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Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und dabei
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Abstract

This thesis proposes a text-to-speech system that is conditioned on sentences embeddings
extracted from natural language prompts in order to make the prosodic parameters of
generated speech controllable in an intuitive and effective way. The system builds on a
transformer-based TTS architecture and provides benefits regarding speed, data efficiency,
robustness and controllability. The proposed integration scheme essentially concatenates
speaker and sentence embeddings by modeling inter-dependencies between them before
inducing the joint representation into the model. Furthermore, a training strategy is
developed that operates on merged emotional speech and text datasets and varies prompts
in each iteration, increasing the generalization capabilities of the model and reducing the
risk of over-fitting. Extensive objective and subjective evaluations on utterances generated
from sentences of emotional text datasets demonstrate the prompting capabilities of the
conditioned TTS system. It achieves high prosodic controllability whereby the emotional
content of provided prompts is transferred accurately to generated speech. At the same
time the system maintains precise tractability of speaker identities as well as overall high
speech quality and intelligibility. Besides a high correlation between prompts and speech
prosody, fine-tuning the sentence embedding extractor has been found to be crucial. The
proposed TTS system is limited with regard to modeling unseen speakers, intensities and
multiple languages.
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1 Introduction

With the advances in machine learning during the past years, text-to-speech systems have
become very powerful. In some applications they almost reach quality comparable to
human speakers in terms of perceived naturalness (Ren et al., 2020). One of the main
difficulties in speech synthesis is the one to many mapping problem which describes the
fact that for a given input text there are many possible spectrogram representations which
can differ in various components such as speaking style, intonation, stress or rhythm,
collectively referred to as prosody. It remains a challenge to generate a spectrogram
representation with appropriate and natural sounding prosody especially with respect to
the content of the input or its context. Therefore, in recent years a number of different
approaches have been proposed to tackle this challenge.

Modern transformer-based text-to-speech synthesis systems introduce a component which
converts the input text into phonemes before encoding them. This comes with the benefit
that no text preprocessing is necessary which can be complicated and expensive. However,
by doing so, information about words, sentence structure and meaning of the input text
is lost. Such information has been found to be closely related to the prosodic properties
of speech (Friederici, 2001; Baumann and Riester, 2012). Numerous approaches focus
on providing syntactic information to the speech synthesis model which can be helpful
for deciding which words should be stressed or where intonation boundaries are located
(Hirschberg and Rambow, 2001; Mishra et al., 2015; Köhn et al., 2018). Other work tries
to induce the meaning of the words or even the whole input text to the model which can
also be useful to determine an appropriate prosody by providing information about the
desired sentiment or emotion in which the text should be synthesized as well as syntactic
information to a certain degree (Hayashi et al., 2019). Thereby, the assumption is that there
exists a correlation between the meaning of the utterance and its prosodic parameters.

This thesis builds on the idea of providing the meaning of the input text to the speech
synthesis model and introduces a method which allows to control the prosody of generated
speech with natural language prompts. The main idea comes down to additionally
conditioning the model on embeddings obtained by a large language model during training.
At inference the additional information can be helpful for generating a fitting prosody
with respect to the provided prompt. Prompting methods have been applied to text and
image generation with great success to guide the model to generate the desired output

12



(e.g. Ramesh et al. (2022)). However so far there is only a small amount of research on
prompt-based text-to-speech synthesis.

Previous work on controllable TTS, which uses style factors such as prosodic tags (Guo
et al., 2022a) or pitch contours (Bak et al., 2021), require specific values at inference that
are often only understandable with acoustic knowledge. TTS systems that infer the desired
prosody from reference speech (Wang et al., 2018), oblige users to provide appropriate
speech samples, which can be time-consuming and difficult to obtain. In this vein the
proposed approach in this thesis presents a simpler and more intuitive way to control the
prosodic parameters of synthesized speech since it depends on prompts in natural language
form.

The proposed system builds on a baseline which combines architectural designs from
several TTS models proposed in previous work and provides benefits regarding speed,
data efficiency, robustness and controllability (Lux et al., 2023a). The proposed integration
scheme concatenates speaker and sentence embeddings by modeling inter-dependencies
between them before inducing the joint representation into the model’s encoder, decoder
and prosody predictors. This approach is simple and adds only little computational cost in
comparison to the baseline. Furthermore, a training strategy is developed that operates on
merged emotional speech and text datasets and varies prompts in each iteration, potentially
increasing the generalization capabilities of the model while at the same time reducing the
risk of over-fitting. In addition, combining existing datasets eliminates the necessity of
manually providing style descriptions along with the speech data. Objective and subjective
evaluations are performed in order to assess the controllability of generated prosody
through provided prompts.

Thus, the main research question can be formulated as follows:
Is it possible to accurately control the prosodic parameters of speech generated by a
text-to-speech system through providing natural language prompts?
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Thereby, the hypotheses are:

1. Conditioning a speech synthesis model on sentence embeddings of textual prompts
improves the quality of generated speech in terms of diverse prosody and naturalness.

2. The prosodic parameters of speech and the conveyed emotional state are controllable
by providing suitable prompts during inference.

3. The emotional content of the prompts is correlated to the prosody and conveyed
emotion of synthesized speech.

4. Semantically similar prompts result in similar prosody and conveyed emotion.

5. The controllability of speaker identities is not affected by the integration of sentence
embeddings.

This thesis begins with a description of the fundamental background (section 2) followed
by an overview of related work focusing TTS systems incorporating supplementary
information (section 3). Further, the baseline along with the extension of the proposed
system are explained in detail (section 4). Section 5 outlines the conducted experiments
and applied objective as well as subjective evaluation methods. Subsequently, the collected
results are presented (section 6) and discussed (section 7). Finally, the limitations of the
proposed approach and possible future research directions are pointed out (section 8). The
most important findings of the thesis are summarized in section 9.
The implementation of the TTS systems and trained models can be accessed on GitHub 1.
Furthermore, a demo page containing several audio samples is provided 2 along with an
interactive space on HuggingFace 3.

1https://github.com/Thommy96/IMS-Toucan
2https://thommy96.github.io/toucanpromptingdemo/
3https://huggingface.co/spaces/Thommy96/promptingtoucan
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2 Background

2.1 Deep Learning Methods

Deep Learning is a branch of machine learning that plays a central role in today’s
state-of-the-art algorithms and artificial intelligence models and is very powerful in
processing and learning from large amounts of data. It has been applied with great success
in many areas like healthcare (Ma et al., 2015; Xiong et al., 2015), image generation
(Krizhevsky et al., 2012), natural language processing tasks (Collobert et al., 2011; Bordes
et al., 2014; Sutskever et al., 2014), speech recognition (Hinton et al., 2012) and speech
synthesis (Wang et al., 2017; Ren et al., 2020).

Deep Learning builds on the idea of neural networks which are designed to model the
way human brains process information (McCulloch and Pitts, 1943; Rosenblatt, 1958).
Neural networks typically comprise interconnected layers each consisting of a number
of processing units called neurons. The neurons and their connections possess individual
weights and bias values which collectively form the parameters of the neural network.
During the training process these parameters are adjusted in a way such that the network
adapts to the training data.

Deep learning gets its name from the fact that it creates a deep structure by stacking
additional layers. Thereby, the idea is that layers at the beginning learn simple features
while deeper layers specialize in comprehending complex attributes. Such a network can
also be seen as a powerful hierarchical feature representation of the input data.

2.1.1 Feed Forward Neural Networks

In a feed forward neural network the information is processed only in one direction, i.e.
forward through the layers of the network. In its simplest configuration it consists of a
single layer. In this case the values of the input vector X are multiplied by the weights
W . Thereby W is a matrix of shape |X| × N where N corresponds to the number of
neurons since each input value has a connection to each neuron. The weighted values are
then subsequently aggregated along with the biases B = {b1, ...bN} to form the weighted
sum Z. This sum is then applied to an activation function σ in order to ensure that the
output Y = {y1, ..., yN} is mapped between required values such as (0, 1) or (−1, 1).
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Importantly, due to the use of matrix multiplications in the calculation, the input X can
also be a matrix encompassing multiple input vectors. The calculation of the output Y is
presented in equation 1.

(1) Y = σ(WX +B)

The major limitation of single layer neural networks is that they can only handle linearly
separable data. Introducing more than one layer to the network solves this shortcoming
and therefore makes it more powerful. The additional layers between the input and the
output layer are called hidden layers. In the calculation of Y the input of each layer is the
output of the previous layer. Since there are multiple layers, a weight matrix W l and a bias
vector Bl for each layer l are required. Equation 1 can now be updated as in equation 2
which describes the so called forward propagation of a neural network.

(2) Y = σ(WL...σ(W 2σ(W 1X +B1) +B2)...+BL)

The purpose of having activation functions after each layer is to introduce non-linearity to
the network. Commonly used activation functions are sigmoid, tanh or ReLU. If the output
should be a probability distribution, a softmax function can be applied to the final layer.

In order to fit the neural network to the training data its parameters have to be updated.
After the forward propagation, a loss function is applied which compares the output with
the target training data. The overall goal is to adjust the parameters of the network in such
a way that the loss becomes as small as possible. This is achieved by backpropagating the
loss through the layers of the network. Thereby the gradients of the loss with respect to
the weights and biases at each layer are calculated by taking the partial derivative of the
loss function. The gradients describe the direction and magnitude of the changes required
to reduce the loss. Then the parameters are adjusted using an optimization algorithm like
gradient descent or Adam which makes use of an adaptive learning rate and momentum to
improve convergence and performance (Kingma and Ba, 2014).
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2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) contain at least one convolutional layer followed
by a pooling layer and a fully connected layer as final component. In the convolutional
layer a filter matrix, also known as kernel, is shifted across the values of the input data,
applying a dot product at each step. In this way the input matrix is folded with the goal of
detecting local features that are important for the task at hand. The values of the filter are
trainable parameters and it is also possible to apply multiple different filters each focusing
on distinct feature aspects of the input. Furthermore multiple convolutional layers can be
stacked in order to increase the complexity of the network.

As in feed forward neural networks an activation function is applied after each convolutional
layer which introduces non-linearity. The output of a convolution is processed by a pooling
layer that conducts a dimensionality reduction by sliding a filter over the values and
applying an aggregation function. The two main types of pooling layers are max pooling
where the filter selects the maximum value at each step and average pooling where the
values within the filter range are averaged. The motivation behind the pooling operation
is to maintain only the most important features and thus improve the efficiency of the
network. The final layer of a convolutional neural network is a fully connected layer with
e.g. softmax activation in order to output a probability distribution.

2.1.3 Recurrent Neural Networks

Recurrent Neural Networks were popularized by Hopfield (1982) and are useful to process
sequential data, e.g. a series of data points over time or text. The major difference to
feed forward or convolutional neural networks is that they take information from previous
inputs into account which influences the current processing step. Therefore, the output
after treating the last element of the input sequence is dependent on all previous elements.
If the network is bidirectional it even has information about future elements at each time
step. This is achieved by sharing a memory matrix of weights across the network’s layers
which is fed into the calculation at each processing step and then updated accordingly.

Recurrent Neural Networks tend to have problems with exploding or vanishing gradients.
These describe the issue that during backpropagation the gradients become increasingly
large or small as a consequence of the memory updates. A popular architecture of
recurrent neural networks is the Long short-term memory (LSTM) which was introduced
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by Hochreiter and Schmidhuber (1997). This architecture addresses the vanishing gradient
problem by accounting for long-term dependencies in the input. For later parts of the
input, traditional recurrent neural networks already have forgotten about distant parts at the
beginning of the sequence since the memory has been updated too many times in between.
To tackle this issue the neurons in a LSTM are cells that can control which information
should be stored and what shall be forgotten when updating the memory. This is achieved
by a forget gate, an input gate and an output gate, each only letting through specific
information based on the output of the previous time step and the input of the current time
step. Like that important information from the the beginning of the sequence can be stored
throughout all processing steps. The Gated Recurrent Unit (GRU), introduced by Cho et al.
(2014) simplifies the architecture of LSTM by merging the forget and input gates, making
it computationally more efficient while still capturing long-term dependencies.

2.1.4 Sequence to Sequence Learning

In Sequence to Sequence Learning a recurrent neural network is trained to map the
input sequence to an output sequence as in e.g. machine translation, speech recognition
or speech synthesis. The architectures of such approaches comprise an encoder and a
decoder recurrent neural network. The encoder processes the input sequence and stores the
information in a hidden state which is then passed to the decoder whose task is to predict
the target sequence.

A very important paradigm which improves the performance of sequence to sequence
learning models is the attention mechanism. It was introduced in Bahdanau et al. (2014)
and addresses the bottleneck problem of only having a single hidden state as input for
the decoder which limits the amount of information the decoder receives, especially for
long sequences. The attention mechanism gives the decoder access to not only the last,
but all hidden states of the encoder such that at each decoding time step the most relevant
information can be used. This enables the encoder to pay attention to different parts of the
input at each step. Thereby a weighted sum of the encoder states with learned attention
weights is computed, indicating which state should be used for each decoding step.

The paper Attention is All You Need by Vaswani et al. (2017) takes this idea one step further
and introduces the transformer model which is based solely on attention mechanisms
without the need for recurrent neural networks. Instead the encoder and decoder blocks
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use self-attention to process information. In contrast to the attention mechanism between
decoder and encoder, self-attention operates among states of the same block, e.g. all encoder
states. The intuition stays the same as before: for each hidden state of the sequence the
most relevant information of the other states should be used, such that the representations
at each step are learned in context of each other. This comes not only with the advantage
that the model has knowledge about all elements of the input sequence at once but also
provides the benefit that the computational steps required regarding each state can be
executed in parallel.

The calculation of the attention scores is realized with queries, keys and values. Thereby the
keys are instances of the sequence each containing a value whereas the query is the specific
instance that is processed. The query is compared to all keys by calculating the similarity,
yielding the most similar keys with respect to the query. Through applying a softmax
function, an attention weight is obtained for each query-key pair. The attention score is
then calculated by summing up the values of the keys weighted by their corresponding
attention weights.

Self-Attention can be further extended to Multi-Head Attention which consists of multiple
heads each possessing an independent attention mechanism focusing on different aspects
of the sequence. The results of the different attention mechanisms are combined to obtain
the attention score.

Figure 1 shows the full architecture of a transformer model. The decoder (right part) has two
Multi-Head Attention blocks. The first one uses self-attention with a masked sequence since
during generation the model should only have access to previously generated parts. The
second one is dedicated to decoder-encoder attention using queries from decoder states and
keys and values from encoder states. The feed forward blocks serve to process the output
from the attention blocks and the Add & Norm blocks handle residual connections and
layer normalization. Residual connections simply add the input of a block to its output and
ease the gradient flow through the network. Layer normalization (Ba et al., 2016) is applied
to normalize vector representations which is helpful to improve convergence stability. Since
the transformer model does not contain recurrence, it has no knowledge about the order of
the sequence. Therefore, Positional Encoding adds embeddings containing information
about the positions to the input and output sequence. In most transformer architectures
encoder as well as decoder blocks are stacked on top of each other (indicated by N× in
the figure) whereby the output of one block is the input for the following.
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Figure 1: Transformer Model Architecture

Taken from Vaswani et al. (2017)

2.1.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs, Goodfellow et al. (2014)) consist of two
convolutional neural networks: one that generates outputs (generator) and one that tries
to separate the generated outputs from real ones (discriminator). During training these
two networks compete against other which increasingly improves their performance until
generated outputs are nearly indistinguishable from real ones. GANs have been applied
with great success in image generation but are also used in speech synthesis for the
conversion of spectrogram to waveform.

2.1.6 Squeeze and Excitation Blocks

Squeeze and Excitation Blocks (Hu et al., 2018) are building components for neural
networks and very helpful for explicitly modeling inter-dependencies between channels.
The main idea thereby is that informative features within a given feature map are
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emphasized while less relevant ones are suppressed. This is achieved by two steps: squeeze
and excitation. Figure 2 shows an overview of the whole pipeline.

In the squeeze step the global information of the feature map is captured by applying
global average pooling which calculates the average value of each channel. This essentially
encodes the importance of each channel in context of the entire feature map.

The goal of the excitation step is to model inter-dependencies between channels. This
is achieved by a neural network consisting of fully connected layers. The output of
these layers is used to generate a channel-wise excitation signal representing the learned
importance of each channel. This signal is then applied to the original feature map to
modulate channel responses.

Figure 2: Squeeze and Excitation Block

Taken from Hu et al. (2018)
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2.2 Large Language Models

In general language models aim to model the likelihood of word sequences and predict
the probabilities of future or missing tokens in a given text. Early approaches such as
n-gram models are based on statistical learning methods and try to compute the probability
of a word given its previous n context words. These probabilities are based on text
corpora from which co-occurrence counts of words are extracted. While such models
can be useful for natural language processing tasks like information retrieval due to their
efficiency and interpretability, they have several disadvantages. The main drawback is
that the computational cost exponentially increases with the number of context words and
therefore long-term dependencies cannot be modeled. Furthermore they suffer from a data
sparsity problem since even in large text corpora there are a lot of low frequent n-grams.
Smoothing strategies such as back-off estimation or Good-Turing smoothing (Chen and
Rosenfeld, 2000) have been proposed to tackle this problem.

More advanced language models learn the probabilities of word sequences through neural
networks. Thereby the idea of representing words as vectors in a multidimensional space
comes more into focus. This concept is based on the distributional hypothesis which states
that words occurring in similar contexts tend to have similar meanings (Harris, 1954). One
of the first neural language models was proposed in Bengio et al. (2003). It consists of a feed
forward neural network used to predict the next token given a sequence of words, whereby
a distributional embedding matrix is learned. Also using a feed forward neural network,
Mikolov et al. (2013) introduced novel techniques known as Continuous Bag-of-Words
(CBOW) and Skip-Gram that improve the models ability to capture semantic relationships
between words. While the objective of CBOW is to predict the target word given its
surrounding context words, Skip-Gram aims to predict the context words from a given
target word. Another approach called Global Vectors for Word Representation (GloVe)
was proposed by Pennington et al. (2014) with a focus on capturing global dependencies
between words. This is achieved by constructing a co-occurrence matrix from a large
corpus and using it during training with the objective of capturing the co-occurrence
probabilities between word pairs.

Recurrent neural networks are also used for language modeling (Mikolov et al., 2010) with
the advantage of being able to better model the sequential nature of text. Since the vanishing
gradient problem hinders the modeling of long-term dependencies, state-of-the art methods
make use of the attention mechanism and especially the transformer architecture. These
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models can be unsupervisedly and efficiently pre-trained on large amounts of text data, e.g.
scraped from the internet and thus are called large language models. The most popular
models hereby are BERT (Bidirectional Encoder Representations from Transformers,
Devlin et al. (2019)) and GPT (Generative Pretrained Transformer, Radford et al. (2018)).
BERT is a transformer network trained on the masked language modeling task where the
objective is to predict a masked token in a piece of text by using its surrounding context. A
second training objective is the prediction of the next sentence where the model is given
two sentences and learns to predict if the second sentence follows the first one. GPT is also
based on the transformer architecture but differently from BERT its training objective is to
predict the next token in a piece of text, so it only uses previous context.

In contrast to models like word2vec and GloVe which learn static word embeddings
that are constant regardless of the context in which the words appear, transformer based
language models learn contextualized representations. This means that the embedding for
a specific word is generated dynamically based on its context via self-attention which can
be beneficial for e.g. resolving ambiguities.

Since these transformer based models have shown strong performance in various natural
language processing tasks and thus proven their usefulness in understanding and generating
human language, numerous model variants have been proposed over the last years. Those
models improve the training procedure, increase the number of trainable parameters
or specialize on specific domains. Examples for such models are RoBERTa (Robustly
Optimized BERT Pretraining Approach, Zhuang et al. (2021)), GPT-3 (Brown et al., 2020),
T5 (Raffel et al., 2020), BLOOM (BigScience-Workshop, 2022), LLaMa (Touvron et al.,
2023). A noteworthy, recently very successful application of the GPT model is ChatGPT 4

which is adapted on dialogue scenarios and includes reinforcement learning from human
feedback (Ziegler et al., 2019) in its training procedure.

2.2.1 Sentence Embeddings

While it is common to extract word embeddings from large language models it is also
possible to obtain embeddings that represent the meaning of a whole sentence or piece
of text. The most intuitive way of obtaining such a representation is to combine the
embeddings of all occurring words. Thereby those can be summed up, averaged or min/max

4https://openai.com/blog/chatgpt
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pooled. Another possibility is to extract the embedding of a token prepended to the sentence
commonly referred to as CLS (classification). While some research doubts that the CLS
embedding is entirely appropriate for capturing the semantic representation of a sentence
(Tyagi et al., 2020) per se, it is usually used for fine-tuning the model on a classification
tasks and thereby captures meaningful information about the sentence. Furthermore there
are models specifically trained to learn the meaning of sentences. In this vein Reimers and
Gurevych (2019) develop sentence-BERT which modifies BERT by using siamese and
triplet networks to derive semantically meaningful sentence embeddings.

2.3 Prompting Methods

In recent years an increasing amount of research has focused on prompting methods and
successfully applied them to solve natural language processing tasks (Liu et al., 2022;
Radford et al., 2019; Petroni et al., 2019). The prompting paradigm is based on the
assumption that the task at hand can be formulated as a masked language modeling or
natural language generation problem. The key idea is to manipulate the data by providing a
prompt which triggers a pretrained large language model to solve the task. A great benefit
of prompting is that it obliterates the necessity to fine-tune the model on the downstream
task and therefore also the need for task specific data for training. Instead the data is
manipulated to fit the already pretrained model, e.g. Radford et al. (2019) append ”TL;DR”
to the end of a sentence and let a language model generate a summary.

Prompting has also achieved great success in image generation where a prompt is used as
a description of the desired image to guide the model (Reed et al., 2016; Rombach et al.,
2022; Ramesh et al., 2022).
Thereby providing an appropriate prompt has a large effect on the model’s performance.
Thus different methods have been developed to choose a proper prompt, in research referred
to as prompt engineering. The most intuitive way is to create prompts manually and probe
the outcome. While this can be time consuming, another drawback is that the model might
be sensitive to the prompt such that even relatively similar inputs can produce high variance
in the outcome (Jiang et al., 2020). In order to tackle these problems various methods
have been proposed to automatically create prompts which yield a high performance (see
Liu et al. (2022) for an overview). However these methods are not readily applicable
to text-to-speech synthesis and are therefore not discussed in detail. Instead the primary
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goal in this work is to examine if it is possible to guide the generated speaking style and
prosodic properties of a text-to-speech system by providing appropriate natural language
prompts.

2.4 Speech Prosody

In phonetics the properties of speech are distinguished in segmental and supra-segmental
features. While segmental features are dedicated to the pronunciation of specific phonemes,
supra-segmental features describe the articulation across larger units of speech, e.g. whole
utterances. The most important supra-segmental features are pitch (fundamental frequency),
loudness (power in spectrum), voice quality (energy distribution in spectrum) and tempo
(phoneme duration and pauses). These features are collectively referred to as speech
prosody (Xu, 2011).

Intonation describes the variation of pitch whereas rhythm characterizes the pattern of
inserted pauses and intervals between stressed syllables. Prosodic features may transmit
emotional states of speakers, the form of the utterance (statement, question, command),
the presence of irony or sarcasm and the utilization of contrast and focus.

2.5 Emotion Theories

From an evolutionary point of view emotions focus on observable expressions and have
functions that support communication (Darwin, 1872). According to the James-Lange
theory emotions arise from the perception of physiological responses to external stimuli
(James, 1884; Lange and Kurella, 1885). In contrast the Cannon-Bard theory (Cannon,
1927; Bard, 1928) posits that emotions occur simultaneously with physiological responses
and are thus independent but parallel processes.

Besides various models that try to describe emotional states as discrete categories, there
exist approaches that represent them continuously along certain dimensions. One of
the most popular list of basic emotions was presented by Ekman et al. (1999) through
the study of facial expression. This list contains anger, disgust, fear, joy, sadness and
surprise. Plutchik (1980) expands it by including trust and anticipation. Furthermore
he develops a dimensional model by placing the emotions on a wheel with contrasting
emotions on opposing sides and inserting more fine-grained distinctions for each basic
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emotion according to their intensity. Another popular dimensional model is the continuous
circumplex model (Russell, 1980) which consists of a two-dimensional vector space with
valence on one axis and arousal on the other. Valence describes the degree of pleasantness,
ranging from negative to positive while arousal defines the amount of activation, i.e.
intensity, and ranges from calm to excited (Bestelmeyer et al., 2017). While this model
allows to represent emotional states as points in space, basic emotions can also be mapped
into it, e.g. joy could be placed somewhere in the region of high valence and high arousal.

A more recent emotion theory by Barrett (2017) emphasizes that emotional states are not
fixed categories but rather dynamic and context-dependent experiences, e.g. valence and
arousal are perceived and based on context the brain predicts which emotion makes sense.

2.6 Text-to-Speech Synthesis

Text-to-speech synthesis describes the process of generating human like speech given an
arbitrary text as input.

In traditional approaches the input text is first processed by a text analysis module
which is responsible for pre-processing steps such as word disambiguation, detection
of abbreviations and extracting linguistic features like part-of-speech tags and prosodic
predictions. The extracted features are passed to the synthesis module which generates
speech as a waveform. Popular techniques following this approach are concatenative
(Moulines and Charpentier, 1990; Hunt and Black, 1996) and parametric speech synthesis
systems (Yoshimura et al., 1999; Tokuda et al., 2000; Black et al., 2007).
However the pipeline of these approaches is rather complex and the linguistic feature
extraction can often be expensive. Furthermore the quality of synthesized audios is mostly
significantly worse than human speech because it tends to be unstable in prosody and
pronunciation, thus sounding unnatural.

In past years the rapid advances in machine learning and in particular deep neural networks
have opened the door for end-to-end generative text-to-speech synthesis models. They
simplify the traditional pipeline by converting the input text into phonemes and thus
removing the need for a text analysis module. In most models the generated speech is first
represented as a mel-spectrogram predicted from the input phonemes through a neural
network and then transformed into a waveform by a separately trained model known as
vocoder.
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A spectrogram represents the amplitude of an audio signal as it varies over time and
frequencies. It can be obtained by applying short-time Fourier transformation which
comprises several fast Fourier transformations on windowed segments of the signal (Sejdić
et al., 2009). The x-axis corresponds to the time steps whereas the y-axis indicates the
frequency values. The amplitude is represented in a third dimension which is usually
represented as a gray scale when plotting the spectrogram as 2-D image. The frequency
is mapped to a mel-scale which has been introduced by Stevens et al. (1937). It divides
the frequency range into bins where each of them contains frequencies that are perceived
as equally by listeners. Thereby the underlying motivation is that humans do not perceive
frequencies on a linear scale, e.g. small differences in low frequencies are much better
detectable compared to differences in high frequencies.

Models like Tacotron (Wang et al., 2017), Tacotron2 (Shen et al., 2018) and
TransformerTTS (Li et al., 2019) generate mel-spectrogram frames autoregressively
meaning that each generation step depends on previously generated frames. Although
they achieve high scores in terms of perceived naturalness, they typically suffer from slow
inference speed and robustness issues such as word skipping and repeating words.

In order to avoid these issues, non-autoregressive models such as FastSpeech2 (Ren
et al., 2020), Glow-TTS (Kim et al., 2020) and Grad-TTS (Popov et al., 2021)
generate mel-spectrogram frames in parallel while maintaining high speech quality. As a
consequence of the non-autoregressive workflow these models require some component to
predict the duration of each phoneme and match it to the length of the mel-spectrogram,
e.g. in Fastspeech2 this is done with a dedicated duration predictor.

Although non-autoregressive text-to-speech systems are able to produce high quality
speech which sometimes is even comparable to the one of human speakers, a challenge
that still remains is improving its expressiveness, i.e. by producing appropriate prosody.
Fastspeech2 introduces a pitch and energy predictor additional to the duration predictor in
order to infer the pitch contour in generated speech. However this only works successfully
to a certain degree because the prediction of the model is solely based on the phonemes
of the input text and thus is not able to use information about the words or the sentence
structure themselves.

An existential amount of recent work investigates ways to condition the model on
additionally provided information in order to improve the naturalness and controllability
of speech prosody (discussed in section 3).
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3 Related Work

3.1 TTS Systems Incorporating Supplementary Information

3.1.1 Prosodic Information

The most obvious way to manipulate speech prosody is to directly providing prosodic
information to the TTS model. In this vein several approaches extract and condition the
model on explicit prosodic features such as pitch, energy and duration (e.g. Shechtman
and Sorin (2019); Raitio et al. (2020)). However during inference it can be complicated to
control these features since explicit values have to be provided manually which requires
phonetic knowledge.

Chen et al. (2021) tackle this problem by introducing a speech BERT model that is trained
to predict prosodic attributes in mel-spectrogram given text and a masked speech segment.
During inference their model is able to dynamically construct mel-spectrograms from text
with fine-grained prosodic information.

Du and Yu (2022) include a prosody predictor in the TTS pipeline by optimizing an
additional loss between prosody embeddings predicted by the model and extracted ones
from the training data. They use a Gaussian Mixture Model based density network to
represent prosody on phone level which allows for more naturalness and diversity.

Cornille et al. (2022) propose a network that encodes the prosodic information of an entire
utterance in a single embedding. During inference they are able to control the prosody by
injecting embeddings extracted from a reference utterance.

Furthermore there are numerous approaches which extract representations from speech
that encode not only prosodic information but also speaker dependent properties such as
timbre and general speaking style, e.g.Wang et al. (2018); Jia et al. (2018); Li et al. (2022).
While these models demonstrate great performance in cloning speaker dependent speaking
style and prosody, they require reference audios during inference that might not be readily
available. Furthermore the desired prosodic realization might not be existent for specific
speakers.
The latter issue is tackled by approaches investigating cross-speaker style transfer which
aims to generate the speaking style and prosodic properties of one speaker in the voice of
another (e.g. Wu et al. (2021); An et al. (2022); Zhang et al. (2023)).
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3.1.2 Syntactic Information

There a numerous approaches that incorporate syntactical information into TTS systems
with the goal of improving the naturalness of speech and obtaining appropriate prosody.
The general motivation behind these approaches is rooted in the idea that syntax provides
information about sentence structure and the importance of individual words. These
properties have been found to be tightly connected to prosody (Wagner and Watson, 2010;
Köhn et al., 2018).

Guo et al. (2019) concatenate the phoneme embeddings in a Tacotron architecture with
syntactic features based on parse trees and phrase structures. The experimental results show
that their approach improves pronunciation clarity, prosody and naturalness of synthesized
speech.

Tyagi et al. (2020) also build their TTS system on Tacotron and select an acoustic
embedding, which is used for synthesis, with help of syntactic embeddings obtained
from constituency parsing as well as semantic embeddings obtained from BERT (Devlin
et al., 2019). Thereby they choose the acoustic embedding of a sentence in the training
set for which the syntactic or semantic embedding is most similar to the one of the given
sentence.

The work of Liu et al. (2021a) includes syntax aware graph attention in TransformerTTS
(Li et al., 2019) whereby syntactically motivated character embeddings are obtained from
syntax graphs.

Karlapati et al. (2021) predict prosodic embeddings with help of parse trees and BERT
embeddings by learning the prosodic distribution from spectrogram during training and
sampling from this distribution during inference. Their model is based on DurIAN (Yu
et al., 2020).

Setlur et al. (2021) feed linguistic structure in the form of heterogeneous relation graphs to
TTS systems based on Tacotron and TransformerTTS and demonstrate improvements on
single speaker and multispeaker datasets.

Zhou et al. (2022b) concatenate word embeddings obtained from BERT with encoder
outputs from Tacotron2. Thereby the BERT embeddings are reprocessed by taking
dependency information into account which results in more effective semantic
representations for text-to-speech enriched with syntactical information.
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Ye et al. (2022) propose a TTS model called SyntaSpeech based on PortaSpeech (Ren
et al., 2021) which includes syntactic embeddings obtained from dependency parsing by a
syntactic graph encoder.

3.1.3 Semantic Information

Following the same motivation as including syntactic information to TTS systems, in
the past years there has been a substantial amount of research that incorporates semantic
information, mostly in the form of word embeddings obtained from large language models.
The underlying assumption thereby is that the semantics of words and phrases is relevant
to how they are pronounced. Furthermore it shown that word embeddings can capture
some degree of syntactic information (Jawahar et al., 2019; Tenney et al., 2019).

Wang et al. (2015) include word embeddings in RNN synthesis and show that those are
able to replace features such as ToBI (Tone and Break Indices) and part-of-speech tags.

Hayashi et al. (2019) were one of the first to incorporate BERT embeddings as input to
a neural end-to-end TTS system. They explore the usage of word embeddings as well as
sentence embeddings and provide them as additional input to the decoder of Tacotron2
through concatenation. Their experiments demonstrate slightly improved naturalness on a
single speaker dataset.

Fang et al. (2019) also include BERT embeddings as input for Tacotron2 with the goal of
lowering the reliance on high quality training data. While they do not observe significant
quality improvements, they find that BERT embeddings are helpful for faster convergence
during training and guiding the decoding process.

Ming et al. (2019) include word embeddings obtained from a neural machine translation
task into Tacotron2 and observe improved generalization ability and robustness in addition
to quality improvements for out of domain text.

Xiao et al. (2020) investigate the usage of BERT character embeddings in a multi-speaker
setting. Thereby phone embeddings and character embeddings are first concatenated and
encoded before introducing speaker embeddings. This prevents an equal treatment of the
different sources which they claim is beneficial. They apply their model on news, chat and
audio-book data and show its effectiveness for improving prosody.
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Kenter et al. (2020) follow a similar approach as Wang et al. (2015) and include BERT
embeddings in RNN TTS. They find that it is crucial to fine-tune the parameters of BERT
while training the model in order to boost results.

Shen et al. (2021) base their work on Fastspeech2 and suggest to include acoustic word
embeddings which are jointly trained with the TTS model. They reason that linguistic
word embeddings (e.g. obtained from BERT) are not directly relevant to how words are
pronounced which is in line with the observation of Kenter et al. (2020) emphasizing the
need for fine-tuning or adaptation. Furthermore they add a prosody predictor to their model
architecture which can improve naturalness and provides a convenient way to objectively
evaluate prosody predictions. Subjective evaluations regarding speech naturalness suggest
that their approach is beneficial over TTS systems incorporating plain word embeddings.

Xu et al. (2021) use sentence embeddings of neighboring sentences as additional input to
Tacotron2. Besides improved naturalness and expressiveness they observe that it is possible
to subtly control the prosody by changing the context sentences.

Cong et al. (2021) use BERT character embeddings to improve conversational speech and
achieve more natural prosody while Zhang and Ling (2021) predict prosodic embeddings
for each word. These word-level style variations are a combination of embeddings learned
from mel-spectrogram during training and semantic information of BERT embeddings.
They report improvements over a Tacotron2 baseline on a Mandarin Chinese dataset and a
model following the approach of Hayashi et al. (2019) directly using BERT embeddings
for synthesis.

3.1.4 TTS with Prompting Capabilities

One of the first approaches allowing prosodic controllability of synthesized speech
intuitively with natural language descriptions is style tagging TTS by Kim et al. (2021b).
They train a TTS model on a dataset containing manually provided style tags along with
the utterances and transcriptions. The model is optimized to predict style representations
from these descriptions by employing a loss between embeddings of style tag and reference
speech. In order to transfer the style tags into an embedding space they use SBERT
(Reimers and Gurevych, 2019), which is a fine-tuned version of BERT optimized for
sentence level similarity. Its great generalization capabilities enable the TTS model to
process unseen style tags during inference. Sentence embeddings are provided as additional
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input to the decoder and duration predictor of the model. The bi-modal embedding space
learned during training allows to either reference speech or style tag to control prosodic
properties of generated speech. Experimental results show that style tagging TTS improves
speech quality and expressiveness compared to a Tacotron2 baseline integrating GST
(Wang et al., 2018).

Following a similar approach, Shin et al. (2022) propose a bi-modal style encoder that learns
the relationship between text style embeddings and speech style embeddings by introducing
a loss between them. The text embeddings are also obtained using pre-trained sentence
BERT (Reimers and Gurevych, 2019). Differently to Kim et al. (2021b), they additionally
introduce a loss between style vectors extracted from reference and predicted spectrogram
along with a contrastive loss between style text embedding and embedding extracted
from predicted spectrogram. In their experiments they report respectable performance on
emotional style control as well as cross-speaker style transfer even for unseen styles for
specific speakers.

Wu et al. (2022) build a framework that unsupervisedly learns semantic representations
focusing on emotional content from unlabeled text. It combines deep embedded clustering
with contrastive learning through data augmentation whereby emotional words in a sentence
are replaced by similar ones using an emotion lexicon. In their experiments the framework
is pre-trained on a text dataset collected from e-books and is then further used to encode
the style of utterances from a TTS dataset consisting of audio-books. A TransformerTTS
model is trained on the same dataset with style embeddings as additional conditioning
signal. The results suggest that their approach achieves natural expressiveness and emotion
transition especially for long paragraphs.

Also focusing on emotional text-to-speech, Mukherjee et al. (2022) propose a text-aware
FastSpeech2 system conditioned on embeddings obtained from a BERT model which
is fine-tuned to predict emotion categories. They observe that in most emotional speech
datasets the emotional content of the text does not match the one of the audio which results
in inappropriate BERT embeddings for training. They suggest to circumvent this issue by
learning to predict the audio emotion label from the text embedding which can serve as a
classifier that detects samples with audio-text emotion disagreement. The results of their
experiments show that their model achieves improved emotion accuracy over a baseline
that uses explicit emotion labels while maintaining overall speech quality.

PromptTTS (Guo et al., 2022b) represents another TTS model that allows to control the
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style of synthesized speech with natural language descriptions. It is trained on a dataset
containing natural language prompts with style information along with corresponding
speech. Their style embeddings are extracted from pre-trained BERT based on the CLS
token which is fine tuned on the prediction of pre-defined labels that are provided in the
dataset and comprise gender, pitch, speaking speed, volume and emotion. Furthermore
they integrate the style embeddings to each transformer block in the encoder and decoder.
In their experiments they use a generative model to obtain more style prompts with similar
semantics and achieve precise style control with high speech quality.

Tu et al. (2022) enrich an emotional speech dataset with contextual information by merging
it with an emotional text dataset. Thereby an appropriate context sentence for each utterance
is found by matching the emotion labels of both datasets. This approach eliminates the need
for manually annotating utterances with suitable style tags or descriptions. The proposed
TTS model comprises an encoder-decoder transformer architecture based on OFA (One For
All, Wang et al. (2022)) used for spectrogram prediction. The text embeddings of context
sentences are concatenated with phoneme embeddings extracted from transcriptions of the
utterances before going into the encoder. The text embeddings are initialized with those
provided by OFA and fine-tuned during training. The experiments show that the proposed
model can generate high-quality and expressive speech based on the given context in both
in-domain and out-of-domain scenarios.

InstructTTS (Yang et al., 2023) follows an approach similar to Guo et al. (2022b) by
training a text-to-speech system on a dataset containing natural language style prompts. In
contrast to PromptTTS they do not fine-tune their sentence embeddings on predefined labels
and claim that their system allows more freedom for designing prompts since the style
descriptions are not as much constraint in their form. The proposed style encoder module
takes embedded style prompt and content as well as encoded audio into account. In order
to effectively minimize the distance between style prompt embedding and encoded audio,
cross modal representation learning is applied. Furthermore, to prevent the style encoder
from capturing speaker or content related information, style-speaker and style-content
mutual information are minimized whereby speaker information is provided through
an embedding look-up table. In their experiments they perform extensive subjective
and objective evaluations supported by ablation studies and show that their model is
able to produce high-fidelity and natural speech. At the same time they demonstrate the
controllability of the speaking style through textual prompts.
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Liu et al. (2023) propose PromptStyle which is another approach in the direction of
controlling speech style through natural language descriptions. Their model builds on
VITS (Kim et al., 2021a) and incorporates a cross-modal style encoder which learns a
shared embedding space of prompt embedding from text and style embedding from speech
through cosine similarity loss. The training procedure is divided into two stages whereby
in the first stage the model is trained only with style embeddings from speech to learn
a useful embedding space for style transfer. In the second stage, semantic embeddings
extracted from textual prompts are included with the cross-modal style encoder. These
embeddings are obtained from a pre-trained BERT model with an additional adaptation
layer. The model additionally receives multi-speaker controllability by feeding speaker
embeddings from a look-up table to the decoder. Similar to Shin et al. (2022), during
inference the desired style can be controlled either by providing reference audios or textual
prompts. The suggested two-stage training approach reduces the required amount of data
annotated with style descriptions and experiments on audio-book data demonstrate proper
style transfer while preserving high speech quality and speaker similarity.

TorToise (Betker, 2023) is a text-to-speech system with great voice cloning capabilities
that adopts recent methods from image generation and is trained on large amounts of data.
In preliminary research it has been found that the model can be prompted with simple
style descriptions such as ”I am really sad” in order to influence the speech prosody of
the utterance that is synthesized. While the system has no specific design that handles
the controllability during training, it can be hypothesized that the connection between
semantics and prosody is learned through the vast amount of data.

3.2 Vocoders

The spectrograms that are predicted by TTS systems have to be converted into waveform in
order to obtain an audio signal. This can be achieved by a so-called vocoder which
is trained separately from the TTS system. State-of-the art vocoders are based on
generative adversarial networks (GAN) which consist of a generator and a discriminator
that are trained adversarially. The generator up-samples the mel-spectrogram through
transposed convolutions until the temporal resolution of raw waveform is reached. Then
the discriminator decides if the audio sample is real, i.e. obtained from training data or
fake, i.e. produced by the generator.
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Kumar et al. (2019) introduce MelGAN which applies techniques that allow reliable
generation of high quality coherent waveforms from mel-spectrograms. The authors suggest
using a multi-scale discriminator operating on different scales of the input waveform
combined with spectral normalization which helps to stabilize training. Furthermore, they
propose a feature matching loss, which encourages the generator to produce waveforms
that match the statistics of intermediate features extracted by the discriminator. Finally,
they use a history buffer which stores generated samples and prevents the discriminator
from over-fitting to the generator.

HiFiGAN (Kong et al., 2020) achieves generation of high-fidelity speech by additionally
modeling periodic patterns of audio by a separate discriminator.

Avocodo (Bak et al., 2022) also adopts two discriminators (multi-band and sub-band)
which reduces the emergence of artifacts while maintaining fast inference speed and high
quality.

BigVGAN (Lee et al., 2022) is a large-scale GAN that further improves audio quality by
establishing periodic activation function and anti-aliased representation in the generator.

3.3 IMS Toucan Speech Synthesis Toolkit

The IMS Toucan Speech Synthesis Toolkit was first introduced in Lux et al. (2021) and
presents open-source code for non-autoregressive speech synthesis adopting architectural
designs from state-of-the art models such as TransformerTTS (Li et al., 2019), FastSpeech2
(Ren et al., 2020) and FastPitch (Lancucki, 2021). In Lux et al. (2022) it is extended
for low-resource multilingual and zero-shot multi-speaker TTS using language agnostic
meta-learning (Lux and Vu, 2022). Koch et al. (2022) investigate the prosody cloning
capabilities of the toolkit with regard to controllable poetry reading for literary studies.
Lux et al. (2023b) further demonstrate that it is possible with IMS Toucan to clone the
voice of a speaker as well as the prosody of a spoken reference independently. The most
recent contributions up to the submission date of this thesis have been made to the toolkit
for the Blizzard Challenge 2023 (Lux et al., 2023a). The baseline and proposed approach
as described in section 4 are heavily based on this version of the toolkit. Overall, while
there might be TTS systems producing more natural speech, the IMS Toucan system offers
benefits with respect to speed, data efficiency, robustness and controllability.
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4 Methods

4.1 Baseline

The baseline model architecture is build on the version of the IMS Toucan Speech Synthesis
Toolkit submitted to the Blizzard Challenge 2023 (Lux et al., 2023a). While its general
architecture is based on FastSpeech2, it also adopts components from PortaSpeech (Ren
et al., 2021) and FastPitch (Lancucki, 2021). The system produces speech in multiple
steps which comprise processing the text, predicting spectrogram frames and transforming
spectrogram into waveform. An overview of the whole pipeline can be seen in figure 3.
The corresponding implementation and models can be accessed on GitHub 5.

Figure 3: Baseline Architecture

5https://github.com/Thommy96/IMS-Toucan

38

https://github.com/Thommy96/IMS-Toucan


4.1.1 Text-to-Phoneme Conversion

The input text is processed and converted into a sequence of phonemes in IPA notation
(International-Phonetic-Association, 1999) using an open source phonemizer 6 with
espeak-ng 7 as back-end. This step also includes rudimentary text cleaning and the
expansion of abbreviations. Each phoneme is then further transformed into a vector
containing information about the configurations of the human vocal tract in a one-hot
encoding style as introduced in Lux and Vu (2022). The vectors are obtained using a
lookup-table indicating which features are present for each phoneme. The feature set
consists of 62 entries derived from Staib et al. (2020) and includes phonological features
describing IPA phonemes, e.g. voicing, place of articulation or the positioning of the tongue,
as well as supplementary dimensions corresponding to non-segmental markers such as
lengthening, shortening and lexical stress. These dimensions were introduced to the system
in Lux et al. (2022) in order to account for tonal languages and are modified by previous
or following units. The main purpose of having phoneme representations described by
phonological features is to be able to handle unseen phonemes and to learn phoneme
representations that are applicable across multiple languages. While this facilitates the
architecture for multi-language systems, they found that their approach is also beneficial
for single-language cases due to knowledge sharing between phonemes making the system
converge much earlier.

4.1.2 Mel-Spectrogram Extraction

Ground-truth mel-spectrograms are extracted from waveform after applying some signal
processing such as loudness normalization using the pyloudnorm tool (Steinmetz and
Reiss, 2021) and cutting silence from the beginning and end of the audio. The amplitude
spectrograms are obtained from waveform by performing a short-time-Fourier-transform
(STFT) with a window size of 1024, a hop length of 256 and a Hann window. They are
further transformed into mel-spectrograms with 80 frequency bins using the Librosa toolkit
(McFee et al., 2015) and finally a logarithm with base 10 is applied which results in more
convenient value ranges.

6https://github.com/bootphon/phonemizer
7https://github.com/espeak-ng/espeak-ng
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4.1.3 Spectrogram-Phoneme Alignments

Since the underlying FastSpeech2 system is trained in parallel, it is crucial to predict the
duration for each phoneme. Furthermore this prediction is necessary since pitch and energy
values are averaged over phoneme durations. Inspired by Pérez-González-de Martos et al.
(2021) these durations are obtained by first training an auto-encoder framework prior to
the actual TTS system from which alignments of phonemes to spectrogram frames can
be extracted, i.e. it gives information about which and how many spectrogram frames
correspond to each phoneme. An overview of the framework’s architecture can be seen in
figure 4.

It consists of two interconnected modules which are trained in an end-to-end manner. The
first module is a simple recurrent neural network based speech recognition system with
a Connectionist Temporal Classification (CTC) objective (Graves et al., 2006). Formally,
CTC is a way to produce alignments between an input sequence X = (x1, x2, ..., xT ) and
an output sequence Y = (y1, y2, ..., yU). Thereby the target sequence cannot be longer
than the input sequence, i.e. U ≤ T . The CTC objective can be formulated as in equation
3, where p(Y |X) describes the conditional probability for the target sequence Y given the
input sequence X . It is computed by estimating the probability for each single alignment
at at time step t and marginalizing over the set of all valid alignments A ∈ AX,Y .

(3) p(Y |X) =
∑

A∈AX,Y

T∏
t=1

pt(a1|X)

This means that the network provides a distribution of posterior probabilities pt(a|X) over
the elements of the output sequence at each time step t, also called posteriorgram.
In the speech-to-text (STT) module the input spectrogram frames are first processed by
a stack of five 1-D convolutional layers with batch normalization and ReLU activation
functions. After that they are fed into a single-layer bi-directional LSTM and finally a
linear projection layer with softmax activations is used to output the phoneme probabilities,
i.e. the posteriorgram.

This is then further passed to the second module which is a simple TTS system bearing
the task of reconstructing the original spectrogram frames. It incorporates a two-layer
bi-directional LSTM succeeded by a linear projection layer mapping to the spectrogram
dimension. Differently to Pérez-González-de Martos et al. (2021) which use mean absolute
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error (MAE), in this work the sum of L1 loss (absolute error) and L2 (squared error) is
calculated between predicted and ground-truth spectrogram frames. The backpropagation
of this loss through the whole framework is helpful for achieving more accurate alignments.

L1 loss (equation 4) is calculated as the sum of all absolute differences between predicted
and ground truth values while L2 loss computes the sum of all squared differences between
them (equation 5).

(4) L1 =
n∑

i=1

|ytruei − ypredictedi |

(5) L2 =
n∑

i=1

(ytruei − ypredictedi)
2

Given the output of the STT module, i.e. the posteriorgram, the most likely alignment can
be extracted using Monotonic Alignment Search (MAS) (Kim et al., 2020). This in turn
serves then to calculate phoneme durations, i.e. by counting the number of spectrogram
frames aligned with each phoneme. While Pérez-González-de Martos et al. (2021) use
the Dijkstra algorithm for this purpose, Lux et al. (2023a) found that MAS is beneficial
because it is constrained not to skip over segments.

The spectrogram-phoneme alignment framework was introduced to the IMS Toucan system
in Lux et al. (2023b) and other work has verified its accuracy and usefulness for TTS
(Koch et al., 2022; Meyer et al., 2023; Zalkow et al., 2023).

Figure 4: Aligner Framework Architecture

Taken from Pérez-González-de Martos et al. (2021)
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4.1.4 Pitch and Energy Extraction

As proposed in Lancucki (2021) pitch and energy values are averaged for each phone
according to its duration which results in controllability at phone-level. Moreover
pitch values for unvoiced phonemes along with pitch and energy values for symbols
corresponding to silence, e.g. pause or punctuation markers, are manually set to zero as to
reduce noise. Since the values should be speaker independent, pitch an energy levels are
normalized by the mean per utterance while excluding zero values.

4.1.5 Spectrogram Generation

The spectrogram generation framework builds the core of the TTS system and is based
on the architecture of FastSpeech 2 (Ren et al., 2020) further augmented with techniques
partly inspired by FastPitch (Lancucki, 2021) and PortaSpeech (Ren et al., 2021).

First, the articulatory feature vectors describing the phonemes are passed through two
linear layers with Tanh activations in between such that they are embedded for the TTS
case and mapped to the hidden dimension size of the encoder-decoder network which is
based on the conformer architecture (Gulati et al., 2020).

The conformer combines convolutional neural networks and transformer which enables it
to model local as well as global dependencies of the input sequence and has been found to
significantly outperform both transformer and convolutional based models (Gulati et al.,
2020; Guo et al., 2021). After applying positional encoding to the phoneme embeddings,
they are passed through several conformer encoder blocks which are inspired by the
Macaron-Net (Lu et al., 2019) with two 2-layer 1-D convolution modules enclosing the
multi-head self-attention module and the actual convolution module as can be seen in
figure 5. Gulati et al. (2020) propose to use feed-forward modules at the beginning and
end of each block, however, based upon the approach in FastSpeech (Ren et al., 2019)
they were replaced by convolutions which has shown to improve the quality of generated
speech.
The multi-head self-attention module is derived from Dai et al. (2019) and incorporates
relative positional encoding which generalizes better over variable input size and thus
makes it more robust to different utterance lengths.
The architecture of the convolution module can be seen in figure 6. It consists of a pointwise
1-D convolution with an expansion factor of 2 on the number of channels combined with
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a gated linear unit (GLU, Dauphin et al. (2017)). This is followed by a 1-D depthwise
convolution with batch normalization and swish activation. The final layer of this module
is again a 1-D pointwise convolution.
Each module in the conformer block is prepended by layer normalization and after each one
residual connections are added whereby the output of the macaron convolution modules is
halved.

Figure 5: Conformer Block

Figure 6: Convolution Module of a Conformer Block

Taken from Gulati et al. (2020)

43



After applying layer normalization, the output of the encoder is used for the prediction of
duration, pitch and energy which corresponds to the variance adaptor in FastSpeech2.
The duration predictor estimates how many spectrogram frames belong to each phoneme
and thereby uses the extracted durations from phoneme-spectrogram alignment as
ground-truth during training. It consists of two 1-D convolutional layers, each followed by
ReLu activation and layer normalization and is optimized with L2 loss. The durations and
the loss are predicted in logarithmic domain which makes the value range easier to handle.
The pitch and energy predictors have the same architecture as the duration predictor and
are also optimized with L2 loss. Ground-truth values for pitch and energy are obtained as
described in section 4.1.4.
During inference the predicted pitch and duration values are modified with linguistic
knowledge whereby pitch values for unvoiced phonemes and duration values for word
boundaries are set to zero. During training the ground-truth values for all three prosodic
properties are used in order to train the predictors with teacher forcing. After embedding
pitch and energy values through a 1-D convolution layer they are added to the output of
the encoder. Since these enriched hidden representations are still on phoneme-level, they
have to be expanded to spectrogram frame-level. This is done by a length regulator as
introduced in Ren et al. (2019) which repeats each hidden representation based on the
corresponding duration values.

The upsampled sequence of embeddings is further passed to the decoder which has the task
of generating spectrogram frames for each embedding and follows the same conformer
architecture as the encoder. The output of the decoder is passed through a linear layer
which maps to the spectrogram dimension.

The predicted spectrogram is further improved by passing it through a 5-layer convolutional
postnet as proposed in Shen et al. (2018) with residual connection. The postnet helps
to compensate the detailed structure of the spectrogram by refining the predicted
mel-filter-bank. In addition a glow-based postnet using normalizing flows is introduced
inspired by the work of Ren et al. (2021). Normalizing flows have also been used in
Kim et al. (2020) and Miao et al. (2020) with great success in generating high-quality
spectrograms. They are able to model fine-grained details and therefore vanquish the
over-smoothing problem which often causes blurry outputs. The post-flow usually requires
warm-up and is only included after several training steps.

Finally, the TTS system is conditioned on a discriminator feedback. The discriminator is
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an adversarial network trained along with the TTS system and has the task to distinguish
between real and generated spectrograms. It is optimized with discriminator and generator
loss obtained by the calculation of mean squared error (MSE).

The overall training objective of the TTS system can be described by the loss function in
equation 6 which is the sum of the loss functions of the respective components.

TTS-Loss = Spectrogram-Reconstruction-Loss

+ Prosody-Predictor-Loss

+ Glow-Loss

+ Adversarial-Loss

(6)

The Spectrogram-Reconstruction-Loss is a sum of L1-Losses between ground-truth
spectrograms and generated spectrograms before and after the post-flow. The
Prosody-Predictor-Loss is a sum of the losses on which the duration, pitch and energy
predictors are optimized. In order to reduce the L1 and L2 losses to a single value, they
are averaged by summing up the relevant values respectively and dividing them by the
number spectrogram frames or, in the case of the duration predictor, the length of the
phoneme sequence. This calculation corresponds to mean absolute error (MAE) and mean
squared error (MSE). The Glow-Loss describes the loss of the glow-based post-flow and the
Adversarial-Loss corresponds to the sum of the discriminator and generator loss required
to train the adversarial network.

4.1.6 Speaker Embeddings

In order to make the system capable of accurately producing speech in the voice of
multiple speakers, a 2-D speaker embedding matrix is instantiated with one dimension
corresponding to the embedding size and the other to the number of speakers. During
training the embedding vector of the current speaker is selected and updated accordingly
with the whole system’s backpropagation. Whilst inference the desired speaker timbre can
be selected by simply specifying the appropriate index of the learned speaker embedding
matrix. While such an approach has been widely used in TTS systems due to its simplicity
and robustness (Ping et al., 2017; Chen et al., 2020), its main drawback is that only
speakers seen during training can be used reliably during inference meaning that it cannot
generalize to unseen speakers. This is caused by the fact that the speaker variety in the
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training data is usually not high enough. There are several approaches which overcome
this weakness by separately training a dedicated model on audio data containing a large
amount of speakers (Snyder et al., 2018; Desplanques et al., 2020). Such models have great
zero-shot capabilities and can thus be used to extract speaker embeddings for arbitrary
audio data. These can then be used for the training of the TTS system while staying fixed,
which enables the model to generate speaker timbres unseen during training by providing
an appropriate reference audio from which the desired speaker embedding can be extracted
and fed into the model during inference. However, in this work the TTS system relies on
a speaker embedding lookup-table learned during training with the main reason for this
design choice being that speaker embeddings extracted from pretrained models not only
embrace speaker timbre but also prosodic properties such as speaking style which interferes
with the research focus of controlling prosody solely by conditioning the model on sentence
embeddings. This also justifies the omission of Global Style Token (GST) embeddings
(Wang et al., 2018) as proposed in Lux et al. (2023a). Since the speaker embeddings
are trained on a variety of speaking styles for each speaker, they cannot capture specific
prosodic properties. Instead they are forced to capture information regarding the speaker’s
timbre.

The speaker embeddings are induced into the architecture of the TTS system at several
points after passing them through a linear layer which maps them to the hidden dimension
of the model. They are used as conditioning signal for the encoder and decoder as well
as for the duration, pitch and energy predictors. For the encoder and decoder a speaker
embedding is combined with the input hidden representation by repeatedly concatenating
it with each embedding vector and applying a linear projection layer to restore the hidden
dimension. For the encoder it is additionally added to the output hidden representation in
the same way. In the duration, pitch and energy predictors the speaker embeddings are
integrated after each convolutional layer through conditional layer normalization replacing
the originally used layer normalization. This has been proposed in Lux et al. (2023a) to
increase the responsiveness of the predictors to speaker embeddings.

4.1.7 Waveform Generation

During inference, generated spectrograms are converted to waveform using a setup
consisting of a selection of the following neural vocoders: MelGAN (Kumar et al., 2019),
HiFiGAN (Kong et al., 2020), Avocodo (Bak et al., 2022) and BigVGAN (Lee et al., 2022).
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Inspired by Liu et al. (2021b) a sampling rate of 16kHz is used for spectrograms which is
more suitable for spectrogram generation. The vocoder super-resolution is performed by
using up-sampling scales mapping to 24kHz waveform signals.

4.2 Proposed Method

4.2.1 Extensions of the Baseline

The TTS system proposed in this thesis follows the architecture of the baseline but is
extended to additionally condition the model on information about the content of provided
textual prompts. An overview of the proposed approach is presented in figure 7. The
implementation along with trained models can be accessed on GitHub 8.

Figure 7: Proposed Architecture

8https://github.com/Thommy96/IMS-Toucan
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During training, the textual prompt is fed into a sentence embedding extractor based on a
large language model which transforms it into a representation capturing the content of
the whole input in a single vector. The sentence embeddings are further passed through a
linear layer in order to adapt them to the text-to-speech case. Then they are concatenated
with the speaker embeddings and projected to the hidden dimension of the system by two
linear layers with Tanh activation in between. This results in a representation that contains
information about the speaker identity and semantics of the prompt. In the system’s pipeline
this joint representation is integrated similarly to the speaker embeddings in the baseline.

Furthermore in preliminary tests it has been found that inserting a squeeze and excitation
block after concatenating sentence and speaker embeddings increases the controllability of
both speaker identity and prosody. It seems that this additional component is beneficial
to learn a more meaningful hidden representation. The squeeze and excitation block is
able to model inter-dependencies between features of both embeddings and thus helps to
disentangle speaker and semantic information. This prevents capturing only one of the
both sources when the dimensionality is reduced after concatenation.

By conditioning the speech synthesis model on sentence embeddings of textual prompts,
the assumption is that the additional information is useful to predict a fitting prosody.
Thereby it has to be assumed that there exists a high correlation between prompts and
speech prosody in the training data. This aspect has been found to be crucial since the model
has to be able to learn a relation between prompt embeddings and prosodic parameters.

During inference the prompt which is provided to the sentence embedding extractor can
be chosen arbitrarily since the large language model is expected to have generalization
capabilities. The model should then produce speech with suitable prosody with respect to
the prompt as learned during training. This could also be describes as a style transfer from
the prompt to the generated utterance whereby no reference audio is needed.
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4.2.2 Unsuccessful Designs

While the proposed system uses a speaker embedding look-up table, it has also been tried
to use pre-trained speaker embeddings adopted from speaker verification such as Snyder
et al. (2018) 9 or Desplanques et al. (2020) 10 instead. This would equip the model with
speaker generalization capabilities since these embeddings are trained on a large number of
speakers. The core advantage would be that during inference, speech in the voice of unseen
speakers could be produced. However because the speaker embedding is extracted from a
reference audio, it also captures speaking style and prosodic information of that reference
to some extent. Therefore, it is challenging to prevent it from influencing the prediction
of prosodic parameters. In this thesis it has been tried to disentangle speaker timbre from
prosody by passing the speaker embedding through a tight bottleneck as in Zhang et al.
(2023). However produced speech showed a high degradation in speaker similarity. Future
work could investigate further approaches tackling this problem such as An et al. (2022).
However this has not been implemented here due to time constraints and the research focus
on prompts.

Furthermore preliminary experiments included a system additionally integrating word
embeddings extracted from the input text. Contextual word embeddings contain
information about the semantics of a word in context of the whole sentence. Therefore,
they might also capture the importance of specific words and provide guidance regarding
how those should be pronounced. Word embeddings were obtained from a standard BERT
model by combining the last 4 hidden layers for each sub-token and averaging them
over units that form words. In the TTS system each embedding was concatenated with
its corresponding phonemes according to the word boundaries provided by the feature
vectors. In earlier training stages word embeddings have indeed found to be useful to
prevent mispronunciations. However with longer training time there was no significant
improvement anymore and therefore this design has been omitted for further experiments.

Apart from that, different integration methods for sentence embeddings have been tried
such as providing them independently from the speaker embeddings at different points in
the architecture, e.g. only before or after the encoder. It has also been explored to include
an additional contrastive loss between sentence embeddings and spectrograms with the
idea that similar prompts should result in similar spectrograms. However the much simpler

9https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
10https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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approach of concatenating sentence embeddings with speaker embeddings has been found
to produce superior results.

Finally it has been attempted to extend the proposed method to a multi-language system.
This includes language agnostic meta learning as introduced and applied in Lux and Vu
(2022); Lux et al. (2022). While this is in theory well applicable to the proposed system, it
was not possible to find suitable expressive speech datasets. Moreover it was not feasible
to fine-tune large multi-language models such as LASER (Artetxe and Schwenk, 2019) or
LEALLA (Mao and Nakagawa, 2023) on e.g. emotion prediction in order to make them
useful for extracting prompt embeddings. However this could be an interesting direction
for future research.
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5 Experiments

5.1 Experimental Setup

The goal of the experiments is to test the following hypotheses:

1. Conditioning a speech synthesis model on sentence embeddings of textual prompts
improves the quality of generated speech in terms of diverse prosody and naturalness.

2. The prosodic parameters of speech and the conveyed emotional state are controllable
by providing suitable prompts during inference.

3. The emotional content of the prompts is correlated to the prosody and conveyed
emotion of synthesized speech.

4. Semantically similar prompts result in similar prosody and conveyed emotion.

5. The controllability of speaker identities is not affected by the integration of sentence
embeddings.

Hereby it is important to note that the first hypothesis is not the main focus of this thesis
since the improvement in speech quality might only be very subtle and therefore hard to
measure reliably. The primary goal of this thesis is to investigate hypotheses 2-4, i.e. the
intuitive controllability of prosodic parameters of generated speech by providing natural
language prompts. The experiments contribute to related work exploring this task while
introducing novel training and evaluation strategies within an open-source toolkit, making
future research more accessible.

The effect of provided sentence embeddings on the prosodic properties of generated speech
is investigated by assessing emotional states. These are one of the most obvious aspects
that are expressed by varying prosodic features (Leentjens et al., 1998; Sauter et al., 2010;
Pell and Kotz, 2011). For example it has been found that emotions such as fear and anger
are related to higher frequencies than sadness (Bachorowski, 1999). Furthermore there
exist several emotional speech corpora which can be used for training and testing. They
provide a high variance in prosodic properties and are labeled with emotion categories.
However, an issue that arises when using such datasets is that the utterances are usually
repeated over all emotion categories which means that there is no correlation between the
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meaning of the sentences and their prosodic parameters when spoken. This correlation is
crucial for training the TTS system since the model has to learn that sentences with similar
meaning should have similar prosody. In order to circumvent that problem, an auxiliary
emotional text dataset is used for the extraction of sentence embeddings, inspired by the
approach in Tu et al. (2022). The emotional text dataset has to be labeled with similar
emotion categories as the speech dataset such that for each utterance a sentence from the
same category can be selected as prompt.

In all experiments the proposed model conditioned on sentence embeddings is compared
to the baseline model. Given that the integration of sentence embeddings is the only
difference between the two models, its effect can be measured reliably by conducting
subjective and objective evaluations which helps to answer the above hypotheses. Audio
samples of generated utterances can be accessed online 11 along with an interactive demo
on HuggingFace 12.

5.2 Datasets

5.2.1 Speech Datasets

Popular datasets used to train and evaluate text-to-speech synthesis models are LJSpeech
(Ito and Johnson, 2017) and LibriTTS (Zen et al., 2019).
LJSpeech is a publicly available 13 English single-speaker dataset consisting of 13,100 short
audio clips from a collection of non-fiction books read by a female speaker. Each audio is
accompanied with a transcription and the total length of the dataset is approximately 24
hours. This dataset is convenient to train a single speaker text-to-speech system due to its
high quality, however, it doesn’t provide much prosodic variation.
LibriTTS is a substantially larger corpus of approximately 585 hours of English speech
from 2,456 speakers over a large variety of topics accompanied with transcriptions. It
is derived from the LibriSpeech corpus (Panayotov et al., 2015) by optimizing it for
text-to-speech related work and is open source 14. Recently Koizumi et al. (2023a) released
an enhanced version of this corpus called LibriTTS-R. By applying speech restoration

11https://thommy96.github.io/toucanpromptingdemo/
12https://huggingface.co/spaces/Thommy96/promptingtoucan
13https://keithito.com/LJ-Speech-Dataset/
14https://www.openslr.org/60/
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with the Miipher model (Koizumi et al., 2023b), the sound quality of the speech samples
is significantly improved making it more suitable for training a high-quality TTS system.
LibriTTS-R is also publicly available 15.

The training of the proposed TTS systems relies on three emotional speech datasets:
ESD (Zhou et al., 2021; 2022a), RAVDESS (Livingstone and Russo, 2018) and TESS
(Pichora-Fuller and Dupuis, 2020).
ESD (Emotional Speech Database) 16 consists of 10 native English and 10 native
Mandarin speakers each uttering the same sentences across five emotion categories. For the
experiments in this thesis only the English utterances of five male and five female speakers
are used. Thereby the emotion categories are anger, disgust, joy, neutral, sadness and
surprise. Each category comprises 350 utterances resulting in 1,750 utterances per speaker,
3,500 per category and 17,500 in total. The total duration of the dataset is approximately
13 hours.
RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song) 17 consists of
speech and song data of 24 professional actors whereby the number of male and female
actors is balanced. For the purposes of TTS, only the speech data is used which includes
utterances across eight emotion categories: anger, disgust, joy, neutral, sadness, surprise,
fear and calmness. Since the training and evaluation is based on Ekman’s basic emotions,
utterances from the calmness category are discarded. Furthermore the dataset provides
multi-modality in the form of facial expressions which are also not used. Each speaker
produces 8 utterances per emotion category, except for neutral where there are only 4. This
results in 60 utterances per speaker and 1,440 in total.
TESS (Toronto Emotional Speech Set) 18 consists of utterances from two female speakers
each reading sentences in the pattern ”Say the word [X]” where [X] is varied across 200
target words. All sentences were read with respect to seven emotion categories which are
anger, disgust, joy, neutral, sadness, surprise and fear. Hence the dataset comprises 2800
utterances in total.
An overview of the properties of all used speech datasets can be found in tables 1 and 2.

15http://www.openslr.org/141/
16https://github.com/HLTSingapore/Emotional-Speech-Data
17https://zenodo.org/record/1188976
18https://tspace.library.utoronto.ca/handle/1807/24487
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LJSpeech LibriTTS-R

# Speakers 1 2,456

Duration in Hours 24 585

Table 1: Speech Datasets

ESD RAVDESS TESS

# Speakers 10 24 2

# Emotion Categories 5 8 7

# Utterances per Emotion 350 8 200

# Utterances in Total 17,500 1,440 2800

Table 2: Emotional Speech Datasets

5.2.2 Emotional Text Datasets

For training the TTS system conditioned on sentence embeddings it is necessary to provide
prompts which are labeled with the corresponding emotion categories. For this purpose
sentences from reviews of a subset of the Yelp open dataset (Asghar, 2016) 19 are used.
The subset 20 contains 700,000 reviews about businesses in the USA and Canada given by
users on Yelp 21. Thereby the training split of the dataset is used which contains 650,000
instances. Reviews are considered as appropriate for conditioning the TTS system since
they contain highly emotional text in common language from various different authors.
While a lot of sentences can be extracted from the reviews due to the large size of the
dataset, they are not labeled with emotion categories per se. Therefore, an auxiliary emotion
classification model (Hartmann, 2022) is used to classify reviews. This is the same model
which is used for the extraction of sentence embeddings and is described in more detail in
section 5.3.
For each of the seven emotion categories (anger, disgust, joy, neutral, sadness, surprise,
fear), 10,000 sentences are extracted randomly from classified instances which received a

19https://www.yelp.com/dataset
20https://huggingface.co/datasets/yelp_review_full
21https://www.yelp.com
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probability score higher than 0.8 from the model. This results in 70,000 prompts which are
used for training the TTS system after extracting their sentence embeddings. Thereby using
the same model for classification and extraction is reasonable since the model performs
robustly across different datasets (Hartmann, 2022) and only samples which are classified
with high confidence are selected.

For the extraction of sentences used during evaluation, two other emotional text datasets
are used, both labeled with emotion categories by human annotators.
DailyDialog (Li et al., 2017) 22 contains conversations comprising 13,118 sentences
which are crawled from websites where English learners can practice dialog in daily life.
Therefore, it contains common language text about diverse topics which at the same time
is more formal than e.g. text extracted from Twitter.
The second dataset used for evaluation is Tales-Emotion (Alm et al., 2005; Alm and Sproat,
2005) 23. It consists of 185 fairy-tales by Potter, Andersen and Grimm with a total of
15,292 annotated sentences.
From both datasets, 50 sentences for each of the five emotion categories anger, joy,
neutral, sadness and surprise are selected. Furthermore sentences that didn’t result in a
high probability score for the annotated emotion category when applying the emotion
classification model were discarded in order to obtain cleaner data.
The conversational nature of the sentences in DailyDialog and the story telling style in
Tales-Emotion might demonstrate the usefulness of the TTS model for both dialog systems
and reading stories.

5.3 Sentence Embedding Extraction

For the purpose of extracting embeddings from given prompts during training and inference,
a large language model based on the DistilRoBERTa architecture 24 is used which is
fine-tuned on the task of emotion classification (Hartmann, 2022) 25. The distilled RoBERTa
model follows the same training procedure as DistilBERT (Sanh et al., 2019) which uses
the BERT model as teacher for knowledge distillation (Hinton et al., 2015). Thereby two
additional training objectives are established on top of the masked language modeling

22https://huggingface.co/datasets/daily_dialog
23http://people.rc.rit.edu/˜coagla/affectdata/index.html
24https://huggingface.co/distilroberta-base
25https://huggingface.co/j-hartmann/emotion-english-distilroberta-base
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task. The first one is a distillation loss which makes sure that DistilBERT returns the
same probabilities as the BERT model. The second one is a cosine embedding loss that
has the purpose of making DistilBERT generate hidden states similar to BERT. The key
advantage of distilled models is that they have less parameters than the originals and
thus are faster for inference and downstream tasks while at the same time maintaining
comparable performance. DistilRoBERTa was pre-trained on the OpenWebTextCorpus
(Gokaslan and Cohen, 2019) and fine-tuned on a collection of emotional text datasets (see
Hartmann (2022) for an overview).
The classification is based on the following emotion categories: anger, disgust, joy, neutral,
sadness, surprise and fear. The authors report an evaluation accuracy of 66% compared to
a random-chance baseline of 14%.

Sentence embeddings are extracted from the [CLS] hidden representation comprising 756
dimensions. The [CLS] state is used for emotion classification during fine-tuning and
is therefore expected to capture relevant information about the emotional content of a
sentence. Alternatively the provided code offers the possibility of extracting embeddings
averaged over the last hidden state or the second to last hidden state of each token, however
through internal testing it has been found that the [CLS] representation works best.

5.4 Training Procedure

Before training the models, the applied datasets are cleaned by calculating the TTS-Loss
for each individual sample and heuristically removing samples which have a high loss until
there are no more outliers. This is important since the training data might contain samples
with a lot of background noise or mispronunciations.

The training procedure of both the baseline and the proposed model is divided into a
pre-training and a fine-tuning stage whereby the difference is that the pre-training stage
includes more training data than the fine-tuning stage with a large variety of topics and
speakers. The fine-tuning stage has the purpose of specifically adapting on selected datasets,
in this case with the goal of conditioning the model on sentence embeddings.
LJSpeech and LibriTTS-R are used during the pre-training stage in addition to the
emotional speech datasets ESD, RAVDESS and TESS in order to increase the overall
quality of the models and to make them more robust against mispronunciations. However
LJSpeech and LibriTTS-R are not suitable for testing the hypotheses of this thesis since
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the prosodic parameters are not labeled in any way, i.e. no emotion labels are provided.
Furthermore it cannot be assumed that there is a strong correlation between the meaning
of the utterances and their prosodic realization.
During the fine-tuning stage only the emotional speech datasets are used such that the
model is exposed to a high correlation between prompt embeddings and speech prosody.

For the proposed model, prompt embeddings are extracted from the emotional text dataset
Yelp such that the emotion labels from text and speech correspond to each other. The
sentence embeddings are selected randomly at each training iteration such that every speech
sample is linked with a lot of different prompts. This strategy has the advantage that a large
number of different prompts is seen during training which reduces the risk of over-fitting
and increases the generalization capabilities of the system. It is further beneficial for
inference where it becomes possible to provide arbitrary natural language inputs in order to
control the prosody of generated speech. During the pre-training stage sentence embeddings
for LJSpeech and LibriTTS-R have to be provided as well. Since these datasets are not
labeled with emotion categories, sentence embeddings of the utterances themselves are
extracted and used for conditioning. While there is no strong correlation between the
utterances and their prosodic realization, the sentence embeddings might still be beneficial
for improving overall speech quality since due to the contained semantic and syntactic
information. Aside from that LJSpeech and LibriTTS-R are not used during the fine-tuning
stage, giving the model the possibility to adapt to the strong correlation present between
the emotional speech datasets and selected prompt embeddings.

The TTS models consist of roughly 46,000,000 trainable parameters and have a hidden
dimensional size 192. The implementation and corresponding training code can be accessed
on GitHub 26. A demo page containing several audio samples is available as well 27

The hyper-parameters of both stages are identical except of the amount of training steps
which is 120,000 for pre-training and 80,000 for fine-tuning. Adam (Kingma and Ba, 2014)
is used as optimizer with a learning rate of 0.001. The amount of warm-up steps, i.e. with
custom learning rate, is 8000 and the joint training of the flow-based post-net is started after
9000 steps. The models were trained with a batch size of 32 on a NVIDIA-RTX-A6000
GPU.
Training charts for each individual loss during fine-tuning can be seen in figures 8-11. In

26https://github.com/Thommy96/IMS-Toucan
27https://thommy96.github.io/toucanpromptingdemo/
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each case the loss of the proposed system is smaller than for the baseline which gives
preliminary insights with regard to the usefulness of prompt embeddings. After training
was complete, the overall loss for the baseline was 163.40 compared to 107.32 for the
proposed system.

Figure 8: Spectrogram-Reconstruction-Loss

Figure 9: Prosody-Predictor-Losses
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Figure 10: Glow-Loss

Figure 11: Adversarial-Losses
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5.5 Inference Procedure

For evaluation purposes, sentences from the emotional text datasets DailyDialog (Li
et al., 2017) and Tales-Emotion (Alm et al., 2005; Alm and Sproat, 2005) with annotated
emotions anger, joy, neutral, sadness and surprise are synthesized. The emotional states
disgust and fear are not considered since they don’t appear in the ESD dataset on which
the evaluation is based. Furthermore, sentences where the annotated emotion label doesn’t
match with the prediction of the DistilRoBERTa emotion classifier are discarded. Then
the top 50 sentences per emotion category for each dataset according to the probability
score of the emotion classifier are used for synthesis. This ensures that only sentences with
high emotional content from each category are taken into account and reduces the risk
of including inconclusive or ambiguous instances. The total number of test sentences for
objective evaluation is 300 per dataset. For subjective evaluation, one sentence from each
emotion category of each dataset is selected manually, resulting in 10 test sentences.

All test instances are synthesized using the baseline model as well as the proposed model.
When using the proposed model the prompt which is provided to the sentence embedding
extractor and is further used to condition the prosody of generated speech can be chosen
independently from the input text.
In subjective experiments each test sentences is synthesized twice with the proposed model,
the first time using the sentence itself as prompt and the second time using a sentence of
a different emotion category. The speaker identities of a female speaker (id 15 in ESD)
and a male speaker (id 14 in ESD) are selected for synthesis. The samples for subjective
evaluation along with their mapping to other sentences can be seen in table 3.
In objective evaluation each of the 50 sentence belonging to an emotion category is
additionally synthesized using a sentence from every other emotion category as prompt.
By doing so it can be assessed if the expressed emotional states are transferred across
sentences which might indicate if the prediction of the prosodic parameters relies on the
provided sentence embedding.

The vocoder used in the experiments of this thesis is Avocodo (Bak et al., 2022) which
has been found to produce the best sounding audio signals compared to the other vocoders
during preliminary listening tests. The waveform signal is either saved in wav or flac file
format to ensure lossless audio compression.

For all comparisons between ground truth and synthesized speech samples the effect of the
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vocoder has to be excluded since it can introduce additional noise or artifacts not present in
the generated spectrogram. This is done by extracting the mel-spectrograms from ground
truth speech samples and converting them back into waveform using the same vocoder as
for synthesis. Furthermore this has the benefit that all audio signals have the same sampling
rate and loudness.

Sentence Prompt

You can’t be serious, how dare you not
tell me you were going to marry her?

You can go to the Employment
Development Office and pick it up.

The king grew angry, and cried:
That is not allowed, he must appear

before me and tell his name!

Really? I can’t believe it! It’s like a
dream come true, I never expected that

I would win The Nobel Prize!

I really enjoy the
beach in the summer.

He was astonished when he saw them come
alone, and asked what had happened to them.

Then she saw that her deliverance was
near, and her heart leapt with joy.

The sisters mourned as young hearts can
mourn, and were especially grieved
at the sight of their parents’ sorrow.

You can go to the Employment
Development Office and pick it up.

I really enjoy the
beach in the summer.

So the queen gave him the letter,
and said that he might see for himself

what was written in it.

The king grew angry, and cried:
That is not allowed, he must appear

before me and tell his name!

Lily broke up with me last week,
in fact, she dumped me.

You can’t be serious, how dare you not
tell me you were going to marry her?

The sisters mourned as young hearts can
mourn, and were especially grieved
at the sight of their parents’ sorrow.

Then she saw that her deliverance was
near, and her heart leapt with joy.

Really? I can’t believe it! It’s like a
dream come true, I never expected that

I would win The Nobel Prize!

So the queen gave him the letter,
and said that he might see for himself

what was written in it.

He was astonished when he saw them come
alone, and asked what had happened to them.

Lily broke up with me last week,
in fact, she dumped me.

Table 3: Test Sentences and Prompts used for Subjective Evaluation

Emotion Categories are indicated by text colors as follows:
anger, joy, neutral, sadness, surprise
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5.6 Objective Evaluation Methods

5.6.1 Speaker Similarity

In order to verify that the TTS system has multi-speaker capabilities, the speaker similarity
between speech samples from the training dataset and synthesized utterances is calculated.
Thereby synthesized samples are generated with embeddings from the learned speaker
embedding matrix corresponding to the speaker identity of the ground truth samples. The
speaker similarity is computed as the cosine similarity between speaker embeddings from
ground truth and synthesized speech. Thereby speaker embeddings are extracted using a
pre-trained speaker verification model (Snyder et al., 2018) 28 provided by Speechbrain
(Ravanelli et al., 2021).

The cosine similarity between two vectors −→x and −→y is determined by calculating the
cosine of the angle between them as in equation 7.

(7) cosine similarity =
−→x · −→y

∥−→x ∥∥−→y ∥
=

∑n
i=1 xiyi√∑n

i=1 x
2
i ·

∑n
i=1 y

2
i

The cosine similarity ranges between -1 and 1 where 1 indicates perfect similarity and -1
high dissimilarity.

5.6.2 Word Error Rate

As a measure of intelligibility the word error rate of an automatic speech recognition
(ASR) system is calculated. Therefore, the synthesized waveforms are first transcribed
with Facebook’s pre-trained Wav2Vec2 model (Baevski et al., 2020) 29. Then the word
error rate (WER) between ground truth sentences from the test datasets and transcribed
utterances is calculated as in equation 8. It indicates the percentage of words which are
incorrectly predicted under consideration of the number of substitutions S, deletions D
and insertions I that have to be applied to the transcribed sentence in order to restore the
ground truth. The sum of those is divided by the total number of words N .

(8) WER =
S +D + I

N
28https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
29https://huggingface.co/facebook/wav2vec2-base-960h
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While a small word error rate indicates high intelligibility it has to be noted that the
computed value can theoretically be greater than 100% since the sum of substitutions,
deletions and insertions might exceed the number of words in the ground truth sentence.

5.6.3 Emotion Recognition

In order to objectively assess the capability of the TTS system to generate speech
expressing an emotional state corresponding to the provided sentence embedding, the
expected emotion category is compared to the prediction of an auxiliary speech emotion
recognition model. In the experiments of this thesis an emotion recognition model by
SpeechBrain (Ravanelli et al., 2021) 30 is applied. However their model is pre-trained
on the IEMOCAP dataset (Busso et al., 2008) and performs poorly when applied to
other datasets such as ESD. This might be caused by the fact that emotions are expressed
differently across speakers. Furthermore the recording environment and the approach
to trigger emotional states in speakers might differ. Aside from that the emotion labels
available in IEMOCAP do not match the ones in ESD. Therefore, for the purposes of this
thesis the speech emotion recognition is trained from scratch on the ESD dataset with
the training code provided by SpeechBrain. The corresponding code can be accessed
on GitHub 31. The model is then used to predict emotion categories of synthesized test
sentences which are further compared to the underlying emotion categories of provided
sentence embeddings by calculating the accuracy as in equation 9.

(9) Accuracy =
number of correctly predicted labels

number of sentences

30https://huggingface.co/speechbrain/emotion-recognition-wav2vec2-IEMOCAP
31https://github.com/Thommy96/speechbrain
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5.7 Subjective Evaluation Methods

The subjective evaluation is carried out through an online survey on Soscisurvey 32 where
participants are asked to listen to speech samples and rate them mainly with respect to
their prosodic properties and expressed emotion. Since it is not required to have any prior
knowledge about the prosody of spoken language, an introductory explanation is given in
the beginning of the questionnaire. Additionally it is explicitly pointed out that the prosody
of speech samples is not necessarily appropriate to the content of the spoken sentence itself.
For example the utterance could be ”I am happy.” although the prosody indicates that the
speaker is sad. While this introduction should make the participants aware of rating the
prosody independently from the text, it is still expected that the content of the utterance
influences their judgment to some extent. The questions that were posed can be found in
the appendix in section 10.1.

5.7.1 Mean Opinion Score

The mean opinion score (MOS) is a widely used measure applied to assess the perceived
speech quality in terms of naturalness, fluency and intelligibility. Participants are asked to
rate these properties on a 5-point scale ranging from bad to excellent. Mean opinion scores
are collected for audio samples of each TTS system configuration, i.e. baseline, proposed
model with prompt identical to the utterance and proposed model with prompt different to
the utterance. Furthermore reconstructed ground truth speech samples were rated.

5.7.2 Conveyed Emotion

The participants are asked to listen to an audio sample which could stem from any TTS
system configuration or ground truth speech. Then their task is to select one or multiple
emotion categories which they think are conveyed by the speech prosody. Available emotion
categories were the ones present in the ESD dataset, i.e. anger, neutral, surprise, joy and
sadness.

32https://www.soscisurvey.de/
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5.7.3 Valence-Arousal Rating

According to the continuous circumplex model (Russell, 1980), emotions can be described
by the two dimensions valence and arousal. Participants are asked to rate these two
properties on 5-point scales respectively whereby valence ranges from not pleased
(negative) to pleased (positive) and arousal from calm (low arousal) to excited (high
arousal). This rating task is included additionally to the selection of conveyed emotions
since it provides a more fine-grained assessment of speech prosody. Furthermore it might
be easier for the listeners to give ratings than to decide between discrete categories.

5.7.4 A/B Preference Test

Participants are asked to listen to two audio files, one generated by the baseline and the other
one by the proposed system while conditioning the model on the sentence embedding of
the utterance itself. The audio files are presented in randomized order to reduce positional
effects. Then the task is to select the preferred audio file with respect to its prosodic
appropriateness to the emotional content of the utterance. It is also possible to indicate that
none of the both audio files is preferred.

5.7.5 Prosodic Similarity Test

This test has aims to assess if the a specific prompt results in similar prosody when used
for the generation of different utterances. Therefore, participants are asked to listen to two
audio files which are both synthesized by the proposed system using the same sentence
embedding as conditioning signal. They were then obliged to rate how similar the samples
sound with respect to their prosodic realizations. The ratings are collected on a 5-point
scale ranging from not similar at all to very similar.
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6 Results

6.1 Objective Evaluation

6.1.1 Speaker Similarity

The box-plots in figure 37 in the appendix show the distribution of calculated speaker
similarities with respect to ground truth speech samples. For each speaker, outliers are
discarded for further evaluation. As can be seen in table 4, the mean speaker similarity
scores are consistently high (>0.9) for all speakers regarding both the baseline and the
proposed system. The overall average score is nearly identical for both systems (baseline:
0.950, proposed: 0.953).

Baseline Proposed
Speaker

11 0.951 0.954
12 0.948 0.953
13 0.954 0.956
14 0.951 0.955
15 0.951 0.954
16 0.949 0.951
17 0.938 0.948
18 0.952 0.955
19 0.948 0.950
20 0.951 0.954

Overall 0.950 0.953

Table 4: Speaker Similarity

6.1.2 Word Error Rate

The data distribution of calculated word error rates for all speakers is presented in the
box-plots in figure 38 (appendix). Table 5 provides an overview of the mean word error
rates across systems and speakers. It can be observed that ground truth speech almost
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always exhibits the lowest word error rates, especially for speakers 12, 13, 15, 16 and 18
where it even reaches 0. However, for speakers 11 and 17 the word error rate is slightly
higher than the baseline and proposed system (0.121 and 0.093 respectively). Furthermore,
the baseline generally outperforms the proposed system except for speaker 13 (0.076
compared to 0.072). Universal scores, i.e. averaged over all speakers, are visualized in
figure 12 and reveal the lowest word error rate for ground truth speech (0.038) followed by
utterances generated by the baseline (0.069) and the proposed system (0.078).

Ground Truth Baseline Proposed
Speaker

11 0.121 0.111 0.105
12 0.000 0.055 0.071
13 0.000 0.076 0.072
14 0.054 0.067 0.081
15 0.000 0.058 0.065
16 0.000 0.062 0.088
17 0.093 0.065 0.076
18 0.000 0.054 0.073
19 0.072 0.072 0.079
20 0.041 0.069 0.087

Overall 0.038 0.069 0.078

Table 5: Word Error Rates

Figure 12: Overall Word Error Rates
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6.1.3 Emotion Recognition

The emotion recognition model’s predictions for all test sentences across different speakers
are grouped based on emotion categories. The confusion matrices in figure 13 illustrate
the relative frequencies of predicted emotion labels opposed to actual underlying emotion
categories.
For ground truth speech these underlying emotions are given by the annotations in the
ESD dataset. Figure 13a indicates that the model achieves high accuracy in predicting
emotions for speech samples corresponding to anger (0.99), neutral (0.86), sadness (0.98)
and surprise (0.99). However, joyful speech is often misclassified as surprise (0.47).
Considering the baseline, the underlying emotions correspond to the emotional content of
the synthesized sentences as given by the annotation in the emotional text datasets. As can
be seen in figure 13b speech samples of all underlying emotions are most often predicted to
belong to the sadness category (anger: 0.5, joy: 0.47, neutral: 0.53, sadness: 0.49, surprise:
0.46). Apart from that, the category neutral is predicted second most frequently for all
underlying emotions (anger: 0.28, joy: 0.29, neutral: 0.31, sadness: 0.33, surprise: 0.3).
With regard to the proposed system, the underlying emotions represent the emotional
content of the provided conditioning prompt based on the annotation in the emotional text
datasets. The results are further divided into cases where the prompt is identical to the input
text (Proposed Same) and cases where another prompt is used (Proposed Other). Figures
13c and 13d show the relative frequencies of predictions for these two cases. Generally
the underlying emotion of the prompt is also predicted in synthesized speech with an
especially high accuracy for anger (Proposed Same / Proposed Other: 0.98) and sadness for
which almost prefect scores can be observed (Proposed Same: 1.0, Proposed Other: 0.99).
Speech samples generated with a neutral prompt are also mostly predicted as neutral with
relative frequencies of 0.75 (Prompt Same) and 0.72 (Prompt Other). The scores for joy
are substantially lower compared to the other emotion categories, however the prediction
still aligns for more than half of the test sentences (Proposed Same: 0.56, Proposed Other:
0.55).

In order to assess the association strength between underlying and predicted emotions,
Cramér’s V (Cramér, 1999) is calculated. This measure is based on Pearson’s chi2

statistic which compares observed frequencies to expected ones under the assumption of
independence between the variables. It has to be noted that common correlation metrics
such as Pearson’s r or Spearman’s ρ are not applicable since the variables are nominal and
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not sortable on a scale. Cramér’s V ranges from 0 and 1 whereby higher values indicate a
higher association strength. The respective values can be found in table 6 revealing high
association strengths for ground truth speech (0.85) as well as for the proposed system
(0.80). The baseline immensely lacks behind with a value of 0.06. All calculated scores in
the table have found to be significant given a significance level of 0.05.

Finally, figure 14 illustrates the overall accuracy, i.e. the proportion to which the underlying
and predicted emotion categories align. Thereby high scores can be observed for ground
truth speech (0.86) as well as for the proposed system (Proposed Same: 0.83, Proposed
Other: 0.82) whereas the baseline only achieves an accuracy of 0.21.

(a) Ground Truth (b) Baseline

(c) Proposed Same (d) Proposed Other

Figure 13: Predicted Emotions
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Ground Truth Baseline Proposed Same Proposed Other

Cramér’s V 0.85 0.06 0.80 0.80

Table 6: Cramer’s V between underlying and predicted emotion categories

Figure 14: Overall Accuracy

6.2 Subjective Evaluation

6.2.1 Sociodemographics

Sociodemographic information such as gender, age and the level of English skill was
collected previous to the listening tests. Additionally the experience with synthetic speech
has been assessed by asking how often a participant listens to artificially generated speech,
e.g. by using voice assistants. All sociodemographic questions were non-obligatory.
In total 82 people participated in the study, figure 15 gives insights about the distribution
of this sample. There are more than twice as much female (68.3%) than male participants
(29.3%). Furthermore, half of them are between 20 and 29 years old and more than half
(51.2%) are fluent English speakers. 54.9% of participants state that they rarely listen to
synthetic speech whereas 31.8% have considerable experience by listening to it regularly
or daily.
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(a) Gender (b) Age

(c) English Skills (d) Listening to Synthetic Speech

Figure 15: Sociodemographics
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6.2.2 Mean Opinion Score

Box-plots with Mean Opinion Scores for each system across speakers and emotions can
be seen in figures 33-35. They indicate how often a specific rating is given and visualize
the distribution of the data. Outliers which are outside 1.5 × the interquartile range are
discarded from further evaluation.
Table 7 shows accumulated Mean Opinion Scores for each system, speaker and emotion. In
most cases the scores for the female speaker are higher than the ones for the male speaker,
but there is no clear trend observable across emotions. Furthermore, for both speakers, the
overall highest scores can be found for ground truth speech (female: 4.10, male: 3.79),
followed by the proposed system (female: 3.57, male: 3.18) and the baseline (female:
3.55, male: 3.05). This tendency is confirmed by figure 16 showing mean opinion scores
averaged across speakers with 3.95 for ground truth, 3.30 for the proposed system and 3.37
for the baseline. However, it can be noted that for sad utterances of the female speaker the
mean opinion scores for the proposed system (3.70) and the baseline (3.63) are slightly
higher than the ones for ground-truth speech (3.47). While the proposed system overall
receives a slightly better score than the baseline, an independent samples t-test indicates
that this improvement is not significant (significance level: 0.05, p-value: 0.46). It has to be
noted that an independent samples t-test is chosen instead of a paired samples t-test since a
participant does not see every speech sample, i.e. the ratings are given by groups different
people. Although these groups might overlap, there is no way to consistently extract paired
ratings.

Anger Disgust Neutral Sadness Surprise Overall

Ground Truth female 4.53 4.47 4.53 3.47 3.50 4.10
male 3.63 4.25 4.0 3.44 3.65 3.79

Baseline female 3.00 3.81 4.06 3.63 3.27 3.55
male 3.45 2.87 3.44 3.06 2.44 3.05

Proposed female 3.34 3.53 4.00 3.70 3.28 3.57
male 3.09 3.53 3.33 3.06 2.88 3.18

Table 7: Mean Opinion Scores per Emotion
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Figure 16: Overall Mean Opinion Scores

6.2.3 Conveyed Emotion

The confusion matrices in figures 17-20 visualize the emotions labeled by participants
with respect to the real or intended underlying emotion. Thereby, each column in a
matrix corresponds to the distribution of given emotion labels and each cell indicates the
normalized frequency of a given emotion label within the respective column.

For ground truth speech (figure 17) the underlying emotion categories correspond to
the ones as annotated in the ESD dataset. Notably, for both the female and the male
speaker, high relative frequencies can be observed for joyful (female: 0.60, male: 0.74),
neutral (female: 0.69, male: 0.70) and surprised (female: 0.68, male: 0.62) utterances being
perceived as such. In most cases angry speech is rated accordingly for the female speaker
(0.62) while it is predominantly perceived as neutral for the male speaker (0.70). Regarding
the female speaker, sadness is very often perceived as neutral with a relative frequency of
0.79 compared to 0.21. Conversely, sad utterances from the male speaker have a relative
frequency of 0.47 for both sad and neutral labels.

Moving to the baseline system (figure 18) the underlying emotion categories indicate the
emotional content of the synthesized sentences themselves as annotated in the emotional
text datasets. Generally, the utterances are mainly categorized as neutral. This tendency
holds stronger for the female speaker than for the male speaker where joyful sentences are
often noticed as being sad (0.56).
Nevertheless, in general, scores for the neutral category are still substantially high except
for angry sentences which are often identified as such (0.4) or surprised (0.3). With regard
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to the female speaker, a substantial portion of sad sentences is judged as angry (0.39).

The results for the proposed TTS system are split based on whether the conditioning
prompt matches the synthesized sentence (figure 19) or differs (figure 20). Hereby, the
underlying emotion categories reflect the emotional content of the provided prompt as
annotated in the emotional text datasets.
For the case where the prompt matches the input sentence, neutral utterances are perceived
as such by all participants regarding the female speaker and by most participants (0.67)
regarding the male speaker. Furthermore, for the male speaker the frequencies for all other
emotion categories being neutral is also relatively high (anger: 0.45, joy: 0.55, sadness: 0.60,
surprise: 0.35). However the scores on the diagonal are the second highest in those cases
(anger: 0.32, joy: 0.25, sadness: 0.35), except for surprised utterances (0.30) which are
more often judged as being joyful (0.35). Concerning the female speaker, one can observe
a high frequency for joyful utterances being rated as neutral (0.82). Sentences belonging
to the remaining emotion categories are mainly accordingly (anger: 0.70, sadness: 0.61,
surprise: 0.44).
With regard to the scenario where the provided conditioning prompt differs from the
synthesized sentence, a high relative frequency is evident for utterances where the prompt
is joyful but judged as sounding neutral (female: 0.94, male: 0.38). Utterances from the
female speaker with angry and neutral prompts are mainly perceived as such (0.80 and 0.48
respectively). For neutral and sad prompts this tendency also holds for the male speaker
(0.67 and 0.68 respectively). However utterances with angry and joyful prompts are often
rated as neutral (0.74 and 0.38 respectively) and surprised utterances have a relative
frequency of 0.38 for anger and 0.32 for neutral compared to 0.33 for surprise. Regarding
the female speaker, utterances with sad prompts are often perceived as neutral (0.50
compared to 0.30) and utterances with surprised prompts are rarely judged as surprised
(0.19) but instead as joyful (0.38) or neutral (0.31).

The overall association strength between underlying emotion categories, e.g. indicated by
the emotional content of prompts, and conveyed emotions in speech prosody, as labeled
by the participants, is measured by calculating Creamér’s V (Cramér, 1999). Scores can
be seen in table 8 with significant values in bold given a significance level of 0.05. All
association strengths are significant except for the baseline’s female speaker (0.27). The
scores for ground truth speech are 0.56 for the female speaker and 0.53 for the male speaker.
The proposed system for the female speaker, using the same prompts as the synthesized
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sentences, shows the overall highest value (0.61). All remaining values are below 0.5
but nevertheless significant, indicating a fair amount of association strength between the
variables.

(a) female (b) male

Figure 17: Conveyed Emotions, Ground Truth

(a) female (b) male

Figure 18: Conveyed Emotions, Baseline
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(a) female (b) male

Figure 19: Conveyed Emotions, Proposed Same

(a) female (b) male

Figure 20: Conveyed Emotions, Proposed Other

Ground Truth Baseline Proposed Same Proposed Other

Cramér’s V female 0.56 0.27 0.61 0.47
male 0.53 0.43 0.38 0.40

Table 8: Cramer’s V between underlying and conveyed emotion categories
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6.2.4 Valence-Arousal Ratings

Accumulated valence and arousal ratings for each system, speaker and emotion, after
removing outliers, can be seen in tables 9 and 10 in the appendix.
Figures 21-24 visualize these ratings using the continuous circumplex model. Each point
in a plot corresponds to the mean valence and arousal value for the respective underlying
emotion.

For ground truth speech 21 the underlying emotion relates to the emotion category as
labeled in the ESD dataset. It can be observed that ratings for joyful, neutral, sad and
surprised utterances are similar distributed for both speakers. For angry utterances there
is a substantial difference in given ratings across speakers. For the female speaker such
utterances are rated with very high arousal (5.00) and relatively low valence (2.31) while
for the male speaker they are rated with much less arousal (3.44) and higher valence (3.40).

Regarding the baseline system 22, the underlying emotions correspond to the emotional
content of the synthesized sentences as annotated in the emotional text datasets. The plots
demonstrate that the points are generally grouped closer together and more centered around
the origin. This tendency holds stronger for the female speaker as for the male speaker
where specifically the ratings for surprise are more extreme (valence: 2.29, arousal: 1.71).
It can also be noted that there the arousal ratings for both speakers don’t exceed 3.5.

Concerning the proposed system where the conditioning prompts match the synthesized
sentences 23, the underlying emotions correspond to the emotional content of the prompts
as annotated in the emotional text datasets. In general, the distribution of ratings for the
female speaker has considerable similarity with the one for ground-truth speech. Thereby,
angry utterances have a high arousal (4.40) and a low valence ratings (1.44) while sad
utterances are rated with low arousal (1.80) and low valence (1.88). For the male speaker,
angry utterances receive a comparably low arousal score (2.40). Generally, the ratings for
the male speaker are less extreme as for the female speaker.

With regard to the proposed system where the conditioning prompts are different from the
synthesized sentences, the underlying emotions also correspond to the emotional content
of the prompts. For the female speaker, utterances produced with angry prompts are rated
with high arousal (4.53) and low valence (1.65) while obtaining more average scores
for the male speaker (arousal: 3.38, valence: 3.00). Utterances generated with surprised
prompts receive high arousal ratings for both speakers (female: 4.21, male: 4.00), while
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valence for the female speaker (3.67) is substantially higher than for the male speaker
(2.47). Utterances with joyful prompts receive relatively moderate values (female: arousal:
3.19, valence: 3.00; male: arousal: 3.50, valence: 2.67) while neutral and sad utterances
are judged with low arousal (female: 2.47 and 2.40, male: 1.94 and 1.94 respectively) and
low valence (female: 2.06 and 2.59, male: 3.40 and 2.29 respectively).

(a) female (b) male

Figure 21: Valence-Arousal, Ground Truth

(a) female (b) male

Figure 22: Valence-Arousal, Baseline
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(a) female (b) male

Figure 23: Valence-Arousal, Proposed Same

(a) female (b) male

Figure 24: Valence-Arousal, Proposed Other
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6.2.5 A/B Preference

Figure 25 shows the distribution of preferences between the baseline and the proposed
TTS system across emotion categories. The underlying labels correspond to the emotional
content of the synthesized sentence which is also used as conditioning prompt in the
proposed system.
With respect to the female speaker, the proposed system is clearly preferred for angry,
joyful and sad utterances while the baseline is favored for neutral and surprised sentences.
Regarding the male speaker, the proposed system is preferred for joyful and surprised
utterances. For sad sentences the proposed system is slightly favored over the baseline
which is clearly preferred for angry and moderately for neutral sentences.

An overall preference of the proposed system can be observed for both the male (53.42%
compared to 36.65%) as well as the female speaker (55.09% compared to 32.34%). This
tendency is visualized in figure 26 which shows that in total the proposed system is favored
in 54.27% of cases compared to 34.45% regarding the baseline.

(a) female (b) male

Figure 25: Preference across Speakers and Emotions
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Figure 26: Overall Preference

6.2.6 Prosodic Similarity

The distribution of ratings given by the participants regarding the prosodic similarity
between two different utterances generated by the proposed system while using the same
conditioning prompt can be seen in the box-plots 36a and 36b in the appendix. Outliers are
removed from the data for further evaluation.

Figure 27 shows averaged similarity scores across emotions for each speaker. Thereby, the
underlying emotions correspond to the emotional content of the provided prompts. It can
be observed that all similarity scores are very high (≥ 4.12) except for utterances generated
with joyful prompts. However, in these cases the scores are still considerably high (female:
3.30, male: 3.62). The total mean similarity scores averaged over emotions as visualized in
figure 28 confirm the high ratings (female: 4.20, male: 4.27).
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(a) female (b) male

Figure 27: Mean Similarity across Speakers and Emotions

Figure 28: Overall Mean Similarity
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7 Discussion

7.1 Quantitative Analysis

7.1.1 Multi-Speaker Capabilities

The high speaker similarity scores with respect to ground truth speech indicate that
the speaker identities are almost perfectly preserved during synthesis. This proves the
effectiveness of using a speaker embedding look-up table which learns the embeddings
during training. Furthermore, it is in line with findings of previous work that follow
the same approach for multi-speaker TTS (Ping et al., 2017; Chen et al., 2020). More
interestingly, high speaker similarity is maintained in the proposed system demonstrating
that the joint vector representation of speaker and emotional content retains the required
information and is therefore a suitable conditioning signal for TTS. It can be hypothesized
that this is specifically achieved by the squeeze and excitation bottleneck which helps
modeling inter-dependencies between the two sources. Such a bottleneck has also been
successfully applied in Pan and He (2021) for disentangling prosody and speaker timbre.
While the integration of a squeeze and excitation block has been found to be useful in
preliminary listening tests, it is suggested that this observation should be confirmed by
ablation studies in future research.

Thus, these results suggest that hypothesis 5 can be accepted. The controllability of speaker
identities is not affected by the integration of sentence embeddings.

7.1.2 Speech Quality

The low word error rate for ground-truth speech samples shows a high intelligibility,
as expected. Although the score for the baseline system is comparably higher, it can
still be interpreted as producing highly intelligible speech. The proposed system exhibits
only a slightly higher error rate than the baseline, indicating that the quality is generally
maintained. In the same vein, the mean opinion score from the subjective evaluation shows
that speech quality and naturalness, only approximately 0.6 rating points lower than ground
truth speech, is obtained by the proposed and baseline system. Hereby, it has to be noted
that ground truth speech also includes potential quality degradation introduced by the
vocoder while original recordings would probably achieve even higher mean opinion
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scores. However, converting original speech to mel-spectrogram and transforming it back
into waveform with the vocoder allows for better comparison with synthesized samples.
Under these considerations the TTS systems achieve state-of-the-art fidelity with only
relatively small degradation compared to human speech. Moreover, these findings follow
the tendency of related work based on similar model architectures (Ren et al., 2020; 2021;
Lancucki, 2021). While the mean opinion score for the proposed system is marginally
higher than for the baseline, this difference has not been found to be significant. However,
it is important to mention that the evaluation is based only on a relatively small number
of samples. Ratings for more test sentences would be required to obtain more conclusive
results.

Nevertheless, the first hypothesis has to be rejected. Conditioning the TTS model on
sentence embeddings of prompts does not improve the overall quality of generated speech.

7.1.3 Prosodic Controllability

The emotion recognition model shows very high accuracy for the prediction of emotion
labels in ground truth speech on which it was trained, except for joy, meaning that the
emotion can generally be recognized reliably from speech. Considering this, the strong
alignment between underlying and predicted emotion labels for the proposed system
demonstrates that the emotional content of the prompt is accurately transferred to speech,
indicating a high degree of controllability. Moreover, the speech prosody exclusively relies
on the provided prompt and is not influences by the input text of the synthesized utterance
as revealed by the high accuracy when mixing prompts with input texts belonging to
different emotion categories. Another remarkable observation is that in this scenario the
accuracy for joy is even higher than for ground truth speech which implies that the proposed
model mostly generates utterances where the conveyed emotion is clearly recognizable. In
contrast, for the baseline the predicted emotion categories are mostly sadness and neutral,
showing that there is hardly any prosodic variation in generated speech irrespective of
the emotional content of the input text. These observations are further confirmed by the
calculated Cramér’s V values which demonstrate strong association between underlying
emotions and predicted ones for the proposed system, but none for the baseline.

Results from emotion labeling and valence-arousal annotations by humans in the subjective
evaluation for the female speaker allow similar conclusions, although not as evidently. In
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ground truth speech, the labeled emotions align well with the ones provided in the dataset.
The only exception is sadness which is more often labeled as neutral. The distribution of
valence-arousal ratings shows similar results with emotions being placed in space as could
be expected, e.g. anger has a very high arousal value and negative valence. A comparable
distribution can also be found in Russell (1980). The emotion labeling results regarding the
baseline reveal that speech produced in the female speaker’s voice is primarily perceived
as neutral. This is further supported by the valence-arousal ratings which are much more
centered around the origin. In contrast, for the proposed system a respectable alignment
between provided prompts and perceived emotion in speech can be observed which is
supported by the association strength marked by Cramér’s V. Especially high agreement is
present for anger as well as for neutral and sadness when using the same prompt as the
input text. It is noticeably that speech generated with joyful prompts is most frequently
judged as neutral which might indicate that there the degree of emotional intensity is
quite low for this emotion. Another explanation could be that it is generally harder for
participants to distinguish joyful from neutral speech compared to e.g. angry speech since
the prosodic properties are more similar. Furthermore, when combining prompts and
input texts from different emotion categories, the association strength decreases but is still
found to be significant. A plausible explanation for this observation could be that although
participants are asked to rate the speech emotion independently from the semantic content
of the utterance, it probably still influences their decision since it is almost impossible
to completely ignore it. Most remarkably in this scenario, speech produced using angry
prompts is still most frequently judged accordingly signifying that the prosodic properties
are modeled appropriately and are well distinguishable from the other emotion categories.
The valence-arousal ratings for speech samples generated with angry prompts are rated
even more extreme than for ground truth speech.

For the male speaker, human emotion labeling results and valence-arousal ratings are quite
different to those of the female speaker. While the association strength for ground truth
speech is the highest, the baseline emits a score similar to the proposed system. If looking
at the confusion matrices for individual emotions it can be observed that synthesized
speech for the male speaker is primarily judged as neutral or sad. Interestingly for ground
truth speech, angry utterances are also mostly labeled as neutral and similar to the female
speaker sadness is often judged as neutral as well. Considering the excellent results from
emotion recognition supporting the tendency of results for the female speaker, it can be
hypothesized that these observations might be a speaker specific issue. The male speaker
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might have a speaking style emitting prosodic properties that are generally perceived as
neutral or sad. Additionally, it is possible that the emotions are not realized as intense as
by the female speaker, causing the TTS model to produce more neutral sounding speech.
Moreover, it has to be emphasized that in the subjective evaluations only one utterance
from each speaker per emotion category is presented to the participants. Although these
sentences have been selected manually, it might still occur that the results are influenced by
sentence specific effects. More test sentences would be required to obtain more conclusive
and reliable results.

Under consideration of the high accuracy scores from emotion recognition and the high
association strengths of human emotion labeling for the female speaker in subjective
evaluation, especially when compared to the baseline, it can be claimed that the proposed
TTS system has profound prompting capabilities. The discussed results provide high
evidence that the prosodic properties of generated speech can be accurately controlled by
providing appropriate natural language prompts.

Furthermore, this conclusion is supported by the A/B preference test conducted in
subjective evaluation. For more than half of the cases the proposed system is preferred over
the baseline with respect to the adequateness of prosodic properties in generated speech.
The baseline is only preferred in 34.45% of the cases whereby a large proportion of those
are scenarios where neutral speech is expected, which is typical to be produced by the
baseline.

In summary, the results indicate that hypotheses 2, 3 and 4 can be accepted. The prosodic
parameters of speech and the conveyed emotional state are controllable by providing
suitable prompts. Moreover, the emotional content of the prompts is highly correlated to
the prosody and conveyed emotion of synthesized speech. Finally, semantically similar
prompts, i.e. prompts of the same emotion category, result in similar prosody and conveyed
emotion.

While there is recent work that also achieves prosodic controllability through natural
language prompts, the work in this thesis follows an approach that is different in several
aspects. Kim et al. (2021a); Shin et al. (2022); Guo et al. (2022b); Liu et al. (2023) and
Yang et al. (2023) rely on datasets with manually provided annotations of style descriptions.
It might be expensive and time consuming to collect such annotations, especially for large
TTS datasets. Further, the obtained style descriptions might be restricted in their form and
follow similar patterns which constrains the formulation of useful prompts by the user

89



during inference. Approaches that solely rely on the input text to control the prosody (Wu
et al., 2022; Mukherjee et al., 2022)) assume that the prosodic properties of the audio are
related to the content of the utterance itself. While such a connection might be present in
the audio-book domain to some extent, it cannot be assumed in general which has been
observed by Mukherjee et al. (2022). Besides that, even in audio-books the prosody of an
utterance might often depend on surrounding context sentences or the impersonation of
specific characters by the voice actor.
The proposed approach avoids the construction of new datasets by combining existing
emotional speech and text corpora, further obtaining high correlation between prompts
and prosody which is crucial for TTS training. This technique is inspired by Tu et al.
(2022) and extended in the aspect that appropriate prompts are selected randomly from
a large pool which is expected to increase the generalization capabilities of the model
since a lot more prompts are seen during training. Moreover by doing so, there is no
risk of establishing connections between utterances and specific prompts. As a further
distinction, the training strategy is applied to a TTS system with dedicated duration, pitch
and energy predictors, potentially improving overall prosodic controllability. Finally, in
contrast to Tu et al. (2022) which model speaker identities within the prompt, the proposed
approach effectively combines prompt and speaker embeddings. Hence, this makes it a
promising avenue for potential future research in the field of cross-speaker style transfer
and zero/few-shot speaker modeling.

7.1.4 Emotional Style Transfer

The results from prosodic similarity tests, where a fixed prompt was used across different
utterances, demonstrate very high scores. This suggests that the speech emotion caused
by a prompt is effectively transferable to arbitrary utterances. Furthermore, these results
demonstrate that the generated speech prosody heavily relies on the provided prompt while
being completely unaffected by the input text itself. In addition, it could be seen as a
possibility to clone the speaking style of one synthesized utterance and apply it to another.
With regard to individual emotion categories, similarity scores for utterances produced
with a joyful prompt are comparably lower. This might indicate that these prompts do
not result in speech samples with well recognizable speaking styles or emotional states,
making it harder for participants to judge them.
Nonetheless, these overall high similarity scores further suggest that hypothesis 4 can be
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accepted. Emotional Style Transfer is further investigated in the spectrogram case studies
in section 7.2.2.

7.2 Qualitative Analysis

7.2.1 Adequateness of fine-tuned Sentence Embedding Extractor

The sentence embedding extractor as described in section 5.3 is claimed to be suitable for
capturing the emotional content of sentences since it is fine-tune on the task of emotion
prediction. The usefulness of extracted embeddings is further investigated by producing
t-distributed stochastic neighbor embedding (t-sne, Hinton and Roweis (2002)) plots. Figure
29a shows sentence embeddings extracted from emotional prompts used during training as
points in a 2-dimensional space. Figure 29b analogically visualizes the test sentences used
for evaluation. The color of each point in the figures indicates the corresponding emotion
label. It can be seen that the sentence embeddings build clusters in the embedding space
which are well separable, verifying their usefulness. In contrast, sentence embeddings
extracted from the [CLS] token of a standard BERT model (Devlin et al., 2019) (figure 30a)
as well as embeddings produced by a sentence transformer model (Reimers and Gurevych,
2019) (figure 30b) have mixed up distributions with respect to the emotion labels. This
demonstrates that they do not capture emotional content per se.

7.2.2 Spectrogram Case Studies

Spectrogram case studies are presented in order to further investigate the influence of
prompts for the duration, pitch and energy predictors as well as the emotional style transfer
achievable through prompting. The speaker identity of the female speaker which is also
used for subjective evaluation is chosen for this purpose.

Figure 31 illustrates spectrograms with corresponding pitch contour in red for two
content-wise neutral utterances generated with identical emotional prompts for anger
and surprise respectively. It can be seen that the produced pitch curves are very similar for
both sentences. Regarding anger, pitch goes moderately down at the end of the sentence
whereas for surprise it increases drastically making the sentence sound like a surprised
question.
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(a) Prompts used for Training (b) Prompts used for Evaluation

Figure 29: T-SNE Plots of applied Sentence Embeddings

Extracted with the RoBERTa model fine-tuned on emotion prediction

(a) Extracted with BERT (b) Extracted with Sentence Transformer

Figure 30: T-SNE Plots of alternative Sentence Embeddings for Training Prompts

Figure 32 shows spectrograms for the same utterance generated with semantically similar
prompts for the two emotion categories respectively. As can be seen, the produced
spectrograms and pitch contours look almost identical which verifies that semantically
similar prompts result in similar prosody.
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(a) Prompt: ”I am so angry!” (b) Prompt: ”I am so angry!”

(c) Prompt: ”What a surprise!” (d) Prompt: ”What a surprise!”

Figure 31: Spectrograms generated with identical prompts

Horizontal lines in red indicate the pitch of each phoneme.
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(a) Prompt: ”I am so angry!” (b) Prompt: ”He was furious.”

(c) Prompt: ”What a surprise!” (d) Prompt: ”She didn’t expect that.”

Figure 32: Spectrograms generated with semantically similar prompts

Horizontal lines in red indicate the pitch of each phoneme.
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8 Limitations and Future Work

While the TTS system proposed in this thesis allows to accurately obtain the desired
emotional prosody through natural language prompts with key advantages over previous
approaches, it also has several limitations.

As for now, it has been found in preliminary testing, that using pre-trained speaker
embeddings during training instead of a look-up table does not work well. The main
problem thereby is that such speaker embeddings seem to contain speaking style related
information in addition to speaker timbre. This additionally influences the speech prosody,
dampens the effect of the prompt or mixes it up completely. In future work it could
be explored if advanced techniques for disentangling speaker timbre from prosodic
information in speaker embeddings (e.g. An et al. (2022)) provide applicable solutions.
This would be beneficial in the sense that it allows to synthesize utterances in the voice of
speakers unseen during training in a zero-shot or few-shot manner.

Furthermore, the proposed model is not capable of performing cross-speaker emotion or
style transfer since the prediction of prosodic parameters is highly dependent on the joint
representation of specific speaker and prompt embeddings. However, there are various
approaches which tackle this problem and could be adopted for the system in future work
(e.g. Wu et al. (2021)).

Another limitation that arises is that there is no way of accounting for emotional intensity
since this information is not present in the training data. It would be required to somehow
obtain the intensity of both speech and textual prompt and match them accordingly such
that the model can learn this correspondence.
Apart from that, it is not possible to model multiple emotions within a sentence, because
the prosodic parameters are modeled over the whole utterance. However, this scenario
might only appear when synthesizing long paragraphs which then could also be splitted up
into smaller parts.

In future research the proposed TTS system could also be extended to multiple languages.
The IMS Toucan Speech Synthesis Toolkit already provides the necessary components,
however one would have to find suitable annotated multi-lingual expressive speech and
text datasets. Multi-lingual language models which could be used for sentence embedding
extraction are publicly available (Artetxe and Schwenk, 2019; Mao and Nakagawa, 2023),
although, it might be required to fine-tune them on e.g. emotion prediction to make them
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useful for TTS training.

Finally, besides training the TTS system specifically on emotional speech, using other
data such as audio-books could be explored similarly. Thereby, a method would have to
be developed that obtains speech samples and textual prompts with high correspondence.
Furthermore, context sentences of an utterance could be considered as candidate prompts.
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9 Conclusion

This thesis proposes a text-to-speech system that is conditioned on sentences embeddings
extracted from natural language prompts in order to make the prosodic parameters of
generated speech controllable in an intuitive and effective way. The system builds on
a baseline which combines architectural designs from several TTS models proposed in
previous work and provides benefits regarding speed, data efficiency, robustness and
controllability. The proposed integration scheme concatenates speaker and sentence
embeddings by modeling inter-dependencies between them before inducing the joint
representation into the model’s encoder, decoder and prosody predictors. This approach is
simple and adds only little computational cost in comparison to the baseline. Furthermore,
a training strategy is developed that operates on merged emotional speech and text datasets
and varies prompts in each iteration, increasing the generalization capabilities of the model
and reducing the risk of over-fitting. In addition, combining existing datasets eliminates the
necessity of manually providing style descriptions along with the speech data. Extensive
objective and subjective evaluations on utterances generated from sentences of emotional
text datasets demonstrate the prompting capabilities of the conditioned TTS system. It
outperforms the baseline with regard to the degree of prosodic controllability as indicated
by emotion classification and A/B preference tests. Thereby, the emotional content of the
provided prompt is transferred accurately to the prosody of generated speech. Moreover,
prosodic similarity tests suggest that the produced prosody is solely inferred from the
prompt and not influenced by the input text. At the same time the system maintains precise
controllability of speaker identities, as indicated by cosine similarity scores, and overall
high speech quality and intelligibility, as suggested by collected mean opinion scores
and calculated word error rates. Besides a high correlation between prompts and speech
prosody in the training data, fine-tuning the language model, which is used for sentence
embedding extraction, has been found to be crucial. In this thesis a distilled RoBERTa
model, fine-tuned on the task of emotion prediction, has been applied and its adequateness
compared to e.g. standard BERT embeddings has been shown in T-SNE plots.

The proposed TTS system has several limitations which could be addressed in future
research. Currently, the model is not capable of synthesizing utterances in the voice of
speaker unseen during training or performing cross-speaker style transfer. Furthermore, it
cannot account for emotional intensities or mixed emotions. Finally, the system could be
extended for multi-lingual purposes.
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10 Appendix

10.1 Questions of the Subjective Listening Test
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10.2 Box-Plots Mean Opinion Score

(a) female (b) male

Figure 33: Mean Opinion Scores, Ground Truth

(a) female (b) male

Figure 34: Mean Opinion Scores, Baseline

102



(a) female (b) male

Figure 35: Mean Opinion Scores, Proposed
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10.3 Valence-Arousal Ratings

anger joy neutral sadness surprise

Ground Truth female 2.31 4.06 3.53 2.88 3.50
male 3.40 4.56 3.58 2.62 3.58

Baseline female 2.53 2.88 3.00 2.13 2.71
male 2.75 2.40 3.25 2.41 2.29

Proposed Same female 1.44 3.31 3.00 1.88 3.25
male 2.31 4.00 2.56 2.29 3.76

Proposed Other female 1.65 3.00 2.06 2.59 3.67
male 3.00 2.67 2.40 2.29 2.47

Table 9: Valence Ratings

anger joy neutral sadness surprise

Ground Truth female 5.00 3.50 2.53 2.00 4.25
male 3.44 4.00 2.81 1.67 4.59

Baseline female 3.19 2.31 3.00 3.06 2.47
male 3.50 2.25 3.50 2.18 1.71

Proposed Same female 4.40 2.63 2.12 1.80 4.00
male 2.40 3.25 2.25 2.29 3.44

Proposed Other female 4.53 3.19 2.47 2.40 4.21
male 3.38 3.50 1.94 1.94 4.00

Table 10: Arousal Ratings
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10.3.1 Box-Plots Prosodic Similarity

(a) Female (b) Male

Figure 36: Prosodic Similarity Ratings

10.4 Box-Plots Speaker Similarity

(a) Baseline (b) Proposed

Figure 37: Speaker Similarities
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10.5 Box-Plots Word Error Rate

(a) Ground Truth (b) Baseline

(c) Proposed

Figure 38: Word Error Rates
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