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Molecular Electron Density Distribution and X-Ray
Diffraction Patterns of Smectic A Liquid Crystals – A
Simulation Study
Christian Haege,[a] Stefan Jagiella,[a] and Frank Giesselmann*[a]

X-ray diffraction (XRD) is one of the most important methods to
assess the long-range translational order in smectic A (SmA)
liquid crystals. Nevertheless, the knowledge about the influence
of the molecular electron density distribution (MEDD) on the
XRD pattern is rather limited because it is not possible to vary
the orientational order, the translational order and the MEDD
independently in an experiment. We here present a systematic
simulation study in which we examine this effect and show that

the MEDD indeed has a major impact on the general
appearance of the XRD pattern. More specifically, we find that
the smectic layer peaks and the intensity ratios thereof strongly
depend on the width of the MEDD. The classic approach by
Leadbetter et al. to determine the smectic translational order
parameter S from XRD intensities works if the MEDD is quite
narrow. In all other cases the influence of the MEDD has to be
taken into account.

1. Introduction

All liquid crystalline phases have a certain degree of orienta-
tional and, in the case of smectic liquid crystalline phases,
translational order. While the presence of orientational order
distinguishes the nematic from the isotropic phase, the
presence of translational order distinguishes the smectic phases
from the nematic phase. Anisotropic molecules that form a
nematic or smectic A (SmA) phase have long range orienta-
tional order, meaning that the molecules align roughly parallel.
The preferred direction is called the director n. While the
molecular positions in a nematic phase are disordered, the
averaged positions of the molecules in a SmA phase reside on
equidistant planes such that the molecules form a 1D stack of
2D fluid layers along the layer normal k. Since in a 1D system
thermal fluctuations destroy true long range order, the transla-
tional order in a SmA phase is considered as quasi-long range.[1]

In all directions perpendicular to the layer normal k, the
molecular positions show no long range translational order and
in the case of a SmA phase, the layer normal k and the director
n coincide. The distance between the layers is d and the angle
between a molecules long axis and the director n is called b.
The projection of a center of a molecule on the layer normal is
denoted by z. A schematic drawing of a smectic A phase is
shown in Figure 1.

The orientational and translational distributions of a SmA
phase are often quantified by single values: The orientational
order can be quantified by the orientational order parameter
S2 ¼ 3 hcos2bi = 2 � 1=2. (S2 ¼ 0 for a orientationally disor-

dered isotropic phase and 0 < S2 < 1 for a liquid crystalline
phase.) The translational order can be described with the
translational order parameter S ¼ hcos2pz=di. (S ¼ 0 for an
nematic phase and 0 < S < 1 for a smectic phase.) The mixed
order parameter s is used to describe correlations between
orientational and translational order. It is given by
s ¼ hcos 2pz=dð Þ � 3 hcos2bi = 2 � 1=2ð Þi (and for a SmA phase
0 < s � S).[2–4]

One of the most important methods to investigate the
order of a liquid crystalline phase is X-ray diffraction.[4–15] The
diffraction pattern of an aligned SmA phase exhibits two sets of
intensity maxima. The diffuse and broad wide angle maxima
correspond to the mean short distance of molecular centers.
The peak’s width in q is due to the lack of translational long
range order perpendicular to k, while its width in c is the
consequence of a broad orientational distribution (distribution
of angles b). The smectic layers give rise to intense Bragg-like
small angle peaks (henceforth called the smectic layer peaks),
which are rotated by 90° to the wide angle peaks. A schematic
2D XRD pattern of a SmA phase is shown in Figure 2.
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Institute of Physical Chemistry
University of Stuttgart
Pfaffenwaldring 55, 70569 Stuttgart (Germany)
E-mail: f.giesselmann@ipc.uni-stuttgart.de
Supporting information for this article is available on the WWW under
https://doi.org/10.1002/cphc.201900538

Figure 1. Schematic drawing of a smectic A phase. The layers are separated
by distance d and the preferred direction of the molecules is given by the
director n ¼ � n, which coincides with the layer normal k ¼ � k. For every
molecule there is one angle b between its long axis and the director n, and a
projected coordinate z that gives the projection of the molecular center on
the layer normal k. The phase has quasi-long range translational order in
direction of k, whereas the order is only short range perpendicular to k.
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While the validity of methods to extract information about
the orientational order of a liquid crystal has been
discussed[6–8,12] the validity of methods that extract information
about the translational order is still an open question. In
general, the X-ray intensity I qð Þ is proportional to the structure
factor S qð Þ and the form factor F2 qð Þ in the sample volume (
I qð Þ / F2 qð Þ � S qð Þ). It is not possible to separate the effect of
the structure factor and the form factor in an experiment, hence
certain assumptions have to be made about the form factor,
when extracting data from an XRD pattern. For example,
Leadbetter et al. either use a model for the structure factor of a
smectic layer[9,13] or assume the MEDD to be a point at the
molecular center.[11,14] They write the intensity I00l of the l-th
layer peak as

I00l ¼ CS2
l hF00li

2; (1)

with the structure factor F00l of a perfect layer, a constant C and
the l-th translational order parameter Sl ¼ hcos2plz=di. By
assuming Gaussian out-of-layer fluctuations of the molecular
center with coordinate z along k, the translational order
parameter can thus be written as

Sl ¼ exp � 2p2l2hz2i=d2ð Þ; (2)

and therefore

Sl ¼ Sl2 : (3)

Here hz2i is the mean square displacement of the molecular
centers in the direction of k. By assuming that F00l is constant
for all l, the translational order parameter can be written as

S ¼ I002=I001

� �1
6
: (4)

Several other approaches to solve the problem of the
translational order parameter have been made: Zannoni et al.[15]

present a more direct procedure where the molecular form
factor is obtained from atomistic simulations and atomic form
factors. They also discuss the neglection of mixed orientational-
positional contributions to the intensity of the layer peaks and

point out that it is difficult to find the proportionality factors
between the intensity of the layer peaks and the translational
order parameter. In further attempts Leadbetter et al.[13] and
Alexander et al.[5] use the intensities from different neutron and
X-ray scattering experiments to model the structure factor of a
smectic layer and to determine the translational order parame-
ter. These approaches have the problem that the influence of
the actual molecular form factor on the XRD pattern is either
approximated or not taken into account. To address this
fundamental problem, we present a simulation approach, in
which different molecular electron density distributions (and
therefore different molecular form factors) are used to calculate
different 2D XRD patterns from the same simulation snapshot.
With these XRD patterns, we can directly show what effect
changing the molecular electron density distributions (MEDD)
has on the intensities of a XRD pattern. We find that the
intensity ratios I002=I001 of the smectic layer peaks are higher
when the aspect ratio of the MEDD is lower. This leads to an
underestimation of the translational order parameter S when
the MEDD is broader. We show that the Leadbetter method[9,11]

can be improved if the MEDD is convolved with the distribution
of molecular centers f zð Þ along the layer normal.

2. Simulation Model and Procedure

2.1. Simulation Model

Smectic A phases are simulated using ESPResSo[16] and the Gay-
Berne[17] (GB) potential. The dimensions of the GB particles are
set to a fixed aspect ratio of 4.

The McMillan[3] model is used to calculate orientational and
translational distributions. A McMillan distribution gives the
probability pðb; zÞ of finding a molecule at a certain position z
along the layer normal, while having a certain angle b to the
director. Therefore, a McMillan distribution has a fixed value for
the translational, mixed, and the orientational order parameter.
The simulations are set up to follow the calculated McMillan
distribution. During equilibration the particles are neither
allowed to rotate (i. e. change b) nor allowed to translate along
the layer normal (change z). All other degrees of freedom are
allowed to relax in the molecular dynamics (MD) simulation.
Hence, the resulting simulation snapshot represents an energy
minimum configuration which follows the underlying McMillan
distribution. In this study, McMillan distributions of SmA phases
are used and the order parameters are in the following range:
S2 ¼ 0:75 � 0:93, s ¼ 0:4 � 0:85 and S ¼ 0:48 � 0:91.

Details about the McMillan distributions, the simulation
procedure and model can be found in the supporting
information.

In order to be able to calculate different 2D XRD patterns
from the same simulation snapshot, different MEDDs are
defined. The MEDD used in this study is defined by a molecular
electron density ellipsoid inside of the ellipsoidal GB particle.
While the semi-minor axes of the molecular electron density
ellipsoid in the x0y0-plane is fixed to 1/3 (in units of reduced
length), the semi-major in the z0-direction (denoted z) is

Figure 2. Schematic 2D XRD pattern of a SmA phase. The 2D XRD pattern
has two broad wide angle peaks (on the equator) due to scattering from the
fluid intra-layer correlations the molecules. The smectic layer peaks labeled
001 to 003 are the result of Bragg-like scattering of the layers.
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variable. A 2D schematic of this definition can be seen in
Figure 3.

The overall electron density distribution of a snapshot is
represented by a regular grid.[12] Inside of the molecular
electron density ellipsoid every point of the overall grid is set to
a value of 1, while every other point of the overall electron
density distribution grid is set to 0.

2.2. Calculation Procedure

The overall 2D XRD calculation can be summarized in three
steps:
1. Set the SmA phase according to the underlying McMillan

distribution and equilibrate it to get a minimal energy
structure that follows that particular McMillan distribution.

2. Inscribe the MEDD described above into the GB particles.
3. Calculate the 2D XRD pattern.

Calculation of 2D X-ray diffraction patterns from the
simulations are done using our previously described method[12]

with 512 electron density grid points in the x, y and z directions.
The cuts of the 3D structure factor are done with an Ewald
sphere of reduced wavelength l* ¼ 0:077 and the incident
beam orthogonal to the director. The 2D XRD patterns of the
last 10 snapshots of a simulation are added to achieve a better
signal to noise ratio.

Using this simulation model and calculation procedure has
the advantage of a realistic orientational and translational
distribution. At the same time, the MEDD can be changed with
the semi-major axis z between calculations. This model does
not allow us to calculate XRD patterns from actual molecules,
but it allows for a general assessment of the influence of the
MEDD on the XRD pattern.

3. Results and Discussion

In Figure 4b-d three different MEDD (on the left) and their
corresponding 2D XRD patterns (on the right) can be seen. All
three 2D XRD patterns are calculated from the same simulation
snapshots. Figure 4a shows an experimental diffraction pattern
of 5-Octyl-2-(4-hexyloxyphenyl-)pyrimidine in the SmA phase
(on the right) and the corresponding MEDD of the molecule in
the all-trans conformation projected on its long axis (on the
left). It can directly be seen that the MEDDs differ significantly.

Therefore, it is no surprise that the 2D XRD patterns also differ.
Moreover, it can be seen that the intensities of the smectic layer
peaks vary in Figure 4b–d. This effect and its implications on
the calculation of the translational order parameter S are now
discussed.

The integrated intensities of the layer peaks are analyzed by
calculating the intensity ratio I002=I001. The data show that the
intensity ratio increases with increasing translational order
parameter. The intensity ratio also increases with decreasing
radius z, which means that the intensity ratio is higher when
the MEDD is more narrow. The intensity ratio I002=I001 for
different order parameters and MEDDs can be seen in Figure 5.

This result implies that any procedure that uses the intensity
ratios of the smectic layer peaks should include the MEDD in
some way. The implications are discussed exemplarily in the

Figure 3. Schematic view of the MEDD (red) inside the GB particle (grey). The
geometry of the MEDD is fixed, except for its width (in comparison to the
molecular length), which is specified by the semi-major axis z in the
direction of z

0

of the long axis of the GB particle.

Figure 4. On the left: Molecular electron densities projected on the long axis
of a typical molecule and the ellipsoidal (and spherical) electron densities as
incorporated in the GB-particles. The lengths are shown in units of Lz0=2,
where Lz0 is the length of the molecule or GB-particle in the z0-direction.
Under the plots the corresponding shapes are shown. On the right: dif-
ffraction patterns that correspond to the molecular electron densities on the
left. a) Molecular electron density for 5-Octyl-2-(4-hexyloxyphenyl)-pyrimi-
dine in the all-trans conformation and a 2D XRD of the substance in the SmA
phase at T ¼ 55 �C. Calculating the 2D XRD pattern from this MEDD gives
roughly the same pattern as shown in Figure b. b-d) Molecular electron
density of ellipsoidal shape (red) in a GB-particle. The electron density
ellipsoids have semi-major axis z ¼ 2; 87 ;

1
3 from top to bottom. On the right

the corresponding diffraction patterns calculated from the same simulation
(order parameters S2 ¼ 0:82, s ¼ 0:59 and S ¼ 0:68) are shown.
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next part by looking at the Leadbetter method[9,11] for extracting
translational order parameters from intensity ratios.

When using X-ray diffraction to calculate S, Leadbetter
assumes a Gaussian shape of the distribution of molecular
centers along k to calculate the translational order parameters
of smectic phases. From their assumption one can derive
equation (4). Plotting the intensity ratio I002=I001ð Þ1=6 over the
translational order parameter directly taken from the McMillan
distributions reveals that equation (4) is correct in the case of
narrow MEDDs. If the MEDDs is broad (large z), the method
underestimates the translational order parameter. In Figure 6
such plot can be seen. It is clear that only in the case of the
narrow, spherical MEDD (z ¼ 1=3), the expected result is
obtained.

To understand the results seen in Figure 6 it is useful to
calculate the electron density wave along the layer normal (e.g.
along z) and to compare it with the positional distribution that
is used by Leadbetter et al.[9,11]. From the simulations the
electron density along the z-direction is directly calculated by
projecting all points of the electron density grid on the z-axis
and summing of the electron density for every projected value.
To compare the electron density plots to the Gaussian
distribution assumed by Leadbetter, the Gaussian distributions

are calculated with S known from the underlying McMillan
distributions and the layer separation d as taken directly from
the simulations. The root mean square displacement hz2i is
calculated via equation (2), and with hz2i known, the distribu-
tion of molecular centers along k is calculated by including the
smectic layer positions zL. The Gaussian form of the distribution
is then given by

f zð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2phz2i

p � exp �
z � zLð Þ2

2hz2i

� �

: (5)

Here the layer positions are given by zL ¼ d � bz=dc þ 1=2½ �.
An example of the Gaussian form of the distribution of

molecular centers along k according to equation (5) and
electron density plots of the simulation for different semi-major
axes z can be seen in Figure 7. The MEDD that represents the

Leadbetter assumption[9,11] of a Gaussian distribution the most,
is the narrow one with z ¼ 1=3. This is in agreement with the
result presented in Figure 6 where it can be seen, that the
intensity ratios from the spherical MEDD are closest to the
expected trend (equation (4)).

While it has been explained above why the spherical MEDD
is closest to the expected result, this still leaves one question:
why do the results from broader MEDDs (z ¼ 8=7; 2) under-
estimate the translational order parameter S? The answer to
this question lies in the assumptions made by Leadbetter
et al.[9,11] Leadbetter[9,11] neglects the exact MEDD and proposes
a Gaussian form of the distribution of molecular centers along
the layer normal k. While the latter is reasonable, neglecting the
actual MEDD leads to a systematic error. This can be shown by
calculating the convolutions of the Gaussian distribution of
molecular centers along the layer normal k and the MEDD.
Comparing the convolutions to the overall electron density
distribution of a simulation snapshot should give the same
result, if the MEDD is not to be neglected.

To calculate the convolution two steps are necessary. First,
an equation describing the MEDD is needed. The electron
density is the same at every point in the molecular electron
density ellipsoid (see also section “Simulation model”) and the

Figure 5. Intensity ratio I002=I001 of the smectic layer peaks of the calculated
2D XRD patterns for different values of the semi major axis z of the MEDDs.
Order parameters: S2 ¼ 0:80, s ¼ 0:54 and S ¼ 0:63, S2 ¼ 0:89, s ¼ 0:75
and S ¼ 0:84 and S2 ¼ 0:9, s ¼ 0:77 and S ¼ 0:86.

Figure 6. The 6th root of ratio of the integrated intensity of the second and
first small angle peak calculated from 2D XRD patterns with different MEDDs
(different semi major axes z – (see also Figure 3)) plotted with respect to S.
S is directly calculated from the McMillan distributions. The dotted line
represents the expected trend according to equation (4).

Figure 7. z-projection of the electron density distribution for order parame-
ters S2 ¼ 0:82, s ¼ 0:59 and S ¼ 0:68 of the first two layers and the
Gaussian form of the distribution of molecular centers along k as assumed
by Leadbetter et al.[9,11] The data that is marked “Leadbetter” is calculated via
equation (5) with different values of zL (for every layer), S ¼ 0:68 and
d ¼ 3:36. The data with different semi-major axis z are calculated from the
overall electron density distribution of the last simulation snapshot (snap-
shot 500000).
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number of electron density grid points per volume element is
the same everywhere. Therefore, the area of a cut of the
ellipsoid is directly proportional to the electron density at the
position of the cut. Hence, it is reasonable to describe the
electron density by calculating the area of a cut of a rotated
ellipsoid, where the ellipsoid has been rotated around the x-axis
by an angle a and the cutting layer has position z along the
layer normal nL ¼ 0; 0; 1ð ÞT. The MEDDs used in the simulations
are uniaxial, thus one rotation angle is enough to describe the
MEDD, and it does not matter if the ellipsoid is rotated around
the x- or the y-axis. With the help of the equations in Ref.[18] we
obtain the following equation for the cutting area (see also:
supporting information),

A z;að Þ

¼
pabc �

b2sin2aþc2cos2a� z2ð Þ

b2sin2aþc2cos2að Þ
3
2

if z2 � b2sin2aþ c2cos2a

0 else:

8
><

>:

(6)

Second, the convolution is calculated. To calculate the
convolution, the semi-axes a, b and c in equation (6) are
selected according to the MEDD and the rotation angle is set to
be the average angle hbi of the GB particles to the layer normal.
The electron density distribution of a layer is given by
convolving equation (5) and (6) according to

1e;layer zð ÞR
1e;layer zð Þdz

�

P
i f zið Þ � A z � zi; hbið Þ

P P
i f zið Þ � A z � zi; hbið Þ½ �Dz

: (7)

Comparison of the calculated convolutions to the overall
electron density distribution of the last simulation snapshot
shows that both are in perfect agreement. Three examples of
the Gaussian distribution as assumed by Leadbetter et al,[9,11]

the overall electron density distribution of the last simulation
snapshot, and the convolutions calculated according to equa-
tion (7) can be seen in Figure 8.

This shows, that the intensity ratios calculated with the
narrow MEDD (z ¼ 1=3) are in agreement with Leadbetter’s
method[9,11] (see Figure 6). We could also show that the assumed
Gaussian distribution[9,11] and the overall electron density
distribution of a simulation snapshot coincide in this case (see
Figure 7), and therefore the correct trend is obtained. When
using broad MEDDs (e.g. z ¼ 8=7; 2) a systematic underestima-
tion of S is the result. To better understand this, convolutions
of the assumed Gaussian distribution[9,11] and the MEDD are
calculated. The agreement of the convolutions and the electron
density distribution of the last simulation snapshot (see Fig-
ure 8) show, that the correct MEDD has to be taken into
account when the intensities of an 2D XRD pattern are used for
further calculations.

4. Discussion

Our results have certain implications for the general assessment
of smectic order from XRD patterns. Strictly speaking, the

general opinion that a high degree of smectic 1D translational
order is indicated by the presence of strong higher order layer
peaks is only valid in those cases where the mesogenic
molecules exhibit a sharp peak in their MEDDs. In these cases
the actual MEDD comes close to the d-peaked MEDD assumed
in the original paper by Leadbetter[9,11] and the smectic order
parameter Σ can be estimated from the intensity ratios I002=I001.
In practice, this condition of a narrow-peaked MEDD can be
approached if the mesogens contain electron-rich heteroatoms
(or groups) in their molecular structure. Examples are the
siloxane[19,20] or carbosilane[21] terminated mesogens of many de
Vries-type smectics[4] or ionic smectic liquid crystals[22] with
heavy electron-rich counterions such as sulfate or bromide
anions.

Figure 9 schematically depicts the situation in the SmA
phase of siloxane-terminated mesogens such as the one shown
in Figure 10. In the SmA phase, the hydrocarbon parts of the
mesogen segregate from the terminal siloxane segments such
that they form siloxane-rich sublayers between the partial
bilayers of the mesogenic cores (Figure 9, left). This
nanosegregation[20] of the electron-rich siloxane segments gives
rise to narrow peaks in the SmA electron density wave 1e kð Þ as
shown in Figure 9, right. The Fourier transform of 1e kð Þ in
Figure 9 requires substantial contributions from higher harmon-
ics of the fundamental electron density wave. Since the XRD
intensities of the (00l) layer peaks basically probe the (squared)
amplitudes of the l-th harmonics in the Forurier transform of
the SmA electron density wave,[23] intense higher-order layer

Figure 8. z-projections of the electron density distribution for order parame-
ters S2 ¼ 0:82, s ¼ 0:59 and S ¼ 0:68 of the first two layers of the
simulation. The data marked “simulation” are the (normalized) sum of the
calculated snapshot electron density along the layer normal of the last
simulation snapshot (snapshot 500000). The MEDDs used during the
calculation have semi-axes z ¼ 2; 87 ;

1
3 from top to bottom. The data that are

labelled “Leadbetter” are calculated via equation (5) with different values of
zL (for every layer), S ¼ 0:68 and d ¼ 3:36. The data labeled “convolution”
are the data marked “Leadbetter” (equation (5)) that have been convolved
with equation (6) according to equation (7). The average angle of the
particles to the layer normal is selected (here: hbi � 17�) as the rotation
angle. The semi-axes a, b and c in equation (6) are selected according to the
semi-axes of the ellipsoidal particle electron density distributions.
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peaks are expected. This is indeed the case as seen in the
example depicted in Figure 10. The same considerations apply
to the case of ionic smectics where heavy counterions
segregate in a similar way into electron-rich sublayers.

If, however the MEDD profile of the mesogen is rather
smooth without any sharp peaks or other distinct features, the
SmA electron density wave 1e kð Þ is well described by a more or
less sinusoidal wave of fundamental period d and, maybe, some
very little contributions from higher harmonics of the funda-
mental wave. Even if the smectic translational order becomes

high, the electron density wave along k remains almost
sinusoidal and thus no intense higher order peaks might be
detected in the XRD experiment. An example of such an
experimental 2D XRD pattern can be seen in Figure 4a. No
higher order peaks are visible. In this case however the absence
of higher order layer peaks does not necessarily mean that the
smectic 1D translational order is exceptionally low.

5. Conclusions

In this paper we show that the intensity ratios of smectic layer
peaks of X-ray diffraction patterns strongly depend on the
molecular electron density distribution (MEDD). We find that
the intensity ratios I002=I001 are higher the narrower the MEDD is
concentrated along the direction of the long axis of the
molecule.

The consequence of this result on the calculation of
translational order parameters is discussed, using Leadbetter’s
method[9,11] as an example. The results show that accurate
calculations must take the MEDD into account. To be more
precise, the SmA electron density wave 1e kð Þ along the layer
normal k should be deconvolved with the MEDD and the
translational order parameter S calculated from the deconvolu-
tion result.

We also discuss the implications of our results on the
general assessment of smectic translational order from exper-
imental XRD patterns. In those cases where the MEDD exhibits
sharp peaks in the electron density (namely mesogens contain-
ing electron-rich heteroatoms), high 1D translational order of
the mesogens also leads to sharp peaks in the SmA electron
density wave and thus to the appearance of intense higher-
order diffraction peaks in the XRD experiment. In these cases
the presence and the intensities of the higher-order layer peaks
are at least a reliable qualitative proof of high smectic order. In
other cases where the MEDD is smooth and without any distinct
peaks, the SmA electron density wave is essentially of sinusoidal
shape and higher order layer peaks thus remain very weak
regardless whether or not smectic translational order of the
SmA phase is high.
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Figure 9. Left: Schematic drawing of a layered SmA structure with nano-
segregation between electron-rich end groups (orange) and mesogenic
cores (grey). Right: Resulting electron density wave 1e(k) along the layer
normal k of the SmA phase. The nanosegregation of electron-rich molecular
segments leads to sharp peaks in 1e(k).

Figure 10. Top: 2D XRD pattern of the nanosegregated SmA phase formed
by the mesogen shown below. The diffraction pattern shows intense higher
order smectic layer peaks. Bottom: Molecular structure of a trisiloxane-
terminated mesogen forming nanosegregated smectic phases of the de
Vries-type.[24]
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