
1

INTERNATIONAL SYMPOSIUM
ON DEVELOPMENT METHODOLOGY

2

Comparison of driver models for
powertrain test benches using a digital twin

Jannes Schilling, Dr.-Ing. Jan-Michael Wilmsen, Paul Nitschke – Dr. Ing. h.c. F. Porsche AG;-
Prof. Dr.-Ing. Hans-Christian Reuss – Universität Stuttgart, Stuttgart, Germany

ISBN 978-3-9816971-6-2

3

Abstract

At the powertrain test bench, all powertrain components from the engine to the side shafts can be tested without
a prototype vehicle. With detailed vehicle, driver and environmental models and real-time simulation capabilities,
it is possible to run partially virtual and highly realistic tests and applications. Therefore, the validation of the pow-
ertrain can be done at lower costs and at an earlier stage under defined, reproducible boundary conditions. As
the complexity of the models increases, so does the effort required for parameterization prior to each test run. To
shorten the duration of commissioning, previous work has focused on designing a digital twin of a Powertrain-in-
the-Loop test bench (vPiL). The vPiL includes powertrain models, enabling virtual parametrization of the simula-
tion models before the test run. Furthermore, the digital twin is also used for the development or integration of
new simulation models without generating cost-intensive runtimes at the test bench. This paper focuses on how
to properly model a driver for the powertrain test bench which differs from many current driver models, for exam-
ple for autonomous driving (AD) functions. In AD, the driver is influenced by previously unknown, external factors
such as other drivers which impede automation. On the powertrain test bench, however, the entire test scenario
is already known in advance. The focus of the driver model is therefore on the most accurate control possible to
follow the known trajectory.

In addition, realistic driving behavior is required to avoid unrealistic loads on the powertrain. The main contribu-
tion of this paper is an empirical comparison of different driver models. First, we will introduce three driver types
which are respectively based on PI-control systems, adaptive PI-control systems, and reinforcement learning. The
PI-controller will be parameterized in the vPiL to ensure optimized and operator independent parameterization.
The reinforcement learning model is based on the Soft Actor-Critic algorithm. Second, we will motivate the mod-
els’ advantages and disadvantages regarding their usage on a test bench. Our focus is on the models’ accuracy,
required computation power as well as setup time and complexity. Finally, we will discuss the technical implemen-
tation of all three models in a MathWorks® Simulink model. This Paper will allow test bench engineers to select a
matching driver model for partially virtual validation of powertrain components on a powertrain test bench. In ad-
dition, potentials of the various models for future development will be identified.

4

1 Introduction

A powertrain test bench enables testing of internal combustion engine, hybrid, and electric powertrains in differ-
ent test scenarios. Often, these scenarios are intended to provide comparable results to vehicle tests. One way to
replicate vehicle testing on the test bench is to follow existing trajectories. These trajectories consist of a wheel
speed trace and a pedal trace. The trajectory is used to control the speed of the dynamometer and the power-
train. However, this method has two drawbacks. First, the dynamics of the powertrain dynamometer may differ
from the dynamics of the vehicle, resulting in different loads. Second, other units under test (UUT) may behave dif-
ferently than the powertrain in the reference vehicle, causing further deviation. A suitable method is the operation
of the powertrain test bench in combination with a real-time simulation as a powertrain-in-the-loop (PiL) test bench.
In this method, the test is described by road characteristics in form of a speed profile and a curvature profile. The
real-time simulation uses an environmental, vehicle, and driver model to calculate setpoint values for the dyna-
mometer and UUT. This ensures that the load applied to the UUT is comparable to the vehicle test.

The real-time simulation driver can influence the vehicle‘s longitudinal and lateral dynamics by accelerating, de-
celerating, and steering. In doing so, the aim is to follow the referenced trajectory as accurately as possible. Since
the accuracy of the driver affects the overall vehicle dynamics, it is important for the quality of the test results.
Therefore, this paper compares widely used control theory-based drivers with a new driver based on reinforce-
ment learning.

The general principles of driver modeling and current research in both areas are described in Chapter 2. Chapter
3 describes the framework and requirements of the drivers, before the control theory-based driver is presented in
Chapter 4 and the reinforcement learning driver in Chapter 5. A comparison of the two drivers is given in Chap-
ter 6.

2 Related Work: Driver Modeling for PiL Test Bench

A driver‘s primary task is to maneuver a vehicle safely from a starting point to a predetermined destination. This
can only be achieved through the driver‘s awareness of the vehicle‘s environment and the control of the vehicle‘s
actuators. [1] This complex task can be divided into different hierarchies using the 3-level model (Figure 1). At the
strategic level, the driver generates a route based on a starting point and the traffic situation. Within the maneu-
vering level, the route is transformed into a specific maneuver. The selection of the maneuver is based on the ve-
hicle‘s position and movement, as well as the driving space, and can be optimized according to various criteria.
Lastly, the maneuver is executed within the control level using the steering wheel and pedals of the car. [2]

On a PiL test bench, the strategic level is not of interest as the test case defines the route before the test. Wheth-
er to model the maneuvering level depends on the test case. To simulate driving scenarios as realistically as pos-
sible, some systems include environmental simulation with randomly generated traffic. Other test cases are based
on the reproducible execution of various maneuvers. These maneuvers are described by a predetermined trajec-
tory composed of speed and curvature. Consequently, only the implementation of the control level is used on the
test bench. Since the number of test cases with a predetermined trajectory outweighs the others, this paper con-
centrates on the modelling of the control level using both control theory and machine learning approaches.

Strategic Level

Maneuvering Level

Control Level

R
esponsivenessPl

an
ni

ng
 H

or
iz

on

Figure 1: Three-Level-Model of Driving Behavior [3]

5

Most publications regarding the control level, also known as trajectory-following control, are related to autono-
mous driving or driver assistance systems. However, these approaches can also be applied to powertrain test
benches.

Kebbati et al. introduce a self-adaptive PID controller in [4]. Initially, the authors establish a digital PID controller
in a basic vehicle model utilizing an optimization algorithm as a benchmark. The self-adaptive controller uses a
neural network to dynamically adjust the controller parameters (Kp,Ki,Kd). This allows the control system to respond
to external disturbances such as wind or road gradient. Aziziaghdam presents an approach that combines a PI-con-
troller with an inverted vehicle model in [5]. The controller determines its outputs by comparing the target speed
with the current speed of the vehicle. Subsequently, the setpoint value is converted into an accelerator setpoint
along an acceleration path or into a brake setpoint along a deceleration path, depending on the vehicle‘s accel-
eration. The two paths feature an inverted model of the vehicle‘s braking and acceleration paths. In contrast with
the prior model, creating the inverted model necessitates knowledge of the vehicle parameters (engine map, over-
all gear ratio etc.). In [6], the driver model combines a vehicle model as a feedforward with a PI-Controller. By in-
corporating foresight with future velocity values, the state of rolling or sailing can be assumed in addition to brak-
ing and accelerating.

Reinforcement Learning (RL) for large, continuous environments is a relatively young research area. Nonetheless,
there has been initial work on the usage of RL for longitudinal control. Buechel introduces in [7] a RL-based con-
troller that converts current and future reference speeds into accelerator and brake setpoints. While this approach
achieves a low error rate, the paper does not discuss how to ensure realistic driver behavior. Wang [8] describes a
RL-based controller for an adaptive cruise control system that consists of two levels. The first level contains the RL-
based controller which converts the speed and distance difference to the next vehicle into a target acceleration.
The second level consists of physical models for the acceleration and delay path which convert the target accel-
eration into accelerator and brake setpoints.

3 Setup and Requirements

This chapter presents an analysis of the PiL test bench with a focus on the driver subsystem. The interfaces to the
other subsystems, the requirements for the driver model, as well as the applicability of data-based methods are
of interest.

3.1 System Analysis

The test bench‘s real-time simulation has three linked subsystems: the environmental model, the vehicle model,
and the driver model. This virtual system interacts with two physical subsystems: the dynamometers and the at-
tached UUT.

The real-time simulation receives an input of trajectory data, including information on the test track and test bound-
ary conditions. Both the environmental model and the driver model have access to this information. The system‘s
second input is the actual speed of the dynamometers, which corresponds to the wheel speed of the UUT. The re-
al-time simulation generates torque setpoints for the dynamometers, and an accelerator setpoint, which is trans-
mitted to the UUT.

The driver model‘s inputs are comprised of the speed and curvature trace of the trajectory, as well as the current
speed of the vehicle, which is calculated by the vehicle model. In addition to the accelerator, the driver model gen-
erates a brake setpoint and a steering wheel setpoint, both of which have a direct impact on the vehicle model.
To simplify the development of the new models, this paper‘s investigations focus on maneuvers that don‘t involve
lateral dynamics. As a result, the driver model‘s outputs are reduced to the accelerator and brake.

For the development of the control theory approach, an analysis of the control theory plant is necessary. While
having a model of the plant is beneficial, it is not mandatory. Parameterization of the driver model can be per-
formed on the PiL test bench using various experimental programs with the current UUT. The Reinforcement Learn-
ing (RL) approach, on the other hand, involves testing various accelerator and brake setpoints to solve an optimi-
zation problem. If these experiments are performed in a semi-virtual system such as PiL, they cannot be parallelized
and must be performed in real time. The resulting costs and duration make such approaches unappealing. The
authors have previously introduced a virtual powertrain-in-the-loop test bench (vPiL) in prior publications [9]. In
addition to the real-time simulation, the vPiL also replicates the test bench and the UUT virtually, so that the train-
ing of the reinforcement learning approach can take place in the vPiL before the actual test run. A neural network
representing the driver model can finally be used in the real PiL test bench.

6

3.2 Driver Model Requirements

To achieve applicable driver modeling for use on a test bench, it is crucial to first establish specific requirements.
Table 1 displays the requirements arranged according to significance. The key role of the driver model is to accu-
rately control the reference vehicle speed. Also, the controller‘s actuating variables should mimic those of a hu-
man driver. This means: The driver model should not use the accelerator and brake pedals at the same time or
switch between them high-frequently. This can be tracked by the number of transitions between the two states
acceleration and deceleration. Moreover, the computational demands of the model should not be overly burden-
some, as it must run in real-time simulation within the test bench automation system. The driver model must meet
the initial three criteria sufficiently to be utilized in test bench operations.

The remaining requirements are of lesser importance but increase the model‘s manageability. The driver model
should be able to operate independently of vehicle or track type. For instance, the vehicle dynamics can vary due
to weight or power, while the trajectories may differ due to varying speed or speed gradient profiles. Despite the
driver model‘s complexity, the parameterization effort should be minimal. On one hand, to reduce the time re-
quired for driver model setup; on the other hand, to obtain better comparability between different test runs. The
requirement Explainability pertains to the comprehensibility of the model. A self-explanatory model supports anal-
ysis and debugging, especially in the case of an error. Furthermore, different driving habits, such as sporty or eco-
nomical, are interesting, but they always involve a change in vehicle speed, which contradicts the initial require-
ment. Therefore, the representation of the driving styles is a part of the maneuver level and will not be considered
any further here.

3.3 Research Setup

All driver models were developed using one reference vehicle and track. The reference trajectory was generated
using the vPiL by applying synthetic accelerator and brake decelerations. This ensures that reference values for
the actuators are available, and that the vehicle can attain the desired speed. The control theory-based driver
models are parameterized using the reference track and reference car, and the RL-based driver model is trained
using that same car and track.

To evaluate the generalizability of the two methods, two additional scenarios are accessible. To determine gener-
alizability of the vehicle, a heavier and more powerful vehicle is driven on the given reference track (test 1). In a
separate experiment, generalizability of the track is examined by driving the reference vehicle on a new track with
additional driving maneuvers, such as speed steps (test 2).

To determine the control quality of the two driver models, the mean absolute error (MAE) is calculated. The con-
trol quality achieved by the control theory-based driver models, is used as a reference to evaluate the RL-based
driver models.

Table 1: Requirements for a driver model

Requirements
1 Minimum deviation from the reference trajectory
2 Realistic actuating setpoints
3 Low computing effort
4 Independent of vehicle and track type
5 Low parameterisation effort
6 Explainability
7 (Various driving styles)

7

4 Control Theory-based Driver Models

This chapter describes a control theory-based driver model. This driver model controls the current vehicle speed
ʋact to a reference vehicle speed ʋset by setting accelerator t and brake b. In this chapter, two driver models are
presented, which are increasingly complex to meet the requirements of chapter 3.2 with increasing quality. Both
driver models consist of a finite state machine, which can assume the states acceleration and deceleration. In both
states, a PI-controller controls the vehicle speed. In both driver models, the PI-controller input is the speed differ-
ence dv between the reference vehicle speed ʋset and the current vehicle speed ʋact:

4.1 Baseline Model with Realistic Driver Behavior

The controller output in the acceleration state is an accelerator setpoint t, in the deceleration state it is a brake
setpoint b, as shown in Figure 2. To reduce the number of state transitions, a speed tolerance ʋtol is introduced.
The state transition from acceleration to deceleration is activated when dʋ is less than ʋtol and analogously, the
state transition from deceleration to acceleration is triggered when dʋ is higher than ʋtol:

To prevent integrator windup, the I-component of the PI-controller is limited as soon as the accelerator setpoint
or brake setpoint have reached their control value limits.

Figure 3 shows the results of the baseline model. It is noticeable that the absolute deviations are always greatest
when switching between ACCELERATION and DECELERATION. This is because the speed tolerance ʋtol prohib-
its state transitions until it is exceeded. The smaller ʋtol becomes, the smaller the deviations become, but for very
small values high-frequent transitions of ACCELERATION and DECELERATION occur, which does not reflect hu-
man driving behavior.

Figure 2: Baseline model using PI-controller with limited control values in a finite state machine.

Author: Klemens, Willi AVL/DE Filename: Equ1.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

Author: Klemens, Willi AVL/DE Filename: Equ3.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

ACCELERATION → DECELERATION: [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 < 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]
DECELERATION → ACCELERATION: [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]

8

4.2 Adaptive Driver Model using Pre-Control and Linearization

To improve the generalizability of the controller, the adaptive driver model uses pre-control and linearization of
the controller output in the acceleration state, as shown in Figure 4. In this state, an engine torque T replaces the
accelerator as the controller output. With the help of an inverted engine map, the appropriate accelerator set-
point t for the desired engine torque T can now be determined.

This implementation creates a linear context between the controller input (differential speed dʋ) and the control-
ler output (engine torque T instead of accelerator setpoint) and thus improves the control behavior.

The pre-control calculates a reference acceleration aset from the reference speed ʋset. This reference acceleration
is converted into a reference force via the mass of the vehicle m and is added to the driving resistance forces
Froadload. The resulting force Ffeedforward is converted into a feedforward torque Tfeedforward for the acceleration state
based on other vehicle parameters (dynamic wheel radius r and overall gear ratio i). For the deceleration state,
the resulting force Ffeedforward is converted into a feedforward deceleration afeedforward based on the vehicle mass.

Since both model extensions include all relevant vehicle parameters (engine map, overall gear ratio, dynamic tire
radius, vehicle mass and driving resistances), the generalizability of the driver model to other vehicles or tracks is
increased.

Figure 3: Velocity and Actions of the baseline model

0 2 4 6 8 10 12 14 16 18
0

50

100

150

Ve
lo

ci
ty

 in
 k

m
/h

0
0.2
0.4
0.6
0.8
1
1.2

Sp
ee

d
D

iff
er

en
ce

in
 k

m
/h vset

vact
dv

0 2 4 6 8 10 12 14 16 18
time in s

0

25

50

75

100

Ac
tio

n
in

 % Reference
t (Accelerator)
b (Brake)

Author: Klemens, Willi AVL/DE Filename: Equ4.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓(𝑇𝑇𝑇𝑇)

Author: Klemens, Willi AVL/DE Filename: Equ4.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �̇�𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚 ∙ 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓
𝑖𝑖𝑖𝑖
∙ 𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = − 1
𝑚𝑚𝑚𝑚
∙ 𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

9

The adaptive driver model shows smaller deviations than the baseline model due to feedforward control and lin-
ear controller outputs, as shown in Figure 5. The absolute deviations are still greatest when switching between
ACCELERATION and DECELERATION, but feedforward control minimizes the deviations caused by the state tran-
sitions. Note that the speed tolerance v_tol is set to the same value as in the baseline model.

Figure 4: Adaptive driver model using feedforward control and linear controller outputs.

Figure 5: Velocity and Actions of the adaptive driver model

0 2 4 6 8 10 12 14 16 18
0

50

100

150

Ve
lo

ci
ty

 in
 k

m
/h

0
0.2
0.4
0.6
0.8
1
1.2

Sp
ee

d
D

iff
er

en
ce

in
 k

m
/h vset

vact
dv

0 2 4 6 8 10 12 14 16 18
time in s

0

25

50

75

100

Ac
tio

n
in

 % Reference
t (Accelerator)
b (Brake)

10

5 Reinforcement Learning-based Driver Model

In Reinforcement Learning (RL) an agent (≙ the driver) interacts with an environment (≙ the vehicle), as shown in
Figure 6. By taking an action (≙ accelerating and decelerating), the agent changes its state (≙ current velocity) and
receives a reward (≙ e.g. deviation from reference speed). If the agent receives a high reward, a similar action is
done next: The action is reinforced. Otherwise, the agent tries a different action. In an iterative manner, the agent
learns optimal behavior, an optimal policy, over time.

A Reinforcement Learning agent is modeled as a Markov Decision Process (MDP) which is the tuple (S,A,R,p). Here,
S ϵ ℝd is the state space, A ϵ ℝd is the action space, R: S×Aℝ is the reward function and p: S×AS is the tran-
sition function of the environment. The RL-based driver model‘s quality can be modified by altering this tuple.
More information regarding the individual elements can be found below.

The state space can consist of different time series containing either measured or calculated signals. Let t ℕ be
the time, the actual speed of the vehicle, the reference speed. Due to the known trajectory, ad-
ditional values are provided, where N ϵ ℕ is a hyperparameter controlling the length of the
fores ight . The ca lcu la ted s ta te spaces used in th i s paper a re the speed dev ia t ion
 and the feedforward force as calculated in chapter 3. For
positive values only, the states are normalized between [0 1], all other states are normalized between [-1 1].

With tt ϵ ℝ and bt ϵ ℝ we denote the accelerator and vehicle deceleration outputs of the driver model and for the
initial action space, we set:

In the following, we discuss how to ensure realistic driver behavior. To limit the driver model from accelerating and
braking at the same time we change the action space to just one action:

Next, we reparametrize:

where the accelerator and brake values are now normalized in [0,1] and [-1,0), respectively. Even further we want
to limit the variance of inputs. Therefore, we use generalized state-dependent exploration (gSDE) [10].

As reward function, we set:

Figure 6: Reinforcement workflow of agent interacting with its environment.

Action

Reward

State

Author: Klemens, Willi AVL/DE Filename: Equ6.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝐴𝐴𝐴𝐴 = {𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡} ∈ ℝ2

Author: Klemens, Willi AVL/DE Filename: Equ7.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ [−1,1]

Author: Klemens, Willi AVL/DE Filename: Equ8.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝟙𝟙𝟙𝟙{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 0} · 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡 = 𝟙𝟙𝟙𝟙{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 < 0} · 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Author: Klemens, Willi AVL/DE Filename: Equ9.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠) = −|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡| ∈ ℝ

Author: Klemens, Willi AVL/DE Filename: Equ13.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 ∈ ℝ

Author: Klemens, Willi AVL/DE Filename: Equ14.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ

{𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , … , 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 }

𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 ∈ {1, … ,𝑀𝑀𝑀𝑀} ∶= 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 – 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ𝑀𝑀𝑀𝑀

𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Author: Klemens, Willi AVL/DE Filename: Equ14.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ

{𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , … , 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 }

𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 ∈ {1, … ,𝑀𝑀𝑀𝑀} ∶= 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 – 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ𝑀𝑀𝑀𝑀

𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Author: Klemens, Willi AVL/DE Filename: Equ14.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ

{𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , … , 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 }

𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 ∈ {1, … ,𝑀𝑀𝑀𝑀} ∶= 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 – 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ𝑀𝑀𝑀𝑀

𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Author: Klemens, Willi AVL/DE Filename: Equ14.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ

{𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , … , 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 }

𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 ∈ {1, … ,𝑀𝑀𝑀𝑀} ∶= 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 – 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ∈ ℝ𝑀𝑀𝑀𝑀

𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

11

5.1 Evaluation of Different State Spaces

The driver model‘s actions are predefined by the described settings. The reward function already includes the
most crucial requirement that the driver model must adhere to. As a result, we explore various combinations of
input variables and the corresponding information required by the RL approach.

Figure 7 illustrates the driver model‘s performance under the initial setup, where we set the state space to:

Therefore, gSDE has not been activated to illustrate the disparity in actions compared to when gSDE is activated.
Table 2 displays the ratings of a driver model with an equivalent state space and activated gSDE.

During the initial acceleration phase of the trajectory, there is a deviation of up to 10 km/h from the reference
speed. The deviations result from the driver model applying the accelerator pedal during initial acceleration and
only gradually reaching 100% acceleration. Even without gSDE activated, there is minimal variation in actions ob-
served. However, it is noticeable that the MAE decreases when gSDE is activated.

Therefore, Figure 8 displays the outcomes of an analysis utilizing gSDE and setting the state space as:

Through dv, the agent obtains a superior input that links directly to the reward function.

Figure 7: Velocity and Actions of the RL-based driver model with S1

Author: Klemens, Willi AVL/DE Filename: Equ10.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑆𝑆𝑆𝑆1 = {𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡} ∈ ℝ2

0 2 4 6 8 10 12 14 16 18
0

50

100

150

Ve
lo

ci
ty

 in
 k

m
/h

0
2
4
6
8
10
12

Sp
ee

d
D

iff
er

en
ce

in
 k

m
/h vset

vact
dv

0 2 4 6 8 10 12 14 16 18
time in s

0

25

50

75

100

Ac
tio

n
in

 % Reference
t (Accelerator)
b (Brake)

Author: Klemens, Willi AVL/DE Filename: Equ11.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑆𝑆𝑆𝑆2 = {𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡} ∈ ℝ3

12

Due to the additional information, the deviations compared to the previous study are reduced by a factor of 3.
While the gSDE enhances the results of the driver model, it also results in deviations at the acceleration and de-
celeration switching points. The hyperparameter generates smoother actions but impedes learning the required
steps in the actions.

The upcoming study‘s state space is defined by

where N=10. In comparison to control theory, Reinforcement Learning facilitates the integration of future value in-
formation into the driver model, which can be included in the state space.

0 2 4 6 8 10 12 14 16 18
0

50

100

150
Ve

lo
ci

ty
 in

 k
m

/h

0
2
4
6
8
10
12

Sp
ee

d
D

iff
er

en
ce

in
 k

m
/h vset

vact
dv

0 2 4 6 8 10 12 14 16 18
time in s

0

25

50

75

100

Ac
tio

n
in

 % Reference
t (Accelerator)
b (Brake)

Figure 8: Velocity and Actions of the RL-based driver model with S2

Author: Klemens, Willi AVL/DE Filename: Equ12.docx
Created:22.09.2023 Fehler! Unbekannter Name für Dokument-Eigenschaft. 1/1

𝑆𝑆𝑆𝑆3 = {𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 ,𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+1, … ,𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡+𝑁𝑁𝑁𝑁} ∈ ℝ𝑁𝑁𝑁𝑁+2

0 2 4 6 8 10 12 14 16 18
0

50

100

150

Ve
lo

ci
ty

 in
 k

m
/h

0
2
4
6
8
10
12

Sp
ee

d
D

iff
er

en
ce

in
 k

m
/h vset

vact
dv

0 2 4 6 8 10 12 14 16 18
time in s

0

25

50

75

100

Ac
tio

n
in

 % Reference
t (Accelerator)
b (Brake)

Figure 9: Velocity and Actions of the RL-based driver model with S3

13

The mean absolute deviation can be reduced by 50 %. The future trajectory section provides crucial information
that enables the driver model to learn and adopt a predictive behavior. To achieve this, the driver model initiates
the transition between actions before a speed difference occurs.

Table 2 documents additional configurations of the state space. While implementing a feedforward control pro-
duces noteworthy results in the control approach, it does not yield any improvement in the RL-based driver mod-
el.

5.2 Training MathWorks® SIMULINK-based Agents in Python

Shown below is our high-level workflow to train an agent in Python using a SIMULINK-based environment. First,
we convert the SIMULINK environment model into a Dynamic Linked Library (DLL). A DLL is a stand-alone collec-
tion of C functions and headers that we can directly execute in Python. See [11] for an example. Next, we build
the environment in Python using the Gym library [12] and train the agent using Soft Actor-Critic [13] and Sta-
ble-Baselines3 [14]. Once the agent is trained, we deploy the learned policy in SIMULINK using ONNX [15].

6 Comparison of Approaches

After analyzing the performance of two driver models on the training trajectory, this chapter compares the two ap-
proaches. To achieve this, Table 2 displays the results of both driver models, including the error rates of the con-
trol theory-based driver models as well as several RL-based driver models that use different state space combina-
tions. The adaptive driver model exhibits the highest accuracy, achieving 0.04 km/h on the training trajectory. The
performance of all models in Test 1 deviates by a maximum of 3% from the training results. The minor enhance-
ments of some RL-based driver models are due to the increased performance of the test vehicle. Consequently,
the driver model no longer needs to apply 100% accelerator pedal from second 1 to 5 to achieve the reference
speed, allowing to counteract deviations.

Figure 11 presents the outcomes of the two driver models with the least deviations in test 2. The trajectory fea-
tures characteristics that are absent from the training. In terms of speed, the driver model with adaptive control
consistently shows the smallest deviations. Nevertheless, at state transitions (around 8 s and 12 s), abrupt increas-
es in accelerator setpoints occur (up to 90 %), as the delayed transition due to v_tol necessitates compensation
for the resulting deviation. The RL-based driver model performs effectively on the new trajectory with unknown
characteristics, but in some situations (deceleration from 38 s) the deviations are larger than in training. To mini-
mize these errors, retraining the driver model is an option. Retraining can be done on the new trajectory with the
existing driver model and thus requires a shorter training time. In contrast to the control theory approach, the RL-
based driver model can handle state transitions with smooth actions, because it includes a foresight function.

Figure 10: Setup for training MathWorks® SIMULINK-based Agents in Python

14

M N v_act_t F_tff gsde Training Test 1 Test 2 Training Test 1 Test 2

10 1 yes no yes 0,53 0,53 18,40 3 3 8

1 10 yes no no 0,83 0,82 18,73 4 4 12

0 10 yes no yes 0,97 0,95 17,90 4 4 8

1 1 yes no yes 1,03 1,02 18,09 3 3 8

10 1 yes no no 1,22 1,22 44,81 4 4 9

1 1 no no yes 1,22 1,21 18,12 4 4 8

1 1 yes yes yes 1,34 1,33 19,93 6 6 8

1 0 yes no yes 1,37 1,35 18,32 4 4 8

1 1 yes yes no 1,61 1,59 20,81 6 6 8

0 1 yes no yes 1,73 1,71 20,14 4 4 8

0 1 yes no no 3,30 3,30 20,68 4 4 7

1 0 no no - 0,11 0,10 17,32 4 4 8

1 0 no yes - 0,03 0,04 17,19 4 4 8

mean absolut error
[km/h]

number of action changes
accelerator <> brake

Re
in

fo
rc

em
en

t-
Le

ar
ni

ng
Co

nt
ro

l
Th

eo
ry

model input configuration

Table 2: Results of the two driver models

0 4 8 12 16 20 24 28 32 36 40 44 48
0

50

100

150

200

ve
lo

ci
ty

 in
 k

m
/h

Reference Adaptive Driver Model RL-based Driver Model

0 4 8 12 16 20 24 28 32 36 40 44 48
time in s

-100

-50

0

50

100

 b

ra
ke

 in
 %

ac

ce
le

ra
to

r i
n

%

Figure 11: Velocity and Action of both driver Models in test 2

15

Figure 12 shows a qualitative comparison between the two driver models. The values range from 0, denoting low
quality, to 5, indicating high quality. The control theory-based driver model showed slightly better control quality
and is easier to interpret. Parameterization effort before use on the test bench and computational effort in use are
lower due to the computationally intensive training of the RL-based driver model. Test 1 (modified vehicle param-
eters) and test 2 (modified reference vehicle speed trajectory) showed a comparable generalizability of both mod-
els. Due to the implemented foresight, the RL-based driver model was able to show a more realistic driving be-
havior.

For the application under consideration, the disadvantages of the RL-based driver model currently outweigh the
advantages. Driver modelling at the 2nd level (see Chapter 2) also requires different driving styles (e.g., energy-sav-
ing, aggressive). In the case of an RL-based driver model, these could simply be achieved via the reward function
(see Chapter 5), which would not be feasible in a control theory-based driver model.

7 Conclusion

A driver model based on reinforcement learning was developed within the vPiL, which controls a reference vehi-
cle speed by setting accelerator and brake. The training of the RL-based driver model takes place virtually, the
trained driver model in the form of a neural network is then integrated into the real-time environment of a PiL test
bench. The driver model was compared with an existing control theory-based driver model and was able to achieve
a slightly worse control quality. The disadvantage of computationally intensive training in advance is countered by
more realistic driver behavior. It is also conceivable that the RL-based driver model could be used for driving tasks
that cannot be described solely by specifying a target speed and curvature. Furthermore, a combination of both
approaches could combine the respective advantages and should therefore be investigated.

0
1
2
3
4
5

Accuracy

Realistic Driver
Behavior

Computing Effort

Generalization

Parameterization
Effort

Explainability

Adaptive Driver Model RL-based Driver Model

Figure 12: Evaluation of each best driver model.

16

Literature

[1] DONGES, Edmund: Fahrerverhaltensmodelle. In: WINNER, Hermann; HAKULI, Stephan; LOTZ, Felix; SINGER,
Christina (Hrsg.): Handbuch Fahrerassistenzsysteme. Wiesbaden: Springer Fachmedien Wiesbaden, 2015, S. 17–26

[2] MICHON, John A.: A Critical View of Driver Behavior Models: What Do We Know, What Should We Do? In: EVANS,
Leonard; SCHWING, Richard C. (Hrsg.): Human Behavior and Traffic Safety. Boston, MA: Springer US, 1985, S. 485–
524

[3] WERLING, Moritz: Optimale aktive Fahreingriffe: De Gruyter, 2017

[4] KEBBATI, Yassine; AIT-OUFROUKH, Naima; VIGNERON, Vincent; ICHALAL, Dalil; GRUYER, Dominique: Optimized
self-adaptive PID speed control for autonomous vehicles. In: YANG, Chenguang (Hrsg.): System intelligence th-
rough automation & computing: 2021 the 26th International Conference on Automation & Computing: University of
Portsmouth, Portsmouth, UK, 2nd-4th September 2021. Piscataway, NJ: IEEE, 2021, S. 1–6

[5] AZZAGHDAM, Elif Toy; ALANKUS, Orhan Behic: Longitudinal Control of Autonomous Vehicles Consisting Pow-
er-Train With Non-Linear Characteristics. In: IEEE Transactions on Intelligent Vehicles 7 (2022), Nr. 1, S. 133–142

[6] MAYR, Christian; MERL, Reinhard; GIGERL, Hans-Peter; TEITZER, Mario; KÖNIG, David; STEMMER, Daniel; RET-
TER, Felix: Test emissionsrelevanter Fahrzyklen auf dem Motorprüfstand. In: LIEBL, Johannes (Hrsg.): Simulation
und Test 2018. Wiesbaden: Springer Fachmedien Wiesbaden, 2019 (Proceedings), S. 107–125

[7] BUECHEL, Martin; KNOLL, Alois: Deep Reinforcement Learning for Predictive Longitudinal Control of Automated
Vehicles. In: 2018 IEEE Intelligent Transportation Systems Conference: November 4-7, Maui, Hawaii. Piscataway,
NJ: IEEE, 2018, S. 2391–2397

[8] WANG, Bin; ZHAO, Dongbin; LI, Chengdong; DAI, Yujie: Design and implementation of an adaptive cruise control
system based on supervised actor-critic learning. In: 2015 5th International Conference on Information Science and
Technology (ICIST) : 24 - 26 April 2015, Changsha, China. Piscataway, NJ : IEEE, 2015, S. 243–248

[9] VEITH, Jan-Michael; SCHILLING, Jannes: Parametrierung und Optimierung eines Fahrreglers mittels virtuellem An-
triebs-strangprüfstand. In: 9. AutoTest Fachkonferenz.

[10] RAFFIN, Antonin; KOBER, Jens; STULP, Freek: Smooth Exploration for Robotic Reinforcement Learning. In: Procee-
dings of the 5th Conference on Robot Learning. URL http://arxiv.org/pdf/2005.05719v2

[11] DAPPERFU: Python-Simulink. URL https://github.com/dapperfu/Python-Simulink – Überprüfungsdatum 2023-09-17

[12] BROCKMAN, Greg; CHEUNG, Vicki; PETTERSSON, Ludwig; SCHNEIDER, Jonas; SCHULMAN, John; TANG, Jie;
ZAREMBA, Wojciech: OpenAI Gym. 05.06.2016

[13] HAARNOJA, Tuomas; ZHOU, Aurick; ABBEEL, Pieter; LEVINE, Sergey: Soft Actor-Critic: Off-Policy Maximum Entro-
py Deep Reinforcement Learning with a Stochastic Actor. 04.01.2018

[14] RAFFIN, Antonin; HILL, Ashley; GLEAVE, Adam; KANERVISTO, Anssi; ERNESTUS, Maximilian; DORMANN, Noah:
Stable-Baselines3: Reliable Reinforcement Learning Implementations. In: Journal of Machine Learning Research 22
(2021), Nr. 268, S. 1–8. URL http://jmlr.org/papers/v22/20-1364.html

[15] BAI, Junjie; LU, Fang; ZHANG, Ke; OTHERS: ONNX: Open Neural Network Exchange. URL https://github.com/
onnx/onnx

