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Abstract

Water bodies act as critical components of the hydrological cycle, serving as reser-
voirs, lakes, wetlands, and aquifers that store and release water over time. Monitoring
changes in the extent and volume of these water bodies is crucial for understanding
their role in regulating water flow, maintaining baseflow during dry periods, and sup-
porting ecological habitats. Furthermore, the identification of trends and alterations in
water body dynamics aids in detecting potential impacts of climate change and human
activities on the hydrological cycle. Historically, gauge stations have been employed
to monitor the water level of these bodies since the 19th century. However, their num-
bers have been dwindling since the 1970s due to maintenance challenges. With the
development of satellite altimetry missions, more accurate and continuous monitor-
ing of lakes and rivers has become possible. These satellites in recent years offer the
capability to provide water level data with different along-track sampling distances.
For instance, ICESat-2 offers a sampling distance of 70 cm with a footprint size of
~17 m, while Sentinel-3 provides a sampling distance of 300 m. The temporal reso-
lution ranges from 10 days (Jason-3) to 369 days (Cryosat-2). These advances allow
researchers to effectively observe and understand changes in water bodies.

The invention of satellite-based laser altimetry has brought a revolutionary advance-
ment in our ability to monitor and study Earth’s water bodies with unprecedented
precision and extensive spatial coverage. This doctoral thesis aims to explore the di-
verse applications of ICESat-2 laser altimetry data over inland water bodies. Through
these investigations, the aim is to advance our understanding of global hydrological
processes and acquire valuable insights to improve water resource management strate-
gies.

It is important to understand the error budget of the altimetric observations, one com-
ponent of which is radial orbit error. Apart from the altimetric ranging errors, ra-
dial orbit errors directly influence the accuracy of the measurement of Earth’s surface
heights. These errors can be assessed by analyzing the difference of surface heights
at ground track intersections, so-called crossover differences (XO differences). An ef-
fective approach is to model the orbit error by minimizing the residual XO difference
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by the least-squares (LS) method, which is commonly known as XO adjustment. This
method was implemented in the Arctic region to examine the performance of the LS
adjustment over spherical cap geometry and assess the level of radial orbit error across
a large-scale area. This analysis will aid in understanding the accuracy and reliability
of ICESat-2 satellite orbit over the Arctic region.

The ICESat-2 satellite captures high-resolution observations of Earth’s surface, includ-
ing land and water, thus enabling dense measurements of heights. The green laser used
in ICESat-2 has the capability to penetrate water surfaces, allowing measurements of
not only the lake water level but also the nearshore water bottom. This study proposes
a novel algorithm that combines ICESat-2 measurements with Landsat imagery to ex-
tract lake water level, extent and volume. This algorithm was applied to Lake Mead,
resulting in a long-term time series of water level, extent and volume dating back to
1984, only derived from remote sensing data.

The ICESat-2 satellite is equipped with three pairs of laser transmitters, which con-
currently generate three pairs of ground tracks. This unique characteristic enables
us to derive river surface heights for each ground track, thereby calculating the river
slope between two tracks, referred to as the across-track river slope. Moreover, when
one ground track passes through the river surface, producing dense measurements, it
allows us to obtain the small-scale slope for that specific track, termed the along-track
based river slope. By using these methods, both types of slopes were estimated for the
entire length of the Rhine River and subsequently generated the average slope for each
reach along the river.
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Zusammenfassung

Gewässer fungieren als entscheidende Bestandteile des hydrologischen Kreislaufs und
dienen als Reservoire, Seen, Feuchtgebiete und Grundwasserleiter, die Wasser im Laufe
der Zeit speichern und freisetzen. Die Überwachung von Veränderungen in Umfang
und Volumen dieser Gewässer ist entscheidend, um ihre Rolle bei der Regulierung
des Wasserflusses, der Aufrechterhaltung des Grundwasserflusses während trockener
Perioden und der Unterstützung ökologischer Lebensräume zu verstehen. Darüber
hinaus hilft die Identifizierung von Trends und Veränderungen in der Dynamik der
Wasserflächen bei der Erkennung potenzieller Auswirkungen des Klimawandels und
menschlicher Aktivitäten auf den hydrologischen Kreislauf. Historisch gesehen wur-
den Pegelstationen seit dem 19. Jahrhundert eingesetzt, um den Wasserstand dieser
Gewässer zu überwachen. Ihre Anzahl hat jedoch seit den 1970er Jahren aufgrund
von Wartungsproblemen abgenommen. Mit der Entwicklung von Satellitenaltimetrie-
missionen ist eine genauere und kontinuierliche Überwachung von Seen und Flüssen
möglich geworden. Diese Satelliten bieten in den letzten Jahren die Kapazität, Wasser-
standsdaten mit verschiedenen Abtastabständen entlang der Strecke bereitzustellen.
Zum Beispiel bietet ICESat-2 einen Abtastabstand von 70 cm bei einer Fußabdruck-
größe von ~17 m, während Sentinel-3 einen Abtastabstand von 300 m bietet. Die
zeitliche Auflösung variiert von 10 Tagen (Jason-3) bis 369 Tagen (Cryosat-2). Diese
Fortschritte ermöglichen es Forschern, Veränderungen in Wasserreservoirs effektiv zu
beobachten und zu verstehen.

Die Erfindung der satellitengestützten Laseraltimetrie hat einen revolutionären Fort-
schritt in unserer Fähigkeit zur Überwachung und Erforschung der Wasserkörper der
Erde mit beispielloser Präzision und weitreichender räumlicher Abdeckung gebracht.
Diese Doktorarbeit zielt darauf ab, die vielfältigen Anwendungen von ICESat-2-Laser-
altimetriedaten über Binnengewässern zu erkunden. Durch diese Untersuchungen be-
absichtigen wir, unser Verständnis globaler hydrologischer Prozesse voranzutreiben
und wertvolle Erkenntnisse zur Verbesserung von Strategien zur Wassernutzung zu
gewinnen.

Es ist wichtig, das Fehlerbudget der altimetrischen Beobachtungen zu verstehen, zu
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dem auch der radiale Bahndatenfehler gehört. Abgesehen von den Fehlerquellen bei
der Altimetrie beeinflussen radiale Bahndatenfehler direkt die Genauigkeit der Mess-
ung der Erdoberflächenhöhen. Diese Fehler können durch die Analyse der Differenz
der Oberflächenhöhen an den Schnittpunkten der Bodenspur, den sogenannten Cross-
over-Unterschieden (XO-Unterschieden), bewertet werden. Ein effektiver Ansatz best-
eht darin, den Bahndatenfehler zu modellieren, indem man den verbleibenden XO-
Unterschied durch die Methode der kleinsten Quadrate (LS), die allgemein als XO-
Ausgleichung bekannt ist, minimiert. Wir setzen diese Methode in der Arktis ein,
um die Leistung der LS-Ausgleichung über sphärische Kappen-Geometrie zu unter-
suchen und das Niveau des radialen Bahndatenfehlers in einem großflächigen Gebiet
zu bewerten. Diese Analyse wird dazu beitragen, das Verständnis für die Genauigkeit
und Zuverlässigkeit der Bahndaten des ICESat-2-Satelliten über der Arktis-Region zu
verbessern.

Der ICESat-2-Satellit erfasst hochauflösende Beobachtungen der Erdoberfläche, ein-
schließlich Land und Wasser, was dichte Messungen von Höhen ermöglicht. Der grüne
Laser, der im ICESat-2 verwendet wird, hat die Fähigkeit, Wasserflächen zu durch-
dringen, was Messungen nicht nur des Wasserstands in Seen, sondern auch des Un-
tergrunds im küstennahen Bereich ermöglicht. Diese Studie schlägt einen innovativen
Algorithmus vor, der ICESat-2-Messungen mit Landsat-Bildern kombiniert, um den
Wasserstand, die Ausdehnung und das Volumen von Seen zu extrahieren. Wir wen-
den diesen Algorithmus auf den Lake Mead an und erhalten eine Langzeit-Zeitreihe
von Wasserstand, Ausdehnung und Volumen, die bis ins Jahr 1984 zurückreicht und
ausschließlich aus Fernerkundungsdaten abgeleitet ist.

Der ICESat-2-Satellit ist mit drei Paaren von Laser-Sendern ausgestattet, die gleichzeitig
drei Paare von Bodenspuren erzeugen. Diese einzigartige Eigenschaft ermöglicht es
uns, Flächenhöhen von Flüssen für jede Bodenspur abzuleiten und somit das Gefälle
des Flusses zwischen zwei Spuren zu berechnen, das als quer zur Spur verlaufendes
Flussgefälle bezeichnet wird. Darüber hinaus, wenn eine Bodenspur die Flussober-
fläche durchquert und dichte Messungen erzeugt, können wir das Kleinskalen-Gefälle
für diese spezifische Spur erhalten, das als flussabwärts basiertes Flussgefälle entlang der
Spur bezeichnet wird. Durch die Verwendung dieser Methoden schätzen wir beide
Arten von Gefällen für die gesamte Länge des Rheins und generieren anschließend
das Durchschnittsgefälle für jeden Abschnitt entlang des Flusses.



1

Chapter 1

Introduction

Climate change poses profound challenges to hydrological systems worldwide, funda-
mentally altering the quantity, timing, and distribution of water resources. The intri-
cate relationship between climate and hydrology needs a comprehensive understand-
ing of how changes in atmospheric conditions affect the availability, quality, and man-
agement of freshwater supplies (Marques et al., 2022). According to the IPCC (2022)
report, it is predicted that the global mean temperature will likely increase by 1.5°C or
more from 2021 to 2040 if greenhouse gas emissions continue unabated. From 1901 to
2018, there was an observed increase in global mean sea level (MSL) by 0.2 m, with the
average rate of MSL rise during the period from 1901 to 1971 of 1.3 mm/yr, increasing
to 1.9 mm/yr between 1971 and 2006, and further increasing to 3.7 mm/yr between
2006 and 2018 (IPCC, 2021).

The prevailing consensus reveals that global warming and associated changes to the
hydrological cycle are expected to amplify the occurrence and intensity of extreme cli-
mate events, leading to heightened incidences of severe floods and droughts (Déry et al.,
2009; Jung et al., 2012; Thompson, 2012). Extreme climate events can have significant
impacts on the natural environment. Therefore, understanding the impact of climate
change on the temporal and spatial evolution of the hydrological cycle is a vital basis
for improving the management of water resources. Conversely, the variation of the
hydrological cycle is a significant indicator to predict the trend of climate change on a
regional scale. In the context of rapid population growth and socio-economic develop-
ment, the demand for freshwater continues to rise (Cook and Bakker, 2012). Current
reports indicate that more than 2 billion people are facing high water stress, while ap-
proximately 4 billion people experience severe water scarcity for at least one month per
year (Uhlenbrook and Connor, 2019). The future state of water security may be further
exacerbated by the prolonged occurrence of droughts within the context of a changing
climate (Seckler et al., 1999).



2 Chapter 1. Introduction

In addition to global climate change, human activities such as afforestation, deforesta-
tion, and urban construction have also contributed to changes in the hydrological cycle,
particularly at large-scale changes in land cover or its management (Brown et al., 2005;
Jiang et al., 2012a). Furthermore, the use of water for agricultural and industrial pur-
poses can also have substantial implications for the hydrological cycle, leading to an
influence on the dynamics of surface and sub-surface water content.

Over the past few decades, the management of water resources at the catchment or
regional scale has faced increasing challenges concerning water quantity and quality
(IPCC, 2013). Consequently, there has been a growing recognition of the need to com-
prehend the impact and relative significance of climate change and human-induced
alterations on hydrology and water resources, leading to heightened concerns in this
field (Siriwardena et al., 2006). To address these challenges, water conservancy facil-
ities have been constructed to serve as buffers against climate extremes, facilitating
water supply, flood control, and hydropower generation (Cheng et al., 2008; Fu, 2008;
Lehner and Döll, 2004). Furthermore, ground observation equipment also plays a cru-
cial role in hydrological cycles to monitor water resources and forecast climate events.
Nevertheless, in recent decades, the availability of active gauging stations has signif-
icantly declined due to financial and political restrictions (Elmi, 2019). Figure 1.1 il-
lustrates the status of basins with publicly accessible gauging stations, depicting the
decrease in the number of river discharge measurement stations over time as reported
by the Global Runoff Data Centre (GRDC). Therefore, due to the limited and declin-
ing number of gauging stations worldwide, the utilization of satellite technologies to
monitor water bodies becomes particularly valuable (Tourian et al., 2013).

Figure 1.1: Spatial distribution of gauging stations with available runoff
data in the database of GRDC in different timeframes

(https://www.bafg.de/GRDC/EN/Home/homepage_node.html).

https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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1.1 Monitoring the hydrological cycle by satellite-based

technologies

Satellite-based technologies involve the use of remote sensing instruments on satellites
to gather information about the Earth’s surface and atmosphere. These instruments
capture electromagnetic radiation reflected or emitted by the Earth, enabling the mea-
surement of various hydrological parameters. National space agencies such as those of
the USA, France, China, Japan, Canada, India, and other countries manage an exten-
sive array of satellite systems that provide the scientific community with a wide range
of measurement types and varying spatial and temporal coverage. Over the past 25
years, remarkable progress has been made in our capacity to observe the hydrolog-
ical cycle, due to the maturation of satellite remote sensing, improvements in com-
puting power, and the expansion of data-storage capabilities (Lettenmaier et al., 2015).
Consequently, different types of satellites equipped with various sensors, including
passive and active sensors, provide valuable data for monitoring different aspects of
the hydrological cycle (Liu et al., 2012), including the global measurements of rainfall
(Jeniffer et al., 2010), soil moisture (Jackson et al., 1996), snow cover (Immerzeel et al.,
2009), groundwater storage change (Yeh et al., 2006), surface water level (Altenau et al.,
2019), and other hydrological cycle variables.

Precipitation is a fundamental component of the hydrological cycle, and accurate es-
timation of precipitation is important for understanding regional water availability
and predicting extreme climate events. Satellite-retrieved rainfall was first inferred
using visible and thermal infrared observations, providing an estimate of rainfall vol-
ume (Lethbridge, 1967). With the launch of microwave sensors such as the Advanced
Microwave Sounding Unit-B (AMSU-B) and the Special Sensor Microwave Imager
(SSMI), a shift towards more direct measurements of precipitation rates was taken.
Evolutions on these early missions are reflected in the dedicated Tropical Rainfall Mea-
suring Mission (TRMM) and the latest Global Precipitation Mission (GPM), both of
which use a combination of radiometers and high-resolution radar measurements.
These methods integrate satellite observations with ground-based measurements, and
employ a combination of statistical and physical models to generate accurate estimates
of precipitation (Kidd and Huffman, 2011).

Evapotranspiration represents the combined processes of water evaporation from the
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land surface and transpiration from vegetation. Accurate estimation of evapotranspi-
ration is vital for water resource management, crop yield prediction, and understand-
ing the energy balance of the Earth’s surface. Thermal infrared sensors, such as those
onboard the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument,
provide valuable inputs for evapotranspiration modeling (Mu et al., 2007). These tech-
niques use surface temperature, vegetation indices, and meteorological data to derive
evapotranspiration rates (Fisher et al., 2008). Although modern geostationary satellites
have the capability to retrieve data with a spatial resolution of 1–2 km in the visible-
to-infrared spectrum, the currently available global operational data products are lim-
ited to coarse degree-scale resolutions. This limitation poses a significant challenge for
generating global estimates (McCabe et al., 2016). Therefore, it is necessary to require
improvements in both retrieval algorithms and satellite measurements.

Soil moisture is a key parameter in hydrological processes, affecting plant growth,
runoff, and groundwater recharge. Satellite remote sensing offers the ability to mon-
itor soil moisture at different spatial and temporal scales. Microwave sensors, such
as those onboard the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Ac-
tive Passive (SMAP) satellites, provide valuable measurements of surface soil moisture
content (Kerr et al., 2012). Advanced algorithms are employed to retrieve soil moisture
information from the microwave observations, considering factors like surface rough-
ness and vegetation cover (Wagner et al., 2012). Despite no planned SMOS follow-on
mission at present, the outlook for satellite remote sensing of soil moisture remains
promising, with Sentinel-1 series equipped with high-resolution radars having demon-
strated the capacity to provide soil moisture estimations at resolutions below 1 km and
in near-real time (Paloscia et al., 2013). Spaceborne Global Navigation Satellite System-
Reflectometry (GNSS-R) is also used to measure soil moisture in recent years. The con-
cept is similar to radar altimetry, but it uses naturally occurring navigation satellite
signals as the source of energy for sensing instead of actively generated radar waves
(Camps et al., 2016).

Snow and ice dynamics play an important role in the hydrological cycle as an indicator
of climate change. Space technologies have a wide range of applications in this field, in-
cluding the monitoring of snow cover variations, estimation of snow water equivalent,
tracking of glaciers and ice sheets, and observation of sea ice (Hall and Martinec, 1985).
Optical sensors, such as those onboard the Landsat series and Sentinel-2 missions, cap-
ture reflected solar radiation to identify and map snow-covered areas. These sensors
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provide high-resolution imagery, allowing for the detection of even fractional snow-
covered areas (Dozier et al., 2009). Microwave sensors, such as the Advanced Mi-
crowave Scanning Radiometer for EOS (AMSR-E) and the Special Sensor Microwave
Imager (SSMI), are used to retrieve snow water equivalent (SWE) by exploiting the
differences in microwave emission between snow and underlying ground surfaces
(Tedesco et al., 2015). These onboard sensors measure the microwave radiation emit-
ted by the snowpack, allowing for the estimation of SWE at regional and global scales
(De Lannoy et al., 2012). Snow and ice monitoring from space comes with several chal-
lenges. The complex interaction between snow and ice surfaces, such as changes in
surface properties due to melting and refreezing, poses challenges for retrieval algo-
rithms. Additionally, the rugged terrain and steep slopes in mountainous regions can
affect the accuracy of snow and ice mapping. Therefore, continued advancements in
sensor technology, integration of multiple satellite data sources, and improved algo-
rithms for atmospheric correction and surface modeling are key areas of focus for ad-
dressing these challenges (Luo et al., 2018).

Water level and river discharge monitoring is essential for understanding river flow
dynamics, flood forecasting, and water resource management. Satellite altimetry, a
remote sensing technique that measures the height of water surfaces using radar- or
laser-based sensors, has emerged as a valuable tool for monitoring the water level and
estimating the river discharge with hydrological models (Alsdorf et al., 2007). Satel-
lite altimetry provides a global-scale observation of water levels in rivers, lakes, and
reservoirs. Altimetry sensors, such as the Jason series, Sentinel-3 missions and ICESat
series, measure the distance between the satellite and the water surface by emitting
radar or laser pulses and measuring the time taken for the signal to return. Altimetry-
derived water level measurements are particularly significant for large river systems
and remote areas where in-situ gauge networks may be limited. River discharge, the
volume of water flowing through a river channel per unit of time, is a fundamen-
tal parameter for water resource management and flood forecasting. Estimating river
discharge from altimetry data involves the integration of water level measurements
with channel geometry and hydraulic models. By combining altimetry-derived water
levels with width-depth relationships and slope information, river discharge can be
estimated (Sneeuw et al., 2014). The integration of altimetry-derived river discharge
with in-situ gauge observations and hydrological models enhances the understanding
of river flow dynamics and improves water resource planning (Tourian et al., 2017).

Monitoring changes of water area and water storage in lakes, reservoirs, and wetlands
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is important for assessing water availability, ecosystem health, and water resource
management. Satellite-based optical sensors (e.g. the Landsat series and Sentinel-2
missions), provide high-resolution imagery for mapping and monitoring water bodies
(Pekel et al., 2016). These sensors capture information about water reflectance, allow-
ing for the detection of water extent changes (Elmi and Tourian, 2023). Additionally,
satellite-based radar sensors, including Synthetic Aperture Radar (SAR), provide all-
weather imaging capabilities to monitor the variation of water areas (Shen et al., 2019).

To monitor the changes of water storage on a global scale, the Gravity Recovery and
Climate Experiment (GRACE) mission is one example, which provided high-resolution
observations of temporal changes in the Earth’s gravity field, enabling the estima-
tion of changes in water storage (Tourian, 2013). GRACE provides information about
changes in water storage including groundwater, ice sheets, lakes, rivers, and oceans.
By analyzing the data from GRACE, scientists can estimate changes in the Earth’s wa-
ter mass, and this information has significant implications for understanding global
water availability, sea level rise, and the impacts of climate change on the distribution
of water resources. The mission has been succeeded by GRACE Follow-On, continuing
its legacy of monitoring Earth’s water storage variations from space.

Satellite-based technologies have significant advantages in our understanding of the
hydrological cycle by providing information on various components such as precipi-
tation, evapotranspiration, soil moisture, surface water, and snow and ice dynamics.
However, several challenges exist, and ongoing research aims to address these limi-
tations and improve the capabilities of satellite-based monitoring. The challenges en-
countered in satellite-based hydrological cycle monitoring are as follows:

1. Spatial and Temporal Resolution: Although satellite sensors have improved
over time, the spatial resolution may not always capture small-scale features,
such as localized precipitation patterns or changes in small water bodies. Sim-
ilarly, the temporal resolution of satellite observations may not adequately cap-
ture rapid hydrological processes, such as intense rainfall events or short-term
changes in soil moisture. Table 1.1 presents details regarding frequently used
satellites, including their spatial and temporal coverage, as well as spatial and
temporal resolution.

2. Integration of Multiple Data Sources: To overcome the limitations of individual
satellite sensors, the integration of multiple data sources has gained attention.
Combining data from different satellite missions, such as optical, microwave,
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and radar sensors, can provide complementary information and enhance the ac-
curacy of hydrological parameter retrieval. Abowarda et al. (2021) generated sur-
face soil moisture maps at 30 m spatial resolution by fusing reflectance products
of the MODIS and Landsat with land surface temperature (LST). Additionally,
the integration of satellite observations with ground-based measurements, such
as gauges and weather stations, can help validate and calibrate satellite-derived
products. Tourian et al. (2017) used ENVISAT, SARAL/AltiKa and Jason-2 al-
timetry data with in-situ data to estimate daily river discharge over Niger River.
Further research is needed to develop robust data fusion techniques that effec-
tively integrate various data sources, facilitating a more comprehensive under-
standing of the hydrological cycle.

3. Improved Retrieval Algorithms: Accurate retrieval of hydrological parameters
from satellite observations requires advanced algorithms that account for var-
ious factors affecting signal interactions with the Earth’s surface. Developing
robust retrieval algorithms for estimating precipitation, evapotranspiration, soil
moisture, and other variables is important. These algorithms should consider
the complexities introduced by surface roughness, vegetation cover, atmospheric
effects, and other factors that influence the observed signal. Ongoing research
aims to improve the accuracy of retrieval algorithms by incorporating advanced
modeling approaches, machine learning techniques, and assimilation methods.

4. Validation and Uncertainty Quantification: Validating satellite-derived hydro-
logical products is vital for ensuring their reliability and usefulness. This involves
comparing satellite observations with ground-based measurements and indepen-
dent datasets to assess accuracy and uncertainty. For instance, since the Shuttle
Radar Topography Mission (SRTM) conducted a single comprehensive survey of
global topography, it becomes impractical to directly validate this data against
ground truth on a worldwide scale. Nevertheless, SRTM remains a standard ref-
erence point for assessing the performance of newer sensors and remote sensing
technologies. Establishing robust validation protocols and frameworks is crucial
for evaluating the performance of satellite-based monitoring techniques. Addi-
tionally, developing methods to quantify uncertainties associated with satellite-
derived products is essential for effectively utilizing the data in hydrological
modeling and decision-making processes.

Among the space-borne sensors, satellite altimetry offers the capability to measure sur-
face water height at regular intervals of between 10 and 35 days (Fu and Cazenave,
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2000). Despite its original design for oceanography, four decades of altimetry mis-
sions have presented an opportunity to investigate the continental hydrological cycle
(Tourian et al., 2013). Nowadays, satellite altimetry is often used with other sensors,
providing information about various components such as water levels, river discharge,
snow and ice dynamics, and water storage. There are several advantages to using satel-
lite altimetry to monitor the hydrological cycle. Firstly, it enables the monitoring of the
hydrological cycle on a global scale, covering vast areas that may be inaccessible or
challenging to observe using traditional ground-based methods (Alsdorf et al., 2007).
Secondly, it has the ability to provide continuous and regular monitoring of water lev-
els and other surface heights over time. By capturing measurements at regular re-
peat times, altimetry data allows for the observation of seasonal variations, long-term
trends, and extreme events such as floods and droughts (Frappart et al., 2019). Thirdly,
satellite altimetry measurements complement in-situ gauge networks, particularly in
regions with limited or sparse ground-based observations. By integrating altimetry
data with in-situ measurements, a more comprehensive and accurate assessment of the
hydrological cycle can be achieved. Fourthly, by providing real-time or near real-time
information on water levels and river discharge, altimetry helps in the timely detection
and prediction of potential flood events. This allows for early warnings and effective
responses, minimizing the risks to human life and infrastructure (Paris et al., 2016).

Consequently, satellite altimetry plays a multifaceted role in hydrological cycle mon-
itoring, which has applications ranging from water resource management to climate
change studies. By integrating altimetry data with other remote sensing datasets and
assimilating it into hydrological models, we can enhance our understanding and man-
agement of the hydrological cycle.

Table 1.1: Characteristics of some typical remote sensing satellites

Satellite/sensor Spatial Temporal Spatial Temporal
coverage coverage resolution resolution

TRMM 35°S–35°N 1997–2015 5 km 90 mins
MODIS 82°S–82°N 1999–now 250 m 1–2 days
SMOS 82°S–82°N 2009–now 40 km 1–3 days
SMAP 82°S–82°N 2015–now 10 km 2–3 days
Sentinel-3/SRAL 81.4°S–81.4°N 2016–now 300 m 27 days
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1.2 The historical development of satellite altimetry

Satellite altimetry has undergone significant advancements since its inception in 1978,
leading to its widespread use in monitoring the Earth’s oceans, ice sheets, and inland
water bodies. This section provides an overview of the historical development of satel-
lite altimetry, highlighting key milestones and advancements in technology. Figure 1.2
gives an overview of main past, current and future altimeter missions since 1978.

Early missions

The development of satellite altimetry can be traced back to the early oceanographic
missions. Seasat was the first satellite altimetry launched in 1978 by NASA (National
Aeronautics and Space Administration), marking the beginning of satellite altimetry
for oceanographic applications. Although the mission lasted for only a few months, it
gave a good start for subsequent altimetry missions. The following missions Geosat
launched in 1985 and ERS-1 launched in 1991, used radar altimeters to measure the
height of the ocean surface and provided valuable data on ocean circulation patterns
and sea level variations (Chelton et al., 2001). Due to the limitations of the accuracy
and large footprints of radar, the early missions are only applicable to measure the sea
level of open oceans.

Topex/Poseidon and Jason missions

A major breakthrough in satellite altimetry occurred with the launch of the satellite
Topex/Poseidon (T/P) in 1992 by NASA and CNES (French Space Agency), which
started the era of inland water bodies monitoring by satellite altimetry. The T/P satel-
lite followed by the Jason-1, Jason-2, and Jason-3 missions marked a significant im-
provement in accuracy and spatial resolution, revolutionizing our understanding of
global ocean dynamics and inland water surface variations (Fu and Cazenave, 2000).
These altimetry missions employed dual-frequency radar altimeters and provided high
precision measurements of sea surface height (SSH), contributing to the establishment
of a long-term sea level record.

Envisat mission

The Envisat mission was launched in 2002 by ESA (European Space Agency). It car-
ried the Radar Altimeter-2 (RA-2) providing data on oceanography, ice sheets, and
land surface topography (Fu and Cazenave, 2000). Other instruments onboard Envisat
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included the Medium Resolution Imaging Spectrometer (MERIS), which provided de-
tailed observations of land and ocean color, the Advanced Along-Track Scanning Ra-
diometer (AATSR), which measured land and sea surface temperatures, and the Global
Ozone Monitoring by Occultation of Stars (GOMOS), which monitored the concentra-
tion and distribution of ozone in the atmosphere.

ICESat missions

The Ice, Cloud, and land Elevation Satellite (ICESat) was launched by NASA in 2003,
with the primary objective of studying Earth’s polar ice sheets and measuring changes
in the global ice cover. The ICESat satellite was equipped with a laser altimeter in-
strument called the Geoscience Laser Altimeter System (GLAS), which emitted laser
pulses towards the Earth’s surface and measured the time it took for the signals back,
providing measurements with smaller footprints than radar altimetry. In addition to
its primary focus on ice, ICESat also provided data on land topography, vegetation
canopy height, and cloud properties. These measurements were used in various ap-
plications, including studies of forest biomass, terrain mapping, and atmospheric re-
search. ICESat operated until 2009, and its mission was followed by the ICESat-2 mis-
sion, which was launched in 2018. ICESat-2 continues the work of its predecessor,
using an advanced laser altimeter to provide measurements of Earth’s polar ice sheets
and other geophysical parameters with even much smaller footprints than ICESat. One
of the advantages of ICESat-2 is that the green laser can penetrate the water to get the
bathymetry of nearshore water bodies. Another key advantage is that the onboard 3
pairs of laser beams can detect more information of the surface.

CryoSat mission

CryoSat-2 is a satellite mission launched by ESA in 2010 with the primary objective of
monitoring changes in Earth’s polar ice sheets and sea ice thickness. It is the successor
to the original CryoSat mission, which unfortunately suffered a launch failure in 2005.
The CryoSat mission introduced a new radar altimeter called the Synthetic Aperture
Interferometric Radar Altimeter (SIRAL), which enabled improved measurement ac-
curacy over ice surfaces (Wingham et al., 2006). This mission significantly advanced
our understanding of ice sheet dynamics and ice thickness changes. By combining the
measurements from CryoSat-2 with those from other satellite missions, scientists can
monitor the mass balance of ice sheets and assess their contribution to global sea level
rise. One of the key features of CryoSat-2 is its ability to measure not only the thickness
of sea ice floating on the ocean but also the freeboard.
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HY-2 missions

The HY-2 (Haiyang-2) missions are a series of satellite missions launched by the China
National Space Administration (CNSA) with the primary objective of monitoring and
studying Earth’s oceans, including SSH, significant wave height (SWH), sea surface
wind (SSW) speed, sea surface temperature and polar ice sheet elevation (Jiang et al.,
2012b). HY-2A was the first mission of the HY-2 series launched in 2011. One of the
advantages of HY-2 missions is that the microwave radiometer on HY-2A measures
microwave radiation emitted by the sea surface. This information is used to determine
sea surface temperature, which is an essential parameter for studying ocean circula-
tion, heat exchange between the ocean and the atmosphere, and climate variations.

SARAL/AltiKa mission

The SARAL/AltiKa mission is a joint satellite mission between ISRO (Indian Space Re-
search Organisation) and CNES launched in 2011. Its primary objective is to measure
sea surface heights and ocean circulation. It is the first spaceborne altimeter to operate
at Ka-band. The satellite carries an Argos instrument that receives and relays data from
thousands of small Argos tracking beacons deployed worldwide. These beacons are at-
tached to drifting buoys, animal tags, and other objects of interest, providing valuable
information on ocean currents, animal migration patterns, and environmental param-
eters. The combination of altimetry and Argos tracking enables a better understanding
of ocean dynamics and ecosystem monitoring.

Sentinel-3 missions

Sentinel-3 is a constellation of two satellites Sentinel-3A and Sentinel-3B, launched
in February 2016 and April 2018 respectively, which are managed by ESA. The on-
board Synthetic Aperture Radar Altimeter (SRAL) operates in dual-frequency, which
includes both Ku-band and C-band. The Ku-band is primarily used for the Delay-
Doppler Altimetry Mode, while the C-band is utilized for the Synthetic Aperture Radar
(SAR) Mode (Donlon et al., 2012). This dual-frequency capability allows for improved
accuracy in altimetry measurements over inland water bodies and oceans. The combi-
nation of Ku-band and C-band measurements enhances the capabilities of the altimeter
and enables more precise observations of sea surface height, wave characteristics, and
other parameters.
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ICESat-2

Figure 1.2: The operating time period of different altimetry satellites
(https://dahiti.dgfi.tum.de/en/products/water-level-altimetry/).

1.3 Research problems of radar altimetry

Monitoring water bodies, such as lakes, reservoirs, and rivers, poses several challenges
due to their dynamic nature and many remote locations. Traditional methods of data
collection, such as in-situ measurements and aerial surveys, are limited in their spa-
tial coverage and temporal resolution. Remote sensing techniques, particularly radar
altimetry, offer an opportunity to overcome these limitations and provide comprehen-
sive and consistent monitoring of water bodies at a global scale (Crétaux et al., 2016).
The development of satellite altimetry has significantly improved our understanding
of Earth’s surface and its dynamic processes. From the early Seasat mission to the lat-
est satellite radar altimeters, continuous technological advancements have improved
the accuracy, resolution, and coverage of altimetry measurements. Nevertheless, there
are still several challenges and research gaps that need to be discussed.

1. Accuracy and Precision of Water Level Measurements: Radar altimetry is a
powerful tool for measuring water levels due to its ability to penetrate clouds
and retrieve information over large areas. However, achieving accurate and pre-
cise water level measurements is crucial for reliable monitoring. Radar altimeters
can provide measurements with centimeter-level accuracy over large lakes under
favorable conditions. The problem lies in the presence of various error sources,
including waveform distortions, land contamination, and interference from other
surface features (Bao et al., 2009; Bonnefond et al., 2018). Measuring water bod-
ies using radar altimetry can be more challenging than measuring open ocean
surfaces. Inland water bodies often have complex topography, vegetation, and

https://dahiti.dgfi.tum.de/en/products/water-level-altimetry/
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varying water conditions, which can introduce additional sources of error. The
error level might range from 10 cm to several decimeters over narrow rivers.
Addressing these challenges and improving the accuracy and precision of water
level measurements using radar altimetry is a key problem to be solved.

2. Integration of Radar Altimetry with Hydrological Models: To fully utilize radar
altimetry data for water body monitoring, integration with hydrological models
is necessary. This enables the estimation of key hydrological parameters such as
water volume, inflows, outflows, and water storage changes. However, the prob-
lem lies in effectively assimilating radar altimetry data into hydrological mod-
els, addressing data uncertainties, and ensuring compatibility between the re-
mote sensing observations and model dynamics (Paiva et al., 2013). Developing
methodologies and frameworks for the seamless integration of radar altimetry
with hydrological models is important for accurate and reliable water resource
assessments.

3. Spatial and Temporal Resolution: Water bodies exhibit complex spatiotemporal
dynamics, including diurnal and seasonal variations. Radar altimetry data, with
its large spatial coverage, often has limited temporal resolution due to revisit
times and orbital constraints of satellite missions, see Table 1.2. Overcoming the
limitations of radar altimetry’s temporal resolution and addressing the need for
higher spatial resolution monitoring is essential to capture the full range of water
body dynamics (Busker et al., 2019).

4. Data Processing and Analysis: Radar altimetry data processing involves com-
plex procedures, including calibration, waveform retracking, and geophysical
corrections (Calmant and Seyler, 2006). Additionally, analyzing large volumes
of radar altimetry data requires efficient algorithms and computational resources
(Schlembach et al., 2020). Developing automated and streamlined data process-
ing techniques, along with advanced analysis methods, is critical for handling
the vast amount of radar altimetry data and deriving meaningful information for
water body monitoring.

The parameters of different radar altimetry missions are listed in Table 1.2. Address-
ing these challenges is important to achieve accurate and comprehensive assessments
of water resources and understanding the dynamics of water bodies. In the future,
the proposed direction of radar altimetry research should be developing innovative
methodologies and algorithms to overcome these challenges and improving the tech-
nical ability to acquire more data from the Earth’s surface.
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Apart from these satellite radar altimeters, the use of laser technology is a new break-
through in satellite altimetry, which makes ICESat-2 an advanced and capable altime-
try satellite, providing improved accuracy, spatial resolution, and coverage for study-
ing Earth’s surfaces and monitoring changes in sea surface, inland water bodies, sea
ice and other geophysical parameters. Consequently, this thesis aims to address the
existing challenges encountered in radar altimetry by using ICESat-2 and advance our
understanding of the hydrological cycle. The details of ICESat-2 will be introduced in
Chapter 2.
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1.4 Objectives

The primary objective of this study is to investigate the potential of the ICESat-2 mis-
sion for monitoring water bodies in the aspects such as water level variations, surface
area changes, and other hydrological dynamics. Laser technology has the capability
to not only measure water levels but also determine the elevations of various other
landscapes and features. When the nearshore profile measurements of the water body
is combined with water area variation, it will give the opportunity to monitor the vari-
ation of the water volume. Moreover, the use of 3 pairs of onboard lasers provides
a distinct advantage as it enables synchronous measurements, thereby obtaining the
river surface slope, which is a key parameter for estimating the river discharge.

To enhance our comprehension of ICESat-2’s capabilities, we’ve developed efficient
methodologies employing diverse algorithms. These methods can be employed to
construct hydrological models for monitoring purposes, including lakes and rivers.
They have the potential to substantially enhance the effectiveness and precision of cur-
rent monitoring techniques. Additionally, the results of this study can assist in water
resource management, particularly in regions where water resources are scarce. Fur-
thermore, the findings can help assess the impact of climate change on water resources
by monitoring the changes in the water level, area, and volume of lakes.

The research questions in this study are:

1. Can we evaluate the error budget of ICESat-2, especially the radial orbit error
with an optimal method?

2. Is it possible to use the ICESat-2 and satellite imagery-based measurements to
monitor lake level, area and volume variations?

3. Can we establish a function model to estimate each parameter if we know the
relationship between water level, area and volume?

4. Is it possible to determine the river surface slope if we take advantage of 3 pairs
of laser beams?

5. How does the accuracy of the ICESat-2 and satellite imagery-based measure-
ments compare to traditional field-based measurements?
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1.5 Outline of the thesis

The first chapter has introduced the importance of the hydrological cycle and the
satellite-based technologies normally used to monitor the hydrological cycle. Then
the historical development of satellite altimetry was introduced, and the problems and
limitations of radar altimetry were stated. Consequently, this thesis focuses on the new
advanced satellite laser altimetry ICESat-2 and gives the aims to be addressed in this
study.

The second chapter will provide the basic principles of laser altimetry and the prop-
erties of ICESat-2. This chapter will detail the previous generation of laser altimetry
ICESat, the current relatively new generation ICESat-2, and the mission GEDI (Global
Ecosystem Dynamics Investigation).

In the third chapter, the radial orbit error of the ICESat-2 satellite will be discussed.
Crossover analysis was used to evaluate the radial orbit error level. In this method,
function models of the radial orbit correction were established, and the performances
of different models were analyzed. This chapter is an augmented version of the paper
Wang and Sneeuw (2024).

In the fourth chapter, a methodology for monitoring lakes will be presented. A method-
ology was developed for establishing a relationship between the lake water level, area
and volume. Each step of the algorithm will be introduced in detail. This method can
be used to monitor the lake variation in the long term. Then the results were validated
with in-situ data and other datasets.

Chapter 5 will introduce the ability of ICESat-2 to determine the river surface slope.
The 3 pairs of lasers were fully used to estimate the local slope with the across-track
and along-track directions. The slope variation was generated and the chainage slope
of the entire river was performed. Then the satellite-derived slopes were compared
with the measurements from the boat.

Chapter 6 will discuss the findings of the study, their implications for water resource
management, and understanding the impact of climate change on water resources. Fi-
nally, the conclusions and recommendations will be provided for further research.
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Chapter 2

Laser altimetry

2.1 Basic principles and applications

Laser altimetry is a remote sensing technique used to measure the elevation of the
Earth’s surface by employing laser pulses. It provides highly accurate and detailed
information about the topography and structure of the Earth’s surface, including the
Earth’s landforms, vegetation, and man-made structures (Cohen et al., 1987).

The basic principle of laser altimetry involves emitting a laser beam from an aircraft
or satellite towards the ground and measuring the time it takes for the laser pulse to
travel to the target and back to the sensor (Blair et al., 1994). By knowing the speed of
light, the precise time measurement allows for the calculation of the distance between
the sensor and the surface.

The following is a simple step-by-step process of laser altimetry:

1. Emitting laser pulses: A laser source emits short pulses of light in the form of
laser beams towards the Earth’s surface. These pulses typically have a narrow
beam divergence, ensuring that the laser energy is concentrated and focused on
a specific target area, e.g. ~70 m diameter for ICESat and ~17 m diameter for
ICESat-2 (Neumann et al., 2019).

2. Pulse reflection: When the laser pulse reaches the surface, it interacts with the
various objects and features present there. The pulse can be reflected, scattered,
or absorbed, depending on the properties of the surface and objects encountered.
The reflected laser light returns to the sensor.

3. Measurement of return time: The altimeter measures the time it takes for the
laser pulse to return to the sensor. This measurement is highly precise with sev-
eral centimeters ranging error and allows for accurate determination of the dis-
tance between the sensor and the surface.
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4. Calculation of elevation: Using the known speed of light, the altitude or eleva-
tion of the surface is calculated by multiplying the time taken by the speed of
light and dividing it by two. This provides the distance between the sensor and
the surface, commonly referred to as the range. During the propagation of the
pulse, geophysical corrections should be considered due to atmospheric distur-
bances and Earth’s tides. Therefore, the elevation should be corrected in this step.
The basic equation of satellite altimetry is

h = rs −R, (2.1)

where h is the SSH above the reference ellipsoid, rs is the height of the satellite
with respect to the reference ellipsoid, and R is the range from the satellite to the
Earth’s surface.

5. Data collection and analysis: As the laser altimeter continues to emit laser pulses
and measure their return times, a large amount of data is collected. This data is
then processed and analyzed to create a detailed topographic map or a three-
dimensional representation of the Earth’s surface.

Laser altimetry has been used in various applications, such as mapping and monitor-
ing ice sheets, glaciers, and polar regions, studying changes in forest canopy height
and biomass, assessing coastal erosion and measuring the elevation of land surfaces
(Zwally et al., 2002). There are several notable satellite laser altimeters used in differ-
ent applications, as follows:

1. Mars Orbiter Laser Altimeter (MOLA): MOLA is an instrument on NASA’s
Mars Global Surveyor (MGS) spacecraft, which orbited Mars from 1997 to 2006.
MOLA employed laser altimetry to create a detailed global topographic map of
Mars. By measuring the time it took for the laser pulses to return from the Mar-
tian surface, MOLA provided scientists with valuable data about the planet’s
topography, including the height of mountains, the depth of canyons, and the
elevation of various Martian features (Smith et al., 2001).

2. Lunar Orbiter Laser Altimeter (LOLA): LOLA is an instrument on NASA’s Lu-
nar Reconnaissance Orbiter (LRO) spacecraft, which has operated from 2009 till
now. LOLA studies the moon in the same way that MOLA studied Mars. LOLA’s
primary measurement is surface topography, and in addition the instrument pro-
vides ancillary measurements of surface slope, roughness and 1064 nm reflectance
(Smith et al., 2010). The data from LOLA was used to generate a global lunar
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topographic model and geodetic grid that serves as the foundation of essential
lunar understanding.

3. Geoscience Laser Altimeter System (GLAS): GLAS is an instrument carried
aboard NASA’s ICESat mission. It was specifically designed to study the Earth’s
polar ice sheets and assess changes in their mass and thickness over time. GLAS
uses lasers to measure the distance between the satellite and the ice surface, al-
lowing scientists to monitor changes in ice volume and track the dynamics of ice
sheets (Abshire et al., 2005).

4. Advanced Topographic Laser Altimeter System (ATLAS): ATLAS is an advanced
laser altimetry instrument carried by NASA’s ICESat-2 satellite, launched in 2018.
It is designed to continue the work of its predecessor, ICESat, by monitoring
changes in the Earth’s polar ice sheets, sea ice thickness and land topography
(Markus et al., 2017). ATLAS uses a high-power laser to collect precise elevation
data and track variations in the height of the Earth’s surfaces with exceptional
accuracy.

5. Global Ecosystem Dynamics Investigation (GEDI): The GEDI instrument was
launched to the International Space Station (ISS) in December 2018 and was de-
signed to study the Earth’s forests and vegetation structure in three dimensions.
Such observations are critical for accurately assessing the existing biomass of
forests, and how changes in this biomass caused by human activities or vari-
ations in climate may impact atmospheric CO2 concentrations (Dubayah et al.,
2020).

The following sections in this chapter will introduce details of GEDI, GLAS and AT-
LAS instruments, as well as their respective satellite platforms.

2.2 GEDI

GEDI was deployed to the ISS in December 2018 and retired in January 2023. GEDI
measurements were conducted both during daytime and nighttime, providing contin-
uous coverage over terrestrial land surfaces. This coverage includes the diverse tropi-
cal and temperate forest regions of the Earth. The GEDI instrument employed an active
across-track pointing system to mitigate coverage gaps caused by orbital variations of
the ISS. These variations arise due to the non-repetitive nature of the ISS orbit and the
potential occurrence of orbital resonances that lead to significant coverage gaps. With
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its pointing capability, GEDI can precisely target specific plot locations or other areas
of interest with an accuracy of approximately 35 m (Dubayah et al., 2020). GEDI’s ap-
proach involved a systematic and evenly distributed distribution of laser tracks across
the Earth, following a predefined set of Reference Ground Tracks (RGTs) designed to
optimize sampling.

The GEDI instrument included three identical near-infrared lasers. Two were used at
full power, while the other one was split into two beams, for a total of 4 beams. Each
of the beams was optically dithered across-track to create a total of 8 ground tracks,
with a between-track spacing of ~600 m, and a total across-track width of ~4.2 km.
The average along-track distance between the footprints is 60 m and the footprint size
is 25 m, resulting in almost continuous along-track coverage. It is operated by emit-
ting laser pulses in 1064 nm wavelength light, where it interacts with the leaves and
branches within the footprint. The laser system operated at a frequency of 242 pulses
per second. GEDI used an advanced laser remote sensing system that relies only on the
analysis of the returned laser waveform. This full waveform provided valuable infor-
mation for deriving various canopy and waveform metrics, including canopy height,
canopy vertical profile, and Relative Height (RH) energy metrics (Tang et al., 2012), as
well as topographic surface elevation.

Figure 2.1 shows a sample of the reflected waveform when the laser detects the vegeta-
tion on the ground. The light brown area under the curve represents the return energy
from the canopy, while the dark brown area signifies the return from the underlying
topography. The black line is the cumulative return energy, starting from the bottom
of the ground return (normalized to 0) to the top of the canopy (normalized to 1). RH
metrics give the height at which a certain quantile returned energy is reached relative
to the ground (the center of the ground return). The diagram on the right shows the
distribution of trees that produced the waveform on the left.

Here are some key features and objectives of the GEDI mission:

1. 3D Forest Structure: GEDI aimed to provide a comprehensive assessment of the
Earth’s forest structure in three dimensions. It measured the heights and verti-
cal distribution of vegetation, including the canopy, branches, and understory,
providing valuable insights into forest biomass, carbon stocks, and biodiversity.

2. Global Coverage: GEDI covered a broad range of latitudes, from 51.6°N to 51.6°S,
allowing for a global assessment of forests and vegetation. The instrument col-
lected data along the ISS orbit path, providing a unique perspective for studying
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various forest types, including tropical, temperate, and boreal forests. GEDI can
be rotated up to 6°, allowing the lasers to be pointed up to 40 km on either side of
the ISS ground track. This capability was used to sample the Earth’s land surface
as completely as possible, filling in gaps due to clouds. During GEDI’s oper-
ating time, about 10 billion cloud-free observations of the Earth’s surface were
acquired. These observations can then be gridded into regular coverages of vary-
ing resolution, such as 1 km grid cells.

3. Ecological Research: GEDI data supports ecological research by facilitating a
better understanding of forest dynamics, habitat structure, and ecosystem health.
It helps scientists monitor forest disturbance, such as deforestation, regrowth,
and degradation, and assess the impact of these changes on biodiversity, carbon
cycling, and climate regulation.

4. Climate Modeling: GEDI data is valuable for improving climate models and un-
derstanding the role of forests in the global carbon cycle. By providing accurate
measurements of forest structure and biomass, GEDI contributed to estimating
carbon stocks, carbon sequestration rates, and the overall impact of forests on
Earth’s climate system.

Figure 2.1: A sample of the reflected waveform of one laser pulse
detecting the vegetation (https://gedi.umd.edu/mission/technology/).

https://gedi.umd.edu/mission/technology/
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2.3 ICESat and GLAS

The main objective of ICESat was to ascertain inter-annual and long-term variations
in mass within polar ice sheets, elucidate the factors influencing these changes in mass
balance (such as polar precipitation, ice melting, or ice flow acceleration/deceleration),
and evaluate their consequences on global sea level (Zwally et al., 2002). Changes in
ice mass arise from imbalances between inputs (snowfall, condensation, and occasional
rainfall) and outputs (evaporation, melt runoff, iceberg discharge, and snow drift re-
moval). Other scientific objectives of ICESat include: global measurements of cloud
heights and the vertical structure of clouds and aerosols; precise measurements of land
topography and vegetation canopy heights; and measurements of sea ice roughness,
sea ice thickness, ocean surface elevations, and surface reflectivity.

ICESat revolutionized global measurements of vertical cloud and aerosol structure, op-
tical depth, planetary boundary layer height, and polar tropospheric and stratospheric
clouds, providing unprecedented insights. The laser data, offering direct and explicit
information, has the ability in validating cloud and aerosol retrievals from passive
sensors on other Earth Observing System (EOS) satellites (Zwally et al., 2002). While
passive sensors excel at observing cloud tops, their capacity to distinguish multi-level
cloud formations and determine vertical cloud distribution is hindered by upper-layer
clouds. ICESat’s laser, on the other hand, offered distinct advantages with direct cloud
height measurements, aerosol distribution monitoring over land, and year-round mea-
surements of polar clouds and aerosols. Enhanced cloud measurements, particularly
in polar regions, are crucial for comprehending the radiation balance and refining at-
mospheric precipitation modeling, both essential factors impacting surface ice mass
balance. Moreover, laser measurements play a crucial role in enhancing digital eleva-
tion models, particularly in regions where geodetic control is limited, such as higher-
latitude areas. Utilizing repeat laser profiling and crossover analysis, the mission en-
ables the detection of land elevation changes resulting from geologic processes, includ-
ing soil erosion, sediment transportation, and volcanic magma inflation. Furthermore,
ICESat facilitates the monitoring of inland water levels and the measurement of vege-
tation height in low-relief regions. An important capability of the mission was its ac-
curate spacecraft pointing to off-nadir targets of opportunity, such as volcanic aerosol
plumes or flood-affected areas.

GLAS has three lasers (designated Laser 1, 2 and 3) mounted on a rigid optical bench,
with only one laser operating at a time (Abshire et al., 2005; Zwally et al., 2002). Each
emitter produces a 1064 nm wavelength laser pulse, but a doubler crystal produces
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a 532 nm wavelength laser pulse, which yields a more sensitive determination of the
vertical distribution of clouds and aerosols (Spinhirne et al., 2005). The expected pre-
cision for the surface elevation measurements is better than 15 cm, calculated as an
average value over laser footprints with a diameter of ~70 m, and spaced with an in-
terval of ~170 m along the track (Zwally et al., 2002). ICESat’s orbit is at an altitude of
600 km with an inclination of 94°. The 8-day repeat orbit was used during the calibra-
tion phase of the ICESat mission since it enabled the flight over a specific calibration
site every 8 days. The 183-day repeat orbit was designed to be the actual operational
orbit after calibration. The onboard Global Positioning System (GPS) system provides
radial orbit determinations with an accuracy better than 5 cm, while the star trackers
in GLAS and on the spacecraft will allow for horizontal footprint localization to 6 m.
Precise control of the laser beam’s spacecraft pointing will enable repeat tracks over
the ice sheets to be maintained within ±35 m on the surface.

On February 20, 2003, the initiation of laser firing was commanded for the first laser
within the GLAS instrument on board the satellite. The initial data obtained dis-
played robust, leading to high-quality measurements of surface and cloud elevations
(Webb et al., 2012). However, after a mere two weeks, a rapid decline in laser en-
ergy was observed, surpassing the anticipated rate, and potential issues with the laser
pump diodes were indicated. This diminishing trend persisted until March 29 when
Laser 1 ceased firing after 36 days of operational activity in orbit. Upon conducting
an analysis of the Laser 1 failure, a recommendation was made to operate Laser 2
at a lower temperature, aiming to decelerate the growth of gold-indide compounds
(Abshire et al., 2005). Furthermore, considering the projected reduced lifetimes of the
remaining lasers, the mission operations plan was modified to strike a balance be-
tween spatial and temporal coverage requirements in alignment with the scientific
objectives. Consequently, the initially intended 183-day repeat cycle was substituted
with a 91-day repeat cycle (Schutz et al., 2005). The main characteristics of ICESat’s
repeat orbits are summarized in Table 2.1. However, it was decided that GLAS would
solely operate during a 33-day near-repeat subcycle within this revised orbit, occur-
ring three times annually: Winter (February/March), Spring (May/June), and Fall
(September/October). The last laser failed on 11 October 2009, and following attempts
to restart it, the satellite was retired in February 2010. Between 23 June 2010 and 14 July
2010, the spacecraft was maneuvered into a lower orbit in order to speed up orbital de-
cay. On 14 August 2010, it was decommissioned, and on 30 August 2010 it reentered
the atmosphere.
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Table 2.1: Main characteristics of ICESat’s repeat orbits

Parameters 8-day repeat 91-day repeat 183-day repeat
Nodal days (α) 8 91 183
Reference ground tracks (β) 119 1354 2723
Ratio β/α 14.875 14.879 14.880
Inclination 94° 94° 94°

Consequently, the challenges faced by ICESat underscored the importance of develop-
ing robust and redundant systems for future satellite missions. ICESat’s laser failure
contributed to the design and implementation of ICESat-2, ensuring a more reliable
and capable platform for studying Earth’s ice sheets and related processes.

2.4 ICESat-2 and ATLAS

2.4.1 Principles and properties

The ICESat-2 mission, launched in September 2018, represents the second generation of
NASA’s ICESat laser altimetry missions. The ICESat-2 satellite uses a photon-counting
lidar system along with supplementary components such as GPS and star cameras to
conduct three fundamental measurements: the time for a photon to travel the round-
trip from ATLAS to the Earth’s surface, the precise pointing direction of ATLAS when
the photon is emitted, and the spatial coordinates of the satellite when the photon is
detected by ATLAS (Jasinski et al., 2021). ICESat-2 is significantly different from its
predecessor, ICESat/GLAS, in terms of its operational characteristics. ICESat-2 com-
pletes 1387 revolutions within a single repeat cycle of exactly 91 nodal days. While
ICESat/GLAS used ~80 mJ lasers with a firing rate of 40 Hz to enable full waveform de-
tection (Abshire et al., 2005; Schutz et al., 2005), ICESat-2 employs a much higher firing
rate. The ATLAS instrument operates by emitting green (532 nm) laser pulses at a fre-
quency of 10 kHz, with a footprint size of ~17 m in diameter. Considering the velocity
~7 km/s of the spacecraft at the nominal ~500 km orbit altitude of ICESat-2, this results
in a transmission of approximately one laser pulse per ~70 cm along the ground tracks.
ICESat-2 carries the ATLAS with 3 pairs of beams (GT1L/GT1R, GT2L/GT2R and
GT3L/GT3R), in which "GT" means "Ground Track" and "L/R" means "Left/Right".
Each emitted laser pulse is diffractively split by an optical element within ATLAS, re-
sulting in the generation of six distinct beams arranged in three pairs. The distance
between two neighboring pairs in the across-track direction on the Earth’s surface is
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about 3.3 km. Each pair consists of a strong beam with high energy (175 ± 17 µJ) and a
weak beam with low energy (45 ± 5 µJ), with a distance of 90 m between the two beams
in each pair on the Earth’s surface (Neumann et al., 2019), as shown in Figure 2.2. The
comparison of key parameters between ICESat and ICESat-2 is shown in Table 2.2.

Table 2.2: Comparison between ICESat and ICESat-2

Parameters ICESat ICESat-2
Repeat cycle (days) 91 91
Inclination (°) 94 92
Mean altitude (km) 600 500
Reference ground tracks 1354 1387
Footprint (m) ~70 ~17
Along-track sampling distance (m) ~170 ~0.7

Each laser pulse includes ~1014 photons from the ATLAS, traveling through the atmo-
sphere to the Earth’s surface, and returning through the atmosphere and back into the
ATLAS photon detector.

For surfaces with high reflectivity and under clear sky conditions, it is expected that
around ten signal photons originating from a single strong beam will be detected by
ATLAS per transmitted laser pulse. Concurrently, background photons emitted by
sunlight at the same 532 nm wavelength may also reach the detector, leading to their
inclusion in the ATLAS recordings. Regardless of their source, any photon for which
ATLAS registers an arrival time is referred to as a photon event. The quantity of pho-
ton events captured by ATLAS is contingent upon factors such as the Earth’s surface
geometry and reflectance, solar conditions, as well as scattering and attenuation in the
atmosphere. The number of recorded photon events ranges from nearly zero events
per pulse over non-reflective surfaces, to no more than twelve events per pulse over
highly reflective surfaces (Neumann et al., 2021).

In order to reduce the volume of data downlinked to Earth, ICESat-2 employs onboard
flight software to identify and transmit data pertaining to photon events that are most
likely to correspond to the laser pulse’s returned photons, while also providing atmo-
spheric information. These transmitted pulses are spaced approximately 30 km apart
in their one-way journey. Consequently, received photon events exhibit an inherent
height ambiguity of approximately 15 km. Thus, ICESat-2 is capable of characterizing
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only the lowest 15 km of the Earth’s atmosphere. The onboard software counts pho-
ton events and generates a histogram covering the lowest 14 km of the atmosphere,
employing vertical bins of 30 m. These atmospheric histograms aggregate the number
of photon events over four hundred consecutive laser transmit pulses, resulting in the
generation of an atmospheric histogram every 0.04 s, spanning ~280 m of along-track
distance.

Figure 2.2: Schematic diagram of ICESat-2 and its 3 pairs of beams
(Neumann et al., 2021).

Due to the large volume and rate of photon events, it is not feasible for ATLAS to as-
sign a unique time tag to each received photon event and transmit the corresponding
information. Instead, the flight software establishes a range window, spanning at least
500 m and not exceeding 6 km, within which detected photons are assigned time tags
and designated as photon events. The width of this window primarily depends on
factors of the surface types (e.g. ocean, ice, inland water and land) (Leigh et al., 2014).
Within the defined range window, ATLAS assigns time tags to the received photons
and generates altimetric histograms based on these events. The onboard software uti-
lizes these histograms to identify the surface and determine which photon event data
should be downlinked to the Earth for each beam. The range of photon time tags that
are downlinked to Earth is referred to as the telemetry band.
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While lower-level data products operate on individual photon events, higher-level
geophysical data products employ photon aggregations to ascertain the ellipsoidal
height of the Earth, canopy height, structure, and other relevant geophysical parame-
ters.

2.4.2 Overview of data products

The description of the ICESat-2 data products and their interconnections can be ob-
served in Figure 2.3. The ATL01 algorithm reformats and unpacks the Level 0 data
from ICESat-2, then converts it into engineering units. Subsequently, the ATL02 pro-
cessing applies instrument corrections to refine these data. This includes correcting
photon event time tags for temperature and voltage variations in the ATLAS electron-
ics, as well as eliminating biases from timing and pointing measurements. The Preci-
sion Orbit Determination (POD) and Precision Pointing Determination (PPD) use data
from ATL02 to determine the position of the ICESat-2 observatory as a function of time
and the pointing vector of the observatory as a function of time.

ATL03 integrates the data products derived from POD, PPD, and ATL02 to generate
a Level 2 product that includes geolocated ellipsoidal heights for each photon event
downlinked from ATLAS with time tags. These heights are corrected with various
geophysical parameters, such as atmospheric corrections and tides (Neumann et al.,
2021). Additionally, the data are classified into two categories: likely signal photon
events and likely background photon events.

The raw atmospheric profiles of each beam are extracted from ATL02 to generate at-
mospheric data products. ATL04 generates normalized relative backscatter profiles,
while ATL09 produces calibrated backscatter profiles, atmospheric layer heights and
associated atmospheric parameters.

All Level 3A data products draw from the geolocated photon heights in ATL03 and
the atmospheric parameters from ATL09. ATL06 provides along-track land ice ellip-
soidal heights, ATL07 provides along-track sea ice and polar ocean heights, and ATL08
provides along-track terrestrial ellipsoidal heights and related metrics for vegetation
heights. ATL10 contains sea ice freeboard for the Arctic and Antarctic seas and associ-
ated parameters. Ocean heights are available in ATL12, while ATL13 provides inland
water heights.
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The Level 3B data products consist of gridded products derived from the along-track
products of Level 3A. ATL11, ATL14, and ATL15 are gridded land ice products that in-
clude land ice height time series, annually gridded land ice heights, and gridded land
ice height change. ATL20 and ATL21 provide gridded sea ice data for the Arctic and
Antarctic regions. Gridded terrestrial data is available in ATL18, while ATL19 provides
gridded mean sea surface heights. Lastly, ATL16 and ATL17 offer weekly and monthly
gridded atmospheric data products.
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Figure 2.3: The flow of ICESat-2 data processing from Level 0 to Level 3.
The color indicates data product levels, while the text reports data

product number and short name.

In this thesis, only ATL03, ATL12 and ATL13 data sets from ICESat-2 are used for the
following chapters. ATL03, as the lower level data product, has an along-track sam-
pling distance of 70 cm. The ATL03 datasets include all raw points (signal points and
noisy points), each of which is tagged with a unique time, latitude, longitude, and ele-
vation above the WGS84 ellipsoid (Neumann et al., 2021). The geophysical errors such
as atmospheric errors, polar tide and solid tide are corrected in the datasets. ATL12
is generated from the ATL03 level-2 geolocated photon data product and includes the
data of open oceans and ice-covered oceans. ATL12 only processes ATL03 data from
strong beams, and generates data with length scales between 70 m (ice-ocean) and 7 km
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(open ocean), as determined by an adaptive surface finding algorithm (Morison et al.,
2019). For ATL13, the length of these segments along the track can vary from 30 to sev-
eral hundred meters, depending on the number of signal photons received per pulse
(Jasinski et al., 2021).
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Chapter 3

Crossover analysis

The ICESat-2 mission aims to obtain height measurements that create a global portrait
of Earth’s radial dimension, gathering data to monitor changes of terrain including
glaciers, sea ice, forests and more. Therefore, it is important to understand the error
budget of the observations, one component of which is radial orbit error. Apart from
the altimetric ranging errors, radial orbit errors directly influence the precision of the
measurement of SSH. These errors can be assessed by analyzing the difference of SSH
at ground track intersections, so-called crossover differences (XO differences). An ef-
fective approach is to model the orbit error by minimizing the residual XO difference
by the least-squares method. XO differences are assumed to be caused by the difference
of radial orbit errors between ascending and descending arcs, the sea surface variation,
mispointing, and measurement errors. Since the sea surface variation in a short time
interval and measurement errors can be considered as a random variable, these resid-
uals can be reduced by the method of XO adjustment.

3.1 Introduction

The polar oceans are often not included in the global sea level estimations. It can be
seen in many global sea level maps that the Arctic region is usually blank. This is
because of the difficulty to obtain polar sea level measurements, including seasonal
to permanent sea-ice cover, low orbital inclinations of some altimetry satellites, in-
sufficient geopotential models, and radial orbit errors of satellites (Rose et al., 2019).
There are certain limitations of using radar altimeters for sea-ice surface measure-
ments. Firstly, the radar signal’s waveform can be complex and may have multiple
peaks due to ice within the large radar footprint, making it difficult to extract the exact
sea surface reflected signal. Secondly, the radar can penetrate snow cover, leading to
errors in estimating ice-freeboard thickness. In contrast to radar altimeters, lasers have
advantages that overcome certain drawbacks. One advantage is that the footprint of
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the laser pulse is smaller, which can lead to more precise measurements. Additionally,
laser reflection comes directly from the snow surface, avoiding potential errors caused
by snow penetration.

In order to better understand the polar regions, ICESat laser altimetry satellite was
launched in January 2003 and operated until August 2010. Its primary aim was to
measure changes in the Earth’s ice sheets, sea ice thickness, and land topography
(Schutz et al., 2005; Xing et al., 2010; Zwally et al., 2002). ICESat-2, as the successor to
the ICESat mission, carrying the Advanced Topographic Laser Altimeter System (AT-
LAS), has the same aim as its predecessor. Thanks to its small footprint, the technology
of a laser system can provide relatively precise ranging measurements compared to
radar altimetry. For instance, ATLAS produces overlapping footprints with a diameter
of ~17 m and a spatial resolution of 70 m along the ground track (Markus et al., 2017).
Even though nowadays altimeter orbits are precisely determined by orbit tracking sys-
tems (e.g. Laser, GPS and DORIS), residual radial orbit errors of satellite altimeters still
can be identified. Therefore, analysis of residual orbit error due to geopotential model
error and other forces is important for understanding the accuracy of the ICESat-2
satellite orbit, particularly for improving the quality of height observations over sea
ice regions.

An effective method for estimating orbit errors is the so-called crossover adjustment,
which is widely used for assessing the level of radial orbit errors and improving the
quality of observations in satellite altimetry (Bosch, 2007). The ground tracks of a sin-
gle satellite cross each other after certain time intervals. The intersection of two ground
tracks is called crossover (XO), which will be observed by the satellite altimeter twice in
one repeat cycle (Bosch, 2004; Bosch et al., 2014). If the sea surface does not change, the
SSH values from two measurements at the XO should be identical. However, the XO
difference cannot be avoided in reality due to radial orbit errors, even if the sea surface
variation between two epochs and the altimetric measurement errors are known. In
contrast to the static nature of the Mars surface during the XO analysis of laser altime-
try data from the Mars (Neumann et al., 2001), the sea surface variability (∆h) within
a short timeframe in the context of Earth’s altimetry data should be taken into account
as a stochastic model statistically, i.e. E {∆h} = 0. Consequently, the parameters (un-
knowns) of an error function model describing radial orbit errors can be estimated by
minimizing residual XO differences in a least-squares (LS) adjustment (Schrama, 1989;
Shum et al., 1990).
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In general, the error function model is described as a function of time or the track
length (Bosch, 2007). The most popular parameterization for regional applications
is a simple bias or bias-and-tilt model (Fu and Vazquez, 1988). The parameters (bias
and tilt) for each track are determined by minimizing the residual XO differences
(Cheney and Marsh, 1981; Fu and Chelton, 1985). When the length of a track is a small
fraction of one revolution, this parameterization is adequate. However, this is not al-
ways the case. For global applications, enhanced parameterizations are to represent
the radial orbit error using higher-degree polynomials (Rapp, 1979) or Fourier series
(Douglas et al., 1984). Consequently, the choice of parameterization is a balance be-
tween efficiency and simplicity. XO analysis can be categorized into two distinct meth-
ods. The single-satellite XO analysis uses intersected points between ascending and de-
scending segments of one satellite to estimate the orbit errors (Van Gysen and Coleman,
1997). On the other hand, dual-satellite XO analysis aims to evaluate the relative orbit
error for one satellite, where the other satellite is assumed to be error-free and serves
as the reference (Bosch et al., 2014). No matter which model is selected to represent the
radial orbit error, it will have a corresponding null space that cannot be assigned to the
radial orbit error of one satellite altimetry. The treatment of this rank defect requires
special attention. It can be partially or fully determined through external measure-
ments or constraints, for instance, in the comparison of the TOPEX/Poseidon (T/P)
orbits with orbits obtained using the T/P GPS Demonstration receiver by Bertiger et al.
(1994). In the case of the unavailability of any external references, alternative methods
must be involved to overcome the singularity of the estimation problem. This has com-
monly been done by using master arcs, or by putting extra weight on the diagonal of
the normal equation matrix of the XO adjustment (Douglas et al., 1984; Houry et al.,
1994; Rapp, 1979; Tai, 1988).

In our study, we only use the single ICESat-2 satellite to evaluate its orbit error level
over the Arctic region. To fulfill this aim, the XO analysis is normally operated by the
following steps:

(1) identifying the XO points of ascending and descending tracks within a repeat
period;

(2) calculating XO differences between ascending and descending measurements at
the XO points (inverse barometer, sea state bias, tides, and other geophysical
corrections should be applied);

(3) defining the functional model to apply the least-squares adjustment;
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(4) solving the singular problem of the adjustment, which is necessary to choose
some forms of constraints to ensure a unique solution (either fixing certain tracks
or choosing a minimum-norm solution).

In this chapter, two different strategies for radial orbit error analysis over the Arctic re-
gion are followed, in the first strategy, the parameters of the error model represent one
full revolution of the ground track. In the second strategy, the parameters of the error
model represent one ascending or descending arc segment separately. We present the
results of our analysis of satellite orbit differences in the radial direction and analyze
the rank deficiencies of two strategies to solve the singular problem.

3.2 Study area and data

The study area for this research is the Arctic region, which includes the Arctic Ocean
and surrounding land masses. The Arctic region is characterized by its unique geog-
raphy and climate, with extensive sea ice cover, rapidly changing ice dynamics, and
sensitive ecosystems (Yamanouchi and Takata, 2020). Therefore, the study area is of
particular interest due to the need for accurate satellite altimetry measurements for
monitoring and understanding changes in the cryosphere. The Arctic region is a polar
region located from the Arctic Circle (66.5°N) to the north pole (90°N) of the Earth. The
inclination of the ICESat-2 orbit is 92° (Markus et al., 2017), i.e. the northernmost data
coverage is 88°N, so it can measure almost the whole area of the Arctic region. Thus,
the advantages of ICESat-2 for the Arctic region are one of the reasons why we select
it as our study area. A second reason is that previous studies of XO analyses chose
rectangular or diamond-shaped regions. Consequently, XO analysis for the Arctic re-
gion will help to understand the performance of the LS adjustment over spherical cap
geometry.

3.2.1 ICESat-2 ATL12 ocean surface elevation product

ICESat-2 carries the ATLAS with 3 pairs of beams (GT1L/GT1R, GT2L/GT2R and
GT3L/GT3R) as mentioned in Chapter 2. As this study focuses on the radial orbit
error, here we just use the data in the nadir beam. ATL12 Ocean Surface Elevation,
which is one of the level-3 products of ICESat-2, is employed in this research. As the
Arctic region is defined here as the spherical cap inside the Arctic Circle, only the SSH
measurements with coordinates inside the region between 66°N and 88°N are used
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from each ground track. In order to balance the influence of the non-stochastic SSH
variation within a long timeframe and the number of redundant observation equa-
tions in the LS adjustment, we avoid using all ground tracks in the whole repeat cycle.
In our research, we opted to focus on ground tracks spanning a 15-day duration, which
corresponds to roughly one-sixth of a complete orbital cycle. Specifically, we examined
data from March 30 to April 13, 2019, encompassing 228 revolutions. This period al-
lowed us to analyze XO differences, with the expectation that SSH variation between
two epochs behaves as a random variable within this 15-day timeframe.

3.2.2 ICESat-2 time specific orbits

The ICESat-2 team provides real ground track data for each repeat cycle, including the
reference ground track time tags and coordinates for specific date ranges, which are
stored in KML files. These files are posted at a reduced resolution in order to man-
age the file size, with data points spaced approximately every 7 km. With the help of
the real coordinates of ground tracks, the actual location of each XO can be determined.

3.3 Methodology

3.3.1 The nominal orbit

Each full revolution of the satellite contains two segments: an ascending arc going from
the southernmost to the northernmost orbit location and a descending arc in which the
satellite moves in the opposite direction. The nominal orbit is assumed to be a near-
circular trajectory. Theoretically, due to the steadiness of the motion of the satellite and
of the rotation of the Earth, the satellite orbit projected onto the Earth’s surface pro-
duces a fixed and regular pattern of ground tracks and XO points. However, in reality,
the precession phenomenon arises from the non-spherical nature of a rotating celestial
body, resulting in a non-uniform gravitational field and the presence of an equatorial
bulge (Brown, 2002). As a consequence, the gravitational force acting on a satellite
is not directed towards the center of the celestial body, but rather offset towards its
equator. In the case of a typical prograde orbit around the Earth, the longitude of the
ascending node undergoes a westward precession, while a retrograde orbit exhibits
the opposite behavior. Therefore, the concept of a nominal orbit is normally employed
for the approximate prediction of ground track positions.
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Figure 3.1 shows the nominal orbit configuration (the subscript "i" refers to the inertial
frame). The inclination I and the radius r are constant. φ is the latitude of the satellite
in the Earth-fixed frame, and u is the argument of latitude. According to the geom-
etry of the nominal orbit configuration, the relationship between φ and u follows the
equation: sinφ = sin I sinu. One ascending ground track crosses the equator forming
an intersection, which is known as an ascending node. The longitude of the ascending
node is Λ in the Earth-fixed frame, and the right ascension of the ascending node is
Ω in the inertial frame. The inertial frame can be distinguished from the Earth-fixed
frame through a rotation around the shared Z-axis. This rotation occurs by the hour
angle of the Greenwich meridian, denoted as the Greenwich sidereal time θ.

For instance, when the satellite passes over the ascending node, the longitude of the
ascending node is labeled λ1. After one orbital period (Tsat), the nadir trace of the
satellite crosses the equator a second time in the ascending direction. The longitude of
this second intersection is labeled λ2. Without the Earth’s rotation, the two equatorial
crossings would occur over the same site, i.e. λ1 = λ2. Since the Earth’s rotation
and nodal precession cannot be neglected, the longitude difference between the two
ascending nodes is determined by

∆λ = λ2 − λ1 = Λ̇Tsat, (3.1)

in which Λ̇ = Ω̇ − θ̇ is the nodal precession rate in the Earth-fixed frame. The term
θ̇ represents the Earth’s rotation rate in the inertial frame and Ω̇ represents the nodal
precession in the Earth-fixed frame.

orbit
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Figure 3.1: The nominal orbit in the inertial frame.
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A repeat orbit is defined as an orbit, whose terrestrial ground-track pattern repeats
after β revolutions and α nodal days, i.e. α = 91 and β = 1387 for ICESat-2. A nominal
orbit will be a repeat orbit if the orbital frequency u̇ and Λ̇ meet the following equation:

u̇

Λ̇
= −β

α
. (3.2)

The negative sign is used here because the value Λ̇ will be negative for orbits lower
than geosynchronous.

A nominal orbit is defined as (Cui and Lelgemann, 1993):

Λ (t) = Λ0 + Λ̇t,

u (t) = u0 + u̇t.
(3.3)

If t0 is the time tag when the satellite crosses the equator in the ascending direction,
then u0 = 0. The longitude of the crossing Λ0 = λ0. The travel time t = u

u̇
. These values

are inserted into Eq. (3.3), yielding:

Λ = Λ0 +
Λ̇

u̇
u = λ0 −

α

β
u. (3.4)

3.3.2 Determination of crossover locations

Since the actual coordinates of the ground tracks are given as outlined in Section 3.2.2,
the locations of XOs will be simply determined by intersecting ascending arcs with de-
scending arcs, which means the locations of the intersections are the precise positions
of XOs. There are 20 380 XOs in the Arctic region formed by 228 ground tracks as men-
tioned in 3.2.1, shown in Figure 3.2(b). Theoretically, all the XOs are arranged along
latitude circles. In any given area, neighboring XO points create a diamond-shaped
region, bounded by two ascending and two descending arcs. XO points at any latitude
circle are equidistant. Equiangular: ∆λ = 2π/β, see Figure 3.2(a). Near the Arctic Cir-
cle, the locations of nominal XOs predicted from the nominal orbit have a RMS of ~0.1°
to real XOs in the across-track direction, which is equivalent to approximately 10 km.
In reality, measurements of some XOs are missing due to the fact that they are located
on land or data gaps are caused by atmospheric or instrumental reasons. Therefore,
the XOs over the land should be eliminated.
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(a) Global distribution

(b) Pan-Arctic distribution

Figure 3.2: Locations of Ground Tracks (blue) and XOs (red)
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3.3.3 Crossover differences

The XO difference can be derived from ha of the ascending track and hd of the descend-
ing track at the XO location, which forms the following equation:

∆had = ∆ra −∆rd +∆ζad + ε, (3.5)

in which ∆ra and ∆rd are the radial orbit errors of the ascending and descending arc
segments, ∆ζad is the sea surface variation between epochs ta and td, and ε as the al-
timetric measurement error (the subscript “a” refers to ascending, the subscript “d”
refers to descending). Here, ∆ζad and ε are considered to be stochastic, i.e. in the XO
adjustment the sum of ∆ζad + ε is considered to be a single variable e, with E {e} = 0,
see Wunsch and Zlotnicki (1984).

To obtain the XO difference, it is necessary to calculate the SSHs accurately. The SSHs
have a high sampling frequency (~100 Hz) in the ice-ocean, which corresponds to ap-
proximately 70 m along the track (as described in Section 2.4.2). We select the SSHs of
each arc segment within 1 km of each XO, and we obtain the average value of the mea-
surements after rejecting outliers by the method of median absolute deviation (MAD).
Specifically, SSHs exceeding 2 times MAD are considered outliers, and the MAD is
defined as:

MAD = median
(∣∣∣hi − h̃

∣∣∣) , (3.6)

with hi the SSHs derived from ATL12 measurements and h̃ the median of the SSHs.
Upon eliminating the outliers, the resulting averaged value of the remaining SSHs will
represent the SSH from a single arc segment at the XO.

Figure 3.3(a) shows the height difference of each XO. Some XOs with extremely large
differences are distributed almost at all latitude circles. The large differences at lower
latitudes are mostly caused by the ice-sea-land boundaries and the floating ice. At
higher latitudes they are mostly caused by the time-variability of sea ice freeboard.
The XO difference is nearly normally distributed, cf. Figure 3.3(b), with a mean differ-
ence of 0 and a RMS of 17.2 cm.

3.3.4 Crossover adjustment

The average altitude of the ICESat-2 satellite orbit is approximately 500 km, i.e. the
orbit of the satellite is almost circular; thus, at least for local arc segments it can be
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(a) Spatial distribution of XOs

mean = 0 cm

RMS= 17.2 cm

(b) Histogram of XO difference

Figure 3.3: Distribution of XO difference.

described as a Kepler orbit. Its geometric radial distance is then

r = a (1− e cosE) , (3.7)

with a the semi-major axis, e the eccentricity (nearly circular orbit, i.e. e ≈ 0), and E

the eccentric anomaly. Eq. (3.7) is linearized by

∆r =
∂r

∂a
∆a+

∂r

∂e
∆e+

∂r

∂E
∆E

= ∆a+ a∆Me sinM −∆ea cosM .
(3.8)

where we assume the mean anomaly M = E, with M = M0 + Ṁt and Ṁ = n = 2π
T

(n = mean motion, T = orbit period). ∆r describes the function of the radial orbit
error. The perturbations ∆a, ∆M , and ∆e can be considered as constants of the arc
segment. For relatively short arc segments (< 2000 km), cosM is near-constant and
sinM ≈ M . Thus, the function model for the radial orbit error can be simplified into:

∆r = b+ q · µ, [relatively short arcs], (3.9)

in which b and q are 2 parameters of the model. µ represents a portion of the time in-
terval between the XO and the reference point, relative to the entire arc time interval.

A conventional method for defining a local area is to define a latitude-longitude bound-
ing box, which can be seen in Figure 3.4(a). The disadvantage of this area definition is
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that the length of arc segments in the corners is shorter than those in the center. This
will cause the problem that different lengths of arc segments are not compatible with
each other when the same adjustment function model is used. To solve this problem,
observations of short arc segments can be down-weighted. However, the satellite trav-
els arc segments of equal length, resulting in approximately the same travel time. For
this reason, we define the local area as a diamond-shaped region bounded by two par-
allel ascending and two descending arc segments (Schrama, 1989), which can be seen in
Figure 3.4(b). For a regional area, like Figure 3.5, a diamond-shaped region is bounded
by ascending arcs 1 and 3, and descending arc segments 4 and 6. The reference time t0 is
selected such that µ is 0 when one track enters the area (the intersection on the bound-
ary of the diamond shape). Ascending arc segments form intersections firstly with arc
segment 4 and secondly with arc segment 5. The intersection time t35 from ascending
arc segment 3 at XO F is transformed to a quantity µ35 by µ35 = (t35 − t34)/(t36 − t34).
Analogously to µ35, the parameter µ53 is defined where arc segment 5 intersects 3, ac-
cordingly µ53 = (t53 − t53)/(t51 − t53). Given that all arc segments are of approximately
equal length in a diamond-shaped area, it is reasonable to assume that the time inter-
val between consecutive XOs is also uniform.

The XO difference formed by the arc segment j and i results in:

∆hij = ∆ri (µij)−∆rj (µji) . (3.10)

For linear function ∆ri and ∆rj we find:

∆hij = (bi + qiµij)− (bj + qjµji) . (3.11)

After these preparations, the linear model can be written as

y = Ax+ e, (3.12)

where e is the residual matrix with the assumption E {e} = 0 and D {e} = σ2
0I ; here I

is the unit matrix. x is the parameter vector. The corresponding structure of the design
matrix A becomes:
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A =



1 µ14 −1 −µ41

1 µ15 −1 −µ51

1 µ16 −1 −µ61

1 µ24 −1 −µ42

1 µ25 −1 −µ52

1 µ26 −1 −µ62

1 µ34 −1 −µ43

1 µ35 −1 −µ53

1 µ36 −1 −µ63


. (3.13)

The normal equations are ATAx = ATy. Then the estimated parameters of the linear
model can be calculated by x̂ = (ATA)−1ATy.

One problem of XO adjustment is the existence of singular solutions, which belong
to a so-called null space of the normal equations. The situation is comparable to that
of a leveling network. Networks of height difference observations are derived by the
differential leveling. A closed leveling network is a loop that begins and ends at one
point, with the measurements of height differences, but not absolute heights. Theo-
retically, the misclosure should be zero, but in fact random errors cannot be avoided,
which can be subjected to a LS adjustment. There will be a datum problem when ad-
justing the errors. When the height of one arbitrary point is fixed as a constant, the
datum for the entire leveling network becomes fixed, allowing for the estimation of
heights for other points. The same holds true here; therefore, we fix parameters falling
inside the null space of the XO minimization problem. In the case of the 2-parameter
model (number of parameters p = 2), the rank defect of matrix A is 4. The datum prob-
lem can be solved by fixing p parameters of p non-intersecting arcs. This means, for the
2-parameter model two arbitrary parallel arcs (ascending or descending) must be fixed.

For the whole Arctic area, similar to the local XO adjustment, the function model for
the radial orbit error (see Figure 3.6) is preferably written from Eq. (3.8) as follows:

∆r = x0 + x1 sinu+ x2 cosu, [long arcs] (3.14)

with the argument of latitude u = 2π
T
(t − t0) = u̇∆t, and u̇ the angular velocity. The

starting time t0 is the time tag at the equator of each arc segment and ∆t is the time
interval between a XO and the equator along the arc segment. Since the relationship
between φ and u follows sinφ = sin I sinu, u can be calculated when the XO location is
determined. Unlike the local XO adjustment, where two parameters represent a single
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arc, for the Arctic XO adjustment, three parameters (x0, x1 and x2) represent each arc
segment.

ascending

descending

(a) Local area bounded by latitude and longitude

ascending

descending

(b) Local area bounded by arc segments

Figure 3.4: Ground tracks in a local area.

For the first strategy mentioned in Section 3.1, the relative time tag ∆ta equals T
2
−∆td

at one XO, i.e. ud = π − ua. For instance, the XO of arc 3 and arc 4 locates on the
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ascending part of arc 3 and the descending part of arc 4. Accordingly, the variable u at
the XO for arc 3 is ua, which is denoted as u34, and for arc 4 the variable u is ud, which
is denoted as u43. The value of the relative time tag ∆t only depends on the latitude
φ, which means all XOs at the same latitude have the same |∆t|. Therefore, the coeffi-
cients of the parameters in the linearized model can be determined by the latitudes of
XOs.
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Figure 3.5: Local XO scheme.

The XO difference formed by the arc segment j and i results in:

∆hij = (x0i + x1i sinuij + x2i cosuij)− (x0j + x1j sinuji + x2j cosuji). (3.15)

The vector of observations y contains all XO differences (n XOs) with l revolutions,
which forms the coefficient matrix:

A
n×m

=

[
Aa
n×3l

]
−
[
Ad
n×3l

]
. (3.16)

According to the arc segments distributed in Figure 3.6, the structure of the coefficient
matrix A becomes to Eq. (3.17), as follows:
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and the parameter vector x becomes to Eq. (3.18):

x = [x01 x11 x21 x02 x12 x22 x03 x13 x23 x04 x14 x24 x05 x15 x25 · · · ]T . (3.18)

1

2

34

5

Figure 3.6: Pan-Arctic XO scheme: blue lines are ground tracks and red
points are XOs.

For the LS adjustment, a necessary condition n > m = 3l should be fulfilled in or-
der to over-determine the parameters (vector of x has the dimension of m × 1). The
rank(A) = r < m, which leads to the singularity of the XO adjustment. Theoretically,
adding the parameters of the fixed arcs to the linear system constraints will not affect
the adjusted XO differences, with the equation:

DT

d×m
x

m×1
= c. (3.19)

The sinusoidal representation in a least-squares problem coupled with the constraint
constitutes the constrained sinusoidal XO adjustment. In order to remove the rank
deficiency of matrix A, matrix D must be under the condition of Eq. (3.20):

rank
([

AT

m×n
| D
m×d

])
= m. (3.20)
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Then we solve the least-squares problem by minimizing the constrained Lagrangian
(Golub and Van Loan, 2013):

LD (x, λ) =
1

2
eTe+ λ

(
DTx− c

)
=

1

2
yTy − yTAx+

1

2
xTATAx+ λ

(
DTx− c

)
∂LD

∂x
= −ATy + ATAx+Dλ = 0

∂LD

∂L
= DTx− c

⇒

(
ATA D

DT 0

)
(m+d)×(m+d)

(
x̂

λ̂

)
(m+d)×1

=

(
ATy

c

)

⇒ x̂ = N−1⟨ATy +Dc−
{
D(DTN−1D)−1

[
DTN−1ATy + (DTN−1D − I)c

]}
⟩

N := ATA+DDT.

(3.21)

Then the adjusted XO differences ŷ = Ax̂.

For the second strategy mentioned in Section 3.1, an arc segment is defined as the as-
cending or descending part of the ground track. When we use this strategy, that means
3 parameters represent an ascending or descending arc segment separately, instead of
representing one full revolution. The number of parameters will be doubled. Since the
starting time t0 is the time tag at the equator of each arc segment and ∆t is the time
interval passing through the equator to the XO location. Therefore, the relative time
tag ∆ta from ascending equals −∆td from descending at one XO, i.e. ud = −ua. The
vector of observations y contains all XO differences (n XOs) with l ascending and l de-
scending arc segments, which will change the format of A matrix to:

A
n×m

=

[
Aa
n×3l

| 0
n×3l

]
−
[

0
n×3l

|Ad
n×3l

]
. (3.22)
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Then the structure of the coefficient matrix A becomes to Eq. (3.23), as follows:
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and the parameter vector x becomes to Eq. (3.24):

x = [(x01 x11 x21 · · · x05 x15 x25)a · · · (x01 x11 x21 · · · x05 x15 x15)d · · · ]T . (3.24)

To solve the least-squares problem, the process is identical to the first strategy using
Eq. (3.20) and Eq. (3.21).

3.4 Results and discussion

For the first strategy, the histograms of XO differences before and after adjustment are
demonstrated in Figure 3.7. The RMS is reduced from 17.2 cm to 8.7 cm using the
method of the XO adjustment. Assuming the residual errors are independent in the
XO difference function, 8.7 cm divided by

√
2 gives a value of 6.1 cm. That means the

orbit error level of ICESat-2 in the Arctic region is generally 6.1 cm.

mean = 0 cm

RMS = 17.2 cm

mean = −0. 3 cm

RMS = 8.7 cm

a-priori: a-posteriori:

Figure 3.7: First strategy: a-priori/a-posteriori histogram of XO
differences.
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From Figure 3.8 we can see XO differences at different latitudes before and after adjust-
ment. At the XOs closest to the North pole, the differences are reduced to about 6 cm to
7 cm. The reduced value of XO difference divided by

√
2 gives an approximate value

of 4 cm to 5 cm. However, parts of the XO differences are not significantly reduced,
which may be caused by the boundaries of sea-ice-land. For this reason, the altimetry
will have large measurement errors influenced by these boundaries.

a-priori

a-posteriori

Figure 3.8: First strategy: comparison of XO differences at different
latitudes before and after adjustment.

For the second strategy, the RMS XO differences is reduced from 17.2 cm to 11.8 cm,
see Figure 3.9, and the XO differences at different latitudes before and after adjustment
are shown in Figure 3.10. Then, 11.8 cm divided by

√
2 gives a value of 8.3 cm approx-

imately. Compared to the results of the first strategy, residuals are not reduced that
much.

For the first strategy, the rank deficiency d = m − r = 2 is caused by the dependency
between the column vectors of the A matrix, which are the parameters of one arc. For
the local XO adjustment, all parallel arcs are independent. However, for the Arctic
XO adjustment, any one arc is dependent on others. This means only one arbitrary
arc segment should be fixed. Since sinua = sinud and cosua = − cosud, the XO dif-
ference ∆had = (x0a − x0d) + (x1a − x1d) sinu + (x2a + x2d) cosu. For the 3-parameter
model, XOs of the ascending part and the descending part are symmetric on one arc
segment. Therefore, the parameter x2 is linearly independent, i.e. two free variables x0
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and x1 of one arbitrary arc should be fixed. For the second strategy, the rank deficiency
d = m − r = 3. The reason is that any two ascending arcs or descending arcs are in-
dependent to each other, but ascending arcs and descending arcs are dependent. That
means 3 free variables are from one arc. Therefore, to solve the problem of singularity,
3 parameters of any arbitrary arc segment should be fixed. In fact, when we use 3 pa-
rameters to represent an ascending or descending arc segment separately, there exists
a problem of discontinuity at the highest latitude between two arc segments for one
revolution. The average bias at the latitude of 88° is 18.3 cm. In addition to the discon-
tinuity, there exists a problem of over-parameterization. The superfluous parameters
tend to be poorly estimable, which should be avoided.

Although random residuals are adjusted using a proper function model, the error level
is still on the order of 6 cm. Except for the radial orbit, the laser mispointing error also
should be taken into account. Mispointing error refers to the deviation of the laser
beam from its nominal pointing direction, which can affect the accuracy of the ele-
vation measurements. The requirement for pointing stability after post-processing is
about 6.5 m in the cross-track direction (Markus et al., 2017), which translates into an
elevation error of several centimeters even over small surface slopes (< 0.5◦).

mean = 0 cm

RMS = 17.2 cm

mean = 0cm

RMS = 11.8 cm

a-priori: a-posteriori:

Figure 3.9: a-priori/a-posteriori histogram of XO differences.
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a-priori

a-posteriori

Figure 3.10: a-priori/a-posteriori XO differences at different latitudes.

3.5 Summary

In this chapter, we successfully quantified the radial orbit error level of ICESat-2 using
LS adjustment. Depending on the size of the area the radial orbit error can be described
by a 2 or 3-parameter model. For the local XO adjustment, 2 parameters represent an
ascending or descending arc. It is recommended to define the area by two ascending
and two descending arcs, like a diamond shape. For the Arctic region, 3 parameters
represent one revolution arc. XO adjustment leads to a large reduction of the radial
orbit error, with the RMS reduced from 17.2 cm to 8.7 cm. The linear system has a
rank defect, but it depends on the chosen parameter model. For the diamond shape
region, the linear system has a rank defect of p2 (p is the number of parameters). It
is eliminated by fixing the p parameters of p non-intersecting arc segments. For the
Arctic region, the rank defect is 2, which means only one arc segment should be fixed.
However, in a real XO adjustment with data gaps and interruptions due to islands
and coastlines, the rank defect will be larger than the theoretical value, which can be
considered as a null-space surface. However, to better understand the orbit error of
ICESat-2, the mispointing error must be studied in further research.
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Chapter 4

Monitoring lake level variation from
ICESat-2 and Landsat data

4.1 Introduction

Conventionally, hydrologists have relied on lake water levels and in conjunction with
a known bathymetric map to estimate the volume of a lake (Duan and Bastiaanssen,
2013). The acquisition of a bathymetric map for a lake is commonly accomplished
through surveys conducted via shipborne sonar, echo-sounding equipment, and air-
borne LiDAR (Gao, 2009). The sound waves of shipborne sonar or echo-sounding
travel through the water and reflect off the lake bottom. The time interval between
the transmitted and received signal is measured, and with knowledge of the speed
of sound through water, the depth of the lake at the point of reflection can be de-
termined (Odhiambo and Boss, 2004). The airborne laser light can penetrate through
water content relatively deep (up to tens of meters depending on the water clarity)
(Hilldale and Raff, 2008). Nevertheless, the employment of these bathymetric methods
is often hindered by their high cost and technical complexity, rendering them imprac-
tical for implementation in remote and politically sensitive regions (Peng et al., 2006),
thereby imposing limitations on their application on a global scale.

In recent years, satellite-based remote sensing techniques have emerged as an essen-
tial tool for monitoring the volume variation of lakes. Satellites can provide frequent
and spatially extensive data, as well as reduce costs and logistical challenges associated
with traditional field-based measurements (Muller-Karger et al., 2018). One of the pop-
ular approaches relies on the estimation of water areas from satellite imagery to estab-
lish an empirical equation in order to infer water volume (Cai et al., 2016). However,
water volumes from gauge stations are needed for the retrieval of the constant param-
eters in the empirical equations between water volume and water area. Other method-
ologies involve the utilization of the water level measurements from satellite altimetry
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combined with water areas to estimate their volume, through the implementation of a
particular water level-area relationship specific to a given water body (Crétaux et al.,
2016, 2011; Elmi and Tourian, 2023; Zhang et al., 2017). Although the use of satellite
radar altimetry and imagery enables remote estimation of water levels and volumes,
it remains challenging to ensure the accuracy of empirical equation parameters due
to the difficulty of acquiring corresponding data simultaneously. Additionally, radar
altimetry may not be suitable for small lakes and reservoirs due to the limitations of
large footprints (i.e. hundreds of meters to several kilometers in diameter) in obtaining
water levels and spatial-temporal resolutions of satellite altimetry.

An alternative method called satellite-based bathymetry (SDB) has been increasingly
recognized for acquiring high-resolution and large-scale bathymetric data in a cost-
effective manner (Cahalane et al., 2019). By analyzing the differences in reflection of
the electromagnetic spectrum, it is possible to estimate the depth of the water. How-
ever, the accuracy of SDB can be affected by the angle of the sun and the depth of
the water being measured, and the depth estimated by SDB depends on the turbidity
of the water. Zhang et al. (2021) used the digital elevation model (DEM) from SRTM
and Landsat imagery to estimate changes in lake level and volume on the Tibetan
Plateau. However, since the SRTM data were only collected once and the radar sig-
nal cannot penetrate the water surface, the bathymetric information below the water
level at the SRTM acquisition time cannot be obtained. Despite the fact that remotely
sensed data has been used to obtain empirical equations for estimating water volumes
based only on water level measurements, it is worth noting that satellite altimeters
were not capable of providing inland water level data until 1992. The launch of the
Topex/Poseidon satellite in 1992 provided an opportunity to monitor inland hydro-
logical cycles (Calmant and Seyler, 2006). As a consequence of the limitations in satel-
lite altimetry technology prior to 1992, current methodologies relying solely on remote
sensing data cannot accurately calculate water levels and volumes before 1992.

Since the launch of ICESat-2 laser altimetry, the situation has changed. The high-
density ground tracks consisting of 1387 tracks with six beams and an operational
off-nadir pointing technique over land areas are capable of covering a vast majority
of the Earth’s lakes and reservoirs. The quantitative results demonstrate that the RMS
water level measurements obtained from ICESat-2 and gauge stations exhibit a margin
of error within 5 cm (Zhang et al., 2022), indicating the provision of highly accurate
water level data. The small laser footprint (~17 m in diameter) enables the observation
of water levels in small lakes. Furthermore, the ICESat-2 altimeters employ 532 nm
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green lasers that possess the ability to penetrate the water column, and research has
revealed that it can capture up to 22 m of underwater topography, depending on the
clarity of water (Ranndal et al., 2021). Thus, the bathymetric map of lakes can be gen-
erated in clear water situations, at least for the near-shore regions (Ryan et al., 2020).

In cases where water level data cannot be obtained from satellite altimetry, the water
level can still be estimated by matching the lake boundary and topographic bathymet-
ric profiles, if the lake boundary is available at one epoch. The Landsat imagery data
have been available since 1972, enabling the extraction of lake boundaries from these
images combined with DEM-like lake profiles, thereby facilitating the estimation of
water level, area and volume from that time onwards. Water levels can be obtained
using laser tracks of just a few days, without being limited by the temporal span of the
altimetry data. In this chapter, a novel approach is proposed to estimate the variation
of water level and volume time series using ICESat-2 laser data and Landsat imagery,
from 1984 to 2021. This study investigated the capabilities of ICESat-2 and satellite
imagery to monitor lake level-area-volume variations and compared the results with
in-situ measurements. This method only relies on remotely sensed data, which can be
applied to remote and wild lakes without in-situ stations at regional and global scales.
The availability of these data has opened up new opportunities for understanding and
managing lake resources, and can help to inform decision-making in water resources
management, hydrology, and ecology.

4.2 Methodology

ICESat-2 provides the ability to measure the water level directly. However, water level
measurements by ICESat-2 are only possible during the satellite’s passage over the
lake. Consequently, in this study, estimating water levels depends on the methods for
obtaining accurate lake boundaries and nearshore profiles. Lake boundaries can be
extracted from Landsat images, and lake nearshore profiles can be extracted from raw
ICESat-2 data. When the lake boundary intersects with the nearshore profile, the two
datasets effectively form a virtual gauge station, with the elevation of this intersection
serving as the estimated water level, see Figure 4.1. The lake volume variations will
be estimated after generating the water level and area time series. Consequently, the
methods to accomplish this objective will be introduced in the following subsections.
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intersection

intersection
lake profile

water surface at Epoch 1

water surface at Epoch 2

Figure 4.1: Schematic diagram of intersections of lake boundaries and
topographic bathymetric profile.

4.2.1 Water mask extraction

Land-water classification is the basic step for lake extent from the imagery. The Nor-
malized Difference Water Index (NDWI) was brought up by Gao (1996), which uses
Near-Infrared (NIR) and Short-Wave Infrared (SWIR) bands to detect water. The for-
mula for NDWI is:

NDWI =
NIR− SWIR

NIR + SWIR
. (4.1)

Water absorbs more SWIR radiation than NIR radiation compared to other land cov-
ers such as vegetation and soil. By taking the difference of these two spectral bands,
NDWI enhances the contrast between water and other features. The resulting index
values range from −1 to 1, where higher values indicate a higher likelihood of the
presence of water in the corresponding pixels.

The Modified Normalized Difference Water Index (MNDWI) developed by Xu (2006) is
the enhanced version of NDWI for classifying water bodies. The formula for MNDWI
is:

MNDWI =
Green− SWIR

Green + SWIR
. (4.2)

MNDWI is often considered better at detecting water than NDWI in certain situations
because it uses the Green band (which is sensitive to vegetation) instead of the NIR
band used in NDWI. This makes MNDWI less sensitive to vegetation and more sen-
sitive to water. In areas with a lot of vegetation, NDWI can sometimes have false
positives, detecting vegetation as water. In contrast, MNDWI tends to produce fewer
false positives in vegetated areas because the Green band helps to distinguish between
vegetation and water.
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The radiometric measure of each pixel is obtained after calculating MNDWI. The deter-
mination of the intensity threshold is a critical factor that can significantly influence the
accuracy of water extent classification. The threshold for MNDWI can be determined
by using various methods such as visual inspection, statistical analysis, or machine
learning algorithms (Yang et al., 2018). One common method is to use Otsu’s thresh-
olding algorithm (Otsu, 1979), which is an automatic method to determine the thresh-
old based on the histogram of the MNDWI image. Otsu’s method is a variance-based
algorithm that determines the threshold value by minimizing the weighted variance
between the foreground and background pixels. In this method, the histogram of the
MNDWI image is first generated, and then the threshold value that minimizes the
intra-class variance is selected. The intra-class variance is a measure of the similarity
of pixels within the same class, and minimizing this value ensures that the threshold
separates the water pixels from non-water pixels as accurately as possible.

The formula for finding the intra-class variance at any threshold t is given by:

σ2(t) = ωb(t)σ
2
b(t) + ωf(t)σ

2
f (t), (4.3)

where ωb(t) and ωf(t) represent the probabilities of the background and foreground
separated by a threshold t, and σ2

b and σ2
f are variances of these two classes.

The class probabilities ωb(t) and ωf(t) are computed from the L bins of the histogram:

ωb(t) =
t−1∑
i=0

p(i)

ωf(t) =
L∑
i=t

p(i),

(4.4)

with p the probability of each pixel intensity. The histogram of the MNDWI image for
Lake Mead acquired on August 26, 1998 is presented in Figure 4.2, with the Otsu’s
threshold identified at 0.178. As depicted in Figure 4.2(b), the threshold effectively dis-
tinguishes the two primary peaks in the histogram, where the left peak corresponds to
land pixels and the right peak represents water pixels.

After the determination of the threshold value of the MNDWI image using Otsu’s
method, each pixel in the image with a radiometric measure value below the threshold
is assigned a label of 0, indicating the surrounding land area, while each pixel with an
intensity value exceeding the threshold is assigned a label of 1, indicating the water
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mask.

threshold

water

land

(a) Histogram of the MNDWI image. (b) Enlarged valley at the threshold between two
peaks.

threshold

(c) Intra-class variance. (d) Enlarged intra-class variance.

Figure 4.2: The result of the Otsu’s algorithm classifying the water mask.

4.2.2 Lake profile extraction

To obtain bathymetry observations, it is necessary to extract nearshore topography
from the ICESat-2 point cloud data along the track. In Figure 4.3(a), the track of the
laser beam on the date of 18.01.2020 accompanied by a delineation of the clipped re-
gion, and the measurements of this region are shown in Figure 4.3(b). It can be seen
that raw point data in the ATL03 product are noisy, with some noisy points resulting
from the solar background and erroneous reflections of the water column. To obtain
topography measurements that are relatively free of noise, the DBSCAN algorithm and
the RANSAC algorithm are used to detect signal points of topography in this study.
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These two algorithms will be introduced in detail as follows.

DBSCAN

DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise, which
is an algorithm first introduced by Ester et al. (1996) in their research. It is a popular
clustering algorithm used in machine learning and data mining, which is particularly
useful for datasets with arbitrary shapes, noisy data, and varying densities. DBSCAN
groups points that are closely packed together in a dataset and identifies points that lie
in low-density regions as noise or outliers. The algorithm requires two input parame-
ters, which are ε and MinPts:

1. ε: The value of ε defines the radius of the neighborhood around each point. A
point is considered to be part of a cluster if it is within the ε radius of at least
MinPts other points. The selection of ε is critical, as it heavily influences the
clustering result. A common approach is to use a range of epsilon values and
evaluate the resulting clusters based on their quality.

2. MinPts: The value of MinPts determines how many points are required to form
a cluster. If a point has fewer than MinPts neighbors within the ε radius, it
is considered to be an outlier. The choice of MinPts also affects the clustering
result, and it depends on the data and the problem domain.

In the context of DBSCAN clustering, the points to be clustered in a given space are
subjected to a classification process based on a neighborhood radius parameter ε. This
classification process distinguishes the points as core points, (directly-) reachable points
and outliers, as described below:

• A point p is deemed a core point if there are at least MinPts points within the
distance of ε from it, including the point p itself.

• A point q is considered directly reachable from a core point p if it is within the
distance of ε from p. It is important to note that points are only considered di-
rectly reachable from core points.

• A point q is deemed reachable from point p if there exists a path p1, ..., pn, with
p1 = p and pn = q, such that each pi+1 is directly reachable from pi. Note that
this implies that the initial point and all points on the path must be core points,
with the possible exception of q.
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(a) The red line is the laser beam track and the yellow box is the clipped region.

(b) The raw point cloud data along the track in the clipped region.

Figure 4.3: One example of the raw point cloud data from ATL03.
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• Any point that is not reachable from any other point is classified as an outlier or
a noise point.

An illustration of the DBSCAN procedure is depicted in Figure 4.4. The DBSCAN al-
gorithm initiates by selecting a random point that has not been explored. The ε neigh-
borhood of this point is then retrieved, and if it contains a sufficient number of points,
a cluster is established. However, if the neighborhood has inadequate points, the point
is labeled as noise. In order to formally define the extent of the clusters found by DB-
SCAN, a further notion of connectedness is required as reachability is not a symmetric
relation. Only core points can reach non-core points, whereas the opposite is not true,
and a non-core point may be reachable, but nothing can be reached from it. For this
purpose, the notion of density-connectedness is introduced, where two points p and q
are density-connected if there is a point o such that both p and q are reachable from o.
Density-connectedness is a symmetric relation. A cluster satisfies two properties:

1. All points within the cluster are mutually density-connected.

2. If a point is density-reachable from some point of the cluster, it is also part of the
cluster.

Noise

ε

q

Figure 4.4: In this diagram, MinPts = 4. Point q and the other red points
are core points because the area surrounding these points in an ε radius

contains at least 4 points (including point q itself). Since they are all
reachable from one another, they form a single cluster. Green points are
not core points but are reachable from red points (core points), and thus

belong to the cluster as well. The blue point is a noise point that is neither
a core point nor a reachable point.
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There is no fixed rule for choosing the values of the two parameters (ε and MinPts),
as they depend on the densities of the different types of clusters and noises. In the pro-
cess of DBSCAN, two parameters are influencing each other. Selecting an appropriate
value for ε in DBSCAN is crucial, as a too small value may result in a significant por-
tion of data remaining unclustered, while a large value can lead to the majority of data
points being assigned to a single cluster. Typically, smaller values of epsilon are pre-
ferred, and it is recommended that only a small proportion of points should be within
this distance of each other.

RANSAC

The Random Sample Consensus (RANSAC) algorithm is known to be less sensitive to
noise and more sensitive to density (Fischler and Bolles, 1981). It has been successfully
applied in many computer vision and image processing tasks, such as point cloud reg-
istration, object detection, and image segmentation (Tang et al., 2010). It is an iterative
algorithm commonly used in computer vision and image processing to estimate model
parameters from a set of observed data points that contain outliers or noise. The algo-
rithm works by randomly selecting a minimal subset of data points (called a sample)
and fitting a model to them. The model is then used to predict the parameters of the
rest of the data points, and those that lie within a predefined threshold of the predicted
values are considered as inliers. The RANSAC algorithm is designed to determine the
optimal fitting result of a dataset that contains both inliers and outliers, by utilizing a
voting scheme where data elements in the dataset are used to vote for one or multiple
models. This voting scheme relies on two key assumptions: firstly, that the noisy fea-
tures will not consistently vote for any single model (with few outliers); and secondly,
that there are sufficient features to agree on a good model (with few missing data). The
RANSAC algorithm is composed of two main iterative steps:

1. In the first step, a minimal subset of data elements is randomly selected from
the input dataset, and a fitting model with model parameters is computed using
only this subset of data elements. The number of data elements in this subset is
sufficient to determine the model parameters.

2. In the second step, the algorithm checks which data elements from the entire
dataset are consistent with the model instantiated by the estimated model pa-
rameters obtained from the first step. If a data element does not fit the model
within some error threshold defining the maximum data deviation of inliers, it is
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considered an outlier. The set of inliers obtained for the fitting model is known
as the consensus set.

The RANSAC algorithm will continue to iterate these steps until the consensus set ob-
tained in a certain iteration has the maximum number of inliers.

4.3 Study area and data

4.3.1 Study area

Lake Mead is selected as the study area for assessing and analyzing the performance
of this method, see Figure 4.5. Lake Mead, formed by the construction of Hoover Dam
in 1935, is the largest lake in the Colorado River basin in the United States. At an av-
erage inflow and lake volume, Lake Mead measures 180 km in length and 15 km in
width, with a shoreline stretching 885 km; the maximum and mean depths of the lake
are recorded at 158 m and 55.7 m respectively (Holdren and Turner, 2010). The South-
western region of the United States, which is reliant on the Colorado River basin, has
been experiencing drought periods in recent years. This lake is managed to guarantee a
sufficient supply of water to the states involved. Especially the Southern Nevada pop-
ulation depends significantly on Lake Mead for their water supply, prompting concern
that a persistent drought may cause the lake level to fall below the required pumping
depth (Edalat and Stephen, 2019). Barsugli et al. (2009) has reported a probability of
50% that Lake Mead will become dry between 2035 and 2047, based on a simulation as-
suming a 20% reduction in inflow over 50 years due to climate change. For this reason,
Lake Mead is a suitable study case due to its obvious variations in water level, area and
volume. Another reason for selecting Lake Mead is that the surrounding areas have
rare human activities, i.e. the DEM-like profiles from ICESat-2 are nearly constant. In
preparation for the mission ICESat-2, a simulator called Multiple Altimeter Beam Ex-
perimental Lidar (MABEL), detected the bottom reflectance of the nearshore areas at
Lake Mead sites, with a maximum depth of 10 m (Jasinski et al., 2016). ICESat-2 laser
observations are supposed to be able to obtain the nearshore bathymetry of Lake Mead.

4.3.2 Data sets

In this study, the height measurements of the water and nearshore from the ICESat-2
ATL03 product, and the images from Landsat 5, 7 and 8 are used to estimate the water
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level, area and volume of Lake Mead. To validate the method, in-situ data and other
online databases are required. The following sections provide a brief introduction to
these data sets.

Figure 4.5: Location of Lake Mead, used as the study case in this thesis.

ICESat-2 ATL03

As the strong beams have a higher bathymetric capacity, this study only considers the
data obtained from the strong beams. The data were obtained on 6 different epochs,
with these data being on 20.10.2018, 12.02.2019, 14.05.2019, 18.01.2020, 15.01.2021 and
07.02.2021. These observations were intentionally selected in the middle region of the
lake to minimize any effects on the water level and slope that could be caused by the
narrow geometry, see Figure 4.6. Owing to the high sensitivity of photon counting
detectors, the raw points in ATL03 datasets are very noisy. Noisy points are mainly
caused by the solar background, especially in the daytime. Assuming a Poisson distri-
bution for the noisy points (McGill et al., 2013), a confidence parameter ranging from
0 to 4 is provided, where higher values indicate greater confidence that the point is a
signal (Neumann et al., 2021). However, the distribution of signal and noise points in
the water column is significantly influenced by the attenuation and scattering effect,
which makes the distribution of signal and noise points different from that of the at-
mosphere. Therefore, it is challenging to completely eliminate the noise points using
the algorithm in ATL03 datasets.
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Figure 4.6: The distribution of 6 selected tracks (red lines) across Lake
Mead and the in-situ station (blue point).
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Landsat imagery

The Landsat satellites are a series of Earth-observing satellites jointly managed by the
U.S. Geological Survey (USGS) and NASA. The Landsat program has been collecting
satellite imagery of the Earth’s surface since 1972, providing important data for a wide
range of applications such as agriculture, land use and land cover change, natural re-
source management, and environmental monitoring. The most recent Landsat satellite,
Landsat 9, was launched in September 2021 and continues the mission of its predeces-
sors to provide high-quality and consistent Earth observations. Landsat 1 is the first
Landsat satellite launched in 1972, and Landsat 2 and 3 are nearly identical copies of
Landsat 1. The spatial resolution of these three satellites is 60 m in visible and near-
infrared bands. Landsat 4 carried an updated Multi Spectral Scanner (MSS) used on
previous Landsat missions, as well as a Thematic Mapper (TM), which improved the
spatial resolution to 30 m. Landsat 5 operated from March 1984 until its retirement in
June 2013. It was designed to be an improved version of Landsat 4. The Landsat 5
sensor has a higher signal-to-noise ratio (SNR), which makes the images it captures of
higher quality. That’s the reason images are selected from 1984 onwards in this study.
Table 4.1 provides information of Landsat 5 spectral bands.

Table 4.1: Resolution of each band of Landsat 5 TM

Bands Description Spectral range [µm] Spatial resolution [m]
1 Blue 0.45–0.52 30
2 Green 0.52–0.60 30
3 Red 0.63–0.69 30
4 NIR 0.76–0.90 30
5 SWIR-l 1.55–1.75 30
6 Thermal 10.40–12.50 120
7 SWIR-2 2.08–2.35 30

Landsat 6 was a satellite launched in 1993 by NASA with the goal of continuing the
Landsat program. However, the satellite failed to reach orbit due to a rocket launch
failure, and thus it never provided any data. Landsat 7 was launched in April 1999
and retired in April 2022. It carries the Enhanced Thematic Mapper Plus (ETM+) in-
strument, which has visible and infrared bands with a spatial resolution of 30 m, a
thermal band of 60 m and a panchromatic band of 15 m. Table 4.2 provides informa-
tion of Landsat 7 spectral bands.
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Table 4.2: Resolution of each band of Landsat 7 ETM+

Bands Description Spectral range [µm] Spatial resolution [m]
1 Blue 0.45–0.52 30
2 Green 0.52–0.61 30
3 Red 0.63–0.69 30
4 NIR 0.76–0.90 30
5 SWIR-l 1.55–1.75 30
6 Thermal 10.40–12.50 60
7 SWIR-2 2.08–2.35 30
8 Panchromatic 0.52–0.90 15

Landsat 8 was launched in February 2013 and is still active now. It carries two instru-
ments: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS).
The OLI provides 8 spectral bands with a spatial resolution of 30 m and one panchro-
matic band with a spatial resolution of 15 m. The TIRS provides two long wave thermal
bands with a spatial resolution of 100 m. Table 4.3 shows the details of Landsat 8 spec-
tral bands.

Table 4.3: Resolution of each band of Landsat 8 OLI and TIRS

Bands Description Spectral range [µm] Spatial resolution [m]
1 Coastal-Aerosol 0.43–0.45 30
2 Blue 0.45–0.51 30
3 Green 0.53–0.59 30
4 Red 0.64–0.67 30
5 NIR 0.85–0.88 30
6 SWIR-l 1.57–1.65 30
7 SWIR-2 2.11–2.29 30
8 Panchromatic 0.50–0.68 15
9 Cirrus 1.36–1.38 30

10 TIR-1 10.6–11.2 100
11 TIR-2 11.5–12.5 100

The satellites’ tracks of Path 39 and Row 35 cover the study area, with a temporal
resolution of 16 days for Landsat 5, 7 and 8. Landsat 7 has a well-known issue with
its Scan Line Corrector (SLC), which is responsible for compensating for the forward
motion of the satellite during imaging. In May 2003, a hardware failure caused the
SLC to no longer function properly, resulting in the appearance of large diagonal gaps
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or black stripes in the images known as "SLC-off" gaps, which ruin about 22% of each
image (Elmi, 2019). Hence, the Landsat 7 images acquired after the SLC-off event will
not be used. In this study, the Landsat 5 images were acquired from 1984 to 2011,
followed by Landsat 7 images from 1999 to 2003, and Landsat 8 images from 2013 to
2021. In total, there are 484 cloud-free Landsat images from 1984 to 2021, except 2012.
The annual average number of images is 12.9. Figure 4.7 displays the distribution of
the images per year.

Figure 4.7: Number of images in each year from 1984 to 2021.

In-situ data

Lake Mead was created by the filling of water following the completion of Hoover
Dam. Prior to construction, a meticulous survey of the inundated area was conducted,
resulting in the production of a detailed topographic map. The gauge station started
its recording once the reservoir began to fill with water. The in-situ data are available
at https://lakemead.water-data.com/, which is the Lake Mead Water Database. The
database contains daily recordings of water levels, volumes, inflows, outflows, and
temperatures since 1935. The water levels and volumes of the in-situ data are used to
evaluate the results estimated from the proposed method.

https://lakemead.water-data.com/
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DAHITI

Since the in-situ data cannot provide the water area variations, the online database
called DAHITI is utilized. DAHITI, the Database for Hydrological Time Series of In-
land Waters, was developed by DGFI-TUM (Deutsches Geodätisches Forschungsinsti-
tut, Technische Universität München) (Schwatke et al., 2015, 2019). The time series of
the water surface area is generated from optical imagery with spatial resolutions of
between 10 m (Sentinel-2) and 30 m (Landsat). The water area data are available from
1984 to 2020, also except 2012.

4.4 Estimation of water levels and volumes

4.4.1 Data processing

Figure 4.8(a) shows the original Landsat image with Green band and SWIR bands on
August 26, 1998, and Figure 4.8(b) is the extracted water mask after water mask extrac-
tion.

(a) Landsat image with Green and SWIR bands. (b) Extracted water mask.

Figure 4.8: The result of water mask extraction.

The Landsat image series are subjected to this procedure, resulting in the generation of
a binary lake mask for each image. Considering the spatial resolution of 30 m, the area
of each pixel amounts to 900 m2. With N pixels indicating water, the lake area becomes

A = 900 m2 ·N . (4.5)
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The extraction of the lake boundary is a straightforward process that involves iden-
tifying the boundary between pixels’ values classified as 0 and 1. Subsequently, the
identified boundary will be utilized to intersect the laser tracks and retrieve height in-
formation in the next step.

For the lake nearshore profile extraction, there are two steps required to extract the lake
profile when implementing the DBSCAN algorithm. When operating the DBSCAN al-
gorithm, the ICESat-2 points along the track are considered to be in a 2-dimensional
framework, i.e. the vertical direction and the along-track direction. The first step, re-
ferred to as Global Detection, involves the removal of noise points. Empirically, radius
ε should be larger than 2 m to detect ground topography (Zhang and Kerekes, 2014).
Thus, in this study the radius ε is set to 2.5 m, and the selection of MinPts depends
on the value of ε. A corresponding adaptive threshold MinPts is given in Eq. (4.6),
which is based on the empirical rule of minimum point number for DBSCAN algo-
rithm (Ma et al., 2019).

MinPts =
2SN1 − SN2

ln
(

2SN1

SN2

) . (4.6)

SN1 represents the estimated total number of points (including noise and signal points)
within the given circular neighborhood. The equation is expressed as:

SN1 =
πε2N1

hl
, (4.7)

where N1 is the number of points in total (including noise and signal points), h is the
vertical range, and l is the along-track range. For the case of Figure 4.3(b), the vertical
range is approximately 700 m and the along-track range is about 12 km.

SN2 is an indicator for the estimated number of noise points within a specific neigh-
borhood. The size of the vertical window of ICESat-2 varies depending on the area,
terrain type, and elevation changes, and can range from tens to hundreds of meters
(Markus et al., 2017). Typically, signal photons from the Earth’s surface are concen-
trated in the middle of the vertical window, while noise points are distributed through-
out the entire window. In particular, almost all points at the top and bottom of the win-
dow are noise points, with the dominant source being solar-induced background noise
scattered by atmospheric and water column particles. Noise point density is generally
higher in the water column, where the underwater bottom corresponds to lower ele-
vation values compared to the ground surface. To accommodate different regions and
surface types, the points at the top and the bottom parts of the window are used (where
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most photons are noise photons) to estimate SN2 within the given neighborhood using
the following equation:

SN2 =
πε2N2

h2l
. (4.8)

N2 represents the number of points located in the top or bottom vertical range, while
h2 denotes the height of the selected vertical range. For the case of Figure 4.3(b), the
vertical range is 200 m at the bottom. The basic criterion for identifying a signal point
is that, for each point p in a cluster, its point density within a 2D circular neighborhood
is calculated. If the point density exceeds the threshold value of MinPts, point p is
designated as a signal point. The circular neighborhood is defined by the Euclidean
distance between points p and q. Then after the Global Detection process, most solar
background noise points are discarded, which forms a relatively clean point cloud, see
Figure 4.9.

Figure 4.9: Most noise points are removed by the first step, creating a
relatively clean topography.

In order to derive the bathymetry of the nearshore region, it is essential to preserve the
lake floor beneath the water surface. Thus, the reflections from the water should be
removed, which can also be clustered by the DBSCAN algorithm. That is the second
step, which is referred to as Local Detection. Due to the stability of the lake surface, the
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vertical range of the reflections from the interface and subsurface column backscatter-
ing layer is about 40 cm. The radius ε is set to 20 cm. Because of the attenuation and
scattering effect in the water column, the density of the signal points from the 2D layer
is much higher than that of other types of topography. The parameter MinPts is set to
half the density of the layer. The water surface is then clustered by the Local Detection,
as depicted by the blue points in Figure 4.10.

water surface

300

310

305

Figure 4.10: Clustered water surface.

After the water surface is removed, there may still be a considerable amount of noise
present below the water surface. To mitigate the effects of noise in the nearshore re-
gion, we partition it into smaller segments that can be assumed as linear slopes. The
RANSAC algorithm is then applied to each segment. Figure 4.11 shows the detected
nearshore topography observations (red points) by the RANSAC algorithm with the
exclusion of water column noise.

RANSAC allows us to extract the topography under the water, which expands the
boundaries of the bathymetry. However, the topography under the water surface must
be corrected due to the impact of water refraction. At present, the refraction and its ef-
fect on the speed of light at the interface between air and water are not taken into
consideration in the ICESat-2 products. This causes the measured locations below the
water surface to appear deeper and deviate further from the nadir direction than their
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actual positions. Since the satellite rotates at an angle (0°–1.65°) to measure more to-
pographies when it passes over the land areas, the three pairs of laser beams are always
off-nadir (Neumann et al., 2021). The geometry of the refraction scheme is depicted in
Figure 4.12, illustrating the angle of incidence that occurs when the laser light travels
from the air to the water.

300

320

310

Figure 4.11: Detected nearshore topography observations.

In Figure 4.12, θ1 represents the angle of incidence, θ2 is the angle of refraction (θ3 =

θ1 − θ2), D denotes the uncorrected depth that is obtained by taking the difference
between the Z coordinates of the water surface and uncorrected bottom return points,
S represents the slant range to the uncorrected bottom return point location, R is the
corrected slant range, P represents the distance between the uncorrected and corrected
photon return points in the plane, and the other angles and distances are as labeled in
the figure. The refraction indexes of air and water are n1 and n2 respectively. In order
to calculate the true positions of the observations under the water, Snell’s law should
be referred to as follows:

sin θ1
sin θ2

=
n1

n2

, (4.9)

where the parameters θ1, n1 and n2 are known.
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Figure 4.12: Scheme of geometry of refraction.

The uncorrected depth D can be obtained from ATL03 data. The relationship between
D and S in the triangle follows:

S =
D

cos θ1
. (4.10)

As a consequence of the variation in the speed of light at the air-water interface, the
relationship between R and S can be expressed as follows:

R =
Sn1

n2

. (4.11)

Then, solving the geometry problem, yields

P =
√

R2 + S2 − 2RS cos θ3. (4.12)

then,

α = arcsin

(
R sin θ3

P

)
. (4.13)

Since γ = π
2
− θ1 and α is calculated, then β = γ − α. Finally, the vertical correction is

obtained as:

∆Z = P cos β. (4.14)

Figure 4.13 shows the nearshore bathymetry following the application of refraction
correction. It can be seen that the deepest measurement is situated about 8 m below



4.4. Estimation of water levels and volumes 77

the water surface with the corresponding vertical correction of 2.7 m. That means the
limit of bathymetry is enlarged by about 8 m in this case. Since the angle of incidence
θ1 (0°–1.65°) and the bathymetry depth (up to 30 m depending on the turbidity of the
water) are relatively small, the horizontal correction can be considered insignificant
when compared to the 30 m pixel size of the image.

water surface

corrected lake floor

measured lake floor

topography

~8 m

2.7 m

Figure 4.13: Nearshore bathymetry after refraction correction: pink
points are original lake floor measurements; dark green points are

corrected lake floor measurements.

4.4.2 Estimation of water levels

Since the surrounding areas of Lake Mead lack human activities, it may be assumed
that the nearshore topography remained relatively stable from 1984 to 2021, i.e., the
measurements of 6 laser tracks in Section 4.3 can serve as a representative sample of
the ground profiles and lake floor profiles in the whole time period. After discarding
the noise points and extracting the nearshore topography measurements, a more re-
fined profile of the point cloud can be obtained with accurate positions and elevations.

Once the position of the intersection between the nearshore profile and the water
boundary has been determined as mentioned above, the laser points within a 30 m
radius of the intersection will be selected, considering that the spatial resolution of the
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boundary is 30 m. Assuming a linear slope for a small segment of 60 m, the elevations
of measurements in the segment can be fitted as a linear model using the RANSAC
algorithm. Since the coordinates of the intersection are known, the elevation of the
intersection can be estimated. When 6 laser tracks project on the classified water mask
of one date, there will be at least 12 intersections (depending on the area of the water
mask in each date) between the water boundary and tracks, see Figure 4.14. Using
the same approach, all elevations of intersections of the 6 tracks are estimated. In or-
der to eliminate gross errors, the 3σ-criterion is employed. Subsequently, the median
elevation value is used to define the water level at the time the image was acquired.
All water levels corresponding to the dates of image acquisition will be estimated by
replicating the aforementioned procedure.

4.4.3 Estimation of water volumes

A contour-based methodology is proposed to estimate the water volume of the lake
during the study period, which integrates Landsat-derived water areas (see Subsec-
tion 4.4.1) and laser profile-derived water levels (see Subsection 4.4.2). The methodol-
ogy involves sorting the water levels in ascending order of time, followed by sorting
the lake areas based on the determined order of the water level data. By combining
various lake boundaries with their corresponding water levels, a three-dimensional
(3D) topography of the lake can be generated. Consequently, the volume change be-
tween two adjacent dates can be calculated by assuming the shape of the lake volume
between two contours as a 3D trapezoid, as follows:

∆Vi = Vi+1 − Vi =
Hi+1 −Hi

3

(
Si+1 + Si +

√
Si+1Si

)
. (4.15)

Hi+1 and Hi are the water levels of two adjacent dates, while Si+1 and Si are the cor-
responding lake areas respectively. The water volume variation between two adjacent
dates can be either positive or negative. The water volume of the date of the first image
acquisition is defined as the reference V1. Then, the water volume difference between
Day1 and a specific date Dayn can be calculated by accumulating all water volume
changes of the adjacent dates before Dayn . As a result, the water volume of Dayn can
be expressed as:

Vn = V1 +
n−1∑
i=1

∆Vi. (4.16)

Finally, the water volume of each date of image acquisition from 1984 to 2021 can be
calculated by repeating the aforementioned procedure.
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Thus far, estimations have been made regarding the water level, area, and volume for
each image acquisition date. It is possible to establish a relationship between the level,
area, and volume using a large amount of imagery data collected between 1984 and
2021 and the nearshore profiles obtained from ICESat-2. Consequently, once the water
level is obtained through the use of satellite altimeters or in-situ methods, it would be
feasible to predict the other two variables. Similarly, if the water area is determined
through satellite imagery, it would be possible to predict the remaining two variables.
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water extent
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Laser profiles intersect lake boundary

Figure 4.14: The laser tracks of ICESat-2, shown as red lines intersect
with the derived water mask. The nearshore section profile is displayed
in an enlarged rectangular in the upper left corner. The measurements of
the lake floor are illustrated in the lower left corner of the rectangular and

exhibit a lower density than the other segment of the profile.
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4.5 Results and validation

4.5.1 Estimated water levels comparison with in-situ data

Using the methods mentioned in Subsection 4.2, the process of extracting water masks
from Landsat images of Lake Mead spanning the years 1984 to 2021 was carried out.
Subsequently, surface profiles pertaining to both the underwater bottom and ground
were identified from the ATL03 data. Finally, a matching of laser profiles and the lake
mask was undertaken to determine the water level corresponding to each image ac-
quisition date within the aforementioned time frame.

As mentioned in Section 4.3, the laser tracks were obtained on 6 acquisition dates,
with these dates being on 20.10.2018, 12.02.2019, 14.05.2019, 18.01.2020, 15.01.2021 and
07.02.2021, i.e., the water levels of these dates were directly measured by ICESat-2 laser
altimeter. Assuming hydrostatic equilibrium of the lake surface, it theoretically serves
as an isosurface of gravity potential (Zlinszky et al., 2014). Given the relatively minor
fluctuation in gravitational acceleration at the central lake under study, it is assumed
that any difference in along-track anomalies between dynamic height and orthometric
height can be negligible, i.e., we assume that the orthometric height of the central lake
surface is nearly constant. Therefore, the water level can be represented by the median
value of orthometric heights of the water surface measurements along the track from
ATL13 data. The water levels of these 6 epochs are calculated to be shown in Table 4.4.
The in-situ data has a temporal resolution of 1 day; thus, to enable a comparison with
ICESat-2 measured water levels, water level variation within 1 day is not taken into
account. The root mean square error (RMSE) water levels between ICESat-2 measured
and in-situ data is calculated to be 4.7 cm.

Table 4.4: Orthometric height comparison between ICESat-2 and in-situ

dates ICESat-2 in-situ
20.10.2018 328.87 m 328.81 m
12.02.2019 331.01 m 330.95 m
14.05.2019 331.71 m 331.65 m
18.01.2020 333.18 m 333.16 m
15.01.2021 330.71 m 330.68 m
07.02.2021 331.30 m 331.32 m
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If the underwater bottom profile cannot be observed, it is imperative to lower the wa-
ter level as much as possible in order to produce more bathymetric topography. The
lowest water level of these 6 dates occurred on the date of 20.10.2018 with a water level
of approximately 329 m. That means if the water level is below 329 m, it becomes un-
feasible to estimate the water level. The method detailed in Subsection 4.4.1 yielded
the deepest lake floor with a depth of approximately 8 m, and subsequently reduced
the limit of the estimated water level to around 321 m.

The 6 tracks and corresponding water masks will exhibit more than 12 intersections,
and the water level of each intersection can be estimated, as illustrated in Figure 4.15.
For each image acquisition date, outliers in water levels will be identified and dis-
carded through the application of a threefold standard deviation method. After outlier
rejection, the standard deviation of water levels across each acquisition date ranges
from 21 cm to 52 cm. Subsequently, the estimated water level for each acquisition date
can be derived by computing the median value of all intersecting water levels, exclud-
ing outliers. The estimated water levels from 1984 to 2021 are compared with in-situ
water levels in Figure 4.16; both datasets are in orthometric height (H) (the estimated
water levels are labeled by blue points and the in-situ water levels are labeled by a
red curve). The orange dashed line represents the water level that was captured by
ICESat-2 on 20.10.2018. The green dashed line shows the lowest water level that can be
estimated theoretically due to the extraction of the underwater lake floor. According
to the in-situ data, the lowest water level of Lake Mead occurred at the end of 2021,
with a value of about 324 m. Because the ICESat-2 laser light penetrates the water to
get the nearshore underwater topography, all the images can be used to estimate the
water level even if the actual water level of that image acquisition time is lower than
the water level when captured by ICESat-2. The figure illustrates a higher density of
blue data points between 1999 and 2003 in comparison to the other temporal inter-
vals. This can be attributed to the combination of images obtained from Landsat 5 and
Landsat 7 during this period. Obviously, no image is used in the year 2012, resulting
in the absence of estimated water level data for that year. The average difference and
the RMSE of water levels between our results and in-situ measurements are computed
to be 65 cm and 73 cm, respectively. The correlation coefficient (ρ) and the coefficient
of determination (R2) between the estimated water levels and in-situ water levels are
both 0.998. The estimated water levels using Landsat 5, Landsat 7 and Landsat 8 are
also compared with in-situ data separately, as shown in Table 4.5.
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Table 4.5: Comparison between estimated water levels and in-situ data

Parameters Landsat 5 Landsat 7 Landsat 8
Mean absolute difference (cm) 58 58 87
RMSE (cm) 68 65 92
ρ 0.998 0.999 0.995
R2 0.998 0.998 0.996

Figure 4.15: The estimated water levels of all the intersections of each
image acquisition date and in-situ water levels of each date.

The assessment parameters show minimal differences between Landsat 5 and Land-
sat 7. However, the estimated water levels from Landsat 8 show considerably larger
errors in comparison with Landsat 5 and 7. Landsat 8 images span the years from 2013
to 2021. As shown in Figure 4.16, it’s noteworthy that numerous water level values
after 2013 rely on ICESat-2 track profiles situated beneath the water’s surface. This is
likely the primary factor contributing to the amplified estimation error, as the larger
error in the profile beneath the water’s surface has a cascading effect on the overall
accuracy.
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limit without lake floor

limit with lake floor

Figure 4.16: Comparison between the estimated water levels using our
method and in-situ water levels.

4.5.2 Estimated water areas comparison with DAHITI data

The water area of each image acquisition date was estimated in Subsection 4.2.1. As
the area of one pixel is known, the water area depends on the number of water pixels
classified. From the results of classified water masks, the largest water area appeared
on December 27, 1999 and the smallest water area appeared on August 1, 2018. Fig-
ure 4.17 clearly shows an obvious variation in the boundaries of the lake on the two
respective dates. The corresponding area values illustrate a difference between a max-
imum of 550.96 km2 and a minimum of 297.36 km2.

Since no in-situ measurements for Lake Mead surface areas are available, we employed
the water area time series of Lake Mead from the DAHITI data set. The lake area com-
parison between our results and the DAHITI data set is shown in Figure 4.18 (the
water areas from our method are labeled by blue points and the DAHITI water ar-
eas are labeled by a red curve). The data gap in the red curve occurs in 2012 because
of the SLC-off of Landsat 7. The difference between the two data sets is large before
2001, which can be up to about 60 km2. It is difficult to evaluate the accuracy of our
classification method because both data sets are not compared with the ground truth.
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Maximum boundary on 27.01.1999 

Minimum boundary on 01.08.2018 

Boundaries of Lake Mead 

Figure 4.17: Comparison between the maximum lake boundary and the
minimum lake boundary.

DAHITI water area
Our water area 

Figure 4.18: Comparison between our estimated water areas and DAHITI
data set.
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Nevertheless, we can make the in-situ water level as the reference, i.e. DAHITI water
area and our water area can be comparable with in-situ water level. In Figure 4.19, we
can see the agreement for DAHITI is better than ours, with R2 = 0.980 and ρ = 0.990.
The RMS relative difference between our water area and DAHITI water area from 1984
to 2000 is 9.1%. On the other side, if we consider the water levels are estimated de-
pending on our water area classification method, the results presented in Figure 4.16
serve to demonstrate the robustness of our method in accurately classifying water ar-
eas, at least in regions where ICESat-2 laser tracks passed. However, the areas between
the two data sets after 2001 exhibit a high degree of similarity. The difference between
the two data sets after 2001 can be up to approximately 20 km2, with a RMS relative
difference of 4.6%.

Figure 4.19: Compare our water area and DAHITI water area with in-situ
water level.

As our method was employed to estimate the time series of both water level and wa-
ter area, we are now able to establish the connection between these two variables
using the LS method. Specifically, we employ linear, quadratic polynomial, and cu-
bic polynomial functions to establish these relationships, which are shown in Fig-
ure 4.20. The linear function is y = 5.371x − 1452, the quadratic polynomial func-
tion is y = 0.01623x2 − 5.954x + 520.2, and the cubic polynomial function is y =
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−0.001178x3 + 1.878x2 − 655.1x + 75890, with y the water area (km2) and x the wa-
ter level (m). All three functions show good agreements, with the R2 of 0.975, 0.976
and 0.977 respectively.

Figure 4.20: The relationships between the estimated water levels and
water areas.

4.5.3 Estimated water volumes comparison with in-situ data

Based on the lake boundaries extracted from Landsat images, the corresponding water
levels are estimated. The water volume of each image acquisition date can be calcu-
lated by the method in Subsection 4.4.3. The estimated water volumes using our water
areas from 1984 to 2021 are compared with in-situ water volumes in Figure 4.21 (the
estimated water volumes are labeled by blue points and the in-situ water volumes are
labeled by a red curve). The average volume difference is 0.70 km3, and the RMSE
of the estimated water volumes is 0.62 km3. ρ and R2 between our results and in-situ
water volumes are 0.996 and 0.991, respectively. The analysis reveals that the differ-
ences between the two data sets are comparatively smaller prior to 2003, with a RMSE
of 0.47 km3, in contrast to those after 2003, with a RMSE of 0.71 km3. As the reference
absolute water volume is chosen at the starting time of the time range, the error tends
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to accumulate as time progresses.

Figure 4.21: Comparison between the estimated water volumes using our
estimated water areas and in-situ water volumes.

Similarly, we can also estimate the water volumes using DAHITI water areas, and
compare them with in-situ volumes, as shown in Figure 4.22. The average volume dif-
ference is 0.70 km3, and the RMSE of the estimated water volumes is 0.48 km3. ρ and
R2 between the estimated and in-situ water volumes are 0.996 and 0.991, respectively.
The bias between the estimated water volumes using DAHITI water areas and the in-
situ volumes appears to be smaller than when using our water areas.

Since then, we have three data sets for water volumes: estimated using our water lev-
els and areas, estimated using our water levels and DAHITI areas, and in-situ. Over
the whole period, water volume change rates are calculated to be −0.55 km3/year,
−0.60 km3/year and −0.59 km3/year, respectively. While the overall trend for Lake
Mead’s water volume is decreasing, it’s important to note that the trends in different
time spans do not consistently exhibit a decrease. We’ve also computed the trends over
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varying time intervals, as shown in Table 4.6.

Table 4.6: Water volume trends comparison between 3 data sets
[km3/year]

Time Spans ours DAHITI in-situ
1984–1991 −0.83 −0.85 −0.95
1992–1999 0.76 0.73 0.91
2000–2010 −1.37 −1.39 −1.45

2011 4.89 5.01 4.59
2013–2021 −0.16 −0.14 −0.16

Figure 4.22: Comparison between the estimated water volumes using
DAHITI water areas and in-situ water volumes.

If we use the linear relationship between water level and area, it will suggest a cor-
responding quadratic relationship between water level and volume. The relationship
between the estimated water level and our water area-based volume is shown in Fig-
ure 4.23. Figure 4.24 shows the relationship between the estimated water level and
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DAHITI water area-based volume. Both relationships show a good agreement with
the quadratic model. R2 values for both relationships are 0.975, consistent with the
corresponding values obtained for the relationship between water level and area.

𝑅2 = 0.975

𝑦 = 0.0028𝑥2 + 1.573𝑥 + 223.7

Figure 4.23: The linear relationship between the estimated water levels
and water volumes using our water areas. The quadratic function is

y = 0.0028x2 + 1.573x+ 223.7, with y the water volume (km3) and x the
water level (m).

Till now, both the Elevation–Area and Elevation–Volume relationships have been es-
tablished, with Figure 4.20 and Figure 4.23 indicating that the resulting relationships
for Lake Mead are highly robust, as reflected by the R2 values of 0.975. Given the
established Elevation–Area relationship and Elevation–Volume relationship, obtain-
ing one accurate parameter allows for the estimation of the remaining two parameters
accurately. Since only nearshore bathymetry is derived, the estimation of the other
two parameters could potentially be substantially less accurate in the event of extreme
droughts and floods. While the Elevation–Area and Elevation–Volume relationships
may not always predict any two parameters of three, they can be adopted within a
certain elevation range from 325 m to 370 m or area range from 250 km2 to 550 km2 or
volume range from 12 km3 to 31 km3.
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𝑅2 = 0.975

𝑦 = 0.0031𝑥2 − 1.736𝑥 + 247.1

Figure 4.24: The linear relationship between the estimated water levels
and water volumes using DAHITI water areas. The quadratic function is
y = 0.0031x2 − 1.736x+ 247.1, with y the water volume (km3) and x the

water level (m).
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4.6 Discussions

4.6.1 Performance of ICESat-2 data

As described in Subsection 4.5.1, the RMSE of water levels obtained directly from
ICESat-2 is 4.7 cm, compared to the in-situ data. While various errors above the water
surface, such as atmospheric delay, solid tide, and systematic pointing bias have been
addressed, the bathymetric errors resulting from the refraction effect are not corrected
for underwater lake floor measurements in ATL03 data. In Subsection 4.4.1, Snell’s
Law was employed to adjust the vertical errors. As illustrated in Figure 4.16, some wa-
ter levels from 2015 to 2018 are estimated using the corrected lake floor profiles. These
water levels are well in accordance with the in-situ water levels, which can prove that
the bathymetry results from ICESat-2 are reliable. However, the inclination angle may
be altered by water surface waves, leading to errors during refraction correction. Ad-
ditionally, the horizontal correction has not been accounted for, which can also result
in deviations in the actual position of the lake floor profile. The errors caused by these
factors cannot be easily avoided. In general, ICESat-2 data demonstrate good perfor-
mance.

4.6.2 Importance for establishing H–A and H–V relationships

The establishment of H–A and H–V relationships of Lake Mead is of great importance
in water resource management and planning. These relationships can provide a better
understanding of the lake’s hydrological characteristics and aid in the development of
water management policies. Lake Mead is one of the largest reservoirs in the United
States and is used for various purposes, including irrigation, drinking water, and hy-
dropower generation. Therefore, accurate measurements of the lake’s water level, area,
and volume are critical for the effective management and planning of these resources.

The H–A relationship can be used to estimate the surface area of the lake at different
water levels, which is crucial for various uses such as irrigation, municipal, and indus-
trial purposes. Additionally, the H–V relationship can be used to estimate the volume
of water stored in the lake at different water levels, which is essential for assessing
water supply and demand, and for predicting water availability during droughts or
floods.
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Furthermore, the H–A and H–V relationships can also aid in predicting the lake’s eco-
logical response to changes in water levels. For example, changes in the water level
can affect the lake’s shoreline, vegetation, and habitats for aquatic species, which can
impact the lake’s ecosystem. Accurate H–A and H–V relationships are essential for
monitoring changes in the lake’s water level, area, and volume over time. This infor-
mation can be used to identify potential environmental concerns, such as changes in
the lake’s ecosystem, and to inform decision-making processes related to water man-
agement and allocation.

Finally, the establishment of H–A and H–V relationships of Lake Mead can serve as a
reference for other lakes and reservoirs in the region and worldwide. The methodolo-
gies used to establish these relationships can be replicated for other bodies of water,
which is essential for accurate water management and conservation efforts globally.

4.6.3 Error analysis

Although the correlation coefficient and R2 indicate a strong agreement between our
water level results and the in-situ data, with a value of 0.998, the RMSE for water level,
which is 73 cm, is still relatively large. In this section, we will analyze the potential
error resources that might affect the estimated results. First, the estimation of water
levels in our study relies on the nearshore profiles from ICESat-2 laser altimetry and
the water masks from Landsat imagery, making the accuracy of both factors crucial for
the accuracy of the estimated water level. Figure 4.25 shows two nearshore profiles
derived from a single ICESat-2 track. It is noticeable that the topography slope in the
left figure is steeper compared to the right figure, and the underwater measurements
in the right figure are more densely spaced than those in the left figure. In addition to
the errors analyzed in Subsection 4.6.1, the classification errors of water masks should
also be considered. Although we use cloud-free Landsat images, atmospheric condi-
tions may vary in different places in one image, leading to intensity variations of each
pixel for the Green and SWIR bands. The accuracy of the intersection position, which
determines the water level, is also affected by the spatial resolution. If the nearshore
topography slope is steep, the vertical height can vary significantly within a horizontal
distance of 30 m.

Second, in this study, we assumed that the above-water and underwater topography
near Lake Mead shore remained unchanged or changed only slightly during the period
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1984–2021. However, it should be noted that small changes may still exist, and mis-
matches between the Landsat lake boundaries and the laser profiles could introduce
errors in the estimated water levels. The laser points within 30 m of any of the intersec-
tions were selected to calculate the water level. The RANSAC algorithm was applied
by assuming a linear slope within a distance of 60 m, which may not be small enough,
and the topography slopes could vary within this distance, leading to potential errors
in the estimated water levels. The bias between the estimated and in-situ water levels
could be caused by the water surface slopes between the virtual stations and the in-situ
station.

water surface

corrected lake floor

measured lake floor

topography

(a) Nearshore profile

water surface

corrected lake floor

measured lake floor

topography

(b) Nearshore profile

Figure 4.25: Comparison of two nearshore profiles from a single track.

Third, the accuracy of estimating water volumes relies on the accuracy of correspond-
ing water levels and water areas for each date. It is possible to obtain an accurate
estimation of water levels even if the water area is classified with a large error. This
is due to the significant variations in the slopes of nearshore topographies in different
areas, leading to variations in classification accuracy. Hence, despite accurately esti-
mating the corresponding water level, the estimated water volume may still contain a
significant error.

Furthermore, it should be noted that this method has a limitation in case of extreme
events, such as droughts or floods, as the actual water level may fall outside the range
of extracted nearshore profiles.
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4.6.4 Bathymetric map

Bathymetric maps are important because they provide valuable information about the
depth, shape, and contours of the lake bottom. This information is essential for a vari-
ety of applications, such as:

1. Navigation and safety: Bathymetric maps allow boaters and other watercraft
users to navigate the lake safely by identifying shallow areas, underwater haz-
ards, and deep channels. This information can help prevent accidents and protect
both human life and property.

2. Fisheries management: Bathymetric maps can be used to identify key habitats
and fishing areas, allowing fisheries managers to develop effective management
strategies for maintaining healthy fish populations.

3. Environmental monitoring: By mapping the lake bottom, scientists can better
understand the lake’s physical and biological processes, including sediment de-
position, nutrient cycling, and habitat availability for aquatic organisms.

4. Water resource management: Bathymetric maps are important for managing wa-
ter resources, including water quality monitoring, watershed management, and
flood control.

5. Recreational activities: Bathymetric maps can also be used for recreational activ-
ities such as scuba diving, swimming, and other water sports, by identifying the
best areas for these activities and ensuring user safety.

A global topographic map can be generated using SRTM DEM data, but the limita-
tions of this method have been described in Section 4.1. Multiple datasets are avail-
able for obtaining global bathymetric maps, including GEBCO (General Bathymetric
Chart of the Oceans) (Weatherall et al., 2015). However, the dataset is limited to ocean
bathymetry and has a relatively low spatial resolution of 450 m. Our proposed method
enables the generation of high-resolution nearshore profiles from ICESat-2 data and
water occurrence percentiles (0%–100%) from Landsat imagery. The water occurrence
percentile image indicates the frequency of water classification for each pixel by calcu-
lating the ratio of the time classified as water to the total observation time. This image
can serve as a base map for bathymetry and provide information on slopes. The laser
profiles are projected onto the occurrence percentile image, and each percentile value
is associated with a specific elevation, which can be considered as a contour. The gen-
erated bathymetric map of Lake Mead is shown in Figure 4.26, which is an additional
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product of our method. The elevation range is from 328 m to 370 m.

The Global Surface Water Explorer dataset (Pekel et al., 2016) offers a means of obtain-
ing a global occurrence map for inland water bodies, which can be converted into a
bathymetric map using the approach described in this chapter. Furthermore, the bathy-
metric map produced by this method has the potential to enhance the SRTM DEM by
providing more accurate information on the elevation range and spatial resolution of
bathymetry.

water level

370 m

328 m

Figure 4.26: Generated nearshore bathymetric map of Lake Mead by our
method.

4.6.5 Limitations

Using the available ICESat-2 ATL03 datasets in combination with our proposed method,
it is potentially achievable to accurately monitor the long-term changes in water levels
and volumes of lakes and reservoirs globally. It is important to note that this method
has several limitations. Firstly, ICESat-2 bathymetric measurements are not feasible
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when the water clarity is low. Secondly, in cases where lakes experience little to no sig-
nificant water level changes over a long period, the precise linear regression between
lake water levels and water areas may not be established. Moreover, the ICESat-2
laser altimetry can detect signal points reflected from underwater bottoms only up to
a depth of approximately 10 m, which is dependent on the water’s clarity. While this
method offers an advantage in bathymetric data compared to its previous generation
ICESat and radar altimetry, it cannot predict the water level if the water surface de-
creases more than 10 m.

4.7 Summary

A novel method has been introduced to evaluate temporal variations in water levels
and volumes of lakes using solely remotely sensed data. First, the MNDWI threshold-
ing method was employed to identify lake masks on various dates from Landsat im-
agery. Second, nearshore profiles including the ground and underwater bottom were
extracted from ICESat-2 laser point data using a combination of DBSCAN, RANSAC,
and refraction correction algorithms. Third, the water levels were calculated from the
elevations of the intersections, the coordinates of which were obtained by projecting
the nearshore profiles onto the lake masks. Subsequently, the water volume of each
date was calculated based on the estimated water levels and water areas.

For this study, Lake Mead as a case study was analyzed. ICESat-2 laser altimetry data
of 6 days and Landsat imagery spanning from 1984 to 2021 were used to estimate the
water levels, areas and volumes. the findings revealed that this approach aligns well
with the in-situ measurements, with R2 values of 0.998 and 0.975 for the water levels
and water volumes, respectively, and RMSE values of 73 cm and 0.62 km3 for water
levels and water volumes, respectively.

The novel method proposed in this chapter offers several advantages over previous
studies. Thanks to the smaller laser footprints (~17 m diameter) and the denser along-
track point clouds (70 cm interval) captured by ICESat-2 laser altimetry, water levels
can be estimated using just a few days’ laser tracks, without being limited by the tem-
poral resolution of altimetry data. In contrast, radar altimetry could not estimate in-
land water levels before 1992 with remotely sensed data alone. This study estimates
water levels and volumes for a longer period, from 1984 to 2021. Moreover, ICESat-2
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altimetry uses 532 nm green lasers that can penetrate the water surface, enabling mea-
surements of the lake floor. This study calculates the water levels for recent years using
underwater lake floor data (up to approximately 8 m in depth), which can help predict
the precise loss of water volume if the water level drops by up to 8 m. The water occur-
rence percentile image, generated from Landsat imagery, serves as a base map of the
bathymetry and allows for the conversion of occurrence maps to bathymetric maps.
In addition, ICESat-2 together with Landsat series has the capability to monitor new
lakes, shrinking lakes and expanding lakes. This method will be potentially applicable
to monitor rivers for long-term periods.

However, there are limitations to this method. The accuracy of the estimated water lev-
els is dependent on the quality of the ICESat-2 laser point data and Landsat imagery.
Additionally, the method is only applicable to lakes with clear water, as the ICESat-2
laser altimetry signals are not able to penetrate turbid water. In addition, it will be dif-
ficult to establish precise relationships of H–A and H–V for lakes without significant
water level changes, and it has the inability to predict water levels for water surfaces
decreasing more than 10 meters.

The accuracy of water level estimation depends heavily on the accuracy of water mask
classification, which is restricted by the 30-meter spatial resolution of Landsat imagery.
If higher resolution images, such as Sentinel-2 imagery (20 m), are employed, the accu-
racy of the estimation can be improved accordingly. However, Sentinel-2 imagery was
only obtainable after 2015, which is not suitable for long-term water area estimation.

All in all, the proposed method represents a promising approach for estimating water
levels and volumes in lakes and reservoirs using only remotely sensed data, without
the need for in-situ measurements. This method has the potential to improve our un-
derstanding of water resources and hydrological processes by providing a means to
monitor and quantify changes over time. As such, this method may prove useful in
informing policy and decision-making processes related to water resource manage-
ment, including the allocation of water resources, the management of drought and
flood events, and the protection of aquatic ecosystems.





99

Chapter 5

River surface slope determination from
ICESat-2

5.1 Introduction

The river surface slope (RSS), defined as the change in elevation per unit distance along
the channel, is a fundamental characteristic influencing the behavior and function-
ing of fluvial systems (Dunne et al., 1998; Lighthill and Whitham, 1955; Mertes et al.,
1996). It represents the inclination or steepness of the water surface as it flows down-
stream. The RSS is primarily influenced by the underlying river channel’s bed slope,
which dictates the direction and velocity of water flow (He et al., 2018). In hydrologic
applications, the RSS is a key parameter for estimating flow velocity and discharge
(Manning, 1891). The flow velocity derived from RSS is essential for densifying spatial
or temporal low-resolution water level measurements from non-repeating altimetry
satellites (Tourian et al., 2016). Therefore, the RSS can be used to validate the water
level obtained from any satellite altimetry at fixed locations. The RSS is also a signifi-
cant indicator in determining the energy and momentum of the flowing water (Parsaie,
2016). The RSS influences the movement of sediment particles, erosion and deposition
processes, as well as the formation and evolution of river features such as pools, riffles,
and meanders (Hohensinner et al., 2018). Measuring and analyzing the RSS is essen-
tial for understanding the behavior and dynamics of river systems. It helps in predict-
ing water flow patterns, flood propagation, and hydraulic conditions within the river
channel. Accurate estimation of the RSS is crucial for various applications, including
flood modeling, river engineering, water resource management, and ecological assess-
ments (Yaseen et al., 2019).

There are several methods widely used to determine the RSS at local scales. Field
surveying has long been a traditional method for estimating RSSs. It involves measur-
ing the elevations of the river channel at specific locations using surveying equipment
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such as gauge stations and differential GPS (DGPS). Field surveys provide accurate
slope measurements but can be labor-intensive, time-consuming, and limited to spe-
cific locations. Due to the limited number of gauge stations along a river, the slopes
of the entire river will not be capable. Even though the slope between two gauge sta-
tions can be estimated, the estimated slope may not be meaningful, especially for the
long distance between the two stations. Additionally, for the global scale, the number
of in-situ stations is declining as mentioned in Chapter 1, which makes the challenge
to determine the RSSs using this traditional method. DGPS uses GPS receivers with
improved accuracy to measure elevation differentials between points along the river
channel (Altenau et al., 2017). It provides a faster and more flexible way to determine
the slopes of the place of interest. It offers good accuracy, especially in open areas with-
out significant vegetation or obstructions. However, DGPS may still require ground
control points for calibration, and the accuracy can be affected by satellite coverage
and atmospheric conditions. Nonetheless, they serve as a valuable reference for vali-
dating slope estimations derived from other methods (Knighton, 2014).

Remote sensing techniques, such as airborne LiDAR (Mandlburger et al., 2020) and
radar (Jiang et al., 2020), coupled with the generation of DEMs, have revolutionized the
estimation of RSS. High-resolution topographic data obtained through remote sensing
can be used to derive DEMs representing the elevation of the river channel and its sur-
roundings. Slope estimation can then be derived from the DEM by analyzing eleva-
tion changes over a given distance. Remote sensing methods offer wide coverage and
data of RSS at various scales, but they require careful consideration of data process-
ing techniques, resolution limitations, and accuracy assessment (Paz and Collischonn,
2007). Due to the considerable personnel and cost requirements associated with air-
borne LiDAR, its application to nationwide and global river systems is always costly
and inefficient. As a result, it is not suitable for continuous monitoring of the RSS
across the entire river network. DEM measurements of the SRTM are regularly used
to derive RSS for the global scale (Cohen et al., 2018). However, because of its rela-
tively large height error, RSS estimates from SRTM data are only appropriate on a large
scale (LeFavour and Alsdorf, 2005). The problem is that RSS is a dynamic and spatially
varying parameter that undergoes continuous changes over time. SRTM captured the
global DEM only once, and the RSS observed during this time may not represent the
respective average RSS.

Since satellite altimetry provides water levels regularly, by comparing altimetry data at
different points along the river, the RSS can be estimated. However, the intersections
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between altimetry ground tracks and rivers do not exhibit regular distribution pat-
terns. This is attributed to scenarios where the ground track may not intersect the river
when the river flows parallel to it, or in cases where the river meanders, resulting in
multiple crossings within a short distance. Satellite altimetry is particularly useful for
large rivers and allows for continuous monitoring the RSS variation over extended pe-
riods. However, it may have limitations in narrow or shallow rivers with limited satel-
lite coverage, and accuracy can be influenced by factors such as river width, vegetation,
and river stage variability (Fu and Cazenave, 2000). For low-resolution mode (LRM)
altimeters, water surface elevations can be derived with a RMSE of a few decimeters if
the river is wider than 200 m (Sulistioadi et al., 2015). Water surface elevations ob-
tained from synthetic aperture radar (SAR) have been found to be applicable with
comparable accuracy for rivers up to a width of 40 m, as demonstrated by the work
of Halicki and Niedzielski (2022). Furthermore, more advanced techniques such as
interferometric SAR (InSAR) and laser altimeters offer even better precision and appli-
cability, allowing for accurate measurements in narrower river systems. Scherer et al.
(2022) studied 815 reaches and found ICESat-2 can be used to estimate RSS with a me-
dian absolute error of 2.3 cm/km relative to gauge data.

In spite of the limitations and uncertainties involved, satellite radar altimetry is still
widely employed for the estimation of RSS, primarily focused on the derivation of
river discharge (Sichangi et al., 2016). In a research investigation encompassing two
arctic rivers, Zakharova et al. (2020) employed InSAR and SAR data acquired from the
CryoSat-2, SARAL, and Sentinel-3A missions. These datasets were used to construct
a time-variable cubic spline function for modeling the longitudinal river profile. By
employing this methodology, the researchers successfully estimated RSS at any given
location and time along a 175 km segment of the Ob River. Nevertheless, synchronous
observation for two virtual stations using multi-satellite is still a challenge that can-
not be solved. Except for the water levels from satellite altimetry, hydraulic model-
ing is normally involved in simulating the flow of water in rivers to estimate RSSs
(Bates and De Roo, 2000). These models consider the hydraulic characteristics of the
river, such as water velocity, channel roughness, and bed slope. By simulating the flow
behavior, the model can estimate the RSS. Hydraulic modeling provides a detailed
analysis of flow patterns and sediment transport, aiding in understanding the com-
plex interactions between water and sediment. However, it requires comprehensive
data on river geometry, hydraulic parameters, and calibration, making it computation-
ally intensive and reliant on accurate input data.
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As introduced in Chapter 2, ICESat-2 measures the topography along the ground track
of 3 parallel pairs of laser beams spaced 3.3 km apart. This increases the probability
of simultaneous water surface elevation measurements at different locations within a
river reach. In this study, we will introduce a novel approach that capitalizes on the
unique measurement geometry of ICESat-2 to obtain instantaneous estimates of reach-
scale RSS. This approach combines two methods, namely the across-track and along-
track approaches. The along-track method involves fitting the RSS to all water surface
elevations from each individual beam intersecting the river reach and projecting it onto
the river’s centerline. Additionally, the across-track method calculates the RSS by an-
alyzing the simultaneous water surface elevations from ICESat-2’s parallel beams that
intersect a particular river reach. By combining these methods, a time-variable RSS
is generated to maximize both temporal and spatial coverage. Moreover, an average
reach-scale RSS is computed, aiming to derive the global average reach-scale RSS and
its variability in future investigations.

5.2 Methodology

In this study, we will estimate two types of RSS: (a) along-track-based river slope us-
ing a single beam, and (b) across-track river slope between two points on the centerline
from two beams. We also use the estimated slopes to generate the slope time series and
the averaged RSSs along the river. Figure 5.1 shows the schematic of ICESat-2 tracks
intersecting the river extent. The river boundaries are represented by the blue curves,
while the ground tracks of the 6 beams are depicted by the green lines. The red seg-
ments of the ground tracks indicate the areas where observations are made over the
water surface. The centerline of the river is denoted by the blue dashed curve, and the
orange points represent the intersections between the centerline and the ground tracks.
Each red segment is characterized by an angle formed between the ground track and
the centerline, which determines the slope of the segment, referred to as the along-track
slope (i.e. the slope of each red segment). When the water level observations of one red
segment are projected onto the centerline, it allows for the derivation of the along-track
based river slope. Each intersection (Pi) between the centerline and ground track has
a water level value. By determining the distance between two intersections along the
river’s centerline, it becomes possible to estimate the across-track slope (e.g. the slope
between P1 and P2). In the case depicted in Figure 5.1, it is observed that even a single
beam, such as GT2L, can yield multiple intersections, as seen with the points of P1 and
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P2, while GT2R results in intersections P3 and P4.

GT1L GT1R GT2R GT3RGT2L GT3L

P1

P2

P3

P4

P5

90 m 3.3 km

Figure 5.1: Schematic of ICESat-2 tracks intersecting the river extent.

5.2.1 Along-track based river slope estimation

ICESat-2 ATL13 measurements of each beam are situated exclusively on the water sur-
face (Jasinski et al., 2021), serving as the basis for estimating the along-track based river
slope. An angle exists between the ICESat-2 ground track and the river’s centerline.
When the angle measures 90°, denoting that the track is orthogonal to the centerline,
it can be inferred that the water levels along the track persist as constant even though
the water slope is detectable with the single photon LiDAR (Mandlburger et al., 2020),
i.e. potential slopes across the flow direction are ignored. However, this is hardly ever
the case. In cases where the ground track deviates from being perpendicular to the
river centerline, even a short segment can lead to a surface slope, i.e. along-track based
slopes are very local measurements of RSS. Therefore, projecting the ground track seg-
ment onto the river centerline allows us to represent the water levels of the river cen-
terline by those observed along the ground track segment, as depicted in Figure 5.2.

By projecting the observations of a single beam onto the river centerline, we can deter-
mine the length of the segment along the centerline, starting from the first observation
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and extending to the last one. Consequently, all the observations along the centerline
can be referenced to the length measured from the first observation. Subsequently, the
relationship between the length (l) and the water height (H) can be modeled using a
linear regression equation of the form H = al + b + e, where a and b represent the pa-
rameters of the fitting line, and e denotes the residual vector. The fitting process for the
linear regression can be carried out using the Gauss-Markov model of LS adjustment,
as outlined below: 

H1

H2

...
Hi


y
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l1 1

l2 1
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...
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A

(
a

b

)
x

+


e1

e2
...
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e
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The slope of the fitting line a, which is also the slope of the river slope along the cen-
terline for the segment, can be estimated by

x̂
2×1

= (ATQy
−1A)−1ATQy

−1y, (5.2)

in which Qy is the diagonal variance matrix of observations.
The precision of the estimated parameters x =

(
a
b

)
can be calculated by the procedure:

ê = y − Ax̂

=⇒ σ̂0
2 =

êTQy
−1ê

m− n

Qx̂ = (ATQy
−1A)−1

=⇒ Q̂x̂ = σ̂0
2Qx̂,

(5.3)

where m is the number of observations and n is the number of parameters (here n is 2).
Q̂x̂ is variance-covariance matrix of vector x, which can be written as:

Q̂x̂ =

[
σa

2 σaσb

σaσb σb
2

]
. (5.4)

σa is the precision of the parameter a, which is also the precision of the along-track
based river slope.



5.2. Methodology 105

Figure 5.2: Schematic of observation of one beam projected onto the
river’s centerline.
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5.2.2 Across-track river slope estimation

Once the fitting line for a specific beam has been estimated using the aforementioned
procedure, the water height (H) at the intersection point between the ground track and
the river centerline can be determined using the linear function. Similarly, the water
heights at the intersection points of two different beams, denoted as H1 and H2, can
be estimated using the same method. The river length (l) between two strong or two
weak beams can be computed using the SWORD centerline of the river, see Figure 5.3.
Subsequently, the across-track river slope (S) between the beams can be calculated
using the following formula:

S =
H1 −H2

l
. (5.5)

The estimation of the precision of H at the intersection point, can be determined using
the following formula:

σH =

√
êTê

m
, (5.6)

where m is the number of observations from one beam. According to the error propa-
gation, the precision of across-track river slope can be estimated by:

σslope =

√
σ2
H1

+ σ2
H2

l
. (5.7)
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Figure 5.3: Schematic of the across-track river slope estimation. Yellow
and pink points are observations of two beams of one reference ground

track pass and the red polyline is the centerline between two intersection
points.
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5.3 Study area and data

5.3.1 Study area

For the purpose of this study, we select the Rhine River within Germany as our study
case. The selected study area begins at Lake Constance (German: Bodensee) and ex-
tends until the border with the Netherlands. The Rhine River is the second longest
river in Central and Western Europe (after the Danube), at about 1230 km with an
average discharge of about 2900 m3/s. River width varies between 50 m and 750 m
(Frings et al., 2019). The selected part of the Rhine River is shown in Figure 5.4, which
is highlighted in dark blue. There are dams, weirs, riffles and confluences along the
river. Therefore, it includes diverse reaches, so that the RSSs in different conditions
can be analyzed.

5.3.2 ICESat-2 ATL13 inland water surface height product

The main dataset used in this study consists of water surface elevation measurements
obtained from ICESat-2. These ATL13 measurements were derived from the ATL03
Level 2 data provided as locations and orthometric heights, as described in the paper
of Jasinski et al. (2021). Unlike radar altimetry, lidar sensors are unable to penetrate
through clouds, resulting in missing observations during overcast conditions. How-
ever, due to the ability of green laser beams to penetrate water, the sensor can detect a
maximum of 2.9 photons per meter over inland waters, depending on the water and at-
mospheric conditions (Jasinski et al., 2021). In the ATL13 product, dense photon-level
observations are not included. Instead, representative values are provided for short
segments comprising 75–100 consecutive received photons above inland water bodies.
The length of these segments along the track can vary from 30 to several hundred me-
ters, depending on the number of signal photons received per pulse.

5.3.3 SWOT river database

In order to determine the river reach distance and the angle at the ICESat-2 ground
track intersecting a river, we employ the river centerlines from SWOT River Database
(SWORD) (Altenau et al., 2021). The primary data source used in the SWORD project
is the Global River Widths from Landsat (GRWL) database (Allen and Pavelsky, 2018).
GRWL offers high-resolution centerline locations (30 m) for rivers worldwide that are
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Figure 5.4: Location of Rhine River, used as the study case in this thesis.
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30 m wide or wider. Along with the centerline locations, SWORD also provides corre-
sponding attributes such as channel width, number of channels, and water body type
for each location. SWORD was developed by processing Landsat imagery at approxi-
mately mean annual flow, generating and refining river masks, and subsequently gen-
erating centerlines along the final river masks. Detailed information regarding cross-
sectional width and the number of observed channels is available for each centerline
point in the GRWL database. In addition, in the SWORD dataset, we incorporate con-
sistent RSS data for each river reach. These data serve as a reference point for com-
paring our results. The RSS values in SWORD are estimated by applying linear re-
gression to elevation data obtained from the Multi-Error-Removed Improved-Terrain
(MERIT) Hydro dataset (Yamazaki et al., 2019). The MERIT Hydro dataset is derived
from the MERIT DEM, which combines remote sensing data from SRTM and the Ad-
vanced Land Observing Satellite (ALOS). The MERIT DEM undergoes preprocessing
to remove noise, correct height errors, and mitigate tree canopy biases, as outlined by
Yamazaki et al. (2017). Moreover, the SWORD dataset also includes the width of each
river reach at mean annual flow, which we employ to eliminate the other water bodies
in the selected region.

5.3.4 Water occurrence map

The global surface water occurrence map in the Global Surface Water Explorer (GSWE)
(Pekel et al., 2016), is used as a filtering criterion for the ICESat-2 observations. The
dataset combines multiple satellite observations, including optical and radar data, to
classify the presence or absence of water in global surface water bodies from 1984 to
2021. It incorporates data from various satellite missions, such as Landsat, Sentinel-1,
and Sentinel-2. The dataset undergoes extensive processing and analysis to produce
the water occurrence map, which provides information on the spatial distribution of
water bodies worldwide. The water occurrence percentage image shows how often
each pixel is classified as water (0%–100%), which is calculated as the ratio of the time
classified as water versus the total observation time. In order to ensure that the obser-
vations from ICESat-2 fall within the boundaries of the river extent, only pixels with a
percentage of 85% or higher will be chosen.
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5.4 Data processing

The preprocessing is to determine the effective ICESat-2 data over the river extent.
To ensure that the ICESat-2 data exclusively covers the Rhine River and excludes sur-
rounding water bodies, a preliminary step involves buffering the SWORD reach cen-
terline by 1.5 times the width of the reach. Subsequently, any ICESat-2 data points
falling outside the buffered region along each ground track are eliminated from the
analysis. The remaining ICESat-2 data generally cover the Rhine River, although cer-
tain observations may extend beyond the river banks. The next step involves ensuring
that only the ICESat-2 observations falling within the water extent are considered. To
achieve this, we use the water occurrence map and exclude ICESat-2 observations that
align with pixels where the water occurrence exceeds 85%. This filtering process helps
remove observations that potentially occur over the river banks.

After these processes, there may be still some ICESat-2 outliers remaining. Statistical
hypothesis tests are employed to determine the validity of an observation, distinguish-
ing between erroneous and accurate data points. Among these tests, data snooping is
a widely used approach, which incorporates the concept of reliability introduced to
geodesy by Baarda (Baarda, 1967, 1968). Baarda’s data snooping method operates un-
der the assumption that at least one single outlier exists within the set of observations,
which is provided in Appendix A. Consequently, a one-dimensional local hypothesis
test is conducted on each observation to detect the presence of the outlier. The result
after data snooping is shown in Figure 5.5. The along-track based river slope can be
estimated by the method of Subsection 5.2.1. The fitting line of observations from one
beam is shown in Figure 5.6. Once we’ve estimated the along-track based river slopes,
we can then proceed to estimate the across-track river slopes using the approach de-
tailed in Subsection 5.2.2.
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(a) ICESat-2 observations of one beam crossing
the river’s centerline.

(b) The elevation profile of the beam.

Figure 5.5: Performance of data snooping.

Figure 5.6: The fitting line of observations from one beam.
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5.5 Results and discussion

Due to the operational off-nadir pointing of ICESat-2 over land areas for enhanced to-
pographic measurements, the ground tracks of repeat cycles do not remain in the same
positions. To ensure denser coverage of the entire river, 4 years’ worth of data are used.
The SWORD river reaches, defined every 10 km, allow for averaging the water levels
on the centerline obtained from the along-track data over four years within one reach,
representing the water level of that reach. Then the height profile of the river can be
derived. This approach yields a robust estimate of the chainage slope, provided that
the water level time series is long enough to capture the entire distribution. Figure 5.7
shows the averaged water levels along the river with a spatial resolution of 10 km us-
ing 4 years’ ICESat-2 data. The orthometric height of the river varies within a range
of approximately 390 m to 10 m. Observably, the slopes of the upstream region are
steeper compared to those of the downstream region. This observation aligns with the
topography, as the Rhine River flows from mountainous areas to plain areas.

Figure 5.7: Average water elevation of each reach along the Rhine River.
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5.5.1 Along-track based river slope validation against ground mea-

surements

Validating along-track based river slopes for the entire river is challenging due to lim-
ited ground data availability. However, some local water resource management offices
conduct measurements of certain river reaches using traditional methods, either for re-
search purposes or shipping activities. In our study, we acquired water level measure-
ments along a small-scale section near the city of Mainz. These measurements were
obtained using ship-mounted GNSS equipment, provided by the Waterways and Ship-
ping Office Upper Rhine (German: Wasserstraßen- und Schifffahrtsamt Oberrhein).
Consequently, in this particular region, a comparison can be made between the along-
track based river slopes estimated by ICESat-2 and the local data collected by the ship-
based measurements. Figure 5.8 shows an example of the ship-based measurements
along a river reach.

Figure 5.8: Ship-based height measurements along the river reach.

Overlapping data between ship-based measurements and ICESat-2 measurements are
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available for four different months. We make the assumption that the river slope re-
mains relatively stable within each month. Consequently, the along-track slope ob-
tained from ICESat-2 during a specific month can be reasonably compared to the ship-
based measurements taken during that same month. Figure 5.9 shows the water el-
evation comparison between ICESat-2 and ship-based measurements in four months.
The observed height differences between the two datasets likely stem from dispari-
ties in geodetic datum systems and acquisition dates employed therein. The slopes
of the two datasets can be calculated by the method of Subsection 5.2.1 respectively.
Slope differences between ICESat-2 along-track data and ship-based data for the four
months: 9.2 cm/km, 0.1 cm/km, 3.6 cm/km, and 2.2 cm/km respectively. The average
slope difference across the four months is calculated to be 3.8 cm/km. This compar-
ison shows that the ICESat-2 along-track data is in reasonably good agreement with
the ship-based measurements, supporting the accuracy and reliability of ICESat-2’s
measurements for assessing river slopes.

5.5.2 Cross-validation of across-track river slopes

We do not expect the slope between two gauge stations will reflect small-scale RSS,
because the distance between two neighboring gauge stations is much larger than the
length of a reach. However, when calculating the across-track slope using two strong
beams, e.g. the slope between P2 and P5 in Figure 5.1, the two weak beams will also
generate one across-track slope. As a result, the across-track slope can be compared
between both strong and weak beams. The across-track slopes from strong beams
within each reach over four years are averaged, providing a representative value for
the across-track slope of that reach. This process is similarly applied to the weak beams,
obtaining the chainage slopes for both strong and weak beams. Figure 5.10 shows the
chainage slope of the river derived from strong and weak beams. The color bar indi-
cates that the slopes of upstream reaches are steeper compared to those of downstream
reaches. In Figure 5.10(b), there is a data gap between 49°N and 50°N, resulting from
the lack of available data on weak beams in that region. Notably, the slope difference
between strong and weak beams is relatively small in the downstream section, specifi-
cally from 49°N heading northwards, with a RMS of 3.2 cm/km. In the upstream sec-
tion, specifically from 49°N heading southwards, the slope difference between strong
and weak beams is more significant compared to the downstream part, with a RMS
of 9.7 cm/km. Several factors may contribute to this difference, including substan-
tial slope variations, the presence of dams, and potential obstructions such as wires in
the upstream region. Figure 5.11 displays the average slope precision of each reach,
indicating that the precision from both strong and weak beams is below 1 cm/km.
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(a) September 2020 (b) March 2021

(c) June 2021 (d) August 2021

Figure 5.9: Water height comparison between ICESat-2 and ship-based
measurements.
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(a) Across-track slope of strong beams (cm/km) (b) Across-track slope of weak beams (cm/km)

Figure 5.10: Comparison of across-track slopes between strong and weak
beams.

(a) Across-track slope precision of strong beams
(cm/km)

(b) Across-track slope precision of weak beams
(cm/km)

Figure 5.11: Comparison of across-track slope precision between strong
and weak beams.
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5.6 Summary

In this chapter, we have successfully derived the RSS from ICESat-2 ATL13 observa-
tions at the reach scale. The difference between the along-track slope and the ship-
based slope is expected to be on the order of several centimeters per kilometer. The
results obtained through the across-track approach show an RMS difference between
strong and weak beams of less than 10 cm/km for the Rhine River. RSS can serve as a
significant correction for water level time series derived from radar satellite altimetry,
especially when other errors, like the off-nadir effect, are not predominant.

To apply RSS as a correction, it is essential to unambiguously determine the crossing
chainage of the satellite orbit. The SWOT mission is expected to provide RSS time
series with higher temporal resolution compared to ICESat-2, as SWOT’s revisit in-
terval for a reach is about 11 days due to its 120 km swath width and 21-day repeat
orbit (Biancamaria et al., 2016). Additionally, SWOT’s Ka-band Radar Interferometer
(KaRin) instrument can penetrate clouds, allowing for more data availability in regions
with high cloud coverage. SWOT is explicitly designed to observe water surface slope,
and its science requirements aim for a slope accuracy of 1.7 cm/km (Biancamaria et al.,
2016), which is expected to surpass the mean along-track based river slopes of this
study.
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Chapter 6

Conclusions and outlook

6.1 Summary of findings

In this thesis, we explored the applications of the ICESat-2 in monitoring inland water
bodies (lakes and rivers). The primary objectives are to assess the satellite’s capability
in measuring water level, river slope and lake volume variations, and to investigate
its potential for various hydrological applications. Throughout the research, a combi-
nation of remote sensing techniques and data processing algorithms was employed to
achieve these goals.

Firstly, through the application of the XO analysis method, the radial orbit error level
of the ICESat-2 satellite was effectively determined. In this approach, Kepler’s orbit
model was used to represent the satellite’s radial distance, and a linearization process
involving three parameters was employed for the LS adjustment. Our findings reveal
that, despite the advancements in satellite design, it remains challenging to completely
eliminate orbit errors, resulting in an error magnitude of several centimeters. Conse-
quently, there is a pressing need for further advancements in technology to minimize
the radial orbit error and enhance the precision of satellite observations.

Secondly, this research demonstrated the impressive capabilities of ICESat-2 in accu-
rately measuring water levels and volumes in lakes. By combining ICESat-2 data with
Landsat images and validating the results with in-situ measurements, the relationship
of water level, area and volume was established. This represents a significant advance-
ment in using remote sensing technology to track changes in lakes, and it holds great
potential for enhancing our understanding of water resources and ecosystems.

Furthermore, this research evaluated ICESat-2’s ability to estimate river slopes using
two different methods. The along-track river slope was compared with the ship-based
measured slope, and the across-track river slope was cross-validated using strong and
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weak beams. The results showed its potential in estimating river flow rates, which will
be valuable for calculating river discharge.

These findings present a promising advancement in the field of remote sensing-based
hydrology, with potential applications in regions lacking in-situ data. Additionally, the
insights gained from this research contribute to our understanding of climate change
impacts on freshwater bodies. By analyzing long-term data obtained from ICESat-2
data and Landsat imagery, we can discern patterns and trends in water level–area–
volume changes, providing important information for climate scientists, water resource
managers, and policymakers.

6.2 Limitations and future directions

While this study showed the applications of ICESat-2 in monitoring lakes and rivers,
some limitations and challenges were encountered during the research process. One
primary limitation is the satellite’s temporal and spatial resolution, which may not be
sufficient for capturing fine-scale hydrological processes. Future missions with im-
proved resolution and more frequent observations could address this issue.

Additionally, ICESat-2’s performance can be affected by cloud cover, particularly in re-
gions with persistent cloud cover. Integrating data from other complementary satellite
missions or employing data assimilation techniques could help overcome this limita-
tion.

Moreover, according to Manning’s equation (Manning, 1891), the river discharge can
be estimated if we know the parameters in Eq. (6.1).

Q =
1

n
A

5
3W− 2

3

√
S, (6.1)

where Q is the river discharge, n is Manning’s roughness coefficient, A is the cross-
section area of the river channel, W is the river width, and S is the RSS. The bathymetry
measurement using ICESat-2 still relies on the quality of water and this is the main ob-
stacle to the potential research on river discharge estimation. More extensive validation
and calibration efforts are needed to improve the reliability of these estimates further.
For future research, the following directions are recommended to enhance the applica-
tions of ICESat-2 in monitoring water bodies:
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1. Investigate the integration of ICESat-2 data with other remote sensing technolo-
gies, such as SAR images and radar altimetry, to improve water level monitoring
in regions with dense vegetation or complex terrain.

2. Explore the potential of ICESat-2 in studying the dynamics of glacial lakes, which
are highly vulnerable to climate change-induced glacier retreat.

3. Collaborate with hydrological and climate modeling communities to assimilate
ICESat-2 data into models, enhancing their accuracy and predictive capabilities.

4. Extend the study to different geographical regions and investigate the variability
in ICESat-2 performance across diverse landscapes.
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Appendix A

Baarda’s data snooping

The probabilistic characteristics of measurement errors are closely linked to the as-
sumed probability distribution of these errors. In geodesy and various other scien-
tific fields, the widely recognized normal distribution serves as a frequently employed
model for measurement errors. This choice is substantiated by both the central limit
theorem and the maximum entropy principle, further justifying the use of the normal
distribution as a suitable representation for measurement errors. Consequently, the
null hypothesis (H0) is formulated based on the assumption that the random errors
follow a normal distribution with a mean of zero. When the null hypothesis H0 is
assumed to be true, the associated model is used to estimate unknown parameters,
typically using a least-squares methodology. Therefore, in the linear or linearized form
of the standard Gauss-Markov model, the null hypothesis H0 can be expressed as fol-
lows:

H0 : E
{
y
}
= Ax+ E {e} ; D

{
y
}
= Qy,

→ ŷ
0
= Ax̂0,

→ ê0 = y − ŷ
0
,

(A.1)

where E {} represents the expectation operator and D {} represents the dispersion op-
erator. In this equation, y denotes the vector of measurements, A is the design matrix
of full rank n, x represents the unknown parameter vector, e is the vector of unknown
measurement errors, and Qy is the covariance matrix associated with the measure-
ments y. This null hypothesis assumes that the expected value of the measurements
can be accurately represented by the linear relationship between the design matrix A

and the unknown parameter vector x.

In contrast, an alternative model is put forth when there are concerns regarding the
reliability of the model under the null hypothesis H0. In this case, it is assumed that the
validity of the null hypothesis H0 in Eq. A.1 can be compromised if the dataset contains
outliers. The alternative hypothesis, denoted by Ha, opposes Eq. A.1 by introducing
an extended model that incorporates an additional unknown vector ∇ of deterministic
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bias parameters, formulated as follows:

Ha : E
{
y
}
= Ax+ C∇+ E {e} ; D

{
y
}
= Qy,

=
(
A C

)(x

∇

)
+ E {e} ,

→ ŷ
a
= Ax̂a + C∇̂,

→ êa = y − ŷ
a
,

(A.2)

where C is an m × 1-vector and ∇ is one-parameter scalar in Baarda’s data snooping,
i.e.,

C =

0, 0, ..., 1︸︷︷︸
position i

, 0, ..., 0

T

. (A.3)

Then the test statistic T is

T = ê0
TQy

−1ê0 − êa
TQy

−1êa

= (ŷ
0
− ŷ

a
)TQy

−1(ŷ
0
− ŷ

a
)

= ∇̂
T
CTQy

−1Qê0
Qy

−1C∇̂.

(A.4)

Since the normal equations under H0 and Ha from Eq. A.1 and Eq. A.2 can be written
as:

H0 : ATQy
−1Ax̂0 = ATQy

−1y

Ha :

(
AT

CT

)
Qy

−1
(
A C

)( x̂

∇̂

)
=

(
AT

CT

)
Qy

−1y

⇐⇒

(
ATQy

−1A ATQy
−1C

CTQy
−1A CTQy

−1C

)(
x̂a

∇̂

)
=

(
ATQy

−1y

CTQy
−1y

)
,

(A.5)

x̂a can be solved by the first row, which is written as:

ATQy
−1Ax̂a + ATQy

−1C∇̂ = ATQy
−1Ax̂0

=⇒ x̂a = x̂0 − (ATQy
−1A)−1ATQy

−1C∇̂.
(A.6)

If we substitute x̂a to solve ∇̂ in the second row, then we can get

∇̂ = (CTQy
−1Qê0Qy

−1C)−1CTQy
−1ê0. (A.7)
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Substitute ∇̂ in Eq. A.4, then we get

T = ê0
TQy

−1C(CTQy
−1Qê0Qy

−1C)−1CTQy
−1ê0

=
(ê0

TQy
−1C)2

CTQy
−1Qê0Qy

−1C

=
∇̂

2

(CTQy
−1Qê0Qy

−1C)−1

=
∇̂

2

σ2
∇̂

.

∇̂
2
=

CTQy
−1ê

CTQy
−1Qê0Qy

−1C
.

(A.8)

A test decision is performed as the rule: reject H0 if T = ∇̂2

σ2
∇̂

> kα. The decision rule
states that if Baarda’s test statistic exceeds a certain critical value kα, which corresponds
to a percentage of its probability distribution, then the null hypothesis is rejected in fa-
vor of the alternative hypothesis. This decision rule represents a specific case where
the null hypothesis H0 is being tested against a single alternative hypothesis Ha. Con-
sequently, the rejection of the null hypothesis automatically leads to the acceptance of
the alternative hypothesis, and vice versa. In essence, the process of outlier detection
inherently includes outlier identification, and vice versa. This is because the formula-
tion of the alternative hypothesis Ha is based on the assumption that an outlier exists
at a predetermined location within the dataset. When an observation is rejected, the
dataset yi will be iteratively tested until no more observations are rejected.
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