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Abstract
In this work, we investigate the state observer problem for linear mechani-
cal systems with a single unilateral constraint, for which neither the impact
time instants nor the contact distance is explicitly measured. We propose to
attack the observer problem by transforming and approximating the original
continuous-time system by a discrete linear complementarity system (LCS)
through the use of the Schatzman–Paoli scheme. From there, we derive a
deadbeat observer in the form of a linear complementarity problem. Sufficient
conditions guaranteeing the uniqueness of its solution then serve as observabil-
ity conditions. In addition, the discrete adaptation of an existing passivity-based
observer design for LCSs can be applied. A key point in using a time discretiza-
tion is that the discretization acts as a regularization, that is, the impacts take
place over multiple time steps (here two time steps). This makes it possible to
render the estimation error dynamics asymptotically stable. Furthermore, the
so-called peaking phenomenon appears as singularity within the time discretiza-
tion approach, posing a challenge for robust observer design.
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1 INTRODUCTION

In this work, we will investigate the state observer problem for mechanical systems with impulsive motion, that is, systems
with state jumps caused by unilateral constraints, without explicitly measuring the impact time instants. It is an important
aspect for the state observer design for systems with state jumps whether or not the time instants at which the state
jumps occur are known. Most proposed observers assume that these impact time instants can directly be extracted from
measurements, for example, by measuring all relevant positions in a system1-3 or by directly measuring the presence of
contact through contact or tactile sensors.4 This allows for the design of a state observer that exhibits state jumps at the
exact same time instants as the observed system. By exploiting the assumption of maximal monotonicity of the impact
law, it is then possible to construct a Lyapunov function for the error dynamics (i.e., the time evolution of the difference
between the estimated state and the actual state) which does not increase over impacts. Simply put, the observer problem
then reduces to stabilizing the error dynamics for the non-impulsive motion (restricted to the constructed Lyapunov
function).
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medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.

Int J Robust Nonlinear Control. 2022;32:6667–6683. wileyonlinelibrary.com/journal/rnc 6667

https://orcid.org/0000-0003-1465-4307
https://orcid.org/0000-0001-9859-7519
http://creativecommons.org/licenses/by-nc/4.0/


6668 PREISWERK and LEINE

Only few attempts have been made to design state observers in the case of unknown impact time instants. The main
difficulty for observer design with unknown impact time instants is that the state jumps of the observed system and the
state observer do not coincide.5,6 This results in the peaking phenomenon: even if the observer state nearly matches the
real state, a slight mismatch in the impact time instants leads to a temporarily large Euclidean velocity error caused by
velocity jumps.7-10 The peaking phenomenon makes it difficult to show the asymptotic stability of the error dynamics
based on Lyapunov’s direct method. One approach for such systems is to find a state transformation that transforms the
original system into a new system without state jumps, for which conventional state observer techniques can be applied.5,6

However, such a transformation does not always exist and is in general difficult to find. Another approach is to introduce
a distance metric that gives a distance between two states (such as from the observed system and a state observer), but
does not change its value over state jumps.8 Such a distance metric that is “blind” to state jumps can be used together
with suitable stability notions (see, e.g., Reference 11 for definitions of incremental stability for hybrid systems) to find
a corresponding Lyapunov function. These approaches have been shown to be useful to solve the tracking problem7 or
for controlled synchronization,12 where all states are known. However, they do not imply a suitable state observer design
and calculations can be cumbersome.

The starting point of our article is that we recognize two main hurdles which are inherent to the problem of observer
design for unilaterally constrained mechanical systems. The first problem is the simple fact that jumps in the state, occur-
ring in a continuous-time system, generally form a hurdle for Lyapunov-type analysis and thereby for observer design.
The second problem is related to the impact law describing the velocity jump in unilaterally constrained systems and this
problem needs more explanation. Instantaneous impact laws such as Newton’s or Poisson’s impact law13,14 are formu-
lated on velocity level, that is, they directly relate post-impact relative velocities to pre-impact relative velocities. These
impact laws, which classically have been defined for systems with a single unilateral constraint, need to be generalized to
multiple unilateral constraints (being a topic of active research in the Nonsmooth Dynamics community, see, e.g., Refer-
ences 15 and 16). Generalized versions of these impact laws distinguish between superfluous unilateral constraints which,
although closed, do not participate in the impact process, and actively participating unilateral constraints. The combined
active-inactive behavior of generalized impact laws on velocity level is conveniently expressed through set-valued func-
tions, for example, normal cone inclusions, which enjoy the favorable property of maximal monotonicity (being related
to, but in some sense more strong than, dissipativity of the impact law17). Maximal monotonicity of force laws or impact
laws leads to contraction properties, which in essence are favorable for tracking or observer design. However, and here
lies the problem, the generalized impact laws are only to be applied to closed unilateral constraints (i.e., when contact is
present). Instantaneous impact laws for multibody systems are therefore formulated on position-switched velocity level.
The switching on position level (from closed to open and vice versa) destroys the favorable properties of these impact
laws, making the observer design of unilaterally constrained mechanical systems an incredibly difficult task. These two
key problems, state jumps and loss of maximal monotonicity of the impact law, explain why the observer design of this
class of systems is a Herculean task and risks to reach a dead end.

In this article, we deliberately choose to follow a very different approach, keeping the two key problems right before
our eyes. First, instead of analyzing the continuous-time problem with state jumps, we will use a numerical scheme to
transform the system to a discrete-time system, approximating the former depending on the chosen time step. The time
discretization sidesteps the problem of state jumps as a discrete system only describes state updates over time steps. More-
over, a digital implementation of an observer always needs to be in discrete-time. The time-stepping scheme of Moreau18

(see also References 9 and 19) is perhaps the most celebrated (velocity-impulse-based) scheme within the Nonsmooth
Dynamics community as it can be applied to the simulation of systems with multiple unilateral constraints with Coulomb
friction. The Moreau scheme directly discretizes the equality of measures, which describes the system dynamics, and the
combined contact-impact law, thereby inheriting the switching nature of the generalized Newtonian impact law. More
precisely, in the Moreau scheme one calculates in each time step an index set  of closed (or penetrating) unilateral con-
straints to evaluate the combined contact-impact law on velocity level. The Moreau scheme has been successfully used in
the simulation of, for example, granular media,20 masonry structures,21 robotic systems,22 human hair movements and
circuit breakers. In fact, the Moreau scheme (and extensions thereof, such as the nonsmooth generalized 𝛼-method) is
the preferred “working horse” in almost all applications. However, regarding the second key problem, we will make use
of a less known (and somewhat exotic) time discretization of Schatzman and Paoli,23,24 which involves an impact law
directly formulated on position level, instead of on position-switched velocity level. Thereby the problem of switching of
the impact law on position level is circumvented, giving access to the maximal monotonicity property and its related con-
traction property. The aim of this article is to investigate if this approach is useful to solve the observer design problem of
unilaterally constrained mechanical systems without measuring impact time instants.
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A related area of research is the design of observers within the switched systems framework, that is, for systems
whose dynamics are described by a set of subsystems and a switching law describing how to switch between them. The
switching can depend on the value of an external switching signal, in which case a distinction is made between known and
unknown switching signals (with unknown switching signals making the design of observers more difficult). To name
just a few examples, the works25,26 investigate systems with an external switching signal. In other cases, the switching
is state dependent.27,28 Even though these works are not concerned with impulsive motion (i.e., with state jumps), they
are related to our work. More precisely, we will transform our system to a discrete-time system, which can be recast as a
piecewise affine system where the switching is state and input dependent.

The outline is as follows. In Section 2, we formulate the continuous-time observer problem. Based on the
Schatzman–Paoli scheme, a suitable time discretization is then derived in Section 3. Subsequently, a deadbeat observer
for the discrete observer problem is presented in Section 4. Furthermore, a passivity-based observer design for linear
complementarity systems is transported to the discrete-time setting in Section 5. Finally, numerical results for an impact
oscillator system are given in Section 6. The usefulness of the presented approach is discussed in Section 7.

2 CONTINUOUS-TIME STATE OBSERVER PROBLEM

In the following, we will consider a linear mechanical system with f degrees of freedom which is subjected to unilateral
constraints (linearity refers to the dynamics in the absence of impacts). Let q(t) ∈ Rf be the generalized coordinates
parameterized by the time t and let u(t) denote the corresponding generalized velocities. Due to the unilateral constraints,
discontinuities in the generalized velocities may occur (caused by collisions). In order to allow for discontinuous u(t),
we assume that the generalized velocities are special functions of locally bounded variation, written as u ∈ SLBV(R;Rf ).
Here, SLBV(R;Rf ) refers to the subspace of all functions 𝝋 ∶ R → Rf of locally bounded variation whose Cantor part
of the derivative vanishes.29 It is known that every u ∈ SLBV(R;Rf ) can be decomposed into an absolutely continuous
part uac and a step function us as u = uac + us. Clearly, functions u ∈ SLBV(R;Rf ) are not differentiable in the classical
sense, as step functions are not differentiable at their points of discontinuity. However, such functions can be expressed as
integrals, which provide a derivative in the sense of measures. More precisely, with every function of bounded variation
u, a differential measure (also called Stieltjes measure) is associated, written as du.30 The integral over a compact interval
[ta, tb] with respect to the differential measure du is given by

∫[ta,tb]
du = u+(tb) − u−(ta), (1)

where u−(t) and u+(t)denote the left and right limit of u at t. In the special case of the integration interval being a singleton,
that is, ta = tb, the integral is equal to u+(ta) − u−(ta), being the jump in u(t) at t = ta. For a more extensive treatment of
differential measures and their application to mechanical systems, the reader is referred to References 18, 30, and 31.

The integral in (1) can be divided into two parts. On one hand, we can express a step function as an integral with
respect to the Dirac point measure d𝛿tk , which is such that

𝛿tk ([ta, tb]) =
∫[ta,tb]

d𝛿tk =

{
1 if tk ∈ [ta, tb],
0 if tk ∉ [ta, tb].

(2)

For example, by setting ta = 0 and tb = t, the integral in (2) describes the unit step function htk given by htk (t) = 1 ∀ t ≥ tk
and htk (t) = 0 ∀ t < tk. More generally, for a step function us ∶ R → Rf with a countable number of discontinuities at
tk ∈ {t1, t2, …} and given step heights u+s (tk) − u−s (tk) we can write

u+s (tb) = u−s (ta) +
∫[ta,tb]

(u+s − u−s )d𝜂, (3)

where we used d𝜂 =
∑

k d𝛿tk for brevity. On the other hand, for an absolutely continuous function uac it holds that

u+ac(tb) = u−ac(ta) +
∫[ta,tb]

u̇acdt, (4)
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where u̇ac ∶= duac∕dt denotes the time derivative and dt is the Lebesgue measure on R, leading to the continuity property
u+ac(ta) − u−ac(ta) = 0. Adding both sides of (3) and (4) and using the decomposition u = uac + us leads to

u+(tb) − u−(ta) =
∫[ta,tb]

u̇acdt +
∫[ta,tb]

(u+s − u−s )d𝜂. (5)

Note that u+ − u− = u+s − u−s because uac is continuous and u̇ = u̇ac wherever it is defined since us is constant between
points of discontinuity. Therefore, by applying (1) to the left-hand side of (5), it follows that

∫[ta,tb]
du =

∫[ta,tb]
u̇dt + (u+ − u−)d𝜂, (6)

or, written as an equality of measures, du = u̇dt + (u+ − u−)d𝜂.
The dynamics of a linear mechanical system which is subjected to unilateral constraints is described by a measure

differential inclusion of the form9

dq = udt,
Mdu + (Kq +Du − f(t))dt = WdP, (7)

where dq is the differential measure of the generalized coordinates q, du = u̇dt + (u+ − u−)d𝜂 is the differential measure
of the generalized velocities, allowing for discontinuities in the generalized velocities u. Furthermore, dP = 𝝀dt + 𝚲d𝜂 is
the differential contact effort measure. More precisely, 𝝀 model the constraint forces during the non-impulsive motion
and 𝚲 are the impulsive forces due to impacts. The system is subjected to a bounded, time-dependent external forcing
f(t). For the sake of simplicity, we assume that the mass matrix M, the stiffness matrix K, and the damping matrix D are
constant. Furthermore, the unilateral constraints are described by linear inequality conditions g(q) = WTq ≥ 0 and the
generalized force directions, given by the columns of W = (𝜕g∕𝜕q)T, are assumed to be constant and linearly independent
(W has full rank).

For the components of the constraint forces 𝝀 and 𝚲, we assume Signorini’s law on position level

0 ≤ g⊥𝝀 ≥ 0, (8a)

0 ≤ g⊥𝚲 ≥ 0, (8b)

where we used the notation g ≥ 0 to express that every component gi ≥ 0∀i and the notation g⊥𝝀 to express the
orthogonality gT

𝝀 = 0. Hence, (8a) is equivalent to gi ≥ 0, 𝜆i ≥ 0, gi𝜆i = 0 for all i and is therefore referred to as an inequal-
ity complementarity. The constraint forces can alternatively be formulated on position-switched velocity level. With
𝜸 = WTu we then have component-wise

gi(q) = 0 ∶ 0 ≤ 𝛾i⊥𝜆i ≥ 0 , gi(q) > 0 ∶ 𝜆i = 0,
gi(q) = 0 ∶ 0 ≤ 𝛾i⊥Λi ≥ 0 , gi(q) > 0 ∶ Λi = 0. (9)

In addition to the force laws, an impact law has to be specified for a full description of the dynamics. Here, we will make
use of a generalized Newtonian impact law,13 which is written component-wise as

gi(q) = 0 ∶ 0 ≤ 𝜉i⊥Λi ≥ 0,
gi(q) > 0 ∶ Λi = 0, (10)

with the kinematic variable 𝜉i ∶= 𝛾+i + 𝜀𝛾
−
i and a given coefficient of restitution 𝜀 ∈ [0, 1]. The force law (9) and the impact

law (10) can be gathered in a description of measures

gi(q) = 0 ∶ 0 ≤ 𝜉i⊥
∫


dPi ≥ 0,

gi(q) > 0 ∶
∫


dPi = 0, (11)
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where the sign (or nullity) of gi and 𝜉i is assumed to be constant during the interval  (e.g., a short time step as used in a
time discretization). For brevity, (11) is usually written as

gi(q) = 0 ∶ 0 ≤ 𝜉i⊥dPi ≥ 0,
gi(q) > 0 ∶ dPi = 0, (12)

refraining from referring to the assumption on .
The question is now, given the system dynamics as a measure differential inclusion (7) together with the force laws

and an impact law, how can we design a state observer, that recovers all positions and velocities from measurements?
Even though the dynamics is linear in the absence of impacts, this is not a trivial task. Several observer designs are
available in the literature, which assume that contact information is known through measurement, that is, the index set
of closed unilateral constraints  = {i|gi = 0} is measured through contact sensors. What these observer designs have
in common is that they consist of a copy of the observed system, modified such that the observer closes its unilateral
constraints depending on the measurement signals. Furthermore, Luenberger-type correction terms and in some cases
position jumps are added. As an example, in Reference 1, a minimal order velocity observer of the form (adapted to
our notation)

Mdz − (Dû +Kq − f(t))dt −MLûdt = WdP̂,
û = z − Lq, (13)

with the force law

gi(q) = 0 ∶ 0 ≤ 𝜉i⊥dP̂i ≥ 0,
gi(q) > 0 ∶ dP̂i = 0, (14)

is introduced. Therein, q is the measured position and quantities with a hat ( ̂ ) refer to entities of the observer. As
the combined contact-impact law (14) switches depending on the measured positions q, impacts in the state observer
dynamics occur at the exact same time instants as for the observed system. By exploiting the assumption of maximal
monotonicity of the impact law, it is therefore possible to construct a Lyapunov function for the error dynamics to show
that the estimated state converges to the actual state. The topic of the present article is to develop methods for observer
design without contact information.

3 DISCRETE-TIME STATE OBSERVER PROBLEM

In the following, we pursue an alternative approach, where we first discretize the dynamics and then design a state
observer for the discrete (and therefore approximate) system. As explained in the Introduction, this alleviates the problem
of state jumps in the observer design.

Here, we will make use of the less known scheme of Schatzman and Paoli.23,24 Schatzman and Paoli motivated this
somewhat exotic scheme, which involves an impact law on position level, by the fact that it allows for a rigorous con-
vergence proof (more rigorous than can be given for the Moreau scheme referred to in the introduction). However,
the practical application of this scheme is restricted, as it can only be applied to mechanical systems with a single
frictionless unilateral constraint, or, more generally, to multiple frictionless unilateral constraints which are decoupled
such that wT

i M−1wj = 0 for i ≠ j, where wi = 𝜕gi∕𝜕q. The Schatzman–Paoli discretization scheme can in our case be
written as

qk+1 = qk + Δtuk+1,

M(uk+1 − uk) +
(
Kqk +Duk − fk

)
Δt = WPk, (15)

together with
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𝜻k ∶= gk+1 + 𝜀gk−1,

0 ≤ 𝜻k⊥Pk ≥ 0, (16)

where Δt is the (constant) time step size and an index k refers to the corresponding variable being evaluated (or approxi-
mated) at t = tk ∶= kΔt, for example, qk ∶= q(tk). The above discretization has the form of a semi-implicit Euler scheme,
directly applied to the MDI (7). Likewise the discrete contact distance is gk = WTqk and the corresponding discrete con-
tact velocity is 𝜸k = WTuk. To keep a simple notation, we will assume all coefficients of restitution 𝜀i = 𝜀 to be equal. What
makes the Schatzman–Paoli scheme special is the fact that the discrete impact law (16), that is, 0 ≤ gk+1 + 𝜀gk−1⊥Pk ≥ 0,
is formulated on position level, thereby circumventing the calculation of an index set. This discrete impact law may
seem somewhat heuristic as it is not a direct discretization of the combined contact-impact law (12). Its meaningfulness
becomes clear when evaluated over multiple time steps. Indeed, if 𝜻k vanishes over two consecutive time steps, that is,
𝜻k−1 = 𝜻k = 0, then it follows with the definition of 𝜻k in (16) that

𝜻k − 𝜻k−1

Δt
=

gk+1 − gk

Δt
+ 𝜀

gk−1 − gk−2

Δt
= WT

(qk+1 − qk

Δt
+ 𝜀

qk−1 − qk−2

Δt

)
= WT(uk+1 + 𝜀uk−1) = 𝜸k+1 + 𝜀𝜸k−1 = 0. (17)

The last equality, 𝜸k+1 + 𝜀𝜸k−1 = 0, shows that Newton’s impact law is fulfilled in a discretized sense over two
time steps. Velocity jumps that occur instantaneously in continuous time take place over an interval of two
time steps in the discretization, which can be seen as a regularization. In the following, let us derive the
state-space representation of the discretized system (15), (16) by introducing the state xk ∶=

(
qT

k uT
k

)T. Note that
we are writing variables and matrices related to the state-space description without serifs, whereas in our orig-
inal description of the mechanical system we are using serifs (therefore, variables denoted by the same let-
ter, are assigned a different meaning depending on whether they are written with or without serifs). Rewriting
Equation (15) as

(
I −ΔtI
0 M

)
xk+1 =

(
I 0

−ΔtK M − ΔtD

)
xk +

(
0

W

)
Pk +

(
0
ΔtI

)
fk, (18)

and inverting the matrix on the left-hand side, yields an update rule for the state

xk+1 =

(
I ΔtM−1

0 M−1

)[(
I 0

−ΔtK M − ΔtD

)
xk +

(
0

W

)
Pk +

(
0
ΔtI

)
fk

]
, (19)

where 0 denotes a zero matrix of appropriate dimensions. Finally, after simple matrix multiplications we arrive at

xk+1 = Axk + BPk + Efk, (20)

with the corresponding system matrices A,B, and E given by

A =

(
I − Δt2M−1K Δt(I − ΔtM−1D)
− ΔtM−1K I − ΔtM−1D

)
, B =

(
ΔtM−1W

M−1W

)
, E =

(
Δt2M−1

ΔtM−1

)
. (21)

To complete the state-space description, we express the discrete impact law (16) in the state variables. We simply use the
contact distance gk = WTqk and the first equation of (15) as follows in (16)

𝜻k = WT(qk+1 + 𝜀qk−1) = WT(qk+1 + 𝜀(qk − Δtuk))
=
(
WT 0

)
xk+1 + 𝜀

(
WT − ΔtWT

)
xk

=
(
WT 0

) [
Axk + BPk + Efk

]
+ 𝜀

(
WT − ΔtWT

)
xk

= Cxk + DPk + Ffk, (22)
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with the matrices

C =

(
[(1 + 𝜀)I − Δt2M−1K]TW
Δt[(1 − 𝜀)I − ΔtM−1D]TW

)T

, D = ΔtWTM−1W, F = Δt2WTM−1
. (23)

We recognize the matrix D above to be a scaled version of the so-called Delassus matrix WTM−1W,15 which
is symmetric and positive definite as we assume W to have full column rank. Summarizing the discrete sys-
tem dynamics (20), (22), and (16) and introducing an output equation yk = Gxk (i.e., the available measurements)
we have

xk+1 = Axk + BPk + Efk, (24a)

𝜻k = Cxk + DPk + Ffk, (24b)

0 ≤ 𝜻k⊥Pk ≥ 0, (24c)

yk = Gxk, (24d)

which is a discrete linear complementarity system (LCS).32,33 For a given xk and fk, Equations (24b) and (24c)
form together a linear complementarity problem (LCP),34,35 which has to be solved for 𝜻k and Pk in each
time step.

Remark 1. As noted in Reference 24, the time-stepping scheme above admits a unique solution if the set
 ∶= {q ∈ Rf |g(q) ≥ 0} of admissible positions is convex. Here, we restrict ourselves to linear inequality con-
straints g(q) = WTq. It is therefore straightforward to verify that  is always convex in our setting. Also,
the LCP (24b), (24c) has a unique solution if all principal minors of the matrix D are strictly positive
(i.e., it is a so-called -matrix, see, e.g., Reference 34), which is fulfilled since D is symmetric and positive
definite.

4 A DISCRETE-TIME DEADBEAT OBSERVER

A state observer that is able to reconstruct the exact state in finite time is commonly called a deadbeat observer.
One way to obtain such a deadbeat observer is to simply calculate the state from a collection of known system out-
puts. Clearly, this method requires exact output measurements and a perfectly accurate model. For discrete linear
time invariant systems, one way to calculate the initial state is to propagate the discrete dynamics over n − 1 steps
and to relate it to the measured output in each step. This results in a system of linear equations that can be solved
for the initial condition. In the following, we will see that for discrete LCS, it is possible to reconstruct the cur-
rent state from a number of outputs, by solving a LCP. Sufficient conditions guaranteeing the existence of a unique
solution to this LCP then serve as an observability condition. Unsurprisingly, one of these conditions is that the
unconstrained motion is observable. In order to use a more standard notation, we will consider a discrete LCS of
the form

xk+1 = Axk + Bwk + Evk,

zk = Cxk + Dwk + Fvk,

0 ≤ zk⊥wk ≥ 0,
yk = Gxk, (25)

with the state xk, some input vk, the output yk, and the complementary variables zk and wk, which play the role of the
kinematic variable 𝜻k and the discrete impulse Pk in (24). For the sake of simplicity, we will restrict ourselves for the
moment to the case without external inputs, that is, vk = 0 ∀ k. However, all subsequent steps can straightforwardly be
extended to include inputs, as will be discussed in Remark 3. First, we connect the outputs to the initial condition by
successively calculating the outputs using (25), that is,
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⎛⎜⎜⎜⎜⎜⎝

y0

y1

⋮

yk

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

G

GA

⋮

GAk

⎞⎟⎟⎟⎟⎟⎠
x0 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 … 0
GB 0 0 … 0

GAB GB 0 … 0
⋮ ⋮

GAk−1B GAk−2B … GB 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝

w0

w1

⋮

wk

⎞⎟⎟⎟⎟⎟⎠
. (26)

For a more compact notation we summarize (26) with Yk ∶=
(
yT

0 … yT
k

)T and Wk ∶=
(
wT

0 … wT
k

)T in

Yk = kx0 +MkWk. (27)

Similarly, we summarize the corresponding sequence

⎛⎜⎜⎜⎜⎜⎝

z0

z1

⋮

zk

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

C

CA

⋮

CAk

⎞⎟⎟⎟⎟⎟⎠
x0 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 … 0
CB D 0 … 0

CAB CB D … 0
⋮

CAk−1B CAk−2B … CB D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝

w0

w1

⋮

wk

⎞⎟⎟⎟⎟⎟⎠
, (28)

with Zk =
(
zT

0 … zT
k

)T in the compact form

Zk = kx0 +MkWk. (29)

Note that matrices with a similar structure are denoted by the same letter, but distinguished by overlines. Since zi and wi
satisfy the inequality complementarity 0 ≤ zi⊥wi ≥ 0 for all i, it directly follows that

0 ≤ Zk⊥Wk ≥ 0. (30)

Finally, propagating the first equation in (25) over k time steps with vk = 0 ∀ k yields

xk = Akx0 +
[
Ak−1B Ak−2B … B 0

]
Wk =∶ Akx0 + QkWk. (31)

Now let k = n − 1 with the number of states n. For a better readability, we will omit all indices if they equal n − 1.
Then, Equations (27), (29), and (30) with known outputs Y ∶= Yn−1 and the unknown initial state x0 and contact efforts
W ∶= Wn−1 are

Y = x0 +MW,

Z = x0 +MW,

0 ≤ Z⊥W ≥ 0, (32)

and form a mixed linear complementarity problem (MLCP).36 Our goal is to calculate x0 and W for a given Y. The MLCP
(32) does have a solution, because it is generated by (24). The matrix  is the well-known observability matrix for the
non-impulsive motion. Therefore, if the system is observable in the absence of impacts,  has full column rank and the
first equation of (32) can uniquely be solved for

x0 = †[Y −MW], (33)

with the left inverse† (which is equal to the inverse−1 if is square). By inserting (33) in the remaining equations of
the MLCP we arrive at
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Z =
[
M −†M

]
W +†Y,

0 ≤ Z⊥W ≥ 0, (34)

being a LCP.35 This LCP (and with it the MLCP) is guaranteed to have a unique solution if all principal minors of the
matrix

[
M −†M

]
are strictly positive,35 which cannot easily be checked in this general form. However, it has to be

checked for a specific system at hand and serves, together with the rank condition for , as a sufficient observability
condition. Once W is known from the LCP solution, the current state is calculated with (33) and (31), that is,

xn−1 = An−1

†Y + [Q − An−1


†M]W, (35)

where Q ∶= Qn−1.

Remark 2. In order to obtain a state estimate at every time step k one applies (34), (35) to a moving time window of n
time steps, that is,

xk = An−1

†Yk,n−1 + [Q − An−1


†M]Wk,n−1, (36)

where Yk,n−1 ∶=
(

yT
k−n+1 … yT

k

)T
and Wk,n−1 ∶=

(
wT

k−n+1 … wT
k

)T
.

Remark 3. It is easy to verify that if inputs are taken into consideration, the moving window deadbeat observer reads

xk = An−1

†Yk,n−1 + [Q − Ak


†M]Wk,n−1 + [R − Ak


†N]Vk,n−1,

Zk,n−1 =
[
M −†M

]
Wk,n−1 +†Yk,n−1 +

[
N −†N

]
Vk,n−1,

0 ≤ Zk,n−1⊥Wk,n−1 ≥ 0, (37)

where Vk,n−1 ∶=
(

vT
k−n+1 … vT

k

)T
are the collected inputs, R ∶=

[
Ak−1E Ak−2E … E 0

]
, and the two remaining

matrices are

N ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 … 0
GE 0 0 … 0

GAE GE 0 … 0
⋮ ⋮

GAk−1E GAk−2E … GE 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, N ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F 0 0 … 0
CE F 0 … 0

CAE CE F … 0
⋮ ⋮

CAk−1E CAk−2E … CE F

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (38)

5 PASSIVITY-BASED OBSERVERS FOR DISCRETE LCS

The deadbeat approach presented in the last section suffers from one main drawback: the state estimate is highly sensitive
on measurement and model errors. One reason is that the observability matrix  is often ill-conditioned and, therefore,
taking the (left) inverse, strongly amplifies measurement noise. Therefore an asymptotic state observer is much more
desirable in practical applications. For continuous-time LCSs, Heemels et al.37 suggest a Luenberger-type state observer,
where the observer gains are determined based on a linear matrix inequality (LMI) related to system passivity. The equiv-
alent procedure is presented here for discrete LCSs. In analogy to Reference 38, we define passivity for discrete-time
systems as follows.

Definition 1. A linear time-invariant discrete-time system

xk+1 = Axk + Bwk,

yk = Cxk + Dwk, (39)
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written in short as system (A,B,C,D), is said to be passive if there exists a nonnegative function V ∶ Rn → R (called the
storage function) with V(0) = 0 such that

V(xk+1) − V(xk) ≤ yT
kwk (40)

∀ wk and ∀ k.

A useful result with respect to passivity, adapted from Reference 39 to discrete-time systems, is the following theorem,
in which we use the notation M ≤ 0 and M < 0 to express that a matrix M is negative semidefinite and negative definite,
respectively. Likewise, M ≥ 0 and M > 0 express positive semidefiniteness and positive definiteness of M.

Theorem 1. System (39) is passive if and only if there exists a matrix P = PT ≥ 0 such that the following matrix inequality
holds

(
ATPA − P ATPB − CT

BTPA − C BTPB − (D + DT)

)
≤ 0. (41)

In analogy to Reference 37, we define the slightly stronger property, known as strict passivity, as follows.

Definition 2. System (39) is said to be strictly passive if there exists a matrix P = PT
> 0 and a constant 𝜇 > 0 such that

the matrix inequality

(
ATPA − P + 𝜇P ATPB − CT

BTPA − C BTPB − (D + DT)

)
≤ 0 (42)

holds.

Note that if the system (39) is strictly passive, then the inequality (40) holds strictly. Now consider a general dis-
crete LCS (not necessarily the discretization of the dynamics of a mechanical system) of the form (25). The proposed
Luenberger-type state observer for the discrete LCS (25) is in analogy to Reference 37

x̂k+1 = Ax̂k + Bŵk + Evk + L1(yk − ŷk),
ẑk = Cx̂k + Dŵk + Fvk + L2(yk − ŷk),
0 ≤ ẑk⊥ŵk ≥ 0,

ŷk = Gx̂k, (43)

where all observer related quantities are written with a circumflex ( ̂ ). The observer consists of a copy of the original
system, augmented by two correction terms, both linear in the output difference. Defining the observation errors as x̃k ∶=
xk − x̂k, z̃k ∶= zk − ẑk and w̃k ∶= wk − ŵk, it follows that

x̃k+1 = (A − L1G)x̃k + Bw̃k,

z̃k = (C − L2G)x̃k + Dw̃k,

z̃T
kw̃k ≤ 0. (44)

The last relation in (44) is easily checked by expanding

z̃T
kw̃k = (zk − ẑk)T(wk − ŵk) = zT

kwk − zT
kŵk − ẑT

kwk + ẑT
kŵk. (45)

Therein, the first and the last term vanish and the two other terms are non-positive due to the inequality complemen-
tarities in (25) and (43). Note that the inequality z̃T

kw̃k ≤ 0 represents the monotonicity property of the discrete impact
law for mechanical systems. It is however not an inequality complementarity. Equation (44) does therefore not form a
full description of the error dynamics, because w̃k cannot be expressed as a function of the estimation error x̃k. We rather
have to use the last three lines of (25) and (43). As a consequence, w̃k depends on xk, x̂k, and vk, where x̂k can be replaced
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by xk − x̃k (or the other way around). As pointed out in Reference 37 for the continuous-time case, the error dynamics is
therefore nonautonomous and has two states, x̃k and xk (or alternatively x̃k and x̂k). However, only the estimation error x̃k
has to tend to zero as k increases. It is worth mentioning that in (44), w̃k is not seen as a disturbance on the error dynamics,
as in the case of a unilaterally constrained mechanical system, it represents the error in the constraint forces which con-
stitute a fundamental aspect of the dynamics. From the inequality in (44), it follows that if system (A − L1G,B,C − L2G,D)
is strictly passive, the corresponding storage function serves as a Lyapunov function to show asymptotic stability of the
estimation error. Indeed, we can select V(x̃k) = x̃T

kPx̃k with P = PT
> 0 and calculate

V(x̃k+1) − V(x̃k) = x̃T
k+1Px̃k+1 − x̃T

kPx̃k

= (x̃k+1 + x̃k)TP(x̃k+1 − x̃k)
= ((A − L1G)x̃k + Bw̃k + x̃k)TP((A − L1G)x̃k + Bw̃k − x̃k), (46)

which, after first subtracting and then again adding the term 2z̃T
kw̃k, can be written as

V(x̃k+1) − V(x̃k) =

(
x̃k

w̃k

)T (
(A − L1G)TP(A − L1G) − P (A − L1G)TPB − (C − L2G)T

BTP(A − L1G) − (C − L2G) BTPB − (D + DT)

)(
x̃k

w̃k

)

+ 2z̃T
kw̃k. (47)

Because z̃T
kw̃k ≤ 0, it follows that if the system (A − L1G,B,C − L2G,D) is strictly passive, we have V(x̃k+1) − V(x̃k) ≤

−𝜇V(x̃k). In that case, the estimation error dynamics is asymptotically stable. The matrix inequality

(
(A − L1G)TP(A − L1G) − P + 𝜇P (A − L1G)TPB − (C − L2G)T

BTP(A − L1G) − (C − L2G) BTPB − (D + DT)

)
≤ 0, (48)

that we need to fulfill to ensure strict passivity, is nonlinear in the unknowns L1, L2 and P. However, by introducing
S ∶= PL1 and applying the Schur complement lemma, it can be checked that (48) is equivalent to the LMI

⎛⎜⎜⎜⎝
− P + 𝜇P −(C − L2G)T ATP − GTST

− (C − L2G) −(D + DT) BTP

PA − SG PB −P

⎞⎟⎟⎟⎠
≤ 0. (49)

Since P is invertible, L1 can be recovered in a second step as L1 = P−1S. The transformation from the nonlinear matrix
inequality (48) to the LMI (49) is very useful, since efficient numerical LMI solvers are available. Note however that
imposing additional constraints on the solutions of (49) can lead again to a nonlinear matrix inequality. For example, if
one wants to introduce the constraint L2 = TL1 with some given matrix T, one would need to be replace L2 = TL1 = TP−1S
in (49), rendering the matrix inequality again nonlinear.

5.1 An extended version for position measurements

In our case of a mechanical system, zk represents the kinematic variable 𝜻k = gk+1 + 𝜀gk−1 in (16). Therefore zk, and with
it z̃k, depend on one past value gk−1 of the contact distance and one future value gk+1. It therefore makes sense to extended
the observer (43) to include past and future measurements at tk−1 and tk+1, respectively. We add more correction terms as
follows

x̂k+1 = Ax̂k + Bŵk + Evk + L1(yk − ŷk) + L3

(
yk+1 − ŷ(−)k+1

)
+ L5

(
yk−1 − ŷ(−)k−1

)
,

ẑk = Cx̂k + Dŵk + Fvk + L2(yk − ŷk) + L4

(
yk+1 − ŷ(−)k+1

)
+ L6

(
yk−1 − ŷ(−)k−1

)
,

0 ≤ ẑk⊥ŵk ≥ 0,
ŷk = Gx̂k, (50)
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where ŷ(−)k+1 ∶= G(Ax̂k + Bŵk + Evk) is the predicted future output without considering the correction terms. Similarly, y(−)k−1
refers to the past output, obtained by back-propagation without considering correction terms. As we did in (22), we can
back-propagate positions with the kinematic equation qk−1 = qk − Δtuk. Here, we restrict ourselves to the case where
the output yk depends only on positions qk. The reason for this is that obtaining past velocities uk−1 by back-propagation
would involve past values wk−1 and vk−1, such that the estimation error dynamics would become structurally different
from (44). In addition, in cases where A is not invertible, the back-propagation might not have a (unique) solution. We will
write yk−1 = Gxk−1 = GÃxk with the back-propagation matrix Ã ∶= (I − ΔtI; 0 0), where I is a unit matrix of appropriate
dimensions and a semicolon is used to separate rows. With x̃k+1 = xk+1 − xk the error dynamics can be written as

x̃k+1 = (A − L1G − L3GA − L5GÃ)x̃k + (B − L3GB)w̃k,

z̃k = (C − L2G − L4GA − L6GÃ)x̃k + (D − L4GB)w̃k,

z̃T
kw̃k ≤ 0, (51)

which is of the same form as (44) but with more design variables. Therefore, we can follow the same steps as in (46) to
(49) to obtain a LMI.

Remark 4. The observer dynamics (50) can alternatively be written as

x̂k+1 = (A − L1G − L3GA − L5GÃ)x̂k + (B − L3GB)ŵk + (E − L3GE)vk

+ L1yk + L3yk+1 + L5yk−1,

ẑk = (C − L2G − L4GA − L6GÃ)x̂k + (D − L4GB)ŵk + (F − L4GE)vk

+ L2yk + L4yk+1 + L6yk−1,

0 ≤ ẑk⊥ŵk ≥ 0. (52)

To ensure the existence of a unique solution, the observer gain L4 has therefore to be designed such that D − L4GB is a
-matrix.

Remark 5. If L3 can be designed such that B − L3GB = 0, the state error in (51) becomes independent of w̃k. We are then
left with designing L1 and L5 such that the error dynamics is asymptotically stable. This corresponds to an unknown input
observer as it is known for linear systems. However, as in our numerical example below, such a gain L3 often does not exist.

6 NUMERICAL EXAMPLE

As an example system, consider the two-mass oscillator depicted in Figure 1. The oscillator with masses m, spring con-
stants k and damping ratios d is excited by an external force F(t) applied to the first mass and the movement of the second
mass is restricted by a motion limiting stop. The positions of the two masses, relative to the equilibrium positions for
F = 0, are described by the coordinates q1 and q2 . The system dynamics is described by (7) with

M =

(
m 0
0 m

)
,K =

(
2k −k
− k k

)
,D =

(
2d −d
− d d

)
,W =

(
0
− 1

)
, and f =

(
1
0

)
F(t). (53)

The parameters are given by m = 1 kg, k = 1500 N/m, d = 0.5 N s/m, and the coefficient of restitution is 𝜀 = 0.8. We use
a periodic excitation F(t) = a sin(𝜔t) with an amplitude of a = 10 N and a frequency 𝜔 = 5.25 ⋅ 2𝜋 rad/s.

To reduce large differences in the order of magnitude of numerical values during the solution, we scale uk and wk by
the time step length Δt prior to solving the LMI. More precisely, in (25), we replace the velocity uk by Δqk ∶= qk − qk−1
and wk by Δtwk. As a result, we obtain scaled system matrix entries (which are not given here). The LMI (49) and its
extended counterpart are then solved with the scaled system matrices using the Matlab integrated LMI solver feasp, which
is based on a projective method.40 In the following, we will have a closer look at three cases of different difficulty:

• Case I with output yk = qk, that is, all positions are measured with G =
(

1 0 0 0
0 1 0 0

)
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F I G U R E 1 An example system with one unilateral constraint.

• Case II with output yk = q1k, that is, only the position of the non-colliding mass is measured with G =
(
1 0 0 0

)
• Case III with yk = q2k − q1k, that is, the difference between the two mass positions are measured with G =(

− 1 1 0 0
)

Even though in all three cases positions are measured, these cases are different in their difficulty because they do
not fulfill the same observability conditions. Case I is the easiest, since we directly know from measurements whether
or not the contact is open or closed. As mentioned in the introduction, in that case several existing observer designs
are applicable. The observability matrix  has full column rank in all three cases, indicating that the non-impulsive
dynamics is observable in all cases. For the (discretized) impulsive dynamics, we introduced a sufficient observability
condition in Section 4: if the matrix

[
M −†M

]
is a  -matrix, then the LCP (34) has a unique solution. This observ-

ability condition is fulfilled in case I and case II, but not in case III. Therefore, for the cases I and II, observability is
confirmed and the deadbeat observer (34), (35) is applicable, while for case III observability remains undetermined and
the deadbeat observer is not applicable. Regarding the passivity-based observers from Section 5, for case I both, the LMI
(49) and its extended counterpart, admit a solution. For case II, only the LMI of the extended observer version admits
a solution, which shows the necessity to include past and future measurements in the observer in the presence of uni-
lateral constraints. Finally, for case III, both LMIs do not admit a solution. Therefore, the passivity-based observer is
not applicable in case III which we will exclude from further discussion. In the following we will concentrate our dis-
cussion on case II, since it was observed in the numerical analysis that case I shows a similar behavior, but case II
is more difficult and therefore more interesting. The first thing we observe from the numerical LMI solution of case
II is that the entries of the observer gains Li (i = 1, … , 6) increase as the step size Δt decreases. Figure 2 shows the
maximum absolute value of all observer gain entries as a function of Δt2 . The observer gains are roughly inversely pro-
portional to the squared time step size. As a result of the high observer gains for small time steps, the initial observer
error is often strongly amplified at the beginning. In Figure 3, the trajectories of the impacting mass are plotted for
both, the discretization of the observed system and the corresponding extended passivity-based observer, with Δt = 10−4

s and selected initial conditions. The velocity estimation strongly deviates from the true trajectory for a short period
of time. This phenomenon is also known as “peaking” in the literature on high-gain observers,41 but is not to be con-
fused with the peaking phenomenon of impulsive systems, which refers to the fact that the Euclidean error between
trajectories can jump to high values, even if the trajectories are arbitrarily close. The Lyapunov function (and with it
the state estimation error), however, decreases quickly, as shown in Figure 4. A real-time implementation of the state
observer is challenging for very small time steps. In our numerical example, the average computation time per time step
on a standard desktop PC is 2.5 ⋅ 10−5 s. Here, we chose Δt = 10−4 s for presentation. For other time steps Δt , the qual-
itative behavior of the extended passivity-based observer is similar, with higher deflections in the transient phase for
lower Δt .

Large entries in the observer gains Li (i = 1, … , 6) have a negative influence on the observer’s robustness against
measurement noise, since in the observer dynamics (52), they are multiplied by the measurements. Because the observer
gain entries are roughly inversely proportional to the squared step size Δt2, one might therefore be tempted to select a
large step size. However, a large time step would cause a pronounced deviation between the continuous-time system and
the discrete-time model. Furthermore, the ability of the time discretization to describe collisions which are separated by
a short period of time also depends on the chosen time step. Compared to the observer design for linear systems, where
the designer is usually facing a performance-robustness tradeoff when selecting the observer gains, the situation is more
complicated here. For each system at hand, the observer’s sensitivity to variations in the step size has to be analyzed and
it has to be decided, if a certain step size leads to admissible noise levels.
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F I G U R E 2 Case II: Logarithmic plot of the maximum observer gain entry max{||Li||max} (i = 1, … , 6) as a function of the squared
step size Δt2 (in s2). Here ||Li||max ∶= maxi,j |𝓁ij| if 𝓁ij are the scalar entries of Li.

F I G U R E 3 Example case II with Δt = 10−4 s and the initial conditions x0 = (0,−10−4
, 1, 2) and x̂0 = (0,−10−1

, 10−4
, 10−4) (in m and

m/s resp.). Trajectories of the impacting mass (solid black: observed system (discretized), dashed gray: extended observer) over 10 periods of
excitation (t in s, q2 in m, u2 in m/s). On the left, the transient phase is shown with a different zoom: The extended observer strongly deviates
from the true trajectory in the beginning, due to the large observer gains.

Interestingly, in our example, measurement noise has a marginal influence on the observer’s impact law, compared
to the strong influence on the non-impulsive motion due to the high observer gains. In Figure 5, the first two plots show
the true and estimated velocities u2 and û2 for the extended observer with additive, normally distributed noise on the
measurements. More precisely, we use yk = Gxk + dk with dk ∼ (0, 𝜎2), that is, dk is a discrete random variable drawn
from a normal distribution with zero mean and standard deviation 𝜎. It is observed, that even small standard deviations
lead to strong noise levels on the velocity estimation û2. The step height during the impulsive motion however is only
marginally altered by the measurement noise, as is shown in the zoom plots on the right-hand side of Figure 5. Conversely,
a time step Δt which is long compared to the actual contact duration, mainly affects the step height of the observer
during the impulsive motion, whereas the non-impulsive motion is only marginally altered. This is shown in the last plot
of Figure 5. Therein, the true trajectory is generated by simulating an LCS with a time step Δtsim which is an order of
magnitude smaller than the time step Δt used for the observer design. From the zoom on the right-hand side, it can be
observed that due to the difference in the time steps, the observer’s step height during the impulsive motion is smaller
than the actual step height.

It is worth mentioning that the chosen time step does not have an immediate effect on the impact law of the
discrete-time model. Furthermore, without measurement noise and modeling errors, the impact law of the passivity-based
state observer is identical to the impact law of the discretized observed system after the estimation error converged to zero.
However, before the estimation error converged to zero (i.e., if the output of the observer is not identical to the measure-
ments), the observer’s impact law is not physical and the correction terms in the observer dynamics have an influence on
how the contact velocity changes during phases of contact. In other words, the chosen time step does have an effect on
the observer’s impact law, but since this impact law is not physical, this does not impose any constraints on the time step.
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F I G U R E 4 Lyapunov function V(x̃k) = x̃T
kPx̃k over time t (in s) for the example in Figure 3.

F I G U R E 5 Influence of measurement noise and a time step error on the velocity estimation û2 of the impacting mass for case II (initial
conditions identical to Figure 3). Solid black: Observed system (discretized), gray: extended observer (u2 in m/s, t in s). The first plot shows the
influence of a normally distributed measurement noise with zero mean and a standard deviation 𝜎 = 10−10 m. In the second plot, the standard
deviation is 10−9 m. In the third plot, the true trajectory is generated by simulating the LCS withΔtsim which is smaller thanΔt of the observer.

7 CONCLUSION

In this work, we have tried to give the research on developing an observer design for unilaterally constrained mechanical
systems without using contact measurement a new impulse. As this article shows again, this remains a difficult task. We
summarize the steps we have taken and try to identify the merits of the article.

The first important step has been to consider a discrete approximation of the original continuous-time system.
We have shown that the deliberate choice of the Schatzman–Paoli scheme leads to a discrete LCS (whereas other
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schemes do not). This can be seen as a result of the article, which may also be useful outside the scope of observer
design.

The formulation as discrete LCS opens the way for the derivation of a deadbeat observer for this type of systems.
We have shown that a deadbeat observer for a discrete LCS leads to a mixed LCP. In addition, we obtained a sufficient
observability condition, by requiring that the mixed LCP has a unique solution. The deadbeat observer, however, is not
robust with respect to measurement noise, but may serve as starting point for future research.

Furthermore, the formulation as discrete LCS allows us to use existing observer design techniques for LCS as devel-
oped by Heemels et al.37 Hereto, we have transported the existing results for continuous-time LCS to discrete LCS. The
observer consists of a copy of the observed system, augmented by Luenberger-type correction terms. Here, we consider
the observed system and the observer both to be discrete-time systems with matching time steps. It turns out, that the
observer gains which follow from a LMI are inversely proportional to the squared time step Δt2.

Because a small Δt leads to high observer gains, lowering the time step increases the sensitivity with respect to mea-
surement noise. Conversely, as we are using a discrete version of the continuous time problem, increasing the time step
yields a larger modeling error, since the discretization is an approximation. Compared to the performance-robustness
tradeoff encountered in many other observer designs, the selection of the time step here is more complicated. For every
system at hand it has to be checked if an admissible choice of the step size can lead to an acceptable performance.

Although we did not find an inherently robust observer design, we come to a fundamental insight: The discretization
using the Schatzman–Paoli scheme can be viewed as a regularization which reveals that the peaking phenomenon of
impulsive mechanical systems is in fact a singularity with respect to the time step Δt.

Lastly, we conclude that the body of methods we have presented here links, somewhat unexpectedly, different research
topics: measure differential inclusions, mixed LCPs and LCSs. The Schatzman–Paoli scheme plays a crucial role in
establishing these links.
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