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Abstract

Corpora created from social network data often serve as the data source for tasks
in natural language processing. Compared to other, more standardized corpora,
social media corpora have idiosyncratic properties due to the fact that they consist
of user-generated comments. These are, for example, the unbalanced distribution
of the respective comments, a generally lower linguistic quality, and an inherently
unstructured and noisy nature. Using a Twitter-generated corpus, I will investigate
to what extent the unbalanced distribution of the data has an influence on two
downstream tasks, relying on word embeddings. Word embeddings are a ubiquitous
and frequently used concept in the field of natural language processing. The most
common models are often the means to obtain semantic information about words and
their usage by representing the words in an abstract word vector space. The basic
idea is that semantically similar words in the mapped vector space have similar
vectors. In doing so, these vectors serve as input for standard downstream tasks
such as word similarity and semantic change detection. One of the most common
models in current research is the use of word2vec, and more specifically, the Skip-
gram architecture of this model. The Skip-gram architecture attempts to predict the
surrounding words based on the current word. The data on which this architecture
is trained greatly influences the resulting word vectors. In the context of this work,
however, no significant improvement in the results to a fully preprocessed corpus
could be found when filtering methods, widely used in the literature, without specific
motivation, are used to select a subset of data according to defined criteria, neither
for word similarity nor for semantic change detection. However, comparable results
could be achieved with some filters, although the resulting models were trained using

significantly fewer tokens as input.
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1 Introduction

In the current fast-paced digital age, social media platforms have become a central
hub for exchanging information, ideas, and opinions. Twitter, as one of the most in-
fluential platforms, plays a pivotal role in shaping public discourse and disseminating
news. Twitter 2, which was created in 2006, presents a free service for users allowing
them to spread messages up to 280 characters. There are more than 300 million
monthly users on the site, who post more than 500 million tweets, essentially com-
ments, per day (Kabakus and Kara, 2017). The massive amount of user-generated
content on Twitter has made it an invaluable resource for marketers and researchers
alike. The immense popularity of Twitter (or other social media platforms) in recent
decades has led to the creation of datasets from tweets for several activities in the
field of natural language processing, such as topics in sentiment analysis (Saif et al.,
2014) or opinion mining (Pak and Paroubek, 2010). Analyzing such extensive data
sets requires careful consideration of the distribution and sampling of the original

data to ensure that the insights are representative and unbiased (Bao et al., 2014).

However, before embarking on the analysis, the first crucial step involves the cre-
ation of a well-defined corpus, which serves as a representation of data relevant to
the chosen research area. The previously mentioned fields are only a fragment of
scientific interests based on social network data. The creation of the corpora always
depends on certain guiding principles in these fields (Bao et al., 2014; Klein et al.,
2021; Pak and Paroubek, 2010). In general terms, this refers to the fact that corpora
are not created in vain, but with a phenomenon or objective in mind that is to be
studied. In this respect, guidelines, principles, and algorithms are defined which have
the respective corpus as a result. The exact form of these pipelines is not crucial
for this thesis, but they often involve the same three steps: (i) searching for relevant
information by crawling social media sites, (ii) downloading the information and (iii)
filtering the resulting corpora on the basis of previously defined criteria (Kabakus
and Kara, 2017; Miletic et al., 2020; Tan et al., 2015; Jahinu¢ and Toraman, 2021).

2rebranded to X Corp at the time of writing this thesis



Often one has to remove unwanted data such as spam or near-duplicate content from
these corpora in preprocessing (Bao et al., 2014). But even after cleaning malicious
and other unwanted content, properties can still be found in user-generated corpora
that could be problematic, especially from a linguistic point of view. One of these
phenomena is the fact that these corpora are not necessarily equally distributed
in terms of the distribution of tweets (Al Sharou et al., 2021). A large part of the
tweets are written by a few, but nevertheless highly active users, while the other
large part of the users writes very few tweets resulting in a head/tail distribution
of content (Sastry, 2012). The distribution, which strictly follows Zipf’s law, can be
found in several corpora based on user-generated data (Sastry, 2012; Miletic et al.,
2020; Klein et al., 2021). The most common solution to counteract the unequal dis-
tribution is to subsample these users or their tweets and thus modify the source
corpus (Moreno-Ortiz and Garcia-Gamez, 2023; Shoemark et al., 2019).

Selecting a different sample of the data in a corpus of tweets can significantly impact
the generalisability and reliability of findings found in the data. Uneven representa-
tion of users may lead to skewed results, hindering the ability to draw meaningful
conclusions and obscuring essential patterns and trends. Moreover, this disparity
can introduce potential biases and misrepresentations, which can have severe impli-
cations, especially when dealing with sensitive topics or societal issues (Zhao et al.,
2022; Bian et al., 2008).

This is due to the fact that a textual corpus always contains statistical properties
in the form of words and their usage. The most important foundation for further
tasks in the field of natural language processing is to transfer the semantic infor-
mation and structures reflected by the words into a representation that can be used
to conduct experiments based on this information. A common representation of the
statistical properties of any given textual structure is the usage of a word vector
space (Schiitze, 1993). The underlying idea behind terms in this vector space is the
fact that terms that share a similar meaning are close to each other in the space

while terms that have foreign meanings are much larger apart. Such a representation



can be achieved by applying word embedding method to the data, which mathemat-
ically represents each word as a corresponding dense vector in the word vector space.
Word embeddings have been used in a wide variety of applications in the field of
natural language processing, such as sentiment analysis (Saif et al., 2014), semantic
change detection (Schlechtweg et al., 2019) or word similarity (Elekes et al., 2017)

amongst others.

By truncating data in corpora to counteract the problems of user-generated corpora
described above, the properties and statistics of their contents are also inevitably
changed. This has a particular impact on word frequency and the use of words. A
common example of this is users who use a particular expression frequently, and by
removing or subsampling these users, certain linguistic information about the terms
or their use can be lost to the now less frequent expression. On the other hand,
the disproportionate use of certain terms, language patterns, or jargon by highly
active users is a fundamental problem in the analysis of corpora as they can dispro-
portionately influence the overall word frequencies with their idiosyncratic language

patterns and specific vocabulary choices.

Ideally, word embedding models should be trained on the most optimal version
of the data to avoid suboptimal meaning representations due to a selection of a
skewed or biased subsample of the original data. The objective is hereby to create
a general representation of word meaning of the corpus without being influenced by
the top percentage of users that use the words in the vocabulary and skew their
latent semantic properties. In a nutshell, one wants to recognize the global repre-
sentation of all word meanings in the data and not the one of the most active users.
Previous studies relying on Twitter data recognize this issue but often use ad-hoc
filters without assessing them systematically. (Doval et al., 2020; Tan et al., 2015;
Moreno-Ortiz and Garcia-Gamez, 2023)

The aim of this thesis is therefore to explore and evaluate various methods to alter

the distribution of data across users in a corpus of tweets. By doing so, I intend to



address the challenges posed by imbalances of data and promote a more equitable
representation of users in the dataset by e.g. skewing the balance towards a more
evenly distribution and analyzing the aftermath of the changes. In addition, I will
use structural and systematic information from Twitter corpora to evaluate the effec-
tiveness of filters that address different aspects of tweets. In this regard, information
regarding the length of a tweet based on the number of tokens and information re-
garding the date on which the tweet was written. To achieve this, I use a standard
and widely used word embedding model, namely Skip-gram with negative sampling
(Mikolov et al., 2013a;b) to produce word vectors that learn contextual information
based on the word frequencies of the respective filtered corpora. The initial data
for this thesis is based on a Twitter corpus created by Miletic et al. (2020). This
corpus was created with the goal in mind to investigate contact-induced semantic
shifts in Quebec English (Miletic et al., 2021) and serves as a starting point for
further methods and evaluations of the methods for this thesis. I will then apply the
learned representations of the words for all filtered corpora to two suitable down-

stream tasks, word similarity and semantic change detection.

The selection of the two tasks, namely word similarity and semantic change de-
tection, is explained by the fact that they both rely on the same methodology. This
methodology consists of creating vector representations of words, comparing the vec-
tors, and a subsequent creation of a ranked list of the best results, which allows for
computationally easy comparison of the results across models and allows for a gen-
eral evaluation of how well the models understand the semantic details the corpora
provide. Therefore, it becomes apparent how effective the selected filtering methods

are.



1.1 Objective of this Thesis

This thesis aims to evaluate different filtering methods that aim to improve the
distribution of content across users in a corpus of tweets. There are two ways to
address this challenge. On the one hand, the distribution of content across users is
taken into account by setting up a limit of the maximally allowed amount of tweets
per user. Shifting this boundary and randomly subsampling tweets from users that
have posted more than the limit, serves as the starting point of this thesis which
aims to evaluate different methods of improving the distribution of content. On the
other hand, the properties regarding the length and the date of tweets are analyzed
in a controlled manner by only selecting a specific subset of tweets depending on
their length and the year they were written. In addition, multiple combinations of
all three different filtering categories will be considered. The main hypotheses to be

explored in this thesis are therefore the following:

o Hyphothesis 1: Filtering the corpus to actively downsample and thus reduce
the amount of tweets from highly active users to a defined limit has, depending
on the chosen limit, a positive effect on the results of the downstream tasks,

as the learned representations of the words reflect the global word meaning.
And the other, secondary hypotheses:

o Hyphothesis 2: The length of a tweet positively correlates with its linguistic
information (Tan et al., 2015; Boot et al., 2019; Gligori¢ et al., 2018). Selecting
only tweets above a certain minimum length has a positive influence on the

results of the downstream tasks.

o Hyphothesis 3: Selecting a subset of different years or periods of content
does not change the linguistic quality of the tweets. Thus, models trained on

different years should, assuming a similar token count, perform similarly.

There is an underlying contrast between the expected effectiveness of the filter

choices and the resulting data amount. A general assumption here would be that
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the number of data, in the form of tokens, is decisive for the performance of the
models, regardless of the filtering decision. To evaluate this, I propose combinations
of the filters above which aim to evaluate how exactly filtering decisions affect the

performances of the models and to which extent input data has an influence.

1.2 Structure of this Thesis

The remainder of this thesis is divided into the following sections:

Section 2 - Background: This section delves into the fundamental concepts that
underpin the experiments, providing essential context for understanding the subse-
quent sections. Also, relevant prior research and literature related to the topic are
presented, highlighting existing work and providing motivation on why this thesis
has scientific merit.

Section 3 - Data: Here, the corpus used in this thesis and its creation process and
properties are presented. Furthermore, the evaluation sets are also briefly intro-
duced.

Section 4 - Method: This section outlines the methodology, meaning the exper-
imental setup for this thesis, which is used to address the hypotheses. Also, the
various preprocessing steps, filters, and the resulting models employed in this thesis
are described, providing insight into the training and evaluation methods.

Section 5 - Results: This section presents the findings and outcomes of this thesis,
with data analysis and interpretation for both downstream tasks.

Section 6 - Conclusion and Future Work: The summary section provides a con-
cise recap of the thesis’ key points, emphasizing the most significant insights and
contributions while also providing possible extensions.

Bibliography: This section lists all the references cited throughout the thesis.
Section 7 - Appendix: The appendix contains additional supplementary material

in the form of tables containing all results of all models for both downstream tasks.
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2 Background

This section focuses on introducing and presenting the necessary basic background
knowledge that gives an overview of the methods and techniques of the research
area used in this thesis, while also providing an introduction to the history of word

embeddings.

2.1 Vector Representations of Words

The history of word embeddings can be traced back to the beginnings of distribu-
tional semantics. The theory of distributional semantics is based on the concept that
information about the context of a word already contains significant and support-
able linguistic information, i.e. words that occur in the same context and vicinity
tend to have similar meanings (Harris, 1954). The underlying idea of this so-called
distributional hypothesis was popularized by Firth who philosophized in the 1950s
that “a word is characterized by the company it keeps“ (Firth, 1957). The earliest
attempts of deriving or constructing features that share semantic similarities were
made by Osgood (1964). It took until the 1990s for the first methods for the use
of automatically generated contextual properties to emerge in the form of Latent
Semantic Analysis (LSA) (Deerwester et al., 1990) or Simple Recurrent Networks
(Elman, 1990) amongst others.

Regardless of the selected model architecture, a common trend nowadays is us-
ing a vector space, which provides a spatial representation of the word’s meaning
(Wendlandt et al., 2018). This is based on the fact that vector similarity is the only
tangible information present in word-space models, meaning that semantically re-
lated words are close while unrelated words are distant (Schiitze, 1993). However,
there are many different ways to move from the assumed distributional statistic
to the respective geometric representation of a low-dimensional word-vector space.
These include context vectors, probabilistic approaches, and co-occurrence matrices

amongst others (Sahlgren, 2006).
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At a basic level, a word vector is just a vector of weights. Using a simple encoding
method such as one-hot encoding, each element in the vector corresponds to ex-
actly one word in the vocabulary. The encoding of a given word is simply the vector
in which the corresponding element is set to one, and all other elements are zero.
However, if such an encoding is used, no meaningful mathematical operation can
be performed apart from equality testing. As a result, demand for more elaborate

embedding methods arose.

One of the most popular methods for generating word embeddings is using the
word2vec model, introduced by Mikolov et al. (2013a). Word2Vec operates on the
same principle that words appearing in similar contexts are likely to have similar
meanings. It can create dense, low-dimensional word representations that capture
semantic relationships by using a distributed representation of each word by rep-
resenting a word by a vector with hundreds of dimensions. (Goldberg and Levy,
2014) This is mainly a matter of converting words into floating-point numbers. In
this respect, vectors with several dimensions are created, where each dimension con-
tains a certain characteristic of information. Fach vector forms a data point in an
n-dimensional space. Consequently, the vectors reflect the structure of the entire

corpus. The following section will describe the word2vec model in more detail.
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2.2 Word2Vec

Mikolov et al. (2013a) introduced the word2vec model, which is an efficient method
for learning vector representations of words from large amounts of unstructured text
data. On a surface level, Word2Vec consists of a shallow, two-level neural network.
It maps each word to a fixed-length vector, and these vectors can better express
the similarity and analogy relationship among words. A further distinction is made
between two different architectures: (i) the Continuous Bag-of-Words Model and
(ii) the Skip-gram Model. Later, an extension of the original Skip-gram architecture
was provided in Mikolov et al. (2013b). The main difference is that the CBOW
architecture predicts the current word based on the context, and the Skip-gram
architecture predicts surrounding words given the current word (Mikolov et al.,
2013a). A graphical representation of the architecture of the models can be found
in figure 1. As this thesis focuses on the Skip-gram architecture, there will be an

in-depth look into its structural design and its mode of operation.

INPUT PROJECTION QUTPUT INPUT PROJECTION  QUTPUT

L1 SUM

CBOW Skip-gram
Figure 1: The architectures of the models. The CBOW architecture predicts the

current word based on the context and the Skip-gram predicts surrounding words

given the current word. Mikolov et al. (2013a)
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wait

O

will for you

Figure 2: An example of the sequence I will wait for you in the Skip-gram archi-
tecture. The model considers the conditional probability of the surrounding words

given a word.

Figure 2 shows the sentence "I will wait for you”. Assuming wait is the central word
with a context window of 2, the Skip-gram model now considers the conditional
probability for generating the context words (2 to the left, and 2 to the right) of the
words I, will, for, you by assuming that the words in its context are independently

generated given an input word in the center:

P(I,will, for,you|lwait) = P(I|wait) - P(will|wait) - P(for|wait) - P(you|will)

2.2.1 Skip-Gram

As previously stated, the Skip-gram model assumes that for each word in a sequence
of text, you can use this word to generate its surrounding words. Each word w has two
(d,1)—dimensional vector representations to calculate its conditional probabilities
with |V| being the total number of words and 7 being its index in the dictionary:
the center word vector v; € R?, and the context word vector u; € R%. Generating
a context word w, (with o being its index in the dictionary) is now described by
the conditional probability given a center word w, (with ¢ being its index in the

dictionary) and applying a softmax operation of the vector dot products u and wv:

exp(ulv,)

(1) P(w,|w.) = SV eap(uloy)
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Assuming a text sequence of length T (wq,ws, ws,...,wr) with the word at each
time step t is noted as wy, and that context words are independently generated given
any center word and context window size ¢ (not the same ¢ as the center word), the
likelihood function of this model is described as the probability of generating all

context words given any center word as input:

(2) L(us, v;) H I[I  Plwejlw)

t=1 —c<j<+c,j#0

As the parameters of the Skip-gram model are the center and context word vec-
tors for each word in the vocabulary, the objective of the Skip-gram model is then
to minimize the negative log-likelihood which in return maximizes the likelihood

function:

1 1 &
B Jww) = —ploglLlue) =73 Y logPluislu)

t=1 —c<j<+c,j#0

According to Mikolov et al. (2013a) larger values for ¢ lead to better results but are
computationally harder and thus take more time. This function can be solved by
using stochastic gradient descent to minimize the loss by using the gradients of the
log conditional probability with the center word vector and the context word vector.

This can be written as:
(4) logP(w,|w,) = ulv. — log Zexp ulv.))

In Mikolov et al. (2013b) they expanded on the original computationally expensive
softmax function by introducing two new concepts, hierarchical softmax, and neg-
ative sampling. Hierarchical softmax uses a tree representation of the output layer
and therefore approximates the full softmax by only evaluating a subset of its origi-
nal nodes which reduces the total amount of calculations. An alternatively proposed
solution is negative sampling which reduces computation by sampling just N nega-
tive instances along with the central word instead of sampling the whole vocabulary.
The selection of words to be sampled depends on their frequency. Essentially, the
probability of selecting a word as a negative sample is related to its frequency, with

more frequent words being more likely to be selected as negative samples. Each word
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is assigned a weight equal to its frequency (word count) raised to the 3/4 power.
The likelihood of picking a word is its weight divided by the total of all weights
(Mikolov et al., 2013b). A more detailed explanation can be found in Goldberg and
Levy (2014).

2.3 Downstream Tasks

The quality of the word embeddings can be measured by applying them to stan-
dard downstream tasks. The results of the tasks give an indication of how well the
model has understood the semantic meanings of the words of the corpus and in
which context they are employed. One of the most common methodologies to assess
the quality of word embeddings is to assess them with specific test sets aimed to
evaluate the models’ performance on different tasks. In this thesis, two downstream
tasks, namely word similarity and lexical semantic change were selected to evaluate

the learned models.

In particular, the concept of word similarity plays a common role in confirming the
quality of word embeddings as this is a fairly general and robust task (Doval et al.,
2020), whereas lexical semantic change is a more specific and niche task (Hamilton
et al., 2016), which nevertheless has its importance, as the word meanings play an
immensely important role and one can easily see from the results to what extent a

change in word meaning has taken place by comparing the word vectors.

Essentially, the previous sections also highlighted the problem of very active users in
user-generated corpora for semantic analyses based on word embeddings. Naturally,
for very frequently used words, no significant changes in frequencies are expected by
the above-mentioned users. However, it may well be that a few users use a certain
word in different contexts than usual and the model learns these skewed representa-
tions of word use since it has no basis for comparison which may alter the resulting
word vectors in an unexpected way. It can even go so far that a single user, through

the strikingly frequent use of a single word, significantly influences and changes

17



the resulting word vector. This could lead to the word being misrepresented and
significantly alter the generality of the word’s meaning, which is a problem for all
subsequent tasks. The two tasks selected for this thesis will briefly be introduced in

the following sections.

2.3.1 Word Similarity

Word Similarity, in broad terms, is defined as the degree of likeness between two
words in terms of their meaning or contextual content. It can be viewed as a mea-
surement of how closely related two words are in the definition and usage (Navigli
and Martelli, 2019; Elekes et al., 2017). There are many different methods and met-
rics to quantify the relation between two words (Elekes et al., 2017; Navigli and
Martelli, 2019) with a general distinction into knowledge-based approaches and dis-
tributional approaches. Navigli and Martelli (2019) define the first approach by its
mode of operation of exploiting explicit representations of meaning derived from
wide-coverage lexical-semantic knowledge resources and the second approach by its
formal distributional semantics basis, which aims to exploit the statistical distribu-
tion of words within unstructured text. In this thesis, I will use the second approach,
as [ have an unstructured corpus from which I'll derive the needed word similarities

by computing word vectors.

The measure to compare the degree of semantic similarity is done by comparing two
(or more) resulting vector representations. Widely used amongst both approaches is
the measurement of semantic similarity via cosine similarity (Artetxe et al., 2018;
Navigli and Martelli, 2019). Mathematically, the task is defined as two words a
and b with their corresponding word vectors a; and b; in a n-dimensional vector
space a,b € R". The similarity between the word vectors can then be obtained by

computing the cosine similarity between the vectors of the word pair:

. . ap - by
cosine_sim(ay, by) =

~ laallllbal]

In intrinsic word similarity evaluation, word pairs along with their similarity rating

as judged by human annotators are provided. The task is then defined as the mea-
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surement of the distance between the calculated distance measure and the average
over the human annotators (Artetxe et al., 2018). The similarity scores are computed
for all lists of word pairs in the test set and then sorted according to their computed
vector-space similarity and human similarity. The more similar they are, the bet-
ter are the embeddings. Computing Spearman’s correlation (Myers et al., 2010) or
Pearson’s correlation (Freedman et al., 2007) between these ranked lists results in a

score that reflects how well the learned word vectors capture the concept of similarity.

The evaluation of word embeddings on a dataset makes it easy to compare one
of the models created for a task to other models created for a task. This and the
fact that the evaluation is computationally fast and easy allows us to easily under-
stand which parameters (or in this case, filters) have a larger impact on the score.
Section 4.6.1 will further elaborate on the evaluation method and sets used for this

thesis.

2.3.2 Semantic Change

(Lezical) semantic change detection, in broad terms, is defined as the detection of
word meaning change. (Tahmasebi et al., 2021) There are multiple explanations
for the shift of word meaning, which include cultural, technological, and linguis-
tic factors (Hamilton et al., 2016). The ever-improving neural models for creating
word embeddings also led to an increased interest in this field. (Hamilton et al.,
2016; Kutuzov et al., 2018; Schlechtweg et al., 2019). A further distinction is made
between synchronic and diachronic semantic change detection (SCD) (Tahmasebi
et al., 2021).

Diachronic SCD evaluates shifts in meaning over time by measuring the change
of word embeddings trained on corpora based on different time periods. Synchronic
SCD also evaluates shifts in meaning but doesn’t necessarily base the assumption
of change on time alone, but rather on other focus areas like domain (Schlechtweg
et al., 2019), where a difference in word meaning compared to the general usage is

to be expected.
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In this thesis, the semantic shift of words, as contact-induced synchronic change, will
be investigated by evaluating the different word usage and meanings of Canadian
English words across different regions, where one region is affected by the contact-
induced influence of French (Quebec English) and the other is not. It has to be
mentioned, that due to cultural and geopolitical reasons, an underlying diachronic
explanation for eventual changes cannot be excluded. Section 3, which focuses on

the corpus, will further elaborate on the creation process of the corpus.

Computational approaches to semantic change detection in the last years have
largely used vector space models which dominate the current research (Kaiser et al.,
2021). There are many different methods with different alignments, and similarity
measures to fulfill this task Schlechtweg et al. (2019). Commonly used are SGNS
models with the Orthogonal Procrustes alignment and the cosine distance/similarity
to measure the results (Schlechtweg et al., 2019; Kaiser et al., 2020). The selection of
the orthogonal procrust alignment method leads to a separate training of the SGNS
models for each corpus resulting in two different word matrices which have to be
aligned according to the method proposed by Hamilton et al. (2016). The measure-
ment and the subsequent evaluation of the results between the two words from the
two now-learned SGNS-based representations is similarly done as described in the

previous section.

In such a representation, and for the purpose of this thesis, for each word w; a

vector representation w{ for each of the three different subcorpora of the corpus

Montreal
7

Toronto

; ,wY aneowver is computed. The distance between the respective word

w i

, W
vectors for the same word is then computed similarly to the previous section, where
a distance metric, like the cosine distance, is used to compute the rate at which the
words have different meanings in the regional areas. Section 4.6.2 will further elab-
orate on the evaluation process of this thesis by introducing the evaluation method

and test set.
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2.4 Related Work

The methodological foundation of this thesis relies on word vectors created by word
embeddings. Word embeddings are a practical implementation of the concept of
distributional semantics as shown in the previous sections by creating dense, low-

dimensional vector representations of words learned from corpora.

In current research, a distinction is made between two different types of distribu-
tional semantic models, there are (i) (static) type-based models and (ii) (dynamic
and contextual) token-based models (Tahmasebi et al., 2021). The crucial differ-
ence between the two approaches lies in the distinction between models building
one representation of the word’s meaning for each word (token-based) and models
building a representation of the word’s meaning by aggregating over the word’s uses

(type-based).

While type-based models such as word2vec’s Skip-Gram with Negative Sampling
model (SGNS) (Mikolov et al., 2013a;b) or GloVe (Pennington et al., 2014) are
prone to the aforementioned limitations of the architecture, the results of SGNS,
in particular, are outperforming all token-based models for lexical semantic change
detection on many datasets (Laicher et al., 2020; Kaiser et al., 2020). Due to its fast
and easy implementation, allowing for multiple different combinations of parameters
and alignment types, SGNS is a widely used resource for lexical semantic change
detection (Shoemark et al., 2019; Tahmasebi et al., 2021; Kaiser et al., 2020) and
therefore the embeddings used in this thesis are SGNS-based. Generally, word2vec
models are also considered to be the most popular and yet one of the most successful
models for the task of word similarity (Navigli and Martelli, 2019; Wang et al., 2019).

There has been a substantial amount of research done using word2vec models for
both downstream tasks for this thesis (Tahmasebi et al., 2021; Shoemark et al.,
2019; Elekes et al., 2017; Schlechtweg et al., 2020; Kaiser et al., 2020). In general,

word2vec methods have been applied to many different tasks trained on different
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types of data sets (Naseem et al., 2020; Babié¢ et al., 2020; Tan et al., 2015). Ex-
amining how different types and approaches to create and apply word2vec models
respond to different circumstances, given the wide range of parameters, input data,
alignment methods, and downstream tasks is too extensive to provide an overview

here.

The analysis of properties and characteristics of Twitter and corpora derived from
Twitter data has gained some traction in academia with Gonzalez (2015) offering
a statistical analysis of Twitter corpora and their properties and the difference be-
tween formal and informal tweets by the usage of Twitter-specific functions. Neubig
and Duh (2013) investigate the information gain per character on Twitter for many
different languages and come to the conclusion that small differences in size lead
to more information gain. Sahinu¢ and Toraman (2021) investigate the impact of
the length of a tweet with similar findings. Likewise, Gligori¢ et al. (2018); Boot
et al. (2019) evaluate if the alteration of the constraints (140 to 280 characters) of

maximally allowed characters on tweets leads to more linguistic information.

Such findings aren’t prone to be domain and task specific as (Klein et al., 2021;
Taie et al., 2019; Bian et al., 2008; Sastry, 2012) amongst others use Twitter cor-
pora for further tasks and offer similar descriptions as above about the statistical
properties of their corpora, which ultimately is summarized by Moreno-Ortiz and
Garcia-Gamez (2023) by evaluating the methods of dealing with large corpora based

on social media data.

The investigation of word2vec models applied to Twitter corpora and how the results
differ in comparison to other sources has received some attention as Li et al. (2017)
investigate how word2vec models trained on different Twitter corpora by omitting
certain preprocessing steps like spam detection and removal behave and come to
the conclusion that the more context in the form of longer tweets the better the
models perform. Similarly, Tan et al. (2015) compare word2vec models trained on

different lexical corpora, Twitter and Wikipedia, and arrive at the result that there
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are certain characteristic words that differentiate the two. For example, they find
that Twitter corpora contain much different word vectors for words that are used
colloquially and in abbreviations. Eventually, Doval et al. (2020) offer a large-scale
analysis of different word embedding models trained on noisy Twitter data and also
word similarity to evaluate their method of using bridge words to fill out gaps of

content.

However, there is not too much research on the challenges of uneven data distri-
bution using Twitter data and word2vec models. Many recognize the inequality of
data distribution in user-generated corpora but limit themselves to setting common
boundaries above which users’ tweets are subsampled or simply subsample tweets in
general (Miletic et al., 2021; Shoemark et al., 2019; Tan et al., 2015; Moreno-Ortiz
and Garcla-Gamez, 2023) but don’t systematically investigate the effectiveness of
such filtering techniques. It has been known that word2vec models are prone to in-
stabilities (Antoniak and Mimno, 2018) especially when they are trained on smaller
corpora (Wendlandt et al., 2018).

As such, based on the corpus created by Miletic et al. (2020) I will investigate how
filtering methods with the goal to select a better distribution of data across users
and the resulting corpora affect the results of word similarity and lexical semantic

change detection by training word2vec models and comparing their results.
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3 Data

The objective of this section is to (i) present the used corpus and (ii) the used
evaluation sets. Section 3.1 will present and introduce the corpus used for this thesis,
and the subsequent sections will introduce and provide an overview of the used

evaluation sets for both tasks of this thesis.

3.1 Corpus

Miletic et al. (2020) introduce and present the CanEn® corpus for this thesis and
thus the foundation all work is based on. As previously discussed in section 2, the
corpus was created to study regional variation in Canadian English and, more specif-
ically, to investigate if any contact-induced semantic shifts occurred in Quebec En-
glish. For this, three different subcorpora, all related to three large cities in Canada,
one of which where a semantic shift due to contact is expected and two of which
where this shift isn’t expected to serve as a further sanity check, have been defined
by differentiating between the geological location of each user. Namely, these are
the Montreal, Toronto, and Vancouver corpora. Each of which will be subsequently
treated as its own separate corpus, despite all of them being part of a complete cor-
pus, to avoid misunderstandings due to the wording, if necessary. Section 3.1.1 will
briefly summarize the creation process of the corpus while section 3.1.2 will provide
a description of the corpus and its properties with a special focus on the distribution

of content across users.

3.1.1 Creation of the Corpus

Miletic et al. (2020) define the data collection process by creating a pipeline con-
sisting of two steps: (i) a data collection step that seeks to identify users in the
geographic areas of interest, and (ii) a subsequent crawl of their timelines. They

further elaborate on their choice of geographic areas and the initial tweet collection

3http://redac.univ-tlse2.fr/corpora/canen.html
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by providing sociolinguistic justifications for their choices. Furthermore, the derived
tweets were filtered by location, language, and near-duplicate detection to ensure
that the retrieved data is not only appropriate but also usable for further tasks in
the field of natural language processing. Figure 3 provides an overview of the data

collection and subsequent filtering pipeline of the CanEn corpus.

Twitter archives
B ‘ geo params |
Search AP|

bigrams ' ] language filter

i first data
‘ overview |

‘CDCJ\

Initial corpus

) L candidate
B user profiles

User crawl via
REST API

Location filter

. Language filter

Mear-duplicate
exclusion

Final corpus |

detection of regional
lexical variation

vector space models
for semantic shifts

Figure 3: Data collection pipeline detailing all major steps for the creation of the
CanEn corpus (Miletic et al., 2020).

3.1.2 Description of the Corpus

The complete corpus contains 78.8 million tweets posted by 196431 individuals. Af-
ter tokenizing the corpus with an implementation of nltk’s Treebank Word Tokenizer
(Bird et al., 2009) this leaves us with 1.2 billion tokens for the corpus. Table 1 shows
a more detailed view of the presented properties. There are, on average, 325 tweets

per user for the Montreal subcorpus, 443 tweets per user for the Toronto subcorpus,
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and 449 tweets per user for the Vancouver subcorpus, which results in a global aver-
age of 401 tweets per user. The mean amount of tokens per tweet is, on average, 14.8
for the Montreal corpus, 15.8 for the Toronto corpus, and 16.2 for the Vancouver
corpus, which results in a global average mean token amount per tweet, equivalent
to the length of a tweet, of 15.4.

Corpus Users Tweets Tokens
Montreal 72 305 | 23 469 526 352 202 123
Toronto 64 163 | 28 442 928 437 301 043
Vancouver | 59 692 | 26 924 158 428 998 623

Complete | 196 431 | 78 836 612 | 1 218 501 789

Table 1: Structure of the corpora, indicating the number of users, tweets, and tokens

per corpus

3.1.2.1 Distribution of Tweets across Users

The distribution of tweets can be seen in figure 4 depicting histograms for each
corpus. The distribution follows a similar trend seen in user-generated corpora where
the number of users with only a small number of tweets is much larger than the
number of users with a lot of tweets (Sastry, 2012). The number of users decreases
significantly as the number of tweets increases so that already the number of users
with hundreds of tweets is only a fraction of the users with less than 60 tweets. This
sort of distribution is very common amongst user-generated corpora and thus the
cumulative distribution function shown in 4 shows that the large number of users
with less than 60 tweets already accounts for roughly half of all tweets in the entire
Montreal corpus. Another interesting find is the fact that the most active 1% of
users account for more than 6.2% of all tweets. Similar trends can be observed in
the two other corpora. Considering that a non-negligible percentage of the corpus
is constructed by these highly-active users, a further investigation into how their

tweets affect the resulting word embeddings is warranted.
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Figure 4: Histograms of the distribution of tweets per user across the three corpora

using (i) a normal scale on the left side and (ii) a logarithmic scale on the right side.
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3.2 Test Sets

This section presents the evaluation sets of both, word similarity and semantic

change detection.

3.2.1 Semantic Shift

Miletic et al. (2021) introduce and present the test set (CanEn test set*) for this
thesis. As mentioned in the previous sections, it was not possible to use standard
resources to investigate if any words underwent contact-induced semantic change.
Thus, a new evaluation set based on this corpus had to be created which I'll briefly

present in the following segment.

3.2.1.1 CanEn Test Set

As stated in the paper, this evaluation set was specifically created for this particular
corpus as it seeks to find words that underwent contact-induced semantic shifts in
Quebec English. To achieve this, Miletic et al. (2021) define the task to detect lex-
ical semantic changes similar to other recent works proposed by Schlechtweg et al.

(2020) as a binary clarification problem.

Therefore, the words of this 80-word test set were divided into two groups: One
where a contact-induced semantic change was to be expected according to sociolin-
guistic literature (class 1), and the other where no change was to be expected which
served as a control group (class 0). Each line in the file contains a word, its re-
spective POS tag and its semantic change class. Table 2 shows an example of the

set.

4http:/ /redac.univ-tlse2.fr /misc/canenTestset.html
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word POS | class
chalet N 1
formidable | A 1
ought \Y 0
hunch N 0

Table 2: Structure of the CanEn test set using exemplary words.

3.2.2 Word Similarity

There are several, different data sets for word similarity. These differ in approach
and application so that a wide range of challenges in word similarity (relatedness,
association, similarity) can be queried but their design is generally similar according
to Faruqui et al. (2016). Namely, these evaluation sets include a tabular structure
in which each row has exactly one-word pair and all associated metrics in the form
of columns. Generally, two columns represent the respective word pairs and the
remaining columns represent metrics such as the average score of all human an-
notators. MEN, WordSim-353 and SimLex-999 are standard resources to evaluate
models on word similarity and relatedness and were therefore chosen as the test sets
for this thesis. (Doval et al., 2020) Each of these I'll briefly describe in the following

segments.

3.2.2.1 SimLex-999

SimLex-999 (Hill et al., 2015) is a resource for evaluating models that learn the
meaning of words. It focuses on similarity rather than other similar concepts so
that pairs of words that are associated but not actually similar (Djokovic, Tennis)
have a low rating and thus allows general-purpose evaluations of semantic models.
It contains 999 word pairs with a scale from 0 to 10. A distinction from the next
test set (WordSim-353) can be found in Table 3 showing that the word pair clothes

- closet receives a low score even though they are conceptually related.

29



Word Pair \ SimLex-999 \ WordSim-353
clothes - closet ‘ 1.96 ‘ 8.00

Table 3: Comparison of the scores given by SimLex-999 and WordSim-353 for two

selected word pairs

3.2.2.2 WordSim353

WordSim353 (Finkelstein et al., 2001) is a human-constructed test set for measur-
ing word relatedness and similarity. It contains a set of English word pairs along with
their human-assigned scores. Agirre et al. (2009) propose a split of the original test
set into two different subsets, one for evaluating similarity WordSim353-Similarity,
and the other for evaluating relatedness WordSim353-Relatedness), which I also used
to compare the resulting models. Following the split, the similarity gold standard
set contains 203 lines of word pairs while the relatedness gold standard set contains
252 lines of word pairs. The values for the scores range from close to 0 (no similarity
or relatedness between the two words) to 10 (identical word). The WordSim-353-
REL set contains no pairs of similar concepts while the WordSim-353-SIM contains

similar or unassociated pairs.

3.2.2.3 MEN

MEN (acronym for Marco-Elia-Nam) (Bruni et al., 2014) is a human-constructed
test set for measuring word relatedness. It contains 3000 word pairs assessed by their
semantic relatedness on a scale from 0 to 50. The structure is similar to the eval-
uation sets described above. Due to the large number of word pairs, the test set is
particularly interesting for its wide scope of words, especially since for some models
it may occur that words in the alternative test sets do not necessarily appear in the

vocabulary of the corpus.
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4 Method

This section describes the method and experimental setup of this thesis. A subsec-
tion is dedicated to each individual step in order to describe each process as precisely
as possible. Thus, section 4.1 provides an overview of the methodology of the thesis,
section 4.2 presents the individual text preprocessing steps of the original corpus,
section 4.3 describes and explains the chosen filtering criteria, section 4.4 describes
the general training process including the algorithm choice, its parameters and con-
figurations of the hardware, and section 4.5 presents properties the resulting models.

Finally, section 4.6 provides a review of the evaluation process for the models.

4.1 Overview of the Experimental Setup

The setup for the experiment can be loosely divided into four different phases. First,
the text of the corpus is preprocessed. Then, the corpus is modified by already
defined filters that use certain properties of Twitter to select specifically selected
tweets into their own, smaller corpora. The general filter categories are the length of
the tweet, the number of tweets per user, and the year the tweet was written. There
are furthermore, combinations of filter categories, which result in additional corpora.
Each of these corpora goes through the further steps separately. Subsequently, word
embeddings are created from all corpora according to the same training parameters
and features using SGNS, which are then analyzed and evaluated based on the two
downstream tasks; word similarity and semantic change detection. The average of the
results of the four different test sets for word similarity is used for comparison. SCD
uses only one test set, created specifically for this task. The aim of this schematic
design is to provide a uniform basis of comparison for the effectiveness of filtering
decisions based on Twitter corpora-specific distributions of tweets. Figure 6 shows
the experimental setup for this thesis. The following section will go into more detail

for each respective step of the setup.
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Figure 6: Experimental setup of this thesis which includes the four main steps: (i)
text preprocessing, (ii) filtering of the data, and the subsequent (iii) training and (iv)
evaluation of the learned word embeddings on the basis of two selected downstream

tasks; semantic change detection and word similarity and their respective test sets.
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4.2 Text Preprocessing

The preprocessing and cleaning of data in the corpus is an essential part of setting
up an experiment in the field of natural language processing. This is especially im-
portant for user-generated data such as corpora of tweets (Chai, 2023). In contrast
to corpora that are created according to predefined criteria, such as corpora that are
based on the usage of sentences from journals, and newspaper articles (Oberbichler
and Pfanzelter, 2021) or created by annotators relying on services like Mechanical
Turk (El-Haj et al., 2010), Twitter tweets, similar to data from other social media
platforms, are inherently user-generated comments and therefore their content is

also freely left to the respective user and thus unstructured (Taie et al., 2019).

The fact that, apart from the fixed maximal possible length of a tweet, users have
no restrictions on what they write, especially in terms of the type, the content, and
the spelling, makes Twitter data inherently noisy. Due to the fact that (almost)
everything is allowed, and also comparatively much can be written, there are clear
differences between the qualities of the tweets. Not necessarily limited to Twitter,
Bian et al. (2008) as early as 2008, found that data quality in such environments
ranges from linguistically valuable to spam and malicious content. This trend, which
has been continuously observed over the last decade as shown by Tan et al. (2015);
Klein et al. (2021), justifies meticulous and large-scale preprocessing of Twitter cor-

pora as absolutely necessary.

The process of text preprocessing has received a lot of attention in current research
with Chai (2023) offering a meticulously detailed survey on the effectiveness of the
most common steps such as the removal of stop words or cleaning of misspelled
words. Bao et al. (2014); Palomino and Aider (2022); Ramachandran and Parvathi
(2019); Symeonidis et al. (2018) amongst others also provide an investigation and
an analysis of the standard preprocessing techniques in the field of natural language

processing, with a special focus on sentiment analysis.
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Miletic et al. (2020) have already preprocessed the corpus in the form of detecting

and eliminating spam and other malicious content, detecting and removing near-

duplicates, and other common preprocessing steps such as language identification.

The content of the tweets themselves, have not been altered. Consequently, when

creating the text preprocessing pipeline, I followed common steps for cleaning and

preprocessing Twitter data, which are listed and briefly explained below:

1.

10.

11.

Removing Emojis: Removing any emojis present in the corpus. Emojis are

pictorial representations of emotions, ideas, or things amongst others.

. Removing Emoticons: Removing emoticons, images made up of symbols like

7:D”] entirely.
Lowercase: Converting all text to lowercase.

Replacing Mentions: Replacing user mentions (for example @milovamn) with

a generic mention (Qusername).
Removing Links: Removing any URLs, hyperlinks or links present in the text.

Removing Hashtags: Removing hashtags (words or tokens preceded by '#7)

present in the text.
Removing Numbers: Removing any numerical digits from the text.
Splitting Tweets into Sentences: Dividing each tweet into individual sentences.

Splitting Sentences into Tokens: Splitting each sentence into its individual

tokens.
Removing Punctuation: Removing any punctuation marks from the tokens.

Lemmatization: Converting each token to its root form (lemma), which reduces

inflected words to their base form and normalizes the text for further analysis.
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12. Removing stop words: In this step, common words that do not carry signif-
icant meaning and are often considered noise in natural language processing
tasks are eliminated from the text. These words, known as stop words, include

b

frequently occurring words such as ”the” or "is”. By removing these words,
the text is streamlined, and the focus is shifted to more relevant and informa-
tive content. This is important as the sampling process of Skip-gram gives the
most frequent n words a lower weight. Removing stop words entirely, alters

the words that usually get a lower weight Antoniak and Mimno (2018).

Figure 7 shows a graphical overview of all steps and their order in this preprocessing

pipeline. It i
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Remaoving Emoticons
Lowercase
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Figure 7: All steps taken during text preprocessing of the corpus.
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4.3 Filters

The initial filtering of the original corpus can be divided into three different filtering
categories. In the first category, filtering is based on the original date of the tweets.
The second category filters by the length of the tweets and the third category filters
by the number of tweets per user. Thus, the categories can be roughly divided into
two classes. On the one hand, the content of the tweet itself is considered, and on
the other hand, meta-information about the tweet is taken into account. In order
to guarantee a generally applicable analysis of the influence of filter processes, the
individual details of the respective filters must be set in such a way that the entire
process can be reproduced and monitored. For this purpose, separate variants were
defined for each individual category of filters, which are easily distinguishable from
each other. Thus, several properties and their variants of the tweets can be analyzed.
This is especially important in the second filter category, where the filtering was
deliberately set to certain conditions that allow comparisons even across the most

minuscule of differences.

4.3.1 No Filters

Two versions of the original corpus were used as a starting point for the models
to allow for comparison against the models based on filtered corpora. Namely, the
raw, i.e. not preprocessed corpus, and the full, i.e. the completely preprocessed but
not filtered corpus. Both of these serve as baselines for any comparisons and the

conclusions that arise from the comparisons.

4.3.2 Basic Filters

This section will introduce all filter categories and their traits and offer insight into
the resulting properties. It also serves as a foundation to justify further decisions

based on the results of the filtering process.
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Filter Category 1 - Time: A distinction between active periods of time per
user has been proposed in Miletic et al. (2021) where the cut-off was chosen to be
2016 to not have any synchronic effects. On a more general level, these two variants
of this filtering category were used because I wanted to investigate the differences
in properties between earlier and later tweets. It should be clear that combinations
with the filter of the first five years cannot provide meaningful results due to the
low number of tweets and the associated low number of tokens. Table 4 shows the

number of tweets for each period.

o First 5 Years: Resulting corpus only retains tweets that were written in the

first 5 years of the corpus.

o Last 5 Years: Resulting corpus only retains tweets that were written in the

last 5 years of the corpus.

Year | Montreal | Toronto | Vancouver
2006 32 21 9
2007 3 007 1 976 2 145
2008 26 129 21 896 29 361
2009 231 312 281 623 349 367
2010 406 465 531 518 651 818
2015 | 2395 221 | 2948 874 | 2 719 550
2016 | 2 686 443 | 3 185 845 | 2 851 135
2017 | 3166 136 | 3 504 498 | 3 297 711
2018 | 4 445 400 | 4 802 701 | 4 509 463
2019 | 2 821 589 | 3 157 332 | 2 835 450

Table 4: Comparison of the number of tweets available for each corpus across the

first and last five years. It can easily be seen that the number of tweets per year is

increasing significantly.
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Filter Category 2 - Length: It is genuinely accepted that there is a correlation
between tweet length and data quality (Boot et al., 2019; Gligori¢ et al., 2018;
Sahinu¢ and Toraman, 2021). Due to many works in research proposing a minimum
tweet length as seen in Miletic et al. (2021); Moreno-Ortiz and Garcia-Géamez (2023);
Neubig and Duh (2013) each tweet got to have to be used for further analysis, the
distinction between different length cutoffs is worth of an in-depth investigation.
Thus, I've defined four different approaches to evaluate reasonable cutoffs with table

5 showing the actual results cutoff values:

o 25%: Resulting corpus only contains tweets whose length is above the lower

quartile.

e 50%: Resulting corpus only contains tweets whose length is above the overall

median length.

e 75%: Resulting corpus only contains tweets whose length is above the upper

quartile.

o mean: Resulting corpus only contains tweets whose length is above the overall

mean length.

Furthermore, I've defined two different variants which aim to analyze both extremes
of the length distribution, namely the min which aims to capture tweets below
the minimum length + d and the man filter which aims to capture tweets above
the maximum length - d per user. The value d = 10 was chosen as it yielded an

appropriate sample size.

« min: Resulting corpus only contains tweets that are smaller than the minimum

average length per user + 10.

» max: Resulting corpus only contains tweets that are larger than the maximum

average length per user - 10.
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The distinctions in table 5 are small, but according to Neubig and Duh (2013)
who calculated the amount of information included in one character in social media
corpora for multiple languages and came to the result that small differences in
character size lead to large information gains justified. The different values were

calculated for each subcorpus separately.

Length | Operation | Montreal | Toronto | Vancouver
25 > 11.126 | 12.180 12.730
20 > 13.909 | 14.808 15.240
75 > 17.114 | 18.000 18.321
mean > 14.784 15.783 16.191
min < 14.194 | 14.123 14.189
max > 32.567 | 32.684 32.807

Table 5: Exact cutoffs for all length filters. Values were rounded to the nearest

Integer.
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Filter Category 3 - Amount: The fact that most content in user-generated
corpora such as social media consists of highly active individuals has been noted
(Doval et al., 2020; Tan et al., 2015). Subsampling approaches have been suggested
in many different forms (Moreno-Ortiz and Garcia-Gamez, 2023) with the standard
process of combating the impact of skewed distributions being the subsampling of
tweets from users to achieve a maximum amount of tweets per user (Miletic et al.,
2021; Moreno-Ortiz and Garcia-Gamez, 2023). Thus, I propose the following filters
to investigate by limiting the number of tweets per user to 100 and 1000 which limits

the impact of highly active users but also leaves a reasonable amount of data:

e >100 SS Tweets: Resulting corpus only contains users that have tweeted less

than or exactly 100 times. Users that have tweeted more than that have their
tweets randomly subsampled so that every user in the remaining corpus has

exactly 100 tweets or less.

e >1000 SS Tweets: Resulting corpus only contains users that have tweeted less

than or exactly 1000 times. Users that have tweeted more than that have their
tweets randomly subsampled so that every user in the remaining corpus has

exactly 1000 tweets or less.

Furthermore, an investigation into a specific activity span of users (low/mid/high
frequency) was defined by setting up reasonable cut-offs for the specific frequency
ranges where the expectation was that the range of activity positively correlates

with the performance of the models:

o <100 Tweets: Resulting corpus only contains tweets from users that have

tweeted less than 100 times in each subcorpus.

e 100 — 1000 Tweets: Resulting corpus only contains tweets from users that have

tweeted between 100 and 1000 times in each subcorpus.

e >1000 Tweets: Resulting corpus only contains tweets from users that have

tweeted more than 1000 times in each subcorpus.
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4.3.3 Combinations of Filters

All possible combinations of the filter categories were considered first. Because three
filter categories were defined with multiple filter variants, there are many possible
combinations. In order not to let the number of resulting models increase exponen-
tially, only certain types were used for the combination of several filters. Therefore,
the filters for the length category were limited to the minimum and maximum, and
for the time category, partly due to the very low token counts of the first five years,
I only decided on the tweets of the last five years for possible combinations. The
reason for excluding all but two filter types for the length category was the fact
that the token cutoffs and thus the results for this basic filter were very similar. It
seemed logical to me to use the two most distinct filters (Min, Maz) as the basis for
combinations with other filter categories. It is worth noting that the combination of
filters from the same category, e.g., below 100 tweets and above 1000 tweets, was
not studied as this isn’t an intersection but a union of sets, and including even more

types of combinations would result in an abundance of models.

Table 6 shows all possible resulting models after combining filters. This results in
17 different combinations for the intersection of two filter categories and 10 differ-
ent combinations for all intersection of filter categories. Together this results in 27
different combinations of filters. Altogether, the complete number of models to be
investigated after including the unfiltered models, the models created by using one
basic filter, the models created by combining two basic filters (combinations), and

the models created by combining all basic filters, is 42 for each subcorpus.

Filter Category || Time | Length Amount

Filter Type Last 5 | Min | Max | <100 | 100-1000 | >1000 | >100 SS | >1000 SS
Last 5 - X X X X X X X

Min - X X X X X

Max - X X X X X

Table 6: All possible combinations of filters investigated in this thesis. Valid combi-

nations are marked with the x symbol.
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4.4 Training

This section introduces the training architecture, its alignment, and the parameters

of the training architecture.

4.4.1 Word Embeddings

As shown in (Tahmasebi et al., 2021; Schlechtweg et al., 2020; Kaiser et al., 2021)
the field of semantic change detection is at the moment dominated by vector space
models. The selected training architecture for this thesis is Skip-gram with negative
sampling (SGNS) using the orthogonal procrutes alignment. SGNS achieves gen-
erally high scores across multiple tasks. (Tahmasebi et al., 2021; Schlechtweg et al.,
2020). By choosing the orthogonal alignment of SGNS, models have to be trained
for each subcorpus (Montreal, Toronto, Vancouver) and for each filter separately.
To align the now separate models, they are length normalized, mean-centered, and
finally aligned by computing an orthogonal constrained matrix Kaiser et al. (2021).
Despite SGNS inherent instability Antoniak and Mimno (2018) only one model was
trained for each filter instead of the standard approach of training multiple models
and averaging over their evaluation results due to time constraints. I have used Re-
hurek and Sojka (2011) implementation of word2vec in gensim for this thesis due
to its easy operability and cheap computational costs, allowing me to run multi-
ple experiments without the need of rewriting and altering code. The training was
done using 30 epochs for each model. All models were trained using the parameter

configuration specified in Table 7.

4.4.2 Hyperparameters

Table 7 shows the hyperparameters used for SGNS. There weren’t any other features
used. The values of parameters are common standards or default values found in
research (Tahmasebi et al., 2021; Gennaro et al., 2021) and the best-performing
values for previous evaluation based on the CanEn dataset (Miletic et al., 2021).

The comparatively low values for minimum occurrences of each word has to be set
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to a low size as the counts of the test words in the evaluation set for semantic change

detection, especially for the smaller models, are very low.

Parameter Value
Dimensionality 100
Window Size )
Minimum Occurrences | 5
Negative Sampling 5
Learning Rate 0.025

Hierarchical Sampling | 0

Table 7: Parameter configuration used for training of all models.

4.4.3 Configuration

This section shows the hardware specifications and the used external programming

libraries for this thesis.

4.4.3.1 Programming Language and External Libraries

All coding-related tasks were accomplished using Python 3.10.8 and standard Unix
commands when applicable. The handling and storage of the data was performed
using Pandas 1.3.5 Wes McKinney (2010). The preprocessing of the corpora was
done using various modules of the nitk library Bird et al. (2009), including its Lem-
matizer, WordNet, and TreebankWordTokenizer. The training of the models was
done using gensim 4.3.1. Rehurek and Sojka (2011)

4.4.3.2 Hardware Specifications

The Institut fiir Maschinelle Sprachverarbeitung offers five different computing servers
for students with different hardware specifications. Due to the sheer amount of mod-

els trained for this task, all servers were used during the preprocessing, training, and
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evaluation steps of this thesis. Their CPU and RAM specifications can be found in
Table 8.

Server Name | CPU Memory
Nandu AMD EPYC 7313 16-Core 258 GB
Kiwi Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz | 512 GB
Dodo AMD EPYC 7542 32-Core 514 GB
Phoenix Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz | 256 GB
Strauss AMD EPYC 7542 32-Core 1026GB

Table 8: Hardware specifications of the servers at the IMS.
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4.5 Mode

Is

The following tables show the training time, the vocabulary size, tokens, and the

total amount of tweets for the resulting models for all combinations after retaining

minimum occurrences but before downsampling. Table 9 shows the parameters for

the baseline and complete corpora while table 10 shows the parameters of the models

for all basic filters. Tables 11, 12 and 13 show the parameters for all combinations

of filters for all three corpora. 42 models were trained for each subcorpus, meaning

there are 126 models in total. There is a significant difference in the input tokens

between the three regional subcorpora with the Toronto and Vancouver corpora

being much larger than the Montreal corpus for most filters.

4.5.1 Baseline and Full Corpus

Model - Filter H Corpus Training Time ‘ Vocabulary Size ‘ Tokens Tweets
Raw Corpus (No Preprocessing and no Filters)

Raw Montreal 62.67 min 1 300 044 | 332 386 439 | 23 469 526
Raw Toronto 114.68 min 1526 262 | 413 765 465 | 28 442 928
Raw Vancouver 84.63 min 1471 266 | 405 360 140 | 26 924 158
Full Corpus (Preprocessing and no Filters)

Full Montreal 227.88 min 318 267 | 203 426 612 | 23 463 669
Full Toronto 91.67 min 336 840 | 253 078 070 | 28 436 274
Full Vancouver 151.84 min 335 512 | 249 096 588 | 26 919 505

Table 9: Training time (in minutes), the vocabulary size, the number of tokens and

sentences for the raw and full version of the three corpora.

4.5.2 Basic

Filters
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Model - Filter || Corpus Training Time Vocabulary Size Tokens Tweets

Amount of Tweets per User

<100 Tweets Montreal 2.63 min 47 541 8 699 192 1074 921
100 — 1000 Tweets Montreal 24.7 min 186 248 83 507 111 10 080 557
>1000 Tweets Montreal 30.93 min 200 161 110 442 920 12 308 191
>100 SS Tweets Montreal 42.1 min 113 904 37 771 859 4 548 261
>1000 SS Tweets Montreal 179.97 min 279 290 163 023 913 19 147 645
Length

25 Montreal 170.64 min 271 980 166 497 491 15 152 191
50 Montreal 136.13 min 242 790 141 858 868 11 706 310
75 Montreal 101.48 min 208 882 115 420 226 8 670 407
Mean Length Montreal 124.97 min 232 022 133 177 153 10 647 398
Max Length Montreal 20.51 min 80 984 26 115 701 1169 123
Min Length Montreal 79.1 min 151 027 61 014 244 11 757 359
Time

First 5 Years Montreal 6.62 min 35 517 5 352 641 666 790
Last 5 Years Montreal 148.18 min 244 684 141 416 979 15 511 601
Amount of Tweets per User

<100 Tweets Toronto 3.3 min 38 427 7 256 282 823 180
100 — 1000 Tweets Toronto 33.22 min 174 110 87 102 069 10 128 343
>1000 Tweets Toronto 56.0 min 239 893 157 963 116 17 484 751
>100 SS Tweets Toronto 28.45 min 104 083 38 602 407 4 421 224
>1000 SS Tweets Toronto 105.77 min 285 108 193 560 977 22 053 155
Length

25 Toronto 132.18 min 283 655 202 196 056 17 786 097
50 Toronto 109.23 min 251 750 170 807 700 13 704 417
75 Toronto 83.43 min 213 058 136 047 061 9 966 633
Mean Length Toronto 103.61 min 239 549 159 549 218 12 420 877
Max Length Toronto 20.87 min 86 565 31 347 381 1 403 540
Min Length Toronto 57.33 min 152 731 70 803 792 13 408 423
Time

First 5 Years Toronto 4.17 min 39 633 6 958 472 836 825
Last 5 Years Toronto 119.35 min 251 552 165 865 957 17 595 861
Amount of Tweets per User

<100 Tweets Vancouver 7.51 min 37 909 6 845 585 763 385
100 — 1000 Tweets Vancouver 20.24 min 173 783 85 578 883 9 582 448
>1000 Tweets Vancouver 171.5 min 238 675 155 923 166 16 573 672
>100 SS Tweets Vancouver 15.72 min 103 907 37 979 146 4 207 456
>1000 SS Tweets Vancouver 78.86 min 283 335 188 727 056 20 657 297
Length

25 Vancouver 76.72 min 278 163 194 537 533 16 392 909
50 Vancouver 68.14 min 256 679 173 885 377 13 821 376
75 Vancouver 53.85 min 217 505 139 146 233 10 118 762
Mean Length Vancouver 63.53 min 244 578 162 696 257 12 567 349
Max Length Vancouver 10.9 min 89 239 33 076 778 1 467 194
Min Length Vancouver 36.19 min 145 102 64 060 173 11 822 058
Time

First 5 Years Vancouver 4.03 min 44 126 8 678 021 1 032 460
Last 5 Years Vancouver 65.11 min 249 204 160 263 633 16 211 131

Table 10: Training time (in minutes), tthamount of word types, tokens and total

tweets for all basic filters across the three corpora.



4.5.3 Combinations of Filters

Model - Filter H Corpus Training Time | Vocabulary Size Tokens Tweets
Combination - Length and Amount

Max Length x <100 Tweets Montreal 0.4 min 16 166 1503 159 72 989
Max Length x100 — 1000 Tweets Montreal 2.12 min 46 005 9 392 569 433 337
Max Length x >1000 Tweets Montreal 3.42 min 56 900 | 15 030 148 662 797
Max Length x >100 SS Tweets Montreal 3.82 min 62 664 | 16 520 955 763 689
Max Length x >1000 SS Tweets Montreal 5.89 min 80 497 | 25804 961 | 1159 442
Min Length x <100 Tweets Montreal 1.51 min 24 058 2 876 934 608 867
Min Length x100 — 1000 Tweets Montreal 11.5 min 92 639 | 27235 151 | 5 346 444
Min Length x >1000 Tweets Montreal 12.2 min 94 471 | 30521 013 | 5 802 048
Min Length x >100 SS Tweets Montreal 8.06 min 75874 | 19486 231 | 3792193
Min Length x >1000 SS Tweets Montreal 24.88 min 149 661 | 60 173 289 | 11 598 082
Combination - Length and Time

Max Length x Last 5 Years Montreal 4.76 min 80 911 | 26 083912 | 1166 459
Min Length x Last 5 Years Montreal 15.29 min 110 616 | 38 679 659 | 7 473 483
Combination - Time and Amount

Last 5 Years x <100 Montreal 3.98 min 41 750 7 822 269 868 486
Last 5 Years x 100-1000 Montreal 16.51 min 143 467 | 57 461 564 | 6 663 372
Last 5 Years x >1000 Montreal 17.58 min 155 131 | 76 141 933 | 7979 945
Last 5 Years x >100 SS Montreal 8.55 min 104 450 | 34 105 403 | 3 984 009
Last 5 Years x >1000 SS Montreal 33.58 min 221 702 | 119 237 544 | 13 373 479
Combination - Length and Time and Amount

Max Length x Last 5 Years x <100 Tweets Montreal 0.38 min 16 164 1502 357 72 911
Max Length x Last 5 Years x 100-1000 Tweets | Montreal 2.04 min 45 955 93 77 990 432 014
Max Length x Last 5 Years x >1000 Tweets Montreal 3.04 min 56 850 | 15 013 923 661 534
Max Length x Last 5 Years x >100 SS Tweets || Montreal 3.5 min 62 488 | 16 490 844 761 134
Max Length x Last 5 Years x >1000 SS Tweets || Montreal 5.31 min 80454 | 25773372 | 1156 778
Min Length x Last 5 Years x <100 Tweets Montreal 1.18 min 20 322 2 256 156 483 055
Min Length x Last 5 Years x 100-1000 Tweets || Montreal 7.02 min 67 863 | 17 343 513 | 3432 059
Min Length x Last 5 Years x >1000 Tweets Montreal 7.82 min 69 721 | 18 795 848 | 3 558 369
Min Length x Last 5 Years x >100 SS Tweets Montreal 6.66 min 65 115 | 15858 055 | 3 101 349
Min Length x Last 5 Years x >1000 SS Tweets || Montreal 15.53 min 110 090 | 38 436 944 | 7 431 156

Table 11: Training time (in minutes), the amount of word types, tokens and total

tweets for all combinations of filters of the Montreal corpus.
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Model - Filter H Corpus ‘ Training Time | Vocabulary Size Tokens Tweets

Combination - Length and Amount

Max Length x <100 Tweets Toronto 0.4 min 15 756 1529 378 73773
Max Length x100 — 1000 Tweets Toronto 1.97 min 46965 | 10 582 833 486 828
Max Length x >1000 Tweets Toronto 3.49 min 63 840 | 19 042 061 842 939
Max Length x >100 SS Tweets Toronto 3.6 min 65 637 | 19 398 876 895 513
Max Length x >1000 SS Tweets Toronto 5.65 min 85604 | 30 715776 | 1 382 142
Min Length x <100 Tweets Toronto 1.18 min 17 497 1989 577 413 238
Min Length x100 — 1000 Tweets Toronto 10.16 min 81980 | 25976280 | 5 032 692
Min Length x >1000 Tweets Toronto 15.94 min 110 583 | 42 486 254 | 7 962 493
Min Length x >100 SS Tweets Toronto 7.57 min 69 171 | 19 501 378 | 3 705 691
Min Length x >1000 SS Tweets Toronto 26.27 min 150 691 | 69 553 381 | 13 174 392
Combination - Length and Time

Max Length x Last 5 Years Toronto 6.39 min 86 476 | 31 308 735 | 1400 340
Min Length x Last 5 Years Toronto 16.32 min 108 146 | 41 670 630 | 7 903 455
Combination - Time and Amount

Last 5 Yearsx <100 Toronto 1.58 min 34 809 6 251 851 690 198
Last 5 Yearsx 100-1000 Toronto 14.37 min 133 772 | 58 886 817 | 6 541 474
Last 5 Yearsx >1000 Toronto 24.71 min 177 148 | 100 150 916 | 10 364 189
Last 5 Yearsx >100 SS Toronto 9.36 min 97 091 | 35540 391 | 3 948 044
Last 5 Yearsx >1000 SS Toronto 35.75 min 224 180 | 137 765 968 | 14 899 535
Combination - Length and Time and Amount

Max Length x Last 5 Years x <100 Tweets Toronto 0.4 min 15 752 1528 702 73 703
Max Length x Last 5 Years x 100-1000 Tweets | Toronto 1.96 min 46 917 | 10 569 635 485 667
Max Length x Last 5 Years x >1000 Tweets Toronto 3.5 min 63 786 | 19 017 523 840 970
Max Length x Last 5 Years x >100 SS Tweets || Toronto 3.57 min 65 684 | 19 368 704 892 413
Max Length x Last 5 Years x >1000 SS Tweets || Toronto 5.7 min 85 538 | 30678 098 | 1 378 946
Min Length x Last 5 Years x <100 Tweets Toronto 1.03 min 15 106 1613 328 338 463
Min Length x Last 5 Years x 100-1000 Tweets | Toronto 6.5 min 60 382 | 16 105634 | 3 143 051
Min Length x Last 5 Years x >1000 Tweets Toronto 8.87 min 77379 | 23696 290 | 4 421 941
Min Length x Last 5 Years x >100 SS Tweets Toronto 6.37 min 60 195 | 15985 287 | 3 052 556
Min Length x Last 5 Years x >1000 SS Tweets | Toronto 15.5 min 107 397 | 41 375963 | 7 854 248

Table 12: Training time (in minutes), the amount of word types, tokens and total

tweets for all combinations of filters of the Toronto corpus.
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Model - Filter

Corpus Training Time | Vocabulary Size Tokens Tweets

Combination - Length and Amount

Max Length x <100 Tweets Vancouver 0.8 min 15 485 1414 750 68 270
Max Length x100 — 1000 Tweets Vancouver 3.63 min 47094 | 10 461 126 478 988
Max Length x >1000 Tweets Vancouver 7.42 min 66 779 | 21 005 402 919 936
Max Length x >100 SS Tweets Vancouver 6.27 min 66 506 | 19 428 213 891 943
Max Length x >1000 SS Tweets Vancouver 10.38 min 88 483 | 32391 204 | 1443 117
Min Length x <100 Tweets Vancouver 1.97 min 16 934 1 816 423 371 194
Min Length x100 — 1000 Tweets Vancouver 15.81 min 78 832 | 23509 312 | 4 422 899
Min Length x >1000 Tweets Vancouver 24.86 min 104 307 | 38399 732 | 7027 965
Min Length x >100 SS Tweets Vancouver 12.66 min 68 142 | 18 739 688 | 3 478 211
Min Length x >1000 SS Tweets Vancouver 40.86 min 143 469 | 63 000 421 | 11 626 817
Combination - Length and Time

Max Length x Last 5 Years Vancouver 10.99 min 89 160 | 33 042 869 | 1 464 397
Min Length x Last 5 Years Vancouver 23.52 min 101 365 | 36 320 278 | 6 697 604
Combination - Time and Amount

Last 5 Yearsx <100 Vancouver 2.91 min 33 719 5 669 598 610 558
Last 5 Yearsx 100-1000 Vancouver 22.24 min 130 773 | 55580 526 | 5894 151
Last 5 Yearsx >1000 Vancouver 33.75 min 177 022 | 98 448 909 | 9 706 422
Last 5 Yearsx >100 SS Vancouver 13.01 min 96 618 | 34 478 717 | 3 681 505
Last 5 Yearsx >1000 SS Vancouver 45.27 min 221 571 | 131 746 034 | 13 588 779
Combination - Length and Time and Amount

Max Length x Last 5 Years x <100 Tweets Vancouver 0.6 min 15 481 1414 062 68 210
Max Length x Last 5 Years x 100-1000 Tweets | Vancouver 3.24 min 47 058 | 10 447 135 477 790
Max Length x Last 5 Years x >1000 Tweets Vancouver 6.33 min 66 726 | 20 986 421 918 397
Max Length x Last 5 Years x >100 SS Tweets | Vancouver 5.93 min 66 538 | 19 397 518 889 312
Max Length x Last 5 Years x >1000 SS Tweets | Vancouver 9.87 min 88397 | 32357 676 | 1 440 320
Min Length x Last 5 Years x <100 Tweets Vancouver 1.56 min 14 255 1 389 032 287 292
Min Length x Last 5 Years x 100-1000 Tweets | Vancouver 8.85 min 56 218 | 13 678 477 | 2 586 933
Min Length x Last 5 Years x >1000 Tweets Vancouver 13.64 min 72971 | 21014075 | 3823379
Min Length x Last 5 Years x >100 SS Tweets Vancouver 9.87 min 58 276 | 14 818 509 | 2 760 216
Min Length x Last 5 Years x >1000 SS Tweets | Vancouver 23.32 min 100 742 | 36 046 639 | 6 653 535

Table 13: Training time (in minutes), the amount of word types, tokens and total

tweets for all combinations of filters of the Vancouver corpus.
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4.6 Evaluation

This section focuses on the last step of the experimental setup, namely the evaluation

of the learned models based on word similarity and semantic change detection.

4.6.1 Word Similarity

As mentioned in section 2, the evaluation of word similarity is done by calculating
the correlation score between the predicted measurement and the actual, human-
annotated measurements. Deriving the predicted measurement consists of calculat-
ing the cosine distance for the vectors of two words whose similarity is to be assessed
in the datasets. There are four test sets used in this thesis as described in section
section 4.2.3. To combat any eventual outliers and to counteract the fact that some
words may not appear in the corpora, the average correlation score for both, Pearson
and Spearman correlation, of all four selected test sets will be used to compare the

results across different models.

4.6.2 Semantic Change Detection

The evaluation of the learned word vectors is done using the CanEn test set created
specifically for this corpus. The task is defined as a binary classification task in which
half of the words expected to change their semantic meaning, which is reflected in
regional patterns, hence the comparison of regional subcorpora, are put into one
class and the other half is defined as a control instance where no change in semantic
meaning is expected. This is similar to the description in Schlechtweg et al. (2020)

for evaluating word embeddings for semantic change detection.

The test set contains 80 words with 40 words in each class. The standard pro-
cess here is now the ranking of the words according to a distance measure (here:
cosine distance), and the subsequent assignment into one of the two classes de-

pending on the score. The distances are computed by comparing the resulting word
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vectors of each direct comparison between the same word across the three subcor-
pora: MT, MV, TV . Thus, for the MT score, the cosine distance between the word
embedding for the respective word in the Montreal and the Vancouver corpus is
measured. The top 40 words, whose regionally specific vectors are the most distant
across different corpora, are then assigned to the class where a change of the se-
mantic meaning was to be expected. The accuracy score is accordingly computed by
measuring how many words are in the correct class. It is important that the word
to be examined actually occurs in all three subcorpora. If this is not the case, the
word is removed from the test set, and the original 40-40 split is adjusted so that
half of the words are always in the respective groups. This is especially important
for models that already have a low-frequency count of the investigated words. The
sum and the average for each of the comparisons of corpora are also accordingly

calculated and reported.

Furthermore, the accuracy scores are additionally calculated for three further met-
rics as proposed by Miletic et al. (2021). These are the average difference between
the MT and MV distances (5), the difference between this and the TV distance
(6), and the ratio between the two values (7).

(5) avg(MT, MV') = MT;MV
(6) dif f(MT, MV),TV) = avg(MT, MV) — TV
(7) ratio(MT, MV),TV) = C“’g(]‘; r{/ MT)

This results in six different metrics that attempt to determine the extent to which

the expected semantic changes have actually occurred.
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5 Results and Discussion

This section will present the results of all filters and test sets for (i) word similarity
and (ii) semantic change detection. A distinction is made between the respective
filters themselves and their combinations. Any outliers, findings, and other results

are addressed, and the discussion is supported with visual graphs and tables.

5.1 Word Similarity

To reiterate the evaluation for word similarity, the mean correlation coefficient over

all four previously mentioned test sets is calculated and will be presented here.

5.1.1 Results per Filter

Filter Category ‘ Filter Type ‘ Combinations ‘ Montreal ‘ Toronto ‘ Vancouver H Average
Time First 5 Years 1 0.520/0.526 0.545/0.552 0.543/0.552 0.536/0.545
Last 5 Years 1 0.610/0.611 0.603/0.604 0.622/0.624 0.612/0.613
Tweet Length 25 1 0.612/0.613 | 0.624/0.626 0.627/0.627 0.621/0.622
50 1 0.608/0.610 0.614/0.618 0.625/0.624 0.616/0.617
75 1] 0.612/0.623 0.618/0.620 0.627/0.630 0.621/0.624
min 1 0.586,/0.592 0.590/0.593 0.596,/0.598 0.591/0.594
max 1 0.603/0.607 0.591/0.591 0.610/0.612 0.601/0.603
mean 1 0.612/0.615 0.612/0.615 0.627/0.628 0.617/0.619

Amount of Tweets | <100 1 0.554/0.561 0.546/0.552 0.565/0.573 0.555/0.562
100-1000 1 0.605/0.607 0.613/0.618 0.617/0.619 0.612/0.614
>1000 1 0.615/0.615 0.615/0.619 0.622/0.622 0.620/0.619
>100 SS 1 0.594/0.601 0.604,/0.607 0.617/0.618 0.605/0.608
>1000 SS 1 0.616/0.616 0.613/0.615 0.618/0.620 0.617/0.617

No Filtering Full Corpus 1 0.617/0.621 0.624/0.625 | 0.628/0.629 | 0.623/0.625

No Filtering Raw Corpus 1 0.539/0.536 0.543/0.536 0.552/0.546 0.545/0.539

Table 14: Average Pearson correlation coefficient r / Spearman correlation coefficient
p for each filter and corpus for Word Similarity across all test sets. Italic values
represent the highest value of the column across the same filter category. Bold and

italic values represent the highest value of the column.
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Table 14 shows the complete results for all basic filters for word similarity averaged
over all test sets while table 15 shows the same but also additionally the average
results for all filters that participate in combinations of filters. It should be clear
from first glance that the filters used in combination with other filters produce on
average significantly worse results than filters that have not been used in combina-
tions. The raw baseline corpus performs worst, which validates the importance of

the preprocessing steps, especially in contrast to the full baseline corpus.

If we first look at table 14 and its presented results, we see that for most filters,
the correlation scores are lower than for the full corpus. Although the complete
corpus gives the best results on average with an average correlation score of 0.625,
some individual filters give quite competitive, if not only minimally worse results.
For instance, the filters that trim the tweets to a certain minimum length to be
reached achieve results very similar to those of the original corpus. For example, for
the filters that restrict the length to minimally 25% (lower quartile) or 75% (upper
quartile) of the tweet length, the correlations reach an average value of 0.622. Also,
the filters that filter tweets by the last 5 years and by over 1000 tweets per user also

achieve very good results.

Let’s start with the individual filter categories. For the time category, it becomes
apparent that the first five years of tweets deliver significantly worse results than
the last five years. This can most likely be explained by the massively lower number
of tweets and the resulting significantly lower number of tokens (a couple of millions
compared to hundreds of millions) in the earlier years compared to the later years.
For the category of length, it can be seen that all filters apart from the minimum
and maximum yield similarly good results, while for the category of the amount of
tweets, the larger number of tweets per user leads to better results on average. This
is particularly evident since the filter that considers users with 100 tweets or less

achieves the worst results in this category.
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There is, somewhat surprisingly, a stark difference in the best results across the
regional subcorpora. The model trained on the Toronto and Vancouver corpora
achieve, respectively, better results than the models trained on the Montreal corpus
despite using the same filtering method. While there is a significant difference in
token count for multiple filters across the corpora, there seems to be an inherent

difference in the data quality for the regional subcorpora.

5.1.2 Results per Filter Including Combinations

Filter Category ‘ Filter Type ‘ Combinations ‘ Montreal ‘ Toronto ‘ Vancouver H Average
Time | Last 5 Years | 18] 0.567/0.570 | 0.567/0.569 | 0.579/0.581 | 0.574/0.573
Tweet Length min 12 0.552/0.559 0.551/0.556 0.560/0.564 0.554/0.557
max 12 0.570/0.570 0.570/0.570 0.580/0.581 0.572/0.572
Amount of Tweets | <100 6 0.494/0.498 0.482/0.483 0.492/0.494 0.488/0.484
100-1000 6 0.578/0.583 0.581/0.587 0.589/0.592 0.583/0.588
>1000 6 0.583/0.588 0.587/0.590 0.599/0.604 0.590/0.594
>100 SS 6 0.574,/0.580 0.580/0.581 0.593/0.597 0.582/0.586
>1000 SS 6 0.595/0.599 0.598/0.600 0.608/0.610 0.601/0.603
No Filtering Full Corpus 1] 0.617/0.621 | 0.624/0.625 | 0.628/0.629 | 0.623/0.625
No Filtering Raw Corpus 1 0.539/0.536 0.543/0.536 0.552/0.546 0.545/0.539

Table 15: Average Pearson correlation coefficient r / Spearman Correlation coefficient
p for each filter and corpus for filters that appear in more than one combination
across all test sets. Italic values represent the highest value of the column across
the same filter category. Bold and italic values represent the highest value of the

column.

Examining table 15 and its presented results, we notice that the results of the filters
involved in multiple combinations have significantly decreased compared to just us-
ing the individual filters. And although this does not generally affect the order of the
results of the individual filtering types per filtering category in particular, certain
differences from the previously discussed table can be seen. For example, the ranking
of the results of the filtering category amount is noticeably changed. Especially the

filters that use subsampling techniques achieve surprisingly good values on average
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so subsampling users with more than 1000 tweets on average is the best-performing

filter in this category with an average correlation score of 0.602.

Furthermore, it should be said that the filter type which only includes users that
tweet less than 100 times has by far the worst results. While this performance was
similarly reported in the first table, it is noticeably worse than all other filters, and
even worse than just using the raw, unpreprocessed corpus, which largely stems from
the fact that the models using this filter have by far the lowest token count as shown
in section 4.5. There are only small differences between the score for the two filter
types for length, which continues the trend from the first table, that max performs

better than min.

The previously noticed trend that the different regional subcorpora achieve different
results is continued here in a slight alteration. The models trained on the Montreal
and the Toronto subcorpora achieve closer results to each other while the models
trained on the Vancouver corpora have, on average, better results. An important
key message from these findings lies in the results of the < 100 filter, which achieves
the best results for the Montreal corpus in combination with other filters. Judging
by the token counts, the models trained on this filter and corpus have more tokens
than the models trained on the same filter for the other corpora. There seems to
be a significant difference in how Twitter is used across the different regions with

Montreal having more people use Twitter that write less than a hundred tweets.

In the next section, the full distribution of the results will be discussed.
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5.1.3 Analysis

Table 16 shows the difference between the Pearson correlation coefficient scores for
the individual filters and the combinations by subtracting the two values from each
other and dividing the result by the number of times the respective filter was used
in a combination with other filters with the last row representing the average drop

in correlation score per combination for each filter.

Filter | Last 5| Min | Max | <100 | 100-1000 | >1000 | >100 SS | >1000 53
Individual Correlation 0.612 | 0.591 | 0.601 | 0.555 | 0.612 0.620 | 0.605 0.617
Average of Correlation of Combinations | 0.574 | 0.554 | 0.572 | 0.488 | 0.583 0.590 | 0.582 0.601
Amount of Combinations 18 12 12 6 6 6 6 6

Drop 0.038 | 0.037 | 0.029 | 0.067 | 0.029 0.03 0.023 0.016
Drop per Combination 0.002 | 0.003 | 0.002 | 0.01 | 0.005 0.005 | 0.004 0.002

Table 16: Overview of the difference of the average Pearson coefficient » when filters

are used once compared to their average usage in all combinations.

There is noticeable a drop in performance across the board. This drop is especially
noticeable for the <100 filter where the score drops by 0.067. On average, the fil-
ters lose a non-negligible percentage of their score. However, there is an interesting
finding and that is that certain filters do not necessarily get much worse per com-
bination despite the large number of combinations. Thus, the filters of the last 5
years, length, and >1000SS lose just under 0.002 per additional combination. This
leads to the fact that these filters are quite stable and indicates that they can likely
deliver solid results in even more complex filtering processes involving even further

filtering categories.
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Figure 8 shows a boxplot for all correlation scores of filters used in combinations with
other filters. All filters, with the exception of the <100 filter are quite stable and
only have outliers in combination with the <100 filter. However, since the filters of
the same category were not combined with each other, this statement cannot be fully
generalized. Nevertheless, the result is unlikely to change since adding the <100 filter
to the other filters of this category only adds context as it is impossible to intersect
different variants of the same category and the union of variants of the same filter

category only adds data, and therefore should not change the result significantly.
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Figure 8: Boxplot of all average correlation scores for all filters that have been used

more than once in combinations.
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Figure 9 shows a scatterplot of the number of tokens from the tables in section
4.5 and the correlation scores from the previously explained tables. Ultimately, one
should always bear in mind that the number of tokens has an immense influence on
the results of either filtering method, the individual filters, and their combinations
(Wendlandt et al., 2018).
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Figure 9: Scatterplot of all models and their combinations showing the average
correlation score on the task of word similarity using a logarithmic scale on the

x-axis depicting the magnitude of the token count.

The figure shows the correlation between the token count and the resulting correla-
tion score for each (i) model in blue and the average scores for the (ii) basic filters in
orange. The X-axis is displayed logarithmically to better show the differences in the
number of tokens between the different models. At one end, we have models with
just barely above one million tokens, and at the other end the unpreprocessed corpus
with several hundred million tokens, in the case of the raw corpus around 400 mil-

lion. There is a clear correlation between the number of tokens and the performance
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of the respective models, which has previously been reported for embeddings in word
similarity (Antoniak and Mimno, 2018; Wang et al., 2019). Calculating Spearman’s
correlation returns the correlation coefficient p = 0.808 for all models and p = 0.659

for the basic filters, which indicates a strong correlation.

However, there is a very important finding here. It is visible in the graph that
some models already achieve very good results with only a fraction of the original
corpus size. For example, the models with only ~ 107 tokens already achieve similar
results to the completely unprocessed corpus with more than 4-10% tokens. It is also
important to note that although the complete corpus delivers the best result, other
models with far fewer tokens already deliver comparable results. This is particularly
fascinating because the results increase as the number of tokens increases, but they

do not increase significantly.

It seems that there is a hard limit of about 0.625, which cannot be exceeded despite
the large amount of training data. This may mean that this is the maximum possi-
ble result of this specific corpus and training architecture. Word embeddings from
social media corpora lead to different results than from other, more formal sources
(Tan et al., 2015; Elekes et al., 2017; Doval et al., 2020). Due to the structure of
the evaluation process of this thesis, the comparison with results in research isn’t
inherently simple. That said, Doval et al. (2020) achieve similar results using noisy
Twitter data and word2vec on the WordSim353 and SimLex999 evaluation sets with

a Spearman correlation of ~ 0.65.
Further tables, presenting the complete correlation scores for each filter, subcor-

pora, and evaluation set can be found in the appendix under section 7.1, which is

divided into all possible filtering options and combinations of filters.

29



5.2 Semantic Change Detection

As presented in detail in section 4.6.2, the evaluation process for semantic change
detection consists of calculating the accuracy scores for a binary class prediction task
by sorting the values for a direct comparison between two subcorpora and splitting
them in half. From this, we create further metrics and calculate their accuracy score

the same way.

5.2.1 Results per Filter

Filter Category

Filter Type ‘ Combinations ‘ MT H MV ‘ vV ‘ Avg ‘ Dist ‘ Diff ‘ Ratio
Time First 5 Years 1] 0.486 0.459 | 0.514 0.486 | 0.486 | 0.486 | 0.405
Last 5 Years 0.525 || 0.550 | 0.475| 0.517 | 0.525 | 0.500 | 0.562

—_

Tweet Length 25 110.575 0.525 | 0.525 | 0.542 | 0.575 | 0.600 | 0.588
50 1| 0525 | 0.500| 0.475| 0.500| 0.500 | 0.600 | 0.588
75 1| 0500 | 0.525| 0.525| 0.517| 0.500 | 0.600 | 0.562
min 1| 0.550 | 0.500 | 0.475| 0.508 | 0.525| 0.575| 0.538
max 1| 0425 0.525| 0.400 | 0.450 | 0.450| 0.525 | 0.588
mean 1| 0500 | 0.550 | 0.450| 0.500 | 0.525| 0.625 | 0.625
Amount of Tweets | <100 1] 0513 0.513 | 0.461 | 0.496 | 0.487 | 0.539 | 0.510
100-1000 1| 0.500 || 0.525| 0.425| 0.483 | 0.500 | 0.625 | 0.550
>1000 1| 0.500 (| 0.575 | 0.575 | 0.525 | 0.525 | 0.575| 0.550
>100 SS 1| 0450 | 0475 0.575 | 0475 | 0.500 | 0.550 | 0.450
>1000 SS 1| 0500 | 0.575 | 0.575 | 0.525 | 0.525 | 0.575| 0.550
No Filtering Full Corpus 1| 0.550 | 0.575 | 0.450 | 0.525 | 0.550 | 0.525 | 0.650
Raw Corpus 1| 0.525| 0.500| 0.425| 0.483| 0.525| 0.675 | 0.562

Table 17: Accuracy score for each filter and corpus using the CanEn test set and
a standard 50/50 split and no combinations for Semantic Change Detection. Italic
values represent the highest value of the column across the same filter category. Bold

and italic values represent the highest value of the column.
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Table 17 presents the accuracy scores for each metric for all basic filters and regional
subcorpora comparisons. To reiterate the respective columns, the first three columns
depict the accuracy scores for direct comparisons between two regional subcorpora
(e.g. MT being the distance of the word vectors between the same word in the Mon-
treal and the Toronto corpus). In the column with the title average, the accuracy
scores of the previous three columns are averaged. The last three metrics evaluate
the average distance between the MT + MV distance, the difference between the pre-

vious value and the TV distance and the ratio between these two values, respectively.

It can be seen in the table that the results for the accuracy of the respective metrics
and direct comparisons of the individual regional subcorpora range between = 0.4
and =~ 0.6. This means that there is a wide difference between the worst-performing

and the best-performing filters.

If we focus on each individual filter category first, we can see that the first 5 years
filter has the highest accuracy scores for TV, but relatively lower accuracy for the
other two comparisons. This is the complete opposite of the last 5 years filter, which
performs much better for the comparison where Montreal is involved. The filters of
the length category have, similar to their results for word similarity, once again good
comparable results to the full corpus, which is again the best-performing model. As
for the filters that focus on the amount of tweets per user, >1000 and >1000SS filters
consistently show higher accuracy across most of the comparisons, indicating that
having more tweets in the dataset contributes to better semantic change detection
ad that controlling for highly productive users (by subsampling as opposed to using
the full corpus) improves performance in some corpus settings. The best-performing
filter outside of the complete corpus is the 25% filter for length and the aforemen-

tioned filters for the amount of tweets.
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5.2.2 Results per Filter Including Combinations

Table 18 shows the accuracy scores for each metric for all filters that have been
investigated in combinations with other filters. By far the most obvious and yet
most surprising result is that the filter for < 100 achieves the best result. This is
especially shocking as this is the filter with the lowest amount of tokens due to its
inherent property of only including tweets from users with less than one hundred
tweets. After that, the > 1000 subsample filter achieves the best scores. This trend
has also been seen in the previous table, making this filter a good selection for this
particular task. Overall the scores are dropping by combining multiple filters, which

was also reported on word similarity.

Filter Category ‘ Filter Type ‘ Combinations ‘ MT ‘ MV ‘ TV ‘ Avg ‘ Dist ‘ Diff ‘ Ratio

Time | Last 5 Years | 18| 0.493 | 0.504 | 0456 | 0484 | 0496 | 0.519 ] 0.528
Tweet Length min 12] 0524 0499 0473 0499 0.519] 053 | 0521
max 12] 0460 | 0489 | 0440 | 0463 | 0473 | 0497 | 0.537
Amount of Tweets | <100 6| 0.571 | 0507|0477 0518 ] 0550 0.480] 0533
100-1000 6| 0483] 0492 0442 0472 0475 | 0546 | 0511
>1000 6| 0476| 0522| 0451| 0483 | 0498 | 0.548 | 0529
>100 SS 6| 0460 0490 | 0.477| 0476 ] 0483 | 0.483] 0512
>1000 SS 6| 0492] 0.525| 0450| 0489 | 0.496| 0.546 | 0.548
No Filtering Full Corpus 1] 0550 0.575 | 0.450 | 0.525 | 0.550 | 0.525 | 0.650
Raw Corpus 1] 0525] 0500] 0.425] 0483 | 0525 0.675 | 0.562

Table 18: Accuracy score for each filter and corpus using the CanEn test set and
a standard n — n split for Semantic Change Detection. Italic values represent the
highest value of the column across the same filter category. Bold and italic values

represent the highest value of the column.

An important consideration is the fact that some of these filters have, on average, an
accuracy score for some metrics below 0.5 on a balanced evaluation set. This means,
that essentially the model’s prediction relies on chance. The three additional metrics
seem to be more stable compared to the individual comparisons as they ultimately

have accuracy scores above the 0.5 threshold.
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Table 19 and table 20 show the complete results, including the actual split, for
all filters. Table 31 and table 32 in the appendix present the best possible scores
by altering the bisection to an unequal split and calculating the highest possible
sum of all three comparisons. One possible explanation for the good performance
of the < 100 filter may be the low number of occurring words of the evaluation
set in the three corpora. Thus, one can see in table 20 that many of the results of
the combinations using the < 100 filter are based on a very low number of actually
occurring words and therefore skew the result in a different direction. Combining,

for example, the min, < 100, and the last 5 years filters results in only 38 test cases.

N — N Split for all Basic Filters

Model - Filter | split | MT | MV | TV | Sum | Avg | Dist | Diff | Ratio
Raw Corpus (No Preprocessing and no Filters)

Raw [ 40 [ 0525 | 0.500 [ 0.425 | 1.450 [ 0.483 | 0.525 | 0.675 | 0.562
Full Corpus (Preprocessing but No Filters)

Full | 40 | 0550 | 0.575 | 0.450 | 1.575 | 0.525 | 0.550 | 0.525 | 0.650
Amount of Tweets per User

<100 Tweets 38 0.513 | 0.513 | 0.461 | 1.487 | 0.496 | 0.487 | 0.539 | 0.513
100 — 1000 Tweets | 40 0.500 | 0.525 | 0.425 | 1.450 | 0.483 | 0.500 | 0.625 | 0.550
>1000 Tweets 40 0.500 | 0.575 | 0.500 | 1.575 | 0.525 | 0.525 | 0.575 | 0.550
>100 SS Tweets 40 0.450 | 0.475 | 0.500 | 1.425 | 0.475 | 0.500 | 0.550 | 0.450
>1000 SS Tweets 40 0.500 | 0.575 | 0.500 | 1.575 | 0.525 | 0.525 | 0.575 | 0.550
Length

25 40 0.575 | 0.525 | 0.525 | 1.625 | 0.542 | 0.575 | 0.600 | 0.588
50 40 0.525 | 0.500 | 0.475 | 1.500 | 0.500 | 0.500 | 0.600 | 0.588
75 40 0.500 | 0.525 | 0.525 | 1.550 | 0.517 | 0.500 | 0.600 | 0.562
Mean Length 40 0.500 | 0.550 | 0.450 | 1.500 | 0.500 | 0.525 | 0.625 | 0.625
Max Length 40 0.425 | 0.525 | 0.400 | 1.350 | 0.450 | 0.450 | 0.525 | 0.588
Min Length 40 0.550 | 0.500 | 0.475 | 1.525 | 0.508 | 0.525 | 0.575 | 0.538
Time

First 5 Years 37 0.486 | 0.459 | 0.514 | 1.459 | 0.486 | 0.486 | 0.486 | 0.405
Last 5 Years 40 0.525 | 0.550 | 0.475 | 1.550 | 0.517 | 0.525 | 0.500 | 0.562

Table 19: Accuracy score, their sum, and mean for the three individual comparisons
for all basic filters. The columns after that indicate the accuracy score for the average
distance of the sum of MT and MV compared to TV, the difference between MT
and MV compared to TV, and the ratio between the two groups.
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N — N Split for all Combinations of Filters

Model - Filter | split | MT | Mv_| TV Sum | Avg Dist Diff Ratio
Combination - Length and Amount

Max Length X <100 Tweets 27 0.611 0.426 0.463 1.500 0.500 0.537 0.463 0.519
Max Length X100 — 1000 Tweets 40 0.500 0.500 0.475 1.475 0.492 0.500 0.55 0.525
Max Length X >1000 Tweets 39 0.43 0.532 0.43 1.392 0.464 0.506 0.506 0.506
Max Length X >100 SS Tweets 40 0.475 0.475 0.450 1.400 0.467 0.475 0.450 0.562
Max Length x >1000 SS Tweets 40 0.400 0.500 0.450 1.350 0.450 0.400 0.500 0.575
Min Length X <100 Tweets 23 0.702 0.532 0.489 1.723 0.574 0.617 0.447 0.574
Min Length X100 — 1000 Tweets 40 0.500 0.500 0.425 1.425 0.475 0.475 0.575 0.500
Min Length X >1000 Tweets 40 0.450 0.525 0.450 1.425 0.475 0.500 0.500 0.512
Min Length X >100 SS Tweets 40 0.475 0.500 0.575 1.550 0.517 0.500 0.475 0.475
Min Length X >1000 SS Tweets 40 0.475 0.475 0.450 1.400 0.467 0.500 0.600 0.562
Combination - Length and Time

Max Length X Last 5 Years 40 0.450 0.475 0.425 1.350 0.450 0.475 0.525 0.588
Min Length X Last 5 Years 40 0.525 0.500 0.500 1.525 0.508 0.525 0.625 0.488
Combination - Time and Amount

Last 5 Years X <100 37 0.533 0.533 0.533 1.600 0.533 0.533 0.427 0.533
Last 5 Years x 100-1000 40 0.475 0.475 0.475 1.425 0.475 0.450 0.575 0.538
Last 5 Years x >1000 40 0.500 0.575 0.475 1.550 0.517 0.500 0.600 0.538
Last 5 Years X >100 SS 40 0.500 0.500 0.450 1.450 0.483 0.475 0.450 0.512
Last 5 Years X >1000 SS 40 0.525 0.575 0.425 1.525 0.508 0.525 0.575 0.575
Combination - Length and Time and Amount

Max Length X Last 5 Years X <100 Tweets 27 0.426 0.500 0.426 1.352 0.451 0.426 0.463 0.519
Max Length X Last 5 Years X 100-1000 Tweets 40 0.450 0.475 0.425 1.350 0.450 0.425 0.450 0.450
Max Length X Last 5 Years X >1000 Tweets 39 0.456 0.481 0.43 1.367 0.456 0.481 0.557 0.519
Max Length X Last 5 Years X >100 SS Tweets 40 0.425 0.475 0.425 1.325 0.442 0.500 0.475 0.562
Max Length X Last 5 Years X >1000 SS Tweets 40 0.475 0.500 0.425 1.400 0.467 0.500 0.500 0.525
Min Length X Last 5 Years X <100 Tweets 19 0.641 0.538 0.487 1.667 0.556 0.641 0.538 0.538
Min Length X Last 5 Years X 100-1000 Tweets 40 0.475 0.475 0.425 1.375 0.458 0.500 0.500 0.500
Min Length X Last 5 Years X >1000 Tweets 40 0.525 0.450 0.425 1.400 0.467 0.475 0.55 0.55

Min Length X Last 5 Years X >100 SS Tweets 40 0.450 0.450 0.475 1.375 0.458 0.450 0.500 0.512
Min Length X Last 5 Years X >1000 SS Tweets 40 0.525 0.55 0.500 1.575 0.525 0.525 0.525 0.500

Table 20: Accuracy score, their sum, and mean for the three individual comparisons
for all combinations of filters. The columns after that indicate the accuracy score
for the average distance of the sum of MT and MV compared to TV, the difference
between MT and MV compared to TV, and the ratio between the two groups.
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5.2.3 Analysis
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Figure 10: Boxplot of all accuracy scores of the three metrics (distance, difference,

and ratio) for all filters that have been used more than once in combinations.

Figure 10 shows the boxplot for the additional three metrics for semantic change
detection. The upper graph is the boxplot for the accuracy of the distance, the
middle graph is the boxplot for the difference and the lower graph is the boxplot
for the ratio. In the top graph, it is easy to see that the filter for < 100 has the
largest spread between its results. The other filters of the amount category are more
stable in this respect. Compared to this, the last five years and the min filter show
noticeable outliers. In the lower graph, the differences between the individual results
of the filters are not too large, while in the middle graph there are large differences
between individual filters. For example, the values of the last five years for difference

vary between 0.425 and 0.625. However, one can see that in general, the results are
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nevertheless only on average 0.1 plus and minus away from the random baseline of
0.5. This means that the classification happens basically randomly. If only about
half of all predictions are correct, one can assume that the models do not learn any-
thing at all and therefore cannot make any statement about the decisions to classify

a word.

In general, one would expect some sort of correlation between the token count and
the resulting scores. Figure 11 shows the frequency counts of all words in the test
set for each level of combinations. It is evident that the number of words in the test
set that actually appear in all three subcorpora is a magnitude smaller for each level
of combination. In more extreme cases, the words do not appear at all. There is a
shift of the overall frequency profile to a lower range. One would assume that such
a shift would lead to a decrease in performance. Judging by the results depicted in
the aforementioned tables and the tables in the appendix, this doesn’t seem to be

the case.
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Figure 11: Frequency plot of all words appearing in the CanEn test set sorted by

their rank for all different levels of filtering.
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Figure 12 shows a scatterplot of the frequencies for the two different classes for all
levels of filtering. The general trend is that the total counts for each word get lower
the more filters are involved. The inherent distribution of the counts stays the same
across the four different levels. The only thing that changes is the frequency of each
word appearing and as Antoniak and Mimno (2018) pointed out, word embedding
models tend to have unstable results when it comes to low-frequency counts of words,
and as some of the words, especially in the bottom figure, have counts barely above

10, there is an inherent lack of credibility for the results.
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Figure 12: Scatterplot of the frequencies of the stable words (blue) and shifting

words (orange) for all different levels of filtering.
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Figure 13 shows a scatterplot for the additional three metrics for semantic change
detection. Similarly to word similarity, I calculated the correlation between the accu-
racy scores and the token count of the models by calculating Spearman’s correlation.
In particular, for the metrics of difference (p = 0.693) and ratio (p = 0.465), a moder-
ate to strong correlation is evident. However, only a weak correlation can be detected
for the distance metric (p = 0.294). Especially the four models in blue at the very
left of the figure support the argument that the results are arbitrary. Their token
count is completely negligible compared to the other models, and yet extremely good
results are achieved, especially in the upper graph by a subset of these models. As
such findings cannot - at least to my knowledge - be found in this area of research,
I would assume that the models’ performances are more or less random as Miletic
et al. (2021) achieve significantly better results on this task, dataset and Skip-gram

architecture, with a mean accuracy (for the full corpus) of ~ 0.700.

The results of the best possible splits shown in the appendix only reinforce this
argument. For the majority of the models, the best split is not a balanced split
approximately in the middle, but an extremely biased split in one direction, which
only leads to the fact that the results per single direct comparison of the subcorpora
are only minimally better than 0.5. Essentially, this means that the performance of

the models depends, more or less, on chance.
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Figure 13: Scatterplot of the accuracy score and token count for the (i) average
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5.3 Summary

This section presented the findings and analysis of the experiments related to word
similarity and semantic change detection based on the previously defined filtering
decisions. The experiments evaluated different filters applied to the same subcorpora
and their impact on the performance of the respective tasks. The evaluation for
semantic change detection proved to be difficult as the accuracy scores show similar
performance across many filters, and the difference between the best and worst-
performing filters is between +0.1 around the chance performance. Word similarity,
in contrast, had clear-cut results. The combination of the findings of the two tasks

yields the main findings of this thesis:

Filters used in combination with other filters produce worse results on average

than those used individually.

o There is a stark difference in performance between using the first and the last

years as input due to large differences in the token count.

o The number of tweets per user and the length of a tweet have a large influence
on the performance, with larger boundaries in the form of higher values for

the limits leading to better results.

o The completely preprocessed but unfiltered corpus delivers the best average
performance, but other models with significantly fewer tokens achieve compa-

rable results.

To answer the hypotheses at the beginning of the thesis with these findings, it seems
that the most common steps to limit the influence of highly-active individuals have
already been accomplished by subsampling their tweets and setting a minimum
length limit. However, these users do not seem to have a particularly high influence,
since by limiting the number of tweets to a maximum of 1000 per user, only a
marginally worse result is obtained compared to the original corpus. And since the
corpus has already been cleaned up in terms of spam or near-duplicates, the word

frequencies do not seem to have been significantly altered by these users.
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6 Conclusion and Outlook

This thesis was concerned with the evaluation and investigation of filtering methods
that aim to improve the distribution of tweets across users in a large Twitter corpus.
The objective was to find out if there are filtering methods that provide a significant
improvement of the original data without losing essential context. For this purpose,
a complex pipeline consisting of preprocessing steps, filters and their combinations,
and two subsequent downstream tasks in the form of word similarity and semantic
change detection to evaluate the models were constructed to create a large-scale ba-
sis for comparison. Although a large number of filters and their combinations were
investigated, no significant improvement over the original preprocessed corpus was
found. It had an average correlation score of 0.623 for word similarity and the best

possible accuracy values for almost all metrics for semantic change detection.

The models that rely on a subsampling technique, which limits the amount of tweets
per user to 1000, and in case the user writes more than a thousand tweets, the tweets
are randomly subsampled, had the strongest results for word similarity with an aver-
age correlation score of 0.601, and similarly strong results for the different accuracy
metrics for semantic change detection even though this filter participated in a large
number of combinations with other filters. The comparatively best results without
combinations were achieved by the filter category length, which limited all tweets
to a certain minimum length. Not only did the filters based on a tweet having 25%,
50% and 75% of the average tweet length achieve high values comparatively, but not
necessarily better, than the results of the original corpus, but they even managed

this feat with significantly fewer tokens and the associated shorter training time.

The logical explanation behind this could be the fact that the quality of Twitter
data depends very much on its length, and excluding tweets below a certain thresh-
old correlates strongly with a better result. However, to further support this claim,
a large-scale analysis of all possible tweet lengths starting from the smallest length

up to the maximum possible tweet length has to take place. To the extent that has
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taken place here, one can indeed see a tendency towards a certain limit at which the
performance of the models does not improve significantly despite a larger amount
of data. However, no generalized statement regarding all Twitter corpora can be
derived from this. Since a large number of research already limits the tweet length
to a certain minimum size and subsampling tweets is the standard approach, the
common practice seems to be already a reasonable solution. However, it should fi-
nally be said that the number of tokens does not necessarily lead to a better result.
The fully preprocessed but unfiltered corpus achieved the best results, but other
filters such as the filters of length as described above achieved comparable results

with considerably fewer tokens in the magnitude of hundreds of millions.
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6.1 Future Work

First of all, it should be mentioned that especially the already existing preprocess-
ing steps are worthy of a closer examination. The bottom line is that every single
one of these steps involves a change of the raw data and thus also a change of the
resulting vectors. To what extent these changes in the original data have an effect
on the resulting vectors should therefore be examined and analyzed on a large scale.
Whether and to which extent the respective steps of the preprocessing justify an
analysis of this scale is also worth considering as Saif et al. (2014) or Angiani et al.
(2016) have investigated the effect of preprocessing steps in sentiment analysis and
have come to the conclusion that every single step serves a purpose in improving

the quality of data.

Secondly, the filtering process itself should be applied even more extensively. The di-
vision into the two extremes as it is for the length or the year of the tweets should be
extended by an iterative filtering process. Thus, the respective length filters should
also be included in the combinations which would have been part of the thesis if not
for the large extension of the models to be analyzed which was not feasible in the
given time frame. If necessary, the concrete values of the filters would still have to

be adjusted in order to guarantee a broad analysis.

Possible extensions in this template pipeline include on the one hand the inclu-
sion of further preprocessing steps like part of speech tagging, the identification of
the language, and the replacement of misspelled words by the correct spelling. On
the other hand, the filtering process itself can be extended to include several cat-
egories so that the large-scale investigation is not limited to the three categories
selected here. A possible field now would be the division into genders, age groups,
day/ night activities, or the percentage of tweets in a foreign language. It would also
be interesting to examine the type of tweets themselves, whether they are tweets or

mentions, retweets, or quoted tweets.
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Regardless of what serves as input, a change in the training architecture may also
be considered. Word2Vec offers two different context representations (CBOW and
Skip-gram) with different optimization objectives (e.g. the used negative sampling).
Changing these parameters and other hyperparameters like the dimensionality of the
vectors could lead to different results. Due to the stochastic nature of the training
process, word embeddings can lead to surprisingly strong instabilities. A common
compromise to counteract outliers and to guarantee stability is to run the same train-
ing of the word embeddings multiple times and then combine the results using the
average (Wendlandt et al., 2018). Furthermore, there has been work done proposing
a suitable feature selection for word2vec model. (Tian et al., 2018) This is another
sanity check for the general validity of the work of this thesis. Furthermore, there
are other, token-based or type-based architectures for embedding the meaning of
words such as GloVe (Pennington et al., 2014) or BERT (Devlin et al., 2019), which
might provide at least competitive results compared to SGNS (Laicher et al., 2021;
Jain, 2020). The experimental setup for BERT, due to being already pretrained, is
altered in such a way, that fine-tuning the architecture with each resulting corpus

after filtering decisions, is then the model to be evaluated.

Another extension could be the addition of multiple test sets. Particularly for word
similarity, there are still further evaluation options in the form of further intrinsic
test sets or even the extension to extrinsic surveys. Because the test set for semantic
change detection was specifically created for that data set, and similar test sets were
similarly created for a specific data set, language, or domain, extension to other
test sets for this task is difficult. It seems logical to create another test set specially
created for this data set, but whether this is the right approach does not seem con-
clusive, at least to me. The problem, that the models have too few tokens as input
data remains and the search for relevant words of French origin or use that can be
found more or less randomly in these small models seems very contrived and it boils

down to just having more of the same of the current evaluation method.
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In addition, a look should be taken at other possible downstream tasks. Many (if
not all) tasks in the area of lexical semantics use word vectors to embed the mean-
ing of words and should therefore be reasonably applicable here. The inclusion of
further tasks guarantees an even broader and more coherent analysis and, if applica-
ble, consolidates the findings in this thesis. In conclusion, the scheme of all methods
and evaluation tasks described here in detail can be easily applied to another, new

user-generated Twitter corpus.

Finally, it should be said that even the most sophisticated filtering and prepro-
cessing methods fail if the number of resulting tokens is too low and the results
word vectors are too unreliable to allow any coherent analysis that isn’t based on
inherent random behaviour. Nevertheless, it is important to say that the finding of a
certain limit of tokens, above which the performance does not necessarily improve, is
not limited to this thesis, but is already known in many fields and areas. For exam-
ple, Lin et al. (2022) or Kolisetty and Rajput (2019) report about this phenomenon
that more training data does not necessarily lead to better results in different fields
of machine learning. To what extent this holds true for all tasks, not only in the
field of natural language processing relying on word embeddings, but for all tasks
in machine learning, and whether all corpora have this innate ability is left to be

determined.

75



References

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., and Soroa, A. (2009).
A Study on Similarity and Relatedness Using Distributional and WordNet-based
Approaches. In Proceedings of the 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics (HLT-NAACL-2009),
pages 19-27, Boulder, Colorado.

Al Sharou, K., Li, Z., and Specia, L. (2021). Towards a Better Understanding
of Noise in Natural Language Processing. In Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP 2021),
pages 53—62, Held Online. INCOMA Ltd.

Angiani, G., Ferrari, L., Fontanini, T., Fornacciari, P., Iotti, E., Magliani, F., and
Manicardi, S. (2016). A Comparison Between Preprocessing Techniques for Sen-
timent Analysis in Twitter. In International Workshop on Knowledge Discovery
on the Web.

Antoniak, M. and Mimno, D. (2018). Evaluating the Stability of Embedding-based
Word Similarities. Transactions of the Association for Computational Linguistics,
6:107-119.

Artetxe, M., Labaka, G., Lopez-Gazpio, 1., and Agirre, E. (2018). Uncovering Di-
vergent Linguistic Information in Word Embeddings with Lessons for Intrinsic
and Extrinsic Evaluation. In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 282-291, Brussels, Belgium. Association

for Computational Linguistics.

Babi¢, K., Martin¢ié-Ipsi¢, S., and Mestrovié, A. (2020). Survey of Neural Text
Representation Models. Information, 11(11).

Bao, Y., Quan, C., Wang, L., and Ren, F. (2014). The Role of Preprocessing in
Twitter Sentiment Analysis. In Huang, D.-S., Jo, K.-H., and Wang, L., editors, In-

76



telligent Computing Methodologies, pages 615-624, Cham. Springer International
Publishing.

Bian, J., Liu, Y., Agichtein, E., and Zha, H. (2008). Finding the Right Facts in the
Crowd: Factoid Question Answering over Social Media. In Proceedings of the 17th
International Conference on World Wide Web, WWW 08, page 467-476, New
York, NY, USA. Association for Computing Machinery.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python:
analyzing text with the natural language toolkit. ” O’Reilly Media, Inc..

Boot, A., Sang, E., Dijkstra, K., and Zwaan, R. (2019). How Character Limit Affects

Language Usage in Tweets. Palgrave Communications, 5.

Bruni, E., Tran, N. K., and Baroni, M. (2014). Multimodal Distributional Semantics.
Journal of Artificial Intelligence Research.

Chai, C. P. (2023). Comparison of Text Preprocessing Methods. Natural Language
Engineering, 29(3):509-553.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.
(1990). Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391-407.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Burstein,
J., Doran, C., and Solorio, T., editors, Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pages 4171-4186. Association for

Computational Linguistics.

Doval, Y., Vilares, J., and Gémez-Rodriguez, C. (2020). Towards robust word em-
beddings for noisy texts. Applied Sciences, 10:6893.

77



El-Haj, M., Kruschwitz, U., and Fox, C. (2010). Using Mechanical Turk to Create a
Corpus of Arabic Summaries. In Proceedings of the 7th International Conference

on Language Resources and Fvaluation : Workshops € Tutorials May 17-18, May
22-23, Main Conference May 19-21, Valletta. ELRA, Paris.

Elekes, A., Schaeler, M., and Boehm, K. (2017). On the Various Semantics of
Similarity in Word Embedding Models. Technical Report 3, Karlsruher Institut
fir Technologie (KIT).

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2):179-211.

Faruqui, M., Tsvetkov, Y., Rastogi, P., and Dyer, C. (2016). Problems With Eval-
uation of Word Embeddings Using Word Similarity Tasks. In Proceedings of the
1st Workshop on Evaluating Vector-Space Representations for NLP, pages 30-35,

Berlin, Germany. Association for Computational Linguistics.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
and Ruppin, E. (2001). Placing search in context: The concept revisited. ACM
Transactions on Information Systems - TOIS, 20:406-414.

Firth, J. (1957). A synopsis of linguistic theory 1930-1955. In Studies in Linguistic
Analysis. Philological Society, Oxford. reprinted in Palmer, F. (ed. 1968) Selected
Papers of J. R. Firth, Longman, Harlow.

Freedman, D., Pisani, R., and Purves, R. (2007). Statistics (international student
edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New York.

Gennaro, G., Buonanno, A.; and Palmieri, F. (2021). Considerations about learning

word2vec. The Journal of Supercomputing, 77.

Gligori¢, K., Anderson, A., and West, R. (2018). How Constraints Affect Content:
The Case of Twitter’s Switch from 140 to 280 Characters. Proceedings of the
International AAAI Conference on Web and Social Media, 12(1).

Goldberg, Y. and Levy, O. (2014). word2vec explained: deriving mikolov et al’s
negative-sampling word-embedding method. CoRR, abs/1402.3722.

78



Gonzalez, M. (2015). An Analysis of Twitter Corpora and the Differences between
Formal and Colloquial Tweets. In TweetMT@SEPLN.

Hamilton, W. L., Leskovec, J., and Jurafsky, D. (2016). Diachronic Word Em-
beddings Reveal Statistical Laws of Semantic Change. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1489-1501, Berlin, Germany. Association for Computational Lin-

guistics.
Harris, Z. (1954). Distributional structure. Word, 10(23):146-162.

Hill, F., Reichart, R., and Korhonen, A. (2015). SimLex-999: Evaluating Seman-
tic Models With (Genuine) Similarity Estimation. Computational Linguistics,
41(4):665-695.

Jain, V. (2020). GloVelnit at SemEval-2020 task 1: Using GloVe vector initial-
ization for unsupervised lexical semantic change detection. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages 208-213, Barcelona (online).

International Committee for Computational Linguistics.

Kabakus, A. T. and Kara, R. (2017). A Survey of Spam Detection Methods on
Twitter. International Journal of Advanced Computer Science and Applications,
8.

Kaiser, J., Kurtyigit, S., Kotchourko, S., and Schlechtweg, D. (2021). Effects of
pre- and post-processing on type-based embeddings in lexical semantic change
detection. In Proceedings of the 16th Conference of the Furopean Chapter of the
Association for Computational Linguistics: Main Volume, pages 125-137, Online.

Association for Computational Linguistics.

Kaiser, J., Schlechtweg, D., and im Walde, S. S. (2020). OP-IMS @ DIACR-Ita: Back
to the Roots: SGNS+OP+CD still rocks Semantic Change Detection. Proceedings

of the Tth evaluation campaign of Natural Language Processing and Speech tools

for Italian (EVALITA 2020).

79



Klein, A. Z., Magge, A., O’Connor, K., Flores Amaro, J. 1., Weissenbacher, D., and
Gonzalez Hernandez, G. (2021). Toward Using Twitter for Tracking COVID-19: A

Natural Language Processing Pipeline and Exploratory Data Set. J Med Internet
Res, 23(1):e25314.

Kolisetty, V. and Rajput, D. (2019). A Review on the Significance of Machine
Learning for Data Analysis in Big Data. Jordanian Journal of Computers and

Information Technology, 06:1.

Kutuzov, A., Ovrelid, L., Szymanski, T., and Velldal, E. (2018). Diachronic word
embeddings and semantic shifts: a survey. In Proceedings of the 27th Interna-
tional Conference on Computational Linguistics, pages 1384—1397, Santa Fe, New

Mexico, USA. Association for Computational Linguistics.

Laicher, S., Baldissin, G., Castaneda, E., Schlechtweg, D., and Schulte Im Walde,
S. (2020). CL-IMS @ DIACR-Ita: Volente o Nolente: BERT does not outperform
SGNS on Semantic Change Detection. Proceedings of the 7th evaluation campaign
of Natural Language Processing and Speech tools for Italian (EVALITA 2020).

Laicher, S., Kurtyigit, S., Schlechtweg, D., Kuhn, J., and Schulte im Walde, S.
(2021). Explaining and improving BERT performance on lexical semantic change
detection. In Proceedings of the 16th Conference of the FEuropean Chapter of
the Association for Computational Linguistics: Student Research Workshop, pages

192-202, Online. Association for Computational Linguistics.

Li, Q., Shah, S., Liu, X., and Nourbakhsh, A. (2017). Data Sets: Word Embeddings
Learned from Tweets and General Data. Proceedings of the International AAAI
Conference on Web and Social Media, 11.

Lin, J., Zhang, A., Lecuyer, M., Li, J., Panda, A., and Sen, S. (2022). Measuring the
effect of training data on deep learning predictions via randomized experiments.

In International Conference on Machine Learning.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of
Word Representations in Vector Space. In Bengio, Y. and LeCun, Y., editors, 1st

80



International Conference on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Proceedings.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Dis-
tributed Representations of Words and Phrases and their Compositionality. In
Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K., ed-
itors, Advances in Neural Information Processing Systems, volume 26. Curran

Associates, Inc.

Miletic, F., Przewozny-Desriaux, A., and Tanguy, L. (2020). Collecting Tweets
to Investigate Regional Variation in Canadian English. In Proceedings of the
Twelfth Language Resources and Evaluation Conference, pages 6255—6264, Mar-

seille, France. European Language Resources Association.

Miletic, F., Przewozny-Desriaux, A., and Tanguy, L. (2021). Detecting Contact-
Induced Semantic Shifts: What Can Embedding-Based Methods Do in Practice?
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 10852—-10865, Online and Punta Cana, Dominican Republic.

Association for Computational Linguistics.

Moreno-Ortiz, A. and Garcia-Gamez, M. (2023). Strategies for the Analysis of
Large Social Media Corpora: Sampling and Keyword Extraction Methods. Corpus
Pragmatics, 7:1-25.

Myers, J., Well, A., and Lorch Jr, R. (2010). Research Design and Statistical Anal-
ysis: Third Edition (3rd ed.). Routledge.

Naseem, U., Razzak, 1., Khan, S. K., and Prasad, M. (2020). A Comprehensive
Survey on Word Representation Models: From Classical to State-of-the-Art Word
Representation Language Models. Transactions on Asian and Low-Resource Lan-

guage Information Processing, 20:1 — 35.

Navigli, R. and Martelli, F. (2019). An Overview of Word and Sense Similarity.
Natural Language Engineering, 25(6):693-714.

81



Neubig, G. and Duh, K. (2013). How Much Is Said in a Tweet? A Multilingual,
Information-theoretic Perspective. In AAAI Spring Symposium: Analyzing Mi-

crotext.

Oberbichler, S. and Pfanzelter, E. (2021). Topic-specific corpus building: A step
towards a representative newspaper corpus on the topic of return migration using
text mining methods. Journal of Digital History, 1(1):74-98.

Osgood, C. E. (1964). Semantic differential technique in the comparative study of
cultures. American Anthropologist, 66(3):171-200.

Pak, A. and Paroubek, P. (2010). Twitter as a Corpus for Sentiment Analysis
and Opinion Mining. In Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Palomino, M. A. and Aider, F. (2022). Evaluating the Effectiveness of Text Pre-
Processing in Sentiment Analysis. Applied Sciences, 12(17).

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar.

Association for Computational Linguistics.

Ramachandran, D. and Parvathi, R. (2019). Analysis of Twitter Specific Prepro-
cessing Technique for Tweets. Procedia Computer Science, 165:245-251.

Rehurek, R. and Sojka, P. (2011). Gensim-Python Framework for Vector Space
Modelling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech
Republic, 3(2).

Sahinug, F. and Toraman, C. (2021). Tweet Length Matters: A Comparative Anal-
ysis on Topic Detection in Microblogs. In Hiemstra, D., Moens, M.-F., Mothe,
J., Perego, R., Potthast, M., and Sebastiani, F., editors, Advances in Information
Retrieval, pages 471-478, Cham. Springer International Publishing.

82



Sahlgren, M. (2006). The Word-Space Model: Using Distributional Analysis to Repre-
sent Syntagmatic and Paradigmatic Relations between Words in High-Dimensional
Vector Spaces. PhD thesis, Stockholm University, Stockholm, Sweden.

Saif, H., Fernandez, M., He, Y., and Alani, H. (2014). On Stopwords, Filtering and
Data Sparsity for Sentiment Analysis of Twitter. In Proceedings of the Ninth In-
ternational Conference on Language Resources and Evaluation (LREC’1}), pages

810-817, Reykjavik, Iceland. European Language Resources Association (ELRA).

Sastry, N. (2012). How To Tell Head From Tail in User-generated Content Corpora.
Proceedings of the International AAAI Conference on Web and Social Media, 6.

Schlechtweg, D., Hatty, A., Del Tredici, M., and Schulte im Walde, S. (2019). A
Wind of Change: Detecting and Evaluating Lexical Semantic Change across Times
and Domains. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 732-746, Florence, Italy. Association for Com-

putational Linguistics.

Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., and Tahmasebi, N.
(2020). SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection.
In Proceedings of the Fourteenth Workshop on Semantic Fvaluation, pages 1-23,

Barcelona (online). International Committee for Computational Linguistics.

Schiitze, H. (1993). A vector model for Syntagmatic and Paradigmatic Relatedness.
In Making sense of words, pages 104-113. Ninth Annual Conference of the UW
Centre for the New OED and Text Research.

Shoemark, P., Liza, F. F., Nguyen, D., Hale, S., and McGillivray, B. (2019). Room to
Glo: A Systematic Comparison of Semantic Change Detection Approaches with
Word Embeddings. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 66-76, Hong Kong,

China. Association for Computational Linguistics.

83



Symeonidis, S., Effrosynidis, D., and Arampatzis, A. (2018). A Comparative Eval-
uation of Preprocessing Techniques and their Interactions for Twitter Sentiment
Analysis. Fzxpert Systems with Applications, 110:298-310.

Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., and Hengchen, S. (2021). Computa-

tional Approaches to Semantic Change. Language Science Press, Berlin.

Taie, M., Kadry, S., and Lucas, J. (2019). Online Data Preprocessing: A Case
Study Approach. International Journal of Electrical and Computer Engineering,
9:2620-2626.

Tan, L., Zhang, H., Clarke, C., and Smucker, M. (2015). Lexical Comparison Be-
tween Wikipedia and Twitter Corpora by Using Word Embeddings. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume
2: Short Papers), pages 657-661, Beijing, China. Association for Computational

Linguistics.

Tian, W., Li, J., and Li, H. (2018). A Method of Feature Selection Based on
Word2Vec in Text Categorization. In 2018 37th Chinese Control Conference
(CCC), pages 9452-9455.

Wang, B., Wang, A., Chen, F., Wang, Y., and Kuo, C.-C. J. (2019). Evaluating Word
Embedding Models: Methods and Experimental Results. APSIPA Transactions

on Signal and Information Processing, 8(1).

Wendlandt, L., Kummerfeld, J. K., and Mihalcea, R. (2018). Factors Influencing the
Surprising Instability of Word Embeddings. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2092-2102, New

Orleans, Louisiana. Association for Computational Linguistics.

Wes McKinney (2010). Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, pages 56— 61.

84



Zhao, Y., Yin, P., Li, Y., He, X., Du, J., Tao, C., Guo, Y., Prosperi, M., Veltri,
P., Yang, X., Wu, Y., and Bian, J. (2022). Data and Model Biases in Social
Media Analyses: A Case Study of COVID-19 Tweets. AMIA Annual Symposium
Proceedings, 2021:1264-1273.

All links were last followed on the 14th of August 2023.

85



7 Appendix

7.1 Complete Tables for Word Similarity

Raw and Full Corpus

Corpus - Test Set

Raw Data

Full Data

Montreal - MEN

0.650/0.651/0.0

0.739/0.746/4.5

Montreal - SimLex999

0.258/0.250/0.3

0.330/0.314/0.0

Montreal - 353 Similarity

0.664,/0.656/0.5

0.754/0.760/0.0

Montreal - 353 Related

0.584/0.585/0.4

0.646,/0.664/0.0

avg

0.539/0.536

0.617/0.621

Toronto - MEN

0.668/0.672/0.1

0.746,/0.751/2.9

Toronto - SimLex999

0.255/0.242/0.2

0.346,/0.328/0.0

Toronto - 353 Similarity

0.649/0.645/0.5

0.748/0.751/0.0

Toronto - 353 Related

0.600/0.584/0.4

0.657/0.674/0.0

avg

0.543/0.536

0.624/0.625

Vancouver - MEN

0.672/0.674/0.1

0.759/0.764/3.6

Vancouver - SimLex999

0.264/0.251/0.1

0.346/0.329/0.0

Vancouver - 353 Similarity

0.658/0.644/1.0

0.757/0.758/0.0

Vancouver - 353 Related

0.613/0.614/1.2

0.649/0.663/0.0

avg

0.552/0.546

0.628/0.629

avg total

0.545/0.539

0.623/0.625

Table 21: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set using the raw and the full corpus.
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Filtering By Amount

Amount of Tweets

Corpus - Test Set | <100 100-1000 ~1000 ~1008S ~1000SS

M - MEN 0.674/0.681/16.4 | 0.729/0.735/6.2 | 0.730/0.741/5.8 | 0.712/0.721/9.5 | 0.737/0.734/4.0
M - SimLex999 | 0.248/0.244/0.4 | 0.321/0.304/0.0 | 0.319/0.302/0.0 | 0.305/0.294/0.0 | 0.335/0.320/0.0
M - 353 Sim 0.674/0.685/3.4 | 0.737/0.741/0.0 | 0.749/0.750/0.0 | 0.721/0.724/0.0 | 0.744/0.747/0.0
M - 353 Related | 0.621/0.634/2.8 | 0.635/0.648/0.4 | 0.654/0.667/0.0 | 0.637/0.663/0.8 | 0.648/0.664/0.0
average 0.554/0.561 0.605/0.607 0.615/0.615 0.594/0.601 0.616/0.616

T - MEN 0.674/0.684/16.0 | 0.733/0.730/5.1 | 0.736/0.742/3.2 | 0.729/0.739/9.1 | 0.746/0.752/3.0
T - SimLex999 | 0.225/0.225/0.2 | 0.324/0.306/0.0 | 0.323/0.313/0.0 | 0.305/0.293/0.1 | 0.334/0.317/0.0
T - 353 Sim 0.661/0.665/2.5 | 0.746/0.751/0.0 | 0.741/0.745/0.0 | 0.731/0.732/0.5 | 0.736/0.737/0.0
T - 353 Related | 0.622/0.633/4.0 | 0.648/0.674/0.4 | 0.659/0.677/0.0 | 0.649/0.664/0.4 | 0.636/0.652/0.0
average 0.546/0.552 0.613/0.618 0.615/0.619 0.604/0.607 0.613/0.615

V - MEN 0.676/0.686/16.4 | 0.741/0.747/5.7 | 0.748/0.753/4.5 | 0.734/0.741/9.9 | 0.748/0.752/3.4
V- SimLex999 | 0.249/0.239/0.5 | 0.331/0.314/0.0 | 0.339/0.322/0.0 | 0.315/0.298/0.0 | 0.338/0.320/0.0
V - 353 Sim 0.697/0.708/2.5 | 0.750/0.754/0.0 | 0.753/0.748/0.0 | 0.744/0.749/0.0 | 0.751/0.749/0.0
V - 353 Related | 0.638/0.657/3.6 | 0.645/0.659/0.4 | 0.650/0.664/0.0 | 0.673/0.684/0.4 | 0.636/0.657.0.0
average 0.565/0.573 0.617/0.619 0.622/0.622 0.617/0.618 0.618/0.620

| average total | 0.555/0.562 |0.612/0.614 [ 0.620/0.619 | 0.605/0.608 | 0617/0617 |

Table 22: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the amount of tweets per

user.
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Filtering By Length

Length of Tweet

Corpus - Test Set

25

50

75

min

max

mean

M - MEN

0.741/0.748/5.1

0.738/0.744/5.1

0.735/0.741/5.2

0.712/0.723/8.4

0.717/0.724/11.6

0.736/0.743/5.1

M - SimLex999 | 0.330/0.313/0.0 | 0.320/0.302/0.0 | 0.331/0.317/0.0 | 0.299/0.292/0.0 | 0.317/0.305/0.2 | 0.321/0.306/0.0
M - 353 Sim 0.738/0.737/0.0 | 0.738/0.734/0.0 | 0.756/0.755/0.0 | 0.706/0.710/0.0 | 0.728/0.729/0.0 | 0.745/0.744/0.0
M - 353 Related | 0.638/0.653/0.0 | 0.637/0.658/0.0 | 0.656/0.678/0.0 | 0.627/0.641/0.0 | 0.650/0.669/0.4 | 0.647/0.668/0.0

avg 0.612/0.613 0.608/0.610 0.612/0.623 0.586,/0.592 0.603/0.607 0.612/0.615

T - MEN 0.748/0.753/3.0 | 0.751/0.756/3.3 | 0.749/0.754/4.3 | 0.716/0.723/6.5 | 0.732/0.736/11.6 | 0.747/0.751/4.1
T - SimLex999 | 0.340/0.318/0.0 | 0.340/0.320/0.0 | 0.342/0.322/0.0 | 0.289/0.280/0.0 | 0.319/0.304/0.1 | 0.333/0.314/0.0
T - 353 Sim 0.756/0.761/0.0 | 0.734/0.740/0.0 | 0.739/0.741/0.0 | 0.731/0.730/0.0 | 0.702/0.703/0.0 | 0.737/0.738/0.0

T - 353 Related

0.651,/0.671/0.0

0.632/0.655,0.0

0.642/0.661/0.0

0.627/0.640,0.4

0.611/0.620/0.4

0.632/0.657/0.0

avg 0.624/0.626 0.614/0.612 0.618/0.620 0.590/0.593 0.591/0.591 0.612/0.615
V - MEN 0.751/0.756/3.6 | 0.749/0.753/3.6 | 0.750/0.754/4.5 | 0.724/0.732/6.8 | 0.721/0.724/9.8 | 0.753/0.757/4.3
V - SimLex999 | 0.333/0.312/0.0 | 0.332/0.312/0.0 | 0.333/0.314/0.0 | 0.316/0.305/0.0 | 0.311/0.295/0.0 | 0.334/0.315/0.0
V - 353 Sim 0.773/0.771/0.0 | 0.771/0.768/0.0 | 0.771/0.773/0.0 | 0.713/0.708/0.5 | 0.748/0.748/0.5 | 0.775/0.776/0.0
V - 353 Related | 0.651/0.667/0.0 | 0.647/0.664/0.0 | 0.653/0.675/0.0 | 0.633/0.643/0.0 | 0.658/0.681/0.4 | 0.645/0.664/0.0
avg 0.627/0.627 0.625/0.625 0.627/0.630 0.596/0.598 0.610/0.612 0.627/0.628
avg total 0.621/0.622 0.616/0.617 0.621/0.624 0.591/0.594 0.601/0.603 0.617/0.619

Table 23: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the length of the tweets.
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Filtering By Time

Table 24: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the time (year) of the

tweets.

Time of Tweet

Corpus - Test Set

First 5

Last 5

Montreal - MEN

0.638/0.648,/17.5

0.726/0.735/5.2

Montreal - SimLex999

0.174/0.177/0.6

0.328,/0.306/0

Montreal - 353 Similarity

0.657/0.674/5.9

0.744/0.745 0

Montreal - 353 Related

0.609/0.619/7.5

0.644/0.657/0

avg

0.520/0.530

0.610/0.611

Toronto - MEN

0.662/0.672/14.6

0.741/0.744/3.3

Toronto - SimLex999

0.213/0.207/0.3

0.336,/0.317/0

Toronto - 353 Similarity

0.666/0.674/3.9

0.711/0.712/0

Toronto - 353 Related

0.637/0.656/5.6

0.623,/0.644/0

avg

0.545/0.552

0.603/0.604

Vancouver - MEN

0.677/0.688,/13.7

0.754/0.757/5.0

Vancouver - SimLex999

0.214/0.219/0.2

0.343/0.325/0.0

Vancouver - 353 Similarity

0.674/0.672/3.0

0.752/0.754/0.0

Vancouver - 353 Related

0.608/0.630/3.6

0.640/0.658/0.0

avg

0.543/0.552

0.622/0.624

avg total

0.536/0.545

0.612/0.613
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Filtering By Amount and Length

... Amount of Tweets and Minimum Tweet Length

Corpus - Test Set

<100

100-1000

>1000

>100SS

>1000SS

M - MEN 0.573/0.576/23.3 | 0.703/0.715/10.2 | 0.684/0.693/10.0 | 0.683/0.692/11.1 | 0.709/0.721/8.4
M - SimLex999 | 0.183/0.186/4.6 | 0.250/0.244/0.0 | 0.272/0.268/0.0 | 0.242/0.238/0.1 | 0.296/0.285/0.0
M - 353 Sim 0.592/0.592/8.4 | 0.713/0.729/0.0 | 0.702/0.708/1.0 | 0.691/0.699/1.0 | 0.713/0.726/0.0
M - 353 Related | 0.502/0.508/8.3 | 0.636/0.638/1.2 | 0.627/0.637/1.2 | 0.598/0.601/1.2 | 0.611/0.637/0.8
average 0.462/0.466 0.576,0.582 0.571/0.576 0.554/0.558 0.582/0.592

T - MEN 0.554/0.557/24.5 | 0.689/0.699/10.3 | 0.700/0.705/7.2 | 0.695/0.706/11.1 | 0.712/0.718/6.5
T - SimLex999 | 0.163/0.154/5.1 | 0.240/0.233/0.1 | 0.279/0.272/0.0 | 0.246/0.244/0.1 | 0.291/0.282/0.0
T - 353 Sim 0.541/0.540/11.3 | 0.703/0.708/0.5 | 0.720/0.732/0.0 | 0.709/0.714/0.0 | 0.726/0.733/0.0
T - 353 Related | 0.487/0.495/12.3 | 0.619/0.631/1.6 | 0.647/0.651/0.4 | 0.631/0.639/0.8 | 0.635/0.648/0.4
average 0.436/0.437 0.563/0.568 0.587/0.590 0.570/0.576 0.591/0.595

V - MEN 0.562/0.569/25.3 | 0.711/0.722/10.1 | 0.708/0.715/8.5 | 0.694/0.704/11.3 | 0.727/0.733/6.8

V - SimLex999

0.150/0.150/6.2

0.268,/0.266,/0.1

0.286,/0.279/0.0

0.277/0.271/0.1

0.312/0.304/0.0

V - 353 Sim

0.574/0.562/12.3

0.704/0.709/1.5

0.703/0.704/0.5

0.703/0.702/1.0

0.706/0.706/0.5

V - 353 Related

0.539/0.543/10.7

0.649/0.663/2.4

0.656/0.676/0.8

0.621/0.630/2.0

0.639/0.652/0.0

average

0.456/0.456

0.583/0.590

0.588,/0.594

0.574/0.577

0.596,/0.599

average total

| 0.452/0.453

| 0.574/0.580 |

0.582/0.587

| 0.566/0.570

| 0.500/0.505

Table 25: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the amount and the length

of the tweets.

(1)
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... Amount of Tweets and Maximum Tweet Length

Corpus - Test Set

<100

100-1000

>1000

>100SS

>1000SS

M - MEN

0.603/0.608/31.7

0.680/0.687/17.2

0.688/0.697/14.9

0.698/0.707/13.8

0.711/0.719/11.6

M - SimLex999

0.195/0.193/6.5

0.259/0.255/0.5

0.269/0.2596/0.2

0.300/0.293/0.3

0.313/0.304/0.2

M - 353 Sim

0.605/0.609/11.8

0.683/0.698/1.0

0.731/0.739/1.0

0.702/0.713/0.5

0.736/0.740/0.0

M - 353 Related

0.504/0.510/10.3

0.629/0.643/1.2

0.643/0.660/2.0

0.630/0.647/1.2

0.636/0.649/0.4

average

0.477/0.480

0.563/0.571

0.583/0.589

0.583/0.590

0.599/0.603

T - MEN

0.598/0.602/30.9

0.698/0.704/15.6

0.712/0.720/13.5

0.720/0.725/13.0

0.734/0.734/11.6

T - SimLex999

0.188/0.186/5.8

0.268/0.257/0.4

0.295/0.284/0.2

0.294/0.280/0.2

0.309/0.294/0.1

T - 353 Sim

0.605/0.599,/14.3

0.716/0.724/2.0

0.676/0.675/1.0

0.687/0.681/1.0

0.708/0.708/0.0

T - 353 Related

0.523/0.521/11.5

0.614/0.629/2.4

0.612/0.622/1.6

0.605/0.610/1.6

0.645/0.655/0.4

average

0.479/0.477

0.574/0.579

0.574/0.575

0.577/0.574

0.599/0.598

V - MEN

0.611/0.618/30.4

0.685/0.691/14.0

0.718/0.724/12.7

0.716/0.721/12.2

0.721/0.725/9.8

V - SimLex999

0.141/0.147/5.5

0.287/0.279/0.4

0.292/0.279/0.0

0.302/0.289/0.0

0.321/0.308/0.8

V - 353 Sim

0.646/0.638/12.8

0.698/0.703/3.0

0.718/0.716/1.0

0.730/0.741/1.5

0.747/0.745/0.5

V - 353 Related

0.523/0.539/10.7

0.638/0.647/3.6

0.641,/0.658/1.2

0.647/0.669/1.2

0.651/0.665/0.4

average

0.480/0.486

0.577/0.580

0.592/0.594

0.599/0.605

0.610/0.611

average total

| 0.479/0.481

| 0.571/0.576

| 0.583/0.586

| 0.586/0.590

| 0.603/0.604

Table 26: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the amount and the length

of the tweets.

(2)
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Filtering By Amount and Time

Last 5 Years and ... Amount of Tweets

Corpus - Test Set

5 + <100

5-+100-1000

5+>1000

5+>100SS

5+>1000SS

M - MEN 0.659/0.667/17.6 | 0.723/0.730/8.3 | 0.713/0.719/7.5 | 0.720/0.727/11.1 | 0.728/0.734/5.9
M - SimLex999 | 0.247/0.246/0.6 | 0.306/0.292/0.0 | 0.313/0.301/0.0 | 0.297/0.291/0.0 | 0.326/0.311/0.0
M - 353 Sim 0.656/0.665/3.4 | 0.724/0.730/0.0 | 0.748/0.750/0.0 | 0.699/0.701/0.0 | 0.730/0.731/0.0
M - 353 Related | 0.600/0.620/3.2 | 0.632/0.648/0.4 | 0.646/0.665/0.0 | 0.608/0.630/0.4 | 0.626/0.646/0.4
average 0.541/0.550 0.596,/0.600 0.605,/0.609 0.581/0.587 0.603,/0.605

T - MEN 0.659/0.668/16.6 | 0.738/0.745/7.3 | 0.732/0.736/5.7 | 0.728/0.736/8.8 | 0.746/0.752/4.1
T - SimLex999 | 0.239/0.235/0.2 | 0.314/0.299/0.0 | 0.325/0.317/0.0 | 0.306/0.291/0.0 | 0.336/0.318/0.0
T - 353 Sim 0.658/0.661/3.0 | 0.710/0.719/0.0 | 0.724/0.731/0.0 | 0.714/0.708/0.5 | 0.714/0.712/0.0
T - 353 Related | 0.606/0.621/4.4 | 0.649/0.665/0.4 | 0.646/0.661/0.4 | 0.626/0.628/1.6 | 0.630/0.647/0.0
average 0.541/0.546 0.603/0.607 0.607/0.611 0.594/0.591 0.607/0.607

V - MEN 0.674/0.682/16.5 | 0.747/0.749/7.8 | 0.751/0.756/6.8 | 0.723/0.729/8.5 | 0.752/0.756/5.8
V - SimLex999 | 0.237/0.225/0.7 | 0.323/0.306/0.0 | 0.329/0.314/0.0 | 0.304/0.293/0.0 | 0.349/0.332/0.0
V - 353 Sim 0.678/0.679/5.4 | 0.754/0.761/0.0 | 0.755/0.754/0.0 | 0.741/0.749/0.0 | 0.756/0.753/0.0

V - 353 Related

0.604,/0.604/5.2

0.643/0.650,0.4

0.664,/0.686,/0.0

0.654/0.677/0.8

0.650/0.663,/0.0

average

0.548/0.550

0.617/0.616

0.625/0.628

0.605,0.612

0.627/0.626

‘ average total

| 0.544/0.548

| 0.605/0.608 |

0.612/0.616

| 0.593/0.597

| 0.612/0.613

Table 27: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the amount and the time

of the tweets.
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Filtering By Length and Time

Last 5 Years and Min/Max Tweet Length

Corpus - Test Set

Last 5 and Min Length

Last 5 and Max Length

M - MEN 0.697/0.708/10.4 0.712/0.719/11.6
M - SimLex999 | 0.277/0.271/0.0 0.305,/0.298/0.2
M - 353 Sim 0.694/0.705/0.0 0.729/0.733/0.0
M - 353 Related | 0.629/0.645/1.2 0.618/0.637/0.4
average 0.574/0.582 0.589/0.597

T - MEN 0.692,/0.699/9.5 0.731/0.736/11.6
T - SimLex999 0.275/0.270/0.0 0.316/0.299/0.1
T - 353 Sim 0.717/0.732/0.0 0.707/0.705/0.0
T - 353 Related 0.638/0.656/0.4 0.630/0.645/0.4
average 0.581/0.589 0.596/0.595

V - MEN 0.716/0.727/8.7 0.723/0.727/9.8
V - SimLex999 0.281/0.276/0.0 0.315/0.298/0.0
V - 353 Sim 0.713/0.708/1.0 0.760/0.759/0.5
V - 353 Related 0.642/0.660/0.8 0.662/0.672/0.4
average 0.588/0.593 0.615/0.614
average total 0.581/0.588 0.600,/0.602

Table 28: Pearson correlation coefficient r / Spearman correlation coefficient p /
percentage of missing words for each test set filtering by the length and the time of

the tweets.
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Filtering By Amount, Length and Time

Last 5 Years, Maximum Tweet Length and ... Amount of Tweets

Corpus - Test Set

<100

100-1000

>1000

>100SS

>1000SS

M - MEN

0.609/0.612/31.7

0.700/0.695/17.2

0.682/0.700/14.9

0.707/0.716/14.1

0.713/0.712/11.6

M - SimLex999

0.201/0.198/6.5

0.256/0.250/0.5

0.277/0.268/0.2

0.291/0.284/0.3

0.314/0.301/0.2

M - 353 Sim

0.593/0.590/11.8

0.679/0.697/1.0

0.728/0.729/1.0

0.683/0.682/0.0

0.731/0.732/0.0

M - 353 Related

0.533/0.546/10.3

0.608/0.612/1.2

0.628/0.633/2.0

0.614/0.626/0.8

0.626/0.636/0.4

average

0.484/0.487

0.561/0.564

0.579/0.583

0.574/0.577

0.596,/0.595

T - MEN 0.608/0.616/30.9 | 0.701/0.707/15.6 | 0.710/0.718/13.5 | 0.723/0.729/12.7 | 0.731/0.736/11.6
T - SimLex999 0.182/0.181/5.8 | 0.266/0.258/0.4 | 0.288/0.274/0.2 | 0.304/0.292/0.1 0.313,/0.300,/0.1
T - 353 Sim 0.584/0.566/14.3 | 0.714/0.720/2.0 | 0.693/0.692/1.0 | 0.674/0.670/0.5 | 0.706/0.712/0.0
T - 353 Related 0.517/0.501/11.5 | 0.608/0.620/2.4 | 0.632/0.634/1.6 | 0.605/0.610/1.2 | 0.635/0.649/0.4
average 0.473,/0.466 0.573/0.576 0.581,/0.580 0.576/0.575 0.596,/0.599

V - MEN 0.600/0.599/30.4 | 0.689/0.696/14.0 | 0.715/0.721/12.7 | 0.714/0.718/11.8 | 0.722/0.726/9.8
V - SimLex999 0.166/0.168/5.5 | 0.279/0.267/0.4 | 0.291/0.282/0.0 | 0.305/0.290/0.0 | 0.309/0.293/0.0
V - 353 Sim 0.624/0.628/12.8 | 0.717/0.720/3.0 | 0.721/0.721/1.0 | 0.732/0.737/1.0 | 0.751/0.753/1.0
V - 353 Related 0.493/0.504/10.7 | 0.648/0.656/3.6 | 0.631/0.656/1.2 | 0.660/0.671/1.6 | 0.668/0.680/1.2
average 0.471/0.475 0.583/0.585 0.590,/0.595 0.603,/0.604 0.613/0.613

[ average total [ 0.476/0.476 [ 0.572/0.575 [ 0.583/0.586 [ 0.584/0.585 [ 0.602/0.602 ]

Table 29: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the length, the amount,

and the time of the tweets. (1)
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Last 5 Years, Minimum Tweet Length and ... Amount of Tweets

Corpus - Test Set

<100

100-1000

>1000

>100SS

>1000SS

M - MEN 0.547/0.549/26.9 | 0.688/0.700/13.9 | 0.662/0.672/12.1 | 0.670/0.681/14.0 | 0.699/0.711/10.4
M - SimLex999 0.168/0.167/6.0 | 0.238/0.230/0.2 | 0.247/0.248/0.0 | 0.238/0.232/0.2 | 0.265/0.260/0.0
M - 353 Sim 0.558,/0.555/13.8 | 0.707/0.719/0.0 | 0.678/0.686/1.5 | 0.709/0.727/0.5 | 0.709/0.715/0.0
M - 353 Related 0.501/0.503/11.9 | 0.629/0.634/1.2 | 0.607/0.609/2.4 | 0.621/0.626/1.2 | 0.631/0.649/1.2
average 0.444/0.444 0.566/0.571 0.545,/0.554 0.556/0.567 0.576,/0.584

T - MEN 0.513/0.518/27.5 | 0.679/0.695/12.2 | 0.669/0.678/10.9 | 0.687/0.700/13.0 | 0.697/0.706/9.5
T - SimLex999 0.191/0.183/7.9 | 0.224/0.223/0.1 0.254/0.250/0.0 | 0.239/0.233/0.1 0.272/0.266,/0.0
T - 353 Sim 0.519/0.523/16.3 | 0.702/0.708/1.5 | 0.693/0.704/0.0 | 0.660/0.663/1.0 | 0.720/0.727/0.0
T - 353 Related 0.432/0.445/15.9 | 0.637/0.658/3.6 | 0.625/0.632/1.2 | 0.648/0.656/2.8 | 0.642/0.649/0.4
average 0.414/0.417 0.561,/0.571 0.560,/0.566 0.559/0.563 0.583/0.587

V - MEN 0.533/0.533/27.1 | 0.691/0.702/12.7 | 0.693/0.702/11.7 | 0.697/0.707/12.1 | 0.720/0.730/8.7
V - SimLex999 0.138/0.143/8.8 | 0.227/0.221/0.3 | 0.269/0.265/0.0 | 0.223/0.220/0.3 | 0.283/0.275/0.0
V - 353 Sim 0.594/0.581/18.7 | 0.699/0.694/1.5 | 0.694/0.700/1.5 | 0.684/0.693/1.5 | 0.696/0.696/1.0
V - 353 Related 0.457/0.446/13.9 | 0.612/0.620/2.8 | 0.658/0.687/2.4 | 0.638/0.647/2.4 | 0.628/0.650/0.8
average 0.431/0.426 0.557/0.559 0.579,/0.589 0.561,/0.567 0.582/0.588

[ average total [ 0.429/0.429 [ 0.561/0.567 [ 0.562/0.569 [ 0.560/0.565 [ 0.581/0.586 ]

Table 30: Pearson correlation coefficient r / Spearman correlation coefficient p /

percentage of missing words for each test set filtering by the length, the amount,

and the time of the tweets. (2)
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7.2 Complete Tables for Semantic Change

Best Split For All Basic Filters

Model - Filter | split | MT | MV | TV | sum | Avg
Full Corpus (Preprocessing but No Filters)

Full | 72.8 | 0525 | 0.500 | 0.525 | 1.55 | 0.517
Raw Corpus (No Preprocessing and no Filters)

Raw | 63-17 | 0.538 | 0.538 | 0.538 | 1.612 | 0.538
Amount of Tweets per User

<100 Tweets 9-67 0.526 0.553 0.526 1.605 0.535
100 — 1000 Tweets 35-45 0.562 0.538 0.462 1.562 0.521
>1000 Tweets 24-56 0.575 0.600 0.500 1.675 0.558
>100 SS Tweets 14-66 0.55 0.500 0.525 1.575 0.525
>1000 SS Tweets 19-61 0.588 0.562 0.538 1.688 0.562
Length

25 29-51 0.612 0.562 0.538 1.712 0.571
50 23-57 0.612 0.562 0.512 1.688 0.562
75 43-37 0.512 0.562 0.538 1.612 0.538
Mean Length 29-51 0.588 0.588 0.488 1.662 0.554
Max Length 3-77 0.512 0.512 0.512 1.537 0.512
Min Length 50-30 0.500 0.575 0.55 1.625 0.542
Time

First 5 Years 10-64 0.554 0.500 0.527 1.581 0.527
Last 5 Years 29-51 0.538 0.562 0.538 1.638 0.546

Table 31: Accuracy score, sum, and average for all three comparisons of the best

possible split for each filter.
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Best Split For All Combinations of Filters

Model - Filter | split | MT MV TV Sum | Avg
Combination - Length and Amount

Max Length X <100 Tweets 34-20 0.593 0.519 0.556 1.667 0.556
Max Length X100 — 1000 Tweets 34-46 0.550 0.525 0.475 1.550 0.517
Max Length X >1000 Tweets 0-79 0.506 0.506 0.506 1.519 0.506
Max Length X >100 SS Tweets 9-71 0.512 0.538 0.512 1.562 0.521
Max Length X >1000 SS Tweets 3-77 0.512 0.512 0.512 1.537 0.512
Min Length X <100 Tweets 38-9 0.681 0.638 0.638 1.957 0.652
Min Length X100 — 1000 Tweets 8-72 0.550 0.525 0.525 1.600 0.533
Min Length X >1000 Tweets 18-62 0.550 0.500 0.500 1.550 0.517
Min Length X >100 SS Tweets 30-50 0.475 0.550 0.550 1.575 0.525
Min Length X >1000 SS Tweets 60-20 0.525 0.550 0.500 1.575 0.525
Combination - Length and Time

Max Length X Last 5 Years 2-78 0.500 0.5 00 0.525 1.525 0.508
Min Length X Last 5 Years 42-38 0.525 0.525 0.500 1.550 0.517
Combination - Time and Amount

Last 5 Years X <100 35-40 0.560 0.560 0.507 1.627 0.542
Last 5 Years x 100-1000 28-52 0.525 0.500 0.525 1.550 0.517
Last 5 Years x >1000 33-47 0.512 0.588 0.512 1.612 0.538
Last 5 Years X >100 SS 2-78 0.500 0.500 0.525 1.525 0.508
Last 5 Years X >1000 SS 27-53 0.562 0.588 0.538 1.688 0.562
Combination - Length and Time and Amount

Max Length X Last 5 Years X <100 Tweets 0-54 0.519 0.519 0.519 1.556 0.519
Max Length X Last 5 Years X 100-1000 Tweets 1-79 0.512 0.512 0.512 1.537 0.512
Max Length X Last 5 Years X >1000 Tweets 0-79 0.506 0.506 0.506 1.519 0.506
Max Length X Last 5 Years X >100 SS Tweets 1-79 0.512 0.512 0.512 1.537 0.512
Max Length X Last 5 Years X >1000 SS Tweets 1-79 0.512 0.488 0.512 1.512 0.504
Min Length X Last 5 Years X <100 Tweets 24-15 0.564 0.667 0.564 1.795 0.598
Min Length X Last 5 Years X 100-1000 Tweets 17-63 0.538 0.562 0.512 1.612 0.538
Min Length X Last 5 Years X >1000 Tweets 59-21 0.488 0.538 0.488 1.512 0.504
Min Length X Last 5 Years X >100 SS Tweets 1-79 0.512 0.512 0.488 1.512 0.504
Min Length X Last 5 Years X >1000 SS Tweets 35-45 0.562 0.512 0.512 1.588 0.529

Table 32: Accuracy score, sum, and average for all three comparisons of the best

possible split for each combination of filters.
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