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Abstract

While extensive research has been dedicated to gaze estimation, featuring numerous
methods and datasets, eye contact detection, despite receiving comparatively less atten-
tion and marked by a scarcity of datasets, still holds significant practical applications.
For instance, in remote learning scenarios, eye contact detection can be employed to
ascertain whether students are focusing their attention on the screen. This technology
can be instrumental in enhancing virtual engagement and educational efficacy. Moreover,
the challenge in generalizing between the datasets of gaze estimation and eye contact
detection, mainly due to their differing labeling approaches, poses a significant challenge.
These challenges, particularly the scarcity of dedicated datasets and the difficulty in
direct application of gaze estimation methods to eye contact detection, necessitate a
novel approach.

In response to these issues, this thesis introduces a novel approach to model construction
for eye contact detection, employing an unsupervised contrastive learning method. This
method was chosen for its ability to utilize large amounts of unlabeled data from gaze
estimation datasets, particularly advantageous given the scarcity of dedicated eye contact
detection datasets. In our study, we employed the SimCLR contrastive learning model,
optimized specifically for eye contact detection. This optimization led to a significant
improvement in the Matthews Correlation Coefficient (MCC) for eye contact detection,
elevating it from 0.46, as achieved by Zhang et al.’s method, to 0.63 with our approach.
Notably, our method achieves this enhanced performance without the need for datasets
manually labeled with gaze direction or eye contact labels. This marks the pioneering
application of contrastive learning to the task of eye contact detection, showcasing its
efficacy in improving key performance metrics.

Additionally, in the fine-tuning process of our contrastive learning model, while there
was still a requirement for a small dataset labeled with eye contact detection, we sought
to completely eliminate the dependency on manually annotated eye contact labels. To
achieve this, we utilized state-of-the-art gaze estimation models, not as the primary
method, but as an auxiliary tool to automatically generate pseudo-labels for eye contact
detection. This strategy effectively leverages the outputs of the gaze estimation models
to produce reliable pseudo-labels, allowing our eye contact detection model to operate
independently of manual labeling.

3



Kurzfassung

Während der Blickschätzung, die zahlreiche Methoden und Datensätze umfasst, um-
fangreiche Forschung gewidmet wurde, erhält die Erkennung von Augenkontakt ver-
gleichsweise weniger Aufmerksamkeit und leidet unter einem Mangel an spezifischen
Datensätzen. Trotzdem hat sie bedeutende praktische Anwendungen. Zum Beispiel
kann in Fernlernsituationen die Erkennung von Augenkontakt eingesetzt werden, um zu
überprüfen, ob Schüler sich auf den Bildschirm konzentrieren. Diese Technologie kann
entscheidend sein, um virtuelles Engagement und Bildungseffektivität zu verbessern.
Darüber hinaus stellt die Herausforderung, zwischen den Datensätzen der Blickschätzung
und Augenkontakterkennung zu verallgemeinern, ein bedeutendes Problem dar, vor
allem wegen ihrer unterschiedlichen Kennzeichnungsmethoden.

Als Reaktion auf diese Probleme führt diese Arbeit einen neuen Ansatz für die Mod-
ellerstellung zur Erkennung von Augenkontakt ein, indem sie eine unüberwachte kon-
trastive Lernmethode verwendet. Diese Methode wurde wegen ihrer Fähigkeit aus-
gewählt, große Mengen an unbeschrifteten Daten aus Datensätzen zur Blickschätzung
zu nutzen, was besonders vorteilhaft ist, angesichts des Mangels an speziellen Daten-
sätzen zur Erkennung von Augenkontakt. In unserer Studie verwendeten wir das SimCLR
kontrastive Lernmodell, das speziell für die Erkennung von Augenkontakt optimiert
wurde. Diese Optimierung führte zu einer deutlichen Verbesserung des Matthews-
Korrelationskoeffizienten (MCC) für die Erkennung von Augenkontakt.

Im Rahmen des Feinabstimmungsprozesses unseres kontrastiven Lernmodells bestand
zwar weiterhin die Anforderung an einen kleinen, mit Augenkontakt-Erkennungslabels
versehenen Datensatz, doch zielten wir darauf ab, die Abhängigkeit von manuell an-
notierten Augenkontakt-Labels vollständig zu eliminieren. Dazu nutzten wir hochmod-
erne Modelle zur Blickschätzung, nicht als primäre Methode, sondern als Hilfsmittel
zur automatischen Generierung von Pseudo-Labels für die Augenkontakterkennung.
Diese Strategie nutzt effektiv die Ausgaben der Blickschätzungsmodelle, um zuverlässige
Pseudo-Labels zu erzeugen, was es unserem Augenkontakterkennungsmodell ermöglicht,
unabhängig von manueller Kennzeichnung zu operieren.
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1 Introduction

Mobile devices, such as smartphones, have become ubiquitous in daily life, yet users
often exhibit scattered attention. Understanding the distribution of a user’s attention
is crucial for designing effective human-computer interaction interfaces capable of
managing limited attention spans. To quantify a user’s visual attention on a mobile
device, a straightforward method involves detecting whether the user is looking at
it[ZSB17]. This method, referred to as ’eye contact detection’, follows the terminology
established by Zhang et al., where it specifically relates to maintaining eye contact with a
target, such as a mobile phone in this study. More extensive research has been conducted
on gaze estimation compared to that on eye contact detection.

With the advancements in deep learning, estimating a user’s gaze direction using a
mobile device’s camera has become increasingly feasible, eliminating the need for
specialized eye-tracking equipment. The field of gaze estimation has seen a proliferation
of research and the development of various appearance-based methods. These methods
are capable of determining the 3D gaze direction by analyzing the overall appearance of
the user’s face and head pose, typically through a regression task that predicts continuous
eye gaze directions.

In contrast, eye contact detection, primarily a binary classification task, aims to ascertain
whether the user is looking at their device. While closely related to gaze estimation,
the methods and research for eye contact detection are considerably less developed.
The direct application of gaze estimation techniques for eye contact detection often
leads to significant inaccuracies, as gaze estimation alone may not accurately predict
gaze location or infer eye contact [ZSB17]. This disparity suggests the opportunity to
leverage existing gaze estimation methods and datasets for the development of more
effective models for eye contact detection.

The collection of datasets for eye contact detection and gaze estimation poses significant
challenges, primarily due to the reliance on eye trackers which are often confined to
lab settings and not widely accessible. Hence, an approach like contrastive learning,
which can learn effectively from unlabeled data, becomes crucial. In light of this, we
utilize contrastive learning frameworks to construct models specifically for eye contact
detection tasks in this paper. Due to the absence of a dedicated dataset and annotations
for this task, we leverage datasets from gaze estimation. Ignoring annotations for
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1 Introduction

3D gaze direction, we introduce an unsupervised training approach using contrastive
learning. Following this, fine-tuning for the downstream model is carried out using
a small dataset and eye contact labels. This marks the first application of contrastive
learning in the context of eye contact detection task.

Contrastive learning, known for its efficacy in extracting meaningful and discriminative
representations, plays a pivotal role in both gaze estimation and eye contact detection
tasks. By explicitly comparing similar and dissimilar instances during the learning
process, this approach enables models to capture underlying patterns, enhancing their
ability to generalize and perform effectively across diverse tasks and datasets. In this
paper, we primarily focus on applying the principles of contrastive learning to the task
of eye contact detection. Our approach not only reduces the dependency on labeled
datasets but also significantly enhances the performance of the eye contact detection
models.

Building on previous research that optimized contrastive learning for gaze estimation
tasks, we explored its applicability and effectiveness for eye contact detection. We
found that many optimization techniques for contrastive learning in gaze estimation also
proved effective for eye contact detection. This is primarily because these contrastive
learning methods can extract features with strong generalizability, suitable for both gaze
estimation and eye contact detection tasks, a feat that is challenging to achieve with
supervised learning methods. Consequently, our research contributes to the advancement
of models in eye contact detection by leveraging the robust feature extraction capabilities
of contrastive learning.

Outline

The work is structured as follows.

Chapter 2 – Background: This chapter introduces the concepts relevant to this re-
search. These concepts include neural networks, convolutional operations, support
vector machine, multi-layer perception, resnet, contrastive learning.

Chapter 3 – Related Work: This chapter introduces the related Literature on Gaze
Estimation and Contrastive Learning

Chapter 4 – Appearance-based Gaze Estimation: This chapter delineates the training
pipeline, commencing with the dataset selection. We first address the pivotal phase
of data preprocessing. Prior to applying contrastive learning for the downstream
task of gaze estimation, we also establish a baseline by training a supervised
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gaze estimation model. Subsequently, we examine the integration of contrastive
learning within the gaze estimation framework.

Chapter 5 – Eye contact detection: In this chapter, we explore the application of con-
trastive learning in the context of the downstream task of eye contact detection.To
fine-tune the downstream model we not only used the ground truth of eye contact
as a label, but also used gaze estimation to generate pseudo-labels

Chapter 6 – Discussion: In this chapter, we will discuss the results in chapters 4, 5,
and 6. we aim to draw comprehensive insights and implications that contribute to
the broader narrative of our study.

Chapter 7 – Conclusion
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2 Background

This section provides an overview of the fundamental concepts and technologies that
form the foundation of our research. We begin by discussing Artificial Neural Networks
(ANN), which are the building blocks of modern deep learning and play a crucial role in
various computational tasks. We then delve into Convolutional Neural Networks (CNNs),
a specialized kind of ANN that has revolutionized the field of computer vision. A specific
focus is given to ResNet, a CNN architecture known for its deep layers and efficiency in
handling complex image recognition tasks.

Following this, we explore the concept of Contrastive Learning, a powerful technique
in unsupervised machine learning. Contrastive Learning has gained prominence for its
ability to learn useful representations by contrasting positive and negative examples, and
it has become a crucial component in the development of robust and efficient models for
tasks like gaze estimation and eye contact detection. In this section, we aim to shed light
on how these technologies converge to create advanced models in the field of computer
vision, particularly focusing on their application and significance in our research.

2.1 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs)[LBH15], inspired by the neural structure of the human
brain, replicate the function of biological neurons through a layered network of nodes.
This network, illustrated in Figure 2.1, consists of an input layer, several hidden layers,
and an output layer. The essence of an ANN is to learn the mathematical relationship
between input and output, formally expressed as y = f(x), where x represents the input
and y the output.

In the training phase, ANNs are exposed to datasets comprising inputs and their corre-
sponding expected outputs. Depending on the output type, the network either performs
classification for discrete outcomes or regression for continuous ones. For instance, an
ANN might classify a tree species from an image of a forest or predict a plant’s height
from its image.

15



2 Background

Figure 2.1: Artificial Neural Network

The training involves two primary steps. Initially, the network processes the input to
produce a predicted output, which is compared against the expected output to calculate
an error. This error serves as a feedback mechanism for learning.

Subsequently, in the backpropagation step, the error’s gradient is utilized to adjust the
network’s internal parameters. This refinement enhances the accuracy of the input rep-
resentation and improves the network’s predictive capability. This iterative optimization
process progressively improves the network’s predictive accuracy.

ANNs offer several advantages over traditional machine learning methods. They au-
tonomously extract relevant features from data, particularly useful for high-dimensional
data analysis. They enable direct learning from raw inputs to outputs, eliminating
the need for manual feature engineering or extensive domain knowledge. Moreover,
ANNs can model complex non-linear data relationships, providing greater flexibility than
conventional linear models.

2.1.1 Dense Layers

Dense layers, also referred to as fully connected layers, are integral components in neural
networks. Picture each neuron in these layers as a basic processing unit. Every neuron
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2.1 Artificial Neural Networks (ANN)

Figure 2.2: Fully Connected layer

connects to all the neurons in the layer before it. It takes incoming signals, multiplies
them with specific values called weights, and then sums them up. This sum undergoes a
transformation by an activation function, which determines what information should be
passed forward. This mechanism enables the dense layer to filter and refine the input
data, extracting meaningful patterns and information.

In practical applications, dense layers are highly adaptable. In tasks like image recog-
nition, they typically follow initial processing layers. These first layers identify basic
elements like edges or textures, and then the dense layers interpret these features to
recognize more complex objects or shapes. Dense layers essentially combine simpler
patterns from the earlier layers to understand and identify higher-level structures and
concepts in the data. This process highlights their capability to integrate basic informa-
tion into more complex and meaningful interpretations, crucial for advanced pattern
recognition and data analysis tasks.

The formula for the output (y) of a neuron in a dense layer is given by:

y = σ

(
n∑

i=1
wixi + b

)
(2.1)

Here: - y is the output of the neuron. - σ is the activation function. - wi represents the
weight associated with the input xi. - b is the bias term. - n is the number of inputs.

This formula computes a weighted sum of the inputs, adds the bias, and then applies
the activation function to produce the final output of the neuron.
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2 Background

2.2 Convolutional Neural Networks (CNN) and resnet

Convolutional Neural Networks, or CNNs[LBH15], are a type of neural network that’s
especially good at working with images, which sets them apart from traditional neural
networks. Unlike regular Artificial Neural Networks (ANNs) that treat data as a flat line
of information, CNNs are better at understanding images which are like grids of pixels.
They do this by focusing on small parts of the image at a time, which helps them pick up
on details like shapes and colors. This makes CNNs great for tasks that involve looking
at and understanding pictures, such as identifying objects in photos or even creating
new images.

CNNs use three main types of layers to do their work:

1. Convolutional Layers: These layers zoom in on small sections of the image to
find specific features, like lines or corners.

2. Pooling Layers: These help to make the image data smaller and more manageable
by summarizing the features found by the convolutional layers.

3. Fully Connected Layers: At the end, these layers take all the information the
network has gathered and use it to make final decisions, like recognizing what’s in
the image.

Because of this specialized structure, CNNs are widely utilized in various image pro-
cessing tasks, including identifying objects in photos, detecting different elements in an
image, or even generating new images, demonstrating their effectiveness in understand-
ing and interpreting complex visual information.

2.2.1 Convolutional Layers

Convolutional Neural Networks (CNNs)[LBH15] are a type of neural network optimized
for detecting patterns in images. The convolutional layer is a key component of these
networks, functioning differently from the dense layer that is commonly used in more
basic neural network architectures.

Imagine the convolutional layer as equipped with a set of miniature flashlights, each
spotlighting a small segment of the image. These flashlights seek out specific features
like edges or textures within their illuminated patch. This contrasts with the dense
layer, where every input is linked to every output, akin to a vast floodlight illuminating
everything indiscriminately.

18



2.2 Convolutional Neural Networks (CNN) and resnet

Figure 2.3: Convolution Operation[LIAP22]

The mathematics underpinning the movement of these flashlights, or kernels, across the
image is articulated in the following equation:

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(m, n)K(i − m, j − n) (2.2)

In this equation, S(i, j) represents the resulting value at a specific point in the image
after analysis by the flashlight, I symbolizes the image under examination, and K

denotes the pattern of the flashlight’s filter.

To determine the size of the image post-analysis by all the flashlights, or the output
dimension, the ensuing formula is employed:

Odim = Idim − K + (K − 1)(D − 1) + 2P

S
+ 1 (2.3)

This formula contemplates the original image size (Idim), the flashlight’s beam size (K),
the stride or step size when shifting the flashlight (S), the additional space around the
image edges to ensure pattern detection there as well (P for padding), and the potential
skipping of spaces by the flashlight (D for dilation).

The convolutional layer functions as a critical component in a neural network that
examines small sections of an image to analyze and interpret its features. It uses defined
mathematical operations to process the image data thoroughly and capture detailed
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patterns within it. This systematic approach allows the network to effectively recognize
various elements in the image and understand the overall content.

Introduction to Activation Functions:

Activation functions are vital in neural networks, enabling them to capture and represent
nonlinear relationships within the data. By integrating these functions, neural networks
can go beyond just understanding simple, linear connections to learning from the more
complex, nonlinear interdependencies that are often present in real-world data. This
nonlinear processing is key to the network’s ability to discern intricate patterns and
make predictions based on the rich and varied inputs it receives.

Here’s a brief look at some common activation functions, along with their mathematical
definitions:

• ReLU (Rectified Linear Unit): This function allows only positive values to pass
through, effectively turning off the negative values:

f(x) = max(0, x) (2.4)

• Sigmoid: It compresses the input values within a range of 0 to 1, making it useful
for models where we need to predict probabilities:

f(x) = 1
1 + e−x

(2.5)

• Tanh (Hyperbolic Tangent): This one also squishes values but within a range of -1
to 1:

f(x) = 2
1 + e−2x

− 1 (2.6)

• Softmax: Often used in multi-class classification tasks, it calculates the probability
for each class over all possible classes:

fi(x) = exi∑K
j=1 exj

(2.7)

• Leaky ReLU: A variant of ReLU that allows a small, nonzero gradient when the
unit is not active:

f(x) = max(αx, x) (2.8)

The parameter α is a small constant that gives a slight slope to keep the updates
alive even for negative input values.
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2.2 Convolutional Neural Networks (CNN) and resnet

Each function is tailored for specific scenarios: ReLU for general use due to its efficiency,
sigmoid and tanh for predicting probabilities, Leaky ReLU to mitigate the "dying ReLU"
problem, and Softmax for situations involving multiple categories.

2.2.2 Pooling Layers

Pooling layers in neural networks play a crucial role in downsampling and reducing the
spatial dimensions of feature maps. This process is essential for enhancing the network’s
robustness to variations in input and, concurrently, reducing the computational com-
plexity. The primary purpose of pooling is to retain vital information while decreasing
the number of parameters, making the network more computationally efficient.

Typically performed after convolutional layers, pooling involves dividing the input
into small regions and summarizing them. This can be achieved by taking either the
maximum value (max pooling) or the average value (average pooling).

Max Pooling: Selects the maximum value from small input regions.Emphasizes the
most prominent features, providing translation invariance and spatial dimension
reduction.

Average Pooling: Computes the average value from small input regions.Provides a
more generalized representation, reducing spatial dimensions while maintaining a
smoother summary of features.

The downsampling achieved by pooling makes it an integral component in tasks such as
image classification and object detection within the field of computer vision. Its ability
to summarize information while reducing spatial dimensions contributes significantly to
the network’s overall efficiency.

2.2.3 Resnet

Before delving into the specifics of ResNet[HZRS16] architecture, it is important to
highlight its significant role in our research. In this study, we extensively utilize
ResNet18[HZRS16] (Figure 2.5) as the backbone architecture for our models. ResNet18,
a variant of the ResNet family, is renowned for its efficiency and effectiveness in han-
dling complex image processing tasks. As a common yet powerful CNN architecture,
ResNet18 provides the necessary depth and complexity required for our applications,
while maintaining a balance between computational efficiency and performance. The
choice of ResNet18 is driven by its proven track record in achieving remarkable results
in various computer vision tasks, making it an ideal choice for the foundation of our
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Figure 2.4: Pooling layers: the figure illustrates max pooling and average pooling. Max
pooling selects the largest number from each colored grid section, while
average pooling computes the average of the numbers in each section,
simplifying the data representation.

advanced models. In the following sections, we will explore the ResNet architecture in
more detail, underscoring its innovative features and why it stands out as a preferred
choice in the field of deep learning and computer vision.

ResNet[HZRS16], short for Residual Networks, is a type of deep learning model that’s
been a game-changer for working with very deep neural networks. Its main innovation
is the use of residual blocks that make it easier to train these deep networks without
running into common problems like the vanishing gradient.

Here’s a breakdown of what makes ResNet special:

• Residual Blocks: These are the core of ResNet and have something called shortcut
connections that let the training process bypass some layers, which helps the
gradient to flow through the network more effectively.

• Skip Connections: By jumping over some layers, these connections help the
network to focus on learning the differences between the input and output of these
blocks. This can make optimizing the network simpler and more effective.

• Deep Architectures: ResNets are known for their depth, with versions having hun-
dreds or even thousands of layers, which has helped them perform exceptionally
well in tasks like recognizing what’s in an image.
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2.2 Convolutional Neural Networks (CNN) and resnet

Figure 2.5: Resnet18

• Global Average Pooling (GAP): At the end of the network, ResNet uses GAP
instead of the usual fully connected layers. This reduces the dimensions to just
one number per feature map, which cuts down on the number of parameters and
helps avoid overfitting.

In terms of applications, ResNet has significantly advanced the field of computer vision.
It’s widely used for image classification, achieving remarkable accuracy improvements
as documented by He et al. [HZRS16]. In object detection, ResNet has enhanced
the precision of models like Faster R-CNN [RHGS15]. For image segmentation, which
is crucial in areas like medical imaging, ResNet has improved the functionality of
systems such as U-Net [RFB15]. These applications showcase ResNet’s versatility and its
substantial contribution to the progression of deep neural networks.

2.2.4 Optimization and Training

Training a neural network is all about Adjusting its parameters—weights and biases—to
get the best possible predictions. The process revolves around an objective function,
known as the loss function, which measures how far off the predictions are from the
actual results. The training routine involves several steps using optimization algorithms
that tweak these parameters to minimize the loss.
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Here are the basic steps involved in neural network training:

1. Initialization: Begin with random values for the parameters or start from values
learned previously by another model.

2. Forward Propagation: Feed the input data through the network to produce
predictions.

3. Loss Computation: Evaluate how accurate the predictions are by comparing them
to the true values using the loss function.

4. Backward Propagation: Calculate the gradient of the loss function with respect
to each parameter. This is done by tracing the path back through the network
(hence ’backpropagation’).

5. Parameter Update: Adjust the parameters in a way that reduces the loss. This is
usually done using optimization techniques like Stochastic Gradient Descent or
Adam.

6. Repeat: Continue the process over multiple cycles, or epochs, to continuously
improve the parameters.

For the optimization methods, here’s a simplified explanation with the necessary mathe-
matical details:

• Stochastic Gradient Descent (SGD): It updates parameters using the loss gradi-
ent, guided by a learning rate. Mathematically, it’s represented as:

θt+1 = θt − η∇J(θt) (2.9)

Here, θ is the parameter vector, η is the learning rate, and J(θ) is the loss function.

• RMSprop: This method adjusts the learning rate for each parameter based on the
recent history of gradients, aiming to resolve the vanishing or exploding gradient
problem. It’s given by:

θt+1 = θt − η√
vt + ϵ

∇J(θt) (2.10)

with θ as the parameter, η the learning rate, vt the moving average of the squared
gradients, and ϵ a small number to ensure numerical stability.

• Adam: This optimizer combines momentum and RMSprop’s approaches, automat-
ically adjusting the learning rate for each parameter. The update rules are:

mt+1 = β1mt + (1 − β1)∇J(θt) (2.11)

vt+1 = β2vt + (1 − β2)(∇J(θt))2 (2.12)

θt+1 = θt − η
√

vt+1 + ϵ
mt+1 (2.13)
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In this, mt+1 and vt+1 are estimates of the first and second moments of the gradients,
β1 and β2 are decay rates for these moments, and ϵ is a small constant for numerical
stability.

By following these steps and using these optimization methods, neural networks can
effectively learn from data, making them powerful tools for tasks like image and speech
recognition, natural language processing, and many others.

2.3 Contrastive Learning

The primary goal of contrastive learning is to enhance model performance by captur-
ing and understanding distinctions between samples. This method is widely applied
in representation learning, particularly in unsupervised and self-supervised learning
contexts.

Contrastive learning places a strong emphasis on obtaining concise representations of
input data, aiming to ensure that similar samples are closely aligned in the feature space,
while dissimilar ones are distinctly separated. In more concrete terms, this means that
the model learns to map similar inputs to nearby points and dissimilar inputs to distant
points in a high-dimensional space. This approach enables the model to understand and
capture the essential patterns and relationships within the data, beyond the scope of
a single specific task. As a result, it greatly enhances the model’s ability to generalize,
allowing it to perform effectively across a wide range of tasks and datasets by recognizing
underlying data structures that transcend task-specific characteristics.

In practical terms, contrastive learning commonly involves creating pairs of positive
and negative samples, where similar instances are labeled as positive and dissimilar
ones as negative. During training, the model is optimized to minimize the distance
between positive samples and simultaneously maximize the distance between negative
samples.

Within the domain of contrastive learning, training often relies on various contrastive
loss functions. Commonly used methods include Siamese networks [BGL+94], Triplet
Loss [SKP15], and more advanced approaches like Contrastive Divergence Loss [Hin02].
These methods play a crucial role in guiding the learning process to ensure effective
feature representation and discrimination between similar and dissimilar samples.

In summary, contrastive learning stands out as a powerful paradigm for training models
with improved generalization capabilities, particularly in scenarios with limited labeled
data.
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2.3.1 SimCLR

Prior to delving into the specifics of SimCLR, it is essential to recognize its status as a
concise yet effective framework within the realm of contrastive learning. In this paper,
we place a significant emphasis on the SimCLR framework, particularly in its application
to gaze estimation and eye contact detection tasks. Our approach involves adapting and
optimizing SimCLR to better suit these specific tasks. One of the key strengths of SimCLR
lies in its data augmentation component, which is versatile enough to incorporate
various data augmentation methods. This flexibility, coupled with its straightforward
architecture, provides considerable leeway for customization and optimization of the
framework. Such adaptability makes SimCLR an ideal candidate for our research,
allowing us to explore and enhance its capabilities in the context of advanced vision-
based tasks.

SimCLR[CKNH20] is a framework designed for the unsupervised learning of visual
representations, rooted in the concept of contrastive learning. The model aims to
maximize the similarity between positive pairs (augmented views of the same image)
while simultaneously minimizing the similarity between negative pairs (views from
different images). Notably, SimCLR has demonstrated remarkable success in acquiring
high-quality image representations, eliminating the dependence on labeled data.

Figure 2.6: SimCLR[CKNH20]

SimCLR employs robust data augmentation techniques to generate diverse views of
a single image. This strategy helps the model acquire invariant representations by
promoting the recognition of consistent content across different transformations.
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The training objective is characterized by a contrastive loss, specifically the Normalized
Temperature-Scaled Cross-Entropy (NT-Xent) loss[CKNH20]. This loss is designed to
narrow the distance between positive pairs in the feature space while simultaneously
driving apart negative pairs.

For a given pair of samples xi and xj, where xi is the anchor sample, xj is the positive
sample, and xk is the negative sample, The Normalized Temperature-Scaled Cross-
Entropy Loss (NT-Xent Loss)[CKNH20] is computed as follows:

NT-Xent Loss(xi, xj, xk) = − log
 exp

(
sim(f(xi),f(xj))

τ

)
∑N

n=1 ⊮[n̸=i] exp
(

sim(f(xi),f(xn))
τ

)
 (2.14)

where:

• f(·) represents the embedding function of the model, mapping inputs to the
representation space.

• sim(a, b) = a·b
∥a∥∥b∥ is the cosine similarity function, measuring the similarity between

two samples.

• τ is the temperature parameter, adjusting the scale of the similarity distribution
between samples.

• ⊮[n̸=i] is the indicator function, equal to 1 when n ̸= i and 0 otherwise.

• N is the size of the sample set.

The objective of this loss function is to maximize the similarity between positive samples
while minimizing the similarity between negative samples.

SimCLR utilizes a neural network architecture, commonly a deep convolutional neural
network (CNN), acting as an encoder to transform input images into high-dimensional
feature vectors. The encoder is trained to extract representations that capture meaningful
and semantically rich information.

SimCLR incorporates a projection head designed to map high-dimensional representa-
tions to a lower-dimensional space. This addition significantly contributes to enhancing
the quality of the learned representations.

During the training process, positive and negative pairs are sampled from augmented
views. The model is subsequently optimized to maximize agreement between positive
pairs while minimizing agreement between negative pairs. This iterative process fos-
ters the learning of a representation space where similar samples are proximate, and
dissimilar samples are distanced.
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Training Procedure:

1. Positive Pair Generation: For each image, multiple augmented views are created
through data augmentation. These views form positive pairs.

2. Negative Pair Sampling: Negative pairs are sampled by selecting views from different
images in the batch.

3. Contrastive Loss Computation: The NT-Xent loss is computed based on the cosine
similarity between positive pairs and the negative pairs.

4. Optimization: The model parameters are updated using gradient descent to minimize
the contrastive loss.

Benefits:
- SimCLR has demonstrated remarkable success in self-supervised learning, achieving
state-of-the-art results in various computer vision tasks.
- The learned representations generalize well to downstream tasks with limited labeled
data.

In our discourse on SimCLR, a prominent model in contrastive learning, we now turn
our attention to the computation of Top-1 Accuracy. This metric is pivotal in assessing
the model’s ability to correctly discern positive pairs from a set of negatives.

SimCLR operates on the principle of maximizing agreement between different aug-
mentations of the same data instance in a latent space, leveraging a contrastive loss.
Top-1 Accuracy, in this context, quantifies the model’s efficiency in this representational
learning task.

Computation of Top-1 Accuracy:

1. Embedding Generation: For each data instance in a batch, SimCLR generates
embeddings, including two distinct augmentations of the same image (positive
pairs) and other disparate images (negatives).

2. Pairwise Distance Calculation: The model computes the distance between the
embedding of each anchor and every other instance in the batch, typically using
cosine similarity.

3. Identification of Nearest Embedding: For each anchor, the nearest embedding
in the latent space is identified.
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4. Calculation of Top-1 Accuracy: The Top-1 Accuracy is determined by the pro-
portion of instances where the nearest embedding to an anchor is its associated
positive pair. Formally, it is defined as:

Top-1 Accuracy = 1
N

N∑
i=1

⊮
{
argminj ̸=i d(zi, zj) = Positive Pair of zi

}
where N represents the number of instances in the batch, zi and zj are the
embeddings of the anchor and other instances, d(·) denotes the distance metric,
and ⊮{·} is the indicator function, equating to 1 when the argument is true, and 0
otherwise.

In essence, Top-1 Accuracy in SimCLR is a critical measure reflecting the model’s prowess
in distinguishing similar from dissimilar instances through learned representations.
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As the focus of this thesis is on the application of contrastive learning to the task of
eye contact detection, this section will provide an overview of the traditional methods
employed to address eye contact detection. Additionally, we will explore gaze estimation,
a task closely related to eye contact detection. There has been noteworthy work in
gaze estimation that employs both traditional approaches and contrastive learning
methods. Insights from these studies are particularly relevant and have informed the
methodologies adopted in this thesis. By examining the existing literature, we aim to
contextualize our research within the broader landscape of eye contact and gaze-related
tasks and highlight the contributions of contrastive learning in this domain.

3.1 Appearance-based Gaze Estimation

The realm of gaze estimation has witnessed remarkable growth, with recent innovations
emphasizing the significance of harnessing comprehensive facial cues to elevate model
accuracy. Pioneering this evolution, Zhang et al. introduced a groundbreaking full-
face approach [ZSFB17a], a departure from the eye-centric methods of yesteryears, by
utilizing the entire visage as the input to convolutional neural networks (CNNs). Their
technique strategically employs spatial weights to enhance or diminish information
across the facial feature maps, fine-tuning the model’s focus.

This method laid the groundwork for subsequent research by Smith et al. [SXYZ17b]
and Lee et al. [LYZX18c], who incorporated head pose and eye appearance as auxiliary
indicators, further refining gaze direction predictions. These contributions signal a
paradigm shift in gaze estimation, moving towards a more integrative approach that
considers the face not just as a collection of features, but as a dynamic map where
context and subtle cues converge.

In a similar vein, the works of Patel and Smith [PS19d] have leveraged the prowess
of deep learning to automate the extraction of pertinent features from the facial data,
bypassing the laborious process of manual feature selection. It’s these advancements
that epitomize the trend towards comprehensive, context-sensitive models in gaze
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estimation—a trend that now beckons the adoption of contrastive learning techniques
to further distill and enhance the feature extraction process.

The trajectory of gaze estimation research, from its initial eye-focused methods to
the incorporation of full-face and head pose data, charts a course of discovery and
innovation.

Figure 3.1: Full-face appearance-based gaze estimation[ZSFB17a]

3.1.1 Contrastive Learning for Appearance-based Gaze Estimation

While original appearance-based gaze estimation methods operate on supervised learn-
ing principles and depend on extensive datasets, there is a growing body of research
exploring the application of contrastive learning methods to the appearance-based gaze
estimation task. These methods demonstrate the ability to achieve comparable perfor-
mance using a significantly smaller number of datasets compared to original supervised
learning models.

GazeCLR[JM22]

In the first training phase of GazeCLR, the framework employs a contrastive learning
approach to train a shared encoder. Distinct from SimCLR, GazeCLR incorporates both
single-view and multi-view comparison methods. To facilitate these different learning
objectives, GazeCLR integrates two separate MLP-based projection heads post-encoder:
one dedicated to learning invariance through single-view comparison and the other for
learning equivariance via multi-view comparison.

The construction of positive and negative pairs in GazeCLR is meticulously orchestrated
as follows:
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Figure 3.2: Overview of the GazeCLR architecture. The input image is processed
through data augmentations to generate multiple views, which are then fed
into a shared encoder in both single-view and multi-view learning settings.
In single-view learning, variants of the same image are treated as positive
pairs, while in multi-view learning, augmented images from different per-
spectives of the same subject are paired as positive pairs. Fgiure taken
from:[JM22]

• Single-View Positive Pairs: The framework selects an image Ivi,t from a specific
camera view vi at a given timestamp t. It then applies two distinct augmentations
from a predefined set of appearance transformations A, creating positive pairs to
facilitate invariance learning.

• Multi-View Positive Pairs: In this approach, GazeCLR considers all unique pairs
of camera viewpoints (vi, vj) at the same timestamp t. Images from these different
camera views are selected and augmented with transformations from A to induce
equivariance learning.

For negative pairs, GazeCLR does not require explicit sampling; instead, it treats all
other images within the mini-batch as negative examples.
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The first phase of training within the GazeCLR framework, focusing on the shared
encoder, does not necessitate labeled datasets. The encoder, trained to extract features
pivotal for gaze estimation, is later fine-tuned in a subsequent phase. This second phase
involves appending an MLP-based regressor head to the pre-trained encoder, allowing
for efficient fine-tuning using a smaller annotated dataset for precise gaze estimation,
ultimately leading to the accurate prediction of 3D gaze directions.

In summary, GazeCLR represents a significant adaptation of the SimCLR contrastive
learning framework, specifically tailored for the gaze estimation task. This adaptation
underlines the feasibility of modifying SimCLR to better suit specific tasks, inspiring the
exploration undertaken in this thesis. While GazeCLR demonstrates the potential of such
optimizations for gaze estimation, its application and performance in the realm of eye
contact detection remain unexplored. This thesis seeks to bridge this gap, investigating
how similar adaptations to SimCLR, particularly in its data augmentation and pair
construction methodologies, could enhance its applicability and effectiveness in eye
contact detection tasks.

3.2 Eye Contact Detection

In light of our focus on contrastive learning for eye contact detection tasks, we particu-
larly review research that utilizes deep learning techniques to tackle the problem of eye
contact detection. The GazeLocking method by Smith et al. [SYFN13] is a noteworthy
example, employing classification techniques to detect eye contact between a person and
a camera. Ye et al. extend this line of inquiry with a wearable camera system that detects
eye contact from the wearer’s perspective, leveraging a supervised learning framework
[YLL+15]. Differing from these perspectives, Recasens et al. [RKVT15][RVKT16] ap-
proach the problem from a third-person viewpoint, where the camera captures both the
subject and the gaze target within the scene, utilizing a CNN-based model to predict the
focus of gaze.

However, these methods share limitations with conventional Appearance-based gaze
estimation approaches, such as the need for user-specific or environment-specific training.
They also often rely on prior knowledge about the target object’s size and location.
Addressing these limitations, Zhang et al. [ZSB17] introduced an unsupervised method,
unique for its ability to adapt to specific camera-target settings by collecting relevant
training data on-site, thus enhancing the flexibility and applicability of eye contact
detection systems.
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Unsupervised eye contact detection

Figure 3.3: Unsupervised eye contact detection[ZSB17]

The proposed method, introduced by Zhang et al.[ZSB17], is centered on unsupervised
eye contact detection utilizing a single off-the-shelf RGB camera positioned near the
target object. In the training phase, the approach involves face and facial landmark
detection, followed by the application of a state-of-the-art full-face appearance-based
gaze estimation method. Subsequently, the estimated gaze directions undergo clustering,
and the cluster corresponding to the target object is identified. This clustering result is
then used to label samples for positive and negative eye contact. A two-class SVM is
trained on high-dimensional features extracted from the gaze estimation CNN.

During the gaze estimation phase, a comprehensive full-face method is employed,
trained on diverse datasets to handle variations in illumination, head pose, and gaze
direction. This method leverages face detection, facial landmark detection, and data
normalization techniques. The gaze estimation results are utilized for sample clustering,
and a 4096-dimensional face feature vector is extracted for further analysis.

The sample clustering process involves rejecting unreliable samples based on facial
landmark alignment scores and using them as negative samples during training. The
OPTICS algorithm[ABKS99] is employed for clustering, and the cluster closest to the
camera position is selected as the positive cluster corresponding to the target object. A
safe margin around the positive cluster helps filter out noise samples.

Eye contact detection is performed using a two-class SVM classifier trained on labeled
samples. To address potential class imbalance, a weighted SVM classifier is utilized. High-
dimensional features extracted from the gaze estimation CNN are processed through
PCA for dimensionality reduction during training. During testing, the SVM classifier
predicts eye contact labels based on input features.

In conclusion, while Zhang et al.’s method [ZSB17] provides a foundational framework
for unsupervised eye contact detection using a simple RGB camera, it has limitations.
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The main constraint lies in the method’s reliance on a supervised gaze estimation model
to extract features for eye contact detection, resulting in suboptimal generalization for
this specific task. Addressing this limitation, the current thesis proposes enhancements
using contrastive learning models. Nevertheless, Zhang et al.’s work forms the basis
of this thesis, with their experimental setup serving as the baseline for all eye contact
detection experiments conducted herein.

36



4 Appearance-based Gaze Estimation

4.1 Introduction

Gaze estimation is a computer vision task that involves determining the direction in
which a person is looking. The goal is to infer the point on a screen, scene, or image that
corresponds to the person’s gaze. This task has applications in various fields, including
human-computer interaction, virtual reality, and driver monitoring systems.[Soc17]

Gaze estimation can be formally described as follows:

Let P represent the set of all possible gaze points in a given space, such as the pixels on a
screen or the coordinates in a scene. For a specific individual, their gaze can be denoted
as a vector G = (x, y, z) in a three-dimensional space, where x, y, and z represent the
horizontal, vertical, and depth components of the gaze, respectively.

Given an input image I containing the person’s eyes or face, the task of gaze estimation
is to predict the gaze vector G based on the visual information extracted from the image.
This is typically formulated as a regression problem, where a model M is trained to map
input images to corresponding gaze vectors:

G′ = M(I) (4.1)

where G′ is the predicted gaze vector.

The accuracy of gaze estimation is often evaluated by measuring the angular error or
Euclidean distance between the predicted gaze vector G′ and the ground truth gaze
vector G for a given set of test images.

In summary, gaze estimation is the process of predicting the direction of a person’s gaze
in a specified space based on visual input, and it is commonly formulated as a regression
problem in computer vision.
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4.2 Datasets

4.2.1 MPIIFaceGaze Dataset:

The MPIIFaceGaze dataset[ZSFB17a], initially developed for supervised full-face gaze
estimation, includes detailed annotations for 37,667 images from 15 participants. It
encompasses a wide range of gaze-related data such as facial landmarks, head pose,
and 3D gaze direction. While this dataset was initially explored in our research for
its suitability in gaze estimation, challenges related to image quality and gaze angle
distribution led us to switch to the GazeCapture dataset.[KKK+16] GazeCapture, with
its higher image quality, broader gaze angle distribution, and mobile device-based image
capture, aligns more closely with the requirements and context of our study.

4.2.2 GazeCapture Dataset:

The GazeCapture dataset[KKK+16] is a large-scale dataset used in gaze estimation
research, featuring over 2.4 million images from more than 2,000 participants. This
dataset is notable for its diversity in participant demographics and environmental
conditions. Data was gathered using a mobile app, with selfies captured by the front-
facing camera, making it well-suited for real-world applications. Each image includes
precise 3D gaze direction annotations. Its wide range of gaze angles and rich participant
diversity make GazeCapture particularly relevant for our study’s mobile device context.

However, the MPIIFaceGaze and GazeCapture datasets lack eye contact detection la-
bels. In response to this limitation, our project proposes an unsupervised contrastive
learning framework. This framework aims to extract more generalized features from
the unlabeled GazeCapture dataset, applying these features to the task of eye contact
detection.

4.3 Data Pre-processing

4.3.1 Data Normalization

In the realm of appearance-based gaze estimation, some methods assume a frontal head
pose. However, real-world settings frequently involve head rotations. Appearance-based
gaze estimators aim to address the challenge of accurately inferring 3D gaze directions,
regardless of the initial appearance of the faces in input images.
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Figure 4.1: The figure illustrates the stages of eye image normalization. Initially, the
head pose coordinate system, centered at the eye’s center (er), has an
arbitrary orientation with respect to the camera’s coordinate system. In step
(b), the camera coordinate system is rotated by applying a rotation matrix
(R) to align with the eye center. Finally, in step (c), the world coordinate
system is scaled using a scaling matrix (S), leading to a normalized face
image where the eye’s position is uniformly represented, facilitating accurate
gaze estimation.

Additionally, it is noteworthy that variations in the scale or distance of the face impact
eye appearance. Different distances between the camera and the eye result in varying
sizes of the eye in captured images. Furthermore, the non-planar nature of the eye
introduces alterations in its appearance under different viewing conditions.

Data normalization is crucial in learning-based gaze estimation, serving to mitigate
variations stemming from head rotation and translation. The section outlines the data
normalization process, initially introduced by Sugano et al. (2014)[SMS14] and Zhang
et al. (2018)[ZSB18]. The narrative then shifts to address a specific issue encountered
in handling 2D images, leading to the introduction of a modified normalization method.
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This method incorporates a more robust planarity assumption, aimed at resolving the
identified issue.

The data normalisation process introduced by Sugano et al. (2014)[SMS14] has the
following three steps:

1. Leveraging face detection and facial landmark detection methods to identify
landmarks in images captured by a calibrated monocular RGB camera, we improve
upon the foundational work of Sugano et al. [SMS14]. Utilizing the latest in
technology advancements, the insightface model [Dee23] is employed for its
superior accuracy in both detecting faces and pinpointing facial features. Should
multiple detections occur, the largest bounding box is selected. Any images without
detectable faces are excluded. Subsequent facial landmark detection through the
insightface model [Dee23] further refines the process, providing a robust approach
for our research.

2. The approach utilizes a generic 3D facial shape model F for estimating the 3D pose
of detected faces from 2D facial landmarks for gaze estimation [ZSFB17b]. This
model, constructed by averaging across all participants, includes the 3D positions
of significant facial landmarks. A right-handed coordinate system is established
with the x-axis spanning the eye midpoints, the y-axis perpendicular within the eye-
mouth triangle, and the z-axis orthogonal to the face plane. The Perspective-n-Point
problem, solved via the EPnP algorithm and refined by the Levenberg-Marquardt
method, determines the 3D rotation matrix Rr and translation vector tr, providing
a robust solution for 3D pose estimation in practical gaze estimation scenarios.

3. After initial face detection, landmark localization and 3D pose estimation, the face
image normalization process [SMS14] commences. This involves aligning the head
coordinate system (HCS) to the camera coordinate system (CCS), where HCS is
defined by facial landmarks. The normalization ensures the camera’s alignment
with the HCS origin, co-planarity of x-axes, and consistent eye size at a fixed
distance.

The rotation matrix R aligns the CCS’s z-axis with the HCS’s origin and ensures
the x-axes are co-planar. The scaling matrix S is defined to maintain the eye size
across all normalized images:

R =


xc

∥xc∥
yc

∥yc∥
zc

∥zc∥

 , S = diag(1, 1,
dn

∥er∥
) (4.2)

Here, xc, yc, and zc are the unit vectors of the camera’s coordinate system in
step(c) Figure 4.1 along the x, y, and z directions, respectively. dn represents the
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fixed distance from the camera to the eye center, and ∥er∥ is the magnitude of the
translation vector from the camera to the eye center.

The total transformation matrix M = SR applies to 3D face meshes directly. For
2D images, perspective warping uses W = CnMC−1

r , with Cr and Cn being the
original and normalized camera projection matrices, respectively.

Modified Data Normalization[ZSB18]:

In addressing the geometric transformations associated with eye image normalization,
two distinct approaches are employed for 3D and 2D data.

For 3D data, the transformation of the gaze vector utilizes the transformation matrix
M , defined as M = SR where S = diag(1, 1, dn

∥er∥). The normalized gaze vector dn is
calculated as follows:

dn = Mdr (4.3)

This equation represents the transformation of the gaze direction in a 3D coordinate
system through both rotation and scaling.

On the other hand, for 2D images, a modified approach is proposed[ZSB18]. While
the image normalization process still employs the transformation matrix W defined as
W = CnMC−1

r , the treatment of the gaze vector differs. In this context, only the rotation
matrix R is applied to the gaze vector, omitting the scaling effect on the 3D coordinate
system. This results in a different formulation for the normalized gaze vector:

dn = Rdr (4.4)

In this scenario, R is derived as RRr, where RRr represents the composition of the
rotation matrices from both the 3D facial pose estimation and the normalization process.
This adjustment ensures that the scaling is applied specifically to the camera projection
matrix Cr in the context of 2D images. Additionally, the transformation is also utilized
to reproject the estimated gaze vector back to the original camera coordinate system,
expressed mathematically as dr = R−1dn.

These mathematical formulations highlight the nuanced approach required for gaze
vector normalization in both 3D and 2D data, ensuring accurate gaze estimation under
varying conditions.
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4.4 Supervised Appearance-based Gaze Estimation

Supervised appearance-based gaze estimation relies on supervised learning, utilizing
labeled datasets that include both facial images and corresponding gaze directions for
training. The method emphasizes estimating gaze from facial appearance features like
eye regions, head pose, and facial expressions.

In a supervised context, the model minimizes the difference between predicted and
ground truth gaze directions during training. The efficacy of this approach heavily relies
on the volume and quality of the labeled dataset, underscoring the crucial dependence
on substantial and high-quality data with accurate annotations for effective model
performance.

4.4.1 Full-Face Gaze Estimation with a Spatial Weights CNN

The Full-Face Gaze Estimation method, introduced by Zhang et al.[ZSFB17a], addresses
the core challenges of 2D and 3D gaze estimation, focusing on learning the regression
function f .

The approach is rooted in the idea that beyond the eyes, other facial regions may contain
valuable information for gaze estimation. To leverage information from the entire face,
a Convolutional Neural Network (Spatial Weights CNN) is proposed for 2D and 3D gaze
estimation. Additional layers are introduced in the final convolutional layer to learn
spatial weights. The motivation behind spatial weighting lies in suppressing activations
from non-contributing image regions, such as the background, to enhance performance.
Moreover, activations from facial regions other than the eyes are expected to be subtle,
varying based on input conditions like head pose, gaze direction, and illumination. To
explicitly guide the network in learning the varying importance of different facial regions
for gaze estimation, concepts from [ZSFB17a] involving three 1 × 1 convolutional layers
and rectified linear unit layers are adapted for full-face gaze estimation.

Specifically, a single heatmap is generated to encode the overall importance across the
entire face image, followed by element-wise multiplication with the feature map of the
preceding convolutional layer.

It is essential to note that this method is supervised, and in this paper, we refer to this
model as the Original Gaze Estimation model. The model is trained on the GazeCapture
and MPIIFaceGaze datasets, serving as a baseline in our study.
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4.5 Contrastive Learning for Gaze Estimation

Contrastive Learning for Gaze Estimation deviates from Supervised Appearance-based
Gaze Estimation in its learning paradigm. Unlike the reliance on labeled datasets with
explicit gaze directions, contrastive learning aims to learn by contrasting positive and
negative samples within the dataset.

Following this, I will provide a detailed overview of how the contrastive learning model
is specifically applied to gaze estimation. Backbone can be succinctly described as the
part of the model that functions as a feature extractor, learning to distill the essential
characteristics from the input data.

Figure 4.2: The Figure presents a Pipeline for training a gaze estimation model: the top
section for training feature extraction through contrastive learning, and the
bottom for refining gaze estimator head.

The diagram in Figure 4.2 illustrates the application of contrastive learning to gaze
estimation in a two-stage process:

1. Training of Backbone using contrastive learning:

• An input image is processed with two different augmentations to create two
distinct versions of the same image.
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• Both augmented images are fed through the same neural network, termed
the “Shared backbone”, which is responsible for feature extraction.

• After the shared backbone, each set of features is transformed by a “Shared
Projection Head” into vectors z1 and z2.

• The objective in this stage is to maximize the similarity between z1 and z2,
notwithstanding the initial augmentations. This trains the model to recognize
the same object or scene irrespective of variations such as perspective or
lighting.

2. Training of Gaze-Estimator Head:

• The same input image from the first stage is passed through the shared
backbone once more, which is now “frozen”, indicating its weights do not
update during this stage.

• The extracted features by the frozen backbone are directed to a “Gaze-
Estimator Model” with a specific “Estimator-head” designed for gaze direction
estimation.

• The estimator-head is tasked with predicting the 2D gaze direction, which is
then evaluated against the ground truth to minimize the loss, quantifying the
discrepancy between the predicted and true gaze directions.

By employing contrastive learning for the shared backbone training, the model acquires
robust feature representations, which are advantageous for the gaze estimation task.
The gaze estimator head utilizes these features to accurately predict the gaze direction
in the input image. Contrastive learning enhances the model’s generalization by learning
to focus on consistent features across different augmentations.

For Gaze Estimation tasks, contrastive learning employs distinct methods when con-
structing positive and negative sample pairs, deviating from the conventional approaches
used in general contrastive learning models. This specialized approach aims to focus
the model specifically on features relevant to gaze direction. Two noteworthy strategies
in this context include Gaze-specific data augmentation and the subject-conditional
projection module[DZL23].

By incorporating these strategies, Contrastive Learning for Gaze Estimation offers a self-
supervised learning framework that effectively captures gaze-related features without
relying on explicit gaze annotations. This proves advantageous in scenarios where
acquiring labeled gaze data is challenging or expensive, providing an alternative learning
approach based on the intrinsic structure of the data.
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4.5.1 SimCLR model with the gaze-specific data augmentation

To effectively train contrastive models for gaze estimation, it is imperative to recognize
the limitations inherent in conventional data augmentation methods and to adapt these
techniques to better suit the unique requirements of this task. Standard augmentations
such as cropping, cutout, rotation, and flipping often fail to maintain essential features
necessary for gaze analysis, specifically the eyes and the direction in which they are
looking.

These typical approaches might remove or alter critical visual cues that are necessary for
identifying the gaze direction, leading to the introduction of noise in the dataset. For
instance, cropping and cutout can inadvertently eliminate the eyes from an image, which
are fundamental for gaze estimation. Similarly, operations like rotation and flipping
could modify the gaze direction itself, thereby corrupting the consistency required across
augmented images (positive pairs) for effective learning.

This understanding underlines the necessity for gaze-specific data augmentation strate-
gies. Such strategies would ensure the preservation of important gaze-related features
and maintain gaze-semantic consistency across all transformed views of the same im-
age. By refining data augmentation to protect against the loss of gaze information, we
can train models that are not only robust to variations in image presentation but also
attuned to the subtleties of gaze orientation. This optimization is key to advancing the
performance of gaze estimation systems.

To achieve the aforementioned objectives, we have implemented a Gaze-specific Data
Augmentation (GDA) technique[DZL23], meticulously tailored for gaze estimation
tasks. This approach is designed to address and overcome the limitations of traditional
augmentation methods specifically in the context of gaze estimation.

Building on the advantages of the GDA technique, the following section details the
creation of a dedicated Gaze-Specific Data Augmentation module. This module is strate-
gically designed to further optimize contrastive learning for gaze-aware representations,
generating two essential types of image pairs: gaze-consistent pairs and gaze-contrastive
pairs.

• Gaze-consistent pairs: These are different views from the same full-face image,
retaining gaze-related semantic features post-augmentation.

• Gaze-contrastive pairs: These are from two different images of the same subject,
but with contrasting gaze features.

The generation process begins with a gaze-specific augmentation operator, termed
gaze-cropping, which preserves essential gaze-related features:
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1. Facial landmark detection: Identifies the eyes within the image.

2. Bounding boxes creation: Forms bounding boxes around the periocular areas
based on the detected landmarks.

3. Random cropping: Ensures at least one periocular area is included in the cropped
image.

4. Resizing: Resizes the cropped image to the original image’s dimensions.

Color distortion is integrated as a secondary augmentation step to enhance the con-
trastive learning process. The GDA results from the sequential application of gaze-
cropping and color distortion, producing gaze-consistent pairs.

Formally, the augmentation is modeled as a random variable T , and for a given subject i

and image j, the image is denoted as Xi,j. The augmentation process involves randomly
sampling two operators from T , denoted as {p, q} ∼ T . A gaze-consistent pair (Xp

i,j, Xq
i,j)

is generated by applying these operators to Xi,j. For gaze-contrastive pairs, (Xp
i,j, Xq

i,k) is
constructed by applying p and q to different images Xi,j and Xi,k from the same subject.
The paper[DZL23] includes examples of these pairs, demonstrating the GDA process.

4.5.2 SimCLR model with the gaze-specific data augmentation and
subject-conditional projection module

In our study, we apply a modified approach to traditional contrastive learning, specifically
tailored for gaze estimation tasks. The standard process involves a feature extractor
F (·) mapping an augmented image X to a general representation space GP , extracting
features h = F (X) ∈ GP . These features are then projected into an embedding space SP

via a projection head P (·), creating embeddings z = P (h) ∈ SP . Typically, the projection
head is a multi-layer perceptron (MLP) with one hidden layer, and the contrastive loss,
often the InfoNCE loss, is applied in this embedding space SP .

However, in the context of gaze estimation, this method has limitations. The contrastive
loss in SP and the inclusion of full-face images from diverse subjects in the mini-batch
can cause F (·) to favor learning appearance or identity-related features. While these
features distinguish between subjects, they are less effective in identifying gaze-aware
features critical for gaze estimation.

To address these challenges, our research incorporates a novel strategy involving subject-
specific contrastive losses[DZL23]. This is facilitated by using a subject-conditional
projection module combined with a shared feature extractor. The objective is to direct the
learning process more towards gaze-aware features, thereby enhancing the effectiveness
and precision of gaze estimation models.
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Subject-conditional Projection[DZL23]

In this study, we depart from conventional contrastive learning, which maps images to a
uniform embedding space, by introducing a subject-conditional projection mechanism,
S(·), creating individual embedding spaces, SPi, for each subject. Our technique allows
for subject-specific embeddings that capture distinctive features within their spaces.

The feature extractor F (·) works within these spaces to increase similarity for images
with consistent gaze and decrease it for those with contrasting gaze directions from
the same subject. This is aimed at enhancing the learning of gaze-specific features by
F (·).

For each subject’s image X t
i,j, we one-hot encode the subject’s identity IDi, combine it

with the features ht
i,j = F (X t

i,j), and input this into an MLP to produce the embeddings
zt

i,j = S(ht
i,j).

4.6 Experiments

4.6.1 Experiment Objectives and Baseline

The primary goal of our experiments is to assess the performance of contrastive learning
methods in gaze estimation tasks. This section introduces the various models used in
our experimental setup:

1. Original Model[ZSFB17a]: Officially the original supervised learning model,
proposed by Zhang et al., In this project, I have retrained and tested this model on
the GazeCapture dataset. The result serves as our baseline for gaze estimation. It
is used as a comparative benchmark against subsequent unsupervised contrastive
learning models and is referred to as the Original Model throughout this paper.

2. RanNet[DZL23]: Comprising a feature extractor and a gaze estimator, both com-
ponents of this model are initialized with random parameters and are not pre-
trained.As a model with entirely random parameters, I have retrained and tested
this model on the GazeCapture dataset. The result serves as a baseline for gaze
estimation.

3. SimCLR[CKNH20]: This is the original SimCLR model combined with a gaze
estimator head. The classic SimCLR contrastive learning framework is employed
for pre-training and subsequently utilized for feature extraction, followed by a gaze
estimator head for downstream gaze direction estimation tasks. In this document,
it is abbreviated as the SimCLR model.
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4. ConEye[DZL23]: Known as the SimCLR model with gaze-specific data augmenta-
tion and a gaze estimator head. The distinction from the SimCLR model is the use
of gaze-specific data augmentation during the pre-training phase. The same gaze
estimator head structure is employed for downstream gaze direction estimation
tasks, and is referred to as ConEye in this study.

5. ConGaze[DZL23]: This model is an extension of ConEye, incorporating a subject-
conditional projection module into the SimCLR model with gaze-specific data
augmentation. It aims to project each subject’s representations into their respective
subspaces.

Using these five models, we conducted a series of experiments with datasets of various
sizes and different parameter freezing strategies. The objective was to thoroughly
explore the effectiveness of contrastive learning methods in gaze estimation tasks.

While the methods of these five models draw upon previous work in gaze estimation,
in this study we have reconstructed them and conducted training and testing on the
GazeCapture dataset. This preparation is key for the subsequent application of these
models to eye contact detection tasks.

Baseline

Exp. Model Train Dataset % Train Data Used Test Dataset MAE (°)

A Orig. Model GC 100% GC_test 5.02
B Orig. Model MPII 100% GC_test 7.63

Table 4.1: Baseline Performance. GC: GazeCapture, MPII: MPIIFaceGaze.

As demonstrated in Table 4.1, we initially trained the Original Model using the complete
GazeCapture and MPIIFaceGaze training datasets, and both datasets include 3D gaze
direction labels. The model was then evaluated using the test set of GazeCapture,
achieving an optimal Mean Angle Error of 5.02°. This performance is established as the
baseline standard for our study.

In addition, the hyperparameter configuration for training is: 20 epochs, 16 batch size,
0.1 base learning rate, 0.1 learning rate decay, SGD optimiser.

Pre-training

As illustrated in Table 4.2, we conducted pre-training on the feature extractors within
the SimCLR, ConEye, and ConGaze models using the complete, unlabeled GazeCapture
dataset. The metric of top-1 accuracy serves as an indicator of the quality of this pre-
training. Specifically, it reflects each model’s capability to distinguish between positive
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Exp. Model Train Dataset % Train Data Used Test Dataset Top-1 Acc. (%)

Pre-1 SimCLR FE GC 100% GC_test 93.75
Pre-2 ConEye FE GC 100% GC_test 98.44
Pre-3 ConGaze FE GC 100% GC_test 90.63

Table 4.2: Pre-training Performance FE: Feature Extractor of the Model

and negative samples, effectively measuring the discriminative power of the models in
the pre-training phase.

In addition, the hyperparameter configuration for training was: 2 epochs, 32 batch size,
0.0003 learning rate, Adam optimiser.

Fine-tuning

In the subsequent phase of our study, we augmented the previously pre-trained feature
extractors with a gaze estimator head, thus completing the assembly of the SimCLR,
ConEye, and ConGaze models. We conducted five distinct experimental groups to fine-
tune these models, each differing in the dataset used and the approach to the feature
extractor parameters:

Group Models Dataset Extractor
1 SimCLR, ConEye, ConGaze 1% GC Frozen
2 SimCLR, ConEye, ConGaze, RanNet 1% GC Unfrozen
3 SimCLR, ConEye, ConGaze 10% GC Frozen
4 SimCLR, ConEye, ConGaze, RanNet 10% GC Unfrozen
5 SimCLR, ConEye, ConGaze 100 samples GC Frozen
6 RanNet 100 samples GC Unfrozen

Table 4.3: Summary of Fine-Tuning Experiments

Table 4.3 provides a comprehensive overview of the six experimental groups. Group 1
involves fine-tuning the three models with 1% of the GazeCapture dataset, keeping the
feature extractor parameters frozen. Group 2 expands this by including RanNet (as a
baseline) and fine-tuning with unfrozen feature extractor parameters on the same subset.
Groups 3 and 4 replicate this approach with 10% of the GazeCapture dataset, with Group
3 freezing and Group 4 unfreezing the feature extractor parameters. Finally, Group 5
employs a minimal dataset of 100 GazeCapture samples to fine-tune the models(SimCLR,
ConEye, ConGaze) with frozen feature extractor parameters. In Experiment Group 6,
we fine-tuned the RanNet model using only 100 samples from the GazeCapture dataset,
with the feature extractor parameters left unfrozen.
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Exp. Model Train Data % Train Data Used Test Data MAE(°)

1 SimCLR (Froz.) GC 1% GC_test 9.71
2 ConEye (Froz.) GC 1% GC_test 8.57
3 ConGaze (Froz.) GC 1% GC_test 8.02

Table 4.4: Group 1 Fine-Tuning Results

Exp. Model Train Data % Train Data Used Test Data MAE(°)

5 SimCLR (Unfroz.) GC 1% GC_test 6.23
6 ConEye (Unfroz.) GC 1% GC_test 5.46
7 ConGaze(Unfroz.) GC 1% GC_test 5.22

Table 4.5: Group 2 Fine-Tuning Results

In our study, we trained models on three distinct scales of GazeCapture data: 10%, 1%,
and a subset of 100 samples. This strategy was designed to observe how the model’s
accuracy varies with the quantity of data. We aimed to determine if the best-performing
model under the 10% data condition remains superior with only 100 samples, and to
explore if there exists a model that maintains satisfactory accuracy while using less
data.

The following six tables 4.4 4.5 4.6 4.7 4.8 4.9 provide detailed insights into the six
experimental groups conducted in our study. Each table comprehensively outlines
the specific parameters, methodologies, and outcomes associated with its respective
experimental setup.

Training configuration: The six experimental groups conducted in this study were
uniform in terms of hyperparameters. We employed a batch size of 16 and trained each
model for 20 epochs. The L1 loss function was utilized as the primary loss metric. For
optimization, the Stochastic Gradient Descent (SGD) method was implemented across
all experiments.

Exp. Model Train Data % Train Data Used Test Data MAE(°)

8 SimCLR (Froz.) GC 10% GC_test 9.15
9 ConEye (Froz.) GC 10% GC_test 8.04

10 ConGaze (Froz.) GC 10% GC_test 7.69

Table 4.6: Group 3 Fine-Tuning Results
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Exp. Model Train Data % Train Data Used Test Data MAE(°)

11 RanNet (Unfroz.) GC 10% GC_test 5.05
12 SimCLR (Unfroz.) GC 10% GC_test 5.07
13 ConEye (Unfroz.) GC 10% GC_test 4.76
14 ConGaze (Unfroz.) GC 10% GC_test 4.70

Table 4.7: Group 4 Fine-Tuning Results

Exp. Model Train Data No. of Samples Test Data MAE(°)

15 SimCLR (Froz.) GC 100 samples GC_test 12.1
16 ConEye (Froz.) GC 100 samples GC_test 9.85
17 ConGaze (Froz.) GC 100 samples GC_test 8.12

Table 4.8: Group 5 Fine-Tuning Results

Exp. Model Train Data No. of Samples Test Data MAE(°)

18 RanNet (Unfroz.) GC 100 samples GC_test 12.8

Table 4.9: Group 6 Fine-Tuning Results

51
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Figure 5.1: Relationship between gaze estimation and eye contact detection

Eye contact detection is a task intrinsically linked to gaze estimation, sharing a common
foundation in feature extraction due to the analogous nature of the features required for
both tasks. Unlike gaze estimation, which generates a vector to describe the 3D gaze
direction, eye contact detection simplifies the output to a binary decision—determining
the presence or absence of eye contact.

The shared feature extractor between the two tasks is central to this discussion. It
indicates that while the tasks are different, the characteristics of the eyes necessary to
infer gaze direction or eye contact are sufficiently similar to be captured by the same
underlying neural network structures. However, this approach is not without limitations,
as it relies on the feature extractor’s ability to generalize well across both tasks.

Zhang et al. originally proposed a method in which a gaze estimation model[ZSB17],
including its feature extractor, is first trained using supervised learning. The features
learned are then repurposed for the eye contact detection task. Our paper posits that the
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generality of the feature extractor, trained via supervised methods, can be enhanced. We
propose training the feature extractor using contrastive learning to develop an extractor
that is equally adept for both gaze estimation and eye contact detection.

There are two primary advantages to this method. First, it allows for the feature extractor
to be trained without reliance on any labels, leveraging the self-supervised nature of
contrastive learning. Second, a feature extractor that is more appropriately tuned to
the shared aspects of both tasks can potentially increase the accuracy of the eye contact
detection model, thereby delivering better performance across the board.

5.1 Datasets

5.1.1 EMVA Dataset

The EMVA dataset [ZSB17] is a unique collection designed to study mobile users’ visual
attention in everyday settings. It includes data from 32 participants, organized by
individual IDs. Each participant’s data is divided into "Recordings," which are further
segmented into "Sessions" based on device activity. Sessions last up to 15 minutes and
include a video file and other sensor data like acceleration and gyroscope, depending on
the device’s capabilities. This dataset provides an insightful look into real-world device
usage patterns.

The EMVA dataset already includes a set of 15,740 images extracted from session videos
of participants, these images have been artificially labelled with eye contact detection
labels. My role involved shuffling these images and dividing them into a training set
(70%) and a test set (30%). This split is essential for training and evaluating models
that aim to understand and predict user attention in mobile environments.

5.2 Data Pre-processing

The preprocessing approach employed for eye contact detection adheres to the same
protocol defined for gaze estimation to maintain uniformity. A comprehensive account
of the preprocessing steps can be found in section 4.3 in Chapter 4.
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Figure 5.2: Contrastive Learning for Eye Contact Detection

5.3 Contrastive Learning for Eye Contact Detection

In the approach presented by Zhang et al.[ZSB17], a supervised learning model is trained
for gaze estimation, incorporating a feature extractor whose extracted characteristics
are subsequently shared with an eye contact detection model. This study suggests that
the generalizability of the supervised feature extractor can be enhanced, proposing the
utilization of contrastive learning for training a feature extractor that is equally effective
for both tasks.

The key benefits of this approach include the training of the feature extractor without
the need for labeled data and the potential for a more suitable feature extractor to
increase the precision of the eye contact detection model.

As illustrated in Figure 5.2, after the initial feature extractor is trained using contrastive
learning techniques, it is then frozen and utilized for the eye contact detection task.
By leveraging the learned representations from the contrastive learning phase, where
the backbone was trained to differentiate between augmentations of the same image,
we now apply this robust feature extractor to classify the presence of eye contact, thus
minimizing the classification loss. This shared approach between gaze estimation and
eye contact detection tasks allows for a more generalized feature extraction process and
aims to enhance the accuracy of eye contact classification.
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5.4 Training Methods for Detection Head

In this section, we explore two distinct methodologies for training the detection head.
The first approach is a supervised method that utilizes the EMVA training dataset. This
method involves freezing the feature extractor and then training a Support Vector
Machine (SVM) based detection head. It necessitates the EMVA training set annotated
with eye contact labels.The selection of the EMVA dataset for our research is underpinned
by its inclusion of eye contact labels. This key feature of the EMVA dataset aligns precisely
with the objectives of our study, making it an ideal resource for our analysis in eye
contact detection.

The second approach is unsupervised and allows for the use of the unlabelled EMVA
dataset. Here, we utilize the most accurate available gaze estimator(the original method-
ology proposed by Zhang et al.[ZSFB17a]) to infer users’ gaze points within the dataset.
A clustering algorithm is then employed to determine which gaze points indicate eye con-
tact. Labels generated via the original methodology proposed by Zhang et al.[ZSFB17a]
are termed as pseudo-labels. These pseudo-labels enable us to train the detection head
even in the absence of explicitly annotated eye contact data in the EMVA dataset.

5.4.1 Optics Clustering Algorithm

The Optics Clustering algorithm[ABKS99], employed in our unsupervised training
method, plays a crucial role in categorizing gaze points for generating pseudo-labels. The
Optics Clustering algorithm[ABKS99] is a method used in data analysis for identifying
clusters in spatial data based on density.

In the context of our study, Optics Clustering is utilized to differentiate between gaze
points that signify eye contact and those that do not. The algorithm iteratively adjusts
cluster centroids and the assignment of data points to these clusters, aiming to minimize
intra-cluster variance while maximizing inter-cluster distances. This iterative process
continues until an optimal clustering solution is reached, based on predefined criteria or
when convergence is observed.

The strength of Optics Clustering lies in its adaptability and efficiency in handling
complex data structures, making it an ideal choice for processing the nuanced gaze data
in the EMVA dataset.
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5.5 Experiments

5.5.1 Experimental Series and Baseline Models

To assess the performance of SVM-based detection heads with feature extractors pre-
trained through contrastive learning, we carried out a comprehensive set of experiments.
We conducted four separate experimental series, each consisting of three trials to
evaluate the three contrastive learning frameworks: SimCLR, ConEye, and ConGaze.
The feature extractors were pre-trained using the full GazeCapture dataset. For the
detection head training, the EMVA training set was employed, and evaluations were
performed using the EMVA test set. The four experimental series were set up as
follows:

1. In the first experimental series, the feature extractor pre-trained using contrastive
learning was paired directly with an SVM detection head, which was then trained
using pseudo-labels.

2. The second series used the same pre-trained feature extractor, but the SVM detec-
tion head was trained with ground truth labels.

3. The third experimental series involved an additional step of fine-tuning the pre-
trained feature extractor using the configuration established in the fourth group of
the gaze estimation experiments in table 4.7, prior to training the SVM detection
head with pseudo-labels.

4. The fourth series mirrored the third, but here the SVM detection head was trained
using ground truth labels.

Baseline models were also established for comparison, utilizing feature extractors trained
with supervised methods on the GazeCapture dataset:

1. Baseline A: SVM detection head trained with ground truth labels.

2. Baseline B: SVM detection head trained with pseudo-labels.

These experimental and baseline setups aimed to evaluate the transferability of the
contrastively learned features to the eye contact detection task and to explore the effec-
tiveness of pseudo-labels for supervised training. The training and testing configurations
for each setup are summarized in the table below.

CL: Contrastive Learning. CL+FT: Contrastive Learning with additional Fine-Tuning.
SVM: Support Vector Machine, a machine learning model. GT: Ground Truth, refer-
ring to actual label data. Pseudo: Pseudo-Labels, labels generated by the original
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Series Extractor Detection Dataset for Evaluation
Training Head Detection Set
Method Head

1 CL SVM EMVA Train, Pseudo EMVA Test
2 CL SVM EMVA Train, GT EMVA Test
3 CL+FT SVM EMVA Train, Pseudo EMVA Test
4 CL+FT SVM EMVA Train, GT EMVA Test

Baselines
A Supervised SVM EMVA Train,GT EMVA Test
B Supervised SVM EMVA Train,Pseudo EMVA Test

Table 5.1: Summary of Experimental and Baseline Model Setups

supervised gaze estimation model proposed by Zhang et al.[ZSFB17a] and Optics Clus-
tering[ABKS99]. EMVA Train: Training set from the EMVA dataset. EMVA Test: Test
set from the EMVA dataset.

5.5.2 Overview of Experimental Series and Configurations

The results of the experiments for each series and for the baseline are shown in detail
next in this section.

Table 5.2: Baseline Model Setups for Eye Contact Detection

Exp. Feature Dataset for Test Data MCC
Ectractor Detection
Framework Head

A Supervised EMVA Train, GT EMVA Test 0.57
B Supervised EMVA Train, Pseudo EMVA Test 0.46
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Table 5.3: Series 1 Experimental Results for Eye Contact Detection

Exp. Feature Feature Dataset for Test Data MCC
Ectractor Ectractor Detection
Framework Fine tuning Head

1 SimCLR No EMVA Train, Pseudo EMVA Test 0.48
2 ConEye No EMVA Train, Pseudo EMVA Test 0.57
3 ConGaze No EMVA Train, Pseudo EMVA Test 0.63

Table 5.4: Series 2 Experimental Results for Eye Contact Detection

Exp. Feature Feature Dataset for Test Data MCC
Ectractor Ectractor Detection
Framework Fine tuning Head

4 SimCLR No EMVA Train, GT EMVA Test 0.48
5 ConEye No EMVA Train, GT EMVA Test 0.63
6 ConGaze No EMVA Train, GT EMVA Test 0.64

Table 5.5: Series 3 Experimental Results for Eye Contact Detection

Exp. Feature Feature Dataset for Test Data MCC
Ectractor Ectractor Detection
Framework Fine tuning Head

7 SimCLR Yes EMVA Train, Pseudo EMVA Test 0.41
8 ConEye Yes EMVA Train, Pseudo EMVA Test 0.46
9 ConGaze Yes EMVA Train, Pseudo EMVA Test 0.45

Table 5.6: Series 4 Experimental Results for Eye Contact Detection

Exp. Feature Feature Dataset for Test Data MCC
Ectractor Ectractor Detection
Framework Fine tuning Head

10 SimCLR Yes EMVA Train, GT EMVA Test 0.45
11 ConEye Yes EMVA Train, GT EMVA Test 0.47
12 ConGaze Yes EMVA Train, GT EMVA Test 0.48

59





6 Discussion

6.1 Comparative Analysis of Contrastive Learning
Frameworks in Gaze Estimation

To explore the effectiveness of the three contrastive learning frameworks SimCLR,
ConEye, and ConGaze in gaze estimation tasks, we conducted a total of 18 experiments,
divided into 6 groups. The specific details of each experiment are outlined in the
following tables: Table 4.4, Table 4.5, Table 4.6, Table 4.7, Table 4.8, and Table 4.9. In
the following sections, we will select specific data points for comparison and discuss and
analyze these findings in detail.

Group Models Dataset Extractor
1 SimCLR, ConEye, ConGaze 1% GC Frozen
2 SimCLR, ConEye, ConGaze, RanNet 1% GC Unfrozen
3 SimCLR, ConEye, ConGaze 10% GC Frozen
4 SimCLR, ConEye, ConGaze, RanNet 10% GC Unfrozen
5 SimCLR, ConEye, ConGaze 100 samples GC Frozen
6 RanNet 100 samples GC Unfrozen

Table 6.1: Overview of Fine-Tuning Experiments

Exp. Model Train Data Test Data MAE(°)

A Orig. Model 100% GC GC_test 5.02
B Orig. Model 100% MPII GC_test 7.63

Table 6.2: Baseline

In our analysis, we observe notable differences within each group and across the two
groups concerning the Mean Angle Error (MAE).

In Group 1 (Figure 6.1), where models underwent fine-tuning in a frozen state, ConGaze
(Frozen) demonstrated the lowest MAE at 8.02°. This outperformance, relative to
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Figure 6.1: Overview of Gaze Estimation Results

ConEye (Frozen) and SimCLR (Frozen) with MAEs of 8.57° and 9.71° respectively,
suggests ConGaze’s feature extractor was more adept at identifying representative
features for gaze estimation.

In Group 2 (Figure 6.1), involving unfrozen models, ConGaze (Unfrozen) continued to
excel, registering the lowest MAE of 5.22°, followed by ConEye (Unfrozen) and SimCLR
(Unfrozen) with MAEs of 5.46° and 6.23°, respectively. This superior performance trend
of ConGaze is attributed to its feature extractor’s ability to identify more representa-
tive features. Using this extractor as an initial state for fine-tuning resulted in better
outcomes.

Comparing the two groups, the performance improvement in Group 2 is evident. For in-
stance, SimCLR experienced a reduction in MAE from 9.71° in Group 1 to 6.23° in Group
2, while ConEye’s MAE decreased from 8.57° to 5.46°, and ConGaze’s MAE dropped from
8.02° to 5.22°. Overall, unfrozen models undergoing fine-tuning consistently yielded
better results than their frozen counterparts, underscoring the effectiveness of allowing
feature extractors to adjust and fine-tune for enhanced performance in gaze estimation
tasks.

The results not only confirm unfrozen models’ superiority in reducing MAE but also
underscore the consistent efficacy of the ConGaze framework in both frozen and unfrozen
states, surpassing SimCLR and ConEye in gaze estimation accuracy. It’s important to
note that models with frozen feature extractors do not alter these extractors’ parameters
during supervised fine-tuning. Consequently, unfrozen feature extractors post-fine-tuning
can extract features more suitable for gaze estimation tasks. Supervised fine-tuning of
the feature extractor tailors it more closely to the specific demands of the task.
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Groups 3 and 4 (Figure 6.1 and 6.1) presented results that were largely consistent with
those observed in Groups 1 and 2. However, a key distinction lies in the amount of
training data used. While Groups 1 and 2 utilized only 1% of the GazeCapture dataset,
Groups 3 and 4 employed 10%, leading to overall better results in the latter.

In Group 3, which involved fine-tuning with frozen models, ConGaze (Frozen) achieved
the lowest MAE at 7.69°, followed by ConEye (Frozen) and SimCLR (Frozen) with MAEs
of 8.04° and 9.15°, respectively. This trend aligns with the previous groups, where
ConGaze consistently outperformed the others.

More notably, in Group 4, where models were fine-tuned without freezing, both ConGaze
(Unfrozen) and ConEye (Unfrozen) surpassed the baseline model’s performance. The
baseline, trained with 100% of the labeled GazeCapture dataset, had an MAE of 5.02°.
In contrast, ConGaze (Unfrozen) and ConEye (Unfrozen) in Group 4, trained with
only 10% of the labeled dataset, achieved MAEs of 4.70° and 4.76°, respectively. To
quantify, ConGaze (Unfrozen) exceeded the baseline by approximately 6.37%, and
ConEye (Unfrozen) exceeded it by approximately 5.18%.

These results are particularly significant as they demonstrate that even with a reduced
amount of training data, the fine-tuned ConGaze and ConEye models not only per-
formed comparably but actually outperformed a model trained on the full dataset. This
underscores the efficiency and effectiveness of these contrastive learning frameworks in
gaze estimation tasks.This success is attributed to the gaze-specific data augmentation
and subject-conditional projection module enhancements in the SimCLR framework,
enabling the feature extractor to develop more expressive features for gaze estima-
tion. Future research could involve fine-tuning ConGaze and ConEye with 100% of the
GazeCapture dataset to potentially achieve even better model performance.

Analyzing the results from Groups 5 and 6, as outlined in Figure 6.1, offers valuable
insights into the scenario where we have a significant amount of unlabeled data, but
only a very limited set of labeled data is available for gaze estimation tasks.

In Group 5, where each model underwent fine-tuning with only 100 labeled samples
from the GazeCapture dataset, ConGaze (Frozen) continued to show relatively strong
performance with an MAE of 8.12°. However, the overall increase in MAE values across
all models in this group, including ConEye (Frozen) and SimCLR (Frozen) with MAEs of
9.85° and 12.1°, respectively, underscores a key limitation: even with a feature extractor
trained through contrastive learning, the scarcity of labeled data for fine-tuning still
hampers the performance. This indicates that while unsupervised pre-training can
extract useful features, the precision in tasks like gaze estimation still heavily relies on
the availability of labeled data.

Group 6, with a single experiment involving RanNet (Unfrozen) and yielding an MAE of
12.8°, further reinforces this point. The lack of a contrastive learning-based pre-trained
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feature extractor, combined with the limited labeled data, led to a more pronounced
decrease in performance. This comparison distinctly shows that while unsupervised
contrastive learning can alleviate the dependency on extensive labeled datasets, it
cannot entirely replace the need for labeled data in fine-tuning for specific tasks. The
stark difference in performance between Groups 5 and 6 highlights the value of using
contrastive learning when labeled data is scarce but also emphasizes the necessity of
some amount of labeled data to achieve optimal results in downstream tasks.

6.2 Comparative Analysis of Contrastive Learning
Frameworks in Eye Contact Detection

The previous section analyzed the performance of feature extractors trained using con-
trastive learning frameworks in gaze estimation tasks, demonstrating their effectiveness
due to the extraction of features pertinent to gaze estimation. This chapter extends this
analysis to evaluate their performance in eye contact detection tasks, with a focus on
three primary objectives.

Firstly, while there is an inherent correlation between eye contact detection and gaze es-
timation, and features suitable for gaze estimation may also be applicable to eye contact
detection to some extent, it is imperative to empirically validate whether the features
extracted by the contrastive learning frame trained extractors are equally suitable for
eye contact detection. This necessitates a thorough examination of experimental data to
confirm their applicability.

Secondly, we consider the impact of supervised fine-tuning of these feature extractors
using the gaze-annotated GazeCapture dataset. Specifically, we aim to investigate how
such fine-tuning influences the adaptability of the feature extractors to eye contact
detection tasks.

Thirdly, the possibility of employing pseudo-labels is explored as a means to eliminate
the dependence of the eye contact detection model on manually annotated eye contact
labels. The effectiveness of using pseudo-labels will be scrutinized through experimental
data, to ascertain whether this approach can maintain or enhance the performance of
the detection model without relying on human-generated labels.

Through four series of experiments, this section seeks to assess and validate the versatility
and effectiveness of feature extractors trained via contrastive learning frameworks in
the domain of eye contact detection, exploring the potential benefits and limitations of
this approach.
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Series Extractor Detection Dataset for Evaluation
Training Head Detection Set
Method Head

1 CL SVM EMVA Train, Pseudo EMVA Test
2 CL SVM EMVA Train, GT EMVA Test
3 CL+FT SVM EMVA Train, Pseudo EMVA Test
4 CL+FT SVM EMVA Train, GT EMVA Test

Baselines
A Supervised SVM EMVA Train,GT EMVA Test
B Supervised SVM EMVA Train,Pseudo EMVA Test

Table 6.3: Summary of Experimental and Baseline Model Setups for Eye Contact Detec-
tion

The configuration of the four series of experiments conducted in this study is presented
in Table 6.3. In this context, ’CL’ represents the three contrastive learning frameworks:
SimCLR, ConEye, and ConGaze. Each series, along with the baseline experiments, has
been designed to rigorously assess the performance of feature extractors trained using
contrastive learning frameworks in the context of eye contact detection. The detailed
results of these experiments are comprehensively documented in the following tables:

• Baseline model setups for Eye Contact Detection: Table 5.2.

• Results of Series 1 Experiments: Table 5.3.

• Results of Series 2 Experiments: Table 5.4.

• Results of Series 3 Experiments: Table 5.5.

• Results of Series 4 Experiments: Table 5.6.

These tables collectively provide an in-depth overview of the experimental outcomes,
enabling a nuanced understanding of the efficacy of the applied contrastive learning
methodologies in the domain of eye contact detection.

In comparing the first series of experiments, we observe distinct performances of
ConGaze, SimCLR, and ConEye in eye contact detection tasks. ConGaze leads with an
MCC score of 0.63, demonstrating superior performance, while SimCLR and ConEye
achieve MCC scores of 0.48 and 0.57, respectively. ConGaze’s outstanding performance
is largely attributed to its integration of gaze-specific data augmentation and subject-
conditional projection modules. These optimizations within the SimCLR framework
enable the ConGaze feature extractor to develop features that are not only effective for
gaze estimation but also highly suitable for eye contact detection tasks. Comparing the
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Exp. Feature Dataset for Test Data MAE
Ectractor Detection
Framework Head

A Supervised EMVA Train, GT EMVA Test 0.57
B Supervised EMVA Train, Pseudo EMVA Test 0.46

Table 6.4: Baseline Results for Eye Contact Detection

Figure 6.2: Overview of Eye Contact Detection Results

results, ConGaze not only outperforms SimCLR and ConEye with its higher MCC score
but also surpasses the baseline standard. This indicates that the feature extractor in
ConGaze is more effective than baseline models trained with supervised methods and
labeled gaze estimation datasets. This highlights the advanced capability of ConGaze in
extracting features optimal for eye contact detection tasks.

Cross-examining the results from Series 1 and Series 3 experiments, there is a discernible
drop in the models’ performance on eye contact detection after feature extractors were
fine-tuned with gaze direction-labeled GazeCapture data. Specifically, SimCLR’s MCC
dropped from 0.48 to 0.41, ConEye’s from 0.57 to 0.46, and ConGaze’s from 0.63 to 0.45.
This suggests that such fine-tuning made the extractors more specialized for specific gaze
estimation, reducing their generalizability and effectiveness for eye contact detection.
This specialization appears to compromise the versatility of the features, impacting their
utility in broader tasks.
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Comparing the results from Series 1 and Series 2, ConGaze maintains similar per-
formance, achieving MCC scores of 0.63 and 0.64 respectively, whether trained with
pseudo-labels or ground truth data. This consistency suggests the viability of using
pseudo-labels for fine-tuning eye contact detection models. Conversely, ConEye shows a
significant improvement when trained with ground truth labels, increasing from 0.57 to
0.63 MCC. This indicates that merely using gaze-specific data augmentation is insuffi-
cient to reduce dependency on ground truth labels for fine-tuning. Both gaze-specific
data augmentation and subject-conditional projection modules are necessary to mitigate
the impact of pseudo-labels’ lower accuracy.

6.2.1 Limitations and Future Work

In this study, we focused on optimizing the SimCLR model for gaze estimation and
eye contact detection tasks, but other contrastive learning models like GazeCLR[JM22]
were not explored. Future research could build on this work by applying different
contrastive learning models to eye contact detection. Additionally, after pre-training
the feature extractor with contrastive learning, further fine-tuning with comprehensive
datasets(100% GazeCapture) could enhance model performance.

A limitation of our evaluation phase was the exclusive use of GazeCapture, MPIIFaceGaze,
and EMVA datasets due to time constraints. Future studies should incorporate cross-
validation on more datasets and employ statistical methods to minimize errors.

Finally, the eye contact detection task lacks a dedicated dataset. The EMVA dataset’s eye
contact labels, manually added, may contain inaccuracies. Future efforts should focus
on designing datasets with precise labeling during the data collection phase to ensure
label accuracy.
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7 Conclusion

Eye contact detection, intricately linked with gaze estimation, shares a foundational
basis in feature extraction due to the similar nature of required features for both tasks.
However, unlike gaze estimation which computes a vector for 3D gaze direction, eye
contact detection simplifies to a binary output, determining the presence or absence
of eye contact. This thesis addresses a notable gap: the scarcity of dedicated datasets
for eye contact detection and the challenge in generalizability due to differing labels
between these two tasks.

While gaze estimation has been extensively researched with a variety of methods and
datasets, eye contact detection has not received equivalent attention. This is partly due
to the difficulty in directly applying gaze estimation techniques for inferring eye contact,
often resulting in lower accuracy. Zhang et al. initially proposed a method[ZSB17]
where a gaze estimation model, including its feature extractor, is trained using super-
vised learning, and the features learned are then repurposed for eye contact detection.
However, this method’s limitations stem from the reliance on the feature extractor’s
ability to generalize across both tasks.

In this thesis, we propose a novel model construction for eye contact detection that
employs an unsupervised contrastive learning approach. This methodology allows
the utilization of extensive gaze estimation datasets to train the feature extractor for
eye contact detection, followed by fine-tuning with a smaller, labeled eye contact
dataset. This approach is groundbreaking in applying contrastive learning to eye contact
detection.

Our study applied the SimCLR contrastive learning model, specifically optimized for eye
contact detection, resulting in significant accuracy improvements. This method’s dual
advantages include training the feature extractor without relying on labels and tuning
it to better suit the shared aspects of both gaze estimation and eye contact detection
tasks.

In summary, this thesis demonstrates that contrastive learning can train feature extrac-
tors with enhanced generalizability, capable of extracting features apt for both gaze
estimation and eye contact detection tasks, thereby enhancing the overall performance
in both domains.
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