(nvotes)
8 Epk(g′) = fgt(EVector

pk (lθ)i, Epk(θ))
9 EVector

pk (lθ)i = Epk(g′)⊙ Epk(θ)⊕ (Epk(1)⊖ Epk(g′))⊙ EVector
pk (lθ)i ▷ Update score

10 return Pf res
Plurality(EVector

pk (lθ))

Algorithm 3.18: PfMarginMetric

Input: EMatrix
pk (DMagg)ij , E

Matrix
pk (DMagg)ji, Epk(nvotes)

1 return EMatrix
pk (DMagg)ij ⊖ EMatrix

pk (DMagg)ji ⊕ Epk(nvotes)
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Figure 3.19.: Benchmarks of Ordinos evaluating Pf res
CondorcetMiniMax,κ for κ = fMarginMetric and κ =

fWinningVotesMetric with ntrustees = 12.

In Figure 3.19, we present the benchmarks of Pf res
CondorcetMiniMax,κ for both metrics. Since both

methods only employ additions and subtractions, they provide equal runtime.

3.2.3.16. Schulze

The Schulze method f res
CondorcetSchulze is a slightly more complicated, but commonly used Condorcet

method (see, e.g., [Sch18]). In this method, we also consider a score function for the duels,
which can be the same as in the Copeland method. The candidates and the duels between them
are considered as a complete directed weighted graph Γ, where the nodes of Γ represent the
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Algorithm 3.19: PfWinningVotesMetric

Input: EMatrix
pk (DMagg)ij , E

Matrix
pk (DMagg)ji, Epk(nvotes)

1 return Epk(nvotes)⊖ EMatrix
pk (DMagg)ji

Algorithm 3.20: Pf res
CondorcetSchulze

Input: EMatrix
pk (DMagg)

1 EMatrix
pk (Γ) = CreateEncMatrix(0, ncand, ncand) ▷ Directed weighted graph

2 for i ∈ {1, . . . , ncand} do ▷ Initalize directed weighted graph
3 for j ∈ {1, . . . , ncand} \ {i} do
4 EMatrix

pk (Γ)ij = EMatrix
pk (DMagg)ij ⊖ EMatrix

pk (DMagg)ji

5 for i ∈ {1, . . . , ncand}, j ∈ {1, . . . , ncand} \ {i}, k ∈ {1, . . . , ncand} \ {i, j} do ▷ Compute
directed weighted graph

6 Epk(m) = PMinVal(EMatrix
pk (Γi,k), EMatrix

pk (Γk,j))
7 EMatrix

pk (Γ)ij = PMaxVal(EMatrix
pk (DMagg)ij , Epk(m))

8 EMatrix
pk (Ω) = CreateEncMatrix(0, ncand, ncand) ▷ Path value matrix

9 for i ∈ {1, . . . , ncand}, j ∈ {1, . . . , i− 1} do ▷ Compute path value matrix
10 Epk(g) = fgt(EMatrix

pk (Γ)ij , E
Matrix
pk (Γ)ji)

11 Epk(e) = feq(EMatrix
pk (Γ)ij , E

Matrix
pk (Γ)ji)

12 EMatrix
pk (Ω)ij = Epk(g)

13 EMatrix
pk (Ω)ji = Epk(1)⊖ Epk(g)⊕ Epk(e)

14 EVector
pk (b) = CreateEncVector(0, ncand) ▷ Result vector

15 for i ∈ {1, . . . , ncand} do
16 Epk(w) = Epk(0)
17 for j ∈ {1, . . . , ncand} \ {i} do
18 Epk(w) = Epk(w)⊕ EMatrix

pk (Ω)ij

19 EVector
pk (b)i = feq(Epk(w), Epk(ncand)⊖ Epk(1))

20 return (fdec(EVector
pk (b)i))ncand

i=1

candidates and an arrow ccand
i → ccand

j is weighted with the score of ccand
i ’s duel versus ccand

j .
Now, for any path p in Γ, we define the value of p as the lowest weight among the arrows involved
in p. We then consider the path value matrix Ω, an (ncand × ncand)-matrix with entry Ωij being
the highest path value among paths from ccand

i to ccand
j . The Schulze method then outputs

all candidates ccand
i such that Ωij ≥ Ωji for each j ∈ {1, . . . , ncand}. We note that the Schulze

method always outputs some candidate(s). With the metrics described in the Copeland method,
this candidate is the unique Condorcet winner, if existent. We present the secure tally-hiding
MPC protocol for the Schulze evaluation in Algorithm 3.20.

Figure 3.20 presents the benchmarks of Pf res
CondorcetSchulze , which are cubic in ncand.

3.2.3.17. Instant-Runoff Voting (IRV)

Our Ordinos instantiation supports the instant-runoff election result functions f res
IRVLotComplete,

f res
IRVLotPartial, f res

IRVNSWCompelte, and f res
IRVNSWPartial. We interpret a ballot as a ranking permutation

112



2 3 4 5 6 7 8 9

ncand

0

2

4

6

8
[h

]

Benchmarks of Ordinos evaluating Pf
res
CondorcetSchulze with ntrustees = 12

8 Bit, t = 2

8 Bit, t = 12

16 Bit, t = 2

16 Bit, t = 12

32 Bit, t = 2

32 Bit, t = 12

64 Bit, t = 2

64 Bit, t = 12

Figure 3.20.: Benchmarks of Ordinos evaluating Pf res
CondorcetSchulze with ntrustees = 12.

(see Section 2.6). As pointed out in Section 2.6, the number of possible choices grows factorial,
respective exponential, in the number of candidates. For example, as presented in Table 2.1, for
partial ranking, there are 1, 957 possible choices for 6 candidates, while for 7 candidates, there
are already 13, 700 possible choices.

We present the tally-hiding realization Pf res
IRV in Algorithm 3.21. We can instantiate this

algorithm to support any instant-runoff method mentioned above. The difference between the
two methods is the tie-breaking mechanism. Our tally-hiding instantiation uses an algorithm
GetLastTieBreaking, which we can instantiate to support the concrete instant-runoff method
we want to evaluate. Furthermore, our tally-hiding protocol works for both rankings, complete
and partial. The difference is which (choice) components of the aggregated tally the algorithm
will consider to compute the points per candidate in each round.

We use an indicator vector (Xi)ncand
i=1 such that Xi = 0 if ccand

i is not eliminated and Xi = 1
if ccand

i is eliminated. We compute which candidate to give the corresponding votes for each
ranking. We search for the first not-eliminated preference for each ranking. For this, we obtain an
encrypted indicator cwin that contains the candidate’s index. We then check for each candidate
that occurs in the ranking whether the indices match and add the votes accordingly. In the
second phase, we compute the indicator vector using a tie-breaking mechanism, which states
which candidates received the least votes. We then update X accordingly.

On the surface, the algorithm’s complexity to evaluate IRV appears to scale quadratic in the
number of candidates: The algorithm iterates over ncand − 1 rounds, and in each round, we
search for and eliminate the candidate that received the least number of votes. However, the
main factor of this algorithm’s complexity lies in computing the votes per candidate in each
round. To collect all candidate votes, we must iterate through all (choice) components, leading
to a complexity of ncand · ncomponents in each round. Since the number of (choice) components
scales exponentially in the number of candidates, this step becomes very expensive, even for
small numbers of candidates. Luckily, the algorithm does not perform expensive comparison
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Algorithm 3.21: Pf res
IRV

Input: EVector
pk (cchoice

agg )
1 EVector

pk (X) = CreateEncVector(0, ncand) ▷ Encrypted indicator bits.
2 for i ∈ {1, . . . , ncand − 1} do ▷ Perform ncand − 1 elimination rounds
3 EVector

pk (vround,i) = CreateEncVector(0, ncand) ▷ Votes received in this round.
4 for (ordered) i-tuple ri with entries in {1, . . . , ncand} do ▷ Go over ranking prefixes
5 Epk(cwin) = Epk(0) ▷ cwin will be the winner of the prefix
6 Epk(d) = Epk(0) ▷ The bit d indicates whether we already found the winner
7 for c in ri do ▷ Find winner in prefix
8 Epk(cwin) = Epk(d)⊙ Epk(cwin)⊕ (Epk(1)⊖ Epk(d))⊙ Epk(c)
9 Epk(d) = Epk(d)⊕ (Epk(1)⊖ Epk(d))⊙ (Epk(1)⊖ EVector

pk (X)c)
10 for c in ri do ▷ Add points from ballots for current prefix to the winner
11 Epk(w) = feq(Epk(c), Epk(cwin))
12 for j ∈ {1, . . . , ncomponents} s.t. j represents a ranking where the top i

candidates are ri do
13 EVector

pk (vround,i)c = EVector
pk (vround,i)c ⊕ Epk(w)⊙ EVector

pk (cchoice
agg )j

14 EVector
pk (l) = GetLastTieBreaking(EVector

pk (X))
15 for c ∈ {1, . . . , ncand} do ▷ Update/add one eliminated candidate
16 EVector

pk (X)c = EVector
pk (X)c ⊕ (Epk(1)⊖ EVector

pk (X)c)⊙ EVector
pk (l)c

17 return fdec((EVector
pk (X)c)ncand

c=1 )
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Figure 3.21.: Benchmarks of Ordinos evaluating IRV with ntrustees = 12.

operations for each (choice) component but only multiplications. Interestingly, this is the only
present multi-party computation protocol dominated by multiplications.

We provide benchmarks of the algorithm for all instant-runoff variants in Figure 3.21. The
difference in multiplication runtimes for various thresholds is tiny, but applying many multipli-
cations results in vastly different runtimes for various thresholds. Additionally, the tie-breaking
mechanism scales in the number of candidates rather than the number of choice components,
making the difference in runtime for different tie-breaking mechanisms relatively negligible

114



compared to the overall runtime of the algorithm. We note that the benchmarks for the following
numbers of candidates did not finish in under five days.

3.2.3.18. Seat Allocation Methods

A crucial type of election in many countries worldwide is the parliamentary election, which
involves choosing candidates based on party affiliation. These complex elections involve millions
of voters, dozens of parties, and hundreds of electoral constituencies. Some voters have multiple
votes to distribute among parties and individual candidates. Sophisticated algorithms compute
election results by assigning seats to individual candidates. An essential component of such
algorithms is a seat allocation method, which utilizes the number of available seats and the total
number of votes for each party to compute the seats assigned to each party.

Real-world seat-allocation methods run multiple times on different inputs to compute the
election results of parliamentary elections. For example, to evaluate the final seat distribution
of the German Bundestag election in 2021, the Sainte-Laguë method is run 23 times. Hence,
optimizing MPC components for seat-allocation methods is crucial for an efficient tally-hiding
voting system.

We instantiated the Ordinos framework for two seat allocation methods, and we will present
the tally-hiding realizations next.

3.2.3.19. Hare-Niemeyer Method

The MPC protocol Pf res
HareNiemeyer computes the function f res

HareNiemeyer in a tally-hiding way. We
present this protocol in Algorithm 3.22.

In the first phase, the algorithm obtains the division result rounded down. That is, for each
cparty

i , we obtain an (encrypted) si = ⌊ni
votes·nseats

vtotal
⌋. This value indicates how many seats each

party receives without considering the remaining seats. Next, we compute how many remainder
seats nr we must distribute among the parties. We compute each party’s remainder di. We can
find the highest nr values among the di’s. Recall that the algorithm for this does not need to
know the threshold in plain.

We present the benchmarks of Pf res
HareNiemeyer in Figure 3.22.

3.2.3.20. Sainte-Laguë Method

We want to construct a tally-hiding MPC component that takes as inputs Epk(nj
votes) for each

party as well as publicly known values nparties and nseats and computes the encrypted Sainte-Laguë
seat distribution Epk(nj

seats). As an initial insight, we observe that basing the MPC protocol on
the suitable-denominator algorithm is generally very inefficient: This algorithm has to iterate
over several potential denominators d until it finds a suitable one. Since the number of iterations
required to find d reveals non-trivial information about the secret inputs, the MPC protocol
must run with a fixed number of iterations m, which we must choose large enough to ensure
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Algorithm 3.22: Pf res
HareNiemeyer

Input: Epk(n1
votes), . . . , Epk(nnparties

votes ), nseats, vtotal
1 EVector

pk (s) = CreateEncVector(0, nparties)
2 for i ∈ {1, . . . , nparties} do ▷ Division per party
3 Epk(ttmp) = Epk(ni

votes)⊙ Epk(nseats)
4 EVector

pk (s)i = PFloorDiv(Epk(ttmp), Epk(vtotal), nseats)
5 Epk(nr) = Epk(nseats)⊖ (⨁︁nparties

i=1 EVector
pk (s)i) ▷ Number of remaining seats

6 EVector
pk (d) = CreateEncVector(0, nparties)

7 for i ∈ {1, . . . , nparties} do ▷ Compute remaining dividers
8 EVector

pk (d)i = Epk(ni
votes)⊙ Epk(nseats)⊖ vtotal ⊙ EVector

pk (s)i

9 EVector
pk (dbest) = P

f res
Best,Epk(nr)(EVector

pk (d)) ▷ Find dividers of maximum value
10 for i ∈ {1, . . . , nparties} do
11 EVector

pk (s)i = EVector
pk (s)i ⊕ EVector

pk (dbest)i

12 return fdec(EVector
pk (s))
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Figure 3.22.: Benchmarks of Ordinos evaluating Pf res
HareNiemeyer with ntrustees = 12 and 64 bit values.

that we find a suitable divisor d for all possible input sequences. This worst-case approximation
introduces extensive additional overhead.

We have therefore constructed a fundamental tally-hiding MPC realization PSLQBasic of the
Sainte-Laguë method following the highest-quotients approach: each party j is assigned its
current quotient qcurrent (see the description of the highest-quotients algorithm) and seats nj

seats

thus far. Algorithm 3.23 shows this excerpt of a single iteration step. Note that this PSLQBasic

uses the fast PMaxFractionLastIdx protocol in all iterations and, hence, breaks ties via a fixed
mechanism that always assigns the seat to the party with the highest index j.

Support for breaking ties by lot. Many elections use more involved tie-breaking algorithms
than the default one implemented by PSLQBasic. For example, for many parliamentary elections,
e.g., elections in Indonesia, Sweden, and Germany, a new lot is drawn to resolve the tie whenever
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Algorithm 3.23: PAddSeatBasic

Input: (EFrac
pk (qj

current))
nparties
j=1 , (EVector

pk (nseats)j)nparties
j=1

1 EVector
pk (ttmp) = PMaxFractionLastIdx((EFrac

pk (qj
current))

nparties
j=1 )

2 for i ∈ {1, . . . , nparties} do
3 Epk(d) = EFracVector

pk (qcurrent)j .den⊕ 2⊙ EVector
pk (ttmp)j

4 EVector
pk (qcurrent)j = CreateEncFraction(EFracVector

pk (qcurrent)j .num, Epk(d)) ▷ Update q
5 EVector

pk (nseats)j = EVector
pk (nseats)j ⊕ EVector

pk (ttmp)j ▷ Update seats (nseats)
6 return fdec(EVector

pk (s))

there is a tie between several parties for a seat. A more general tally-hiding MPC implementation
PSLQCustomTiebreaking for this election has to support this tie-breaking mechanism and keep secret
whether it has drawn any lots. In particular, to build such a PSLQCustomTiebreaking we first need
to extend and modify the iteration step AddSeatBasic shown in Algorithm 3.23, obtaining a new
subroutine AddSeatTieBreaking which takes as additional input an encrypted ranking of parties
r = (Epk(r0), . . . , Epk(rnparties−1)) where r is a uniformly chosen permutation of 0, . . . , nparties − 1,
and then resolves ties based on that ranking.

We construct AddSeatTieBreaking by making use of PMaxFractionByRank as presented in Al-
gorithm 3.8. That is, we replace the call to PMaxFractionLastIdx of AddSeatBasic by our al-
gorithm PMaxFractionByRank, which takes as additional input the ranking r. Based on this
AddSeatTieBreaking, we have constructed two versions of a PSLQCustomTiebreaking MPC component
which implements Sainte-Laguë. In each iteration, these MPC components first compute an
encrypted ranking r that encodes the tie-breaking result and then use AddSeatTieBreaking with
that r. We introduce two main optimizations in both cases: First, for tie-breaking by lot, we
run a distributed randomness generation protocol [LT13] for each iteration to compute r based
on the results. Since this step is input/vote independent, it can be pre-computed before the
election. Secondly, observe that if a tie occurs between m parties in one iteration of the quotient
approach while we have at least m seats to distribute, all parties in the tie will obtain a seat
in the subsequent m iterations, i.e., it does not matter how we break this tie. Hence, only ties
during the last nparties − 1 iterations need to be handled by AddSeatTieBreaking, while otherwise
we use the faster AddSeatBasic algorithm.

Secret number of seats. We note that we can extend all of our MPC algorithms for the
tally-hiding baseline quotient method (as well as for the new method presented subsequently)
to run with a secret, i.e., encrypted, total number of seats nseats to be assigned, as long as an
upper limit of seats is known. We use this property for the tally-hiding voting system for the
German elections, where the Sainte-Laguë method is used, among others, on the number of seats
assigned to a specific constituency, which is an intermediate result that might have to remain
secret depending on the desired tally-hiding property.

Sainte-Laguë based on floor division. While our multi-party computation protocols PSLQBasic

and PSLQCustomTiebreaking based on the highest-quotients approach are already practical in terms
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of efficiency, they always use nseats iterations to assign all seats and thus do not scale overly well
for elections allocating a high number of seats nseats. To improve performance in such cases, we
propose a new algorithm for computing the Sainte-Laguë method, called the floor division method.
Our floor division method is different from the highest-quotient and the suitable-denominator
methods. It allows us to construct an MPC component, called PSLQFloorDiv, that requires nparties

instead of nseats many iterations, and thus, is more efficient in the typical case that the number
of seats exceeds the number of parties. In what follows, we present the floor division method
and describe our MPC component PSLQFloorDiv.

The concept of our novel method is as follows. The floor division method replaces initial
iterations and seat assignments with under- and overestimating final seat allocation. We run
only the final (at most nparties many) iterations of the quotient method to add/remove a seat
from the initial estimations until exactly nseats seats are assigned. As we prove, we can efficiently
determine the correct Sainte-Laguë distribution.

Concretely, we compute mj := ⌊nj
votes·nseats

nvotes
⌋ for each cparty

j . We assign mj seats to cparty
j for

the underestimation case. Note that smin
initial := ∑︁

j∈{1,...,nparties}mj might be smaller than nseats,
but not smaller than nseats − nparties. Hence, to distribute exactly nseats seats in total, we
distribute the remaining nseats − smin

initial (≤ nparties) seats to the parties by executing the final
iterations of the highest-quotients method (and the desired tie-breaking mechanism). We start
with the intermediate quotients mj

mj
:= nj

votes
2mj+1 instead of the initial mj

0 for each cparty
j . For

the overestimation case, we start by assigning mj + 1 seats to cparty
j , which might assign at

most nparties additional seats beyond the desired total of nseats. We use a reverse variant of the
highest-quotients algorithm to remove those seats. For this purpose, we again initialize the
quotients as mj

mj
and then, in each iteration step, determine the minimal current quotient and

remove a seat from the corresponding party (using the desired tie-breaking mechanism). Next,
we update the quotient of that party by reducing the denominator by 2. We could remove all
mj + 1 seats from a cparty

j . In that case, we ignore this party in the following iterations. This
special case is non-trivial to implement in our PSLQFloorDiv MPC component since we cannot
reveal the values mj or the quotients. We continue this iteration until only we distribute a total
of nseats seats.

Finally, to deduce which outcome is the correct Sainte-Laguë distribution, we evaluate the
underestimation case an additional time to compute the next seat that would be assigned. If the
corresponding quotient is less than all the initial quotients mj

mj
of the underestimation, then the

underestimation computed the correct seat distribution. Otherwise, the correct seat distribution
is computed based on the overestimation. We show the following result:

Lemma 3.2 (Correctness of PSLQFloorDiv). The algorithm PSLQFloorDiv as presented above is
correct, i.e., always outputs the seat allocation according to the Sainte-Laguë method with the
desired tie-breaking mechanism.

To prove Lemma 3.2, we first make the connection between the values qcurrent occurring during
the execution of PSLQCustomTiebreaking and the highest quotients from the generic description of
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the Sainte-Laguë method explicit. By construction, all of the nseats highest quotients must occur
as a maximal value qcurrent at some iteration step during the execution of PSLQCustomTiebreaking.
Suppose a value qj

current = mj
i is not a maximal value in the first nseats iteration steps of the

execution of PSLQCustomTiebreaking. In that case, it does not belong to the highest quotients of the
nseats; hence, cparty

j does not receive the i-th seat.
Next, we will require the following lemma, where we follow Genssler [Gen84]:

Lemma 3.3 (Over- and Underestimation). For j ∈ {1, . . . , nparties} denote mj := ⌊nj
votes·nseats

nvotes
⌋.

If in a Sainte-Laguë distribution, a party i is assigned mi + 2 seats, then all parties j receive at
least mj seats.

Proof. We compare the quotients mj
mj

and mi
mi+2. In the case that mj = 0, the statement is

trivial. If mi = 0 and mj = 1, we have nj
votes > ni

votes, so party j must be assigned (at least)
as many seats as party i. Thus, if party i is assigned mi + 2 = 2 seats, then also party j is
assigned (at least) 2 > 1 = mj seats, and the statement holds. In all other cases, we know that
mj +mi − 1 > 0 and can reason as follows:

mj > −(mi + 1) =⇒ 2mjmi + 3mj > 2mjmi − (mi + 1) + 2mj

=⇒ mj · (2mi + 3) > (mi + 1) · (2mj − 1)

=⇒ mj

2mj − 1 >
mi + 1
2mi + 3 (∗).

Now, using that nj
votes · nseats

nvotes
= mj + aj for some aj ∈ [0, 1) and the fact that nseats

nvotes
> 0, we can

conclude from (∗) as follows:

(∗) =⇒ mj + aj

2mj − 1 >
mi + ai

2mi + 3 =⇒ nj
votes

2mj − 1 >
ni

votes
2i + 3 ,

i.e., mj
mj

> mi
mi+2 and hence if mi

mi+2 belongs to the nseats highest quotients, then also all
mj

mj+2 belong to the nseats highest quotients.

These preparations now allow for proving the correctness of PSLQFloorDiv:

Proof of Lemma 3.2. We use that Lemma 3.3 allows us to distinguish two cases:

(i) There is a party i that in the seat allocation according to the Sainte-Laguë method receives
at least mi + 2 seats.

(ii) Each party j receives at most mj +1 seats in the seat allocation according to the Sainte-Laguë
method.

Let us first consider case (i). In this case, each party j receives at least mj seats by the previous
lemma. Thus, we find that all quotients mj

i for i ≤ mj must belong to the nseats highest
quotients and hence occur as maximal values qj

current during one of the first nseats iteration steps
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of PSLQCustomTiebreaking. Since the order in which seats are allocated in the Sainte-Laguë method
does not affect the final result, one can therefore start by assigning mj seats to each party and
then allocate the remaining seats using PSLQCustomTiebreaking starting with the quotients mj

mj
that

match the setting that each party j has been assigned mj seats. This is exactly what the first
subroutine in PSLQFloorDiv does. Moreover, since in case (i) all of the values mj

mj
must belong to

the nseats largest quotients, we find that - if we follow the PSLQFloorDiv algorithm - the maximal
value qcurrent at the end of the computation of the first subroutine must be less than (in this
comparison we take tie-breaking into account) all of the values mj

mj
, since this value of qcurrent

is the first one to not belong to the nseats largest quotients. Hence, in case (i) the seat allocation
output by PSLQFloorDiv is the result from the first subroutine, which as we argued, is the correct
seat allocation according to the Sainte-Laguë method.

Suppose we fall in case (ii). In that case, it can still happen that the maximal value qcurrent

at the end of the computation of the first subroutine is less than or equal to all of the values
mj

mj
. Namely, this happens if all parties j receive mj or mj + 1 seats. In that case, we can

again argue as above to see that PSLQFloorDiv returns the correct seat allocation. However, if a
party i receives less than mi seats, then mi

mi
does not belong to the nseats highest quotients and

thus the check at the end of the first subroutine will fail. In this case, PSLQFloorDiv will return
the result obtained from the second subroutine. However, since we fall in case (ii), we know that
each party j has received at most mj + 1 seats, so if we start by assigning mj + 1 seats to each
party j, we know that no party has received too few seats and can then remove the surplus seats.

In this case, if we denote smax
initial := ∑︁

j∈{1,...,nparties}(mj + 1) and let Mover be the list of quotients
mj

j for i ≤ mj , then the list M from the generic description of the highest-quotients method
(see Section 2.7) consists exactly of the nseats largest entries in Mover. Thus, if we remove the
β = smax

initial − nseats seats corresponding to the β smallest quotients (with tie-breaking) in Mover,
then each party is assigned the correct number of seats according to the Sainte-Laguë method.

This is exactly what PSLQFloorDiv does in the second subroutine. More precisely, by starting
with the quotients qj

current = mj
mj

, the minimal value qj
current is exactly the minimal value in

Mover. Removing a seat from the corresponding party and updating the quotient by reducing
its denominator by 2 then exactly corresponds to removing the minimal element from Mover.
Repeating this process until a total of nseats seats remain assigned corresponds exactly to
removing the β seats corresponding to the β smallest quotients in Mover and hence the result of
the second subroutine in this case is exactly the seat allocation according to the Sainte-Laguë
method. Recall that we ignore quotients for parties j from which mj + 1 seats have already been
removed.

Tally-Hiding MPC component. When constructing our tally-hiding MPC protocol for com-
puting the Sainte-Laguë method, the primary concern is to ensure that the algorithm does not
reveal the number of iterations required to add or subtract seats from the initial seat assignment.
This is important because it could expose valuable information. To address this issue, we have
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Figure 3.23.: Benchmarks of Ordinos evaluating PSLQBasic with ntrustees = 12.
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Figure 3.24.: Benchmarks of Ordinos evaluating PSLQCustomTiebreaking with ntrustees = 12.

used an upper bound of nparties iterations in our MPC protocol, ensuring that the number of
iterations required remains hidden.

We present benchmarks in Figures 3.23 and 3.24. These benchmarks show that this variant
of the Sainte-Laguë method is indeed faster than PSLQCustomTiebreaking for larger numbers of
seats and smaller numbers of parties. For example, we have the following runtime for ten
parties: To distribute 60 or 100 seats using PSLQCustomTiebreaking, the runtime is 6.7h or 12.6h
respectively, while PSLQFloorDiv only needs 4.7h or 5h respectively. However, for smaller numbers
of, say, 20 seats, PSLQCustomTiebreaking is faster with 1.6h instead of PSLQFloorDiv, which needs 4.6h.
PSLQCustomTiebreaking is linear in the number of seats while PSLQFloorDiv has a larger initial overhead
time but is nearly constant in the number of seats.
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3.2.3.21. Security

In this section, we prove the security of our instantiations of the Ordinos framework.

Theorem 3.6 (Security of the Ordinos Instantiations). Let E be an additively homomorphic
IND-CPA-secure t-out-of-ntrustees threshold public-key encryption scheme and πKeyShareGen be a
secure NIZKP for E such as, e.g., the primitives presented above. Let πC be the choice space
NIZKP, and let Pf res be an MPC component as presented above. Then, the Ordinos instance
using these primitives is an accountable and private (and hence tally-hiding) voting system for
the election result function f res.

Proof. This theorem is a direct corollary of Theorems 3.2 to 3.4 which were proven in [Mül19].
Observe that the primitives E , πKeyShareGen, and πC already fulfill the requirements of Theorems 3.2
to 3.4. The only thing left to show for Theorems 3.2 to 3.4 is that our new tallying protocol
Pf res is secure. That is, we have to show that Pf res is a private and publicly accountable
implementation of f res.

Both properties follow because we constructed our MPC protocols from combinations of
the basic components presented above. As mentioned in that section, these basic components
guarantee privacy and public accountability. As for the connections of these components, the
respective inputs and outputs are all encrypted (except for the final decryption of the election
result) and published on the bulletin board. Due to the encryption, these intermediate results
do not leak any additional information to internal parties or external observers. Also, since the
intermediate results are published, external observers can check that the output of one step is
used correctly as the input to the next step. Thus, if some trustee tries to use a different input,
this trustee can be held accountable.

3.2.3.22. Real-World Elections with Ordinos

This section presents benchmarks for the Ordinos instantiations of real-world elections. These
benchmarks only evaluate the election result function, not including the ballots and ZKPs
demonstrating their validity. In some cases, the ZKPs influence the overall system’s runtime,
such as the ZKPs for CRankingMatrix presented in [HPT19], which requires trustees to compute,
and is cubic in the number of candidates.

House of Commons with Ordinos. The elections for the House of Commons use f res
Plurality in

each of the 650 constituencies. Even for 200 candidates in a single constituency, the trustees can
evaluate f res

Plurality efficiently in under two hours for an arbitrary number of voters.
Elections for the Fachkollegien in the Deutsche Forschungsgesellschaft with Ordinos. These

elections use f res
RankingVotesBest,n with up to 32 candidates. Ordinos handles 32 candidates for this

election result function in under two hours for arbitrary numbers of voters.
Parliamentary Elections in the Republic of Nauru with Ordinos. To support the Dowdall

system used by the parliamentary elections in the Republic of Nauru, we scale the points such
that they are natural numbers. Since there are no more than 18 candidates, we scale the points
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by 2 · 3 · 5 · 7 · 11 · 13 · 17 = 510, 510, which means that a voter can give at most 510, 510 points to
a candidate. Knowing that there are no more than 1, 630 voters in a constituency, a candidate
can receive at most 832, 131, 300 points, which we can represent with 32 bits. Therefore, we
can efficiently evaluate the parliamentary elections using f res

Plurality in the Republic of Nauru with
Ordinos since there are 18 candidates at most.

Debian Project with Ordinos. The Debian Project conducts elections using f res
CondorcetSchulze.

The elections for the DPL typically have up to four candidates, which Ordinos evaluates in less
than half an hour for up to 264 voters. Other Debian Project elections have more choices than
four, for example, seven, which Ordinos evaluates in under three and a half hours, and even
faster for lower thresholds and bit sizes. Thus, Ordinos can efficiently evaluate f res

CondorcetSchulze
for elections of the Debian Project.

The New South Wales Legislative Assembly with Ordinos. Figure 3.21 shows that Ordinos
evaluates f res

IRVNSWPartial for up to five candidates in about two hours and six candidates in about
twelve hours. Therefore, Ordinos can evaluate some of the districts of the election. However,
as many (choice) components exist, the ZKPs become inefficient for more than five candidates
and are the limiting factor for this election using the Ordinos system. Realistically, using
specialized ZKPs from [CDS94,SV15], we expect that Ordinos supports up to five candidates for
f res

IRVNSWPartial.
The Maine House of Representatives with Ordinos. As described above, Ordinos supports up

to five candidates for f res
IRVNSWPartial and therefore also for f res

IRVLotPartial, making it suitable for the
Maine House of Representatives, as well as the US presidential and senatorial elections in Maine.

Elections for the German Bundestag with Ordinos. The election for the German Bundestag uses
a complex system. In particular, it uses multiple constituencies. Since the Ordinos framework, as
defined in Section 3.2.1 does not cover constituencies, we have to adapt the framework. We do so
in Section 3.2.4 and present our Ordinos instantiation of the election for the German Bundestag
there.

3.2.4. Voting in Multiple Constituencies: Evaluating the Elections for the German
Bundestag

We designed the Ordinos framework presented above for elections without electoral constituencies
or with just a single constituency where we treat all votes equally. For multi-constituency
elections like the German parliamentary election, we have to make minor modifications to
account for constituency-specific votes. During the setup phase, the scheduler publishes the
list of eligible voters and assigns each to a constituency. Ballots now include the constituency
identifier, allowing observers to check if voters voted for the correct constituency. Encrypted
ballots are then aggregated per constituency and evaluated using the MPC component for f res.

Employing multiple constituencies also slightly changes the meaning of full tally-hiding: For
elections without electoral constituencies, we only reveal the number of submitted votes (since
this is public on BB) and the final result. In the setting with electoral constituencies, we reveal

123



the number of submitted votes per constituency and the final result. In the following, we
construct an MPC protocol PGermanBT that computes the election result function of the German
Bundestag (see Section 2.8). Since this protocol uses multiple constituencies, as part of the
security proof of PGermanBT (see Theorem 3.7), we define full tally-hiding for this setting and
verify that the original proofs of Theorems 3.2 to 3.5 naturally carry over to this setting using
the same preconditions.

We instantiate the (modified) Ordinos approach for the German election by using the threshold
Paillier encryption scheme E , choice space CSingle × CSingle, standard NIZKPs πKeyShareGen and
πCSingle [DJN10] and any standard EUF-CMA-secure signature scheme from the literature, result
function f res

GermanBT for the German parliamentary election as described above, and notably our
new MPC protocol PGermanBT for f res

GermanBT described next.

3.2.4.1. Constructing PGermanBT

We construct PGermanBT using the components from Section 3.2.3 to compute the complete
evaluation procedure for the German parliament presented in Section 2.8. The evaluation
includes all diminutive details and exceptional cases, e.g., computing and changing the final
parliament size, determining and distributing up to 3 overhang seats per party, and exempting
parties from obtaining state seats if they did not win 5% of the total second votes, won less than
3 direct mandates, and are not representing a unique minority.

Of course, capturing the full complexity of the election evaluation of the German parliament
in an MPC protocol PGermanBT comes at a massive cost in terms of performance and hence runs
the risk of becoming impractical. Therefore, we have carefully optimized PGermanBT by, among
others, the following:

• Computing the election result requires multiple iterations of the Sainte-Laguë method. We
use PSLQCustomTiebreaking and PSLQFloorDiv, depending on the seats and candidates in the current
iteration.

• We have constructed PGermanBT so that we can compute substeps such as repeated state-wise
operations in parallel. We have performed benchmarks for various threads, demonstrating
that this is a significant factor in improving performance; see Table 3.1.

• We first compute and reveal the parties that will obtain at least one seat in the parliament.
Disclosing this information allows us to tailor the following computations to this specific set
of parties and thus save time by not having to perform the same operations for (dozens of)
parties that will not obtain a seat. As part of Theorem 3.7, we argue that this construction is
still a secure MPC protocol as, intuitively, the intermediate output is part of the final result.

• By proposing a different algorithm for computing the final number of seats for each party in
the German parliament based on an encrypted divisor d = min(dno, doverh), we can employ
an efficient binary search on encrypted data to obtain this value.
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Algorithm 3.24: PTestSeatsOfParty

Input: nj
seats, Epk(nj

votes), Epk(d)
1 Epk(q) = CreateEncFraction(2⊙ Epk(nj

votes), 2 · nj
seats − 1)

2 Epk(i) = fgt(Epk(q), Epk(d))
3 return 1− fgt(Epk(q), Epk(d))

Regarding the last point described above, we can compute a ciphertext of the divisor d, which
we use to compute the final number of seats in the German parliament and the number per party.
To determine how many seats cparty

j receives, we would then – as in the suitable-denominator
algorithm – compute nj

seats = ⌊nj
votes
d ⌉. However, to compute this in a tally-hiding way, we would

have to perform a floor division, followed by suitable rounding, which is non-trivial on encrypted
values. Instead, we use that we can reveal the final number of seats per party since this is
public information (we will discuss this in more detail in the security proof of Theorem 3.7).
We construct an MPC protocol to check whether a party exceeds its given seats in a correct
seat distribution based on d. Then, we can perform a public binary search and use this MPC
component to find the correct number of seats. To realize such a checking functionality, we use
the following: Consider an execution of the highest-quotients algorithm for distributing nseats

seats, where qnseats is the nseats-th highest quotient and qnseats+1 is the next highest quotient. Then
it holds that a suitable denominator d of an execution of the equivalent suitable-denominator
algorithm is in the range (2 · qnseats+1, 2 · qnseats ] [BTP06]. Therefore, if a quotient q causes a seat
assignment in the highest-quotient algorithm, then the suitable-denominator d of the equivalent
suitable-denominator algorithm must be of size at most 2 · q. We use this to construct the
algorithm TestSeatsMatchDivisor presented in Algorithm 3.24 that for cparty

j takes as input a
guess of seats nj

seats, the number of votes Epk(nj
votes), and the divisor Epk(d) and checks whether

the divisor is less or equal to 2·nj
votes

2·nj
seats−1

. If this is not the case, then this divisor d does not

assign the seat of this quotient to this party. Then, we update the guess nj
seats and try again.

In Algorithm 3.25, we use TestSeatsMatchDivisor in a binary search.

Theorem 3.7 (Security of PGermanBT). Let PGermanBT be our MPC protocol from above. Then,
the Ordinos instance using the abovementioned components is an accountable (and therefore also
verifiable) and fully tally-hiding e-voting system for the election of the German parliament.

Proof. We first observe that the design of the original Ordinos framework presented in Section 3.2.1
considers monolithic elections, which reveal nothing beyond the election result and the total
number of votes. The election for the German Bundestag is not monolithic but instead based
on multiple sub-elections in separate constituencies. We reflect this difference in the adapted
Ordinos framework, which publishes the total number of submitted votes for each constituency
(instead of just the total number of all votes) and the final election result. Hence, privacy/full
tally-hiding has a slightly different meaning in our setting, and existing proofs for Ordinos do
not directly apply.
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Algorithm 3.25: PFindFinalSeatsPerParty

Input: (Epk(nj
votes))

nparties
j=1 , Epk(d)

1 for j ∈ {1, . . . , nparties} do
2 i = 1
3 h = 0
4 while i == 1 do ▷ Find hundreds
5 i = PTestSeatsOfParty(h,Epk(d), Epk(nj

votes))
6 if i == 1 then
7 h = h+ 100
8 l = h− 100
9 u = h

10 while l < u do ▷ Find remaining value via binary search
11 k = ⌊l + 1

2(u− l)⌋
12 i = PTestSeatsOfParty(k,Epk(d), Epk(nj

votes))
13 if i == 1 then
14 l = k
15 if i == 0 then
16 u = k
17 if l + 1 = u then
18 break
19 nj

seats = l

20 return (nj
seats)

nparties
j=1

For this reason, we modify the Ordinos framework in the following ways. During the setup
phase, the scheduler publishes the list id of eligible voters and assigns each voter to a constituency.
Ballots now include the constituency identifier, allowing observers to check if voters voted for
the correct constituency. Encrypted ballots are then aggregated per constituency and evaluated
using the MPC component for f res. Furthermore, we modify the ideal protocol such that the
voter under observation votes in a specific constituency.

These changes do not affect accountability (and thus verifiability), and therefore the original
proofs from the original Ordinos framework for Theorems 3.2 to 3.5 still apply. However, it is
public information to which constituency a ballot corresponds (the ballot contains the voter’s id,
which the scheduler published during the setup phase alongside the corresponding constituency).
These changes naturally lead to a lower level of privacy than in the original Ordinos framework.
While voting in constituencies might open new options for an adversary, as she can try to change
the voting constituencies of specific ballots, she cannot do so without being caught. Thus, when
considering risk-avoiding adversaries that aim not to be caught and only manipulate a fixed
number of ballots, these adversaries would only manipulate up to a certain number of ballots
overall (and not per constituency), since the global risk of being caught would be too high.
Hence, to a certain extent, the privacy analysis from the original Ordinos framework carries over
(with the natural restrictions of public constituency identifiers).

126



The above discussion allows us to prove security similar to the proofs of the original Ordinos
framework. That is, if we can show that all of our cryptographic primitives, including P meet
the requirements stated for Theorem 3.7 in [KLM+20a], then it follows analogous to the proof
in [KLM+20a] that our system achieves

1. accountability and

2. privacy/full tally-hiding in the sense of our setting, i.e., only the final result and the total
numbers of submitted votes for each constituency are revealed.

Next, observe that the primitives E , πKeyShareGen, and πCSingle already fulfill the requirements
of Theorem 3.7. The only thing left to show for Theorem 3.7 is that our new tallying protocol P
is secure. That is, we have to show that P is a private and publicly accountable implementation
of the evaluation of the German Bundestag.

Both properties follow almost directly because we construct our MPC protocol using com-
binations of the components presented in Section 3.2.3. As mentioned in that section, these
components already guarantee privacy and public accountability per component. Apart from
the few exceptions discussed below, we have that the connections of these components, i.e., the
respective inputs and outputs, are all encrypted and published on BB. Due to the encryption,
these intermediate results do not leak any additional information to internal parties or external
observers. Also, since the encrypted intermediate results are published, external observers can
check that the output of one step is used correctly as the input to the next step. Thus, if some
trustee tries to use a different input, she can be held accountable. Hence, such combinations of
the individual components remain accountable and private.

The only exceptional cases and exceptions to the above are that we decrypt and reveal which
parties enter the Bundestag and how many seats each party receives as an intermediate value
to facilitate a more efficient evaluation of the following computations. However, this is still
secure: observe that the election’s final result maps seats to candidates. Since the mapping
from candidates to parties is unique public knowledge, and candidates can only receive a seat
if their party wins that seat, we can compute the seats assigned to each party from the final
election result. In particular, given only the election result, a simulator for our MPC protocol
can compute the corresponding intermediate values decrypted/revealed during a run of our MPC
protocol. Given this information, the simulator can then use standard techniques as described
in [DJN10,SV15] for simulating the decryption of ciphertexts to the correct intermediate values.

3.2.4.2. Benchmarks of PGermanBT

In this section, we present the benchmarks of our evaluation of the election for the German
Bundestag in 2021. This election had 61, 181, 072 eligible voters, 46, 854, 508 valid submitted
ballots, and 47 parties with 6, 211 candidates distributed over 299 constituencies. We note
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# Threads per Trustee 1 2 4 8 16 32
Single-member constituency seats 40.0 h 20.0 h 10.1 h 5.0 h 2.6 h 1.3 h
Determine which parties enter the Bundestag 71 min 36 min 18 min 9 min 5 min 3 min
First low distribution 23.4 h 11.8 h 6.1 h 3.3 h 1.8 h 1.1 h
Minimal number of seats per party 11.7 h 5.8 h 2.9 h 1.5 h 0.7 h 0.4 h
Second top distribution 2.8 h 2.0 h 1.4 h 1.2 h 1.2 h 1.2 h
Second low distribution 77.1 h 38.5 h 19.4 h 12.3 h 6.3 h 5.9 h
Assigning overhang seats 6.7 h 3.3 h 2.2 h 1.1 h 1.1 h 1.1 h
Computing the final result 4 min 2 min 1 min 1 min 0 min 0 min
Total Runtime 163 h 82 h 42 h 24.3 h 13.8 h 11.1 h

Table 3.1.: Benchmarks of the election for the German Bundestag in 2021 using real-world data
available at [Der21]. Total runtime of the evaluation for the German parliament with real-world
data from 2021 and different numbers of available parallel threads for each trustee.

that, for this, we have used the real-world data available at [Der21]. In Table 3.1, we show
the benchmarks of our evaluation, including the individual benchmarks of all steps described
in Section 2.8. We separate the benchmarks by the number of threads that each trustee uses.
Since many intermediate results can be computed in parallel (e.g., the intermediate results of the
states do not affect each other), allowing the trustees to employ multiple threads dramatically
affects the overall runtime of the election evaluation. For example, as shown in Table 3.1, the
runtime of the second low distribution can already be cut in half by using two threads instead of
one. Our benchmarks indicate that the tally-hiding evaluation of the German parliamentary
elections is practical for real-world election data.

3.2.5. Full-Fledged Tally-Hiding E-Voting with Ordinos

We have built a full-fledged, readily deployable web-based Ordinos system. Our system integrates
all voting methods for which the Ordinos framework has been instantiated and benchmarked so
far, including single vote, multiple vote, Borda, several Condorcet methods (plain Condorcet,
weak Condorcet, Copeland, Smith set, several Minimax methods, and the Schulze method), and
instant-runoff voting (IRV).

Our system uses Python3 for the backend, including the bulletin board and trustees, and the
Quasar framework for the front end, which includes the voter programs, election authority, and
authentication server.

Our implementation provides a graphical user interface in the web browser. The election
authority can set up and manage several elections using different sets of trustees. The election
authority can choose various options during the setup, like possible ballot formats and election
result functions. The webpage checks that only possible combinations can be selected. When
voters open the web page of an election, they can view a tutorial on how to vote and documentation
on what security properties the system achieves. Voters cast their ballots using a web page,
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Figure 3.25.: The voter verification device of our web-based Ordinos system shows the election
result.

which supports and encourages them to perform Benaloh challenges. We set up an Android
application that can be used as the voter-verification device to check the correctness of the ballot
creation process. The voter connects the Android application to the web page in the browser by
scanning a QR code displayed in the web browser.

Furthermore, a web page shows the voter an overview of all participated elections, allowing the
voter to see the results of evaluated elections. When the voter opens the results of an election,
the Android application automatically starts the verification process of the election data, and
it displays whether the election is verified or if any errors have occurred. Figure 3.25 shows a
screenshot of an evaluated election. This automated verifiability process is similar to the one
employed in [KMST16].

Our servers provide robustness: If a server crashes during the election, we can restart it and
resume the election.

The implementation and documentation are available at [LAA+23a].

3.3. Related Work

Ordinos is the first provable secure, verifiable, and fully tally-hiding e-voting framework that can
be instantiated for any election.
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Previous proposals for fully tally-hiding e-voting systems, such as those by Benaloh [Ben86],
Hevia and Kiwi [HK04], and Wen and Buckland [WB09], are limited in their applicability to
a single specific voting method and lacked formal proofs of security, making them impractical
solutions.

Szepieniec and Preneel proposed an e-voting protocol [SP15] that aims to compute the ranking
of the candidates (f res

Ranking) or the candidate with the most votes (f res
Plurality) in a fully-tally

hiding manner. However, the MPC protocol to compute the election result employs the Paillier
encryption scheme and applies calculations that omit the modular reduction step. With that,
the protocol leaks the most significant bits of plaintexts. One can prevent the leakage of sensitive
data by ensuring that these bits do not contain any information. However, the MPC protocol
adds random values to these plaintexts; there is always a chance that overflows occur and these
leaked bits contain sensitive information about the tally. The authors acknowledge that it is
impossible to detect all cases where such overflows occur in advance, e.g., before decrypting
the ciphertexts. To tackle this issue, the authors introduce a safety parameter determining the
probability of overflow cases occurring and how many of the most significant bits leak. We can
ensure that such cases occur with very low probability by selecting appropriate values for the
safety parameter. However, reducing the probability of overflows leads to more bits being leaked,
drastically reducing the tally’s confidentiality. Overall, the protocol proposed in [SP15] is not
tally-hiding due to the leakage of sensitive information about the tally.

Canard et al. propose a fully tally-hiding e-voting system [CPST18] specifically for the full
majority judgment evaluation (f res

MJFull, see Section 2.7). However, there is a non-negligible chance
that the system does not output a result of an election’s tally because the underlying evaluation
algorithm does not provide a result for every possible tally. Canard et al. implemented their
system and provide benchmarks demonstrating that it can handle large numbers of voters: Their
system needs almost 20 minutes to tally 5 candidates with 5 possible grades and up to 220 − 1
voters using a single trustee. We did not instantiate Ordinos for the same election result function
and thus can not compare the runtimes.

Cortier et al. [CGY22] propose universally verifiable MPC components for various election
result functions. They design their MPC components for the exponential ElGamal cryptosystem
instead of Paillier encryption, leading to differences in the runtime of basic operations compared to
Ordinos, and, therefore, using different comparison protocols. Cortier et al. provide benchmarks
for f res

CondorcetSchulze using a single server with two 16-core AMD EPYC 7282 processors and 128
GB RAM. Unlike our Ordinos benchmarking setup, they do not use a threshold for the encryption
scheme (that is, they set t = 1), use multi-threaded trustees, and their runtime increases with
the number of voters. In comparison to Ordinos, their benchmarks indicate that their protocol
can handle more significant numbers of candidates – however, under the restriction of lower
numbers of voters: They present benchmarks for up to 1, 024 voters, and these benchmarks
indicate that the runtime approximately doubles when doubling the number of voters. We
anticipate that the Ordinos system will yield faster benchmarks for more significant numbers
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of voters. To summarize, the work of Cortier et al. [CGY22] provides efficient benchmarks of
f res

CondorcetSchulze for small-scale numbers of voters, but the benchmarks indicate that the Ordinos
system outperforms their system for more significant numbers of voters.
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4. Partial Tally-Hiding: Ordinos

Fully tally-hiding e-voting systems use advanced cryptographic techniques to calculate the election
results without revealing intermediate values. These systems rely on homomorphic cryptosystems
to perform operations on the tally using only ciphertexts. However, these operations are usually
expensive and time-consuming, and evaluating an election requires running them multiple times.
Therefore, fully tally-hiding e-voting systems may take longer to compute the election results
than participants are willing to wait.

Complex election result functions like instant-runoff voting (IRV) and single transferrable
voting, an extension of IRV, pose a significant challenge for fully tally-hiding systems. Instant-
runoff elections provide a poor level of privacy if they reveal the aggregated tally due to their
large choice spaces. To improve privacy without employing full tally-hiding, research aimed to
reveal intermediate values that allow for efficiency shortcuts in fully tally-hiding algorithms.
These intermediate values reveal less information than the aggregated tally, which improves
privacy. For instance, Ramchen et al. [RCPT19] proposed a system that computes IRV by
revealing the first preference votes in each round. We refer to the behavior to reveal some parts
of the tally as partial tally-hiding.

The Ordinos framework naturally supports partial tally-hiding by modifying the MPC protocol
to output intermediate values. Based on these values, we can speed up the evaluation by breaking
loops early and simplifying the control flow.

We organize this chapter as follows. We present the partial tally-hiding framework in Section 4.1.
Section 4.2 presents partially tally-hiding instantiations of Ordinos. We discuss related work in
Section 4.3.

4.1. Partially Tally-Hiding Framework

In this section, we introduce the notion of partially tally-hiding e-voting. Intuitively, an e-voting
protocol P is partially tally-hiding for some voting method (C, f res) if it computes fintermediate,
which outputs intermediate values that we can use to compute f res. Therefore, we require that
P achieves the same level of privacy as the ideal voting protocol for evaluating fintermediate.

For fintermediate given as above for a result function f res, we define P to be (fintermediate, f
res)-

partially tally-hiding if it is fully tally-hiding w.r.t. fintermediate.
In the following, we analyze the impact of hiding the tally in a partial tally-hiding way.
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vote distribution, and no dishonest voters.

4.1.1. Impact of Hiding the Tally

In this section, we elaborate on the impact of hiding the tally for complex result functions
using partially and fully tally-hiding approaches. We measure the privacy level for IRV using
various (election result) functions. We present the privacy levels for IRV with five candidates
and a uniform vote distribution in Figure 4.1. These values show that revealing the aggregated
tally leads to almost no privacy. Publishing only the aggregated first preferences each round
noticeably improves privacy because it hides the rankings and only reveals the currently first-
ranked positions. As the figure shows, only revealing the eliminated candidate each round further
improves the privacy level, which gets close to the ideal privacy level of f res

IRVLotComplete for more
significant numbers of candidates.

In summary, evaluating f res
IRV in a partial tally-hiding way by computing f res

IRVRoundEliminated and
thus achieving δideal

nvoters,nhonest
voters ,µ

(CRankingPermutation, f
res
IRVRoundEliminated)-privacy slightly lowers the level

of privacy, while allowing for a much more efficient evaluation, as we will see in Section 4.2.

4.2. Partial Tally-Hiding with Ordinos

As discussed and proven secure in Section 3.2, we can instantiate the Ordinos framework for
multi-party computation protocols computing arbitrary functions. In particular, we can employ
functions that compute the election result in a partially tally-hiding way. These partially
tally-hiding MPC protocols aim to provide more efficient evaluations than their fully tally-hiding
counterparts.

Loops are a significant factor for the runtimes of many of the fully tally-hiding protocols
from Section 3.2.3. In particular, optimizing the number of overall iterations can drastically
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optimize the overall runtime for complex election result functions with expensive runtimes for
each iteration. We will investigate such optimizations for f res

CondorcetSmithSet.
As explained in Section 3.2.3, evaluating instant-runoff voting (IRV) using Pf res

IRV can be
expensive due to the need to calculate the first preference of the ballots, which requires a large
number of multiplications. However, we can improve this by modifying the computed function
to reveal the eliminated candidate in each round. This way, we no longer need to perform
these multiplications since the first preference of the rankings is already public knowledge. The
following section describes how this modified function can significantly speed up the evaluation
of IRV.

The following section discusses modifications to the Ordinos instantiations from Section 3.2.3
regarding f res

CondorcetSmithSet and f res
IRV.

4.2.1. Condorcet

As discussed above, loops are a significant factor for the runtimes of many of the fully tally-hiding
protocols from Section 3.2.3. An example of such a loop is in the MPC protocol for computing
f res

CondorcetSmithSet: The protocol Pf res
CondorcetSmithSet computes the Copeland points of each candidate

and then iterates through all possible Copeland points and iteratively adds the candidates
having the current points to the resulting set until it satisfies a specific condition. The protocol
must iterate through all possible Copeland points to ensure complete tally-hiding, regardless of
whether it has already found the Smith set.

Applying partial tally-hiding, we propose the function f res
CondorcetSmithSetPartial that computes the

Smith set and the minimum Copeland points of the candidates in the Smith set. Computing this
function with an MPC protocol allows us to compute f res

CondorcetSmithSetPartial-partially tally-hiding
f res

CondorcetSmithSet. Computing the function f res
CondorcetSmithSetPartial allows us to reveal the minimal

Copeland points in the Smith set, and therefore, we can terminate the loop if the protocol finds
the Smith set.

We present Pf res
CondorcetSmithSetPartial in Algorithm 4.1. This MPC protocol decrypts the variable f in

each iteration. This variable indicates whether the Smith set is complete, and thus, if f = 1, we
can terminate the loop over the Copeland points and decrypt the current set of candidates.

An interesting question is what the minimum number of Copeland points of the candidates in
the Smith set is since this number directly determines the number of iterations the algorithm
has to evaluate. We empirically measured this number for five candidates and two different
voting distributions. We sampled 1, 000, 000 tallies using a uniform vote distribution for various
numbers of candidates and present the results in Figure 4.2. In comparison, we did the same for
an extreme voting distribution. This extreme voting distribution assumes that the voters will
likely prefer candidates representing related opinions. We model this by assigning the numbers
1, . . . , ncand to the candidates and using a voting distribution that uses increased probabilities
for rankings where candidates ranked next to each other have minimal distance regarding their
numbers. For example, if a voter ranks the candidate with number three first, she is likelier to
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Algorithm 4.1: Pf res
CondorcetSmithSetPartial

Input: EMatrix
pk (DMagg)

1 EMatrix
pk (D), EVector

pk (dgteq), EVector
pk (dgt) = PCondorcetHelper(EMatrix

pk (DMagg))
2 EVector

pk (b) = CreateEncVector(0, ncand) ▷ Initialize result vector
3 Epk(n) = Epk(0)
4 EVector

pk (pCopeland) = (EVector
pk (dgt)i + EVector

pk (dgteq)i)ncand
i=1 ▷ Compute Copeland points

5 Epk(pΦ) = Epk(0)
6 for t = 2 · (ncand − 1) downto 1 do ▷ Iterate over possible Copeland points
7 for i ∈ {1, . . . , ncand} do
8 Epk(e) = feq(EVector

pk (pCopeland)i, Epk(t)) ▷ Check Copeland points of candidate
9 EVector

pk (b)i = EVector
pk (b)i

10 Epk(n) = Epk(n)⊕ EVector
pk (b)i ▷ Update size of dominating set

11 Epk(pΦ) = Epk(pΦ)⊕ EVector
pk (b)i ▷ Update Copeland points

12 Epk(ttmp) = Epk(n)⊙ (Epk(2)⊙ Epk(ncand)⊖ Epk(n)⊖ Epk(1))
13 f = fdec(feq(Epk(pΦ), Epk(ttmp)))
14 if f == 1 then
15 return (fdec(EVector

pk (b)i))ncand
i=1
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Figure 4.2.: Minimum Copeland points in Smith set for 5 candidates, uniform vote distribution,
and 1, 000, 000 samples.

assign candidate two or four the second rank. We present the results of this voting distribution
in Figure 4.3.

While the minimum Copeland points in the Smith set vary using a uniform distribution, it
is more likely for higher minimal Copeland points to occur than for lower ones. Switching to
the extreme distribution, the average minimal number of Copeland points in the Smith set
drastically increases. We present the expected values and the standard deviation in Table 4.1.
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nvoters
Uniform Distribution µ Extreme Distribution µ

E[X] σ E[X] σ

10 5.28 1.92 5.37 1.94
100 5.40 2.15 5.86 2.10

1, 000 5.42 2.20 7.16 1.58
10, 000 5.41 2.24 7.92 0.16

Table 4.1.: Expected minimum Copeland points in Smith set, E[X] denotes the expected value
and σ the standard deviation.

These values show that using the partially tally-hiding approach is more efficient than the fully
tally-hiding approach.

We benchmarked the protocol Pf res
CondorcetSmithSetPartial in comparison with Pf res

CondorcetSmithSet for various
numbers of candidates as follows. We evaluated three tallies using a uniform distribution, and
Figure 4.4 presents the average runtime. This figure indicates that Pf res

CondorcetSmithSetPartial is more
efficient than Pf res

CondorcetSmithSet .

An interesting question is the impact regarding privacy: The partial tally-hiding MPC protocol
Pf res

CondorcetSmithSetPartial reveals the minimum Copeland points in the Smith set. Therefore, we computed
the privacy values of f res

CondorcetSmithSet and f res
CondorcetSmithSetPartial compared to fagg. We present

these values in Figure 4.5. The values reveal that f res
CondorcetSmithSetPartial has a privacy level equal

to f res
CondorcetSmithSet.
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Algorithm 4.2: Pf res
IRVRoundTally

Input: EVector
pk (cchoice

agg ), X
1 EVector

pk (vround,i) = CreateEncVector(0, ncand) ▷ Votes received in this round.
2 for c ∈ {1, . . . , ncand} do
3 for j ∈ {1, . . . , ncomponents} s.t. j represents a ranking where the first preference is

ccand
c with respect to X do

4 EVector
pk (vround,i)c = EVector

pk (vround,i)c ⊕ EVector
pk (cchoice

agg )j

5 return fdec((EVector
pk (vround,i)c)ncand

c=1 )

4.2.2. Instant-Runoff Voting

As stated in Section 3.2.3, the primary bottleneck in computing instant-runoff voting (IRV)
with Pf res

IRV is the time-consuming process of evaluating the current first preference of the ballots,
which involves a significant number of multiplications that scales factorially in the number
of candidates. However, a solution to this issue involves modifying the computed function to
reveal the eliminated candidate in each round. By doing so, there is no need to perform these
multiplications since the first preference of the rankings is public knowledge at that point.

We can adapt Pf res
IRV to output the first preferences each round, allowing us to compute which

candidate to eliminate in plain, realizing f res
IRVRoundTally. With the knowledge of eliminated

candidates, we know the current first preference of each possible ranking. Thus, we do not need
to compute first preferences based on the ciphertexts. Therefore, the MPC protocol Pf res

IRVRoundTally

does not include a multiplication per ranking per candidate, as in the case of Pf res
IRV . We present

Pf res
IRVRoundTally in Algorithm 4.2.
The MPC protocol Pf res

IRVRoundTally does not include tie-breaking: We compute the candidate to
eliminate in each round over the plain tally. We can include tie-breaking in the MPC protocol
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Algorithm 4.3: Pf res
IRVRoundEliminated

Input: EVector
pk (cchoice

agg ), X
1 EVector

pk (vround,i) = Pf res
IRVRoundTally(EVector

pk (cchoice
agg ), X)

2 EVector
pk (l) = GetLastTieBreaking(EVector

pk (X))
3 return fdec((EVector

pk (l)i)ncand
i=1 )

and thus compute f res
IRVRoundEliminated. We present Pf res

IRVRoundEliminated in Algorithm 4.3. The runtime
of Pf res

IRVRoundEliminated depends on the specific tie-breaking mechanism, in contrast to Pf res
IRVRoundTally .

Figure 4.6 presents the benchmarks of Pf res
IRVRoundTally and of Pf res

IRVRoundEliminated for various tie-breaking
mechanism evaluating a single round and a complete evaluation of IRV. Since the number of
cryptographic operations does not scale in the number of possible rankings, there is no noticeable
difference between complete and partial rankings. Furthermore, Pf res

IRVRoundTally consists of a single
decryption per candidate per round. Since decryptions are efficient operations, the difference
between the runtime of a complete evaluation of IRV and a single round evaluation of Pf res

IRVRoundTally

is not noticeable.

The benchmarks show that the runtimes of Pf res
IRVRoundTally and Pf res

IRVRoundEliminated with tie-breaking
by lot only differ up to a few minutes.

The figure also shows the complexity of the tie-breaking mechanism, which is not noticeable
using full tally-hiding due to the factorial scaling in the number of candidates.

As discussed in Section 3.2.3, we expect that the ZKPs for CRankingMatrix supports five candidates
for partial rankings. Thus, the ZKPs are the bottleneck for partial tally-hiding with Ordinos.
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Figure 4.6.: Benchmarks of Ordinos evaluating Pf res
IRV with ntrustees = 12 and t = 12. For

comparison, see Figure 3.21 for benchmarks of the fully tally-hiding instantiations of Ordinos for
the same result functions.

4.3. Related Work

Ramchen et al. proposed a partially tally-hiding system for f res
IRVNSWPartial in [RCPT19], which

computes f res
IRVRoundTally and thus reveals the current first votes per candidate after each instant-

runoff round. As we have shown in Figure 4.1, f res
IRVRoundTally improves the privacy level of fAggTally,

but is far away from f res
IRV and f res

IRVRoundEliminated.

Ramchen et al. use a different choice space than CSingle and do not specify zero-knowledge
proofs for this choice space. It remains unclear how voters can prove the validity of their
ballots. Additionally, the system does not aggregate the ballots but processes and updates them
individually in each round. Thus, the evaluation of their system scales in the number of voters.
In comparison, the Ordinos framework aggregates the ballots; therefore, the complexity does not
scale in the number of voters.

They used an Intel i7-6770HQ processor with four cores (8 threads) and 32 GB of RAM. Their
benchmarks did not include proof creation and validation, and revealing intermediate tallies
allowed for early termination if the election winner was found. In comparison, we obtained our
benchmarks using an ESPRIMO Q957 (64bit, i5-7500T CPU @ 2.70GHz, 16 GB RAM) without
parallelism and just a single core.

The benchmarks they evaluate are based on the election for the districts of Albury and
Auburn in 2015. The election for the district of Albury had five candidates and required only a
single round, taking them 116 minutes to evaluate. The election for the district of Auburn had
five candidates, took four rounds, and was evaluated in approximately 15 hours. As shown in
Figure 4.6, the fully tally-hiding instantiation of Ordinos evaluates Albury in under two hours
and Auburn in about twelve hours for up to 264 voters. The partial tally-hiding instantiation of
Ordinos using Pf res

IRVRoundTally evaluates both scenarios in under three minutes, and we can drastically
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improve privacy by evaluating f res
IRVRoundEliminated, which Ordinos can handle in under 15 minutes

for up six candidates.
Overall, our partially tally-hiding instantiations outperform Ramchen et al. [RCPT19] regarding

privacy properties and performance.
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5. Public Tally-Hiding: Kryvos

All current e-voting systems that hide the tally aim to keep it hidden from everyone, including
voting authorities. In contrast, real-world elections often follow a different common practice
for hiding the tally: In many cases, voting authorities choose to compute but not publish the
aggregated tally. Instead, they publicize the final election result, e.g., the winner of the election or
the n best candidates, as they wanted to mitigate privacy issues for voters to prevent, e.g., Italian
attacks, for candidates to prevent, e.g., embarrassment and weak mandates, and manipulations,
e.g., gerrymandering. Hence, while the trustees learn the aggregated tally, the public learns
only the election result. We call this technique public tally-hiding. Such publicly tally-hiding
elections are carried out, among others, by ACM Special Interest Groups (SIGs) [ACM20], the
German Computer Science Association [Ges19], CrossRef [Cro19], the Society for Industrial and
Applied Mathematics (SIAM) [Soc19], or the German Research Fund [Deu19]. Civica Election
Services (CES) [Civ23], a large e-voting provider, conducts several dozen elections per year
where customers demand to obtain only the actual election result from CES [Per20], according
to CES, for example, to protect against weak mandates or gerrymandering issues. Although
such elections are pretty standard, they do not offer verifiability, i.e., it is impossible for a voter
or external observer to verify that the voting authority computed the election result correctly.

Public tally-hiding, motivated by and enhancing these existing practices, offers a trade-off
between privacy and efficiency, which differs from all previous fully and partially tally-hiding
solutions. Particularly, while publicly tally-hiding protocols hide the (aggregated) tally from the
public, partially tally-hiding systems still reveal some intermediate information about the tally
to the public.

We propose the first verifiable voting system that follows this common practice of publicly
tally-hiding elections. More specifically, we present a publicly tally-hiding e-voting system that
follows a radically different approach than all previous tally-hiding schemes. We allow each
trustee to learn the aggregated tally while the public merely learns the final election result.

Applying public tally-hiding allows for a novel design of e-voting systems. We can use dissimilar
cryptographic techniques compared to prior systems for tally-hiding elections. For example, we
can employ lightweight ZKPs instead of more heavy-weight universally verifiable MPC. Our
publicly tally-hiding e-voting system achieves practical efficiency for dramatically more significant
numbers of candidates and more complex voting methods than all previous fully tally-hiding
systems while still hiding the aggregated tally from the public, unlike partially tally-hiding
systems. However, public tally-hiding comes with the trade-off that now the trustees learn the
aggregated tally. Altogether, this work opens a new line of research enhancing already existing
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practices, where voting authorities compute but do not publish the tally with the fundamental
and crucial property of verifiability.

The design of Kryvos differs from previous (fully) tally-hiding e-voting systems. It builds
on general-purpose ZKPs, specifically the highly efficient succinct non-interactive argument of
knowledge (SNARK) by Groth16 [Gro16], which we call the Groth16 SNARK in this thesis. The
core idea is that trustees prove the correctness of the election outcome according to the result
function using this SNARK. While the concept itself is straightforward, putting this theory into
practice requires solving several challenges:

• Kryvos follows the general design philosophy of Helios (see Section 2.1), one of the most
prominent and practical verifiable e-voting systems that form the basis of many other systems.
It is not possible to apply the above idea directly to Helios (see Section 5.2). Therefore,
Kryvos is a fundamental redesign of Helios.

• To be of practical use, also with performance that enhances upon existing fully tally-hiding
systems, the design of Kryvos requires cautiousness and dealing with several pitfalls (see
Sections 5.2, 5.3.4, and 5.3.5). We evaluate various implementation and design possibilities
to develop an appropriate implementation.

We provide instantiations of Kryvos for manifold voting methods, including plurality voting,
various shapes of cumulative elections with multiple votes, and ranked elections, such as instant-
runoff voting (IRV). We extensively evaluate these instantiations, verifying the practicality of
the system. Among others, we test our system with real-world data of complex instant-runoff
elections from Australia. Our benchmarks show that Kryvos is significantly more efficient than
existing fully tally-hiding solutions: Kryvos takes under one minute to evaluate even complex
elections.

Furthermore, utilizing general-purpose proof systems, Kryvos enables voters to cast ballots of
complex choice paces. Even more, Kryvos efficiently handles choice spaces for which other ZKPs
are inefficient. With that, we are the first to fully and efficiently support CBordaTournamentStyle in
an e-voting system, opening new possibilities for electronic voting. These ZKPs are not specific
to public tally-hiding and can be employed in other e-voting systems.

As explained in the introduction, this chapter covers the content and is based on the publication
[HKK+22a] and its technical report [HKK+22b], and some parts of this chapter are taken verbatim
from them.

We organize this chapter as follows. In Section 5.1, we present the framework of public
tally-hiding. Afterward, Section 5.2 presents the design rationale of Kryvos, the first provable
secure verifiable and publicly tally-hiding e-voting system. Section 5.3 then presents the Kryvos
system in detail. We discuss related publicly tally-hiding work in Section 5.4.
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5.1. Publicly Tally-Hiding Framework

In this section, we introduce the novel notion of publicly tally-hiding e-voting. Intuitively, an
e-voting protocol P is publicly tally-hiding for some voting method (C, f res) if the following two
conditions hold:

1. Public privacy: Under the assumption that all trustees are honest, the protocol P provides
the same level of privacy as the ideal voting protocol Ivoting(C, f res, nvoters, n

honest
voters , µ) for

voting method (C, f res), which reveals nothing but the actual election result by definition
(see Section 3.1.1). Except for the trustees, no one learns anything beyond the published
election result.

2. Internal privacy: Under the assumption that fewer trustees than a certain threshold t are
dishonest, the protocol P provides the same level of privacy as the ideal voting protocol
Ivoting(C, f res, nvoters, n

honest
voters , µ) for voting method (C, fAggTally), where fAggTally is the func-

tion that returns the aggregated tally (e.g., the number of votes for all choices/candidates).
In other words, the trustees do not learn more than they would for a non-tally-hiding
secure e-voting protocol.

We now define this notion formally. We assume some set T of trustees and some threshold t.

Definition 5.1 (Publicly Tally-Hiding). Let P be a voting protocol with a set of trustees
T and t ≤ |T|. We define that P is (δideal

nvoters,nhonest
voters ,µ

(C, f res), δideal
nvoters,nhonest

voters ,µ
(C, fAggTally))-publicly

tally-hiding w.r.t. f res and (T, t) if (and only if) the following two conditions hold:

Public Privacy: If all parties of T are honest, then the protocol P achieves δideal
nvoters,nhonest

voters ,µ
(C, f res)-

privacy.
Internal Privacy: If at most t − 1 parties in T are dishonest, then the protocol P achieves
δideal

nvoters,nhonest
voters ,µ

(C, fAggTally)-privacy.

We call δideal
nvoters,nhonest

voters ,µ
(C, f res) the public and δideal

nvoters,nhonest
voters ,µ

(C, fAggTally) the internal privacy
level.

As explained, a secure protocol’s public and internal privacy levels should correspond to the
privacy levels of the ideal protocols mentioned above.

5.1.1. Impact of Hiding the Tally

We measure the difference between internal and public privacy for f res
Plurality and f res

IRVLotComplete for
various numbers of honest voters and five candidates. We present the results in Figure 5.1. These
values show that the concept of public tally-hiding drastically improves privacy for the public
for relatively simple and complex election result functions like f res

IRVLotComplete. The difference
between the public and internal privacy levels further expands with more honest voters and
non-uniform distributions, which is a typical setting of real-world elections. In summary, the
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Figure 5.1.: Ideal internal and public levels of privacy for various election result functions.

concept of public tally-hiding drastically improves privacy for the public while still achieving the
same privacy level as Helios for the trustees.

5.2. Design Rationale of Kryvos

This section describes the design choices that led to Kryvos, the first provable secure, verifiable,
and publicly tally-hiding remote e-voting system.

Our concept for Kryvos is to construct a system similar to Helios where we publicly aggregate
the encrypted votes, and the trustees compute cchoice

agg from EVector
pk (cchoice

agg ). The aggregation
guarantees trustees do not learn more about individual votes than trustees in a standard privacy-
preserving (non-tally-hiding) system, such as Helios. However, rather than publicizing cchoice

agg , the
trustees internally compute and publish solely the result f res(cchoice

agg ). To still obtain verifiability
in this situation, we employ non-interactive zero-knowledge proofs (NIZKPs) to let (one of) the
trustees prove that f res(cchoice

agg ) was computed correctly from EVector
pk (cchoice

agg ). Since NIZKPs are
relatively lightweight compared to multi-party computation, the rationale is that this should
allow for assembling more efficient e-voting systems that support more types of elections in
a (publicly) tally-hiding way than existing (fully) tally-hiding systems. However, traditional
zero-knowledge proof systems (which we will call specialized ZKPs in the following) support
one specific relation (e.g., the NIZKPs presented in Section 3.2.3 support exactly one choice
space each). Consequently, applying such NIZKPs requires finding a secure and efficient NIZKP
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for each election result function. We use another, more flexible class of ZKPs to support many
existing election types with various result functions. We utilize recent advances in the domain
of general-purpose proof systems (GPPSs), which allow for proving statements for arbitrary
functions.

A GPPS consists of the three algorithms (Setup,Prove,Verify):

1. The Setup(fR) algorithm takes as input an arbitrary indicator function fR : {0, 1}∗ ×
{0, 1}∗ → {0, 1} for some binary relation R, such that fR(x,w) = 1 if (and only if)
(x,w) ∈ R for public statement x and secret knowledge/witness w. This algorithm then
outputs public parameters, typically in the form of two common reference strings, EKCRS
(evaluation key CRS, needed to create proofs) and VKCRS (verification key CRS, needed
to verify proofs) that depend on fR. The public parameters create an instance of the
GPPS specific to the function fR.

2. Anyone can then use EKCRS to create a proof π $←− Prove(EKCRS, x, w).

3. To verify the proof, one can use Verify(VKCRS, x, π).

Employing zero-knowledge GPPSs to prove that the declared election result corresponds to the
tally’s encryptions is not only advantageous to construct a publicly tally-hiding e-voting system.
Moreover, the zero-knowledge GPPS is also efficient on devices with low computational power.
Therefore, the voters can also utilize these to prove the validity of their ballots. Using GPPSs
to verify ballot validity allows Kryvos to support any choice space, including complex ranked
voting and point-based methods. This approach is practical, as we show in Section 5.3.5. This
support for arbitrary ballot formats is also of interest beyond the area of (publicly) tally-hiding
systems. For example, to our knowledge, Kryvos is the first e-voting system supporting ZKPs for
Borda tournament-style ballots using CBordaTournamentStyle. For ranked ballots using CRankingMatrix,
Kryvos improves over previous efficient ZKPs that even required trustees to perform part of the
proof [HPT19].

While the general idea of making use of GPPSs might seem conceptually simple, it requires
careful design and optimization to achieve not only a secure but also a practical solution as
outlined next and in Sections 5.3.4 and 5.3.5.

5.2.1. Challenges

In order to construct an efficient publicly tally-hiding e-voting system based on the rationale
described above, we have to overcome several challenges:

• The size of EKCRS: Regarding the proofs of showing the validity of the ballots, the size
of the evaluation key common reference string (CRS) EKCRS must be as small as possible
such that all voters, including users with limited resources, can create proofs and thus can
participate in the election.
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• The size of VKCRS: Overall, the size of the verification key common reference string (CRS)
VKCRS must be as small as possible, such that everyone, including parties with limited
resources, can store the VKCRS in order to verify proofs.

• The proofs should require less computational power and resources to verify. Large-scale
elections with millions of votes require efficient verification of the ballots.

• The proofs should be as small as possible: Compact proofs require less storage space, making
storing and managing voting data securely easier. Small proof size is critical when archiving
election records for potential audits. Furthermore, it is essential to achieve small proof sizes
while maintaining robust security and privacy protections. Smaller proofs benefit voters with
limited resources, such as those using low-end devices or slow internet connections to cast
their votes. Ensuring accessibility for all eligible voters is crucial to a democratic election.

• The proof generation algorithm should be as efficient as possible: Faster tallying times
allow quicker and more efficient election results. Furthermore, voters must be able to
efficiently create proofs showing the validity of their ballots, even when using devices with
low computational power.

• Selecting a suitable cryptographic primitive: The GPPS must efficiently support the underly-
ing cryptographic primitive used to hide the tally. As we will see later in this section, the
cryptographic operations are the main complexity factor for the GPPS.

5.2.2. Selecting a Suitable Cryptographic Primitive

One major challenge of designing a verifiable publicly tally-hiding e-voting system by having
trustees prove in zero-knowledge that f res(cchoice

agg ) was computed correctly from EVector
pk (cchoice

agg ) is
that this approach requires combining the GPPS with cryptographic operations. As we will see
later in this section, cryptographic operations are the main bottleneck of the efficiency of Kryvos.
If we make use of a threshold encryption scheme, the GPPS would have to be computed locally
by one of the trustees, who would require as witnesses all private key shares in order to prove
knowledge of cchoice

agg,w such that cchoice
agg,w = (dec(EVector

pk (cchoice
agg )i))ncomponents

i=1 . Revealing those key shares
would allow that trustee to decrypt individual votes, breaking ballot privacy entirely. Therefore,
instead of decryption using the secret key, one would let t−1 trustees create decryption shares of
every ciphertext of EVector

pk (cchoice
agg ), alongside proofs of correctness. Then, an additional trustee

takes these t− 1 decryption shares, alongside her secret key, as input for the GPPS, which now
performs two steps to decrypt the tally:

1. The trustee, using her secret key, creates a decryption share of every ciphertext of
EVector

pk (cchoice
agg ).

2. The trustee combines the t decryption shares to decrypt the ciphertext.

However, these steps require many cryptographic operations and are far too inefficient in
an efficient publicly tally-hiding e-voting system. This work proposes a different approach:
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constructing an e-voting system based on an additively homomorphic commitment scheme,
following a line of commitment-based e-voting systems initiated by Cramer et al. [CFSY96].
The main difference to the encryption-based approach is that we can use a vector commitment
scheme to handle multiple values in a single commitment, drastically improving the efficiency,
as shown in Section 5.3.4. In Section 5.3.1, we show that using this approach, we can build a
publicly tally-hiding system such that a single trustee can locally and thus efficiently compute a
proof showing the correctness of the result.

5.3. Kryvos

Many verifiable e-voting systems, such as Ordinos (see Section 3.2), follow the concept of the
prominent Helios system [AdMPQ09] (see Section 2.1). Helios is based on a (t, ntrustees)-threshold
IND-CPA-secure additively homomorphic public-key encryption scheme, such as exponential
ElGamal. Essentially, given the encrypted votes of the voters, the trustees homomorphically
aggregate the encrypted votes to compute the publicly known encrypted tally EVector

pk (cchoice
agg )

consisting of a sequence of ciphertexts containing the total number of votes for each choice
component, i.e., there is one ciphertext per choice component. By aggregating votes, Helios
breaks the link between voters and their votes, thereby achieving ballot privacy, and hides
individual votes within the aggregated tally cchoice

agg . The trustees then decrypt EVector
pk (cchoice

agg ),
i.e., all ciphertexts therein, in a distributed way and publish cchoice

agg along with proofs of correct
decryption, which reveals the aggregated tally cchoice

agg and allows everyone to publicly compute
the result of the election f res(cchoice

agg ), e.g., the winner of the election. In systems that aim for
full tally-hiding, i.e., where only f res(cchoice

agg ), but not cchoice
agg is revealed (see Chapter 3), trustees

essentially perform certain forms of MPC on EVector
pk (cchoice

agg ) in order to compute f res(cchoice
agg ).

Such heavy-weight MPC protocols take hours to evaluate elections (see Section 3.2.3), which
is why in this work, we, for the first time, directly follow the standard approach of public
tally-hiding, i.e., while trustees may learn cchoice

agg , everybody else should only learn f res(cchoice
agg ).

In Section 5.3.1, introduce the Kryvos framework. Then, in Section 5.3.2, the security and
privacy of the generic Kryvos framework are formally stated and proven. In Section 5.3.3, we
present general-purpose proof systems, a primitive that we will use to instantiate the Kryvos
framework. In Section 5.3.4 discusses various design choices and derive efficient realizations of
core building blocks of our Kryvos instantiations. We present a detailed evaluation in Section 5.3.5.
We provide the implementation in [HKK+23].

5.3.1. The Kryvos Framework

In this section, we present the Kryvos e-voting framework, the first verifiable e-voting system that
directly follows the publicly tally-hiding paradigm. Kryvos is a generic framework supporting
many voting methods and result functions.
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The description of the Kryvos framework focuses on those parts of Kryvos that are at the
core of the public tally-hiding property. Well-known and standard enhancements to security, in
particular distributed implementations of bulletin boards (e.g., [CS14,KKL+18,HSB21]) and
mechanisms to mitigate trust on the voting devices (e.g., [Ben07,GGP15]), are orthogonal to
and fully compatible with Kryvos. Therefore, for simplicity of presentation, in the following,
we identify voters and their voting devices. In particular, it is guaranteed that the ballots of
honest voters contain the correct choice. Also, the modeling is such that ballots of honest voters
are guaranteed to reach the bulletin board. These modeling choices and the security proofs
can easily be lifted analogously to the modeling and security proofs of the Ordinos framework
(Section 3.2.1).

5.3.1.1. Participants

The Kryvos protocol is run among a voting authority Auth, (human) voters v1, . . . , vnvoters , trustees
T1, . . . ,Tntrustees , and a bulletin board (BB). We assume that a mutually authenticated channel
to BB exists for each party.

5.3.1.2. Voting Method and Election Result Function

The tuple (C ⊆ Fncomponents
q , f res) consisting of a choice space (see Section 2.6) and an election

result function (see Section 2.7) defines the abstract voting method for which we describe Kryvos;
Section 5.3.5 presents specific instantiations.

5.3.1.3. Setup Phase

In this phase, all election parameters are fixed and posted on the BB by Auth: the list id⃗ of
eligible voters, opening and closing times, the election ID idelection, and the voting method
(C, f res). Additionally, Auth publishes a decomposition ncomponents = ntuples ·N that induces a
decomposition on the choice space C ⊆ (Fq)ncomponents = (Fq)N × . . .× (Fq)N yielding a splitting of
a vote cchoice

i ∈ C into ntuples tuples, each of size N . Intuitively, each part (Fq)N is handled using
a single general-purpose proof, leading to ntuples many proofs showing the validity of a ballot.
Therefore, this parameter allows for a trade-off of various benchmarks of the Kryvos instantiation:
Using choice spaces with larger values of ncomponents might make a single general-purpose proof
inefficient in terms of prove creation time or other benchmark metrics, depending on the concrete
general-purpose proof system instantiation. Therefore, splitting the choice space into chunks such
that independent proofs can evaluate chunks independently might allow for more efficient proofs
of ballot validity. However, increasing the value of ntuples leads to more proofs per ballot, and
thus more proofs overall, possibly leading to more memory consumption, particularly on the BB.
Furthermore, handling more commitments also increases the complexity of the proof showing
the validity of the election result. In our instantiations in Section 5.3.5, we will always use
ntuples = 1, except for IRV, where ncomponents is of exponential size in the number of candidates.
We will discuss how this influences the Kryvos instantiation in Section 5.3.5.
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A vote cchoice
i = (vi

1, . . . , v
i
ntuples) contains in vi

1 the entries for the first N choices, in vi
2 the

next N choices and so on. If ncomponents is not divisible by N , we can artificially grow the choice
space so that ncomponents is a multiple of N by appending zeros to a vote. This assignment is
published by Auth on BB.

Furthermore, Auth creates and publishes the CRSs required for the general-purpose proofs on
BB. Our system requires honestly generated CRSs for the Groth16 SNARKs. Several well-known
mechanisms are practical with the parameters we need, such as distributed generation of the CRS
by multiple parties, see Section 5.3.3. For simplicity and since this is an orthogonal issue, we here
compute CRSs on a local computer. Each trustee Tk runs the key generation algorithm KeyGenE

of an IND-CCA2-secure public-key encryption scheme E = (KeyGenE , Epk, dec) to generate its
public/private (encryption/decryption) key pair (pkk, skk) and posts (k, pkk) on BB.

5.3.1.4. Voting Phase

Let cchoice
i = (ccomponent

1,i , . . . , ccomponent
ncomponents,i) ∈ C be the vote of voter vi. The voter creates full-

threshold secret sharings of every component ccomponent
j,i of her vote to share ccomponent

j,i among
the ntrustees trustees:

(ccomponent
j,i,1 , . . . , ccomponent

j,i,ntrustees ) with
ntrustees∑︂

k=1
ccomponent

j,i,k mod q = ccomponent
j,i .

Then, for each trustee Tk, the voter decomposes (ccomponent
1,i,k , . . . , ccomponent

ncomponents,i,k
) into chunks

(ti,1k , . . . , t
i,ntuples
k ), where ncomponents = ntuples · N is as defined by Auth in the setup phase (see

above). Now, the voter creates a commitment to each tuple:

ci,l
k ← com(ti,lk , r

i,l
k ).

Observe that since the commitment scheme is additively homomorphic, the commitment
ci,l := ∑︁ntrustees

k=1 ci,l
k opens to the tuple ccomponent

l,i = (ccomponent
1+(l−1)·N,i, . . . , c

component
l·N,i ), i.e., the votes for

the choices belonging to the l-th factor in the decomposition of (Fq)ncomponents specified by Auth,
using opening value ri,l := ∑︁ntrustees

k=1 ri,l
k . One can obtain commitments on the original vote of vi

by combining all of the commitments on the full-threshold shares.
To guarantee the well-formedness of all commitments and the vote contained therein, the

voter creates a proof πCi proving that (ci,1, · · · , ci,ntuples) commits to a vote cchoice
i ∈ C.

For each trustee Tk, the voter uses Tk’s public key pkk to securely send the opening values for
(ci,1

k , . . . , c
i,ntuples
k ) to Tk:

ei
k ← Epkk

((ti,1k , . . . , t
i,ntuples
k ), (ri,1

k , . . . , r
i,ntuples
k )).
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To provide ballot privacy, we assume that all plaintexts have a fixed length, which can easily
be guaranteed here.

To complete the voting process, vi submits her ballot bi = (i, (ci,l
k )l,k, π

C
i , (ei

k)k) to the bulletin
board. BB then verifies that i) the voter is eligible to vote, ii) has not submitted a valid ballot
before, iii) the voter’s SNARK proof is valid, and iv) no voter has previously submitted a
vector containing any of the ciphertexts in (ei

k)k. This so-called ballot weeding process prevents
malicious voters from submitting ballots that are related to the ballots from honest voters, which
would break privacy. In particular, due to the CCA2-secure encryption, which must contain
the correct randomness for the commitments, the only way to submit a valid related ballot is
by creating a new ballot that re-uses some of the (unmodified) ciphertexts from the honest
ballots. If at least one trustee is honest (which we always assume for privacy), the ballot weeding
procedure prevents ballot weeding. If all checks succeed, the BB adds bi to the list of ballots b⃗
and publicly updates b⃗.

The trustees must prepare the list b⃗ for the tallying phase. Each trustee Tk decrypts every ei
k

posted on BB:

((t̃i,1k , . . . , t̃
i,ntuples
k ), (r̃i,1

k , . . . , r̃
i,ntuples
k ))← decskk

(ei
k).

Then Tk checks whether each pair (t̃i,lk , r̃
i,l
k ) is a valid opening for ci,l

k . If this is not the case,
then Tk publishes a NIZKP πdec of correct decryption of ei

k on BB so that one can verify that
ei

k is invalid; as a consequence, the corresponding ballot will not be counted. For example,
one can combine the IND-CCA2-secure PKE by Cramer-Shoup [FHR21] with the NIZKP by
Camenisch-Shoup [CS03]. All of the following steps, including the tallying phase, are performed
only for those ballots that have passed this check; for simplicity of presentation, we assume that
all voters have submitted a valid ballot.

5.3.1.5. Tallying Phase

Everyone can homomorphically aggregate the public commitments on BB by computing

cagg,l ←
ntrustees∑︂

k=1

nvoters∑︂
i=1

ci,l
k

for each 1 ≤ l ≤ ntuples. In parallel, the trustees homomorphically aggregate the corresponding
opening values. First, each trustee Tk internally computes for each 1 ≤ l ≤ ntuples

tagg,l
k ←

nvoters∑︂
i=1

ti,lk ; ragg,l
k ←

nvoters∑︂
i=1

ri,l
k ,
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where the ti,lk ’s and ri,l
k ’s are the opening values decrypted above. Next, each trustee Tk shares

(tagg,l
k )l and (ragg,l

k )l with the other trustees so that for each 1 ≤ l ≤ ntuples, the trustees can
internally compute

tagg,l ←
ntrustees∑︂

k=1
tagg,l
k ; ragg,l ←

ntrustees∑︂
k=1

ragg,l
k .

The trustees compute the (aggregated) tally of all votes cchoice
agg = (ccomponent

1,agg , . . . , ccomponent
ncomponents,agg),

where ccomponent
j,agg is the total number of votes for (choice) component ccomponent

j .
A designated trustee then performs the final step. First, this trustee computes the election

result elecres ← f res(cchoice
agg ). She then computes a proof πf res using Πf res on public inputs

cagg,1, . . . , cagg,ntuples and elecres that proves knowledge of cchoice
agg (as well as knowledge of random-

ness) such that cagg,1, . . . , cagg,ntuples is a list of commitments on cchoice
agg and elecres is the output of

f res(cchoice
agg ). The trustee publishes elecres and the proof BB. We will define the formal relation

Rres
f of this ZKP in Section 5.3.5.

5.3.1.6. Public Verification Phase

In this phase, every participant, including the voters or external observers, can verify the
correctness of the tallying procedure, particularly all ZKPs. In particular, external observers
can re-compute the homomorphic aggregations of commitments without knowing any openings.

5.3.2. Security of Kryvos

In this section, we formally show that Kryvos enjoys verifiability and privacy (including publicly
tally-hiding) properties.

5.3.2.1. Computational Model of Kryvos

We start by formally modeling Kryvos using the general computational framework presented in
Section 2.2 that we use both for analyzing the verifiability and privacy of Kryvos.

We model Kryvos as a protocol PKryvos(nvoters, ntrustees, µ,C, f
res) following the description from

Section 5.3.1. Recall from that section that we denote the number of voters by nvoters, the
number of trustees by ntrustees, and the voting method by (C, f res). By µ, we denote a probability
distribution over C according to which each honest voter makes her choice. Note that by this,
we model that the adversary knows this distribution. This choice is called the actual choice of
the voter. Besides the abovementioned parties, Kryvos contains a BB. In our model of Kryvos,
the voting authority Auth is part of an additional agent, the scheduler S. Besides playing the
role of the authority, S schedules all other agents in a run according to the protocol phases. In
particular, we assume that the voting authority Auth (more generally, the scheduler S) and the
BB are honest, i.e., the adversary does not corrupt these parties.
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The judging procedure of Kryvos is very simple. The judge reads all data from the bulletin
board BB and accepts the run if and only if all NIZKPs on BB are valid (and only eligible voters
voted, at most once): the voters’ NIZKPs πCi to prove ballot validity, the trustees’ NIZKPs πf res

to prove the correctness of the final result, and (if any) the trustees’ NIZKP πdec to prove that a
voters’ ciphertext does not decrypt to a valid opening of her commitments.

5.3.2.2. Verifiability

In this section, we establish the level of verifiability provided by Kryvos for the goal γ(k, φ)
presented in Definition 2.1. We prove the verifiability result for Kryvos under the following
assumptions:

(V1) The encryption scheme is correct, the commitment scheme is homomorphic and compu-
tationally binding, and all NIZKPs are (computationally) sound.

(V2) The scheduler S, the judge J, and the BB are honest: φ = hon(S) ∧ hon(J) ∧ hon(BB).

Note that the adversary may control an arbitrary number of voters and trustees.

Theorem 5.1 (Verifiability of Kryvos). Under the assumptions (V1) and (V2) states above
and the mentioned judging procedure run by the judge J, PKryvos(nvoters, ntrustees, µ,C, f

res) is
(γ(∞, φ), 0)-verifiable, w.r.t. the judge J.

We note that this theorem differs from Theorem 3.3. As explained in Section 5.3.1, our
modeling described, is such that votes of honest voters are cast as intended and reach the bulletin
board. Therefore, the theorem holds even though voters do not perform any verification. Also,
instead of considering k-risk-avoiding adversaries for some k < ∞, we can consider arbitrary
probabilistic polynomial-time adversaries, i.e., k =∞.

If we assume the presence of malicious voting devices or that ballots might be dropped before
reaching the bulletin board, we can reintroduce the security mechanisms considered also for
Ordinos (verification by voters with probabilities pverify and paudit). In this case, analogously to
Ordinos, we obtain (γ(k, φ), δk(pverify, paudit))-verifiability for Kryvos.

We provide our formal proof of the verifiability theorem in Appendix B.1. This result mainly
uses the soundness of the NIZKPs/SNARKs employed in Kryvos. The underlying relations of
these proofs yield a global relation, which effectively ensures the goal Φk.

5.3.2.3. Accountability

The issue regarding Kryvos’s accountability property lies in the internal communication between
the trustees. During the tallying phase, the trustees internally open the aggregated tally by
sending their openings to the other trustees. However, it is not possible to resolve complaints
cast in this phase. If trustee i publicly raises a complaint stating “Trustee j did not open her
commitments,” the public cannot judge what happened:
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1. Trustee j did not open her commitments, or

2. Trustee i falsely accuses trustee j.

The issue arises by hiding the log of the internal communication between the trustees.
Nevertheless, we cannot publish the communication log after a complaint is raised for privacy
reasons.

5.3.2.4. Privacy

We define the set of admissible adversaries for Kryvos as follows. The process PPKryvos of PKryvos,
the set A(PPKryvos) of admissible adversaries for PPKryvos is defined as follows. An adversary A
belongs to A(PPKryvos) if (and only if) it satisfies the following conditions: (i) pA is k-risk-avoiding
for PPOrdinos , (ii) and the probability that pA corrupts more than nhonest

voters voters in a run of
PPOrdinos∥pA is negligible.

To analyze the publicly tally-hiding property of Kryvos, we make the following assumptions
about the primitives we use (see also Section 5.3.1):

(P1) The public-key encryption scheme is IND-CCA2-secure, the SNARKs and the NIZKPs
are perfectly zero-knowledge, and the commitment scheme is perfectly hiding.

(P2) An adversary pA does neither corrupt the scheduler S nor the BB, and at least nhonest
voters

voters are honest.

(P3a) An adversary pA does not corrupt any trustee.

(P3b) An adversary pA does corrupt at most t− 1 many trustees.

Theorem 5.2 (Public Privacy). Under the assumptions (P1), (P2), (P3a), and the mapping
A(PPKryvos) stated above, the voting protocol PKryvos(nvoters, ntrustees, µ,C, f

res) of Kryvos achieves
δideal

nvoters,nhonest
voters ,µ

(C, f res) privacy.

Theorem 5.3 (Internal Privacy). Under the assumptions (P1), (P2), (P3b), and the mapping
A(PPKryvos) stated above, the voting protocol PKryvos(nvoters, ntrustees, µ,C, f

res) of Kryvos achieves
δideal

nvoters,nhonest
voters ,µ

(C, fAggTally) privacy.

Theorem 5.4 (Publicly Tally-Hiding). Under the assumptions (P1), (P2), (P3a), (P3b), and the
mapping A(PPKryvos) stated above, the voting protocol PKryvos(nvoters, ntrustees, µ,C, f

res) of Kryvos
achieves (δideal

nvoters,nhonest
voters ,µ

(C, f res), δideal
nvoters,nhonest

voters ,µ
(C, fAggTally))-publicly tally-hiding w.r.t. (T, t).

The formal proofs of Theorems 5.2 to 5.4 are provided in Appendix B.2. The proofs are based
on two sequences of games, one for internal and one for public privacy.

Theorem 5.4 essentially states that the public privacy level δp of Kryvos is the ideal one
for (C, f res), and its internal privacy level δi is the ideal one for (C, fAggTally) where fAggTally

returns the number of votes for each choice/candidate. Figure 3.7 illustrates that for IRV,
Kryvos dramatically improves public privacy compared to non-tally-hiding systems (for which
δi = δp ≥ δideal(C, fAggTally)).
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5.3.3. General-Purpose Proof Systems

An integral part of the Kryvos e-voting scheme is the general-purpose proof system (GPPS) that
show (i) validity of ballots, and (ii) validity of the election result function. Instead of using
specialized ZKPs that support exactly one such relation for a specific election result function,
using general-purpose proof systems allows for high flexibility of the Kryvos framework to support
different choice spaces and election result functions. This section will explore the features of
GPPSs and choose an appropriate instantiation for Kryvos.

A GPPS takes as input an arbitrary indicator function fR : {0, 1}∗ × {0, 1}∗ → {0, 1} for
some binary relation R, such that fR(x,w) = 1 if (and only if) (x,w) ∈ R for public statement
x and secret knowledge/witness w. It then allows for computing a zero-knowledge proof that
proves knowledge of w such that fR(x,w) = 1. In our setting, to prove validity of the election
result accordingly to f res, a trustee can use x = (ComVector

pk (cchoice
agg ), y) as public input along

with a suitable witness (which, among others, contains some tally cchoice
agg,w ) and the function

fR: fR(x,w) = 1 if (and only if) cchoice
agg,w corresponds to the plaintext in ComVector

pk (cchoice
agg ) and

y = f res(cchoice
agg,w ). Usually, the GPPS represents the indicator function fR as an arithmetic

circuit, and the complexity of the proof systems depends on the number of gates of this circuit.
Regarding the election result functions, relations/circuits for our setting of publicly tally-hiding
e-voting consist of two parts:

1. Showing correctness of cryptographic primitives: cchoice
agg,w corresponds to the plaintext in

ComVector
pk (cchoice

agg ).

2. Evaluating the tally: y = f res(cchoice
agg,w ).

Therefore, the concrete GPPS must efficiently support both parts to obtain an efficient
publicly tally-hiding e-voting system. The GPPS must handle complex result functions even
for more significant numbers of candidates/choices, which, among others, requires reasonably
low proof creation and verification times. However, as we will show in Section 5.3.5, showing
the validity of an opening of a commitment is far more demanding than evaluating the election
result. Performing cryptographic operations inside GPPSs quickly reaches the limitations of
such systems. Moreover, the GPPS for our e-voting system must satisfy several requirements
to be applicable, see Section 5.2.1. Therefore, we use highly efficient GPPSs, namely succinct
non-interactive arguments of knowledge, introduced next to obtain efficient realizations.

5.3.3.1. SNARKs

In order to efficiently prove the opening of a commitment and the correct evaluation of an
election result function, we need general proof systems that are efficient and scale well, even
for large circuits. Zero-knowledge succinct non-interactive argument of knowledge [GMO16,
Gro16,AHIV17,BBC+18,BBHR18,BBB+18,BCR+19,ESLL19,ESS+19,GWC19,MBKM19,AC20,
ALS20,BFH+20,BLNS20,COS20,ENS20,Set20,ACK21,AL21,BCS21, ISW21,LNPS21,ACC+22,
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ACL+22,CHJ+22,Eag22,LNP22,BS23,ABST23,CBBZ23,CGG+23,CGI+23,GLS+23,Zha23]
(SNARKs, for short, where we implicitly assume the zero-knowledge property) are highly efficient
general-purpose proof systems and these currently fit these requirements best. Essentially, they
are general-purpose proof systems with the additional property of succinctness. In general,
succinctness states that the proof size and the verification time are sublinear in the size of the
circuit (that encodes the indicator function fR). In order to obtain succinctness, SNARKs have
the trade-off that they loosen the notion of soundness. That is, instead of achieving perfect
soundness, they achieve computational soundness.

In the following, following [Gro16], we define zero-knowledge succinct non-interactive arguments
of knowledge (SNARKs).

Let R be a relation generator given a security parameter η in unary, returns a polynomial
time decidable binary relation R. For pairs (x,w) ∈ R, we call x the (public) statement and w

the (secret) witness. We define Rη as the set of possible relations R that the relation generator
may output given 1η. In the following, we will assume that we can deduce η from the description
of R. The relation generator may also output some side information, an auxiliary input z, given
to the adversary. An efficient prover publicly verifiable non-interactive argument for R is a tuple
of probabilistic polynomial time algorithms (Setup,Prove,Verify,Sim) such that:

• (EKCRS,VKCRS, τ)← Setup(R): The setup produces two common reference strings (CRSs):
EKCRS (evaluation key CRS, needed to create proofs) and VKCRS (verification key CRS,
needed to verify proofs), and a simulation trapdoor τ for the relation R. Typically, VKCRS
is included in EKCRS.

• π ← Prove(R,EKCRS, x, w): The prover algorithm takes as input a common reference string
(CRS) EKCRS and (x,w) ∈ R and returns an argument π.

• 0/1← Verify(R,VKCRS, x, π): The verification algorithm takes as input a common reference
string (CRS) VKCRS, a statement x, and an argument π, and returns 0 (reject) or 1 (accept).

• π ← Sim(R, τ, x): The simulator takes as input a simulation trapdoor τ and statement x,
and returns an argument π.

Definition 5.2. The tuple (Setup,Prove,Verify,Sim) is a perfect non-interactive zero-knowledge
argument of knowledge for R if it has perfect completeness, perfect zero-knowledge and computa-
tional knowledge soundness as described below.

In what follows, we describe the main idea of the respective properties and refer to [Gro16]
for the formal definitions:

• Perfect zero-knowledge: An argument is zero-knowledge if it does not leak any information
besides the statement’s truth.

• Computational soundness: (Setup,Prove,Verify, Sim) is sound if it is impossible to prove a
false statement.
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• Computational knowledge soundness: The tuple (Setup,Prove,Verify,Sim) is an argument of
knowledge if an extractor can compute a witness whenever the adversary produces a valid
argument.

5.3.3.2. Selecting a SNARK for Kryvos

Our setting of publicly tally-hiding e-voting poses several requirements that a SNARK must fit,
see Section 5.2.1. That is, the proof system should be as efficient as possible in every aspect:
The size of the common reference strings (CRSs) should be as small as possible, proof generation
should be as fast as possible, the proofs should be as small as possible, and verification should
be as fast as possible. Furthermore, the SNARK should be executable even on devices with low
computational power so voters can create and verify proofs.

There are many possible SNARKs for instantiating the zero-knowledge proofs for Kryvos.
Groth proposed a SNARK [Gro16] (called Groth16 SNARK in the following) that is state-of-the-
art and possesses the best benchmarks in comparison with other SNARKs: It posses constant
proof size and verification time (independent of the circuit) while maintaining reasonable efficient
prover times. We will discuss this SNARK next. Our construction is based on arithmetic circuits
and is not limited to the Groth16 SNARK. We can instantiate Kryvos with every proof system
based on arithmetic circuits (such as, e.g., [Gro16,AHIV17,BBC+18,BBB+18,BCR+19,COS20,
Set20,CHJ+22,Eag22,BS23,GLS+23]).

Furthermore, we will instantiate the Kryvos framework with Pedersen commitments (see
following sections). We emphasize that the (results for the) efficient combination of algorithms
for computing Pedersen commitments will also carry over to other SNARKs as long as the base
field of the elliptic curve for the Pedersen commitments is compatible with the base field of the
SNARK. While the Groth16 SNARK is compatible with our construction, it might require some
work for other SNARKs.

5.3.3.3. The Groth16 SNARK

The Groth16 SNARK [Gro16] is a highly efficient state-of-the-art SNARK that offers constant
proof size with constant verification time (independently of the function fR) while achieving a
relatively fast polynomial proving time and thus scaling well even for highly complex functions.

Simplified, the Groth16 SNARK consists of three algorithms: (Setup,Prove,Verify). The
Setup(fR) algorithm generates two common reference strings (CRSs), EKCRS (evaluation key
CRS, needed to create proofs) and VKCRS (verification key CRS, needed to verify proofs) that
depend on fR. The setup creates an instance of Groth16 specific to the function fR. Anyone can
then use EKCRS to create a proof π $←− Prove(EKCRS, x, w) with the abovementioned properties.
One can use Verify(VKCRS, x, π) to verify the proof, which requires only a very small VKCRS.
The Groth16 SNARK operates on bilinear groups (defined in Appendix A.3) whose order depends
on the size of the input values. The currently most efficient implementation [sci17], which we
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use, uses bilinear groups with size up to 256 bits and supports operations in F∗
p with p of size up

to 255 bits.
A Groth16 SNARK uses the language of quadratic arithmetic programs to specify the

underlying relation R and indicator function fR, which we will define next.

5.3.3.4. Quadratic Arithmetic Programs (QAPs)

Consider an arithmetic circuit of addition and multiplication gates over a finite field F. We
may designate some of the input/output wires as specifying a statement and use the rest of the
wires in the circuit to define a witness. The combination of statement and witness gives us a
binary relation R consisting of statement wires and witness wires that satisfy the arithmetic
circuit, i.e., make it consistent with the designated input/output wires. Generalizing arithmetic
circuits, we may be interested in relations described by constraints over a set of variables (in
this work, we will use the terms wire and variable interchangeable). Some variables correspond
to the statement; the remaining variables correspond to the witness. The relation consists of
statements and witnesses that satisfy all the constraints.

Definition 5.3 (Constraint). Let (ai)m
i=0 ∈ Fm+1 be a set of variables with a0 = 1. A constraint

consists of constants (ui, vi, wi)m
i=0 ∈ (F,F,F)m+1 and we define that the constraint is satisfied if

the following holds:

m∑︂
i=0

uiai ·
m∑︂

i=0
viai =

m∑︂
i=0

wiai.

Addition and multiplication gates are special cases of such constraints, so such systems of
arithmetic constraints generalize arithmetic circuits. A multiplication gate can for instance be
described as ai · aj = ak (using ui = 1, vj = 1 and wk and setting the remaining constants for
this gate to 0). We can handle addition gates for free, i.e., if ai + aj = ak and ak is multiplied
by al, we may write (ai + aj) · al and skip the calculation of ak.

As described by Parno et al. [PHGR13, Gro16], we can reformulate the set of arithmetic
constraints as a quadratic arithmetic program assuming F is large enough. Given n constraints
we pick arbitrary distinct r1, . . . , rn ∈ F and define t(x) = Πn

q=1(x− rq). Furthermore, let pu
i (x),

pv
i (x), pw

i (x), be degree n− 1 polynomials such that pu
i (x) = ui,x, pv

i (x) = vi,x, pw
i (x) = vi,x for

x ∈ {1, . . . ,m} where ui,x, vi,x, wi,x are the constants ui, vi, wi of the x-th constraint.

Definition 5.4 (QAP [Gro16]). A quadratic arithmetic program QAP over the field F contains
three sets of polynomials (pu

i (x), pv
i (x), pw

i (x))m
i=0 and a target polynomial t(x) over F[x] such

that deg(pu
i (x)), deg(pv

i (x)),deg(pw
i (x)) < d := deg(t(x)) for all i = 0, . . . ,m.

We define that QAP accepts an input a1, . . . , al ∈ F if and only if there exist (ai)m
i=l+1 satisfying

(for a0 = 1):
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m∑︂
i=0

pu
i (x)ai ·

m∑︂
i=0

pv
i (x)ai ≡

m∑︂
i=0

pw
i (x)ai mod t(x)

5.3.3.5. Secure CRS Generation for the Groth16 SNARK

If the CRSs for the Groth16 SNARKs used in Kryvos are not generated honestly by the voting
authority Auth but were instead generated maliciously (subverted), then the soundness and the
zero-knowledge properties of the SNARKs break down.

We can mitigate this trust assumption using standard techniques: To allow for verifying that a
CRS provides the zero-knowledge property, one only has to add some additional elements to the
CRS during its generation, as detailed in [BFS16,ALSZ21]. We note that the prover does not
need to download these additional elements to compute a proof, i.e., this mechanism does not
add to the overall size that a voter needs to download to submit a ballot. To additionally retain
the soundness property, one can let the trustees use MPC to generate the CRS in a distributed
fashion [BCG+15a,BGM17,ABL+19]. Under the assumption that at least one trustee is honest,
which we already presume for privacy, the resulting common reference string (CRS) provides
soundness.

Distributed CRS generation is indeed practical for the parameters used in our Kryvos instanti-
ations presented in Section 5.3.5: The benchmarks of Bowe et al. [BGM17] for a system with
221 constraints show that generating and checking the CRS took approximately an hour. The
SNARKs used in our system are similar to those benchmarked in [BGM17] (in particular, we
use approximately 5 million constraints). Therefore, we estimate our case to be in the same
order of magnitude. We can generate the common reference strings (CRSs) before the election,
and the generation must be performed only once for each voting method; distributed common
reference string (CRS) generation is a viable option.

Alternatively, in cases where trusting a hardware manufacturer is an option (e.g., small-stake
elections such as boardroom voting), one can use trusted execution environments (TEEs) such
as [IBM20] or [AMD20] to generate a CRS honestly. We must select the TEE suitably, giving it
access to true randomness and sufficient memory.

5.3.3.6. Benchmarks of the Groth16 SNARK

The overall performance (runtime, bandwidth, memory overhead) of a Groth16 SNARK depends
on the number of constraints and, hence, the size of the arithmetic circuit. Furthermore, the
number of public wires influences the time to verify proofs. However, in practical use cases, such
as our e-voting scenario, the number of public wires is deficient concerning the total number of
wires, such that this dependency does not influence the overall runtime of the Groth16 proof
system. Nevertheless, we present benchmarks of circuits that almost consist of public wires only
for completeness.
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We created the benchmarks using the libsnark library [sci17], which uses a Barreto-Naehrig
curve of 128 bits security as the underlying field of the Groth16 SNARK. Furthermore, we run
the experiments on an ESPRIMO Q957 (64 bit, i5-7500T CPU @ 2.70GHz, 16 GB RAM).

In Figure 5.2, we present various Groth16 SNARK benchmarks, where the circuits consist of
one constraint per wire. We obtained the blue benchmarks using circuits that consist of precisely
one public wire, and the remaining wires are all secret. The circuits of the red benchmarks
consist of public wires only. In Figure 5.2a, we benchmark Setup in seconds, i.e., the time it
takes to create the two common reference strings (CRSs) concerning the number of constraints.
It takes slightly longer to perform the setup using more public wires. In Figure 5.2b, we present
the size of the evaluation key common reference string (CRS) EKCRS in megabytes, and in
Figure 5.2c the size of the verification key common reference string (CRS) VKCRS in kilobyte
and megabyte in Figure 5.2d. For each wire, we add a corresponding group element to one of
the common reference strings (CRSs): VKCRS contains the group element of a public wire. In
contrast, EKCRS contains the group element of a secret wire. Therefore, the size of the VKCRS
increases with rising numbers of public wires, while the size of the EKCRS slightly increases with
rising numbers of secret wires. Due to its size without these elements, this does not affect the
EKCRS as much as the VKCRS. The VKCRS becomes of the size of 1 MB with 6, 278 public
wires.

Furthermore, in Figure 5.2e, we benchmark Prove, the time it takes to generate a proof. The
ratio between public and secret wires does not influence the proof generation time. In contrast,
the time of the verification Verify of a proof, presented in Figure 5.2f, is directly influenced by
the number of public wires because the verifier has to perform one operation per group element
of the public wires.

The size of a Groth16 proof consists of three group elements independent of the relation of
the proof. In our experiments, all of our proofs require 200 bytes.

We remark that all of our circuits used in the Kryvos e-voting system consist of a meager
number of public wires concerning the total number of wires, which is why our benchmarks in
the following will be close to the blue benchmarks of Figure 5.2.

5.3.4. Designing Efficient Circuits for QAPs

As shown in the previous section, the main factor determining the performance of the Groth16
SNARK is the number of constraints of the circuit relation. Thus, a crucial and labor-intensive
step for obtaining an efficient SNARK is to optimize the implementation via constraints. While
one can specify an arithmetic circuit defined in a suitable language and then automatically
compute a representation via constraints, such a generic conversion results in needlessly large
numbers of constraints and can lead to impractical SNARKs. Obtaining efficient SNARK proofs
is crucial for our voting system. Therefore, we manually implemented and optimized our circuit
via constraints. Our goal is to minimize the number of constraints in our circuits.
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Figure 5.2.: Benchmarks of the Groth16 SNARK.
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A core concept of creating efficient circuits and creating efficient QAP constraints is verification
of the computation. In the context of MPC (see Section 3.2), no party learns the result, and
therefore, we need to perform the computation that leads to the result of the MPC protocol via
MPC. However, in many cases, verifying a given result is much more efficient than computing it.
For example, in the case of exponential ElGamal, one needs to brute force the final decryption,
i.e., in order to obtain m from gm, one needs to try all possible plaintext values x and check
whether gx = gm (and thus x = m). In the case of MPC, one would need to try all possible
values x and store the one that satisfies the condition.

However, in the case of zero-knowledge proofs, we can follow a different path of constructing
circuits: The prover knows the witness (or can compute it by herself), and thus, we need to
verify the secret input of the prover. For example, in the case of exponential ElGamal, the prover
inputs the correct x (which she might have computed by herself via brute force in advance).
Then, the circuit verifies that the value of this wire satisfies the needed condition. In contrast
to the computation, verifying a solution is more efficient in many use cases. Thus, our circuits
generally aim at verification instead of computation.

5.3.4.1. Verification vs. Assertion

We can divide the concept of the verification of the witness into two sub-concepts, which we call
verification and assertion. With assertion, we assert that some condition holds, which means
that the circuit cannot be satisfied without the condition. We present two examples for this:

1. Consider a circuit CircAssertEqual that takes as input two wires a1, a2 and enforces that
a1 = a2, i.e., the circuit can only be satisfied if (and only if) a1 = a2. We can construct
such a circuit with the constraint

(0 · a0 + 1 · a1 + 0 · a2) · (1 · a0 + 0 · a1 + 0 · a2) = 0 · a0 + 0 · a1 + 1 · a2.

This constraint sets u1, v0, w2 = 1 and u0, u2, v1, v2, w0w1 = 0. Recall that a0 is the public
wire with constant value 1. It is impossible to find an assignment of a1, a2 with a1 ̸= a2

that satisfies this circuit.

2. The circuit CircAssertBit takes as input one wire a1 and enforces that a1 ∈ {0, 1}, i.e., the
circuit can only be satisfied if (and only if) a1 = 0 or a1 = 1. We can construct such a
circuit with the constraint

(0 · a0 + 1 · a1) · (1 · a0 + (−1) · a1) = 0 · a0 + 0 · a1.

This constraint sets u1, v0 = 1, v1 = −1, u0w0w1 = 0, and reads a1 · (1− a1) = 0. Since
F is a field, it has no nonzero divisors. Therefore, the constraint can only be satisfied if
a1 = 0 (and thus a1 = 0), or 1− a1 = 0 (and thus a1 = 1), leading to a1 ∈ {0, 1}.
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While assertions typically lead to circuits with the lowest number of constraints, we often
need to loosen the circuit to satisfy it without holding the condition. Consider a circuit with
two input wires a1, a2 that is satisfied if a1 = a2 or a1 ∈ {0, 1}.We can construct this circuit
using CircAssertEqual and CircAssertBit as sub-circuits. However, if only one of the conditions holds,
the circuit cannot be satisfied due to the assertion structure of the sub-circuits. Therefore, we
realize such circuits via the concept of verification: We verify whether a condition holds and
store the result in an indicator wire aj , which is set to 1 if the condition holds and 0 otherwise.
With that, we can compute two indicator wires, a3 for CircVerifyEqual, and a4 for CircVerifyBit, and
then compute a logical or of these two wires. However, circuits that verify typically need more
constraints than their assertion counterparts. In the following, we will construct CircAssertEqual

and CircAssertBit, which need more constraints than CircAssertEqual and CircAssertBit.

• The circuit CircVerifyEqual is constructed using CircVerifyEqZero, which verifies whether the input
wire a1 equals 0. The circuit CircVerifyEqual, on input a1, a2 calls CircVerifyEqZero with input
a1 − a2. The circuit CircVerifyEqZero takes as input wire a1, outputs the indicator wire a2,
which is set to 1 if (and only if) a1 = 0, and 0 otherwise. Furthermore, it makes use of a
helper wire a3 and consists of two sub-circuits:

1. CircAssertEqual(a2 · a1, 0)

2. CircAssertEqual(a1 · a3, 1− a2)

each of which consists of one constraint (see above). Technically, the circuit CircAssertEqual

takes as input just one wire and not a multiplication of two wires. Nevertheless, since it does
not use the v values (see above), we can set v1 = 1 for the first sub-circuit and v3 = 1 for the
second sub-circuit. On a technical level, the constraints for this circuit are as follows:

(0 · a0 + 0 · a1 + 1 · a2 + 0 · a3) · (0 · a0 + 1 · a1 + 0 · a2 + 0 · a3) = 1 · a0 + 0 · a1 + 0 · a2

(0 · a0 + 1 · a1 + 0 · a2 + 0 · a3) · (0 · a0 + 1 · a1 + 0 · a2 + 1 · a3) = 1 · a0 + 0 · a1 + (−1) · a2

The first constraint ensures that a1 (the input wire) or a2 (the indicator wire) is zero.
Therefore, in case a1 ≠ 0, this constraint forces a2 to be set to zero. What is left is that if
a1 = 0, we must set the indicator wire to 1. For this, the second constraint enforces that
a1 · a3 = 1 − a2. In case that a1 = 0, this forces to set a2 to 1. However, there must be a
satisfied assignment for the case of a1 ≠ 0 for this constraint. We do so via the helper wire
a3: Since the first constraint enforces a2 = 0 in this case, this constraint reads as a1 · a3 = 1,
and thus one can assign a3 to the inverse of a1 in F.

• The circuit CircVerifyBit takes computes a2 = a1 · (1− a1) based on the input wire a1 and than
runs CircVerifyEqual(a2, 0). Thus, this circuit consists of three constraints, compared to one
constraint of CircAssertBit.
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As these rather basic examples show, there is a massive difference in the number of constraints
between verification and assertion. Therefore, our circuits for Kryvos use assertions instead of
verifications if possible.

5.3.4.2. Comparisons

A crucial ingredient of elections is the comparison of candidates. Therefore, comparisons play a
key role in our circuits, and expressing them through QAP constraints results in a similar picture
to our MPC protocols presented in Section 3.2.3. Comparing for equality using CircAssertEqual

or CircVerifyEqual is simple, but testing for greater-than (≥) is more complex. We can employ
these circuits as sub-circuits for other comparisons, such as ≤. For greater-than tests, as in
multi-party computation, the bit size of compared values is required, but for equality tests, the
circuit size is independent of it.

We will now construct CircAssertGt, the circuit that takes as input two wires a1 and a2, and
asserts that a1 ≥ a2, i.e., the circuit cannot be satisfied if a1 < a2. The circuit makes use of
a split gate [PHGR13] that takes as input a wire a1 with a value of known bit length n, and
additional wires a2, . . . a2+n with binary values. The split gate asserts that a1 = ∑︁n−1

i=0 2i · a2+i.
This circuit requires n+ 1 constraints: n constraints to show ∀i ∈ 0, n− 1 : a2+i ∈ {0, 1} and
an additional constraint to show the equality of a1 and ∑︁n−1

i=0 2i · a2+i. This circuit, and the
following circuits CircAssertGt and CircVerifyGt make use of the bit length as the setup parameter,
rather than an input wire: This requires knowing the bit length of the input values at setup
time but allows for more efficient constructions with fewer constraints overall.

The idea of CircAssertGt is as follows: Assuming we are computing in Z, if a1 ≥ a2, then
a1 − a2 ≥ 0, and otherwise a1 − a2 < 0. Translating this idea to F (where we in the following
assume Fp for some prime p) requires restricting the values of the input wires: Assuming that
the bit length of a1 and a2 is at most |F|

2 , we can test whether a1 − a2 ∈ {0, . . . , |F|
2 − 1}. With

that, CircAssertGt consists of a split gate that uses a wire of bit length at most |F|
2 as input and

asserts that the value of this wire equals a1 − a2. The bit size can be selected smaller than |F|
2

to optimize the number of constraints if such conditions apply to a1 and a2 during the circuit
setup. The circuit CircAssertGt requires n+ 2 constraints, where n denotes the chosen bit length.

The circuit CircVerifyGt verifies that a1 ≥ a2 instead of asserting it, meaning that this circuit
outputs a wire a3 with value 1 if a1 ≥ a2 and value 0 otherwise. This circuit can be satisfied if
a1 < a2, in contrast to CircAssertGt. The circuit CircVerifyGt is far more expensive than CircAssertGt

regarding the number of necessary constraints. On a high level, the circuit, parameterized by the
bit length n, operates as follows: First, it splits a1 and a2 into bits. Then, starting with the most
significant bit, the circuit iterates over the individual bits. It searches for the first position where
the two numbers differ: If the bit of a1 is 1 at this position, then a1 > a2, and if the bit of a1 is
0, then a1 < a2. If the two numbers do not differ in any position, then a1 = a2 and therefore
a1 ≥ a2. Thus, the circuit searches for the first position at which the two numbers differ, and if
the bit of a1 at this position is 0, then the result is 0. In every other case, the result is 1. In
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order to perform this operation in a circuit, several indicator wires are necessary that track the
current state of the computation, e.g., storing whether there was a previous position at which
the bits differ. Additionally, each iteration step requires an equality verification (comparing the
two bits) and several operations updating the indicator wires, which, in terms of circuits, means
defining new wires used in the next iteration since values on wires cannot be changed. The
circuit needs 11 constraints per bit, resulting in 11 · n constraints, where n is the bit length.

5.3.4.3. Circuits for Kryvos

At a high level, our circuits consist of two sub-circuits:

• A cryptographic circuit, denoted by CircCom, demonstrating the accuracy of an opening of a
commitment.

• A voting circuit, denoted by Circf res or CircC, demonstrating the validity of an election result
or ballot.

We refer to the circuits that contain these sub-circuits as Circf res

Com or CircCCom. The cryptographic
component dominates the circuit’s size, as we see in Section 5.3.5. For this reason, we will
develop an efficient circuit that can verify the accuracy of an opening of a commitment.

A SNARK can prove statements for arbitrary relations. However, the resulting performance
(regarding runtime, memory overhead, and bandwidth) quickly deteriorates and becomes im-
practical for large circuits. For example, Feng et al. [FQZ+21] express neural networks in QAPs.
The resulting circuits for small such networks consist of multiple millions of constraints, leading
to prover times of multiple minutes and common reference strings (CRSs) of multiple GBs. In
contrast, more extensive circuits require over 300, 000, 000 constraints, leading to prover times of
multiple hours with common reference strings (CRSs) of 100 GB. To perform such experiments,
the authors make use of machines with high computational power: They run their evaluations
on a Microsoft Azure M32ls instance with 32-core Intel Xeon Platinum 8280M vCPU @ 2.70GHz
and 256 GiB DRAM. The work of [KZM+15] proposes the C∅C∅ framework that contains several
SNARK-friendly cryptographic primitives. For example, they constructed several circuits based
on encryption schemes to show the validity of ciphertexts inside a SNARK proof. The resulting
circuits to encrypt 200 bytes of plaintext values range between 91, 000 and 868, 000 constraints
depending on the encryption scheme.

As the examples above illustrate, including heavy-weight operations (such as cryptography) in
circuits requires suitable design and optimization to obtain efficient circuits that we can evaluate
using computationally weaker devices, which, in particular, is essential for our setting of e-voting.

Therefore, the main challenge of using SNARKs consists of constructing suitable circuits with
minimal numbers of constraints for the intended relations such that the resulting SNARKs are
practical. While we discuss the overall circuits for our SNARKs in Section 5.3.5, we need as
a central building block for all of our SNARKs an efficient circuit for verifying openings of
commitments, which we construct in the following.
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5.3.4.4. Commitment Scheme

We use Pedersen commitments over a group (G, ·) of order q with generator g as introduced
in [Ped91]. Recall that to compute a Pedersen commitment, one first takes an auxiliary value h
defined by h = ga for a uniform a

$←− Fq and then commits to a value v ∈ Fq with Com(v, r) = gvhr

using a uniform r
$←− Fq \ {0}. Pedersen commitments are a standard solution with a simple

structure and slight computational complexity. Furthermore, they are additively homomorphic
and perfectly hiding.

The choice of the group G significantly affects the efficiency of the corresponding SNARK,
with some groups being more favorable than others. For example, the first natural choice G = Fq

for a prime q of secure bit length at least 2, 048 is a priori incompatible with the underlying
proof system, which supports only values of up to 255 bits. While it is possible to circumvent
this problem, e.g., by splitting each value (of at least 2, 048 bits) into chunks of at most 255 bits,
the resulting circuit would be too inefficient for our use case: The C∅C∅ framework [KZM+15]
realizes RSA encryption with 2, 048 bit keys and requires at minimum 496, 000 constraints to
encrypt 200 bytes. Therefore, we use an elliptic curve G, where sufficient security guarantees
are available at a much lower length q.

5.3.4.5. SNARKs with Elliptic Curve Circuits

This section presents elliptic curves and discusses how to process computations on an elliptic
curve within a Groth16 SNARK.

We will shortly review the definition of an elliptic curve. An elliptic curve E over a finite
field Fp for some prime p > 3 is a non-singular algebraic curve of order three in the projective
plane P2(Fp). Let Eaff be the affine part of E defined by the equation y2 = F (x) = x3 + ax+ b

with a, b ∈ Fp such that 4a3 + 27b2 ≠ 0, i.e. Eaff = {(x, y) ∈ F2
p | y2 = F (x)}. Recall that

E = {(x0 : x1 : x2) ∈ P2(Fp) | (x1
x2

)2 = F (x0
x2

) and Eaff = E \O, O = (0 : 0 : 1).
Given three distinct points A,B,C on E and a line g through these points, one sets A+B+C =

0. This additive relation extends uniquely to all of E such that (E,+) becomes an abelian group.
The geometric definition of the addition on E has an algorithmic equivalent, which we will

use instead for our implementation:

Theorem 5.5. a) If A = (xA, yA) ̸= (xB, yB) = B on Eaff with xA ̸= xB then C =
(xC , yC) = A+B if

xC = µ2 − xA − xB

yC = −yA − µ(xC − xA)

where µ = yB−yA
xB−xA

. For xA = xB and A ̸= B one has A+B = O.
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b) For A ∈ Eaff with yA ̸= 0, C = 2A ∈ Eaff has coordinates:

xC = ν2 − 2xA

yC = −yA − ν(xC − xA)

with ν = F ′(xA)
2yA

. If yA = 0, then 2A = O.

In order to use the Groth16 SNARK to verify computations on elliptic curves and, in
particular, the decryption step, we need to transform the algorithms over elliptic curves into
arithmetic circuits over some finite field Fp. To do so, we represent a point P ∈ E as a triple
(xP , yP , zP ) ∈ Fp × Fp × F2 with (xP , yP , 0) for P ∈ Eaff and (0, 0, 1) for P = O. Hence, we
implemented the algorithms for addition (see Theorem 5.5), multiplication (see, e.g., [For14]), as
well as more complex algorithms based on these elementary operations on elliptic curves such
that they become available to be processed inside the Groth16 SNARK.

We choose specifically Curve25519 which is a Montgomery curve that works over Fq with
q = 2255 − 19 prime and curve equation y2 = x3 + Ax2 + x for some A ∈ Fq with A2 ̸= 4.
The exact value of A does not affect the efficiency of the SNARK in terms of the number of
constraints representing the corresponding arithmetic circuit. Therefore, we can choose it freely
(under the requirement A2 ̸= 4 of the curve). We use A = 486, 662 as done in [Ber06]. We can
represent the coordinates of this curve using 255 bits and do not need to split values. To stay
compatible with the usual notation for Pedersen commitments, we denote the group operation
on an elliptic curve with · instead of the usual +. The wording addition and multiplication is
consequentially changed to multiplication and exponentiation.

A Pedersen commitment gv · hr requires exponentiations and multiplications, with exponentia-
tions being the most expensive operation. We leverage results from the C∅C∅-framework [KZM+15],
which observes that we can implement the highly efficient Montgomery ladder algorithm for
exponentiations with relatively few constraints. However, a significant limitation of this approach
is that we can not directly multiply the resulting values.

Therefore, we extend this approach to support efficient multiplication of such values. Among
others, we achieve this by designing small circuits for the fast y-coordinate recovery algorithm
by Okeya and Sakurai [OS01], conversion between projective and affine coordinates, and point
multiplication. We construct the overall circuit for computing a Pedersen commitment by
efficiently combining these components.

The chosen Montgomery curve allows us to compute the exponentiation of a point g of G
purely based on the first (affine) coordinate of g = (gx, gy) ∈ Fq × Fq and in addition to that we
do not require a splitting approach. Furthermore, exponentiation on a Montgomery curve can be
realized very efficiently with the ladder algorithm [Mon87,CS18], and this efficiency transfers to
the SNARK — an observation already made in [KZM+15]. To fully use the ladder algorithm’s
efficiency advantage, we must work with projective coordinates for the exponentiation since the
resulting circuit does not have to check exceptional cases related to ∞ separately. For other

168



g.x
v

g.y
h.y

h.x
r

Exp
(gv).X,(gv).Z

(gv+1).X,(gv+1).Z
y-Rec

hr

Conv

Exp
(hr).X,(hr).Z

(hr+1).X,(hr+1).Z
y-Rec

gv

Conv

gv

hr

Mul gv · hr

Figure 5.3.: Circuit of a Pedersen commitment. By g.x and g.y we denote the affine x-coordinate
and the affine y-coordinate of g, while upper case letters denote the respective projective
coordinates. Additionally, projective coordinates are illustrated in blue.

operations, however, e.g., for multiplication, we use affine coordinates. Generally, we chose
for each algorithm the representation that allows the most efficient execution of this specific
algorithm.

In order to obtain an efficient and secure instantiation of the Pedersen commitment scheme, we
will use a subgroup of an elliptic curve group for (G, ·). Note that for computing a commitment
inside the SNARK, we need to be able to express the exponentiations gv and hr and the
computation of their product with as few constraints as possible.

Unlike previous results, e.g., the C∅C∅-framework, which focuses on a Diffie-Hellman key
exchange inside a SNARK, Pedersen commitments do not only require exponentiations of points
inside the SNARK but also the multiplication of different curve points gv and hr in order to
compute Com(v, r) = gv · hr. For this multiplication, however, we need the y-coordinate of both
gv and hr, which are not provided by the Montgomery ladder. However, there is a standard
way to reconstruct a y-coordinate by Okeya and Sakurai [OS01]. Their algorithm (y-Rec) takes
the output of a Montgomery ladder, which is apart from (gv)x also (gv+1)x, as well as both
coordinates of the original input g, and outputs the y-coordinate of (gv)y.

After we recover both coordinates, we perform the before-mentioned switch from projective to
affine coordinates to prepare for the final multiplication of gv and hr. Then, we compute the
multiplication of gv and hr in the standard way for Montgomery curves.

Altogether, we get the circuit illustrated in Figure 5.3 for the computation of a Pedersen
commitment.

Table 5.1 shows micro-benchmarks of these operations inside the SNARK. Essentially, the
recovery of the y-coordinate, the conversion, and the point multiplication are negligible compared
to the complexity of the Montgomery ladder. These benchmarks also show that a Montgomery
curve is a suitable choice in our setup since the advantage of the efficient exponentiation on this
curve easily compensates for the additional complexity of the Okeya and Sakurai algorithm.

In principle, we have now obtained a way to represent a Pedersen commitment through an
arithmetic circuit. However, as Table 5.1 shows, even with our design choices, representing
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Operation Constraints
Montgomery Ladder [Mon87] (255 bits Exponent) 5, 084
Montgomery Ladder [Mon87] (32 bits Exponent) 624
y-Coordinate Recovery (Okeya-Sakurai Algorithm [OS01]) 39
Point Multiplication 86
Conversion (Projective to Affine Coordinates) 15
Pedersen Commitment (v of 255 bits, r of 255 bits) 10, 360
Pedersen Commitment (v of 32 bits, r of 255 bits) 5, 900

Table 5.1.: Number of (QAP) constraints for various operations.

a single Pedersen commitment still costs 11, 701 constraints, which still turns out to be too
expensive for our application.

Hence, we will now discuss further optimizations.

5.3.4.6. Further Performance Improvements

Even with the introduced design choices, the resulting arithmetic circuit for computing a
commitment is still too large for our purposes. Hence, we will now introduce further necessary
optimizations that drastically reduce the number of constraints required for computing the
commitments that correspond to cchoice

agg (recall that in the basic approach, one commitment
contains the number of votes for one choice, so we represent cchoice

agg by ncomponents commitments).
From Table 5.1, we can see that even when using a Montgomery curve and the Montgomery
ladder, the main factor for the complexity of computing a Pedersen commitment inside a SNARK
is still the exponentiation of gv and hr. However, recall that in our application, the input v is
the aggregated number of votes for a particular candidate/choice. Hence, v will typically be
relatively small and not require the entire 255 bits (for example, in a single-vote election, v will
not exceed the number of eligible voters). As indicated by Table 5.1, limiting v to 32 bits already
almost halves the constraints required to express the computation of a Pedersen commitment
inside the SNARK. Note that the circuit also ensures that the input values are of the correct
size. Regarding the randomness r, however, we will need an exponentiation with up to 255 bits
for security reasons.

Next, recall that as part of our system, we want to compute commitments corresponding to
the tally cchoice

agg , where cchoice
agg is a list of the aggregated votes ccomponent

i,agg for each candidate/choice
ccomponent

i . If one straightforwardly implements this via standard Pedersen commitments, then
there will be one separate commitment com(ccomponent

i,agg , ri) per ccomponent
i,agg (just as Helios uses one

ciphertext per choice). Each of these commitments introduces another exponentiation for some
randomness ri to obtain hri , which must also be computed in the arithmetic circuit to prove
knowledge of cchoice

agg . Since each randomness requires the full 255 bits, this can become very
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costly in elections with multiple choices/candidates (see the left side of Table 5.2). Instead,
we solve this issue using Pedersen vector commitments described in [BG18]. Essentially, these
commitments allow for committing to a vector v = (v1, . . . , vN ) with entries in Fq by computing

Com(v, r) = gv1
1 · . . . · g

vN
N · hr

for generators g1, . . . , gN of G chosen uniformly at random. In this case, N is the slot size of the
commitment. Pedersen vector commitments are also additively homomorphic, perfectly hiding,
and computationally binding under the discrete logarithm assumption [ACC+22]. By setting N
to the number of choices, this construction requires just one exponentiation with randomness of
255 bits to commit to the full set of choices. Using vector commitments drastically improves the
computational cost and the size of EKCRS and VKCRS as shown in Table 5.2. For committing
to 250 values, moving from computing one commitment per value to computing one commitment
for all values in a single SNARK reduces the number of required constraints by more than 1.2
million, which drastically reduces the proof time as well as the size of EKCRS. Regarding the
size of VKCRS, we note that the difference between the two circuits is as follows: Using N many
Pedersen commitments requires the circuit to consist of N many Pedersen commitments as
public wires, which leads to increasing sizes of VKCRS with increasing slot size. In contrast,
using a single Pedersen vector commitment for N many values results in a single commitment
as a public wire. Thus, the size of VKCRS is independent of the slot size due to the construction
of the Pedersen vector commitment, which always consists of a single group element, regardless
of the number of plaintext values.

Overall, the above optimizations efficiently prove knowledge of an opening utilizing SNARKs.
We employ this technique to prove knowledge of cchoice

agg and to allow voters to prove the validity
of their ballot. We use both applications in Kryvos, as shown in Section 5.3.5.

We have implemented these optimizations, resulting in a library with optimized representations
via constraints of many fundamental elliptic curve operations, available at [HKK+23]. Hence,
this library should be helpful beyond our work, e.g., to obtain an efficient QAP instance of
ElGamal.

5.3.4.7. The Optimal Number of Slots per Commitment

The slot size of the Pedersen vector commitments used in Kryvos mainly influences the circuit
size of the SNARKs that prove the commitments’ correct opening. These SNARKs appear in
two parts of Kryvos:

1. The SNARKs for proving ballot validity in the voting phase. Each voter creates such
SNARK proofs.

2. The SNARK in the evaluation phase is used to prove the correct computation of the result
function on the aggregated tally. The designated trustee creates this proof. The SNARK

171



Choices/N
N Pedersen Commitments 1 Pedersen Vector Commitment

Constraints Prove EKCRS VKCRS Constraints Prove EKCRS VKCRS

[s] [MB] [kB] [s] [MB] [kB]
1 5, 990 0.148 3.871 2.666 5, 990 0.148 3.871 2.666
5 29, 950 0.741 19.355 4.574 9, 246 0.229 5.975 2.666

10 59, 900 1.482 38.710 6.959 13, 316 0.329 8.605 2.666
25 149, 750 3.704 96.776 14.114 25, 526 0.631 16.496 2.666
50 299, 500 7.409 193.552 26.039 45, 876 1.135 29.647 2.666

100 599, 000 14.817 387.104 49.889 86, 576 2.142 55.950 2.666
150 898, 500 22.226 580.656 73.739 127, 276 3.148 82.252 2.666
200 1, 198, 000 29.634 774.207 97.589 167, 976 4.155 108.554 2.666
250 1, 497, 500 37.043 967.759 121.439 208, 676 5.162 134.857 2.666

Table 5.2.: Comparison of Pedersen commitments and Pedersen vector commitments using a
single Groth16 SNARK. This table uses inputs v of 32 bits.

for the evaluation always takes the complete aggregated tally as input and computes the
election result based on the values of the aggregated tally.

One natural question is determining the slot size N used by the vector commitments to
optimize the computation of these SNARKs. Table 5.3 shows the number of constraints per
circuit and Figure 5.4 the benchmarks of monolithic Groth16 SNARKs (i.e., we use one single
SNARK proof to prove the correctness of the openings of ncomponents = 100 values) in dependency
of the slot size N per commitment (which is equal to 100/#commitments in this case). For
ntuples < ncomponents, such a monolithic SNARK needs to be computed by the trustees to prove
the correct computation of the result function on the aggregated tally. The voters, however,
can create an individual SNARK proof for each commitment. Note that using commitments of
different slot sizes would require the voters to use a different EKCRS for each commitment of a
different size. For this reason, if we want to use multiple commitments and multiple SNARKs,
we always use commitments of equal slot size and adapt the relation to be proved in a way such
that the voters need exactly one CRS for all SNARK proofs (see also Section 5.3.5 for more
details on this relation).

Each additional commitment adds complexity to the computation of the SNARK, resulting in
costly operations for large slot sizes. While in Table 5.2 we only considered the extreme cases
of N = 1 and N = ncomponents, we see that the benchmarks in Figure 5.4 confirm the intuition
that for proving the correct opening using a monolithic SNARK it is, in general, more efficient
to use fewer commitments of larger slot size than using many commitments of smaller slot size
for the same number of values. Thus, for the tallying SNARK (which is always a monolithic
SNARK), we want to use the maximum slot size N = ncomponents such that all choices fit into a
single commitment.
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Number of Slots Constraintsper Commitment
1 654, 900
2 371, 550
4 229, 875
5 201, 540
10 144, 870
20 116, 535
25 110, 868
50 99, 534
100 93, 867

Table 5.3.: Number of constraints of circuits that show the opening commitments of various slot
sizes to 100 values.
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Figure 5.4.: Benchmarks of SNARKs that compute commitment(s) with different slot sizes to 100
values. Each point represents a single SNARK that uses commitments with the given number of
slots to commit to 100 values.

A crucial property of our voting system is that voters can efficiently create ballots. Thus, we
require that creating the SNARK proof of the ballot’s validity is practical for the voters. As
the benchmarks in Section 5.3.5 will show, using one Pedersen vector commitment of maximal
slot size containing the ballot inside a monolithic SNARK proof is usually also efficient enough
for proving the ballot’s validity. However, one exception to this is Instant-Runoff Voting (IRV),
where ncomponents can become exceptionally high, and hence the size of EKCRS as well as the time
necessary to create a proof using a monolithic SNARK can become impractical. In these cases,
we opt for letting voters use multiple commitments of smaller slot size and multiple SNARK
proofs even though these multiple commitments only allow for less efficient tallying SNARKs.
However, as we will describe in Section 5.3.5, e.g., using a slot size of N = ncomponents/10 allows
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for computing the SNARK proofs of ballot validity as well as the monolithic tallying SNARK
efficiently.

5.3.5. Case Study

We provide a proof of concept implementation of Kryvos that we have instantiated for a wide
range of simple and complex voting methods and various result functions; our implementation is
available at [HKK+23]. We use the libsnark library [sci17] for the Groth16 SNARK. While in
Section 5.3.1 we gave a high-level description of Kryvos, there are various ways in how Kryvos can
be implemented, involving, among others, fixing a slot size N , a suitable choice space, designing
and optimizing circuits for both ballot and tallying SNARKs.

We have instantiated and evaluated Kryvos for various voting methods and result functions.
As it turns out, there are essentially two main requirements for a voting method to be supported
by Kryvos in practice:

1. The voting method must support a ballot format allowing homomorphic ballot aggregation.
Aggregation is necessary to protect the privacy of voters against the trustees.

2. It must be possible to define a choice space to efficiently create the resulting ballots,
including the corresponding ballot SNARKs.

We note that a voting method defines a choice space required to prove ballot validity. More
precisely, proving ballot validity includes proving that a vote belongs to the respective choice
space C. However, an election result function f res does not (only) depend on the voting method
and its corresponding choice space. Some result functions only make sense for specific choice
spaces. For systems like single-vote and multi-vote, we consider various result functions that,
e.g., compute only the candidate with the most votes or all candidates that gained at least a
certain threshold of votes. The chosen result function only influences the tallying SNARK but
not the ballot SNARK.

We obtained the following benchmarks using an ESPRIMO Q957 (64bit, i5-7500T CPU @
2.70GHz, 16 GB RAM). We do not use parallelism; we use just a single core to make the results
independent of the specific core count, making it easier to compare with other benchmarks. Of
course, in practice, one would parallelize, e.g., if multiple SNARK proofs need to be computed,
thereby reducing the overall runtime depending on the number of cores available.

The main efficiency concerns of the setting of e-voting are regarding ballot submission: voters
must be able to cast their ballots efficiently, even when using devices with low computational
power and memory. In contrast, the trustees typically have access to servers with far more
resources to evaluate the tally. Thus, the primary goal of our Kryvos instantiations is to allow
for efficient ballot casting. We set the limit using the device described above. A voter can cast a
ballot in under one minute, using a EKCRS of the size of at most one GB.
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5.3.5.1. Choice Spaces

In principle, we can instantiate the Kryvos framework with other existing ZKPs for ballot
correctness designed for a specific choice space, where such ZKPs are available (e.g., [CDS94]).
To show the validity of a ballot (for all voting methods except IRV), a voter computes a single
Groth16 SNARK that takes the single Pedersen vector commitment of slot size N = ncomponents

obtained by aggregating the commitments on all vote shares of a voter as public input, the
opening as secret input, and then proves that the opening is from the correct choice space and
corresponds to the commitment.

We now define the concrete relations for the SNARKs showing ballot validity, depending on
the respective choice space: Let cchoice

i = (ccomponent
1,i , . . . , ccomponent

ncomponents,i) be the choice of the voter.
As specified by Auth, depending on the voting function, this choice is split into ntuples blocks,
each of size N . Thus, the actual committed value is (ti,1, . . . , ti,ntuples). Let (ci,1, . . . , ci,ntuples) be
these commitments with randomness vector (ri,1, . . . , ri,ntuples).

The following relation describes that a vector (ci,1, . . . , ci,ntuples) is a (vector) commitment to a
valid choice cchoice

i ∈ C with randomness vector (ri,1, . . . , ri,ntuples):

RC = {((ci,1, . . . , ci,ntuples), ((ti,1, . . . , ti,ntuples), (ri,1, . . . , ri,ntuples))) |

∀j ∈ {1, . . . , ntuples} : ci,j = Com(ti,j ; ri,j) ∧ (ti,1, . . . , ti,ntuples) ∈ C}.

We denote the circuit for RC with CircCCom. This circuit consists of two sub-circuits: CircCom

verifies the commitment, while CircC verifies that the plaintext is a valid choice. Furthermore,
we denote the SNARK for this relation by ΠC. This relation shows that the number of public
wires for this relation is independent of C but only depends on ntuples, as the only public
wires are regarding the commitments. Using Pedersen vector commitments, each of the ntuples

commitments consists of a single elliptic curve group element and thus requires three public
values. The following relations shown by SNARKs will use a single commitment as input. Thus,
using Groth16 SNARK, every ballot validity SNARKs can be verified in ∼2.8 ms using a VKCRS
of size about 2.666 kB.

In the following, we will present concrete instantiations with the choice spaces that Kryvos
currently supports.

5.3.5.2. Single Choice

The most spartan and widely used choice space that Kryvos supports is CSingle. Here, the choices
symbolize the election’s candidates. For this voting method, each voter has exactly one vote she
can give to her preferred candidate. The circuit to show validity of the choice (ccomponent

j,i )ncomponents
j=1

of voter vi, that is, showing (ccomponent
j,i )ncomponents

j=1 ∈ CSingle is done in two parts:
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Figure 5.5.: Number of constraints of CircCSingle
Com .

1. For each ccomponent
j,i we assert ccomponent

j,i ∈ {0, 1}. This assertion is done via the circuit
CircAssertBit for each (choice) component of the ballot, leading to 1 constraint per (choice)
component.

2. The circuit checks that ∑︁ncomponents
j=1 ccomponent

j,i = 1. We do so by running CircAssertEqual as
a sub-circuit which asserts that ∑︁ncomponents

j=1 ccomponent
j,i equals 1. Recall that CircAssertEqual

requires 1 constraint.

In summary, with ncomponents, the circuit CircCSingle requires ncomponents + 1 constraints. In
Figure 5.5, we show the number of constraints of CircCSingle

Com . We can choose a bit size of a single
bit for the wires in the case of single-choice. Since the circuit CircCSingle asserts that all wires
are binary, we only need to perform one step of the Montgomery ladder algorithm for the
commitment. Therefore, for comparison, we present two versions of the circuit, with 1-bit and
16-bit values. The bit size determines the number of bits the circuit has to extract and directly
determines the number of steps the circuit needs to execute. The bit size of the values determines
the number of constraints of the commitment. However, both CircAssertBit and CircAssertEqual do
not depend on the size of the inputs’ bits. Therefore, bit size does not affect the circuit used to
check CSingle. The figure also shows how much of the overall constraints of CircCSingle

Com are part of
the sub-circuit CircCSingle . As the figure indicates, CircCom is the primary factor of the constraints
of CircCSingle

Com .
Furthermore, in Figure 5.6, we present benchmarks of the respective Groth16 SNARKs of

CircCSingle
Com for single bit values, which is sufficient for this choice space. As the benchmarks indicate,

proving the validity of a ballot is highly efficient, even for immense numbers of candidates. For
30, 000 candidates, the size of EKCRS is about 500 MB.
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Groth16 SNARKs: CSingle

Figure 5.6.: Benchmarks of Groth16 SNARKs of ΠCSingle .

5.3.5.3. Multiple Choice

The choice space CMulti,ocomp,nvotes,b of multi-vote consists of multiple parameters:

• The parameter b denotes how many votes the voter can assign to a specific candidate.

• The parameter nvotes denotes how many votes the voter can distribute overall among the
candidates.

• The operator ocomp denotes whether the voter needs to distribute nvotes votes precisely or if
this value denotes an upper bound of the voters the voter can distribute.

In order to cover various options and values for these parameters, we construct a generic
circuit that uses additional input wires to set the exact options of the specific multiple-choice
choice space. The circuit takes three public wires as additional input, each corresponding to one
of the abovementioned parameters. Since these wires are public, everyone can check whether
voters set these options correctly. The circuit uses these wires as flags that determine how the
circuit verifies.

The circuit proceeds as follows:

• For each ccomponent
j,i we assert using CircAssertGt that ccomponent

j,i ≤ b.

• We verify using CircVerifyEqual whether ∑︁ncomponents
j=1 ccomponent

j,i = nvotes and store the result in
one wire. In another wire, we store the result of the check ∑︁ncomponents

j=1 ccomponent
j,i ≤ nvotes.

• The two wires from the previous step are used to compute the overall verification wire based
on ocomp.

Figure 5.7 presents the number of constraints of CircCMulti,ocomp,nvotes,b

Com . As the numbers of
constraints indicate, the circuit showing cchoice

i ∈ CMulti,ocomp,nvotes,b requires more constraints than
the circuit for CSingle, but its contribution to the overall circuit is again negligible.
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Figure 5.7.: Number of constraints of CircCMulti,ocomp,nvotes,b

Com .
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Figure 5.8.: Benchmarks of Groth16 SNARKs of ΠCMulti,ocomp,nvotes,b
.

We present the benchmarks of Groth16 SNARKs evaluating these circuits in Figure 5.8. As
these benchmarks show, voters can prove ballot validity with CircCMulti,ocomp,nvotes,b

Com efficiently for
more than 1, 000 candidates.

5.3.5.4. Borda

For Borda voting, we present circuits for CBordaPointList and CBordaTournamentStyle. To our knowledge,
we are the first to propose NIZKPs for this choice space.

The circuit CircCBordaPointList works as follows. It iterates through all possible points, starting
with the highest number of points and going downwards. For each number of points, it checks
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Figure 5.9.: Number of constraints of CircCBordaPointList
Com .

how many candidates this number of points received. If there are n candidates with this number
of points, the voter can not distribute the following n− 1 points. The circuit validates the ballot
if this checking routine produces no errors.

The circuit CircCBordaTournamentStyle is a particular case of the circuit CircCBordaPointList using {0, . . . , 2 ·
(ncand − 1)} as point list. Given an input vector v = (v1, . . . , vncand), the circuit iterates through
1, . . . , ncand, and for index i computes the correct number of points assigned to candidate i as
the number of entries in v being equal to vi plus 2 times the number of entries in v smaller than
vi. The resulting circuit grows quadratically in ncand and remains reasonably small for large
sizes of candidates. For example, for ncand = 100 candidates, the circuit corresponds to less than
100, 000 constraints.

Besides the number of candidates, the size of this circuit depends on the size of the point
list npoints since each number of points requires one step in the iteration. Therefore, for our
benchmarks, we constructed three different circuits. The first circuit uses a point list of constant
size, namely ten different points. The second point list uses npoints = ncand, and the third applies
CBordaTournamentStyle.

We expect that the circuit with npoints = ncand scales somewhat quadratically in the number
of candidates: There are ncand many iteration steps, and each step requires a search for the
current number of points among ncand many values. In comparison, the number of constraints of
the circuit with npoints = 10 should be much lower.
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Groth16 SNARKs: CBordaPointList

Figure 5.10.: Benchmarks of Groth16 SNARKs of ΠCBordaPointList .

In Figure 5.9 shows the number of constraints of these circuits for various numbers of candidates.
This figure underlines our expected behavior: While the number of constraints of the circuit
with npoints = 10 is relatively small, using npoints = ncand demands far more constraints. Even
in contrast to the number of constraints of the commitments, the constraints of checking
CBordaTournamentStyle take most of the combined circuit.

The quadratic scaling is also visible in Figure 5.10, where we present the benchmarks of the
Groth16 SNARK evaluating these circuits.

In summary, Kryvos can efficiently prove ballot validity regarding CBordaTournamentStyle for 500
candidates, and with way more if we use a point list of size independent of the number of
candidates.

5.3.5.5. Grading

A choice of the choice space CMajorityJudgment consists of a ncand×ngrades matrix where each column
consists of a single choice that selects a grade for the corresponding candidate. Therefore, as
Figure 5.11 shows, the numbers of constraints are close to the ones of CSingle. These benchmarks
always use values of a single bit. We present two variations: the first uses ngrades = ncand:
this leads to a quadratic scaling of the number of constraints of the circuit in the number of
candidates. The second variant uses ngrades =. The benchmarks in Figure 5.12 include a third
variation: using ngrades = ncand

2 .

5.3.5.6. Ranking Matrix

The circuit CircCRankingMatrix directly applies the definition of this choice space: First, the circuit
asserts that all values are binary. Then, for every pair of candidates ccand

i and ccand
j it is

asserted that ψij +ψji = 1. Furthermore, for every additional candidate ccand
k , it is asserted that

ψij ∧ ψjk ∧ (1− ψik) evaluated to false, where the value 0 is interpreted as false, and the value
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Figure 5.11.: Number of constraints of CircCMajorityJudgment
Com .
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Groth16 SNARKs: CMajorityJudgment

Figure 5.12.: Benchmarks of Groth16 SNARKs of ΠCMajorityJudgment .

1 as true. For this, we use a circuit CircAssertAnd that computes the ∧ value of wires of binary
value. For n input wires, CircAssertAnd asserts with one constraint that ∑︁n

i=1 ai = n. Overall, as
Figure 5.13 shows, the circuit for CRankingMatrix scales cubic in the number of candidates and is
not influenced by the bit length of the values on the wires. However, as the number of values
to commit to also scales cubic in the number of candidates, the circuit solely related to the
voting part, namely checking bi ∈ CRankingMatrix is of negligible size, in comparison to the circuit
related to the commitments. However, as the circuit CircCRankingMatrix already checks that the input
values are binary, we only have to perform one step of the Montgomery ladder algorithm for the
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Figure 5.13.: Benchmarks of Groth16 SNARKs of CircCRankingMatrix
Com .
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Figure 5.14.: Benchmarks of Groth16 SNARKs of ΠCRankingMatrix .

commitment. Figure 5.14 shows that Kryvos can efficiently handle more than 100 candidates for
CRankingMatrix. Compared to CSingle or b, the number of candidates is smaller. However, elections
with this choice space usually have way fewer candidates. For example, the Debian Project (see
Section 2.8) runs this choice space with up to 7 candidates, which Kryvos efficiently supports.

5.3.5.7. Ranking Permutation

To realize CRankingPermutation with Kryvos, we make use of the SNARKs for the choice space CSingle

(see Section 2.6). In the following, we differentiate between complete and partial rankings, as
presented in Section 2.6, and we will always use values of 32 bit in this section.
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The choice space CRankingPermutation grows exponentially in the number of candidates and thus
quickly leads to situations where voters cannot prove the validity of their ballots in a reasonable
time (for the slot size N = ncomponents). For example, in the case of a complete ranking of
ncand = 6 and hence ncomponents = 720, it is still manageable for voters (the ballot SNARK
requires under 15 seconds to compute using a EKCRS of size about 350 MB). In comparison,
using a partial ranking for ncand = 6 and hence ncomponents = 1, 957 computing the ballot SNARK
already requires a EKCRS of size over one GB, which is not considered acceptable by our
requirements. One option is to try and improve this situation by replacing the ballot SNARKs
with traditional specialized ZKPs optimized for the choice space CSingle. However, as we show in
Section 5.4, this approach only improves ballot ZKP runtime for small-scale slot sizes N close to
1, in which case the runtime of the tallying SNARK becomes entirely impractical.

However, we can improve the runtime of the ballot SNARK by splitting the ballot into a
small number of parts and then running multiple SNARKs in parallel. Specifically, encoding a
ballot via ntuples > 1 separate commitments, each having slot size N ≈ ncomponents/ntuples, one
can show the validity of a ballot belonging to CSingle via multiple sub-statements, where each
statement is concerned only with one commitment, namely:

(a) For each commitment ci,j , j ∈ {1, . . . , ntuples − 1}: All slots x(j−1)·N+1, . . . , xj·N in ci,j are
either 0 or 1.

(b) For ci,ntuples : the first slots x(ntuples−1)·N+1, . . . , xncomponents are either 0 or 1, and all remaining
slots xncomponents+1, . . . , xntuples·N are 0.

(c) For ti,agg := ∑︁ntuples
j=1 ci,j : The commitment contains a single slot with value 1 and all other

slots are 0.

While (a), (b), and (c), in conjunction, prove the validity of a ballot in ZK, they do not prove
knowledge of a witness. Intuitively, this is because one can re-arrange the components of a ballot
with valid proofs to create a new ballot with valid proofs, even without knowing the contents of
the commitments. However, Kryvos only requires a zero-knowledge proof of correctness in order
to be secure (see Section 5.3.2). Alternatively, one could add the position of each commitment
as additional public input.

If implemented naively, each of the statements (a), (b), and (c) from above requires its own
Groth16 SNARK instance and hence its own EKCRS. Note, however, that all of these Groth16
SNARK instances are for quite similar functions: they first check that the secret input w is
a valid opening for the public commitment com by re-computing that commitment and then
also show that w has specific properties. As shown in Figure 5.5 for CSingle, re-computing the
commitment accounts for almost the total size of the EKCRS, whereas performing any additional
checks on w barely affect the size of the EKCRS. Hence, we can use the following optimization:
we consider a Groth16 SNARK for a function that takes as public input not just the commitment
com but also an additional flag flag ∈ N. This Groth16 SNARK instance allows for creating a
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# Commitments (= ntuples) 1 2 3 5 10
Slot Size (= N) 1, 957 979 653 392 196
Constraints 1, 600, 138 803, 068 537, 378 324, 663 164, 923
EKCRS [MB] 1, 034.09 518.98 347.28 209.81 106.58
VKCRS [kB] 3.14 3.14 3.14 3.14 3.14
Prove [s] 39.58 19.87 13.29 8.03 4.08
Verify [ms] 5.51 5.51 5.51 5.51 5.51
Prove Overall [s] 39.58 59.60 53.17 48.19 44.88

Table 5.4.: Comparison of various slot sizes for CRankingPermutation with ncand = 6 and thus
ncomponents = 1, 957.

# Commitments (= ntuples) 1 2 10 20 50
Slot Size (= N) 5, 040 2, 520 504 252 101
Constraints 4, 112, 783 2, 058, 983 415, 943 210, 563 87, 498
EKCRS [MB] 2, 657.89 1, 330.62 268.80 136.08 56.55
VKCRS [kB] 3.14 3.14 3.14 3.14 3.14
Prove [s] 101.74 50.93 10.29 5.21 2.16
Verify [ms] 5.51 5.51 5.51 5.51 5.51
Prove Overall [s] 101.74 152.80 113.18 109.38 110.38

Table 5.5.: Comparison of various slot sizes for CRankingPermutation with ncand = 7 (complete
ranking) and thus ncomponents = 5, 040.

single proof that shows that, on the one hand, the secret input w is an opening for com, and on
the other hand, depending on flag, that w fulfills various additional properties. If ncomponents

is not a multiple of N , we could also let the last commitment have a smaller slot size than
the previous ones. However, each voter would need an additional EKCRS to create a proof for
(b). Thus, if ncomponents is not a multiple of N , we artificially increase the slot size of the last
commitment in order to be able to use a single CRS for the ballot SNARK.

Using this method, we must determine a suitable slot size N (and hence corresponding ntuples).
A smaller N allows for higher parallelism up to the number of CPU cores available, improving
runtime for the ballot SNARK. At the same time, a smaller N increases the combined runtime
of all ballot sub-SNARKs (as shown in Section 5.3.4 but also since (c) introduces an additional
commitment opening over a new aggregated commitment, which is not necessary if a single
SNARK shows all statements) and of the single tallying SNARK. Note that the tallying SNARK
is monolithic and thus cannot use parallelism.

184



# Commitments (= ntuples) 5 10 15 20 50
Slot Size (= N) 2, 740 1, 370 914 685 274
Constraints 2, 238, 283 1, 121, 733 750, 093 563, 458 228, 493
EKCRS [MB] 1, 446.49 724.92 484.75 364.13 147.66
VKCRS [kB] 3.14 3.14 3.14 3.14 3.14
Prove [s] 55.37 27.75 18.55 13.94 5.65
Verify [ms] 5.51 5.51 5.51 5.51 5.51
Prove Overall [s] 332.20 305.22 296.87 292.70 288.26

Table 5.6.: Comparison of various slot sizes for CRankingPermutation with ncand = 7 and thus
ncomponents = 13, 700.

Since, as shown above, we can handle 720 choices for CSingle with ntuples = 1 and thus support
6 candidates for complete rankings and 5 candidates for partial rankings (leading to 326 choices
for CSingle), we want to explore which additional numbers of candidates we can support using
ntuples > 1. In Table 5.4 we present benchmarks for ncand = 6 with a partial ranking, in
Table 5.5 benchmarks for ncand = 7 with a complete ranking, and in Table 5.6 benchmarks for
ncand = 7 with a partial ranking. These tables show the benchmarks for various possible slot
sizes for CRankingPermutation. The row SNARK: Prove indicates the runtime for computing a single
substatement and hence also indicates the overall runtime if all statements (1 statement for
ntuples = 1 and ntuples + 1 statements otherwise due to the addition of (c)) can be computed in
parallel. The row SNARK: Prove Overall gives the combined sequential runtime.

As Table 5.4 shows, even if we use only ntuples = 2 and hence N ≈ ncomponents/2, then a voter
can construct a ballot in less than a minute using an EKCRS of size of under 520 MB, which is
manageable. The performance progressively improves with increasing ntuples. The voter can use
parallelism to compute multiple SNARKs simultaneously to decrease the time it takes to create
proof showing ballot validity.

Tables 5.5 and 5.6 show that using the technique of increasing ntuples allows us to drastically
reduce the size of the EKCRS. However, we cannot get a sequential time of generating all
SNARK proofs under one minute. A voter can create a ballot using three cores and show
its validity under one minute for ncand = 7 and a complete ranking if she computes all three
SNARKs in parallel. The voter cannot apply this optimization for ncand = 7 and a partial
ranking since the voter needs way more cores and thus cannot efficiently create ballots on devices
with low computational power. Furthermore, it is impossible to efficiently prove ballot validity
for ncand = 8 in the case of a complete ranking since this requires even more slots than ncand = 7
for a partial ranking, namely 40, 320.
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Choice Space Parameters ncand

1 s 30 s

CircCSingle
Com N/A 1, 288 44, 709

CircCMulti,ocomp,nvotes,b

Com 16 Bit Numbers 71 2, 439

CircCMulti,ocomp,nvotes,b

Com 32 Bit Numbers 41 1, 425

CircCBordaPointList
Com npoints = 10 41 1, 413

CircCBordaPointList
Com npoints = ncand 36 455

CircCBordaTournamentStyle
Com N/A 32 339

CircCMajorityJudgment
Com ngrades = ncand 35 215

CircCMajorityJudgment
Com ngrades = ncand

2 51 291

CircCMajorityJudgment
Com ngrades = 6 7 6, 519

CircCRankingMatrix
Com N/A 35 200

Table 5.7.: Maximum number of candidates for various choice spaces that Kryvos can evaluate in
under one and 30 seconds. We present the results for CRankingPermutation in Tables 5.4 to 5.6.

5.3.5.8. Summary

In this section, we present the findings of the ballot ZKPs of Kryvos and how the GPPS enables
instantiations for various choice spaces. We offer instantiations not only for choice spaces
where specialized ZKP solutions already exist (e.g., CSingle and CMulti,ocomp,nvotes,b) but also for
choice spaces where no such alternatives currently exist (e.g., CBordaTournamentStyle) or where the
alternative specialized ZKPs have downsides. For instance, the specialized ZKP for CRankingMatrix

requires further computation by the trustees beyond the voter’s participation, which our Kryvos
instantiation does not need.

Our efficient Kryvos instantiations provide reasonable ballot ZKP creation times for voters,
even for many candidates. We summarize the benchmarks in Table 5.7, which show the number
of candidates a voter can handle in an election, given a time limit on the ballot ZKP creation
time. For a Groth16 SNARK proof with a creation time of one second on our machine, the
EKCRS consists of about 25 MB and about 785 MB for a proof creation time of EKCRS seconds.

The table shows that even with proof creation times of under a single second, voters can cast
ballots for reasonable numbers of candidates.
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5.3.5.9. Tallying for Various Result Functions

The tallying phase mainly consists of aggregating the ballots and computing the final Groth16
SNARK proof showing the election result’s correctness. Aggregation of Pedersen (vector)
commitments is high-speed, and the trustees can already start the aggregation in the previous
voting phase. Hence, our benchmarks’ driving factor and focus lies in the final creation of
Groth16 SNARK. For all result functions, the tallying SNARK essentially takes the aggregated
commitment(s) on the tally and the election result as public input, the commitment opening(s)
as secret input, and then proves that the opening corresponds to the commitment and that the
election result was obtained by applying f res to the tally contained in the opening. We present
our instantiations and benchmarks for various election result functions in the following.

5.3.5.10. Election Result Functions

This section presents our instantiations of the Kryvos framework for various election result
functions, including their benchmarks. Before we dive into specific instantiations of the Kryvos
framework, we first define the generic relation regarding the election result function.

Let x = (cagg,1, . . . , cagg,ntuples , elecres) and w = (cchoice
agg , ragg,1, . . . , ragg,ntuples). By tagg,i we

denote the ntuples tuples that represent the tally for the commitments: (tagg,1, . . . , tagg,ntuples) =
cchoice

agg .
The following relation describes that the final result elecres is correctly computed w.r.t. the

commitments (cagg,1, . . . , cagg,ntuples) and result function f res.

Rres
f = {((cagg,1, . . . , cagg,ntuples , elecres), (cchoice

agg , ragg,1, . . . , ragg,ntuples)) |

(tagg,1, . . . , tagg,ntuples) = cchoice
agg , elecres = f res(cchoice

agg ),

∀i ∈ {1, . . . , ntuples} : cagg,i = Com(tagg,i; ragg,i)}

We denote the SNARK for this relation by Πf res . As in the case of RC, we remark that the
number of public wires of Rres

f scales in ntuples. Furthermore, in contrast to RC, the relation Rres
f

also includes the election result elecres as public input. The number of public wires also depends
on elecres. Typically, the election result consists of a single wire per candidate, indicating
whether the candidate won. We recall that in general, ncand ≤ ncomponents. Therefore, the size of
VKCRS and the time of Verify scales in the number of candidates.

5.3.5.11. Plurality

The election result function f res
Plurality outputs the candidates that received the most votes. Kryvos

realizes this election result function with a circuit that finds the maximum value mmax in a
list l and outputs the indices of this maximum value. For this, the prover first computes the
maximum value mmax of l, and then the circuit asserts, using CircAssertGt, that mmax is greater
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Figure 5.15.: Number of constraints of Circ
f res
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Figure 5.16.: Benchmarks of Groth16 SNARKs of Πf res
Plurality

.

than every value in l. Next, for each item li in the list, an indicator wire is set according to
CircVerifyEqual(li,mmax). These indicator wires form the public output of the circuit and the
election result.

In Figure 5.15, we present the number of constraints of Circ
f res

Plurality
Com . These numbers show that

the circuit mainly consists of constraints of CircCom, and only a small percentage is of Circf res
Plurality .

In Figure 5.16, we present the benchmarks of the Groth16 SNARKs evaluating Circ
f res

Plurality
Com . As

the figure shows, the benchmarks scale linearly in the number of candidates, and Kryvos can
easily handle 2, 000 candidates efficiently.
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Figure 5.17.: Number of constraints of Circ
f res

Threshold,t

Com .

5.3.5.12. Threshold

The circuit Circf res
Threshold,t checks for every candidate whether this candidate received at least t

many votes. On a conceptual level, this procedure is similar to the procedure used to check for
CMulti,ocomp,nvotes,b that the vote for every candidate is at most b. However, on a technical level,
these two circuits need to be constructed differently: In the case of CMulti,ocomp,nvotes,b, the circuit
asserts that every value is at most b since the voter cannot cast a ballot with invalid entries.
In contrast, for f res

Threshold,t, candidates might not receive sufficient votes. Therefore, the circuit
for this relation cannot assert operations for this part: The circuit would not be satisfiable if a
candidate did not receive sufficient votes.

This difference between the circuits for choice spaces and election result functions is present
in many cases where the concepts of circuits for specific choice spaces appear similar to those
of circuits for specific election result functions. While the circuits for choice spaces can use
assertions, the circuits for election result functions must use comparisons instead, leading to a
higher number of constraints in comparison.

In direct comparison, as presented in Section 5.3.4, the circuit CircAssertGt requires less con-
straints than CircVerifyGt. However, the number of constraints of the circuit for f res

Threshold,t is
independent of the value t. In Figure 5.17, we present the number of constraints of this circuit.
This figure shows that the computation of the election result nearly takes up to a third of the
overall constraints of the circuit.

In Figure 5.18, we present the benchmarks of the Groth16 SNARKs Circ
f res

Threshold,t

Com . As the figure
shows, the benchmarks scale linearly in the number of candidates, and Kryvos can easily handle
2, 000 candidates efficiently.
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Figure 5.18.: Benchmarks of Groth16 SNARKs of Πf res
Threshold,t

.

5.3.5.13. Best

The circuit Circf res
Best,n that computes f res

Best,n works as follows. First, the prover computes the
number of votes nvotes such that each winning candidate received at least nvotes votes. The
circuit uses this value as additional secret input and proceeds as follows. Using Circf res

Threshold,t as
a sub-circuit, Circf res

Best,n asserts that the set of candidates that received at least nvotes votes is
of size at least n. In order to prove that this set is indeed the set of winning candidates, the
circuit additionally uses Circf res

Threshold,t again as a sub-circuit to assert that the set of candidates
that received at least nvotes + 1 votes is smaller than n. So, at its core, the circuit Circf res

Best,n

consists of two sub-circuits Circf res
Threshold,t . Therefore, apart from some constraints usable by both

sub-circuits (e.g., the split gates for the votes), the complexity of Circf res
Best,n is about two times

the complexity of Circf res
Threshold,t

Figure 5.19 shows the constraints of Circ
f res

Best,n
Com . The figure shows that the sub-circuit Circf res

Best,n

underlines the complexity to Circf res
Threshold,t . In comparison to CircCom, the number of constraints

of Circf res
Best,n increases faster in the number of candidates, to a point where the circuit Circ

f res
Best,n

Com
takes about half of the constraints for 32 bit values and ncand = 10, 000.

We present the benchmarks of Groth16 SNARKs evaluating Circ
f res

Best,n
Com in Figure 5.20.

5.3.5.14. Majority Judgment Median

The circuit Circf res
MJMedian computes for each candidate the median grade. We can compute the

median value in a list as follows. The list consists of values v1, . . . , vngrades , where vi denotes how
many votes grade i received. The median imed is the index of the first grade in the list such that∑︁imed

i=1 vi ≥ nvotes
2 , i.e., at least half of the overall votes nvotes are in v1, . . . , vimed .

The circuit verifies the median grade as follows. First, the prover computes the index imed of
the median grade in plain. Then, the circuit asserts that ∑︁imed

i=1 vi ≥ nvotes
2 . In order to check that

this is indeed the correct index of the median, the circuit additionally asserts that ∑︁imed−1
i=1 vi is

smaller than nvotes
2 .
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Figure 5.19.: Number of constraints of Circ
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Figure 5.20.: Benchmarks of Groth16 SNARKs of Πf res
Best,n

.

The circuit Circf res
MJMedian scales in the number of candidates and the number of grades since each

grade needs a plaintext value per candidate, and the number of grades additionally increases
the complexity of the computation of the median value per candidate. Figure 5.21 shows the
constraints of the circuits. In this figure, we benchmark three variants: ngrades = 6, ngrades = ncand,
and ngrades = ncand

2 . The figure shows that the circuit Circf res
MJMedian is roughly split in half: one-half

of the constraints is part of Circf res
MJMedian , while the other half is part of CircCom.

We present the benchmarks of the corresponding Groth16 SNARKs of Circf res
MJMedian

Com in Figure 5.24.
The figure shows that the benchmarks scale linearly for a set of grades of constant size, while
there is a quadratic scaling when the number of grades scales linearly in the number of candidates.

The benchmarks show that Kryvos efficiently evaluates f res
MJMedian for significant numbers of

candidates and grades.
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Figure 5.21.: Number of constraints of Circf res
MJMedian
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Figure 5.22.: Benchmarks of Groth16 SNARKs of Πf res
MJMedian

.

5.3.5.15. Majority Judgment Full

The circuit Circf res
MJFull applies the optimized algorithm to compute the majority judgment method

(see Section 2.7). Essentially, the circuit iterates over the candidates, using Circf res
MJMedian as a

sub-circuit, and eliminates one candidate for each iteration step. Therefore, on a high level, the
complexity of Circf res

MJFull corresponds to the complexity of Circf res
MJMedian multiplied by the number

of candidates.

Figure 5.23 shows the constraints of the resulting circuits. Compared to Circf res
MJMedian

Com , the
sub-circuit Circf res

MJFull now dominates the overall circuit.
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Figure 5.23.: Number of constraints of Circf res
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Figure 5.24.: Benchmarks of Groth16 SNARKs of Πf res
MJFull

.

Figure 5.24 shows the benchmarks of the Groth16 SNARKs evaluating Circf res
MJFull

Com . The bench-
marks indicate that Kryvos efficiently evaluates f res

MJFull for up to 20 candidates for ngrades = ncand,
and up to 50 candidates for ngrades = 6.

5.3.5.16. Condorcet Smith

The circuit Circf res
CondorcetSmithSet computes the Smith set in two steps. First, it computes how many

direct comparisons this candidate has won for each candidate. Then, the candidates that won
the most direct comparisons are put into the current Smith set. The following theorem shows
that this candidate is part of the Smith set.
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Figure 5.25.: Number of constraints of Circf res
CondorcetSmithSet

Com .

Theorem 5.6 (Candidates with the most won duels are part of the Smith set). Let (ccand
i )ncand

i=1
be the candidates of an election with f res

CondorcetSmithSet and let S ⊆ {ccand
1 , . . . , ccand

ncand} be the Smith
set. If ccand

i has won the most duels, it holds that ccand
i ∈ S.

Proof. Let n = |S| ≥ 1, let ccand
i be a candidate that won the most duels and let ccand

i /∈ S. Since,
by definition, no candidate not in the Smith set wins a duel against any candidate in the Smith
set, ccand

i can win at most ncand − |S| − 1 duels. However, a candidate ccand
j ∈ S wins against

every candidate not in the Smith set, i.e., she wins ncand− |S| > ncand− |S| − 1 many duels, and
thus, ccand

i did not win the most duels.

Now, we have a set of candidates that are part of the Smith set by Theorem 5.6. In the
second step, every candidate that wins a direct comparison against any candidate in the current
Smith set is added to the set. By definition of the Smith set, such candidates are part of it. The
algorithm iterates sufficiently many times until the Smith set is complete.

Figure 5.25 presents the constraint numbers of Circf res
CondorcetSmithSet

Com . The figure shows that the
constraints of Circf res

CondorcetSmithSet make up about half of the constraints of Circf res
CondorcetSmithSet

Com for larger
numbers of candidates.

Figure 5.26 shows the benchmarks of the corresponding Groth16 SNARKs of Πf res
CondorcetSmithSet

.
The benchmarks indicate that Kryvos can efficiently evaluate f res

CondorcetSmithSet for 30 candidates.

5.3.5.17. Instant-Runoff Voting (IRV)

The circuits Circf res
IRVLotComplete , Circf res

IRVLotPartial , Circf res
IRVNSWCompelte , and Circf res

IRVNSWPartial follow the same
structure. They iterate over ncand − 1 round and eliminate one candidate per round. In each
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Figure 5.26.: Benchmarks of Groth16 SNARKs of Πf res
CondorcetSmithSet
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Figure 5.27.: Number of constraints of circuits for IRV.

round, the first votes per candidate are aggregated and compared, and tie-breaking is applied.
The complexity of the tie-breaking mechanism scales in the number of candidates. In contrast,
the complexity of CircCom scales exponentially in the number of candidates (see Section 2.7). We
present the constraint numbers in Figure 5.27. These benchmarks indicate that the difference
between the tie-breaking mechanisms is negligible, and the constraints of CircCom dominate the
overall circuit.

Figure 5.28 presents the benchmarks of the corresponding Groth16 SNARKs, showing that
Kryvos highly efficiently evaluates Circf res

IRVLotComplete and Circf res
IRVLotPartial for up to 5 candidates, and

Circf res
IRVNSWPartial and Circf res

IRVNSWCompelte for up to 6 candidates. We note that the benchmarks of the
different tie-breaking mechanisms are so close together that we merged them in Figure 5.28.
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Figure 5.28.: Benchmarks of Groth16 SNARKs for IRV.

# Commitments (= ntuples) 1 2 5 10 50
Slot Size (= N) 1, 957 979 392 196 40
Constraints 1, 603, 494 1, 609, 484 1, 626, 640 1, 652, 520 1, 892, 120
EKCRS [GB] 1.04 1.04 1.05 1.07 1.22
VKCRS [kB] 3.62 4.10 5.53 7.91 26.99
Prove [s] 39.66 39.81 40.24 40.88 46.80
Verify [ms] 8.27 11.03 19.30 33.08 143.34

Table 5.8.: Comparison of various slot sizes for f res
IRVNSWPartial with ncand = 6 and thus ncomponents =

1, 957.

Increasing the number of candidates no longer allows for efficient ballot submission. More
precisely, voters cannot efficiently cast ballots that consist of a single commitment covering all
(choice) components. As discussed in the case study for CRankingPermutation, we solve this issue
by increasing ntuples. Splitting the commitment affects the tallying SNARK since this SNARK
must take the complete tally as input, which means it must verify ntuples many commitments.

Tables 5.8 to 5.10 present benchmarks for various slot sizes for the next set of candidates.
The benchmarks show that increasing ntuples leads to slightly more constraints. However, having
trustees with access to enough computational power (the main bottleneck is that they have at
least 8 GB of RAM) allows the election to evaluate f res

IRVNSWPartial with ncand = 7. Verifying these
SNARK proofs requires a VKCRS of small size (under 30 kB) and requires less than 200 ms.

In conclusion, efficient ballot submission is the main bottleneck for IRV. Efficient ballot
submission is possible for complete rankings for up to 7 candidates and partial rankings for up
to 6 candidates.
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# Commitments (= ntuples) 1 2 5 10 50
Slot Size (= N) 5, 040 2, 520 1, 008 504 101
Constraints 4, 126, 369 4, 131, 545 4, 147, 073 4, 172, 953 4, 388, 133
EKCRS [GB] 2.67 2.67 2.68 2.70 2.84
VKCRS [kB] 3.78 4.26 5.69 8.07 27.15
Prove [s] 102.07 102.20 102.58 103.22 108.55
Verify [ms] 9.19 11.94 20.21 34.00 144.26

Table 5.9.: Comparison of various slot sizes for f res
IRVNSWCompelte with ncand = 7 and thus

ncomponents = 5, 040.

# Commitments (= ntuples) 1 2 5 10 50
Slot Size (= N) 13, 700 6, 850 2, 740 1, 370 274
Constraints 11, 244, 153 11, 249, 329 11, 264, 857 11, 290, 737 11, 497, 777
EKCRS [GB] 7.27 7.27 7.28 7.30 7.43
VKCRS [kB] 3.78 4.26 5.69 8.07 27.15
Prove [s] 278.14 278.27 278.65 279.29 284.41
Verify [ms] 9.19 11.94 20.21 34.00 144.26

Table 5.10.: Comparison of various slot sizes for f res
IRVNSWPartial with ncand = 7 and thus

ncomponents = 13, 700.

5.3.5.18. Summary

With our numerous Kryvos instantiations, we efficiently support and implement several election
result functions. The SNARK used to evaluate the election results function has a more relaxed
runtime requirement than the SNARKs used for ballot creation. Users run these SNARKs on
low-end devices, and the proof creation needs to be highly efficient. In contrast, a dedicated
trustee who can use high-end machines for computation creates the SNARK proof for the election
result function. Additionally, it is reasonable for the election evaluation to take longer than a
few seconds, unlike ballot submission. We summarize the benchmarks Kryvos evaluating election
result functions in Table 5.11 for various runtime limits. This table shows that Kryvos efficiently
handles a variety of election result functions.

5.3.5.19. Public Verification Phase

Each Groth16 SNARK proof can be verified in ∼2.8 ms using the small VKCRS, where a single
proof is of size ∼ 200 bytes. For example, consider a single-vote election (CSingle) with an arbitrary
number of trustees and up to ncomponents = 1, 000 candidates and nvoters = 100, 000 voters. Such
an election requires 100, 000 Groth16 SNARK proofs for showing the well-formedness of ballots
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f res Parameters ncand

1 s 30 s 1 min

Circ
f res

Plurality
Com 16 Bit Numbers 70 2, 420 4, 850

Circ
f res

Plurality
Com 32 Bit Numbers 41 1, 419 2, 844

Circ
f res

Threshold,t

Com 16 Bit Numbers 53 1, 846 3, 700

Circ
f res

Threshold,t

Com 32 Bit Numbers 30 1, 035 2, 075

Circ
f res

Best,n
Com 16 Bit Numbers 42 1, 454 2, 016

Circ
f res

Best,n
Com 32 Bit Numbers 23 795 1, 594

Circf res
MJMedian

Com ngrades = ncand 4 27 39

Circf res
MJMedian

Com ngrades = ncand
2 6 39 55

Circf res
MJMedian

Com ngrades = 6 3 117 235

Circf res
MJFull

Com ngrades = ncand 3 22 31

Circf res
MJFull

Com ngrades = ncand
2 4 29 44

Circf res
MJFull

Com ngrades = 6 2 39 60

Circf res
CondorcetSmithSet

Com 16 Bit Numbers 7 39 54

Circf res
CondorcetSmithSet

Com 32 Bit Numbers 5 31 43

Table 5.11.: Maximum number of candidates for various election result functions that Kryvos
can evaluate within a limited time. We present the results for IRV in Figure 5.28 and Tables 5.8
to 5.10.

and a single Groth16 SNARK proof for showing the correctness of the election result. In total, the
size of all proofs is ∼20 MB with a total sequential verification time of ∼90 seconds. Verification
requires two VKCRSs, both are smaller than 200 kB. This verification can be highly parallelized
and already performed while other phases, such as the voting phase, are still running.

5.3.5.20. Real-World Elections with Kryvos

In this section, we instantiate the Kryvos framework for real-world elections.
House of Commons with Kryvos. The elections for the House of Commons use CSingle and

f res
Plurality in each of the 650 constituencies. As presented above, Kryvos efficiently supports this

choice space and election result function. Even for 1, 500 candidates in a single constituency,
voters can cast ballots for Kryvos in under 20 seconds with a EKCRS consisting of about 500
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MB. For more realistic numbers of candidates below 250, voters need under 5 seconds to cast a
ballot using an EKCRS consisting of under 100 MB. The trustees can evaluate f res

Plurality efficiently
for 3, 600 candidates, and parties can verify the election result under 5 ms using VKCRS of size
under 1 MB. In summary, Kryvos efficiently supports the elections for the House of Commons.

Elections for the Fachkollegien in the Deutsche Forschungsgesellschaft with Kryvos. These
elections use f res

RankingVotesBest,n with up to 32 candidates. Kryvos handles 32 candidates for this
election result function in under five seconds for arbitrary numbers of voters.

Grand Final of the Eurovision Song Contest with Kryvos. Although the choice space of
the ESC, namely CBordaPointList, is more complex than CSingle, Kryvos efficiently supports this
real-world election since there are few candidates and voters. Voters cast their ballots in under
2 seconds using a EKCRS of under 50 MB. As for the House of Commons, the trustees can
efficiently compute and prove the election result.

Parliamentary Elections in the Republic of Nauru with Kryvos. To support the Dowdall system
used by the parliamentary elections in the Republic of Nauru, we scale the points such that
they are natural numbers. Since there are no more than 18 candidates, we scale the points by
2 · 3 · 5 · 7 · 11 · 13 · 17 = 510, 510, which means that a voter can give at most 510, 510 points to a
candidate. Knowing that there are no more than 1, 630 voters in a constituency, a candidate
can receive at most 832, 131, 300 points, which we can represent with 32 bits. Therefore, we can
efficiently evaluate the parliamentary elections in the Republic of Nauru with Kryvos.

The New South Wales Legislative Assembly with Kryvos. As discussed above, Kryvos efficiently
evaluates f res

IRVNSWPartial for up to 6 candidates. We run Kryvos by using real election data from
the 2015 New South Wales state election for the Legislative Assembly [Ele15]. More specifically,
we consider the electoral districts of Albury (five candidates) and Auburn (six candidates).

The Maine House of Representatives with Kryvos. Kryvos can efficiently handle elections
with up to 6 candidates using IRV with f res

IRVLotPartial, making it suitable for the Maine House of
Representatives, as well as the US presidential and senatorial elections in Maine.

5.4. Related Work

In this section, we compare Kryvos with related e-voting systems designed for tally-hiding.
Furthermore, we discuss alternative design choices for Kryvos.

5.4.1. Comparison with Other Tally-Hiding E-Voting Systems

We compare Kryvos to existing tally-hiding e-voting systems in this section.

5.4.1.1. Fully Tally-Hiding E-Voting vs. Kryvos

We note that publicly tally-hiding and fully tally-hiding protocols provide the same level of
privacy for the public. However, fully tally-hiding protocols keep the aggregated tally hidden
from trustees, while publicly tally-hiding systems reveal the aggregated tally to the trustees to
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allow for much higher efficiency, as demonstrated by Kryvos. The design of fully tally-hiding
systems is fundamentally different to Kryvos as they are based on multi-party computation.

Canard et al. proposed a fully tally-hiding e-voting system [CPST18] specifically for majority
judgment evaluation f res

MJFull (see Section 2.7). However, there is a non-negligible chance that the
system does not output a result because the underlying evaluation algorithm does not provide a
result for every possible tally. Kryvos uses a different algorithm that always outputs the correct
result. They implemented their system and provided benchmarks demonstrating that it can
handle large numbers of voters, just like Kryvos. While their system needs almost 20 minutes
to tally 5 candidates with 5 possible grades and up to 220 − 1 voters, Kryvos can handle all
practically relevant numbers of candidates and grades with up to 232 − 1 voters, as shown in
Figure 5.24. For example, Kryvos evaluated 10 candidates and 6 grades in under 5 seconds.
Hence, Kryvos shows for the first time that publicly tally-hiding systems can not only realize
majority judgment but also, as initially hoped, indeed achieve much better efficiency than a fully
tally-hiding system (by providing weaker privacy towards trustees). Unlike Kryvos, [CPST18]
lacks formal security analysis and was only benchmarked on a single computer, not a distributed
network. Additionally, they used a simplified version of the cryptographic primitives for their
benchmarks, and due to the online complexity of the underlying MPC protocol of [CPST18], it
is unclear how well it performs in real-world distributed tallying scenarios.

Ordinos (presented in Section 3.2) is the first provably secure, verifiable, fully tally-hiding
e-voting system. We instantiated and implemented it for manifold voting methods and result
functions. The main difference between Kryvos and Ordinos is their balance between efficiency
and the tally-hiding property they provide: Ordinos provides the stronger notion of full tally-
hiding and takes several hours to evaluate complex election result functions with typical numbers
of candidates (yet large numbers of voters), whereas Kryvos provides the relaxed notion of public
tally-hiding and is practical even for very complex choice spaces (e.g., grading- and ranking-based
choice spaces) and result functions (e.g., the Condorcet Smith set and IRV), taking under a
single minute to evalute these elections for typical numbers of candidates. Unlike for Kryvos, the
result function strongly impacts performance in Ordinos. The benchmarks of plurality voting of
Ordinos provide a lower bound for all other result functions that Ordinos supports, which takes
about an hour for 400 candidates in the fastest setting. In contrast, Kryvos evaluates 2, 000
candidates in about one minute for plurality voting in the fastest setting. Ordinos requires an
hour for 20 candidates for the Condorcet Smith set (f res

CondorcetSmithSet), while Kryvos handles 48
candidates in about one minute. Furthermore, Kryvos provides efficient ZKPs showing ballot
validity for all supported choice spaces. In contrast, Ordinos needs specialized ZKPs that might
be inefficient for larger numbers of candidates.

5.4.1.2. Partially Tally-Hiding E-Voting vs. Kryvos

Several partially tally-hiding protocols have been proposed to solve the issue of Italian attacks in
complex voting methods, such as Condorcet, Borda, IRV (e.g., [CM05,Hea07,BMN+09,JRRS19,
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District Albury Auburn
ncand 5 6
nvoters 46, 347 43, 783

Kryvos [RCPT19] Kryvos [RCPT19]
Tallying 30 s 2h 46.80 s 15 h
Tallying: SNARK Prove [s] 14.8 N/A 46.80 N/A
Tallying: SNARK EKCRS [MB] 383 N/A 1, 220 N/A
Tallying: SNARK VKCRS [kB] 3.13 N/A 26.99 N/A

Table 5.12.: Benchmarks of Kryvos for f res
IRVNSWPartial and of [RCPT19] for f res

IRVRoundTally. We
note that the benchmarks of [RCPT19] are taken directly from [RCPT19] which uses a setup
comparable to the one we used for Kryvos. For Kryvos, we used a slot size of 40 for ncand = 6.

RCPT19]). All existing partially tally-hiding systems focus on mitigating Italian attacks, some
of which are efficient and practical for real-world elections. The system of [RCPT19] is one of
the most efficient systems evaluating f res

IRVRoundTally and has been shown to work for the 2015 New
South Wales instant-runoff elections.

Partially and publicly tally-hiding systems offer different trade-offs between privacy and
efficiency compared to fully tally-hiding ones. These trade-offs lead to incomparable privacy
properties. Specifically, while publicly tally-hiding protocols hide the aggregated tally from
the public, partially tally-hiding systems still reveal some intermediate information about the
tally to the public. For example, in the voting protocol for instant-runoff elections by Ramchen
et al. [RCPT19], the public learns, among others, the order of the weakest candidates, which
might embarrass those candidates. Partially tally-hiding protocols hide parts of the tally even
from internal parties, whereas publicly tally-hiding protocols reveal the aggregated tally to the
trustees. As a result, Kryvos cannot protect against Italian attacks by the trustees, unlike the
partially and fully tally-hiding systems mentioned earlier that are secure against such attacks.

We compare our f res
IRVNSWPartial evaluation benchmarks with the benchmarks of [RCPT19] in

Table 5.12. We emphasize that the system of [RCPT19] evaluates f res
IRVRoundTally and therefore

omits tie-breaking, as this can be done in plain. The benchmarks of [RCPT19] were obtained
using a setup comparable to the one we used for Kryvos, consisting of an Intel i7-6770HQ, 2.6
GHz, with four cores (8 threads) and 32 GB RAM. However, we used a single core to obtain the
benchmarks of Kryvos, while this information of the benchmarks of [RCPT19] is not specified.
Note that the timings given for [RCPT19] are lower bounds since they exclude the runtime
required for computing some of the NIZKPs during the tallying phase.

In terms of efficiency, Table 5.12 illustrates that Kryvos is well able to handle the same
real-world IRV elections as [RCPT19]. Hence, both protocols are practical solutions for IRV
elections that provide different incomparable balances in terms of privacy.
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5.4.1.3. Italian Attacks

In this section, we elaborate on existing e-voting systems [CM05,Hea07,BMN+09,WB09,RCPT19,
JRRS19] that aim to protect against Italian attacks.

Clarkson and Myers [CM05] proposed an extension of Prêt à Voter [CRS05] to protect against
Italian attacks in Condorcet voting. This system comes with a quadratic overhead in the number
of candidates. Neither formal security nor benchmarks are provided.

Heather [Hea07] published the first verifiable e-voting system that mitigates the risk of Italian
attacks for single-transferable elections. Since the system reveals much sensitive information, this
system, following a similar path, was first improved by Benaloh et al. [BMN+09], which in turn
was improved by Ramchen et al. [RCPT19] using an MPC protocol that hides more information.
In Table 5.12, we provide a performance comparison between Kryvos and [RCPT19], illustrating
that Kryvos performs much better (while at the same time does not publicly reveal information).

The e-voting system by Wen and Buckland [WB09] for instant-runoff elections neither comes
with a formal security analysis nor has this system been implemented. The theoretical complexity
of [WB09] indicates that the resulting system may not be efficient.

Jamroga et al. [JRRS19] follow a completely different approach for reducing the amount of
information revealed on individual voters’ choices, inspired by risk-limiting auditing [LS12].
However, they describe their method only for majority voting.

5.4.2. Alternative Design Choices for Kryvos

This section discusses possible alternative design choices for Kryvos.

5.4.2.1. Specialized ZKPs for Ballot Validity for IRV

As described in Section 5.3.5, we use the choice space CSingle for IRV. This choice space allows
specialized ZKPs to show ballot validity instead of relying on the SNARK proofs CircCSingle

Com . In
this section, we want to explore this possibility.

Specialized ZKPs for CSingle usually work as follows. The ZKPs consists of various sub-
zero-knowledge proofs that allow for testing of one specific plaintext value of a ciphertext (or
commitment):

Rvalue
x,pk = {(c, r) | c = Compk(x, r)}

We combine these sub-ZKPs via an OR protocol. In the typical setting with N = 1, i.e., one
commitment contains one value, we construct the ZKP as follows:

• For each commitment ci, i ∈ {1, . . . , ncomponents}: OR(ci ∈ LRvalue
0,pk

, ci ∈ LRvalue
1,pk

)

• For the aggregated commitment c := ∑︁
i∈{1,...,ncomponents} : OR(c ∈ LRvalue

0,pk
, c ∈ LRvalue

1,pk
)
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Benchmarks of Specialized ZKPs for CSingle with 13,700 Choices

Figure 5.29.: Benchmarks Specialized ZKPs for CSingle with 13, 700 choices.

We can extend this construction to support Pedersen vector commitments. For this, the OR
protocols have to test each possible combination of the values in the commitment. Therefore,
the number of statements expressed inside each OR protocol increases while the overall number
of OR protocols decreases. Additionally, increasing the slot size increases the cost of handling a
commitment since it contains multiple values, and for each, we need to perform an exponentiation
and multiplication.

We implemented such specialized ZKPs. Since the ZKPs CircCSingle
Com efficiently handle up to

six candidates for a partial ranking, we provide benchmarks for seven candidates and a partial
ranking, leading to 13, 700 choices for CSingle in Figure 5.29. The benchmarks show that increasing
the slot size leads to more expensive ZKPs. Moreover, even for N = 1, creating a proof takes
over five minutes, which is unsuitable for our e-voting setting. Therefore, we recommend using
CircCSingle

Com to show ballot validity.

5.4.2.2. Distributed SNARK Proof Creation

It is possible to use the recent concept of distributed SNARKs as a potential solution to prove
the correctness of the election result. This approach allows different parties, each holding a
share of a witness, to compute a SNARK in a secure and distributed manner while preserving
privacy [KZGM21,OB22]. However, this method has some downsides, considering tally-hiding
e-voting. For instance, it relies heavily on MPC components to protect the witness shares’ secrecy.
It is unclear whether this approach would be more efficient than fully tally-hiding e-voting
systems’ MPC protocols, which cannot compete with Kryvos in terms of efficiency. According to
benchmarks by [OB22], currently available distributed SNARKs are still too inefficient for our
purposes.

Additionally, the computation of the distributed SNARK proof begins with the parties holding
shares of the witness wires. However, for our voting circuits, the trustees only hold parts of
the witness, the aggregated tally. The trustees must still compute the remaining parts of the
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witness. If they do so in plain, we do not gain anything by employing distributed SNARKs.
Therefore, we need to use MPC to securely compute the complete witness, increasing the overall
computational overhead of distributed MPC.

5.4.2.3. CPSNARKs for Kryvos

We could employ commit-and-prove succinct non-interactive arguments of knowledge (CP-
SNARKs) [CFQ19] in Kryvos. In a nutshell, CPSNARKs allow the prover to take plaintext
values as input for the SNARK circuit and publish commitments to these values, such that one
can verify the circuit on these commitments without knowing the plaintext values. Therefore,
we can use CPSNARKs to decouple the commitments from the circuit, which would drastically
reduce the number of constraints of the circuits employed in Kryvos, see Section 5.3.5.

However, assembling a secure e-voting system requires care, and not every proof system is
directly applicable in this context. For example, Lee et al. [LCKO19] try to construct a secure
e-voting system based on CPSNARKs, using Lego SNARKs [CFQ19]. Nevertheless, they face a
severe issue with CPSNARKs: We can rerandomize the proofs together with the commitments
of the inputs. Rerandomization allows the breaking of ballot privacy: Dishonest voters can
rerandomize the proof and commitments of an honest voter and cast it as their ballot. Since
CPSNARKs like Lego SNARK currently offer no countermeasures against this behavior, Lee et
al. employ a robust blockchain in their voting protocol that mitigates these issues. However, a
blockchain that satisfies the needed properties does not exist.
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6. Conclusion

As presented in Chapter 1, the four main goals of this thesis are as follows.

1. We wanted to construct the first provable secure verifiable and full tally-hiding e-voting
system supporting a wide range of election types.

2. We wanted to explore the impact of tally-hiding regarding the secrecy of the tally and
confidentiality of individual votes.

3. We wanted to formalize the concept of public tally-hiding.

4. We wanted to construct the first provable secure verifiable and public tally-hiding e-voting
system supporting a wide range of election types.

6.1. Secure Tally-Hiding E-Voting with Ordinos

We presented Ordinos in [KLM+20a], the first provably secure and verifiable fully tally-hiding
remote e-voting protocol; it achieves verifiability and even accountability. Unlike previous
protocols, Ordinos is a modular framework for fully tally-hiding e-voting that can be instantiated
for supporting a wide range of election types, including essentially arbitrary voting methods.
Our security analysis and proof are performed generically for the Ordinos framework itself and,
therefore, carry over to all such instantiations.

We proposed and implemented various instantiations of Ordinos for many elections, including
several complex Condorcet methods, IRV, and even the elections for the German Bundestag.
Our extensive evaluations demonstrate that these instantiations achieve practical performance in
everyday real-world settings. For this, we have tested our Ordinos instantiation for several real-
world elections and the German Bundestag on the data from the 2021 election and demonstrated
that we can perform even such a complex election on a real-world scale in a fully tally-hiding
manner. This powerful insight highlights the potential for using Ordinos in significant and
complex real-world elections.

Finally, we provided a web framework of Ordinos that supports all steps of the voting process,
including setting up elections, the vote submission (including voter authentication), the secure
tally-hiding evaluation of the election result, and all verification steps necessary to verify the
result of the election. The web framework fully supports all our Ordinos instantiations and
voting methods, except for the German Bundestag elections.
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Applying the Ordinos framework, we proposed several partial tally-hiding Ordinos instantiations
and analyzed their trade-off between privacy and efficiency in comparison to their corresponding
full tally-hiding Ordinos instantiations, showing a massive improvement in terms of efficiency.

6.2. Analysing the Impact of Tally-Hiding

We provided insights into the impact of tally-hiding by analyzing and comparing the privacy
in different elections with and without tally-hiding. This includes relatively simple single-vote
elections but also very challenging and complex functions, e.g., several Condorcet methods and
IRV. Our analysis shows that tally-hiding severely improves privacy, particularly for elections
with complex and large choice spaces, such as ranking-based voting methods like Condorcet and
IRV.

Furthermore, we explored the impact of tally-hiding when applying the partial tally-hiding
result functions from our partial tally-hiding Ordinos instantiations. Our findings show that
revealing some information besides the election result allows for drastically improving performance
while at the same time obtaining similar levels of privacy in comparison to full tally-hiding.

6.3. Formalizing the Concept of Public Tally-Hiding

Our research focused on the development of publicly tally-hiding techniques for e-voting systems.
These techniques differ from previous methods and offer a new balance between privacy and
efficiency.

As verifiable publicly tally-hiding e-voting is novel, we created a general definitional security
model. This model provides the first formal definition of the public tally-hiding property. It
enables the formal and rigorous modeling of publicly tally-hiding e-voting systems and their
security properties. This includes the ability to ensure vote privacy and verifiability.

6.4. Secure Tally-Hiding E-Voting with Kryvos

We have introduced the Kryvos framework, which is the world’s first verifiable publicly tally-
hiding e-voting system that is provably secure. The Kryvos framework is a flexible voting system
that can be customized for different elections by designing or fixing appropriate cryptographic
building blocks, similar to Ordinos. Our design choices for Kryvos are novel, and we utilize
efficient zero-knowledge proofs to create an efficient system that achieves practical performance
for various real-world elections.

To evaluate elections using Kryvos, we have developed and implemented optimized versions of
the advanced Groth16 SNARK [Gro16] for a wide range of voting methods. We have created
instantiations of Kryvos for many commonly used voting methods, from simple to complex.
Through thorough performance testing, we have shown that our publicly tally-hiding Kryvos
framework performs significantly better than Ordinos instances. Specifically, for highly complex
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voting methods such as Condorcet and IRV, our Kryvos instances support more candidates than
Ordinos instances. Additionally, our Kryvos scheme outperforms even the state-of-the-art IRV
partial tally-hiding e-voting scheme of Ramchen et al. [RCPT19], while achieving incompatible
privacy properties.

As a significant side product, we constructed highly efficient zero-knowledge proofs (ZKPs)
showing ballot validity for many different choice spaces. We do not only construct ZKPs for
relatively simple choice spaces like single- and multi-vote, but most impactfully for very complex
choice spaces, for which no ZKPs exist so far. For instance, we are the first to propose ZKPs for
the Borda tournament style choice space. Our constructions offer high performance, allowing
voters to prove the validity of their ballots very efficiently: Voters can prove in under a single
second ballot validity of single-choice for up to 73 candidates. Furthermore, voters can prove
ballot validity for complex choice spaces in under one second for up to 32 candidates in the
case of Borda tournament style and up to 9 candidates for Condorcet methods. Our study of
real-world elections shows that these are realistic numbers, thus allowing us to prove ballot
validity for real-world elections very efficiently. Moreover, our ZKP constructions are not limited
to public tally-hiding. They can be used in other e-voting schemes, providing a new foundation
for efficiently handling simple and complex choice spaces.
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A. Cryptographic Primitives

This section provides definitions and security notions for various cryptographic primitives used
in this thesis. We present threshold homomorphic encryption in Appendix A.1, digital signature
in Appendix A.2, bilinear groups in Appendix A.3 and non-interactive zero-knowledge proofs
(NIZKPs) in Appendix A.4.

A.1. Threshold Homomorphic Encryption

In this section, we present threshold homomorphic encryption. We define such schemes in
Appendix A.1.1 and the corresponding security notion in Appendix A.1.2.

A.1.1. Threshold Public-Key Encryption Scheme

Let ntrustees be the number of trustees Tk and t be a threshold. Let prm be the parameters,
including the security parameter 1η. We implicitly assume that all algorithms have prm as input.
A (ntrustees, t)-threshold public-key encryption scheme is a tuple of polynomial-time algorithms
E = (KeyShareGen,PublicKeyGen, Epk, decshare, dec) such that we have:

• KeyShareGen (which is run by a single trustee Tk) is probabilistic and outputs two keys
(pkk, skk), called the public-key share pkk and the secret-key share skk,

• PublicKeyGen is deterministic and takes as input ntrustees public-key shares pk1, . . . , pkntrustees ,
and outputs a public key pk; this algorithm may fail (output ⊥) if the public-key shares are
invalid,

• Epk is probabilistic and takes as input a public key pk and a message a, and outputs a
ciphertext Epk(a),

• decshare (which is run by a single trustee Tk) is probabilistic and takes as input a ciphertext
Epk(a) and a secret-key share skk, and outputs a decryption share decshare

k,Epk(a),

• dec is deterministic and takes as input a tuple of decryption shares of size at least t and
returns a message a or ⊥, in the case that decryption fails.

Furthermore, the following correctness condition has to be guaranteed. Let (pkk, skk) be
generated by KeyShareGen for all k ∈ {1, . . . , ntrustees} and let pk be generated by the key
generation algorithm PublicKeyGen(pk1, . . . , pkntrustees). Let Epk(a) be the ciphertext obtained by
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encrypting a under the public key pk and decshare
k,Epk(a) be an output of decshare

Epk(a)(skk) for k ∈ I,
where I ⊆ {1, . . . , ntrustees}. Then, we have

dec((decshare
k,Epk(a))k∈I) =

⎧⎨⎩a if |I| ≥ t

⊥ otherwise
.

A.1.2. IND-CPA Security

Let E = (KeyShareGen,PublicKeyGen, Epk, decshare, dec) be a (ntrustees, t)-threshold public-key
encryption scheme.

Let ChEpk be a ppt algorithm, called a challenger, which takes as input a bit b and a public
key pk and serves the following challenge queries: For a pair of messages (a0, a1) of the same
length, return Epk(b) if pk ̸= ⊥, or ⊥ otherwise.

Let A = (A1,A2,A3) be an adversary, where A1,A2,A3 share state and A3 has oracle access to
ChEpk .

Let ExpA(b) be defined as follows:

1. I ← A1() where I ⊆ {1, . . . , ntrustees} and |I| ≥ t

2. (pki, ski)← KeyShareGen() for i ∈ I

3. pkj ← A2({pki}i∈I) for j ∈ {1, . . . , ntrustees} \ I

4. pk← PublicKeyGen(pk1, . . . , pkntrustees)

5. b′ ← AChEpk (b,pk)
3 ()

6. output b′

We define that the (ntrustees, t)-threshold public-key encryption scheme is IND-CPA secure if
for all (polynomially bounded) adversaries A = (A1,A2,A3)

Pr(ExpA(0) outputs 1)− Pr(ExpA(1) outputs 1)

is negligible as a function in the security parameter η.

A.2. Digital Signatures

In this section, we present signature schemes. We define such schemes in Appendix A.2.1 and
the corresponding security notion in Appendix A.2.2.
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A.2.1. Signature Schemes

A digital signature scheme consists of a triple of algorithms (KeyGen, sign, verify), where

1. KeyGen, the key generation algorithm, is a probabilistic algorithm that takes a security
parameter η and returns a pair (signi, verifyi) of matching secret signing and public
verification keys.

2. sign, the signing algorithm, is a (possibly) probabilistic algorithm that takes a private
signing key signi and a message m ∈ {0, 1}∗ to produce a signature sigsigni

(m).

3. verify, the verification algorithm, is a deterministic algorithm which takes a public verifica-
tion key verifyi, a message m ∈ {0, 1}∗ and a signature sigsigni

(m) to produce a boolean
value.

We require that for all key pairs (signi, verifyi) which can be output by KeyGen(1η), for all
messages m ∈ {0, 1}∗, and for all signatures sigsigni

(m) that can be output by sign(signi,m), we
have that verify(verifyi,m, sigsigni

(m)) = true. We also require that KeyGen, sign, and verify can
be computed in polynomial time.

A.2.2. EUF-CMA-Security

Let S = (KeyGen, sign, verify) be a signature scheme with security parameter η. Then S is
existentially unforgeable under adaptive chosen-message attacks (EUF-CMA-secure) if for every
probabilistic (polynomial-time) algorithm A who has access to a signing oracle and who never
outputs tuples (m, sigsigni

(m)) for which m has previously been signed by the oracle, we have
that

Pr((signi, verifyi)← KeyGen(1η);

(m, sigsigni
(m))← Asign(signi,·)(1η, verifyi);

verify(verifyi,m, sigsigni
(m)) = true

is negligible as a function in η.

A.3. Bilinear Groups

Bilinear groups can be used as a building block for publicly verifiable SNARGs and SNARKs.
They are, for example, used in the Groth16 SNARK [Gro16].

Definition A.1 (Bilinear Group [Gro16]). A bilinear group is a tuple (p,G1,G2,GT , e) with the
following properties:

• G1,G2,GT are groups of prime order p.
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• e : G1,G2 ×GT is a bilinear map, i.e.

– ∀u ∈ G1, v ∈ G2, a, b ∈ Zp : e(ua, vb) = e(u, v)ab

– ∀u, v ∈ G1, w ∈ G2 : e(uv,w) = e(u,w) · e(v, w)

• If G is a generator for G1 and H is a generator for G2 then e(G,H) is a generator for GT .

• There are efficient algorithms for computing group operations, evaluating the bilinear map,
deciding group membership, deciding the equality of group elements, and sampling generators
of the groups.

A.4. Non-Interactive Zero-Knowledge Proofs

In this section, we present non-interactive zero-knowledge proofs (NIZKPs). We define such
schemes in Appendix A.4.1, including the corresponding security notions. Then, we present the
NIZKPs employed in Ordinos in Appendix A.4.2. Finally, in Appendix A.4.3, we present the
Groth16 SNARK from [Gro16].

A.4.1. Definitions

Non-Interactive Proof Systems. Let R be an efficiently computable binary relation. For
pairs (x,w) ∈ R, x is called the statement and w is called the witness. Let LR = {x | ∃w :
(x,w) ∈ R}. A non-interactive proof system for the language LR is a tuple of probabilistic
polynomial-time algorithms (Setup,Prove,Verify), where

• Setup (the CRS generator) takes as input a security parameter 1η and the statement length
n and produces a common reference string σ ← Setup(n), For simplicity of notation, we omit
the security parameter in the notation, also for the prover and the verifier.

• Prove takes as input the security parameter 1η, a common reference string σ, a statement x,
and a witness w and produces a proof π ← Prove(σ, x, w),

• Verify takes as input the security parameter 1η, a common reference string σ, a statement
x, and a proof π and outputs 1/0← Verify(σ, x, w) depending on whether it accepts π as a
proof of x or not,

such that the following conditions are satisfied:

• (Computational) Completeness: Let n = ηO(1) and A be an adversary that outputs (x,w) ∈ R
with |x| = n. Then, the probability

Pr(σ ← Setup(n); (x,w)← A(σ);

π ← Prove(σ, x, w); b← Verify(σ, x, π) : b = 1)
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is overwhelming (as a function of the security parameter 1η). In other words, this condition
guarantees that an honest prover should always be able to convince an honest verifier of a
true statement (which can be chosen by the adversary A).

• (Computational) Soundness: Let n = ηO(1) and A be a non-uniform polynomial time adversary.
Then, the probability

Pr(σ ← Setup(n); (x, π)← A(σ);

b← Verify(σ, x, π) : b = 1 and x /∈ LR)

is negligible (as a function of the security parameter 1η). In other words, this condition
guarantees that it should be infeasible for an adversary to come up with a proof π of a false
statement x that the verifier accepts.

Zero-Knowledge. We define that a non-interactive proof system (Setup,Prove,Verify) is
zero-knowledge (NIZKP) if the following condition is satisfied.

Let n = ηO(1). There exists a polynomial-time simulator Sim = (Sim1, Sim2) such that for
all stateful, interactive, non-uniform polynomial-time adversaries A = (A1,A2) that output
(x,w) ∈ R with |x| = n, we have

Pr(σ ← Setup(n); (x,w)← A1(σ);

π ← Prove(σ, x, w); b← A2(π) : b = 1)

≈ Pr((σ, τ)← Sim1(n); (x,w)← A1(σ);

π ← Sim2(σ, x, τ); b← A2(π) : b = 1)

(where ≈ means that the difference between the two probabilities is negligible as a function of
the security parameter).

We are using the single-theorem variant of the zero-knowledge property for our purposes,
meaning that the CRS is only used to create and verify one ZK proof rather than many. This is
sufficient for Ordinos since the number of NIZKP proofs is limited. This limitation corresponds
to a scenario where the adversary can only submit a restricted number of queries. In this case,
the single-theorem variant of the zero-knowledge property is enough to imply the multi-theorem
variant. To expand the length of σ, which is bounded by the number of NIZKPs, a factor of M
can be used, where M is the bound on the number of NIZKPs.

Proof of Knowledge. We define that a non-interactive proof system (Setup,Prove,Verify)
produces a proof of knowledge if the following condition is satisfied.

There exists a knowledge extractor Extractor = (Extractor1,Extractor2) such that for n =
ηO(1), the following conditions hold true:

• For all non-uniform polynomial-time adversaries A, we have that

213



Pr(σ ← Setup(n); b← A(σ) : b = 1)

≈ Pr((σ, τ)← Extractor1(n); b← A(σ) : b = 1).

• For all non-uniform polynomial-time adversaries A, we have that the probability

Pr((σ, τ)← Extractor1(n); (x, π)← A(σ);

w ← Extractor2(σ, τ, x, π);

b← Verify(σ, x, π) : b = 0 or (x,w) ∈ R)

is overwhelming (as a function of the security parameter).

Note that (computational) knowledge extraction implies the existence of a witness and,
therefore, it implies (computational) adaptive soundness.

A.4.2. (NIZK) Proofs used in Ordinos

Let E = (KeyShareGen,PublicKeyGen, Epk, decshare, dec) be a (threshold) public-key encryption
scheme. Then, the zero-knowledge proofs used in the voting protocol are formally defined as
follows:

• NIZKP πKeyShareGen of knowledge and correctness of the private key share. For a given public
key pki, the statement is:

∃ski ∃r : (pki, ski)← KeyShareGen(r)

• NIZKP πEpk() of knowledge and correctness of plaintext(s). Let Rx be an n-ary relation over
the plaintext space. For (Epk(x1), . . . , Epk(xn), pk), the statement is:

∃(x1, . . . , xn) ∈ Rx ∀i ∃ri : Epk(xi) = Epk(pk, xi; ri).

A.4.3. The Groth16 SNARK

This section briefly presents the Groth16 SNARK proposed in [Gro16]. This SNARK is a
linear interactive proof (see [Gro16]) that is run over bilinear groups (p,G1,G2,GT , e) (see
Appendix A.3).

The relation of the Groth16 SNARK is of the form
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Groth16 SNARK

• Setup(R): (CRS, τ)
1. Pick arbitrary generators G and H for G1 and G2.

2. α, β, γ, δ, x $←− Z∗
p, τ = (α, β, γ, δ).

3.

CRS =
(︄
Gα, Gβ, Hβ, Hγ , Gδ, Hδ, {Gx}n−1

i=0 ,

{︃
G

βui(x)+αvi(x)+wi(x)
γ

}︃l

i=0
,

{︃
G

βui(x)+αvi(x)+wi(x)
δ

}︃m

i=l+1
,

{︃
G

xit(x)
δ

}︃n−2

i=0

)︄

4. output (CRS, τ).
• Prove(R,CRS, a1, . . . , am): π

1. Pick r, s $←− Zp and compute π = (A,B,C), where

A = Gα+
∑︁m

i=0 aiui(x)+rδ, B = Hδ+
∑︁m

i=0 aivi(x)+sδ,

C = G

∑︁m

i=l+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ
+s(α+

∑︁m

i=0 αiui(x))+r(β+
∑︁m

i=0 aivi(x))+rsδ

2. output π.
• Vfy(R,CRS, a1, . . . , al, π): 0/1

1. Parse π = (A,B,C) ∈ G1,G2,G1.
2. Accept the proof if and only if

e(A,B) = e(Gα, Hβ)e(G
∑︁l

i=0 ai(βui(x)+αvi(x)+wi(x))
γ , Hγ)e(C,Hδ)

Figure A.1.: Groth16 SNARK [Gro16].

R = (p,G1,G2,GT , e, l, {ui(X), vi(X), wi(X)}mi=0, t(X)),

with |p| = λ. The relation defines a field Zp and a language of statements (a1, . . . , al) ∈ Zl
p

and witnesses (al+1, . . . , am) ∈ Zm−l
p such that with a0 = 1

m∑︂
i=0

aiui(X) ·
m∑︂

i=0
aivi(X) =

m∑︂
i=0

aiwi(X) + h(X)t(X)

for some degree n− 2 quotient polynomial h(X), where n is the degree of t(X).
The work of [Gro16] presents the standard method to transform a QAP into this relation.
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Groth16 SNARK: Simulator

• Sim(R, τ, a1, . . . , al): π

1. Pick r, s $←− Zp and compute a simulated proof π = (A,B,C) as

A = Gr, B = Hs, C = G
rs−αβ−

∑︁l

i=0 ai(βui(x)+αvi(x)+wi(x))
δ

2. output π.

Figure A.2.: Simulator for the Groth16 SNARK [Gro16].

We present the SNARK in Figure A.1 and the simulator in Figure A.2.

In the following, we prove the correctness of the linear interactive proof of the Groth16 SNARK.
This linear interactive proof differs from the Groth16 SNARK in that it does not use bilinear
groups but is instead restricted to linear provers (see [Gro16] for more details).

Lemma A.1 (Completeness of the Groth16 SNARK). The underlying linear interactive proof
of the Groth16 SNARK presented in Figure A.1 fulfills completeness.

Proof. Let A,B,C as defined in the description of the linear interactive proof:

A = α+
m∑︂

i=0
aiui(x) + rδ

B = β +
m∑︂

i=0
aivi(x) + sδ

C =
∑︁m

i=l+1 ai (βui(x) + αvi(x) + wi(x)) + h(x)t(x)
δ

+As+ rB − rsδ

Then, the following holds.

A ·B = α · β + α
m∑︂

i=0
aivi(x) + αsδ

+ β
m∑︂

i=0
aiui(x) +

m∑︂
i=0

aiui(x) ·
m∑︂

i=0
aivi(x)⏞ ⏟⏟ ⏞

=
∑︁m

i=0 aiwi(x)+h(x)t(x)

+sδ
m∑︂

i=0
aiui(x)

+ rδβ + rδ
m∑︂

i=0
aivi(x) + rsδ2
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We rearrange the terms:

= α · β + α
m∑︂

i=0
aivi(x) + β

m∑︂
i=0

aiui(x) +
m∑︂

i=0
aiwi(x) + h(x)t(x)

+ δ

(︄
s

m∑︂
i=0

aiui(x) + r
m∑︂

i=0
aivi(x) + αs+ rβ + rsδ

)︄

We split the sums:

= α · β + α
l∑︂

i=0
aivi(x) + β

l∑︂
i=0

aiui(x) +
l∑︂

i=0
aiwi(x)

+ α
m∑︂

i=l+1
aivi(x) + β

m∑︂
i=l+1

aiui(x) +
m∑︂

i=l+1
aiwi(x) + h(x)t(x)

+ δ

(︄
s

m∑︂
i=0

aiui(x) + r
m∑︂

i=0
aivi(x) + αs+ rβ + rsδ

)︄

We rewrite the sums and rearrange the terms in the last line:

= α · β +
l∑︂

i=0
ai (αvi(x) + βui(x) + wi(x))

+
m∑︂

i=l+1
ai (αvi(x) + βui(x) + wi(x)) + h(x)t(x)

+ δ

(︄
s ·
(︄

m∑︂
i=0

aiui(x) + α

)︄
+ r ·

(︄
m∑︂

i=0
aivi(x) + β

)︄
+ rsδ

)︄

= α · β +
l∑︂

i=0
ai (αvi(x) + βui(x) + wi(x))

+
m∑︂

i=l+1
ai (αvi(x) + βui(x) + wi(x)) + h(x)t(x)

+ δ

⎛⎜⎜⎜⎜⎝s ·
⎛⎜⎜⎜⎜⎝

m∑︂
i=0

aiui(x) + α+ rδ⏞ ⏟⏟ ⏞
=A

−rδ

⎞⎟⎟⎟⎟⎠+ r ·

⎛⎜⎜⎜⎜⎝
m∑︂

i=0
aivi(x) + β + sδ⏞ ⏟⏟ ⏞

=B

−sδ

⎞⎟⎟⎟⎟⎠+ rsδ

⎞⎟⎟⎟⎟⎠

= α · β +
l∑︂

i=0
ai (αvi(x) + βui(x) + wi(x))

+
m∑︂

i=l+1
ai (αvi(x) + βui(x) + wi(x)) + h(x)t(x)

+ δ (s · (A− rδ) + r · (B − sδ) + rsδ)
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= α · β +
l∑︂

i=0
ai (αvi(x) + βui(x) + wi(x))

+
m∑︂

i=l+1
ai (αvi(x) + βui(x) + wi(x)) + h(x)t(x)

+ δ (sA− srδ + rB − rsδ + rsδ)

= α · β +
∑︁l

i=0 ai (αvi(x) + βui(x) + wi(x))
γ

· γ

+ δ

⎛⎜⎜⎝
∑︁m

i=l+1 ai (αvi(x) + βui(x) + wi(x)) + h(x)t(x)
δ

+ sA+ rB + rsδ⏞ ⏟⏟ ⏞
=C

⎞⎟⎟⎠

= α · β +
∑︁l

i=0 ai (αvi(x) + βui(x) + wi(x))
γ

· γ + δ · C
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B. Security Proofs of Kryvos

In this section, we prove the security of Kryvos. In Appendix B.1 we prove verifiability, and in
Appendix B.2 tally-hiding of Kryvos.

B.1. Verifiability Proof of Kryvos

In this section, we prove Theorem 5.1 (Verifiability of Kryvos) from Section 5.3.2. The judging
procedure of Kryvos is straightforward and works as follows. The judge reads all data from
the bulletin board BB and accepts the run if and only if all NIZKPs on BB are valid (and
only eligible voters voted, at most once): the voters’ NIZKPs πCi to prove well-formedness of
ballots, the trustees’ NIZKP πf res to prove the correctness of the final result, and (if any) the
trustees’ NIZKP πdec to prove that a voters’ ciphertext does not decrypt to a valid opening of
her commitments.

Recall that, at a high level, we need to prove the following property. If the final result elecres
does not equal f res(H⃗ + D⃗), where H⃗ consists of all honest voters’ choices and D⃗ consists of at
most one (valid) choice per dishonest voter, then the judge J rejects the result.

Essentially, Theorem 5.1 follows from the NIZKPs employed in Kryvos (see Section 5.3.5 for
the precise definition of the respective relations).

In what follows, we denote the set of indices of honest voters by Ih and the set of indices by
dishonest voters by Id. Let (bi)i∈Ivalid be the set of ballots that have not been discarded prior to
the homomorphic aggregation at the end of the voting phase.

The first lemma states that honest ballots cannot be discarded prior to the homomorphic
aggregation and that, at most, one ballot per dishonest voter exists in the remaining (non-
discarded) ballots.

Lemma B.1. Let Ivalid be defined as above. Then, we have that Ih ⊆ Ivalid and Id ⊇ (Ivalid \ Ih)
holds (with overwhelming probability in the security parameter η).

Proof. Observe that i ∈ Ivalid holds for a given ballot bi if and only if the test executed by the
bulletin board BB for incoming ballots (specified at the end of the voting phase, see Section 5.3.1)
was successful and no trustee Tk published a valid NIZKP proving that ei

k decrypts to an invalid
opening.

Now, to see that Ih ⊆ Ivalid holds, observe that the voter’s program defined in Section 5.3.1,
which each honest voter runs, ensures that the relation of well-formedness RC is satisfied.
Therefore, each honest voter’s proof πCi is valid. Furthermore, due to the IND-CCA2-security
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of the PKE encryption scheme (and because the number of voters is polynomially bounded),
the probability that an honest voter creates a partially identical ballot to a different voter’s is
negligible (in the security parameter). This ensures that each honest voter’s ballot bi is appended
by the bulletin board (with assumption (V2) in Section 5.3.2 we assume that BB is honest)
to the list of ballots b⃗. Since the NIZKP of correct decryption πdec is sound and the (honest)
voter’s program guarantees that each ciphertext ei

k encrypts a correct opening for the respective
commitments, a (possibly dishonest) trustee Tk is not able to create a valid NIZKP for claiming
that an honest voter’s ciphertext ei

k decrypts to an invalid opening. Hence, Ih ⊆ Ivalid follows
(with overwhelming probability).

The fact that Id ⊇ (Ivalid \ Ih) holds follows from the checks (precisely, the eligibility and
re-voting check) executed by the bulletin board BB before it adds a ballot to b⃗.

The following Lemma states that all ballots not discarded prior to the homomorphic aggregation
are well-formed (i.e., contain a valid choice from C) and contain commitments with sufficiently
small randomness.

Lemma B.2. Let Ivalid be defined as above. Then (with overwhelming probability in the se-
curity parameter η), for all i ∈ Ivalid, there exists (ri,l

k )k∈{1,...,ntrustees},l∈{1,...,ntuples} and mi =
(ti,j)j∈{1,...,ncomponents} ∈ C such that for all j ∈ {1, . . . , ncomponents}, there exists (ti,jk )k∈{1,...,ntrustees}

such that

1. ∀j ∈ {1, . . . , ncomponents} : ∑︁ntrustees
k=1 ti,jk mod q = ti,j, and

2. ∀k ∈ {1, . . . , ntrustees} ∀l ∈ {1, . . . , ntuples} : ci,l
k = com((ccomponent

(l−1)·N,i,k, . . . , c
component
l·N,i,k ), ri,l

k ).

Proof. Recall that the bulletin board (which we assume to be honest) verifies whether each
incoming ballot bi contains valid NIZKP πCi , and rejects bi if this is not the case. Therefore, if
i ∈ Ivalid for a given bi, it follows that bi contains valid ZKP πCi . Hence, fact (1) and (2) follow
from the computational soundness of πCi .

The following Lemma states that the homomorphically aggregated commitments correctly
open to the total numbers of votes per choice, as determined by Ivalid.

Lemma B.3. Let Ivalid be defined as above. Let (ci,l
k )i∈Ivalid,k∈{1,...,ntrustees},l∈{1,...,ntuples} be the input

commitments to the tallying phase. Then (with overwhelming probability in the security parameter
η), for all l ∈ {1, . . . , ntuples}, there exists (ti,lk )i∈Ivalid,j∈{1,...,ntrustees} and ragg,l such that

cagg,l = com(
ntrustees∑︂

k=1

∑︂
i∈Ivalid

ti,lk , r
agg,l).

Proof. This fact follows from Lemma B.2 and the homomorphic property of the commitment
scheme.
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Since the trustees’ SNARK πf res (correct result) is computationally sound, we can conclude
from Lemma B.3 that if the final result does not equal f res ◦ fagg((cchoice

i )i∈Ivalid), then the
judge J rejects the result (with overwhelming probability). Hence, Theorem 5.1 follows from
Lemma B.1.

B.2. Tally-Hiding Proof of Kryvos

In this section, we prove Theorem 5.4, which establishes the public and internal privacy levels
of Kryvos. We can express these levels using the privacy level of the voting protocol with ideal
privacy (see Figure 3.1).

Overview

Recall that, in order to prove the theorem for the protocol Kryvos with nvoters voters, ntrustees

trustees, voting method (C, f res), voting distribution µ, and voter under observation vobs, we
have to show the following two conditions:

• Internal privacy: For all cchoice
0 , cchoice

1 ∈ C, for all programs p∗ of the remaining parties such
that at least nhonest

voters voters and at least one trustee are honest in p∗ (excluding the voter
under observation vobs), we have that⃓⃓⃓

Pr[(pvobs(cchoice
0 )∥p∗) ↦→ 1]− Pr[(pvobs(cchoice

1 )∥p∗) ↦→ 1]
⃓⃓⃓

is δideal
nvoters,nhonest

voters ,µ
(C, fAggTally)-bounded as a function of the security parameter η, where fAggTally

is the function that returns the aggregated tally (see Section 2.7).

• Public privacy: For all cchoice
0 , cchoice

1 ∈ C, for all programs p∗ of the remaining parties such
that at least nhonest

voters voters and all trustees are honest in p∗ (excluding the voter under
observation vobs), we have that⃓⃓⃓

Pr[(pvobs(cchoice
0 )∥p∗) ↦→ 1]− Pr[(pvobs(cchoice

1 )∥p∗) ↦→ 1]
⃓⃓⃓

is δideal
nvoters,nhonest

voters ,µ
(C, f res)-bounded as a function of the security parameter η, where f res is the

actual (tally-hiding) result function.

We can split the composition p∗ into its honest and its (potentially) dishonest parts. Let HV
be the set of all honest voters (without the voter under observation) and pHV be the composition
of their honest programs. Recall that the judge J, the scheduler S, the bulletin board BB, and
at least one (in case of internal privacy) out of or all (in case of public privacy) ntrustees trustees
are honest (w.l.o.g., we assume that the first trustee T1 is honest in both cases). Therefore, we
denote the honest part for the internal privacy result by
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Phonest = pJ∥pBB∥pS∥pT1∥pHV,

and for the public privacy result by

Phonest = pJ∥pBB∥pS∥pT1∥ . . . ∥pTntrustees∥pHV.

By Phonest(cchoice
⋆ ), we will denote the composition of all honest programs, including the

program of the voter under observation vobs, i.e., Phonest(cchoice
⋆ ) = Phonest∥pvobs(cchoice

⋆ ). All
remaining parties are subsumed by the adversarial process PA. This means that we can write
pvobs(cchoice

⋆ )∥p∗ as Phonest(cchoice
⋆ )∥PA.

To prove the result, we use two sequences of games (one for internal and one for external
privacy). We fix cchoice

⋆ ∈ C and start with Game 0, the process Phonest(cchoice
⋆ )∥pA. Step by step,

we transform Game 0 into Game x which is the composition Px
honest(cchoice

⋆ )∥pA for some process
Px

honest(cchoice
⋆ ) and the same adversarial process pA. Game x will be proven indistinguishable

from Game 0 from the adversary’s point of view, which means that⃓⃓⃓
Pr[(P0

honest(cchoice
⋆ )∥pA) ↦→ 1]− Pr[(Px

honest(cchoice
⋆ )∥pA) ↦→ 1]

⃓⃓⃓
is negligible for a fixed cchoice

⋆ ∈ C (as a function of the security parameter).
Furthermore, it will be straightforward to show that in Game x for arbitrary cchoice

0 , cchoice
1 ∈ C,

the distance ⃓⃓⃓
Pr[(Px

honest(cchoice
0 )∥pA) ↦→ 1]− Pr[(Px

honest(cchoice
1 )∥pA) ↦→ 1]

⃓⃓⃓
is bounded by δideal

nvoters,nhonest
voters ,µ

(C, fAggTally) (internal privacy) or δideal
nvoters,nhonest

voters ,µ
(C, f res) (public pri-

vacy). The reason is that Px
honest(cchoice

0 ) and Px
honest(cchoice

1 ) use the ideal voting protocol for
voting method (C, fAggTally) (internal privacy) or (C, f res), with nhonest

voters honest voters. Using the
triangle inequality, we can therefore deduce that⃓⃓⃓

Pr[(Phonest(cchoice
0 )∥pA) ↦→ 1]− Pr[(Phonest(cchoice

1 )∥pA) ↦→ 1]
⃓⃓⃓

is bounded by δideal
nvoters,nhonest

voters ,µ
(C, fAggTally) (internal privacy) or δideal

nvoters,nhonest
voters ,µ

(C, f res) (public privacy)
for all cchoice

0 , cchoice
1 ∈ C (as a function of the security parameter η).

Notation

We write P1
honest(cchoice

⋆ ) for Phonest(cchoice
⋆ ) and consider P1

honest(cchoice
⋆ ) as one atomic process

(one program) and not as a composition of processes. We do so is w.l.o.g. since a single
program can simulate every (sub-)process. Now, the original Kryvos program is the process
P1

honest(cchoice
⋆ )∥pA. For both sequences of games below, we describe how to modify the previous

protocol so that any (probabilistic polynomial time) adversary can not distinguish which of these
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two protocols he interacts with. For each Game j), we denote the respective honest part of the
protocol by Pj

honest(cchoice
⋆ ). Let Ih be the set of honest voter indices (excluding the voter under

observation).

B.2.1. Internal Privacy

We use a sequence of games to prove Theorem 5.3, i.e., that the internal privacy level of Kryvos
is δideal

nvoters,nhonest
voters ,µ

(C, fAggTally) under the assumptions (P1) and (P2) (see Section 5.3.2) and that at
least one trustee is honest (w.l.o.g., we assume that T1 is honest). The proof aims to employ
the ideal voting functionality to compute the honest voters’ aggregated choice. We exploit
the zero-knowledge property of the ZKPs, the semantic security of the PKE scheme, and the
hidingness of the commitment to simulate the honest participants in such a way that the honest
participants (in particular the voters) no longer create (and know) the individual honest votes.
Instead, the honest participants only use the (aggregated) honest result from the ideal voting
functionality. Therefore, even if the adversary can control all honest participants, he only gets
to know the aggregated output from the ideal voting functionality. At the same time, we show
that all modifications are indistinguishable from the adversary’s perspective. This proves that
the internal privacy level of Kryvos is negligibly close to the one of the ideal voting functionality,
which is δideal

nvoters,nhonest
voters ,µ

(C, fAggTally). More precisely, our proof works as follows:

Game 0 P0
honest(cchoice

⋆ ) is the original Kryvos protocol.
Game 1 In P1

honest(cchoice
⋆ ), we modify the specification of the (honest) trustee T1 as follows. If

the ciphertext ei
1 of an arbitrary honest voter vi decrypts to an invalid opening, then T1 aborts.

The T1 specification does not change apart from this modification. Due to the correctness of
the public-key encryption scheme E , Game 0 and Game 1 are perfectly indistinguishable from
the adversary’s perspective.

Game 2 In P2
honest(cchoice

⋆ ), we modify the specification of all honest voters vi (i ∈ Ih) and the
voter under observation vobs as follows. Each vi (i ∈ Ih) and vobs encrypt (the dummy message)
0ϑ under the honest trustee’s, i.e., T1’s, public key pk1; precisely: ei

1 ← Epk(pk1, 0ϑ) (where ϑ
is the fixed plaintext size). Apart from this modification, the specification of vi (i ∈ Ih) and
vobs does not change. Furthermore, we modify the specification of the honest trustee T1 as
follows. Instead of decrypting the honest voters’ ciphertexts ei

1 (which now encrypt useless
dummy messages), the honest trustee T1 receives the honest voters’ opening values from the
honest voters internally (inside of the simulator which subsumes all honest parties). Due to
the IND-CCA2-security of the public-key encryption scheme E and the removal of ciphertext
duplicates, Game 1 and Game 2 are computationally indistinguishable from the adversary’s
perspective.

Game 3 In P3
honest(cchoice

⋆ ), we modify the specification of the (honest) voting authority Auth
as follows. Recall that the voting authority runs the setup algorithm Setup of the SNARK
πCi , which is used to prove ballot validity of the voters’ commitments to obtain a pair of
common reference string/trapdoor (CRSC, τC). Now, instead of keeping the trapdoor secret,
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the authority internally (inside of the simulator) forwards the trapdoor τC to the voter
under observation vobs and all honest voters vi (i ∈ Ih). Game 2 and Game 3 are perfectly
indistinguishable from the adversary’s perspective.

Game 4 In P4
honest(cchoice

⋆ ), we modify the specification of all honest voters vi (i ∈ Ih) and the
voter under observation vobs as follows. Instead of using the common reference string CRSC to
run the prover algorithm Prove(RC,CRSC, x, w), the honest voters vi (i ∈ Ih) and the voter
under observation vobs use the trapdoor τC (received by Auth in the previous game) to run
the simulator algorithm Sim(RC, τC, x) of the SNARK πCi , where (x,w) denotes the respective
voter’s pair of public input and witness. Apart from these modifications, the specification of
vi (i ∈ Ih) and vobs does not change. Game 3 and Game 4 are perfectly indistinguishable from
the adversary’s perspective due to the perfect zero-knowledge property of the SNARK πCi .

Game 5 In P5
honest(cchoice

⋆ ), we modify the specification of the honest trustee T1 as follows. The
trustee T1 simulates the NIZKP of correct decryption πdec (if any). Due to the perfect zero-
knowledge property of the NIZKP πdec, Game 4 and Game 5 are perfectly indistinguishable.

Game 6 In P6
honest(cchoice

⋆ ), we modify the specification of all honest voters vi (i ∈ Ih) and the
voter under observation vobs as follows. The voter under observation vobs computes cchoice

i
µ←− C

for all honest voters i ∈ Ih, sets cchoice
agg,honest ←

∑︁
i∈Ih

cchoice
i , and runs the voting algorithm

with “choice” cchoice
agg ← cchoice

agg,honest + cchoice
vobs instead of the voter’s choice cchoice

vobs . This means that
the “choice” contained in vobs’s ballot is an aggregation of all honest voters’ choices plus the
one of the voter under observation. At the same time, all honest voters vi (i ∈ Ih) run the
voting algorithm with dummy “choice” 0. Recall that all voters’ choices are homomorphically
aggregated in the tallying phase. Therefore, it is inconsequential how the honest voters’
aggregated choice is split among the homomorphic commitments. Because the commitment
scheme is unconditionally hiding, ciphertext duplicates are removed, and full-threshold secret
sharing is employed, Game 5 and Game 6 are computationally indistinguishable from the
adversary’s perspective.

Game 7 In P7
honest(cchoice

⋆ ), we modify the specification of the voter under observation vobs as
follows. The voter under observation vobs invokes the ideal voting functionality Ivoting (see
Figure 3.1) to obtain elecres← Ivoting(C, fAggTally, nvoters + 1, nhonest

voters + 1, µ′), where the voting
distribution µ′ always returns cchoice

vobs for the first (honest) voter and equals µ for the remaining
nhonest

voters (honest) voters. Because the ideal voting functionality creates elecres like vobs did in
the previous step, Game 6 and Game 7 are perfectly indistinguishable from the adversary’s
perspective.

In Game 7, we have that for arbitrary cchoice
0 , cchoice

1 ∈ C, the distance⃓⃓⃓
Pr[(P7

honest(cchoice
0 )∥pA) ↦→ 1]− Pr[(P7

honest(cchoice
1 )∥pA) ↦→ 1]

⃓⃓⃓
is bounded by δideal

nvoters,nhonest
voters ,µ

(C, fAggTally). Since we have proved above that Game 1 (the original
Kryvos protocol) and Game 7 are computationally indistinguishable (under the assumptions
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made, in particular, that T1 is honest), we can conclude that⃓⃓⃓
Pr[(Phonest(cchoice

0 )∥pA) ↦→ 1]− Pr[(Phonest(cchoice
1 )∥pA) ↦→ 1]

⃓⃓⃓
is bounded by δideal

nvoters,nhonest
voters ,µ

(C, fAggTally) for all cchoice
0 , cchoice

1 ∈ C (as a function of the security
parameter η).

B.2.2. Public Privacy

We have developed a sequence of games to prove that the external privacy level of Kryvos is
δideal

nvoters,nhonest
voters ,µ

(C, f res). We do so under the assumptions (P1) and (P2) explained in detail in
Section 5.3.2. We assume that all trustees are honest, and we assume the existence of a single
T∆ who is honest. We aim to use the ideal voting functionality to compute the (tally-hiding)
result function f res based on the dishonest voters’ choices.

To achieve this, we exploit the zero-knowledge property of the ZKPs, the semantic security of
the PKE scheme, and the hidingness of the commitment. We simulate the honest participants
in a way that they no longer create or know the individual honest votes. Instead, they only
use the tally-hiding result obtained from the ideal voting functionality. This ensures that even
if the adversary can control all honest participants, they only get to know the tally-hiding
output from the ideal voting functionality. At the same time, we show that all modifications are
indistinguishable from the adversary’s perspective.

Our sequence of games works as follows:

Game 0 P0
honest(cchoice

⋆ ) is the original Kryvos protocol.
Game 1 In P1

honest(cchoice
⋆ ), we modify the specification of the (honest) trustee T∆ as follows. If

the ciphertext ei
1 of an arbitrary honest voter vi decrypts to an invalid opening, then T∆ aborts.

Apart from this modification, the specification of T∆ does not change. Due to the correctness
of the public-key encryption scheme E , Game 0 and Game 1 are perfectly indistinguishable
from the adversary’s perspective.

Game 2 In P2
honest(cchoice

⋆ ), we modify the specification of all honest voters vi (i ∈ Ih) and
the voter under observation vobs as follows. Each vi (i ∈ Ih) and vobs encrypt (the dummy
message) 0ϑ under the trustee’s public key pk1; precisely: ei

1 ← Epk(pk, 0ϑ) (where ϑ is the
fixed plaintext size). Apart from this modification, the specification of vi (i ∈ Ih) and vobs does
not change. Furthermore, we modify the specification of the trustee T∆ as follows. Instead of
decrypting the honest voters’ ciphertexts ei

1 (which now encrypt useless dummy messages),
the trustee T∆ receives the honest voters’ opening values from the honest voters internally
(inside of the simulator which subsumes all honest parties). Due to the IND-CCA2-security of
the public-key encryption scheme E and the removal of ciphertext duplicates, Game 1 and
Game 2 are computationally indistinguishable from the adversary’s perspective.
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Game 3 In P3
honest(cchoice

⋆ ), we modify the specification of the honest trustee T∆ as follows. The
trustee T∆ simulates the NIZKP of correct decryption πdec (if any). Due to the perfect zero-
knowledge property of the NIZKP πdec, Game 2 and Game 3 are perfectly indistinguishable.

Game 4 In P4
honest(cchoice

⋆ ), we modify the specification of the voting authority Auth. The voting
authority runs the setup algorithm Setup of the SNARK πf res to prove the correctness of the
final result and obtain a pair of common reference string/trapdoor (CRSf res , τf res). Previously,
the trapdoor τ res

f was kept secret. However, the authority internally forwards the trapdoor τ res
f

to the trustee T∆ inside the simulator. This change does not affect the adversary’s perspective,
as Game 3 and Game 4 remain perfectly indistinguishable.

Game 5 In P5
honest(cchoice

⋆ ), we modify the specification of the trustee T∆ as follows. Instead of us-
ing the common reference string CRSf res to run the prover algorithm Prove(Rf res ,CRSf res , x, w),
the trustee uses the trapdoor τ res

f (received by Auth in the previous game) to run the simulator
algorithms Sim(Rf res , τf res , x), where (x,w) denotes the trustee’s pair of public input and
witness. Apart from these modifications, the specification of T∆ does not change. Game 4 and
Game 5 are perfectly indistinguishable from the adversary’s perspective due to the perfect
zero-knowledge property of the SNARK πf res .

Game 6 In P6
honest(cchoice

⋆ ), we modify the specification of the (honest) voting authority Auth
as follows. Recall that the voting authority runs the setup algorithm Setup of the SNARK
πCi , which is used to prove ballot validity of the voters’ commitments to obtain a pair of
common reference string/trapdoor (CRSC, τC). Now, instead of keeping the trapdoor secret,
the authority internally (inside of the simulator) forwards the trapdoor τC to the voter
under observation vobs and all honest voters vi (i ∈ Ih). Game 5 and Game 6 are perfectly
indistinguishable from the adversary’s perspective.

Game 7 In P7
honest(cchoice

⋆ ), we modify the specification of all honest voters vi (i ∈ Ih) and the
voter under observation vobs as follows. Instead of using the common reference string CRSC to
run the prover algorithm Prove(RC,CRSC, x, w), the honest voters vi (i ∈ Ih) and the voter
under observation vobs use the trapdoor τC (received by Auth in the previous game) to run
the simulator algorithm Sim(RC, τC, x) of the SNARKπCi , where (x,w) denotes the respective
voter’s pair of public input and witness. Apart from these modifications, the specification of
vi (i ∈ Ih) and vobs does not change. Game 6 and Game 7 are perfectly indistinguishable from
the adversary’s perspective due to the perfect zero-knowledge property of the SNARK πCi .

Game 8 In P8
honest(cchoice

⋆ ), we modify the specification of the honest trustee T∆ as follows.
The trustee T∆ sets cchoice

agg,dishonest to be the (aggregated) dishonest choices (observe that T∆

can decrypt/open all dishonest voters’ valid choices). For all i ∈ Ih, the trustee computes
cchoice

agg (i) µ←− C. Then, T∆ sets cchoice
agg,honest ←

∑︁
i∈Ih

cchoice
agg (i) and cchoice

agg ← cchoice
agg,honest + cchoice

vobs ,
and returns the final result elecres ← f res(cchoice

agg ∪ cchoice
agg,dishonest). Because the commitment

scheme is unconditionally hiding, Game 7 and Game 8 are perfectly indistinguishable from
the adversary’s perspective.
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Game 9 In P9
honest(cchoice

⋆ ), we modify the specification of all honest voters vi (i ∈ Ih) and the
voter under observation vobs as follows. All honest voters vi (i ∈ Ih) and the voter under
observation vobs run the voting algorithm with dummy “choice” 0. Because the commitment
scheme is unconditionally hiding, Game 8 and Game 9 are perfectly indistinguishable from
the adversary’s perspective.

Game 10 In P1
honest0(cchoice

⋆ ), we modify the specification of the trustee T∆ as follows. Trustee
T∆ invokes the ideal voting functionality Ivoting to obtain elecres ← Ivoting(C, f res, nvoters +
1, nhonest

voters + 1, µ′), where the voting distribution µ′ always returns cchoice
vobs for the first (honest)

voter and equals µ for the remaining nhonest
voters (honest) voters, and where the dishonest choices

are extracted from cchoice
agg,dishonest. Because the ideal voting functionality creates elecres like

T∆ did in the previous step, Game 9 and Game 10 are perfectly indistinguishable from the
adversary’s perspective.

In Game 10, we have that for arbitrary cchoice
0 , cchoice

1 ∈ C, the distance⃓⃓⃓
Pr[(P10

honest(cchoice
0 )∥pA) ↦→ 1]− Pr[(P10

honest(cchoice
1 )∥pA) ↦→ 1]

⃓⃓⃓
is bounded by δideal

(nvoters,nhonest
voters ,µ)(C, f

res). Since we have proved above that Game 1 (the original
Kryvos protocol) and Game 10 are indistinguishable (under the assumptions made, in particular,
that all trustees are honest), we can conclude that⃓⃓⃓

Pr[(Phonest(cchoice
0 )∥pA) ↦→ 1]− Pr[(Phonest(cchoice

1 )∥pA) ↦→ 1]
⃓⃓⃓

is information-theoretically bounded by δideal
nvoters,nhonest

voters ,µ
(C, f res) for all cchoice

0 , cchoice
1 ∈ C.
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List of Publications
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Tally-Hiding Verifiable E-Voting for Real-World Elections with Seat-Allocations. In European
Symposium on Research in Computer Security (ESORICS) 2023.

– Julian Liedtke, Jan Adomat, Alexander Aßenmacher, Patrick Baisch, Linus Fischer, Jonas
Geiselhart, Alex Heller, Julian Kieslinger, Mike Lauer, Paul Mayer, Xuan Viet Pham, André
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