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Abstract

At the powertrain test bench, all powertrain components from the engine to the side shafts can be tested without 
a prototype vehicle. With detailed vehicle, driver and environmental models and real-time simulation capabilities, 
it is possible to run partially virtual and highly realistic tests and applications. Therefore, the validation of the pow-
ertrain can be done at lower costs and at an earlier stage under defined, reproducible boundary conditions. As 
the complexity of the models increases, so does the effort required for parameterization prior to each test run. To 
shorten the duration of commissioning, previous work has focused on designing a digital twin of a Powertrain-in-
the-Loop test bench (vPiL). The vPiL includes powertrain models, enabling virtual parametrization of the simula-
tion models before the test run. Furthermore, the digital twin is also used for the development or integration of 
new simulation models without generating cost-intensive runtimes at the test bench. This paper focuses on how 
to properly model a driver for the powertrain test bench which differs from many current driver models, for exam-
ple for autonomous driving (AD) functions. In AD, the driver is influenced by previously unknown, external factors 
such as other drivers which impede automation. On the powertrain test bench, however, the entire test scenario 
is already known in advance. The focus of the driver model is therefore on the most accurate control possible to 
follow the known trajectory.

In addition, realistic driving behavior is required to avoid unrealistic loads on the powertrain. The main contribu-
tion of this paper is an empirical comparison of different driver models. First, we will introduce three driver types 
which are respectively based on PI-control systems, adaptive PI-control systems, and reinforcement learning. The 
PI-controller will be parameterized in the vPiL to ensure optimized and operator independent parameterization. 
The reinforcement learning model is based on the Soft Actor-Critic algorithm. Second, we will motivate the mod-
els’ advantages and disadvantages regarding their usage on a test bench. Our focus is on the models’ accuracy, 
required computation power as well as setup time and complexity. Finally, we will discuss the technical implemen-
tation of all three models in a MathWorks® Simulink model. This Paper will allow test bench engineers to select a 
matching driver model for partially virtual validation of powertrain components on a powertrain test bench. In ad-
dition, potentials of the various models for future development will be identified. 
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1 Introduction

A powertrain test bench enables testing of internal combustion engine, hybrid, and electric powertrains in differ-
ent test scenarios. Often, these scenarios are intended to provide comparable results to vehicle tests. One way to 
replicate vehicle testing on the test bench is to follow existing trajectories. These trajectories consist of a wheel 
speed trace and a pedal trace. The trajectory is used to control the speed of the dynamometer and the power-
train. However, this method has two drawbacks. First, the dynamics of the powertrain dynamometer may differ 
from the dynamics of the vehicle, resulting in different loads. Second, other units under test (UUT) may behave dif-
ferently than the powertrain in the reference vehicle, causing further deviation. A suitable method is the operation 
of the powertrain test bench in combination with a real-time simulation as a powertrain-in-the-loop (PiL) test bench. 
In this method, the test is described by road characteristics in form of a speed profile and a curvature profile. The 
real-time simulation uses an environmental, vehicle, and driver model to calculate setpoint values for the dyna-
mometer and UUT. This ensures that the load applied to the UUT is comparable to the vehicle test.

The real-time simulation driver can influence the vehicle‘s longitudinal and lateral dynamics by accelerating, de-
celerating, and steering. In doing so, the aim is to follow the referenced trajectory as accurately as possible. Since 
the accuracy of the driver affects the overall vehicle dynamics, it is important for the quality of the test results. 
Therefore, this paper compares widely used control theory-based drivers with a new driver based on reinforce-
ment learning.

The general principles of driver modeling and current research in both areas are described in Chapter 2. Chapter 
3 describes the framework and requirements of the drivers, before the control theory-based driver is presented in 
Chapter 4 and the reinforcement learning driver in Chapter 5. A comparison of the two drivers is given in Chap-
ter 6.

2 Related Work: Driver Modeling for PiL Test Bench

A driver‘s primary task is to maneuver a vehicle safely from a starting point to a predetermined destination. This 
can only be achieved through the driver‘s awareness of the vehicle‘s environment and the control of the vehicle‘s 
actuators. [1] This complex task can be divided into different hierarchies using the 3-level model (Figure 1). At the 
strategic level, the driver generates a route based on a starting point and the traffic situation. Within the maneu-
vering level, the route is transformed into a specific maneuver. The selection of the maneuver is based on the ve-
hicle‘s position and movement, as well as the driving space, and can be optimized according to various criteria. 
Lastly, the maneuver is executed within the control level using the steering wheel and pedals of the car. [2]

On a PiL test bench, the strategic level is not of interest as the test case defines the route before the test. Wheth-
er to model the maneuvering level depends on the test case. To simulate driving scenarios as realistically as pos-
sible, some systems include environmental simulation with randomly generated traffic. Other test cases are based 
on the reproducible execution of various maneuvers. These maneuvers are described by a predetermined trajec-
tory composed of speed and curvature. Consequently, only the implementation of the control level is used on the 
test bench. Since the number of test cases with a predetermined trajectory outweighs the others, this paper con-
centrates on the modelling of the control level using both control theory and machine learning approaches.
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Figure 1: Three-Level-Model of Driving Behavior [3]
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Most publications regarding the control level, also known as trajectory-following control, are related to autono-
mous driving or driver assistance systems. However, these approaches can also be applied to powertrain test 
benches.

Kebbati et al. introduce a self-adaptive PID controller in [4]. Initially, the authors establish a digital PID controller 
in a basic vehicle model utilizing an optimization algorithm as a benchmark. The self-adaptive controller uses a 
neural network to dynamically adjust the controller parameters (Kp,Ki,Kd). This allows the control system to respond 
to external disturbances such as wind or road gradient. Aziziaghdam presents an approach that combines a PI-con-
troller with an inverted vehicle model in [5]. The controller determines its outputs by comparing the target speed 
with the current speed of the vehicle. Subsequently, the setpoint value is converted into an accelerator setpoint 
along an acceleration path or into a brake setpoint along a deceleration path, depending on the vehicle‘s accel-
eration. The two paths feature an inverted model of the vehicle‘s braking and acceleration paths. In contrast with 
the prior model, creating the inverted model necessitates knowledge of the vehicle parameters (engine map, over-
all gear ratio etc.). In [6], the driver model combines a vehicle model as a feedforward with a PI-Controller. By in-
corporating foresight with future velocity values, the state of rolling or sailing can be assumed in addition to brak-
ing and accelerating.

Reinforcement Learning (RL) for large, continuous environments is a relatively young research area. Nonetheless, 
there has been initial work on the usage of RL for longitudinal control. Buechel introduces in [7] a RL-based con-
troller that converts current and future reference speeds into accelerator and brake setpoints. While this approach 
achieves a low error rate, the paper does not discuss how to ensure realistic driver behavior. Wang [8] describes a 
RL-based controller for an adaptive cruise control system that consists of two levels. The first level contains the RL-
based controller which converts the speed and distance difference to the next vehicle into a target acceleration. 
The second level consists of physical models for the acceleration and delay path which convert the target accel-
eration into accelerator and brake setpoints.

 

3 Setup and Requirements

This chapter presents an analysis of the PiL test bench with a focus on the driver subsystem. The interfaces to the 
other subsystems, the requirements for the driver model, as well as the applicability of data-based methods are 
of interest.

3.1 System Analysis

The test bench‘s real-time simulation has three linked subsystems: the environmental model, the vehicle model, 
and the driver model. This virtual system interacts with two physical subsystems: the dynamometers and the at-
tached UUT.

The real-time simulation receives an input of trajectory data, including information on the test track and test bound-
ary conditions. Both the environmental model and the driver model have access to this information. The system‘s 
second input is the actual speed of the dynamometers, which corresponds to the wheel speed of the UUT. The re-
al-time simulation generates torque setpoints for the dynamometers, and an accelerator setpoint, which is trans-
mitted to the UUT.

The driver model‘s inputs are comprised of the speed and curvature trace of the trajectory, as well as the current 
speed of the vehicle, which is calculated by the vehicle model. In addition to the accelerator, the driver model gen-
erates a brake setpoint and a steering wheel setpoint, both of which have a direct impact on the vehicle model. 
To simplify the development of the new models, this paper‘s investigations focus on maneuvers that don‘t involve 
lateral dynamics. As a result, the driver model‘s outputs are reduced to the accelerator and brake.

For the development of the control theory approach, an analysis of the control theory plant is necessary. While 
having a model of the plant is beneficial, it is not mandatory. Parameterization of the driver model can be per-
formed on the PiL test bench using various experimental programs with the current UUT. The Reinforcement Learn-
ing (RL) approach, on the other hand, involves testing various accelerator and brake setpoints to solve an optimi-
zation problem. If these experiments are performed in a semi-virtual system such as PiL, they cannot be parallelized 
and must be performed in real time. The resulting costs and duration make such approaches unappealing. The 
authors have previously introduced a virtual powertrain-in-the-loop test bench (vPiL) in prior publications [9]. In 
addition to the real-time simulation, the vPiL also replicates the test bench and the UUT virtually, so that the train-
ing of the reinforcement learning approach can take place in the vPiL before the actual test run. A neural network 
representing the driver model can finally be used in the real PiL test bench.
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3.2 Driver Model Requirements

To achieve applicable driver modeling for use on a test bench, it is crucial to first establish specific requirements. 
Table 1 displays the requirements arranged according to significance. The key role of the driver model is to accu-
rately control the reference vehicle speed. Also, the controller‘s actuating variables should mimic those of a hu-
man driver. This means: The driver model should not use the accelerator and brake pedals at the same time or 
switch between them high-frequently. This can be tracked by the number of transitions between the two states 
acceleration and deceleration. Moreover, the computational demands of the model should not be overly burden-
some, as it must run in real-time simulation within the test bench automation system. The driver model must meet 
the initial three criteria sufficiently to be utilized in test bench operations.

The remaining requirements are of lesser importance but increase the model‘s manageability. The driver model 
should be able to operate independently of vehicle or track type. For instance, the vehicle dynamics can vary due 
to weight or power, while the trajectories may differ due to varying speed or speed gradient profiles. Despite the 
driver model‘s complexity, the parameterization effort should be minimal. On one hand, to reduce the time re-
quired for driver model setup; on the other hand, to obtain better comparability between different test runs. The 
requirement Explainability pertains to the comprehensibility of the model. A self-explanatory model supports anal-
ysis and debugging, especially in the case of an error. Furthermore, different driving habits, such as sporty or eco-
nomical, are interesting, but they always involve a change in vehicle speed, which contradicts the initial require-
ment. Therefore, the representation of the driving styles is a part of the maneuver level and will not be considered 
any further here.

3.3 Research Setup

All driver models were developed using one reference vehicle and track. The reference trajectory was generated 
using the vPiL by applying synthetic accelerator and brake decelerations. This ensures that reference values for 
the actuators are available, and that the vehicle can attain the desired speed. The control theory-based driver 
models are parameterized using the reference track and reference car, and the RL-based driver model is trained 
using that same car and track. 

To evaluate the generalizability of the two methods, two additional scenarios are accessible. To determine gener-
alizability of the vehicle, a heavier and more powerful vehicle is driven on the given reference track (test 1). In a 
separate experiment, generalizability of the track is examined by driving the reference vehicle on a new track with 
additional driving maneuvers, such as speed steps (test 2).

To determine the control quality of the two driver models, the mean absolute error (MAE) is calculated. The con-
trol quality achieved by the control theory-based driver models, is used as a reference to evaluate the RL-based 
driver models.

 

Table 1: Requirements for a driver model

Requirements
1 Minimum deviation from the reference trajectory
2 Realistic actuating setpoints
3 Low computing effort
4 Independent of vehicle and track type
5 Low parameterisation effort
6 Explainability
7 (Various driving styles)
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4 Control Theory-based Driver Models

This chapter describes a control theory-based driver model. This driver model controls the current vehicle speed 
ʋact to a reference vehicle speed ʋset by setting accelerator t and brake b. In this chapter, two driver models are 
presented, which are increasingly complex to meet the requirements of chapter 3.2 with increasing quality. Both 
driver models consist of a finite state machine, which can assume the states acceleration and deceleration. In both 
states, a PI-controller controls the vehicle speed. In both driver models, the PI-controller input is the speed differ-
ence dv between the reference vehicle speed ʋset and the current vehicle speed ʋact:

4.1 Baseline Model with Realistic Driver Behavior 

The controller output in the acceleration state is an accelerator setpoint t, in the deceleration state it is a brake 
setpoint b, as shown in Figure 2. To reduce the number of state transitions, a speed tolerance ʋtol is introduced. 
The state transition from acceleration to deceleration is activated when dʋ is less than ʋtol and analogously, the 
state transition from deceleration to acceleration is triggered when dʋ is higher than ʋtol:

To prevent integrator windup, the I-component of the PI-controller is limited as soon as the accelerator setpoint 
or brake setpoint have reached their control value limits. 

 

Figure 3 shows the results of the baseline model. It is noticeable that the absolute deviations are always greatest 
when switching between ACCELERATION and DECELERATION. This is because the speed tolerance ʋtol prohib-
its state transitions until it is exceeded. The smaller ʋtol becomes, the smaller the deviations become, but for very 
small values high-frequent transitions of ACCELERATION and DECELERATION occur, which does not reflect hu-
man driving behavior.

 

Figure 2: Baseline model using PI-controller with limited control values in a finite state machine.
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4.2 Adaptive Driver Model using Pre-Control and Linearization

To improve the generalizability of the controller, the adaptive driver model uses pre-control and linearization of 
the controller output in the acceleration state, as shown in Figure 4. In this state, an engine torque T replaces the 
accelerator as the controller output. With the help of an inverted engine map, the appropriate accelerator set-
point t for the desired engine torque T can now be determined. 

This implementation creates a linear context between the controller input (differential speed dʋ) and the control-
ler output (engine torque T instead of accelerator setpoint) and thus improves the control behavior. 

The pre-control calculates a reference acceleration aset from the reference speed ʋset. This reference acceleration 
is converted into a reference force via the mass of the vehicle m and is added to the driving resistance forces  
Froadload. The resulting force Ffeedforward is converted into a feedforward torque Tfeedforward for the acceleration state 
based on other vehicle parameters (dynamic wheel radius r and overall gear ratio i). For the deceleration state, 
the resulting force Ffeedforward is converted into a feedforward deceleration afeedforward based on the vehicle mass. 

Since both model extensions include all relevant vehicle parameters (engine map, overall gear ratio, dynamic tire 
radius, vehicle mass and driving resistances), the generalizability of the driver model to other vehicles or tracks is 
increased.

 

Figure 3: Velocity and Actions of the baseline model 
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The adaptive driver model shows smaller deviations than the baseline model due to feedforward control and lin-
ear controller outputs, as shown in Figure 5. The absolute deviations are still greatest when switching between 
ACCELERATION and DECELERATION, but feedforward control minimizes the deviations caused by the state tran-
sitions. Note that the speed tolerance v_tol is set to the same value as in the baseline model. 

Figure 4: Adaptive driver model using feedforward control and linear controller outputs.

Figure 5: Velocity and Actions of the adaptive driver model
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5 Reinforcement Learning-based Driver Model

In Reinforcement Learning (RL) an agent (≙ the driver) interacts with an environment (≙ the vehicle), as shown in 
Figure 6. By taking an action (≙ accelerating and decelerating), the agent changes its state (≙ current velocity) and 
receives a reward (≙ e.g. deviation from reference speed). If the agent receives a high reward, a similar action is 
done next: The action is reinforced. Otherwise, the agent tries a different action. In an iterative manner, the agent 
learns optimal behavior, an optimal policy, over time.

A Reinforcement Learning agent is modeled as a Markov Decision Process (MDP) which is the tuple (S,A,R,p). Here, 
S ϵ ℝd is the state space, A ϵ ℝd is the action space, R: S×Aℝ is the reward function and p: S×AS is the tran-
sition function of the environment. The RL-based driver model‘s quality can be modified by altering this tuple. 
More information regarding the individual elements can be found below.

The state space can consist of different time series containing either measured or calculated signals. Let t ℕ be 
the time,                the actual speed of the vehicle,                 the reference speed. Due to the known trajectory, ad-
ditional values                                   are provided, where N ϵ ℕ is a hyperparameter controlling the length of the 
fores ight .  The ca lcu la ted s ta te  spaces  used in  th i s  paper  a re  the  speed dev ia t ion  
                                                                     and the feedforward force                       as calculated in chapter 3. For 
positive values only, the states are normalized between [0 1], all other states are normalized between [-1 1].

With tt ϵ ℝ and bt ϵ ℝ we denote the accelerator and vehicle deceleration outputs of the driver model and for the 
initial action space, we set:  

In the following, we discuss how to ensure realistic driver behavior. To limit the driver model from accelerating and 
braking at the same time we change the action space to just one action:

Next, we reparametrize:

where the accelerator and brake values are now normalized in [0,1] and [-1,0), respectively. Even further we want 
to limit the variance of inputs. Therefore, we use generalized state-dependent exploration (gSDE) [10].

As reward function, we set:

Figure 6: Reinforcement workflow of agent interacting with its environment.
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5.1 Evaluation of Different State Spaces

The driver model‘s actions are predefined by the described settings. The reward function already includes the 
most crucial requirement that the driver model must adhere to. As a result, we explore various combinations of 
input variables and the corresponding information required by the RL approach.

Figure 7 illustrates the driver model‘s performance under the initial setup, where we set the state space to:

Therefore, gSDE has not been activated to illustrate the disparity in actions compared to when gSDE is activated. 
Table 2 displays the ratings of a driver model with an equivalent state space and activated gSDE.

During the initial acceleration phase of the trajectory, there is a deviation of up to 10 km/h from the reference 
speed. The deviations result from the driver model applying the accelerator pedal during initial acceleration and 
only gradually reaching 100% acceleration. Even without gSDE activated, there is minimal variation in actions ob-
served. However, it is noticeable that the MAE decreases when gSDE is activated.

Therefore, Figure 8 displays the outcomes of an analysis utilizing gSDE and setting the state space as:

Through dv, the agent obtains a superior input that links directly to the reward function.

 

Figure 7: Velocity and Actions of the RL-based driver model with S1

  

Author: Klemens, Willi AVL/DE Filename: Equ10.docx 
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft.   1/1 

 
 

𝑆𝑆𝑆𝑆1 = {𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡} ∈ ℝ2 
 
 

 

0 2 4 6 8 10 12 14 16 18
0

50

100

150

Ve
lo

ci
ty

 in
 k

m
/h

0
2
4
6
8
10
12

Sp
ee

d 
D

iff
er

en
ce

in
 k

m
/h vset

vact
dv

0 2 4 6 8 10 12 14 16 18
time in s

0

25

50

75

100

Ac
tio

n 
in

 % Reference
t (Accelerator)
b (Brake)

  

Author: Klemens, Willi AVL/DE Filename: Equ11.docx 
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft.   1/1 

𝑆𝑆𝑆𝑆2 = {𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡} ∈ ℝ3 
 
 
 

 



12

Due to the additional information, the deviations compared to the previous study are reduced by a factor of 3. 
While the gSDE enhances the results of the driver model, it also results in deviations at the acceleration and de-
celeration switching points. The hyperparameter generates smoother actions but impedes learning the required 
steps in the actions.

The upcoming study‘s state space is defined by

where N=10. In comparison to control theory, Reinforcement Learning facilitates the integration of future value in-
formation into the driver model, which can be included in the state space.
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Figure 8: Velocity and Actions of the RL-based driver model with S2
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Figure 9: Velocity and Actions of the RL-based driver model with S3
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The mean absolute deviation can be reduced by 50 %. The future trajectory section provides crucial information 
that enables the driver model to learn and adopt a predictive behavior. To achieve this, the driver model initiates 
the transition between actions before a speed difference occurs.

Table 2 documents additional configurations of the state space. While implementing a feedforward control pro-
duces noteworthy results in the control approach, it does not yield any improvement in the RL-based driver mod-
el.

5.2 Training MathWorks® SIMULINK-based Agents in Python

Shown below is our high-level workflow to train an agent in Python using a SIMULINK-based environment. First, 
we convert the SIMULINK environment model into a Dynamic Linked Library (DLL). A DLL is a stand-alone collec-
tion of C functions and headers that we can directly execute in Python. See [11] for an example. Next, we build 
the environment in Python using the Gym library [12] and train the agent using Soft Actor-Critic [13] and Sta-
ble-Baselines3 [14]. Once the agent is trained, we deploy the learned policy in SIMULINK using ONNX [15].

 

6 Comparison of Approaches

After analyzing the performance of two driver models on the training trajectory, this chapter compares the two ap-
proaches. To achieve this, Table 2 displays the results of both driver models, including the error rates of the con-
trol theory-based driver models as well as several RL-based driver models that use different state space combina-
tions. The adaptive driver model exhibits the highest accuracy, achieving 0.04 km/h on the training trajectory. The 
performance of all models in Test 1 deviates by a maximum of 3% from the training results. The minor enhance-
ments of some RL-based driver models are due to the increased performance of the test vehicle. Consequently, 
the driver model no longer needs to apply 100% accelerator pedal from second 1 to 5 to achieve the reference 
speed, allowing to counteract deviations.

Figure 11 presents the outcomes of the two driver models with the least deviations in test 2. The trajectory fea-
tures characteristics that are absent from the training. In terms of speed, the driver model with adaptive control 
consistently shows the smallest deviations. Nevertheless, at state transitions (around 8 s and 12 s), abrupt increas-
es in accelerator setpoints occur (up to 90 %), as the delayed transition due to v_tol necessitates compensation 
for the resulting deviation. The RL-based driver model performs effectively on the new trajectory with unknown 
characteristics, but in some situations (deceleration from 38 s) the deviations are larger than in training. To mini-
mize these errors, retraining the driver model is an option. Retraining can be done on the new trajectory with the 
existing driver model and thus requires a shorter training time. In contrast to the control theory approach, the RL-
based driver model can handle state transitions with smooth actions, because it includes a foresight function.

 

 

Figure 10: Setup for training MathWorks® SIMULINK-based Agents in Python
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M N v_act_t F_tff gsde Training Test 1 Test 2 Training Test 1 Test 2

10 1 yes no yes 0,53 0,53 18,40 3 3 8

1 10 yes no no 0,83 0,82 18,73 4 4 12

0 10 yes no yes 0,97 0,95 17,90 4 4 8

1 1 yes no yes 1,03 1,02 18,09 3 3 8

10 1 yes no no 1,22 1,22 44,81 4 4 9

1 1 no no yes 1,22 1,21 18,12 4 4 8

1 1 yes yes yes 1,34 1,33 19,93 6 6 8

1 0 yes no yes 1,37 1,35 18,32 4 4 8

1 1 yes yes no 1,61 1,59 20,81 6 6 8

0 1 yes no yes 1,73 1,71 20,14 4 4 8

0 1 yes no no 3,30 3,30 20,68 4 4 7

1 0 no no - 0,11 0,10 17,32 4 4 8

1 0 no yes - 0,03 0,04 17,19 4 4 8
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Table 2: Results of the two driver models
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Figure 12 shows a qualitative comparison between the two driver models. The values range from 0, denoting low 
quality, to 5, indicating high quality. The control theory-based driver model showed slightly better control quality 
and is easier to interpret. Parameterization effort before use on the test bench and computational effort in use are 
lower due to the computationally intensive training of the RL-based driver model. Test 1 (modified vehicle param-
eters) and test 2 (modified reference vehicle speed trajectory) showed a comparable generalizability of both mod-
els. Due to the implemented foresight, the RL-based driver model was able to show a more realistic driving be-
havior.

For the application under consideration, the disadvantages of the RL-based driver model currently outweigh the 
advantages. Driver modelling at the 2nd level (see Chapter 2) also requires different driving styles (e.g., energy-sav-
ing, aggressive). In the case of an RL-based driver model, these could simply be achieved via the reward function 
(see Chapter 5), which would not be feasible in a control theory-based driver model.

7 Conclusion

A driver model based on reinforcement learning was developed within the vPiL, which controls a reference vehi-
cle speed by setting accelerator and brake. The training of the RL-based driver model takes place virtually, the 
trained driver model in the form of a neural network is then integrated into the real-time environment of a PiL test 
bench. The driver model was compared with an existing control theory-based driver model and was able to achieve 
a slightly worse control quality. The disadvantage of computationally intensive training in advance is countered by 
more realistic driver behavior. It is also conceivable that the RL-based driver model could be used for driving tasks 
that cannot be described solely by specifying a target speed and curvature. Furthermore, a combination of both 
approaches could combine the respective advantages and should therefore be investigated.
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Figure 12: Evaluation of each best driver model.
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