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Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst habe und dabei keine
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(Vanessa Richter)

1Non-binding translation for convenience: This text is the result of my own work, and any material from published
or unpublished work of others which is used either verbatim or indirectly in the text is credited to the author including
details about the exact source in the text. This work has not been part of any other previous examination, neither
completely nor in parts. It has neither completely nor partially been published before. The submitted electronic
version is identical to this print version.

V. Richter



Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Problem Description & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Ethical Considerations in Remote Health Assessments . . . . . . . . . . . . . . . 7

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Feature Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 System & Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Multimodal Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Amyotrophic Lateral Sclerosis . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Age-Correction & Sex-Normalization . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Redundancy Analysis & Effect Sizes . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Evaluation & Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Demographics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Age trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.2 Sex differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Redundancy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Effect Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Classification & Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4.2 Multiclass Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2



8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3



Abstract

Utilizing computer vision and speech signal processing to assess neurological and psychi-
atric conditions has the potential to help detecting diseases or monitoring their progression
earlier and more accurately. However, retrieving the required information from speech and
facial modalities presents the challenge of finding features that generalize across studies with
high sensitivity and specificity. A major task in finding such features is dealing with overfit-
ting to data biases in small sample sizes and redundancy in the analysis of high-dimensional
feature sets. It is also critical to ensure interpretability of these methods since the results of
health screening tools must be explainable to clinicians and patients.
In this thesis, we present a transparent feature selection pipeline that specifically addresses
demographic biases and feature redundancy. Our method provides interpretable insights
by quantifying feature contributions to classification results using Shapley values. More
specifically, we assessed age trends of the entire healthy control cohort and corrected the
feature values based on the determined age coefficients. Sex-specific z-scoring was used to
account for differences between males and females. To address feature redundancy, we used
hierarchical clustering to group features into sensible domain-specific clusters, such as voice
quality, jaw movement, or mouth symmetry. These clusters together with feature effect sizes
were used in the classification step to select only the most salient features as input to the
classifier. Finally, Shapley values were calculated to unwrap model decisions and evaluate the
contribution of individual features.
We used datasets on neurological (bulbar pre-symptomatic and bulbar symptomatic ALS) and
mental (depression and schizophrenia) diseases as well as a healthy control dataset. The data
was collected in a real-world scenario, where participants engaged with a virtual agent that
guided the participants through a set of tasks.
We apply the presented feature selection method including Shapley-based analyses on these
datasets. Our analysis provides valuable insights into feature contribution among binary and
multiclass classification experiments and reveals shared characteristics across disorders.
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1 Introduction

1.1 Problem Description & Motivation

One out of eight individuals in the world lives with a mental health disorder, but most people
do not have access to effective care 2. Moreover, disorders of the nervous system are the second
leading cause of death globally (Feigin et al., 2019). The development of clinically valid digital
markers for neurological and mental disorders that can be extracted automatically could help
improve patients’ lives by releasing the capacity of clinicians and physicians and providing an
objective and faster assessment than standard clinical judgments. By that, it aids early diagnosis
while making health care more accessible and affordable. This poses a great opportunity for
improving patient care.
Leveraging information from multiple signal modalities (such as speech, natural language, motor-
behavior and video) to distinguish patients from healthy controls or to monitor progression in
a particular disease comes with the challenge of finding features that generalize across studies
and that are not only sensitive but also specific to a disease. A major challenge in finding such
features is dealing with overfitting as well as redundancy when analyzing high-dimensional feature
sets. Furthermore, an exhaustive search of all possible feature combinations to find the subset
maximizing the classification performance is not feasible when it comes to feature sets containing
hundreds or thousands of potential markers.
Self-supervised learning has been found an effective method to achieve excellent results with
raw audio data without requiring costly feature engineering or a large amount of labeled data
(Baevski et al., 2020; Hsu et al., 2021). In the area of speech recognition, Baevski et al. (2020)
demonstrated that latent speech representations learned from speech audio alone and a subsequent
fine-tuning on transcribed speech can outperform the best semi-supervised methods. At the same
time, it is conceptually simpler.
However, in the clinical setting, it is critical to ensure interpretability of methods, as the results
of health screening tools should be explainable to physicians, clinicians, and patients. Learned
feature representations do not serve this purpose. In general, classification models are a useful
tool to assess the discriminatory power of the features under investigation, but maximizing their
performance is not an isolated aim. The main objective is to identify multimodal biomarkers for a
disease, which is only possible through careful, manual and transparent feature development. This
is related to the fact that the selected features should be clinically meaningful.
The performance of Machine Learning (ML) models typically increases with the size of the

2https://www.who.int/news-room/fact-sheets/detail/mental-disorders, accessed 11/7/2022
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dataset. However, Berisha et al. (2022) found a counter-intuitive negative association between
classification accuracy and sample size in clinical speech ML literature, implying that the clas-
sification performance decreases with larger samples. As large sample sizes should help the
model to generalize, their findings indicate that the good performance of models trained on small
sample sizes might rather be due to model overfitting and publication bias than disorder-relevant
features. More thorough research towards pairing clinically valid feature selection with adequate
discrimination performance of classification needs to be done, as such models are intended to be
used in a sensitive area where inaccurate results impact the lives of the individuals concerned,
making the stakes extremely high in case of erroneous results. These findings further suggest that
a careful clinically-supported, individually-validated feature selection may be essential for dealing
with small sample sizes as such features are more likely to help the model to generalize (Berisha
et al., 2021).
In relation to this, another challenge in the mental and neurological health space is that datasets
are often not only small but also unbalanced (Aleem et al., 2022). A major difficulty is to dis-
tinguish between features that are predictive of a particular disease and those that are related to
idiosyncrasies of the dataset. It has been found that not only speech characteristics, but also facial
behavior change with age (Hunter et al., 2012; Malatesta et al., 1987) and differ by sex (Dimberg
and Lundquist, 1990). Moreover, classification accuracy based on facial behavior has been found
to vary between males and females (Drimalla et al., 2020). For example, what is considered a
healthy characteristic in an elderly individual may indicate a disorder in a young adult. Therefore,
it is important to consider these demographic variables when selecting features. In this thesis,
we correct for trends in both sex and age, aim at avoiding redundancy while ensuring statistical
validity, and use Shapley values to uncover model decisions in binary and multiclass classification
experiments across mental and neurological disorders. To our knowledge, no study to date has
examined the selection of disorder-relevant multimodal biomarkers in a real-world dataset using
such a comprehensive but transparent method.
The thesis is structured as follows: In Section 2, we give a brief overview of feature selection
approaches and explanation of Shapley values, which we use for the purpose of model inter-
pretability. A summary of related work is given in Section 3. In Section 4, we provide information
about the dataset creation process. This is followed by a description of the proposed pipeline in
Section 5. Section 6 goes into detail about our findings on demographics, redundancy as well
as classification performance and feature contributions. Section 7 highlights the most important
findings and discusses those in more detail. We conclude this thesis with a summary in Section 8.
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1.2 Ethical Considerations in Remote Health Assessments

Remote health assessments require a very careful ethical handling. It is crucial that such as-
sessments respect the autonomy of the patient. In addition, they should also be interpretable
and explainable to provide adequate information to support a physician, but not to replace their
diagnoses (Batliner et al., 2022). In addition to autonomy, beneficence, nonmaleficence and justice
are among the four main ethical principles that should be respected (Varkey, 2020).

Autonomy This principle includes the support of informed consent, truth-telling, and confi-
dentiality (Varkey, 2020). The dialog system that we use for data collection is HIPAA compliant
and the research studies are approved by Institutional Review Boards (IRB)3 to ensure the users’
privacy and data security. Autonomy is ensured by requiring users’ to give their informed consent
before study participation.

Justice In health care, most pertinent is distributive justice (Varkey, 2020) as it refers to the
fair, equitable, and appropriate distribution of health-care resources. In this regard, remote health
assessment could be a facilitating and less costly application for patient monitoring, and thus
provide a better accessibility for individuals.

Beneficence and nonmaleficence These principles state that applications should promote
patients’ benefit and welfare (beneficence) whereas harm should be avoided (nonmaleficence). In
this thesis, our goal is to develop a robust feature selection pipeline that helps in objectively and
reliably assessing clinically valid and interpretable biomarkers that aim at supporting clinicians
in making accurate, objective and potentially faster diagnoses. We avoid harm by carefully
researching the clinical significance of potential biomarkers and by not providing a diagnosis,
neither to patients nor clinicians. Evaluated features and classification models are used for research
and to inform clinicians.

3IRBs use a group process to review research protocols and related materials. The aim of IRB review is to ensure
the protection of rights and welfare of humans participating in the research. https://www.fda.gov/about-fda/center-
drug-evaluation-and-research-cder/institutional-review-boards-irbs-and-protection-human-subjects-clinical-trials
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2 Background

2.1 Feature Selection Methods

Feature selection methods can be divided into four broad categories: filter, wrapper, embedded and
hybrid methods while the latter combines filter or embedded with wrapper techniques (Kaur et al.,
2021). Since hybrid approaches use a combination of the three basic methods, only an overview
of the latter is provided here. Each type comes with different advantages and disadvantages in
terms of performance, interpretability and cost.

Filter methods Filter methods evaluate the relevance of a feature independent of a (classifica-
tion) model. Here, features are selected based on a defined (ranking) criterion and threshold, such
as the statistical relationship between the input feature and the target variable.
Filter based approaches can further be categorized as univariate or multivariate, as summarized in
Pudjihartono et al. (2022). In univariate approaches such Pearson correlation, euclidean distance,
or the Mann-Whitney U (MWU) test features are evaluated and selected individually while in
multivariate approaches, such as mutual information feature selection (MIFS) (Battiti, 1994) or
minimal-redundancy-maximal-relevance (mRMR) (Peng et al., 2005), features are considered
simultaneously. While multivariate approaches are able to deal with redundancy, they are more
computationally expensive than univariate approaches and thereby, less effectively scalable to
high dimensional data. In contrast, univariate approaches are fast and offer a high level of in-
terpretability as they provide a straightforward ranking of features based on their relevance to
the target variable. This allows for easy identification of the most important features. The use
of interpretable metrics, such as p-values, Effect Size (ES), or correlation coefficients, further
improves the interpretability of univariate approaches since these metrics provide direct insight
into the statistical significance or strength of the relationship between each feature and the target
variable.
This makes the feature selection process transparent (Kuhn and Johnson, 2013) and even high-
dimensional feature sets can be processed with low cost. However, both univariate and multivariate
filtering approaches do not account for model performance. Therefore, the filtered features may
not be the subset with the maximum discriminatory power to distinguish between cohorts.

Wrapper methods Wrapper methods perform feature selection based on model performance of
the chosen classifier. Features are added (forward feature selection) or removed (backward feature
selection, recursive feature elimination) in order to find the optimal combination for maximizing
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the classification performance (Kuhn and Johnson, 2013). A popular wrapper-based method is
Recursive Feature Elimination (RFE). This method starts with fitting a ML algorithm to the whole
feature set and removes the least important features until a specified number of features is reached.
After each feature removal step, the model is refitted. Features are ranked by importance based on
the chosen estimator (Kuhn and Johnson, 2013). Among the most popular estimators, frequently
used in the areas of natural language processing and bioinformatics, are linear Support Vector
Machines (SVM) (Granitto et al., 2006; Lin et al., 2012; Bedo et al., 2006). More specifically, a
SVM is trained using all features initially, while, as previously explained, subsequently eliminating
the least important feature. Here, the importance of each feature is assessed based on the absolute
value of their corresponding weights within the SVM model.
Wrapper methods have been shown to result in higher predictive performance compared to
filter methods (Wah et al., 2018; Ghosh et al., 2020). However, since optimizing classification
performance is the primary goal of wrapper methods, there is an increased risk of overfitting and
the selection of features is less interpretable than a filter-based approach. In addition, computation
time increases significantly with the size of a feature set and finding an optimal combination for
classification is not guaranteed as an exhaustive search across all possible feature combinations is
usually not feasible.

Embedded methods Embedded methods perform automatic feature selection when the model
is trained. Random forests Random Forest (RF) are an example of an embedded feature selection
classification model. Those are based on a large number of individual decision trees that form an
ensemble. Each decision tree in the RF generates a class prediction and the class with the majority
vote is the one that the model predicts (Ho, 1995).
Neural networks are another example of an embedded method that can also perform feature
selection implicitly. The process of training a neural network involves adjusting the weights
and biases that connect the network’s layers. Through the optimization process, the network
tunes these parameters to minimize the difference between its predicted and the true output. If
a particular weight becomes close to zero during training, it indicates that the corresponding
feature is less relevant or redundant for the model’s predictive performance. Consequently, the
neural network can effectively eliminate or deemphasize less important features by tuning their
associated parameters close to zero and emphasize features.
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2.2 Shapley Values

As interpretability is important for clinical applications and ML models are less interpretable by
nature, it is crucial to make their decisions more transparent.

The concept of Shapley values allows insight into the contribution of each feature to the final
decision. It has its roots in the cooperative game theory literature in the 1950s (Shapley, 1951).
Originally, it was introduced to determine a player’s contribution to the outcome of a game. For
our scenario, a feature could be seen as a player and the model’s prediction as the outcome of a
game. Hence, we can interpret the Shapley value as the average marginal contribution of a feature
to the model prediction.
We follow Holzinger et al. (2022) for a formal introduction. The Shapley value relies on a value
function eS which is defined as the expected value of the model’s output f(x) when a specific
(x⇤) subset of features xS , where S represents the subset of feature indexes, is chosen:

(1) eS = E[f(x)|xS = x⇤]

The marginal contribution of a feature i compared to a set of features S ✓ {1, . . . , p}\{i} is
assessed by analyzing how adding it to the set S affects the value of the function eS . The Shapley
value �(i) of feature i is then calculated as a weighted average of the marginal contributions for
all possible subsets S:

(2) �(i) =
X

S✓{1,...,p}\{i}

1

|S|!(p� 1� |S|)!p! (eS[{i} � eS)

Note that the sum of all Shapley values is the model prediction:

(3) f(x⇤) = e; +
X

i

�(i)

A strong advantage of Shapley values comes with the fact that they are based on a solid theory as
they fulfill several desired axioms such as monotonicity, symmetry and linearity. However, the
concept is computationally expensive as the number of possible coalitions increases exponentially
with the number of features.
SHapley Additive exPlanations (SHAP) by Lundberg and Lee (2017) is a popular XAI framework
and an adaptation of Shapley values that aims at providing model-agnostic local explainability.
The toolkit is provided on Github4 and used for our analysis.

4https://github.com/slundberg/shap/blob/master/docs/index.rst
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3 Related Work

Feature selection methods for dimensionality reduction of clinical features have been widely
studied in recent decades (Xie and Wang, 2011; La et al., 2012; Raymer et al., 2003). However,
the performance of such methods is considerably variable for different datasets. For example,
Bommert et al. (2020) analyzed 22 filter methods based on 16 high-dimensional classification
datasets from various domains. In terms of classification performance, they found that there is
no subset of filter methods that performs better than the whole rest of the filter methods on all
datasets. Other studies have developed their own methodology for feature selection. Kala et al.
(2014) introduced a method called Multi-Filtration Feature Selection (MFFS) which consists of a
four-stage procedure including feature extraction, feature subset selection, feature ranking and
classification. Their method adjusts the parameter variance coverage and the resulting feature
selection quality is evaluated in terms of maximizing the classification accuracy across several
classifiers trained and evaluated on synthetic medical datasets. Their method shows promising
performance and robustness across the examined datasets and classifiers. The authors stress the
importance of redundancy removal as they argue that classification performance is proportional
to the removal of redundant features. However, the suitability for small, real-world datasets
was not investigated in this study. In addition, their main aim was to optimize for classification
performance rather than clinical validity. Moreover, such feature selection methods have usually
been developed and evaluated for biomedical data, which are of a different nature than speech and
facial features.
Recently, several speech and facial markers extracted with a multimodal dialog system have
been shown to yield statistically significant differences between patients and healthy controls in
neurological (Neumann et al., 2021; Kothare et al., 2022) and mental disorders (Richter et al.,
2022) as well as moderate to high test-retest-reliability as a measure of robustness within the
patient cohort. Furthermore, such features have been found to be useful to discriminate between
patients and healthy controls with high specificity and sensitivity (Richter et al., 2022; Kothare
et al., 2022; Cummins et al., 2013). Since these studies were conducted with limited sample
sizes, the models are more susceptible to being impacted by group-specific characteristics, other
than the investigated health condition. To alleviate such effects, several studies on visual and
acoustic biomarkers ensured that patient and healthy control cohorts are age- and sex-matched
(Kothare et al., 2022; Lammert et al., 2017). Others do not reference this factor at all (Williamson
et al., 2016). Jiang et al. (2017) accounted for sex differences through sex-dependent modeling
(GDM), i.e., male and female subjects were modeled separately. They investigated the influence
of speech types, specifically interview, picture description, and reading, along with emotions in
depression classification by using the classifiers K nearest neighbors (KNN), Gaussian mixture
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model (GMM), support vector machine (SVM), and an ensemble method. 170 subjects (85 healthy
controls and 85 participants with depression) participated in the study. They performed principal
component analysis (PCA) for dimensionality reduction of the feature vector and argue that most
of their features have been verified by previous research. Feature types were weighted differently
according to their contribution to the detection of depression. Their results show differences in
classification performance by sex with an accuracy of 80.30% for males and 75.96% for females.
While they show decent classification performance in depression detection and demonstrate that
performance varies by sex, they do not account for other important demographic variables such as
age. In addition, their approach requires separate modeling of males and females.
As Falahati et al. (2016) point out, two popular approaches to take age, or other confounding
variables, into account are either (1) using age- and sex-matched study groups or (2) stratifying
the data into more homogeneous subgroups. For the latter, groups may be divided based on age,
sex or both. However, the major drawback of (1) and (2) is that the data set for the respective
analyses is constrained which is not desirable, in particular when dealing with small data sets.
Another approach to account for demographics is to include information as auxiliary tasks for
classification. Here, attention-based multi-task learning has been shown to be effective in several
related areas such as NLP (Lan et al., 2017), emotion recognition from speech signals (Li et al.,
2019), or image classification (Liu et al., 2021). More specifically, Li et al. (2019) included sex
prediction as an auxiliary task to the principal one of emotion classification. In a multi-task setting,
they deployed a neural network consisting of stacked convolutional, BiLSTM and self-attention
layers for emotion classification based on speech. Their results suggest that the inclusion of sex
information helped the model to better solve the main task of emotion prediction. However, to
effectively learn from multiple tasks, neural networks require a substantial amount of data, which
is often not feasible to obtain in a real-world medical setting.
Very recently, Muhammad et al. (2023) explored the development of an accurate and explainable
ML pipeline for early detection of Parkinson’s disease using multimodal time-series data. Features
were extracted from the Parkinson’s Progression Markers Initiative (PPMI) real-world dataset and
included participant characteristics, biospecimen, medical history, motor, and non-motor function
data. Their framework aims at being accurate and explainable. To select the most informative
feature sets, they used recursive XGBoost and SULOV (Synthetic Unlabeled Local Outlier Voting)
methods. They applied several preprocessing steps including data cleaning and balancing samples.
A set of well-known classifiers such as support vector machines, RFs and light gradient boosting
machines was employed. To provide model interpretability, they utilized the SHAP framework.
Additionally, the authors implement LIME and SHAPASH local explainers, to further expanding
the model’s interpretability. The results showed that the LGBM model performed well in both the
three-class and four-class prediction tasks, especially when using the non-motor function modality.
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The fusion of non-motor and motor function modalities further improved the LGBM model’s
performance. The consistency of these explainers was explored, which they claim resulted in
accurate and explainable classifiers. They also show that the calculated SHAP values provided
valuable insights into the importance of features.
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4 Data

An overview of the dataset creation process is given in Figure 1.

Speech

Facial

Virtual Agent Tina

Healthy controls

BP ALS

System and Protocol Multimodal
Feature Extraction

Datasets

Patient

1 2 3

BS ALS

Schizophrenia

Depression

Figure 1: Overview of feature extraction and dataset creation.

4.1 System & Protocol

The data is collected using NEMSI (Neurological and Mental health Screening Instrument)
(Suendermann-Oeft et al., 2019), a multimodal dialog system for remote health assessments.
Study participants are guided by the virtual agent Tina through various tasks that are designed to
elicit speech, facial, and motor behaviors. Having a virtual agent to elicit participants’ behavior
allows for scalability while providing a natural but controlled and objective interview environment
and data collection. Users are provided with a website link to the secure screening portal and
login credentials by their liaison (physician, clinic, referring website or patient portal). Each
session starts with a microphone, speaker, and camera check to ensure that the user has given their
device the permission to access camera and microphone, is able to hear Tina’s instructions and the
captured signals is of adequate quality. After passing the checks, the user can start the conversation.
The session starts with Tina introducing herself and setting the stage. In the following screening
part of the session, she involves users in a structured conversation that consists of exercises
(speaking tasks, open-ended questions, motor abilities) to elicit speech, facial and motor behaviors
relevant to the type of disease being studied.
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In this work, we focus on tasks that are shared across study protocols: (a) sentence intelligibility
test, (b) alternating motion rate diadochokinesis (DDK), (c) read speech (Bamboo task) and (d) a
picture description task. For (a) participants were asked to read individual speech intelligibility
test (SIT) sentences of varying sentence lengths (5-15 words), (b) required reading a longer
passage (Bamboo). To assess Diadochokinetic (DDK) skills (c), participants were asked to repeat
a pattern of syllables (puh-tuh-kuh /pataka/) as fast as they can until they run out of breath and (d)
prompted users to describe a scene in a picture which was shown to them on a screen. These tasks
are inspired by previous work (Silbergleit et al., 1997; Tomik and Guiloff, 2010; Novotny et al.,
2020).

4.2 Multimodal Feature Extraction

We extract features of multiple modalities as shown in Table 1 that are either directly supported by
clinical findings or were found to have predictive potential such as percent pause time, fundamental
frequency or general quantitative and qualitative measures of facial expressivity (see for example
Pueschel et al. (1998) for schizophrenia or Gaebel and Woelwer (2004) for schizophrenia and
depression).

In terms of extracting facial features, the mediapipe face mesh algorithm5 allows us to calculate
468 facial landmarks in real-time. More specifically, MediaPipe’s Face Detection is based on
BlazeFace (Bazarevsky et al., 2019) and determines the (x, y)-coordinates of the face for every
frame. Subsequently, facial landmarks are extracted using MediaPipe Face Mesh. We select 14 key
landmarks, shown in Figure 2 to compute functionals of facial behavior. Features are normalized
by dividing them by the inter-caruncular distance, which is the distance between the inner canthi of
the eyes (depicted as RELC and LERC in Figure 2). In terms of between- as well as within-subject
analyses when the same position relative to the camera cannot be assumed, Roesler et al. (2022)
found this to be the most reliable method.

Speech metrics are computed using Praat (Boersma and Van Heuven, 2001) and comprise the
domains of energy, timing, voice quality and frequency. Pairing these metrics with tasks (examples
of those described in the following paragraph) results in a high-dimensional set of > X features.

A complete list of facial metrics and the abbreviations used is displayed in Section 4.2.

A more detailed description of speech features is shown in Section 4.2,
5https://google.github.io/mediapipe/
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Figure 2: Illustration of the 14 facial landmarks used to calculate facial features.

Domain Metrics

A
ud

io

Energy signal-to-noise ratio (SNR, dB)
Timing speaking & articulation duration/rate (sec./WPM)

percent pause time (PPT, %), canonical timing agreement (CTA, %)
Specific to DDK cycle-to-cycle temporal variability (cTV, sec.),

syllable rate (syl./sec.), number of syllables
Voice quality shimmer (%),

harmonics-to-noise ratio (HNR, dB), jitter (%)
Frequency mean, min & max fundamental frequency (F0, Hz)

V
id

eo

Jaw dynamics (velocity, acceleration & jerk)
Lower Lip dynamics (velocity, acceleration & jerk)
Mouth width, opening and symmetry measurements
Eye and eyebrows opening and displacement measurements

Table 1: Overview of speech and facial metrics.
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Metric Description

vJC_abs_avg mean jaw center (JC) speed
vJC_abs_max max. JC speed

vJC_max max. JC velocity downwards
vJC_min max. JC velocity upwards

aJC_abs_avg mean JC acceleration
aJC_abs_max max. JC acceleration

aJC_max max. JC acceleration downwards
aJC_min max. JC acceleration upwards

jJC_abs_avg mean JC jerk
jJC_abs_max max. JC jerk

jJC_max max. JC jerk downwards
jJC_min max. JC jerk upwards

vLL_abs_avg mean lower lip (LL) speed
vLL_abs_max max. LL speed

vLL_max max. LL velocity downwards
vLL_min max. LL velocity upwards

aLL_abs_avg/max mean & max. LL acceleration
aLL_max max. LL acceleration downwards
aLL_min max. LL acceleration upwards

jLL_abs_avg/max mean & max. LL jerk
jLL_max max. LL jerk downwards
jLL_min max. LL jerk upwards

eye_open_avg/max mean & max. eye opening
eyebrow_vpos_nt_avg/max mean & max. eyebrow displacement

open_avg/max mean & max. lip aperture
width_avg/max mean & max. lip width

S_avg/max mean & max. mouth surface area
S_ratio_avg mean mouth symmetry ratio

Table 2: Complete list of facial metrics and their abbreviations.

4.3 Datasets

For this thesis, we use control data of multiple studies and patient data on Amyotrophic Lateral
Sclerosis (ALS), schizophrenia and depression of which we extract features from speech and
facial modalities. Section 4.3 shows the number and age statistics of study participants for each
cohort (controls, schizophrenia, Bulbar symptomatic (BS) ALS and Bulbar pre-symptomatic (BP)
ALS) by sex group. As can be seen, the control cohort is with an overall mean age of 46.28 years
younger than both ALS cohorts (BS: 61.48 and BP: 60.09 years), but older than the schizophrenia
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Feature Description

SNR Ratio of the speech signal power to the background noise.
Articulation duration/ rate Duration/ rate of speech portions.
Speaking duration/ rate Duration/rate of speech and non-speech portions.
PPT Percentage of time during speech occupied by pauses.
CTA Timing agreement with the speech pattern of the virtual agent.
cTV Temporal variability between consecutive cycles of speech.
Syllable rate Number of syllables produced per second.
Number of syllables Total count of syllables in the speech signal.
Shimmer Variation in amplitude of the vocal folds during the speech signal.
HNR Measures the ratio of harmonics to noise in the speech signal.
Jitter Variation in the timing of consecutive pitch periods.
Mean F0 Average pitch of the speech signal.
Min. F0 Lowest pitch observed in the speech signal.
Max. F0 Highest pitch observed in the speech signal.

Table 3: Description of speech features.

(36.46 years) and depression cohorts (34.69 years). We observe that sex groups are unbalanced
for the control, schizophrenia and depression cohorts. While the schizophrenia cohort consists of
more male (75.6%) than female (24.4%) participants, the control as well as the depression cohort
include substantially more females than males.

An overview of the data (number of participants per sex and age statistics) used in this study is
given in Section 4.3. While some datasets for a disease may be small, there is a subset of tasks
that are shared across research studies. Since the data is collected in the same way (remotely with
a personal electronic device), we can create a larger dataset for the healthy population across
studies to get a more accurate representation of the properties of normative behavior. For the
larger dataset of healthy control subjects, we identify age-related trends as well as collinerarity of
metric-task-combinations. This information is used to correct control as well as patient feature
values from age effects and remove feature redundancies.

4.3.1 Schizophrenia

Schizophrenia is a chronic brain disorder that affects approximately 24 million or 1 in 300 people
(1 in 222 in adults)6 worldwide. According to the American Psychiatric Association (APA),

6https://www.who.int/news-room/fact-sheets/detail/schizophrenia, accessed 05/19/2023
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Cohort/ Sex Participants Sessions Mean Age; Std (Session Level)
Controls
Female 408 (63%) 655 (62.8%) 46.31; 16.37
Male 240 (37%) 388 (37.2%) 46.23; 16.03
All 648 1043 46.28; 16.24
Schizophrenia
Female 10 (24.4%) 19 (26.4%) 36.11; 9.41
Male 31 (75.6%) 53 (73.6%) 36.58; 10.12
All 41 72 36.46; 9.87
Depression
Female 66 (79.5%) 76 (79.2%) 34.61; 12.07
Male 17 (20.5%) 20 (20.8%) 35.00; 10.23
All 83 96 34.69; 11.66
BS ALS
Female 38 (48.1%) 67 (46.2%) 61.72; 10.79
Male 41 (51.9%) 78 (53.8%) 61.28; 8.99
All 79 145 61.48; 9.83
BP ALS
Female 31 (50%) 54 (50.5%) 58.07; 10.89
Male 31 (50%) 53 (49.5%) 62.15; 8.26
All 62 107 60.09; 9.85

Table 4: Cohort demographics.

active schizophrenia may be characterized by episodes in which the affected individual cannot
distinguish between real and unreal experiences. The severity, duration and frequency of symptoms
are highly variable, among patients as well as within the same individual over time (Buckley et al.,
2008). Symptoms can be divided into three main categories: (1) positive (i.e. abnormally present)
symptoms such as hallucinations or paranoia, (2) negative (i.e. abnormally absent) symptoms
such as blunted affect (difficulty in expressing emotions) or anhedonia (inability to feel pleasure)
and (3) disorganized symptoms which include abnormal movement as well as disordered thinking
and speech.7

Among individuals with Schizophrenia, psychiatric and medical comorbidities such as substance
abuse, anxiety and depression are common (Buckley et al., 2008; Green et al., 2003; Cassano
et al., 1998). Buckley et al. (2008) point out that Depression is estimated to affect half of the
patients. These comorbidities, as well as the variation in symptoms and medications, make the
identification of true (multimodal) biomarkers for schizophrenia a difficult task.
As can be seen in Section 4.3, we assessed 41 individuals with a diagnosis of schizophrenia at

7https://www.psychiatry.org/patients-families/schizophrenia/what-is-schizophrenia, accessed 05/19/2023
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a state psychiatric facility in New York, NY. The study was approved by the Nathan S. Kline
Institute for Psychiatric Research and we obtained written informed consent from all participants
at the time of screening after explaining details of the study. The assessment of both patients and
controls was overseen by a psychiatrist.

4.3.2 Amyotrophic Lateral Sclerosis

ALS is a rare neurological disease that affects nerve cells in the brain and spinal cord that control
voluntary muscle movement. The disease is progressive and there is currently no cure or effective
treatment to reverse its progression.8. Global estimates of ALS range from 1.9 per 100,000 to 6 per
100,000.9 In ALS patients, studies found comorbidity with dementia, parkinsonism and depressive
symptoms (Körner et al., 2012). Diekmann et al. (2020) found depression to occur statistically
significantly more often in ALS patients compared to Controls. In addition, Heidari et al. (2021)
found in a meta-analysis of 46 eligible studies that the pooled prevalence of depression among
individuals with ALS to be 34%, with mild, moderate, and severe depression rates at 29%, 16%,
and 8%, respectively.
As shown in Section 4.3, data from 79 ALS bulbar symptomatic and 62 ALS bulbar pre-
symptomatic patients were collected in cooperation with EverythingALS and the Peter Cohen
Foundation10. In addition to the assessment of speech and facial behavior, participants filled out
the ALS Functional Rating Scale-revised (ALSFRS-R), a standard instrument for monitoring the
progression of ALS (Cedarbaum et al., 1999). The questionnaire comprises 12 questions about
physical ability with each function’s rating ranging from normal function (score 4) to severe
disability (score 0). It includes four scales for different domains affected by the disorder: bulbar
system, fine and gross motor skills, and respiratory function. The ALSFRS-R score is the total of
the domain sub-scores, the sum ranging from 0 to 48. For this study, ALS patients were stratified
into the following sub-cohorts based on their bulbar subscore: (a) BS ALS with a bulbar subscore
< 12 (first three ALSFRS-R questions) and (b) BP ALS with a bulbar sub-score = 12.

4.3.3 Depression

Depression is a common mental health disorder characterized by persistent sadness and lack of
interest or pleasure in previously enjoyable activities. In addition, fatigue and poor concentration

8https://www.ninds.nih.gov/health-information/disorders/amyotrophic-lateral-sclerosis-als, accessed 05/19/2023
9https://www.targetals.org/2022/11/22/epidemiology-of-als-incidence-prevalence-and-clusters/, accessed

05/19/2023
10https://www.everythingals.org/research

20



are common. The effects of depression can be long-lasting or recurrent and can drastically affect
a person’s ability to lead a fulfilling life. The disorder is one of the most common causes of
disability in the world.11 According to the APA, an estimated one in 15 adults (6.7%) is affected
by depression each year. Moreover, one in six people (16.6%) will experience depression at some
point in their lifetime.12

A well-established tool for assessing depression is the Patient Health Questionnaire (PHQ)-8
(Kroenke et al., 2009). Depression symptoms severity can be classified based on the following
total score thresholds (Kroenke et al., 2001):

• 5 to 9: mild

• 10 to 14: moderate

• 15 to 19: moderately severe

• 20 to 24: severe

We investigated at least moderately severe depression cases, i.e. we classified depression cases
based on a PHQ-8 of >= 15. The data for this study, including the completion of the PHQ-8, was
collected through crowd-sourcing, resulting in a sample of 83 individuals that scored at or above
this cutoff. Statistics for this cohort are summarized in Section 4.3.

11https://www.who.int/health-topics/depression, accessed 06/20/2023
12https://www.psychiatry.org/patients-families/depression/what-is-depression, accessed 06/20/2023
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5 Methods
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Figure 3: Overview of proposed feature selection pipeline.

Our approach aims at assessing disorder-relevant multimodal features by taking into account
the factors of age and sex while minimizing redundancy, ensuring statistical meaningfulness
and providing interpretability of discrimination experiments. Our procedure, which is shown
in Figure 3, is divided into the following stages: (1) preprocessing, (2) age-correction and sex-
normalization, (3) redundancy and effect size analysis, (4) classification, and (5) performance
evaluation and feature analysis including the Shapley analysis.

5.1 Preprocessing

For a large part of the cohorts, we have information about their mental state assessed by the
PHQ-8. To reduce the risk of confounding effects of depression, we filtered out all cases with a
score of >= 4 from the control cohort. We did not have this information available for the ALS and
Schizophrenia cohorts, including the control data collected in these studies. Furthermore, sessions
with no information on sex and age were dropped. In addition, to acknowledge the differences
between cohorts, we remove outliers for the healthy control dataset and the respective patient
cohorts separately. Outliers may occur for a variety of technical, environmental or compliance
reasons. For example, a loud barking dog in the background may skew the detected minimum or
maximum frequency that the algorithm detects in the signal. Or, regarding facial features, a study
participant chewing gum or moving their head out of frame will impact the accuracy of metrics or
the detection of facial landmarks. To address such issues and remove the affected data points, we
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apply an automatic and scalable method that is driven by the respective feature distributions. The
outlier removal comprises the following steps:

1. Removal of feature values that are considered extreme outliers, meaning those that differ
more than five standard deviations from the average of their respective group.

2. Recalculation of mean.

3. Removal of any feature values that still deviate more than three standard deviations from
the mean.

4. Steps 2 and 3 are repeated recursively until no more features are found that deviate by this
threshold.

To be able to compare feature sets across disorders, we identified and selected the tasks that are
shared across datasets. For each participant some feature values may be missing for a variety of
reasons such as failure in task completion, technical problems or processing issues. Since the
used classifiers are not suited to work with missing values, an appropriate balance between the
imputation of missing values and discarding data was required. As we aim at introducing as little
uncertainty and noise, while preserving as much data as possible, we first filter both on the session
and feature level. First, on the session level, we discard participant sessions that have more than
15% missing values. On the metric-task level, we filter out those features that have zero standard
deviation, indicating that there is no variability across subjects, and those with more than 10%
missing values. After those removal procedures, we impute missing values with mean feature
values for the respective cohort in train and test sets separately.

5.2 Age-Correction & Sex-Normalization

Similar to the approach in Falahati et al. (2016), we apply a linear correction algorithm to both
patient and control data based on age-related changes in the healthy control cohort only. By calcu-
lating age trends and coefficients on healthy controls, we aim to obtain the most accurate estimate
of strictly age-related changes without the confounding effects of disease-related influences. In
detail, for each feature, we fit a linear regression model to age as the independent and the feature
as the dependent variable, modeling the age-related changes as a linear deviation. This is done
separately for males and females to obtain a sex-specific result. Then, the sex-specific regression
coefficients are used to remove the age-factor in all cohorts. More specifically, the corrected values
are obtained by discounting the product of coefficient and age from the feature value of each
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participant.
To account for sex-related differences, we applied sex-specific z-scoring to normalize the features.
Z-normalization is a methodology that allows for the comparison or compilation of observations
of different cohorts (Guilloux et al., 2011). In addition, the normalization process ensures the
comparability of features on different scales by centering the feature distributions around 0 with a
standard deviation of 1. First, the dataset to analyze was divided into male and female subjects.
Then, each feature was normalized within each sex group using z-scoring. More specifically, mean
and standard deviation of each feature were calculated within each sex group. The sample mean
was then subtracted from each feature value, and the result was divided by the sample standard
deviation to obtain the z-scores. This is reflected in the equation below, where z represents the
standardized value of x, x̄ is the mean of the sample and S is the standard deviation of the sample:

(4) z =
x� x̄

S

The normalized features for males and females were merged back together into a unified dataset.
To investigate the differences between male and female participants, we evaluate which features
show statistical significance between males and females and calculate effect sizes to assess
the magnitude of difference. Here, the MWU test is used for evaluating statistical significance
(p < 0.05), Glass’s Delta (Hopkins and Glass, 1978) to calculate effect sizes.

5.3 Redundancy Analysis & Effect Sizes

To identify collinear features and thereby assess redundancy, we perform hierarchical clustering on
the Spearman rank-order correlations using the age-corrected and sex-normalized larger healthy
control dataset. We apply the clustering for speech and facial features separately and merge the
clusters to one set for combined analyses. The clustering procedure is motivated by the approach
in Ienco and Meo (2008). It is based on Ward’s method (Ward, 1963) which aims at minimising
within-cluster variance. We implemented it using the scikit-learn library 13. A dendrogram was
plotted to inspect the feature groups visually. In hierarchical clustering, a dendrogram is a graphical
representation that shows how data points, features in our case, or clusters that group these features
are joined based on their similarity or dissimilarity. It is a tree-like structure illustrating merging
and splitting of clusters based on different similarity thresholds. It can be used to understand the
hierarchical relationships and clustering patterns within the data.
Based on the visual evaluation, we select a distance threshold that returns the most appropriate

13https://scikit-learn.org/stable/auto_examples/inspection/plot_
permutation_importance_multicollinear.html
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clustering for our purpose and based on metric-task specific knowledge to avoid clusters being
too broad or too narrow. As we aim at selecting one feature per cluster within classification folds,
the number of clusters determines the maximum number of features that are fed into the classifier.
For this reason, we base our choice on two major factors: (a) balance between speech and facial
clusters as we target roughly an equal number to avoid predominance of one modality over the
other, and (b) common knowledge of task and feature domains (e.g. timing versus voice quality
features, jaw versus eye movement or read versus free speech).
The clusters are used later on in the feature selection process in which we only consider the feature
with the highest effect size for each cluster, if any at all. Effect sizes are calculated only for features
showing statistical significance using the MWU test, as described in Section 5.2. We calculate
those between the entire healthy control dataset and the respective cohorts to assess magnitude
and direction of statistically valid differences between cases with a disorder and controls.

5.4 Classification

In this step, we run our feature selection pipeline with several well-known ML classifiers: Logistic
Regression (LR), Multilayer perceptron (MLP) and RF. All classifiers are implemented using the
scikit-learn library. The MLP with one hidden layer. We experimented with adding more hidden
layers, but found that the minimal configuration with only one layer was beneficial in terms of
performance. The hidden layer size is determined dynamically using the average of the number of
selected features and the number of classes in the dataset. With regard to hyperparameters, the
model is trained with a maximum of 10,000 iterations to allow sufficient time for convergence
during training. Model training is stopped when the loss or score is not improving by a defined
tolerance threshold. Here, we used the default of 1e� 4. Additionally, the alpha parameter is set
to 0.001, controlling the regularization strength to prevent overfitting. The sgd (stochastic gradient
descent) solver is utilized for optimization during training. The batch size is set to auto, enabling
the model to determine the appropriate batch size during training. We further use the rectified
linear unit function as the activation function.
Overall, the feature selection approach is designed to work with high-dimensional feature sets and
small patient sample sizes when a large amount of healthy control data is available. The approach
consists of several components: a demographic-inclusive preprocessing step, filter-based analysis
involving statistical and correlation analysis, a post hoc embedded feature selection based on
feature contribution in ML classifiers and a knowledge-based analysis utilizing consultation of
clinical literature. Due to limited data availability, it was not practical at this time to split the
data further to test the final feature set. Hence, further studies may explore the usefulness of
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features derived including the step of embedded feature selection. An overview of the classification
procedure is shown in ??. First, feature selection and classification performance is evaluated for
models aiming at classifying cases versus controls as well as between each combination of cases
with a disorder.
Ten-fold cross-validation is applied to maximize the utilization of data for both training and testing
purposes while mitigating overfitting to the classifier. To avoid bias towards the majority group, we
create datasets that consist of an equal number of healthy controls versus cases with a condition.
For each individual participant, we consider, if available, the first two sessions as independent
data points. Using two sessions per participant may violate the assumption of independence of
the MWU test if two sessions are not independent, leading to an increased risk of type I errors
(false positive results). However, we hypothesize intra-participant observations to be as similar
as inter-participant observations within the same group since an individual’s performance may
vary due to a variety of factors, including daily fluctuations in mood, fatigue, motivation, or
other transient effects such as common colds. By considering the first two sessions, we take into
account individual performance variability while minimizing the impact of possible learning
effects. In addition, this approach enables us to increase the sample size and enhance statistical
power. The larger sample size may allow for more precise estimates of population performance
and reduces the risk of type II errors (false negatives). This ensures a more robust evaluation
and improves the generalizability. For the classification experiments, we split the data using
scikit-learn’s StratifiedGroupKFold to make sure that sessions of the same participant are either
in the respective training or testing fold. In each fold, we impute missing values and standardize
features by sex using z-scoring as described in Section 5.2. This is done separately for training
and test set. Then, we calculate for each feature if it differs statistically significantly between cases
and controls, using a MWU test. For those that were found to differ, we calculate effect sizes,
measured as Glass’s delta. Glass’s delta is calculated by dividing the difference between the means
of the cohort groups, in our case cases with a disorder versus controls, by the standard deviation
of the control group, yielding a standardized measure of effect size. This approach allows for
possible differences in variability between the groups. As explained in Section 5.3, to minimize
redundancy, we loop over each cluster of collinear features, and select the feature with the highest
effect size, respectively. The selected features are fed to the classifier. In each classification fold,
we calculate Shapley values of the selected features which we average across folds. A feature
is counted for having a contribution value of 0 in a fold in which it was not selected at all. This
experiment is run 10 times to smooth out performance variations and obtain more representative
results.
In a second step, we perform multi-class classification, running feature selection across all possible
binary combinations and take the union of features as input to the classifier. We assess how the
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classifier performs with regard to differential diagnosis by evaluating the performance in terms of
F1 score. The analysis of Shapley values is used for assessing which features the model focuses
on for identifying which disorder in which particular set up. A more detailed explanation and
description of the assessed evaluation metrics is given is Section 5.5.

5.5 Evaluation & Feature Analysis

To address the black-box nature of ML models such as the MLP, we aim for transparency and
interpretability by leveraging Shapley values. By using Shapley values, we can gain insight into
the decision-making process of the MLP as well as improve the interpretability of the less opaque
LR and RF models. In this way, we can evaluate the importance of input features and better
understand which input features are in the focus of the decision process.
We evaluate the performance of our feature selection approach by evaluating the classification
performance of the selected markers as well as the robustness and clinical validity of the method.
In the binary control-versus-disorder analyses, we employ a range of assessment metrics, including
sensitivity, specificity, AUC, and the F1 score. These metrics collectively provide a comprehensive
evaluation of the classifier’s accuracy, sensitivity, specificity, and overall performance in distin-
guishing between healthy controls and cases with a disorder based on the selected features. For the
across disorder studies, we use the F1 score as the only assessment metric. Unlike the classification
tasks involving a control group, there is no clear reference class that can be considered as a positive
or negative outcome. Hence, it becomes challenging to calculate sensitivity, specificity, or other
evaluation metrics that rely on explicitly defining positive or negative classes. Similarly, for the
multi-class experiments involving a control group and several disorders, we only utilize the F1
score. As for the binary across disorder experiments, there is no clear reference for a positive
or negative outcome. Since the F1 score provides a balanced measure of precision and recall, it
allows us to evaluate the model’s performance across all classes equally. Additionally, we use a
confusion matrix to document insights into the multi class model’s predictions for each class. The
following is an overview of the evaluation metrics used:

• Sensitivity: True Positive Rate (TPR): portion of diseased individuals detected as such.

• Specificity: True Negative Rate (TNR): portion of healthy individuals identified as such.

• Receiver Operating Characteristic (ROC) curve: Typically used as a measure of clinical
utility, ROC curves show the performance of a model in terms of how sensitivity and
specificity vary at each possible threshold by visualizing the trade-off between TPR and
False Positive Rate (FPR; 1� Specificity).
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• Area Under the Curve (AUC): Calculates the performance of the model taking into
account all possible thresholds that are visualized in the ROC curve.

• Balanced F-Score: As AUC scores may be misleading for small and/or imbalanced datasets
(Hanczar et al., 2010), we further assess the balanced F-score which considers precision
(portion of accurate predictions) and recall (= specificity) equally. This metric value is high
when both component metrics are high. It is also useful when there is no clear definition of
the positive or negative class.

To ensure robustness of the classification results, we employ a ten-fold cross-validation method
repeated ten times with different random states. Features selected for classification are independent
of the classifier. First, we assess the most important features by focusing on clusters selected in at
least 85% of folds. This narrows our analysis to the most robust feature clusters across experiments
while acknowledging the possibility of outlier results. Second, we calculate Shapley values for
the best performing model, ranking features based on their relative importance. This approach
prioritizes the model with the highest predictive performance, avoiding bias from underperforming
models and maximizing the efficient use of computational resources. Third, we incorporate effect
sizes of features into the analysis, assigning ranks accordingly. The rank sum of Shapley values
and effect size ranks is calculated to determine the overall feature ranking. Finally, based on the
top five identified features, we investigate the clinical literature for supporting evidence. This step
enhances the interpretation of the findings by aligning them with existing knowledge.
We compare the classification performance of the proposed feature selection and classification
pipeline to three baselines, each serving as a key example for one of the three feature selection
categories:

1. Filter: Selection based on statistical significant difference of features between cases and
controls, measured using the MWU test.

2. Wrapper: Recursive feature elimination, using LR as the estimator.

3. Embedded: Random forest classifier on the entire feature set.

For both (1) & (2) baselines, we use LR classifiers.
All baselines are tracked using the same metrics as the proposed feature selection approach, and
are similarly run multiple times with different random seeds to investigate robustness with respect
to the selected features across different training and test partitions, as well as the magnitude and
stability of the performance metrics.
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6 Results

6.1 Demographics Analysis

6.1.1 Age trends

To facilitate the comparison of coefficients on different scales, we report age trends as standardized
linear regression coefficients (�std) obtained by multiplying the coefficient (�) with the standard
deviation of age (�age), the predictor variable, and dividing by the standard deviation of the
respective feature, the output (�feature) (Menard, 2004; Siegel and Wagner, 2022). The formula can
be expressed as follows:

(5) �std =
� · �age

�feature

This approach allows for a more interpretable and meaningful comparison of the impact of age
across different features. It ensures that the coefficients represent the change in the outcome, i.e.
the feature value, associated with an increase in age of one standard deviation. The calculations
are performed separately for males and females, accounting for potential sex differences in the
age trends. The standardized coefficients can be interpreted as effect sizes, where the following
effect size magnitude thresholds apply (Cohen, 1988):

• small: 0.1� 0.29

• medium: 0.3� 0.49

• large: >= 0.5

For clarity, we will use the term effect size consistently in this subsection, which we use synony-
mous for standardized (linear) regression coefficient.

29



Domain Metric Effect size (standardized coefficient) & Tasks
Pitch min f0 -0.37 (SIT 05), -0.37 (SIT 07), -0.34 (SIT 15), -0.33 (SIT 11),

-0.31 (SIT 09), -0.31 (SIT 13), -0.29 (Bamboo), -0.28 (Picture Description Task (PicDesc))
Timing articulation rate -0.35 (Bamboo), -0.29 (SIT 11), -0.29 (SIT 15),

-0.25 (SIT 07), -0.24 (SIT 13)
Timing articulation time 0.34 (Bamboo), 0.32 (SIT 11), 0.3 (SIT 15),

0.24 (SIT 07), 0.24 (SIT 13), 0.1 (SIT 05)
Timing speaking rate -0.34 (Bamboo), -0.32 (SIT 11), -0.28 (SIT 15),

-0.27 (SIT 13), -0.19 (SIT 07)
Timing speaking time 0.32 (Bamboo), 0,32 (SIT 11), 0.27 (SIT 15), 0.26 (SIT 13)

0.21 (SIT 07)
Pitch mean f0 -0.3 (SIT 07), -0.29 (Bamboo), -0.26 (SIT 05),

-0.25 (SIT 13), -0.25 (PicDesc), -0.24 (SIT 09), -0.24 (SIT 15),
-0.22 (SIT 11)

Voice Quality HNR -0.21 (DDK), -0.19 (PicDesc), -0.16 (SIT 05), -0.16 (SIT 11),
-0.16 (SIT 13), -0.13 (SIT 07), -0.11 (SIT 15), -0.1 (SIT 09)

Timing CTA 0.17 (SIT 11), 0.16 (Bamboo), -0.13 (SIT 05)
Pitch stdev f0 0.19 (SIT 07), 0.17 (PicDesc), 0.16 (SIT 05), 0.15 (SIT 13),

0.15 (SIT 15), 0.1 (SIT 09)
Timing PPT 0.18 (SIT 11), 0.13 (SIT 13), 0.13 (SIT 15), 0.1 (Bamboo)
Voice quality shimmer 0.14 (SIT 05), 0.12 (PicDesc), 0.1 (SIT 07)
Energy SNR 0.12 (Bamboo), 0.11 (PicDesc)
Pitch max F0 -0.12 (SIT 05), -0.1 (SIT 11)
DDK-specific syl.count 0.11
Voice quality jitter -0.11 (SIT 13)

Table 5: Female age trends of speech features.

Speech Female age trends are shown in Table 5. Here, we observed the largest age-related trend
in minimum F0 (e.g., -0.37 for SIT 5), as shown in Figure 4a, indicated by medium effect sizes
across all SIT tasks and slightly below the medium threshold for the Bamboo reading passage
(-0.29) and the picture description task (-0.28). In addition, we found a weaker negative trend for
mean F0 (e.g., -0.3 for SIT 7) across these tasks. This suggests that the female voice becomes
deeper with age.
The second largest age-related changes were found for the timing features articulation and
speaking rate/time in Figure 5a. Our analysis shows that speech and articulation rate decrease
with age, whereas speech and articulation time increase accordingly. In addition, PPT increases
in the reading tasks involving longer passages (SIT 11, 13, 15, and Bamboo). Furthermore, we
observed a lower HNR with age, the largest effect shown for the DDK task (-0.21) which suggests
a change in voice quality. On the other hand, we observed higher SNR with increasing age,
indicating a more prominent speech signal. In addition, we noted increased pitch variability with
age, shown by an increasing standard deviation of F0. This implies that pitch variability becomes
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(a) Age trends in min F0.

(b) Age-corrected feature values.

Figure 4: Speech feature with largest age-related trend in females before and after age-correction.

more pronounced with age. Some results, when effect sizes are small, should be taken with a grain
of salt. For example, our analysis suggests a higher CTA with increasing age in some, but not all
longer reading tasks and a negative trend for SIT 5 (-0.13).
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Domain Metric Effect size (standardized coefficient) & Tasks
Timing articulation time 0.39 (Bamboo), 0.31 (SIT 15), 0.29 (SIT 11)

0.26 (SIT 07), 0.17 (SIT 13), 0.15 (PicDesc)
Timing articulation rate -0.38 (Bamboo), -0.31 (SIT 15), -0.26 (SIT 07), -0.25 (SIT 11),

-0.18 (SIT 13)
Timing speaking time 0.36 (Bamboo), 0.32 (SIT 11), 0.31 (SIT 15), 0.15 (PicDesc)

0.25 (SIT 07)), 0.21 (SIT 13), 0.1 (SIT 09)
Timing speaking rate -0.35 (Bamboo), -0.29 (SIT 11), -0.28 (SIT 15), -0.24 (SIT 07),

-0.19 (SIT 13)
Timing CTA 0.22 (Bamboo), 0.17 (SIT 13), -0.11 (SIT 05), 0.1 (SIT 11)
Energy SNR 0.21 (DDK), 0.15 (Bamboo), 0.14 (SIT 13), 0.1 (SIT 15)
DDK-specific cTV 0.18
DDK-specific syl. rate -0.18
Timing PPT 0.18 (SIT 11), 0.13 (Bamboo)
Pitch stdev f0 0.18 (SIT 13), 0.17 (SIT 11), 0.16 (SIT 05), 0.15 (SIT 09),

0.14 (SIT 07), 0.11 (PicDesc)
Voice Quality shimmer 0.17 (SIT 05), 0.15 (DDK), 0.14 (PicDesc), 0.12 (SIT 09)
Pitch max f0 0.16 (PicDesc), 0.15 (SIT 11), 0.15 (SIT 13), 0.14 (SIT 07),

0.12 (SIT 09)
Pitch min f0 -0.12 (SIT 07), -0.11 (SIT 09)
Voice Quality jitter -0.11 (SIT 11)

Table 6: Male age trends of speech features.

For males, the largest age trends were found in timing metrics as shown in Table 6. With increasing
age, participants exhibited longer articulation and speaking times, in particular across the longer
reading passages such as the Bamboo reading task (e.g. 0.39 for articulation time, see Figure 5a).
In line with that, we found that articulation and speaking rates decrease with age. The magnitude
of age effects for these metrics are comparable to the ones observed in female participants.
In addition, older individuals exhibited a higher signal-to-noise ratio (SNR) across several tasks.
Regarding DDK abilities, we discovered a decrease in syllable rate (-0.18) and an increase in cTV
(0.18), which points to increasing difficulties in speech motor function with aging. The analysis of
voice quality revealed that males exhibit higher shimmer levels with increasing age, such as in the
picture description task (0.14), indicating greater variability in voice stability. In addition, age
was associated with F0-related changes, measured in particular as a higher F0 standard deviation
(e.g. 0.18 for SIT 13) and higher maximum F0 (e.g. 0.16 for the picture description task). This
demonstrates a contrasting, albeit less pronounced, age-related effect in comparison to F0 related
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(a) Age trends in articulation rate.

(b) Age-corrected feature values.

Figure 5: Speech feature with largest age-related trend in males before and after age-correction.

changes observed in female voices.
Figure 4b and Figure 5b show the distribution of features after the correction by age.

Facial Due to the large amount of facial features meeting the >= 0.1 threshold of small effect
sizes, we only report facial features that show at least a medium age-related trend.
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Domain Metric Standardized Coefficient (ES) & Tasks
Mouth avg. opening -0.4 (Bamboo), -0.4 (SIT 11), -0.4 (SIT 13), -0.39 (DDK), -0.39 (SIT 05),

-0.39 (SIT 07), -0.39 (SIT 09), -0.38 (SIT 15), -0.37 (PicDesc)
Eye avg. opening -0.36 (PicDesc), -0.32 (Bamboo), -0.32 (SIT 11), -0.32 (SIT 13),

-0.31 (SIT 05), -0.3 (SIT 15)
Mouth avg. symmetry -0.33 (Bamboo), -0.31 (SIT 07), -0.31 (SIT 11), -0.3 (DDK),

-0.3 (SIT 09), -0.3 (SIT 13), -0.3 (SIT 15)
Eye max. opening -0.3 (PicDesc), -0.3 (SIT 05)

Table 7: Female age trends of facial features.

For female controls, we identified 257 facial features with an effect size >= 0.1, indicating an at
least weak age-related effect. Speech features with at least a medium effect are shown in Table 7.

We identified the largest age-related trend as the lower average mouth opening in females across
all tasks (e.g. -0.4 for the Bamboo task, as shown in Figure 6a). Similarly pronounced is the
decline in average eye opening with increasing age, such as -0.36 in the picture description task.
In addition, we find a decline in average mouth symmetry with aging, shown as negative effect
sizes of medium magnitude across most tasks, where the largest effect is shown for the Bamboo
reading passage (-0.33).

Domain Metric Standardized Coefficient (ES) & Tasks
Mouth avg. opening -0.34 (DDK), -0.34 (SIT 11), -0.33 (Bamboo), -0.33 (SIT 09),

-0.33 (SIT 13), -0.33 (SIT 15), -0.31 (SIT 07)
Jaw movement abs. avg. jerk LL 0.33 (SIT 13), 0.32 (SIT 09)
Jaw movement abs. avg. speed LL 0.32 (SIT 09), 0.32 (SIT 13),

0.31 (SIT 15)
Jaw movement abs. avg. acc. LL 0.32 (SIT 13), 0.31 (SIT 09), 0.31 (SIT 15)
Jaw movement abs. max. jerk LL 0.31 (SIT 13), 0.3 (Bamboo)
Jaw movement min. jerk LL -0.31 (SIT 13)
Jaw movement abs. max. speed LL 0.31 (SIT 13)
Jaw movement abs. max. acc. LL 0.3 (SIT 13)
Jaw movement min. acc. LL -0.3 (SIT 13)
Jaw movement max. speed LL 0.3 (SIT 13)

Table 8: Male age trends of facial features.

We found 265 facial features with an effect size >= 0.1 for males. As for females, due to the high
number of features, we report only male age-related trends with at least a medium effect, as shown
in Table 8. We find a similar age-related trends in males compared to females for average mouth
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(a) Age trends in articulation rate.

(b) Age-corrected feature values.

Figure 6: Facial feature with largest age-related trend in females before and after age-correction.

opening with the largest effect in the DDK task (-0.34). However, all other >= medium effects
are shown for features concerning jaw movement, or more precisely, lower lip dynamics, which is
not shown in this magnitude for females. Here, we find the largest age trends for jerk, speed and
acceleration, particularly in the longer SIT tasks (e.g. 0.33 in SIT 13 for abs. avg. jerk LL).
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6.1.2 Sex differences

For clarity, we have chosen to highlight the effect sizes of a selected subset of features. Note
that these characteristics represent a limited number within each feature domain that serve as
representative examples.

Figure 7: Effect sizes of statistically significantly different speech features between male and
female controls. Positive effects indicate a larger value for females compared to males.

Speech As shown in Figure 7, differences between males and females are most pronounced
in the frequency domain, concerning mean, maximum, minimum and standard deviation of the
fundamental frequency.

For all frequency features investigated, effect size magnitudes between males and females are
large. We find the largest effect for the mean F0 in the picture description task. Medium to large
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effects are found for HNR and shimmer with the largest difference for HNR in the DDK task
(0.86). In addition, we find lower jitter in female voices and higher CTA compared to males. For
females, slower speaking is indicated by small effects regarding a lower speaking rate and higher
speaking time for some tasks. We also find a statistically significantly lower PPT for females in
the picture description task.
Overall, we observe that the majority of speech features investigated shows significant differences
between males and females.

Facial For facial features, we identify overall few differences and small effect size magnitudes
between males and females. We found a statistically significantly higher mean (0.26) and max
(0.25) mouth surface area for the SIT 7 and a wider lip aperture in the picture description task
(0.31) in females compared to males. All other identified statistically significant differences fall
below the threshold of a small effect size.

6.2 Redundancy Analysis

The clustering analysis was performed by first generating a dendrogram, regardless of a distance
threshold. Then, a threshold is set to divide the clusters. These distance thresholds have no unit
of measurement or specific scale as prior to performing clustering using Ward’s linkage, the
correlations between features are converted into distances by subtracting the absolute value of
the correlation from 1, yielding a measure where larger correlations result in smaller distances
between features. As a consequence, distance values represent distances relative to other clusters,
with smaller values indicating higher correlations. Since our speech and facial dendrograms
include a large number of features, it is not feasible to display them in their entirety in this thesis.
A selected section of the speech dendrogram is shown in Figure 8. In this figure, the light gray
horizontal lines represent 0.1-distance increments with the red line signaling a threshold of 2. The
green and blue lines show the connections between features and formed clusters. By observing
the distance thresholds at the corresponding cluster links, the specific points at which clusters
merge or split can be identified relative to each other.
We present the identified clusters for speech and facial features separately. We targeted an
approximately equal number of clusters.

Speech Regarding the grouping of speech features, we manually adjusted the distance threshold
to 1.1 after visual inspection of the dendrogram and potential clusters based on different thresholds.
This yielded a total of 13 distinct speech clusters as can be seen in Table 9. Among these clusters,
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# Cluster domain Metrics Tasks # Features
1 Energy SNR all 8
2 Timing alignment CTA all 6
3 Timing, pauses PPT all 5
4 Timing, speaking (1) articulation/speaking time Picture Description 2
5 Energy & articulation skills SNR, syl.rate, syl.count & cTV DDK 4
6 Timing, speaking (2) articulation/speaking rate/time SIT 5 & 9 8
7 Timing, speaking (3) articulation/speaking rate/time SIT 7, 11, 13, 15, 21

Bamboo task
8 Voice quality (DDK skills) HNR, jitter & shimmer DDK 3
9 Voice quality (periodicity) HNR all except DDK 8

10 Voice quality (amplitude variation) shimmer all except DDK 8
11 Voice quality (frequency variation) jitter all except DDK 8
12 Frequency (mean, min) min & mean F0 all 16
13 Frequency (max, std) max & std F0 all 16

Table 9: Speech clusters identified by hierarchical clustering.

five were associated with timing, four with voice quality, two with frequency, one DDK-specific
(energy and articulation skills), and one with energy-related features. One cluster specifically
comprised features relevant to the DDK task, such as syllable rate, count, and cTV.
Overall, the DDK task metrics tended to form separate clusters, while the reading tasks of SIT
and Bamboo, which are closely related, were grouped together most often in multiple feature
domains. At feature domain level, the redundancy analysis identified the features of the voice
quality domain as being the highest correlated to each other compared to other domains. As can
be seen in Figure 8, all voice quality metrics pertaining to the DDK task are identified as a cluster
below a threshold of 1.2, while for all other tasks the metrics of HNR, jitter, and shimmer each
form a separate cluster. To account for the different nature of diadochokinetic features compared
to reading or free speech features, this was key to the choice of the 1.1 threshold, in addition to
the number of clusters and the meaningfulness of the other categories.

38



Figure 8: Dendrogram cutout showing voice quality clustering.
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In some cases, multiple feature clusters related to the same domain such as timing (speaking and
articulation features) which is reasonable considering the different nature in tasks. On the feature
level overall, speaking and articulation timing features are found to differ the most based on the
specific task.

# Cluster domain Metrics Tasks # Features
1 Lip movement (1) speed, acc. & jerk measures all except DDK 95
2 Lip width mean & max lip width all 18
3 Mouth opening mean & max lip aperture, all 36

mouth surface area
4 Lip movement (2) speed, acc. & jerk metrics DDK 12
5 Jaw movement (1) speed, acc. & jerk metrics DDK 12
6 Jaw movement (2) speed, acc. & jerk metrics SIT 7 12
7 Jaw movement (3) speed, acc. & jerk metrics SIT 5 12
8 Jaw movement (4) min + max speed, acc. & jerk metrics Picture Description 9
9 Jaw movement (5) speed, acc. & jerk metrics SIT 9, 11, 13, 15, Bamboo, 63

Picture Description (mean)
10 Mouth symmetry mean mouth symmetry all 9
11 Eye opening mean and max eye opening all 18

Table 10: Facial clusters identified by hierarchical clustering.

Facial The visual inspection of the dendrogram suggested a distance threshold of 1.7 and
resulted in a total of 11 facial clusters as shown in Table 10. Identified were the following clusters:
two relating to lip movement features, one for lip width, one mouth opening, five concerning jaw
dynamics, one mouth symmetry and one cluster comprising all eye opening features. Notably,
as in the speech domain, the DDK task exhibited a higher tendency to form distinct clusters
compared to other tasks, with lip and jaw movement features clustered separately for DDK. On
the domain level, the clustering identified most differences based on tasks within jaw movement
features. Here, DDK and the two shortest sentence intelligibility tests formed their own clusters,
respectively. Furthermore, the longer speaking tasks, reading (SIT & Bamboo as well as the
average metrics of the Picture Description task) were grouped together. Furthermore, within
the picture description task, measures of extreme movement (minimum or maximum) formed a
distinct cluster. In terms of metrics nature (dynamics versus surface measures), we found that
those were consequently separated into different groups. Additionally, the algorithm maintained
separate clusters for different domains (e.g., jaw versus eyes) and only identified domain-specific
subgroups.
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6.3 Effect Sizes

Positive effect sizes represent that feature values are larger for cases with a disorder than controls.
Conversely, negative values represent larger feature values for controls than cases with a disorder.
Commonly used effect size magnitude thresholds as suggested in Cohen (1988) are:

• small: 0.2� 0.5

• medium: 0.5� 0.8

• large: > 0.8

Figure 9: Effect sizes of age-corrected and sex-normalized speech features between cases with a
disorder and controls.
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Speech We observe speech features with large effect sizes between cases with a disorder and
controls for BS ALS and schizophrenia cohorts and overall smaller effect sizes for depression and
BP ALS cases, as shown in Figure 9.
The largest effects in schizophrenia are shown for CTA (-3.3 for the Bamboo reading passage),
speaking time (3.2 for the Bamboo reading passage and -2.1 for the Picture Description task),
PPT (2.8 for SIT 13) and SNR (2.1 for Picture Description). This shows that patients exhibit a
lower CTA, referring to the synchronization between their own speech and the one of the virtual
agent. In addition, they pause longer when reading sentences and speak louder than controls.
Notably, they need more time to complete the Bamboo reading task, while exhibiting a slower
speaking rate, but speak shorter in the free speech task, indicating a potential speech impairment
or reluctance.
The largest effect in depression cases is shown by a higher maximum F0 (0.62 for SIT 13)
compared to controls, higher speaking rate (0.59 for SIT 7) combined with a shorter speaking
time and a higher PPT in the Picture Description task.
BS ALS patients exhibit a higher speaking time (3.6 for the Bamboo task) and longer pauses (3.2
for SIT 13) in reading tasks. They also show a lower synchronization with the virtual agent’s
reading patterns indicated by the CTA (-2.8 for the Bamboo task) and a louder voice in the DDK
task (2.4).
BP ALS patients show overall much smaller effects than BS ALS patients. The largest effects
which, however, all represent small effect sizes, are revealed in a longer speaking time and slower
speaking rate (0.37 and -0.31 for the SIT 7) as well as a lower F0 standard deviation in the SIT 5
reading task (-0.34), indicating less pitch variation.
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Figure 10: Effect sizes of age-corrected and sex-normalized facial features between cases with a
disorder and controls.

Facial We found overall lower effect size magnitudes for facial features compared to speech
features, as can be seen in Figure 10. The largest differences in facial features between cases
with a disorder and controls are observed for the schizophrenia cohort. Large effects are revealed
among lower lip (e.g. -1.2 for LL jerk in the picture description task) and jaw movement, lower
maximum eye and mouth and smaller maximum lip width features. In all other cohorts, we find a
maximum of medium effects. Fewest differences compared to controls are revealed for BP ALS
cases.
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6.4 Classification & Shapley Values

6.4.1 Binary Classification

Cohort Evaluation FS + LR FS + RF FS + MLP Filter BL Wrapper BL Embedded BL

Depression

Sensitivity 0.65 0.65 0.65 0.64 0.6 0.62
Specificity 0.65 0.66 0.65 0.64 0.6 0.69

AUC 0.71 0.71 0.71 0.69 0.64 0.72
F1 0.65 0.65 0.65 0.64 0.6 0.65

Schizophrenia

Sensitivity 0.83 0.85 0.85 0.84 0.84 0.83
Specificity 0.8 0.77 0.82 0.83 0.85 0.79

AUC 0.9 0.89 0.9 0.9 0.92 0.88
F1 0.82 0.81 0.83 0.83 0.85 0.81

BS ALS

Sensitivity 0.82 0.84 0.82 0.82 0.79 0.8
Specificity 0.82 0.8 0.83 0.78 0.84 0.82

AUC 0.89 0.9 0.89 0.88 0.88 0.89
F1 0.82 0.82 0.83 0.8 0.81 0.81

BP ALS

Sensitivity 0.52 0.51 0.52 0.52 0.52 0.55
Specificity 0.54 0.54 0.53 0.54 0.58 0.56

AUC 0.54 0.53 0.53 0.54 0.56 0.58
F1 0.53 0.52 0.52 0.53 0.55 0.55

Table 11: Binary classification results for baselines and the feature selection pipeline (cases with a
disorder versus controls). In each row, we highlighted the highest performance in the particular
evaluation metric. FS: Feature selection pipeline, BL: Baseline

Performances between classifiers implementing our feature selection pipeline and baselines are
very similar (see Table 11). Regarding the implementation of the custom feature selection pipeline,
there is no classifier that outperforms all others across disorders. However, the filter-based baseline
model is outperformed by all other approaches. Among the wrapper and embedded feature
selection baseline models, embedded feature selection worked best for depression and BP ALS
classification while for schizophrenia, wrapper feature selection performed best.
For the sake of clarity and simplicity, we focus on the MLP results for the following in-depth
analysis of performance across modalities and for feature analysis.

44



(a) Controls vs. schizophrenia cases. (b) Controls vs. depression cases.

(c) Controls vs. BS ALS cases. (d) Controls vs. BP ALS cases.

Figure 11: ROCs: Controls versus cases with a disorder.

ROC curves for control versus cases with a disorder classification experiments are shown in
Figure 11. Overall, the classification performance between controls and schizophrenic as well
as BS ALS cases is best. For distinguishing depression from healthy controls, the performance
is lower, though also well above chance. For BP ALS, the results indicate that the classifiers,
independent of the feature selection method, are not able to generalize based on the information
provided. In depression, combining speech and facial modalities resulted in improved classification
performance compared to speech or facial features alone, as shown in Figure 11. However, adding
facial information did not enhance performance for schizophrenia and ALS cohorts compared to
utilizing speech features alone.
We conduct a comprehensive analysis to determine the significance of features for distinguishing
between cases with a disorder and controls using three key criteria. First, we assess the frequency
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with which feature categories are selected across classification folds, restricting the set for further
analysis to those that occur in >= 85% of folds. Second, we rank their contribution to the model
output based on Shapley values obtained from the best performing model and effect sizes. By
assigning ranks within each criterion, we calculate the rank sum, whereby a lower sum indicates a
more crucial feature. To provide a more in-depth understanding, we discuss the most important
features for each disorder in Section 7.

Speech Facial Speech & Facial
Sensitivity 0.64 0.58 0.65
Specificity 0.64 0.59 0.65

AUC 0.69 0.62 0.71
F1 0.64 0.59 0.65

Table 12: Performance metrics: Depression cases versus controls.

Controls vs. depression The performance metrics shown in Figure 11b and Table 12 for de-
pression case classification using features selected of the speech, facial, and combined modalities
demonstrate promising results, with the combined modalities showing the highest performance
across evaluation metrics. More specifically, the combination of speech and facial features achieved
the highest sensitivity (0.65), specificity (0.65), AUC (0.71), and F1 score (0.65) compared to the
single modality models. These findings suggest that utilizing both speech and facial modalities
can improve the detection of depression cases when compared to controls.

Cluster Feature SHAP rank ES (rank) Rank sum
Timing, speaking (#3) SIT 07 speaking rate (S) 1 0.59 (1) 2
Timing, pauses PictureDescription PPT (S) 3 0.5 (3) 6
Energy & articulation skills DDK-AMR cTV (S) 2 0.43 (5) 7
Lip width PictureDescription width avg (F) 6 -0.44 (4) 10
Eye opening SIT 13 eye open avg (F) 7 -0.36 (5) 12
Mouth opening SIT 07 S avg (F) 12 -0.55 (2) 19
Timing alignment SIT 13 CTA (S) 15 -0.31 (6) 21

Table 13: Depression: Most important features.

Section 6.4.1 shows the most important features across experiments. As shown here, we identify
features of the timing domain, more specifically a higher speaking rate (SIT 7) and higher PPT
(PicDesc) as well as a higher cTV (DDK task) and two facial features concerning eye opening and
lip width among the most important features. We observed that these features made significant
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Figure 12: Shapley values: Controls versus depression cases.

contributions to the classifiers’ predictions, as evidenced by their strong influence indicated by
their Shapley values (see Figure 12), and also exhibited substantial effect sizes when comparing
depression cases and controls, as revealed in Section 6.3.

Speech Facial Speech & Facial
Sensitivity 0.84 0.65 0.85
Specificity 0.81 0.63 0.82

AUC 0.9 0.7 0.9
F1 0.82 0.64 0.83

Table 14: Performance Metrics: Schizophrenia cases versus Controls.
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Figure 13: Shapley values: Controls versus Schizophrenia.

Cluster Feature SHAP rank ES (rank) Rank sum
Timing, speaking (3) BambooPassage articulation time (S) 1 3.2 (1) 2
Energy & articulation skills DDK-AMR SNR (S) 2 1.9 (3) 5
Energy BambooPassage SNR (S) 4 1.0 (4) 8
Voice quality (periodicity) SIT 15 HNR (S) 3 0.94 (6) 9
Voice quality (amplitude variation) SIT 15 shimmer (S) 5 1.0 (4) 9
Voice quality (DDK skills) DDK-AMR HNR (S) 7 1.0 (4) 11
Lip movement (1) BambooPassage jLL abs avg (F) 8 -0.96 (5) 13
Timing, pauses SIT 13 percent pause duration (S) 12 2.8 (2) 14
Frequency (max, std) SIT 15 stdev f0 (S) 9 -0.46 (9) 18
Lip movement (2) DDK-AMR aLL max (F) 11 -0.7 (7) 18
Jaw movement BambooPassage aJC abs avg (F) 17 -0.56 (8) 25
Voice quality (frequency variation) SIT 09 jitter (S) 20 0.43 (10) 30

Table 15: Schizophrenia: Most important features.
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Controls vs. schizophrenia As can be seen in Table 14, speech features performed better
than facial features for this task, and the combination of both modalities yielded marginal gains.
Section 6.4.1 shows the features identified as most important in schizophrenia. In particular, we
determined a high feature contribution, as represented by the Shapley values in Figure 13 and
high effect sizes in articulation time as well as energy and voice quality features.

Speech Facial Speech & Facial
Sensitivity 0.81 0.64 0.82
Specificity 0.87 0.62 0.83

AUC 0.9 0.67 0.89
F1 0.84 0.63 0.83

Table 16: Performance Metrics: BS ALS cases versus Controls.

Controls vs. BS ALS As shown in Table 16, for speech, high values were observed for sensitiv-
ity, specificity, AUC and F1 scores, while specificity (0.87) was shown to be notably higher than
sensitivity (0.81). This suggests that the classifier demonstrates a higher capability in correctly
identifying healthy individuals who do not have the disorder, thus minimizing false positive
results, compared to its ability to accurately detect individuals with the disease, i.e., predicting
true positives. Facial features performed inferior to speech features in all evaluation metrics.
Combining speech and facial features demonstrated slightly improved performance for sensitivity,
while specificity, AUC and the F1 score showed a slightly lower performance compared to the
speech modality alone.

Cluster Feature SHAP rank ES (rank) Rank sum
Timing, pauses SIT 13 percent pause duration 3 3.2 (2) 5
Timing alignment BambooPassage CTA 2 -2.8 (3) 5
Timing (3) BambooPassage speaking time 4 3.6 (1) 5
Energy & articulation skills DDK-AMR SNR 1 2.4 (4) 5
Timing, speaking (2) SIT 09 speaking time 6 1.7 (5) 11
Voice quality (DDK skills) DDK-AMR HNR 9 0.86 (7) 15
Lip movement (2) DDK-AMR jLL abs avg 8 -0.41 (11) 19
Energy PictureDescription SNR 15 1.2 (6) 21
Frequency (mean, min) PictureDescription mean f0 19 0.64 (9) 28
Frequency (max, std) PictureDescription stdev f0 17 -0.35 (12) 29
Voice quality (frequency variation) SIT 09 jitter 22 -0.48 (10) 32
Voice quality (periodicity) SIT 09 HNR 25 0.79 (8) 33

Table 17: BS ALS: Most important features.

The feature selection analysis shown in Section 6.4.1 suggests a predominant importance of timing
categories, including pauses (PPT in SIT 13), timing alignment (CTA in the Bamboo reading
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Figure 14: Shapley values: Controls versus BS ALS.

task) and speaking time (Bamboo, SIT 9) as well as the SNR in the DDK task. As can be seen
in Figure 14, these features demonstrate a high contribution to the classifiers prediction. More
specifically, SNR, CTA and PPT lead in feature contribution with a significant margin before
other features, which is in line with their effect size magnitude compared to other features shown
in Figure 9 in Section 6.3 and reflected a low rank sum shown in Section 6.4.1.

Controls vs. BP ALS None of the classification approaches was able to effectively learn to
distinguish between BP ALS and controls. The performance of speech, facial and combined
modalities including our feature selection pipeline is shown in Section 6.4.1.
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Speech Facial Speech & Facial
Sensitivity 0.53 0.51 0.52
Specificity 0.54 0.51 0.53

AUC 0.54 0.51 0.53
F1 0.54 0.51 0.52

Table 18: Performance Metrics: BP ALS cases versus controls.

In BP ALS, there is only a single feature cluster that is selected in >= 85% of classification
folds, which is the facial category mouth symmetry. The facial feature of average mouth symmetry
ratio in the picture description task is also shown to be the most important feature for the best
performing MLP classifier, which can be seen in Figure 15. In addition, this feature which shows
the overall highest effect size between BP ALS cases and all controls (-0.41), indicating a lower
symmetry ratio for BP ALS patients compared to controls. In addition, the Shapley analysis
indicates a high mean average contribution of maximum eye opening (PicDesc), followed by the
energy feature SNR in the SIT 9 task. However, while we also find small effect sizes for these
features, our repeated classification experiment does not indicate consistency of selecting features
from those categories.

Figure 15: Shapley values: Controls versus BP ALS.

Across disorders To explore unique characteristics and potential overlaps among disorders
within and across domains, we ran experiments within the mental and the neurological domain,
and one classification across these domains. More specifically, we investigate depression vs.
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schizophrenia, BP vs. BS ALS and schizophrenia vs. BS ALS. We selected the latter for the
across-domain experiment because the binary case-control classification experiments demonstrate
the highest discrimination power, while the feature importance analysis indicates various feature
categories of similar importance for identifying schizophrenia and BS ALS.
As shown in Table 19, as in the control versus cases with a disorder experiments, the speech
modality is more informative on its own than the facial modality, which is shown consistently
across experiments. However, in both experiments involving schizophrenia, combining speech
with facial information slightly increases the classification performance. Overall, the results
indicate a lower discrimination power in these experiments compared to the best performances in
distinguishing controls from cases with a disorder.

Cohort Speech Facial Speech & Facial
BS vs. BP ALS 0.77 0.61 0.77
Schizophrenia (SCHIZ) vs. Depression (DEP) 0.77 0.65 0.78
SCHIZ vs. BS ALS 0.77 0.64 0.78

Table 19: F1-scores for across-disorder binary classification experiments.

The feature contributions shown in Figure 16 indicate a high importance of timing, voice quality
and DDK-specific categories. Notably, two DDK features stand out in these analyses as they are
both ranked among the top 3 features in both experiments, which is the facial feature average
lower lip jerk and the speech feature syllable rate.
Regarding the feature contribution for distinguishing between depression and schizophrenia, we
primarily find energy, timing and voice quality related features.
While features related to energy and timing categories are important in distinguishing both
schizophrenia and BS ALS from controls, only one feature (PPT in the Bamboo reading task)
ranks relatively high in importance for classifying between schizophrenia and BS ALS. However,
according to the Shapley analysis, the classifier primarily focuses on voice quality, frequency
features, and the facial feature eye opening. In particular, the voice quality feature shimmer ranks
among the top three features twice (for SIT 7 & DDK task). Notably, the shimmer feature in the
SIT 7 task holds the highest contribution margin among the top three features, emphasizing its
substantial significance.

6.4.2 Multiclass Classification

Performance For the most complex task, discriminating controls and any individual disorder (5-
class classification), using both speech and facial features, we obtain the best overall performance
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Figure 16: Shapley values: BP versus BS ALS.

with the MLP (F1-score: 0.53), as shown in Table 21. The MLP that implemented our proposed
feature selection pipeline also performed better than all baseline models. Among baseline models,
the embedded feature selection baseline achieved the highest performance (F1-score: 0.52).
As shown in Section 6.4.2, for detecting most cohorts correctly, namely controls, schizophrenia,
and BS ALS, the per class F1-score is highest when combining speech and facial features. For
detecting BP ALS, there is no performance difference between using only speech or speech and
facial features. For depression, we achieve the best performance with speech features only.
Section 6.4.2 shows a confusion matrix that indicates the percentage of correct class predictions
and with which they were confused. The model was most confident in detecting schizophrenia
(75.42%), followed by BS ALS (64.17%).
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Cohort Speech Facial Speech + Facial
Control 0.33 0.28 0.34
SCHIZ 0.71 0.52 0.75
BP ALS 0.38 0.31 0.38
BS ALS 0.62 0.43 0.64
DEP 0.55 0.36 0.53
Average 0.52 0.38 0.53

Table 20: F1-scores per cohort for multi-class classification between all investigated disorders.

Figure 17: Normalized confusion matrix for 5-class classification. The x-axis shows the true
labels, the y-axis the predicted ones.

Depression was correctly classified in 53.33%, which is well above chance in a 5-class classifica-
tion. The model struggled with accurately predicting BP ALS (38.47%) and controls (34.03%).

Control subjects were most frequently mistaken for BP ALS (30.28%) and depression (23.75%)
cases, and vice versa. Schizophrenic patients were least often confused with other cohorts. Among
the cases of BS ALS, the most common, though rather infrequent, confusion occurred with BP

54



patients (12.36%). Although the model had difficulty effectively distinguishing between BP ALS
and controls, the fact that BS ALS cases were most often misclassified as BP ALS cases may
suggest that the model was able to capture similarities between BP ALS and BS ALS to some
degree.
In addition, we conducted domain specific multiclass experiments, i.e. 3-class classification includ-
ing controls and, respectively, mental or neurological disorders. We found trends and performance
magnitudes to be in agreement with the ones in the five-class classification experiments, as shown
in Table 21. Hence, for clarity, we will focus on the 5-class classification experiments in this
section.

Cohorts Classes FS + LR FS + RF FS + MLP Filter BL Wrapper BL EMB BL
All 5 0.51 0.52 0.53 0.51 0.48 0.52
CONT vs. NEURO 3 0.58 0.57 0.58 0.56 0.58 0.57
CONT vs. MENTAL 3 0.6 0.63 0.62 0.62 0.59 0.6

Table 21: Multi-class classification results for baselines and the feature selection selection pipeline
assessed as F1 scores.

Feature selection & importance For the sake of consistency and due to overall good perfor-
mance, we evaluated feature selection based on the best MLP model. As shown in Figure 18, in
the multiclass classification task that included all cohorts, the Shapley analysis identified DDK-
specific energy and articulation skills, such as cTV, SNR and syllable rate, as well as the voice
quality feature shimmer, and the timing feature PPT among the top five most important features.
More specifically, cTV (DDK task), stood out as the most important feature by demonstrating a
relatively large margin in terms of its contribution to the classification outcome. Furthermore, the
class-specific Shapley values indicate that this feature played a critical role in differentiating BS
ALS cases from other cohorts.
In classifying BP ALS, average jerk of the lower lip in the DDK task showed a large contribution
compared to other features.
For schizophrenia, speaking rate in the Bamboo reading task stood out as a feature that contributed
relatively high to the prediction of schizophrenia compared with other cohorts. However, fea-
tures associated with schizophrenia received relatively low Shapley values compared with other
disorders. Note that this does not necessarily imply a lack of importance or relevance. Instead,
it suggests that schizophrenia may have a more complex and multifaceted presentation, with
multiple features collectively contributing to its identification. In light of the good classification
performance in schizophrenia, the findings suggest that numerous features provide equally valu-
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Figure 18: Shapley values for best performing multi-class model including all cohorts. F1-score:
0.56

able and complementary information for accurately classifying schizophrenia.
In the case of depression, voice quality, timing and energy-related features such as shimmer,
pauses, and SNR were found to contribute significantly to the prediction of depression.
For predicting controls, the Shapley analysis did not suggest any specific features that were clearly
contributing most to the prediction of this class compared to other cohorts.
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7 Discussion

Age correction and sex normalization Age detrending and sex normalization are crucial steps
in feature analysis to account for the distinct age-related trends observed in males and females,
as well as differences between the sexes. Failing to consider these variables adequately may
introduce bias and artificially induce differences between groups that are influenced more by
demographic factors than the specific disorder under investigation.
Our analysis has shown that numerous features change with age. Age trends of medium effect size
magnitudes are both shown for speech and facial features. Among speech features, timing metrics
showed the most pronounced effects in males and a similar magnitude of change in females.
However, it is critical to note that males and females show partially different age-related trends,
which is shown in terms of the direction and magnitude of effect size in certain metrics. For
example, opposite effects are observed for fundamental frequency (F0), with women having lower
pitched voices with increasing age, whereas men tend to have slightly higher pitched voices. To
account for these different trends, it is essential to perform age detrending separately for males
and females.
Linear age correction may not be the optimal modelling approach, as age-related changes in speech
and facial features may not always follow a strictly linear trajectory. In addition, physiological age
does not necessarily match chronological age, as humans age at different rates due to numerous
factors. However, because of its simplicity, age correction based on linear regression coefficients
offers a straightforward approach that is less prone to overfitting compared to more complex,
non-linear approaches. It captures the overall trend of age-related changes without being overly
adjusted for the idiosyncrasies and noise present in the data.
Sex differences manifest more prominently in speech features than in facial features. Among
speech features, pitch features exhibit high effect sizes, followed by voice quality and timing
features.
The study design required sex to be reported as either male or female. We acknowledge that this
may have unintentionally excluded individuals that were not comfortable sharing their sex at birth.
Challenges associated with inclusion in terms of sexual identity need to be approached in research
studies that require information about participants’ sex or gender. Hence, future studies should
target to include a broader range of populations, consider different sexual identities, and explore
the complex interplay of age, sex, and sexual identity for feature analysis. In addition, future
studies should consider further variables such as education, socioeconomic status and ethnicity,
which was out of scope in this thesis.
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Redundancy analysis Hierarchical clustering, as deployed in our analysis, is a sensible approach
as it allows insight into the complex relationships between variables and clusters. The redundancy
analysis identified reasonable clusters in speech and facial modalities. Metrics of the same or
related domains grouped together, such as shimmer, jitter and HNR, all of which represent aspects
of voice quality. Moreover, clusters were mostly coherent on the task-level, i.e. related tasks that
may capture similar abilities in a certain metric, such as SIT and Bamboo reading tasks are most
frequently clustered together, while metrics in the DDK task are frequently forming their own
cluster as they capture very specific abilities.
Although most of the identified clusters represent reasonable groups, there are a few results, that
require further investigation specifically clusters 6 and 7. These clusters, which include timing
measures for reading tasks, show that SIT 5 and 9 are grouped separately from all other reading
passages. This finding is inconclusive because SIT 7, which has a sentence length between 5 and 9,
is clustered with longer reading passages than SIT 9. There could be several possible explanations
for this, such as sentences in SIT 5 and 9 having more similarities in terms of the number of
syllables, since sentence length in this task is defined based on the number of words. Alternatively,
SIT 5 and 9 might share different levels of complexity, such as the rarity of words or difficulty of
pronunciation. These factors should be further investigated.
Determining the optimal number of clusters per domain in redundancy analysis comes with the
complex task of finding a balance between minimizing redundancy and capturing potentially
subtle, yet crucial information. Future research should prioritize determining this optimal trade-off.
Related to that, while we determined the distance threshold in a knowledge-driven manner, this
can also be done in a data-driven way (Ienco and Meo, 2008), which would fully automate
the employed clustering algorithm and avoid human introduced bias. Additionally, comparing
the results with a completely knowledge-driven approach for grouping features would be an
interesting direction to pursue.

Classification experiments Our analysis demonstrates that the approach that does not handle
redundancy at all, the filter feature selection baseline, is not able to surpass other models in any
of the evaluation metrics in any disorder. This indicates that considering feature redundancy
plays a crucial role in improving performance. Notably, our feature selection approach, despite
not focusing on maximizing classification performance, demonstrates similar performance to
the wrapper method, where features are selected solely based on performance. However, we
found overall only small differences among all the investigated combinations of feature selection
methods and ML models, which were very specific to certain evaluation metrics and disorders.
This suggests that the performance may be most constrained by the informativeness of the features
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themselves.
In both BS ALS and schizophrenia, our analysis shows that these cohorts can be well distin-
guished with high sensitivity and specificity from healthy controls using speech features alone.
In depression, a more comprehensive assessment including the evaluation of facial behavior is
important, which is indicated by a higher classification performance for combined speech and
facial modalities and high ranking facial features in feature importance. Still, the performance
is lower than for schizophrenia or BS ALS. All classifiers, independent of the feature selection
method, struggled with differentiating BP ALS cases from controls.
Like in our binary classification approach, we achieved good performance in detecting cases
of schizophrenia and BS ALS across all multiclass classification experiments. Similarly, the
classification of depression surpasses chance levels although showing overall lower performance
compared to detecting BS ALS or schizophrenia. For BP ALS, as before, we consistently found
random chance results.
The model most commonly confused BP ALS and depression with healthy controls. This is in
line with our effect size analysis, where we found the fewest and smallest effects between controls
and BP ALS, followed by depression. These observations suggest that speech and facial behavior
of individuals with depressive symptoms and BP ALS, as captured by the features used in our
analysis, may closely resemble that of healthy control subjects.
Notably, in case of misidentifying BS ALS cases, the classifier most frequently categorized them
as BP ALS. Although distinguishing BP ALS cases from controls is challenging, this outcome
indicates that the classifier may be able to capture condition-specific information from features
that are shared across different stages of ALS, which may have led to this confusion.
While the investigated features are easily explainable to non-experts, less interpretable ones,
such as log mel spectrograms or Mel Frequency Cepstral Coefficients (MFCCs) in the speech
modality may be able to capture more nuanced and complex patterns in the data. Or, deep learning
approaches for representation learning could be applied, such as Res-Net 50 (Li and Lima, 2021)
in the facial modality. While such features can be powerful in capturing subtle details and nuances
of audiovisual behavior, the inner workings of the deep learning model are not easily explainable
or interpretable by non-experts. Moreover, deep learning models typically require a large amount
of data for training in order to generalize well, which the datasets under investigation currently do
not provide.
In sum, more sophisticated features may offer an advantage in assessing the fine differences in
less salient speech and facial behavior in some diseases or early stages of a disease, but come with
the mentioned limitations.
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Feature analysis Our study demonstrates both speech and facial features to be useful for
distinguishing between the cohorts under investigation. While speech features alone typically out-
performed facial features alone, combined information from both modalities commonly enhanced
performance. However, in some cases speech features alone performed superior to combined
modalities, which indicates that facial features added complexity to the task while not providing
a useful information gain. This was highly dependent on the specific task, in particular with
respect to cohort combinations and classification set ups (binary vs. multiclass). For example, in
distinguishing depression cases from controls, combined modalities lead to a better performance
than single modality models. However, in the multiclass experiment, the accuracy of detecting
depression decreased with adding facial information compared to speech features alone. Notably,
all other cohorts that, in contrast to depression, did not demonstrate this in binary classification
tasks, benefited from using both modalities. We attribute this to the fact that the interplay between
speech and facial modalities and shared characteristics of disorders are intertwined, and more
research is needed to better understand such patterns.
However, even when facial features do not seem to provide useful information, our feature analysis
suggests facial information may still be valuable in such cases. Regarding the clinical usefulness
of features, it is crucial to identify true disease markers rather than idiosyncratic characteristics.
When there are only a few useful markers, the classification performance may be misleading,
as it might result in the assumption that none of the features are valuable if the performance is
poor. However, it is important to consider that some features could still be highly relevant but
might require additional information to be effective in a classification experiment. In BP ALS,
for example, it may be hard to find disorder-relevant information as patients are still in an early
stage of the disorder, where speech impairment and other disabilities have not developed yet.
However, we demonstrated the importance for a single facial feature concerning mouth symmetry.
Since differences between the healthy population may be subtle, this one feature is not sufficient
to diagnose ALS. Still, it is an important starting point and may indicate differences in face
characteristics that capture symmetric behavior in some way. In agreement with our findings,
Guarin et al. (2022) found an association between symmetry features (lip and mouth) and ALS
severity assessed by the ALSFRS-R bulbar subscore while also reporting negative classification
results for these features.
In BS ALS, we identified most salient feature contributions for various aspects of the timing
domain, demonstrated in a higher PPT and speaking time as well as lower CTA. This is expected
as BS ALS patients experience speech impairment due to the associated deterioration of bulbar
motor function. Or findings are in line with previous research (Green et al., 2004; 2013).
In depression, studies have consistently shown that individuals with depression make longer
pauses compared to healthy controls (Åsa Nilsonne, 1987; Cannizzaro et al., 2004; Mundt et al.,
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2012) which is in line with our findings. This has been linked to psychomotor retardation (Hoff-
mann et al., 1985; Bennabi et al., 2013). Numerous studies have reported evidence for a slower
speaking rate in depression (Darby and Hollien, 1977; Godfrey and Knight, 1984; Hardy et al.,
1984). However, our study presents contrasting findings, suggesting an increased speaking rate
(SIT 7) in read speech as one of the most important features. This discrepancy could be attributed
to the heterogeneous nature of depression and differences in treatment of the disorder, in particular
medication.
The differences in findings may also be related to the nature of the tasks employed. In our
study, we focused on features extracted from non-spontaneous speech. However, research by
Alghowinem et al. (2013) indicated that spontaneous speech contains more relevant information
about depressive characteristics compared to read speech. Furthermore, they found that features
extracted from the beginning of each sentence in the reading task yielded better results than using
full reading passages, suggesting that diagnosing depression may be more effective before subjects
fully engage in the task. Investigating this further would be valuable in future research.
We also observed a smaller average lip width as an important feature, which may be associated
with decreased emotional expressivity, as indicated by reduced smiling and increased frowning.
These findings align with previous studies highlighting similar patterns of emotional expression
in depression (Scherer et al., 2014). A diminished emotional expressiveness or a general lack of
positive affect are commonly found in depression (Sorg et al., 2012). More generally speaking,
changes in lip width, as demonstrated in our study, including a reduction in the width of mouth
movements during speech or a less expressive mouth posture, have been linked to depressive
symptoms (Cohn et al., 2009).
In schizophrenia, we identified timing and articulation, voice quality and energy features to be
most important when compared to healthy controls. Shimmer and HNR are indicative of different
aspects of voice quality and commonly found across ML and clinical research (Zhao et al., 2022).
In addition, shimmer has been demonstrated to have a stable negative correlation with negative
symptoms present in schizophrenia such as blunted affect and alogia (Zhao et al., 2022).
We demonstrated that distinct mental and neurological disorders, depression, schizophrenia and
two stages of disease progression in ALS, share characteristics, in particular, in speech production.
These include timing-related features (such as speaking time and pauses) as well as energy related
and articulatory features.
Despite the identified commonalities, features combine differently and hence, form different
patterns. In schizophrenia, voice quality features such as shimmer and the HNR added crucial
information for the classifier to distinguish schizophrenia cases from controls. Furthermore, the
Shapley analysis of our multiclass experiments shows that the feature contribution patterns change
when confronted with the more complex task of differential diagnosis. In binary classification
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tasks, we found that the models typically focus on a small set of features for the prediction, as
indicated by the Shapley curves. In contrast, in multi classification tasks, we observed a more
balanced contribution among a larger set of features, indicating that the model needs to incorporate
more complex information for the prediction.
Note that the feature analysis does not establish a straightforward causal relationship, but rather
shows salient associations between specific features and cohorts. In addition, it is largely infeasi-
ble to obtain a complete picture of an individual’s medical history and potentially co-occurring
disorders that may affect an individual’s health and thereby the assessments. Hence, the lack of
comprehensive information induces uncertainty in the results. The use of large data sets in the
future contributes to mitigating this limitation.
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8 Summary

In this thesis, we presented a transparent feature selection pipeline that addresses demographic-
specific biases, feature redundancy and provides interpretability of ML models.
Our demographics analysis demonstrated that accounting for age and sex is crucial for avoiding
bias as we revealed age effects across various domains such as timing in speech features or mouth
opening in facial features. Age-related changes differed for various metrics by sex. In addition,
numerous features, in particular of the speech domain, are shown to differ between males and
females. The redundancy analysis provided sensible clusters by grouping features of similar
domains and tasks together. We showed that our proposed approach can be effectively applied in
binary as well as more complex multiclass classification tasks. Our pipeline demonstrated high
sensitivity and specificity in distinguishing controls from schizophrenia and BS ALS cases in
particular. Our study revealed the following findings for specific diseases compared to controls:

• We find consistent evidence for voice quality, energy and timing features in schizophrenia.

• In BS ALS, we determine CTA, PPT and SNR among the most important features.

• In BP ALS, our analyses only reveal the facial feature of average mouth symmetry.

• In depression, we find strong feature contributions of eye opening, lip width, timing and
DDK-related energy and articulation skills.

In general, our study suggests that both speech and facial features are useful for distinguishing
between the cohorts under investigation. Our thorough feature investigation demonstrated that
distinct mental and neurological disorders share characteristics, in particular, in speech production.
These include predominantly timing-related features such as speaking time and pauses.
In this context, the across-disorder experiments have shown that the algorithm can discriminate
disorders of the same domain with high accuracy despite common characteristics. In relation to this,
we demonstrated the usefulness of our approach for the more complex task of differential diagnosis,
as it worked well in multiclass classification, outperforming baseline approaches. Moreover, these
analyses provided valuable insights into which features, relative to other disorders, are more
disorder-specific, as opposed to features that are highly sensitive across multiple disorders. For
schizophrenia, for example, we identify the voice quality feature of shimmer as important across
experiments. In addition, we found that in the multiclass task, features contributed more uniformly
compared to the binary classification experiments. This indicates that the model is able to detect
unique patterns in this more complex task instead of focusing on a few very prominent features,
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as shown in the binary experiments. To enhance understanding of feature contributions, future
research should focus on examining the intertwined relationships between related disorders and
controls and feature patterns.
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