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Kurzfassung

Kurzfassung

Die vorliegende Arbeit befasst sich mit Problemen, die ausschließlich bei der Finite-
Elemente-Analyse nichtlinearer Probleme in der Festkörpermechanik auftreten. Ein
besonderes Augenmerk liegt dabei auf künstlichen Versteifungseffekten (“Locking”) und
künstlichen Instabilitäten (“Hourglassing”). Bei beiden Phänomenen lassen sich die
Ursachen auf geometrische und materielle Nichtlinearitäten zurückführen. In diesem
Zusammenhang wird auch die algorithmische Behandlung zur effizienten Berechnung
von Instabilitätspunkten diskutiert.

Ein volumetrisches Lockingphänomen, das durch geometrisch nichtlineare Biegeverfor-
mungen hervorgerufen wird, wurde kürzlich in Willmann et al. 2022 entdeckt. Die
Autoren untersuchten diesen Effekt im Zusammenhang mit 3d Schalenelementen. Auf
der Grundlage dieser Arbeit wird das Problem des “nichtlinearen Lockings” weiter un-
tersucht. Die Analyse wird auf gängige EAS-Volumenelemente erweitert. Mögliche
Lösungsmethoden und die Bedeutung für praktische Anwendungen werden diskutiert.
Darüber hinaus werden nichtlineare geometrische Lockingeffekte untersucht, die ins-
besondere bei der Analyse von Elementen mit großen und kleinen Seitenverhältnissen
von Bedeutung sind. Eine besondere Herausforderung bei der Analyse von nichtlinearem
Locking ist die Wahl geeigneter Benchmarks. Eine Voraussetzung der beschriebenen
Effekte sind nichtlinearen inhomogenen Elementdeformationen. Aus diesem Grund wer-
den neben den numerischen auch analytischen Lösungen für Biegeprobleme mit großen
Dehnungen untersucht.

Basierend auf der Arbeit von Bieber et al. 2022 wird das Problem des Hourglassing
analysiert. Das Phänomen tritt bei kritischen Verformungszuständen auf, die auch
potentiell anfällig für physikalische Instabilitäten sind. Die zugrundeliegenden Ur-
sachen des Hourglassing lassen sich durch geometrie- und materialinduzierte physikalis-
che Strukturinstabilitäten erklären. Aus diesem Grund und in Abgrenzung zur ein-
schlägigen Literatur zu diesem Thema werden diese numerischen Artefakte in geometrisches
und materielles Hourglassing klassifiziert. Auf der Grundlage dieser Untersuchung wird
eine Lösung für geometrischen Hourglassing vorgestellt. Ein besonderes Merkmal dieser
Methode ist die Einfachheit bei der Implementierung. Die Schwierigkeiten bei der An-
wendung einer ähnlichen Strategie auf materielles Hourglassing werden diskutiert. Ähn-
liche zu dem Problem des nichtlinearen Lockings liegt ein besonderer Fokus auf das
Entwickeln zuverlässiger und effizienter Benchmarks. Aus diesem Grund wird eine einge-
hende analytische Lösung eines Verzweigungsproblems mit großer Dehnung vorgestellt.

Der Erfolg einer effizienten Berechnung von Instabilitätspunkten ist stark problemab-
hängig. Die einschlägigen Methoden aus der Literatur und ihre Schwierigkeiten bei der
Wahl eines geeigneten Lastschrittverfahrens werden diskutiert. Es wird eine method-
ische Idee vorgeschlagen, die diese Schwierigkeiten durch eine adaptive Laststeuerung
abmindert. Für eine Reihe von Benchmarks wird die Effizienz und Praktikabilität dieses
Ansatzes demonstriert.
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Abstract

Abstract

This thesis deals with issues that arise exclusively in the finite element analysis of non-
linear problems in solid mechanics. A particular focus is on locking and artificial insta-
bilities (“Hourglassing”), both of which are inherently related to geometric and material
nonlinearities. In connection therewith, the algorithmic treatment for efficient compu-
tation of instability points is discussed. The issues are investigated within the popular
class of enhanced assumed strain (EAS) formulations.

A volumetric locking phenomenon that is induced by geometrically nonlinear bending
deformations has been recently discovered in Willmann et al. 2022. The authors an-
alyzed this effect in the context of 3d shell finite elements. Based on that work, the
issue of “nonlinear locking” is further elaborated herein. The analysis is extended to
popular EAS solid elements, including guidelines on possible remedies. The relevance
for practical applications is highlighted. In addition, nonlinear geometric locking effects,
especially important in the analysis of elements with large and small aspect ratios, are
investigated. A particular challenge is the choice of suitable benchmarks, since these
effects only occur under certain conditions. For this reason, the numerical and analytical
solutions of large bending of rubber blocks are studied.

Based largely on the work of Bieber et al. 2022, the issue of artificial instabilities (hour-
glassing) is analyzed. It occurs under critical deformation states, which are also poten-
tially prone to physical instabilities. The underlying causes of hourglassing can likewise
be explained by geometry-induced and material-induced trigger mechanism of struc-
tural instabilities. For that reason, and in delineation from the pertinent literature
on this topic, these pathologies are classified as geometric hourglassing and material
hourglassing. Based on this analysis, an obvious remedy for the geometric hourglassing
phenomenon is presented. A special feature of this method is the simplicity regarding
the implementation of existing methods. The difficulties in applying a similar strategy
to material hourglassing are discussed. As for nonlinear locking, a particularly challeng-
ing aspect is reliable and efficient benchmarking. Difficulties include the large parameter
dependency as well as the absence of analytical reference solutions. For this reason, an
analytical in-depth analysis of a large strain bifurcation problem is presented, tailored
for benchmarking against hourglassing issues.

The success of an efficient computation of instability points is strongly problem-dependent.
The pertinent methods from the literature and their difficulties in choosing a suitable
load step are discussed. Proposed is a methodological idea that potentially alleviates
these difficulties through an adaptive load-stepping approach. For a series of bench-
marks, the efficiency and practicability is demonstrated and future work is discussed.
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Chapter 1

Introduction

1.1 The Big Picture

Nonlinear deformation processes of solid bodies are omnipresent in everyday life. The
term “nonlinear” refers to the underlying mathematical model that is used to charac-
terize the relation of the body’s structural response to a loading scenario. Nonlinearity
can originate from the kinematic description of the deformation process itself and from
the material model. This is usually referred to as geometric nonlinearity and material
nonlinearity, respectively. Figure 1.1 sketches examples of nonlinear deformations such
as large bending of metal sheets, large stretching of resistance rubber bands or snap-
ping mechanism of a carnivorous plant. Moreover, nonlinearities are closely related to
geometry-induced and material-induced structural instability phenomena. These are
often characterized by large abrupt deformations upon small load changes and cause, in
the worst case, catastrophic structural failure. A typical example from everyday life is
the structural instability (buckling) of an axially loaded ruler, see Figure 1.1 (f). The
engineer’s task is to understand these processes, e.g., predict stresses, forces or defor-
mations of structures, and analyze their load-carrying behavior. For many problems,
it is nowadays well established to solve the underlying boundary value problem with
the finite element method. It is a simulation tool that is tailored for solid mechanics
problems and main subject of the present thesis.

For half a century, enormous research efforts were devoted to the development of re-
liable finite element formulations. Nowadays, its theoretical and practical maturity is
indisputable and, also in the nonlinear regime, established formulations perform well for
a wide range of (nonlinear) problem types. Particularly prominent examples for solid
finite elements are the displacement-pressure formulation of Simo et al. 1985, reduced
integrated elements with hourglass stabilization, see among others, Kosloff and Frazier
1978, or the incompatible mode elements by Wilson et al. 1973. In view of that, it
is crucial to discuss the need for further research on this topic. The step from linear

1
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(a)

(b) (e) (f)

(c) (d)

Figure 1.1: Examples of nonlinear deformation processes: (a,b) nonlinear bending of a
15 mm iron sheet (large strain) and a 1.5 mm copper gutter (moderately small
strain); (c) stretching of a latex resistance band; (d) straining of the athlete’s
soft biological tissues, i.e., muscles and tendons, during an intense workout
(with permission from Calisthanik 2022); (e) large deformation snapping
mechanism of a carnivorous plant (with permission from A. Westermeier, see
also Sachse et al. 2020); (f) post-buckling deformation of a ruler.

to nonlinear finite elements introduces additional problems. One aspect is, that under
certain conditions, established finite element formulations do not perform satisfactorily.
This concerns, on the one hand, accuracy of the simulation results and, on the other
hand, robustness of the solution processes. Both are specified below. Another aspect
is the difficulty in doing a reliable analysis, crucial for assessing the aforementioned
issues. Many contributions, in particular the mathematically oriented ones, deal with
linear problems. The analysis of nonlinear finite element formulations, however, receives
less attention. Here, it becomes more difficult to make general statements about the
element’s properties. One reason for that is the lack of mathematical theory, such as
the celebrated inf-sup condition in the linear regime (Brezzi 1974). Therefore, nonlinear
benchmark problems are gaining in importance. To some extent, they can be used to
evaluate the element performance. However, compared to linear problems, nonlinear
problems are inherently more complex: solutions may be non-unique, the assessment of
solutions requires physical insights, analytical solutions are rarely available, etc.

2



1.1 The Big Picture

This work deals with unresolved issues that arise exclusively in nonlinear finite element
simulations. It follows a list of properties that, at best, a nonlinear finite element should
satisfy:

(i) simple to implement,

(ii) computationally inexpensive,

(iii) based on a strain-driven format,

(iv) satisfy the patch test and objectivity requirement,

(v) accurate for coarse meshes and in particular locking-free,

(vi) insensitive to mesh distortion,

(vii) free from artificial instabilities (hourglassing),

(viii) algorithmic robustness.

An all-in-one formulation1 that fulfills properties (i)-(viii) is naturally hard to achieve.
Of course, all properties mutually influence each other and, furthermore, specific prac-
tical requirements may differently weight the importance of each of the properties.

To a certain degree, it remains a subjective perception whether an element is simple
to implement or not. In the authors opinion, Properties (i)-(iii) are of crucial impor-
tance with respect to the acceptance (of newly designed element formulations) within
a broader community. However, regardless of whether Properties (i)-(viii) are met, ex-
isting nonlinear advanced finite elements have barely entered commercial finite element
codes. In this sense, the driving motivation of this work is to “redesign” established
popular finite elements, instead of developing completely new formulations. The popu-
lar class of Enhanced Assumed Strain (EAS) formulations introduced by Simo and Rifai
1990 will play a central role in this context.

Properties (iv)-(vi) are a prerequisite for proper convergence of finite elements, see for
instance the textbooks of Hughes 2012 and Zienkiewicz et al. 2014 for the linear and
nonlinear case, respectively. Property (v) describes an element, that performs well
for nearly incompressible materials as well as slender elements (i.e. small and large
aspect ratios). If not, the element performs too stiff and “locks”. These properties
were exhaustively studied in the context of linear finite elements. However, locking
in the nonlinear regime appears to be poorly understood as shown by recent work
of Willmann et al. 2022 in the context of shell analysis. Figure 1.2 (a) shows a sketch
of the pathological stiffening effect due to nonlinear locking. A beam-like structure is
subjected to a follower load such that it should approximately coils up to a circle. The

1I.e., a Swiss Army knife, also aptly described by the german phrase “eierlegende Wollmilchsau”.

3
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F̂= M̂
T

Q1 (2 × 2)

Q1/E4 (3 × 3)

Q1/E4 (2 × 3)

Q1/E4 (2 × 2)

t

(a)

E1

E2

T
L

Q1/H4 (2 × 2)

(b)

Figure 1.2: Illustration of numerical pathologies of EAS formulations: (a) coiling of a
plane strain beam-like structure with L/T = 20 using a nearly incompress-
ible Saint-Venant Kirchhoff material; Brackets indicate the number of Gauss
quadrature points used; (b) plane strain compression of a severely constrained
Neo-Hookean block under self-weigh B̂ = −γµE2; depict is the deformed
mesh at γ = 1.88 (immediately before reaching the critical point); the prob-
lem is adopted from Auricchio et al. 2005.

results obtained with EAS element Q1/E4, which is known to be free of locking in the
linear regime, exhibit locking for this nonlinear simulation. The solution depends on the
quadrature rules used as well as Poisson’s ratio ν and thickness T (not shown). The
former is related to volumetric locking and the latter to geometric locking, including
shear locking and trapezoidal locking as special cases.

Property (vii) is a direct result of remedies against locking. Locking-free elements are
softer and more flexible an thus, in turn, can suffer from artificial instabilities (the term
hourglassing is used synonymously). This usually goes along with deformation states
that are also potentially prone to physical instabilities. As shown in Korelc et al. 2010,
Auricchio et al. 2013 and Pfefferkorn and Betsch 2020, the development of elements that
are physically stable without exhibiting artificial instabilities is still not fully satisfying.
A particular issue is the reverse behavior: elements that are stable for compression
problems are prone to show hourglassing under critical tensile deformation states, and
vice versa. The former case is related to geometric instabilities and the latter one
to material-induced structural instabilities. Figure 1.2 (b) depicts simulation results
with incompatible mode element Q1/H4 of a hyperelastic block under self-weight B̂.
Shortly before the structure becomes unstable at γ = 1.88, the deformed mesh exhibits
the typical hourglass pattern. This is a numerical pathology and does not reflect the
physically correct solution to the problem.
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1.2 Objectives and Outline of this Work

Property (viii) describes in a broader sense all algorithmic related difficulties encountered
within the nonlinear solution process. Algorithms should be robust with respect to
varying input parameters. Two issues appeared to be particularly pronounced for the
problems in this thesis: on one hand, the robustness of the Newton-Raphson process
with respect to critical parameters (e.g., Poisson’s ratio or element slenderness). The
problem depends on the considered element formulations and is discussed in Pfefferkorn
et al. 2021. On the other hand, with established methods (Wriggers 2008), calculating
stability points efficiently can be difficult. The critical point should be approached
cautiously to avoid numerical problems. This requires problem-specific, user-defined
load step sizes and mitigates an efficient computation.

In a nutshell, those properties are (not) related to the content of this thesis as follows:
Property (ii) and (vi) are not examined within the scope of this work. Reference is
made to the textbook of Wriggers 2008 and Zienkiewicz et al. 2014 as well as the recent
contribution of Pfefferkorn and Betsch 2021. The main goals of the present work are
related to Property (v), (vii) and (viii).

1.2 Objectives and Outline of this Work

Figure 1.3 illustrates an overview of the thesis’ content. The topics are mainly considered
under the framework of two-dimensional finite elasticity. The majority of numerical
issues are discussed in the context of EAS finite elements.

Chapter 2 and 3 provide the theoretical foundation of this work. Its content is the
basic prerequisite for a deeper understanding of the following chapters.

Chapter 4 provides purely analytical solutions of two nonlinear problems, which serve
as a benchmark throughout this thesis. The main features of a reliable benchmark is the
isolation of individual phenomena and their clear reproducibility for other researchers.
Both are crucial, since a benchmark’s main purpose is to promote the comparability of
numerical methods. Of course, developing simple benchmarks, e.g., with respect to the
material or geometry, increases acceptance within the research community. In addition
to that, providing numerical or, in the best case, analytical reference solutions is crucial.
The development of benchmarks that represent a compromise between those aspects
and the increasing complexity of nonlinear problems is a primary goal in this work.
The theoretical aspects of two problems are described. In Figure 1.3 it is classified as a
“Review” topic as it does, to a large extent, not contain novel results by the author but
rather a summary of an intense literature study. Nevertheless, it is not considered within
the “preliminaries” since the corresponding literature appears to be barely considered
in the computational-oriented research community.
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Chapter 1 Introduction

Figure 1.3: Outline of this work.

Chapter 5 presents a study on locking effects that are induced by geometric nonlinear-
ity, including the development of remedies against it. Recently, Willmann et al. 2022
presented the first investigations of nonlinear volumetric locking.2 It has been shown that
an artificial stiffening occurs under the joint interaction of nearly incompressible mate-
rials, large bending deformations and higher-order integration. For a total Lagrangian
EAS formulation, a higher-order strain enhancement was introduced to overcome the
undesired stiffening effect. The two main goals are the extension of these investigations
to other nonlinear solid finite element formulations and to nonlinear geometric locking
effects. Special attention is paid to the development of a suitable benchmark.

Chapter 6 provides a further discussion on the investigations of physical and artificial
stability by Bieber et al. 2022. In delineation from this publication, the present studies
focus on a deeper understanding of the hourglassing phenomena. The goal is to provide
physical insights into the geometric and material instability mechanisms by means of
the Ritz method. In addition, further numerical examples are given that illustrate the
interplay between stabilizing and destabilizing stiffness contributions. The advantages
and limitations of stabilization concepts are discussed.
2In Willmann et al. 2022 the authors use the denomination “nonlinear Poisson stiffening” instead of
(volumetric) nonlinear locking, since the mesh is not refined in shell thickness-direction.
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1.2 Objectives and Outline of this Work

Chapter 7 focuses on two algorithmic issues. The problems that arise in the com-
putation of stability points are discussed. Ideas for adaptive load control methods are
presented and numerically tested. A discussion on open issues and possible future devel-
opments closes this section. Followed by that, based on Pfefferkorn et al. 2021, a brief
recap on the robustness issues within Newton-Raphson schemes is provided. The goal
is to show that a good performance can also be obtained for the newly proposed EAS
elements from Chapter 5 and 6.

Chapter 8 provides a summary and concluding remarks of the thesis’ results, including
open issues and possible future research directions.
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Chapter 2

Fundamentals of Finite Elasticity

This chapter provides the theoretical concepts that are required to describe the behavior
of elastic bodies undergoing large deformations. As is common in many engineering
approaches, the real structure is modeled as a continuum whose constitutive equations
are based on a purely phenomenological description. The problems covered in this work
are restricted to:

• quasi-static deformations,

• isotropic homogeneous elastic materials,

• isothermal processes.

In most situations, plane strain deformations with unit thickness in the third dimension
are considered.

The content of this chapter is well-established and is covered in numerous textbooks.
In particular, the following books have proven to be helpful and serve as the primary
references of this chapter. From a purely mechanical perspective, the textbooks of
Holzapfel 2010, Ogden 1997 and Bigoni 2012 provide clear insight. Moreover, the latter
complements the theory with illustrative experiments from real-world problems. An
excellent review focusing on hyperelastic material can be found in Beatty 1987. A more
engineering-oriented approach to structural and continuum mechanics, including many
descriptive examples, is given in Hjelmstad 2005. Ciarlet 1986 provides a mathematical
perspective that is accessible to engineers. A delightful presentation of the geometrical
description of finite deformations is given in the dissertation of Miehe 1988.
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Chapter 2 Fundamentals of Finite Elasticity

2.1 Kinematics

2.1.1 Deformation of Elastic Bodies

The configurations Bγ ⊂ E3 of an elastic body are treated mathematically as an accumu-
lation of points in Euclidean space. Here, γ ∈ [0, γ̂] refers to a load factor (pseudo-time)
and defines a one-parameter family of intermediate configurations. The stress-free ini-
tial configuration B0 and the deformed current configuration B ≡ Bγ̂ are of particular
interest. The deformation is described by the function φ : B0 → B, a bijective twice-
continuously differentiable map that relates each point in the initial configuration to the
deformed one. The position of these points is represented by

x = φ(X) and X = φ−1(x), (2.1)

where X establishes the material (Lagrangian) and x the spatial (Eulerian) description.1
In line with standard notation from literature, material quantities (e.g., tensors, indices
or derivative operators) are equipped with upper case letters and spatial quantities with
lower ones. Position vectors (2.1) may also be expressed as

X = XAEA and x = xaea, (2.2)

where EA and ea denote the material and spatial reference system.

The essential quantities to describe a finite deformation of a body are the (material)
deformation gradient

F = Gradx or FaB = ∂xa

∂XB
, (2.3)

its determinant

J = detF (2.4)

and cofactor

cofF = JF−T. (2.5)

To prevent self-penetration of matter and ensure the invertibility of φ, J must be greater
than zero. A deformation where J = 1 is isochoric and, if enforced by the constitutive
law, the material is said to be incompressible. The deformation gradient establishes the

1A descriptive geometrical illustration is given for a finite bending deformation in Section 4.2, Figure 4.9
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2.1 Kinematics

crucial transformations of infinitesimal material line elements dX, volume elements dV
and oriented area elements dA = dAN in the current configuration (or vice versa)

dx = FdX, (2.6a)
dv = JdV , (2.6b)
da = cofF dA. (2.6c)

Here, the last map is known as Nanson’s formula. In general, φ(X) is nonlinear in X,
in which case the corresponding deformation is said to be inhomogeneous. In case F is
constant in all positions X, and consequently in all transformations (2.6) as well, the
deformation is called homogeneous.

In some cases, it appears practical to describe certain field quantities with spatial coor-
dinates. From Equation (2.3) follows the spatial deformation gradient as

F−1 = gradx or F−1
Ba = ∂XB

∂xa
. (2.7)

Since x depends on the deformation process, the spatial derivatives of other quantities
are usually not directly available. Fortunately, the chain rule provides the following
relations for smooth scalar, vector and second-order tensor fields

grad a = F−T Grad a, (2.8a)
grad a = Grad a F−1, (2.8b)
divA = GradA : F−T. (2.8c)

Alternatively, the deformation can be described by means of the displacement vector

u = X − x. (2.9)

This gives rise to the material and spatial displacement gradient

H = Gradu = F − I and h = gradu = I − F−1, (2.10)

respectively, with the identity tensor I. Furthermore, two multiplicative splits of the
deformation gradient are introduced: Firstly, the polar decompositions

F = RU = vR or FaB = RaC UCB = vabRbB, (2.11)

with the orthogonal rotation tensor R and the positive definite symmetric tensors U

and v, known as right and left stretch tensor, respectively. The rotation tensor provides
a rotation of infinitesimal material line elements and the stretch tensors a pure stretch

11



Chapter 2 Fundamentals of Finite Elasticity

in the respective configuration. The second split decomposes F into a purely deviatoric
part Fd and a purely volumetric part Fv, i.e

F = Fv Fd, (2.12)

where

Fv = J 1
3 I and Fd = J − 1

3F. (2.13)

In case detFd = 1 the deviatoric part represents a purely isochoric deformation.

Furthermore, the principal stretches λi ≡ λ(i) (no tensorial index notation) are relevant
quantities within this work. Based on the polar decomposition (2.11) they appear within
the spectral representation of the right and left stretch tensor

U =
3∑

i=1
λi N

(i) ⊗ N(i) and v =
3∑

i=1
λi n

(i) ⊗ n(i), (2.14)

with orthonormal and normalized eigenvectors, also referred to as Lagrangian and Eule-
rian principle axes, N(i) and n(i). This constitutes the spectral form of the deformation
gradient and rotation tensor as

F =
3∑

i=1
λi n

(i) ⊗ N(i) and R =
3∑

i=1
n(i) ⊗ N(i). (2.15)

2.1.2 Strain Measures

So far, the mapping of material points through φ and the transformation of material
elements via F have been introduced. To compute the internal work, it is relevant to
measure the relative length change of material fibers in the course of a deformation. Be-
sides the stretch tensors in (2.11) numerous other definitions are possible. The important
ones will be presented.

The right and left Cauchy-Green deformation tensor

C = FTF = U2 and b = FFT = v2 (2.16)

provide a measure of squared length in the material and spatial setting. The Green-
Lagrange and Almansi strain tensor read

E = 1
2 (C − 1) and e = 1

2
(
I − b−1

)
. (2.17)
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2.1 Kinematics

Here, the Green-Lagrange strain may also be expressed via the displacement gradient
as

E = 1
2
(
HT + H

)
︸ ︷︷ ︸

ε

+ 1
2
(
HTH

)
︸ ︷︷ ︸

Enln

, (2.18)

providing a split into symmetric parts which are linear and nonlinear in H. Due to
round-off errors it is advantageous to use (2.18) instead of (2.17)1 for the numerical
implementation.

2.1.3 Incremental Kinematic Relations

The concept of variation and linearization of functions is crucial in the numerical treat-
ment of nonlinear problems. It is important for variational calculus but also in numerics
for the construction of incremental-iterative solution schemes, which are typically em-
ployed in implicit solution processes. Furthermore, the linearization of weak form equi-
librium equations can provide useful mechanical insights, like the concept of stiffness.

The increment ∆ua(ū, ∆u) of a differentiable scalar function a(ū) can be interpreted as
the linear change – or derivative – of the respective function at a fix state u = ū, while
moving in the direction of ∆u.

This can be formalized via the directional derivative (Gateaux derivative) as

∆ua :=
[

d
dε

a(ū + ε∆u)
]∣∣∣∣∣

ε=0
= ∂a

∂u

∣∣∣∣∣
u=ū

· ∆u. (2.19)

Here, a may also be replaced by vector-valued functions a or second-order tensor func-
tions A. Technically, a variation is equivalent to Equation (2.19) and denoted with
symbol δ, e.g., δuα.

For the sake of convenience, the fixed quantities are not further assigned, i.e. ū is
replaced by u. The subsequent material and spatial forms of the incremental kinematic
relations are given as

∆uF = ∆uH = Grad ∆u,

∆uE = sym(FT Grad ∆u),
∆uC = 2 sym(FT Grad ∆u),
∆uJ = JF−T : ∆uF = J div ∆u

= JF−1
Ba ∆uFaB = J∆ua,a,

∆uC
−1 = −F−1

(
grad ∆u + (grad ∆u)T

)
F−T.

(2.20)
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Chapter 2 Fundamentals of Finite Elasticity

and

∆ue = sym(grad ∆u),
∆uh = grad ∆u.

(2.21)

2.2 Stress, Forces and Equilibrium

Considered is the deformed configuration B of a body that is subjected to a body load
b̂ in its interior and to surface tractions t̂ on the Neumann boundary Γσ. Following the
stress principle of Euler and Cauchy, the bodies’ response to b̂ is characterized by a force
vector t that carries the loading through the body. It acts between each neighboring
isolated subdomain Bsub of B and provides the description in the form of a free body
diagram that satisfies the linear force and angular momentum balance∫

Γsub

t da +
∫

Bsub

b̂ dv = 0 and
∫

Γsub

xo × t da +
∫

Bsub

xo × b̂ dv = 0, (2.22)

respectively, with arbitrary origin xo. For a descriptive geometrical illustration of a free
body diagram, it is referred to the finite bending deformation in Section 4.2, Figure 4.11.
The Cauchy theorem states the existence of a tensor σ(x) such that t(x,n) = σn, where
n(x) is the unit normal vector on Γsub. Cauchy’s three assertions are: (i) t depends only
linearly on n, (ii) σ = σT and thus fulfills (2.22)2 and (iii) via the divergence theorem
the global force balance (2.22)1 yields the local form

div σ + b̂ = 0 in B
σn − t̂ = 0 on Γσ

}
. (2.23)

This provides the so-called Cauchy stress tensor σ. The fully spatial nature is often not
practical and prompts a reformulation of the force balance momentum in the reference
configuration. The area transformation (2.6c) yields σ da = JσF−TdA = PdA and
provides

DivP + B̂ = 0 in B0

PN − T̂ = 0 on Γσ
0

}
, (2.24)

where N(X) denotes the unit normal vector in the reference configuration. This estab-
lishes the non-symmetric first Piola-Kirchhoff stress tensor P that provides the pseudo
or nominal force vector T = PN, parallel to t but measuring force related to the refer-
ence area. Angular momentum balance (2.22)2 is fulfilled via symmetry in PFT = FPT.
Further useful stress measures are the symmetric second Piola-Kirchhoff stress S and
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2.3 Constitutive Equations

σ τ P S

σ σab J −1τ J −1PFT J −1FSFT

τ Jσ τab PFT FSFT

P JσF−T τF−T PaB FS

S JF−1σF−T F−1τF−T F−1P SAB

Table 2.1: Various stress tensors and their relations.

the symmetric Kirchhoff stress τ . An overview of transformations of these stress tensors
is provided in Table 2.1.

2.3 Constitutive Equations

2.3.1 Some Preliminary Aspects

The relation between kinematic quantities and stresses (constitutive equations) is deter-
mined by the material behavior. The phenomenological abstraction of the real material’s
response involves the fitting of a constitutive model, e.g., the fitting of a response func-
tion to experimental data. This provides the constitutive equation (material law) and
completes the set of required equations to solve the BVP.

For large strain problems, the field of application of a constitutive law should naturally
be confined by mathematical and physical restrictions. These are formulated in the
form of inequalities, which constrain the range of possible deformations. Mathematical
restrictions concern the uniqueness and existence of solutions to the governing BVP
and are discussed further in Section 2.3.4. Physical restrictions, on the other hand, are
related to the fact that the experiments to which the equations of a constitutive model
are fitted are based on a selected set of F.2 This naturally raises the question of physical
and numerical reliability when simulations are done for arbitrary deformations F, see
the discussion in Section 3.1 of Ciarlet 1986. The simulation may show results that
would not be covered by experiments.

The focus of this work lies on mathematical and numerical aspects of large strain prob-
lems and the selected “model problem” materials are chosen to be as simple as possible
but still cover ubiquitous response patterns, such as strain softening or strain stiffening.
Attention is paid to the mathematical restrictions, whereas physical meaningfulness with
respect to the specific material model is not a prior focus.

2Typically this experimental data emanates from simple deformation states, in particular homogeneous
stretch and shear states.
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Chapter 2 Fundamentals of Finite Elasticity

2.3.2 Hyperelastic Materials

A material is called hyperelastic (or Green elastic) if there exists a stored energy function
W (F) that defines energy per unit volume in such a way that

P = ∂W (F)
∂F

or PaB = ∂W
∂FaB

. (2.25)

In mathematical terms this establishes a one to one stress-strain correspondence. Re-
lation (2.25) can be derived by the entropy-free (equal sign) case of the second law of
thermodynamics(

P − ∂W
∂F

)
: d

dtF = 0, (2.26)

also called Coleman-Noll procedure. For more details it is referred to Section 6.1 of
Holzapfel 2010.

Requirements. Some physically motivated requirements have to be fulfilled by the
strain energy function. In the large strain regime, this concerns the growth condition,
which implies infinite energy for extreme deformations, i.e.

W (F) → ∞ for
{

J → ∞
J → 0+ (2.27)

This plays a particularly important role in the context of existence theorems in finite
elasticity; see Ciarlet 1986 for further details. Furthermore, it is convenient to require
W (I) = 0, i.e. no energy and zero stress in the undeformed state, as well as W (F) > 0.

Another important aspect is material objectivity with respect to the coordinate system
(frame invariance) and superimposed rigid body motions. Both should not affect the
constitutive response:

W(QF) = W (F) ∀ Q ∈ SO(3). (2.28)

From this follows, with a slight abuse of notation,

W (F) = W (U) = W (C) (2.29)

and consequently

S = ∂W (E)
∂E

= 2∂W (C)
∂C

. (2.30)
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2.3 Constitutive Equations

Furthermore the assumption of an isotropic material response yields

W (F) = W
(
FQT

)
∀ Q ∈ SO(3). (2.31)

In this case, the stored energy can also be expressed in terms of the principal stretches
as

W (F) = W (λα) α = 1,2,3, (2.32)

from which the principal stresses can be deduced as

S(α) = 1
λα

∂W
∂λα

, P(α) = ∂W
∂λα

, σ(α) = J −1λα
∂W
∂λα

. (2.33)

Here, similar to the principal stretches, the parentheses will be skipped in the sequel,
i.e. Si ≡ S(i) (no tensorial index notation).

Incompressible materials. The isochoric constraint is implemented in the stored en-
ergy as

W (F,p) = Wd (F) − p(J − 1), (2.34)

where Wd is a deviatoric stored energy defined for J = 1 and p a Lagrange multiplier
that enforces the isochoric constraint J = 1. Exemplified for the Cauchy stress and
using ∂J/∂F = J −1F−T it follows directly that

σ = −pI + ∂W (F)
∂F

FT, (2.35)

or, in terms of the principal stretches,

σi = −p + J −1λi
∂W
∂λi

. (2.36)

2.3.3 Incremental Constitutive Relations

In analogy to the incremental kinematic quantities introduced in Section 2.1.3, incre-
mental stress-strain relations are obtained in a similar manner.
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Chapter 2 Fundamentals of Finite Elasticity

Material constitutive tensor. The chain rule provides the incremental second Piola-
Kirchhoff stress relation

∆uS = ∂S

∂E

∂E

∂u
· ∆u = ∂S

∂E
: ∆uE (2.37)

and establishes, using (2.30), the material constitutive tensor

C = ∂2W
∂E∂E

= 4 ∂2W
∂C∂C

or CABCD = ∂2W
∂EAB∂ECD

. (2.38)

Symmetry of SAB and ECD yields the minor symmetry CABCD = CBACD = CABDC and
the existence of an energy functional W provides CABCD = CCDAB. Thus, the fourth
order tensor C possesses major symmetry (21 coefficients remain).

With the spectral decomposition (2.15) and the constitutive relation (2.33) the second
Piola-Kirchhoff stress can be expressed as

S =
3∑

i=1
Si N

(i) ⊗ N(i). (2.39)

This furnishes the spectral representation of the material constitutive tensor

C =
3∑

i,j=1

1
λj

∂W
∂λj

N(i) ⊗ N(i) ⊗ N(j) ⊗ N(j)

+
3∑

i,j=1
i ̸=j

Sj − Si

λ2
j − λ2

i
N(i) ⊗ N(j) ⊗

(
N(i) ⊗ N(j) + N(j) ⊗ N(i)

) (2.40)

in terms of the eigenvalues λ2
i and eigenvectors N(i) of C. Here the special case λi = λj

requires the second factor to be replaced by the limit value

lim
λj→λi

Sj − Si

λ2
j − λ2

i
= ∂Sj

∂λj
− ∂Si

∂λi
. (2.41)

For further details it is referred to Example 6.8 in Holzapfel 2010.

Spatial and two-point constitutive tensors. Based on C, the spatial constitutive
tensor c is obtained by a push-forward operation

cabcd = J −1CABCDFaAFbBFcC FdD (2.42)
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providing the incremental stress relation

∆uσ = c : grad ∆u. (2.43)

The two-point constitutive tensor A is obtained by

A = ∂2W
∂F∂F

or AaBcD = ∂2W
∂FaB∂FcD

(2.44)

and provides the incremental stress relation

∆uP = A : Grad ∆u. (2.45)

Furthermore, the tensor A can be split into a material contribution Am and geometric
contribution Ag, with

Am
aBcD = CABCDFaAFcC and Ag

aBcD = δacSBD. (2.46)

2.3.4 Some Aspects on Local Uniqueness and Stability of Solutions

Large strain structural analysis can result in (extreme) deformation states where the
global and local uniqueness of the solution is lost.

Global uniqueness, closely related to structural stability, regards the structure as a whole
and is determined by the structural topology, material model and boundary conditions.
It is extensively discussed in Section 4.1.

The local aspects of stability, on the other hand, focus on the material behavior at the
continuum point. Local instability often indicates the onset of structural failure.3 It is
often discussed in the context of plasticity; see e.g., the survey article of Petryk 2000.
However, as exemplified later, this topic can also become relevant in the analysis of
elastic materials. Within this work, the particularly important cases are:

• material instability (loss of ellipticity of the underlying equilibrium equations),

• loss of positive definiteness of C,

• loss of positive definiteness of A.

These cases are closely connected to the physical and numerical (artificial) instability
problems in the subsequent sections.

3However, not always. A typical counterexample is the formation of plastic hinges in statically inde-
terminate truss systems or in an ideally elastic-plastic beam-like structure subjected to pure bending;
see e.g., Chen and Baker 2003.
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Loss of ellipticity and material instability. Strong ellipticity of the underlying system
is defined by the Legendre-Hadamard condition

(a ⊗ B) : A : (a ⊗ B) ≥ 0 ∀ a,B (2.47)

with nonzero vectors B and a connected to the rank-one tensor F̄ = (a⊗B). From the
perspective of elastodynamics, this conditions admits the well-known interpretation via
the wave propagation problem(

Q − ρ0c2I
)
a = 0 with Qac = AaBcDBBBD. (2.48)

Here Q denotes the acoustic tensor, ρ0 the density and c the wave speed in direction
B. The material is stable when it allows for every direction B a propagation with real
wave speed, i.e.

ρ0c2 ≥ 0. (2.49)

For a detailed discussion it is referred to Section 6.2.7 in Ogden 1997.

As shown in Knowles and Sternberg 1975, loss of ellipticity indicates the onset of weak
discontinuities, i.e. deformation gradients that are discontinuous in time but still obey
a continuous displacement field. A violation of Equation (2.47) is usually associated
with the term (local) material instability or material failure and indicates the onset of
possible strain localizations, e.g., the formation of shear bands.

Loss of positive definiteness of constitutive operators. Positive definiteness of the
two-point constitutive tensor A is a necessary condition for ellipticity. It also excludes
any form of global material-induced instabilities; see Bigoni 2012. In contrast to that,
the non-positive definiteness of the material constitutive tensor C does not admit any
physical interpretation. For the uniaxial stress case, it can be associated with strain soft-
ening of the first and second Piola-Kirchhoff stress tensors, as shown in Figure 2.1 (b).

The constitutive operators in the homogeneous plane strain case are considered. The
required coefficients of the tangents C and A (or Ĉ and Â in Voigt notation) are defined
via the incremental stress-strain relations


∆P11

∆P22

∆P12

∆P21

 = Â∆F =


An

11 An
12 0 0

An
12 An

22 0 0
0 0 As

11 As
12

0 0 As
12 As

22



∆F11

∆F22

∆F12

∆F21

 (2.50)
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(E , ν) (Λ, µ)
Young’s modulus E − µ(3Λ+2µ)

Λ+µ

Poisson’s ratio ν − Λ
2(Λ+µ)

1st Lamé constant Λ µ(E−2µ)
3µ−E −

2nd Lamé constant µ E
2(1+ν) −

(shear modulus G)
Longitudinal modulus M E(1−ν)

(1+ν)(1−2ν) Λ + 2µ

Bulk modulus K E
3(1−ν) Λ + 2µ

3

Table 2.2: Pairs of linear elasticity constants and their relations.

and 
∆S11

∆S22

∆S12

 = Ĉ∆E =


C n

11 C n
12 0

C n
12 C n

22 0
0 0 C s

12




∆E11

∆E22

2∆E12

 . (2.51)

Required in the sequel are the sub-matrices An, As and Cn, defined by the respective
2 × 2 blocks as

An =
[
An

11 An
12

An
12 An

22

]
, As =

[
As

11 As
12

As
12 As

22

]
, Cn =

[
C n

11 C n
12

C n
12 C n

22

]
. (2.52)

2.3.5 Examples of Strain Energy Functions

The strain energy functions that are required in this thesis are collected in the following.
All hyperelastic materials under consideration can be expressed in terms of two linear
elasticity constants. In order to simplify expressions, it will become advantageous to
switch between constants. Table 2.2 shows the relationships between the six elasticity
constants.

Saint-Venant Kirchhoff (SVK). The SVK model is the simplest hyperelastic material.
The stored energy function is typically expressed with the Lamé constants as

W (E) = Λ
2 (trE)2 + µ trE2, (2.53)

providing the second Piola-Kirchhoff stress
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Chapter 2 Fundamentals of Finite Elasticity

S = ∂W
∂E

= Λ trE I + 2µE. (2.54)

The SVK material meets the objectivity requirement (2.28) and isotropy condition (2.31)
and is a suitable choice for problems involving large deformation but only small strain.
An appealing property is that the material’s constitutive tensor C is equivalent to the
linear elastic one and thus independent of the deformation. Exemplified for the plane
strain case, tensor C in Voigt notation reads

Ĉ =


Λ + 2µ Λ 0

Λ Λ + 2µ 0
0 0 µ

 = E
(1 + ν)(1 − 2ν)


1 − ν ν 0

ν 1 − ν 0
0 0 2(1 + ν)

 . (2.55)

According to Ciarlet 1986 (p. 184), Equation (2.53) can also be expressed in terms of
the right Cauchy-Green tensor as

W (C) = −3K
4 trC + M

8 trC2 + λ

4 tr cofC + 9K
8 . (2.56)

Due to the minus sign in the first expression, it can be shown that W is not polyconvex.
It also violates the constitutive growth condition (2.27)1, for example, uniform volumet-
ric compression λi → 0+ yields trC → 0 and produces stress that tends to zero. It
is also worth noting that the leading terms of all hyperelastic strain energy functions
coincide with (2.53) near to the undeformed state F → I.

Neo-Hooke (NH). The NH model is physically motivated by networks of chain molecules
and developed in view of experiments on vulcanized rubber sheets by Treloar 1944. The
suffix “Neo” emphasizes the generalization of Hooke’s law and can be traced back to
the seminal work of Rivlin 1948. For the incompressible case, its strain energy function
constitutes the simple form

Wd(C) = µ

2 (trC − 3) = µ

2
(
λ2

1 + λ2
2 + λ2

3 − 3
)

. (2.57)

For two-dimensional axial extension, the model is in good agreement with experimental
results, but less suitable for modeling shear and three-dimensional states of strain, as
already noted in the early work of Treloar 1944.4

4For these cases the Mooney-Rivlin model is more suited, since the model includes also a dependence
on the second invariant 1

2
(
tr2 C − trC2).
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2.3 Constitutive Equations

For the compressible case an extension of the form

W (C) = µ

2 (trC − 3) − µ ln J + Λ
2 ln2 J︸ ︷︷ ︸

U(J)

, (2.58)

is used. Here, the term µ ln J is a prerequisite to ensure the stress-free reference state
and U (J ) represents the energy contribution related to the volume change J . However,
the definition of U (J ) in the context of the NH model is not explicitly defined in litera-
ture and various choices, with potential consequences for numerical, mathematical and
physical behavior are possible; see Hartmann and Neff 2003. A further choice that will
partially be used in this work is

U (J ) = Λ
4 (J 2 − 1 − 2 ln J ). (2.59)

“Special” Blatz-Ko rubber (BK). Blatz and Ko 1962 proposed the BK model, which
is a constitutive relation tailored for the modeling of compressible rubber materials.
In the present work, the focus lies on the so-called special BK rubber, a variant for
modeling foamed polyurethane elastomers. It is characterized by the remarkably simple
strain-energy function

W (λ1, λ2) = µ

2

(
1
λ2

1
+ 1

λ2
2

+ 2λ1λ2 − 4
)

. (2.60)

The only material parameter is the shear modulus of linear elasticity. It can be demon-
strated that limλi→1 ν = 1/4 for the Poisson’s ratio. For an in-depth discussion, it is
referred to Beatty 1987, specifically Section 8.1.

The constitutive model appears to be popular for analytical investigations. For instance
in the closed form solutions, usually rarely available for compressible materials, of the
finite strain problems presented in Carroll 1988. Furthermore, Knowles and Sternberg
1975 demonstrated that the ellipticity condition (2.47) holds if and only if

2 −
√

3 <
λ1

λ2
< 2 +

√
3. (2.61)

A simple derivation of this equation can be found in Horgan 1996.
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Chapter 2 Fundamentals of Finite Elasticity

Ogden material (OGD). The last considered material was proposed by Ogden 1972.
It is based on the principal stretches and takes the form

W (λ1,λ2,λ3) =
N∑

i=1

[
µp

αp

(
λ

αp
1 + λ

αp
2 + λ

αp
3 − 3

)]
+ U (J ), (2.62)

with material constants αp and µp. Good agreement with experimental results is possible
(see the discussion in Section 6.5 in Holzapfel 2010). Parameters N = 1, µ1 = µ and
α1 = 2.0 recovers the NH material. Only the special variant with N = 1, α1 = 0.5,
and µ1 = µ in combination with the volumetric part of (2.58) is used in this work. The
material is denoted as “OGD”.

Examples. The vanishing determinant of the constitutive operator’s submatrices (Equa-
tion (2.38) and (2.44)) of BK and a compressible NH are illustrated in Figure 2.1 (a,c).
Furthermore, the dashed lines represent the uniaxial and equibiaxial stress states. Both
plots show that the definiteness of the constitutive tensors depends on the stretch state.
For the uniaxial stress states, only the BK model shows instabilities. This circumstance
is later intensively exploited. However, depending on the biaxial stress state and on
U (J ), also compressible NH models can exhibit instabilities.

For a uniaxial stress state the constraint S1(λ1, λ2) = 0 is used to express λ1 as a function
of λ2. For the materials herein this relation is given as

BK: λ1 = 3λ
−1/3
2 , (2.63a)

NH: λ1 = exp

µ

Λ −
WL

(
2µ exp (2µ/Λ)

Λλ2
2

)
2

 1
λ2

, (2.63b)

OGD: λ1 =
WL


√

µ2/λ2 exp ( µ
2Λ)

2Λ

2
4Λ2

µ2 , (2.63c)

SVK: λ1 =

√
−(Λ + 2µ)(Λλ2

2 − 2Λ − 2µ)
Λ + 2µ

. (2.63d)

Here, WL denotes the Lambert W function. Now the vertical stress S1 and constitutive
tensor C can be expressed as a function of λ2 only. Figure 2.1 (b,d) depicts the uniaxial
stress-stretch curves for various materials. A typical strain softening behavior under
tension is observed for BK (b) and OGD (d). In each case, the onset of softening
goes hand in hand with the indefiniteness of the corresponding constitutive operator
(dashed vertical lines in (b)) but occurs before ellipticity is lost. It is observed that S2

softens prior to P2. This becomes particularly important for the analysis of material
hourglassing.
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Figure 2.1: Left: respective quantities for a biaxial stress state; right: various stress
measures for a uniaxial stress state with S1 = 0; (a,b) Blatz-Ko rubber with
µ = 1; (c) a compressible Neo-Hookean model with ν = 0.3, E = 1000 and
U (J ) = Λ

4 (J 2 − 1 − 2 ln J ); (d) nearly incompressible models with ν = 0.499
and E = 1000 or Λ = 166444.30 and µ = 333.56; NH with U (J ) = Λ

4 ln2 J ;
S2 (red) and P2 (blue).

Remark 2.3.1. Real-world tensile material-induced instabilities and strain softening be-
haviour are rather associated with plastic materials. Nevertheless, to a certain ex-
tent, theoretically derived tensile instabilities of simple hyperelastic materials have also
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Chapter 2 Fundamentals of Finite Elasticity

been reproduced by experiments. Examples are the equibiaxial stretching experiments
by Overvelde et al. 2016 or the set of elastic instability experiments in Gent 2005.

2.4 Boundary Value Problem and Variational
Formulations

A variational perspective on the underlying Boundary Value Problem (BVP) is required
to solve problems using the finite element method. Some classical variational principles
within the framework of quasi-static elastic problems are presented. Figure 2.2 provides
an overview of the principles and their connections. They provide a variational basis
for the finite element formulations in the remainder of this work. For further details
and references, it is referred to the textbook of Washizu 1975 and, with a focus on
nonlinear elasticity, to the review article by Guo 1980. Without loss of generality, the
subsequent equations are primarily illustrated for the two-point setting with stress and
strain variable P and F, respectively.

2.4.1 Boundary-Value Problem of Isotropic Finite Elasticity

The general BVP is governed by the following set of equations

Equilibrium DivP = −B̂

Kinematic F = I + Gradu

Constitutive P = ∂W
∂F

or F = ∂Wc

∂P


in B0 (2.64)

subjected to the essential (displacement) and natural (force) boundary conditions

u = û on Γu
0,

PN = T̂ on Γσ
0 .

(2.65)

Here, the body’s reference surface is decomposed into Γ0 = Γu
0 ∪ Γσ

0 with Γu
0 ∩ Γσ

0 = ∅
and Wc denotes the complementary strain energy function. This completes the boundary
value problem of finite elasticity. The corresponding incremental boundary value problem
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2.4 Boundary Value Problem and Variational Formulations

(IBVP) can be formulated in a similar manner as

Div ∆P = −∆B̂

∆F = Grad ∆u

∆P = A : ∆F

 in B0 (2.66)

with

∆u = 0 on Γu
0 ,

∆PN = ∆T̂ on Γσ
0 .

(2.67)

A solution of the BVP or IBVP will provide a u or ∆u, respectively, that solves the
differential equations at every point of the body. This however is, besides a few special
cases, of which some are presented in Chapter 4, difficult to obtain in closed form.

2.4.2 Single-Field Variational Energy Principles

For a conservative system, the total potential energy functional is given as

Π(u) =
∫
B0

W (F(u)) dV

︸ ︷︷ ︸
Πint

−
∫
B0

B̂ · u dV −
∫

Γσ
0

T̂ · u dA

︸ ︷︷ ︸
Πext

, (2.68)

with displacement as independent variable. The principle of minimum potential energy
states that equilibrium of the deformed body is met when, among all admissible dis-
placements that satisfy the essential boundary conditions, the actual displacement field
makes Π a minimum. This implies that the first variation vanishes, i.e.

δuΠ(u) =
∫
B0

∂W (F(u))
∂F

: δuF dV −
∫
B0

B̂ · δu dV −
∫

Γσ
0

T̂ · δu dA

= −
∫
B0

(
DivP + B̂

)
· δu dV +

∫
Γσ

0

(
PN − T̂

)
· δu dA = 0.

(2.69)
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Chapter 2 Fundamentals of Finite Elasticity

Figure 2.2: Illustration of interconnections of variational principles in the large strain
theory of finite elastostatics. The figuration is inspired by Washizu 1975.
Curved boxes represent variational principles. Non-filled arrows indicate di-
rected relations, which are less common or not necessarily available.

Here, the application of the divergence theorem5

∫
B0

P : Grad δu dV = −
∫
B0

DivP · δu dV +
∫

Γσ
0

PN · δu dA (2.70)

provides the lower part of (2.69). An interpretation of δu as virtual displacement consti-
tutes equivalence with the principle of virtual work. The terms in parenthesis in (2.69)
show that the virtual work principle includes the weak form of the equilibrium equations
in (2.64) and the force boundary conditions in (2.65). The internal virtual work contri-
bution may also be expressed with other pairs of work-conjugated stress-strain measures
as

δuΠint =
∫
B0

S : δuE dV =
∫
B0

P : Grad δu dV =
∫
B

σ : grad δu dv, (2.71)

see Holzapfel 2010 for further details.

5Using chain rule as intermediate step:
∫

B0
P : Grad δu dV =

∫
B0

(Div (Pδu) − DivP · δu) dV .
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2.4 Boundary Value Problem and Variational Formulations

Assumed is the existence of a unique inverse constitutive relation of (2.31), i.e.

F(P) = ∂Wc

∂P
, (2.72)

with complementary energy density Wc(P), related to the strain energy via the Legendre
transformation

Wc(P) + W (F) = F : P. (2.73)

This furnishes the complementary potential energy functional

Πc(P) =
∫
B0

Wc(P) dV −
∫
Γu

0

PN · û dA, (2.74)

with stress tensor P as independent variable. The principle of minimum complementary
energy states that equilibrium of the deformed body is met when, among all admissible
stress fields that satisfy the equilibrium equations in the domain as well as the force
boundary conditions, the actual stress field makes Πc a minimum. This implies6

δPΠc(P) =
∫
B0

∂Wc(P)
∂P

: δP dV −
∫
Γu

0

δPTN · û dA

=
∫
B0

(F(P) − Gradu) : δP dV +
∫
Γu

0

(u − û) · δPN dA = 0.
(2.75)

An interpretation of δP as virtual stress field constitutes the equivalence with the com-
plementary virtual work principle. The bracket terms show that it includes the kinematic
equations (2.10) and the displacement boundary conditions in (2.65). In a similar man-
ner, the IBVP can also be considered within a variational description.

2.4.3 Multi-Field Variational Principles

Based on the preceding single-field formulations, the method of Lagrangian multipliers
can be used to include further governing equations in a variational weak form. The three-
field Hu-Washizu functional (HW) has displacements as well as stresses and strains as
independent variables. The starting point is a total potential energy expression like
(2.68), but with an internal energy computed by the independent deformation gradient

6Using
∫

B0
Div (δPu) dV =

∫
B0

Div δP · u dV

︸ ︷︷ ︸
=0

+
∫

B0
δP : Gradu dV =

∫
Γu

0
δPN · u dA.
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Chapter 2 Fundamentals of Finite Elasticity

F. The Lagrangian multiplier P can be used to incorporate the kinematic equation and
the essential boundary conditions as

ΠHW(u,P,F) = Πint(F) + Πext(u)

+
∫
B0

(Gradu − F) : P dV −
∫
Γu

0

(u − û) · PN dA. (2.76)

The principle of Hu-Washizu states that the actual solution is given by stationarity of
(2.76), i.e. δΠHW = 0. The two-field Hellinger-Reissner functional (HR) includes the
displacements and stresses as independent variable. It can be interpreted as an extension
of the preceding complementary energy functional via

ΠHR(u,S) = Πc(S) +
∫
B0

(
Div (FS) + B̂

)
· u dV −

∫
Γσ

0

(
FSN − T̂

)
· u dA. (2.77)

Here, in view of the next chapter, a total Lagrangian formulation is considered. This
time the Lagrange multiplier u is used to incorporate the equilibrium equations and the
natural boundary conditions into the functional.

Remark 2.4.1. Within the small strain regime, the complementary energy principle as
well as the Hellinger-Reissner principle are widely present in engineering applications. A
classical example is the force method for statically indeterminate structures; see Argyris
and Kelsey 1960 for an excellent overview, or the equilibrium finite element formulations
in Moitinho de Almeida and Maunder 2017. However, for large strain regimes, the
constitutive relation (2.72) is in general not unique (e.g., the same stress state can be
found under various rotations) nor is it established that complementary strain energy
functions are defined without referring to W , see the discussion in Section 6.2.2 in Ogden
1997. This is an enormous drawback in terms of generality for all principles in the lower
half of Figure 2.2. However, it is pointed out that stress-strain relations other then P-F
may be more suitable in this context. See for instance the discussion in Guo 1980 on
Fraeijs de Veubeke’s principle with independent P and independent rotation tensor R.
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Chapter 3

A Family of Nonlinear Finite Element
Formulations

The purpose of this chapter is twofold: first, the basic concept, notation and the fun-
damental mathematical properties of standard displacement-based finite elements are
covered. Second, two concepts of mixed formulations are presented: various nonlinear
variants of the enhanced assumed strain (EAS) formulations and assumed stress formu-
lations. For a more detailed discussion on nonlinear finite elements, reference is made
to the textbooks of Wriggers 2008 and Zienkiewicz et al. 2014.

3.1 Isoparametric Finite Element Procedure

The technical implementation of the finite element formulations herein relies on the
isoparametric concept. It was proposed in the seminal work of Irons 1966 and constitutes
a partition of the physical body B0 into a finite set of elements with subdomain Ωe. Inside
the elements, the geometry as well as the compatible displacement field are approximated
by the same ansatz functions. This provides an approximation of the domain and the
boundary as

B0 ≈ Bh
0 =

ne⋃
e=1

Ωe, and Γ0 ≈ Γh
0 =

ne⋃
e=1

∂Ωe, (3.1)

respectively. Here, superscript “h” is used to indicate the finite element approximation
of the respective quantity, ne denotes the number of elements and Ωe ⊂ Bh

0 represents the
element’s undeformed configuration. The global boundary element edges are identified
with ∂Ωe ⊂ Γh

0 (not to be confused with the interface edges ∂Ωi). Plane quadrilateral
Qp-elements are considered, with bilinear shape functions for p = 1 and biquadratic
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Chapter 3 A Family of Nonlinear Finite Element Formulations

shape functions for p = 2. The geometry approximation is given by

X ≈ Xh =
ne⋃

e=1
Xe and x ≈ xh =

ne⋃
e=1

xe, (3.2)

with element approximations

Xe =
nno∑
A=1

N AXA
e and xe =

nno∑
A=1

N AxA
e . (3.3)

Here, nno denotes the number of element nodes, N A(ξ,η) the Lagrangian shape function
of node A and XA

e and xA
e the respective nodal position vectors. The natural element

coordinates ξ and η are defined in the parent reference element Ωpar = [−1,1]2. The map-
ping between the physical space and parameter space is given by the element Jacobians

Je = ∂Xe

∂ξ
and je = ∂xe

∂ξ
, (3.4)

with ξ =
[
ξ η

]T
. This allows an elegant implementation of the material and spatial

gradient

Grad N A = J−T
e

∂N A

∂ξ
and grad N A = j−T

e
∂N A

∂ξ
, (3.5)

as well as the infinitesimal volume approximations (with out-of-plane unit thickness)

dVe = detJe dξdη and dve = det je dξdη. (3.6)

An illustration of these transformations is given in Figure 3.1. For ease of readability the
following notational specifications will be used in the subsequent finite element related
sections:

• Indices e and h are mostly skipped and, if not otherwise stated, discretized quan-
tities refer to one generic element: e.g., de = d or uh = u.

• Upper case letters used as superscripts refer to element nodes.

• Tensor and matrix notation are not distinguished and should become clear from
the context.

• With few exceptions, numerical quadrature provides only an approximation. Nonethe-
less, it is symbolized by the integral operator:

∫
Ωe N (ξ) dV ≡ ∑NQP

i=1 N (ξi)ωi dV ,
with quadrature points ξi and weights ωi (Appendix A.1.1).
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Te
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physical space
(material and spatial config.)
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η

ξ

η (1,1)

Ωpar

Figure 3.1: Element configurations within the isoparametric concept.

• Material derivatives are abbreviated as: (•),I := ∂(•)
∂XI

.

Remark 3.1.1. In a fascinating manner, the development of the finite element method
was shaped by mathematical and engineering contributions. In the first half of the 20th
century, the works of Ritz, Galerkin and Courant are often associated with the first FEM
related contributions. However, the conceptual idea of the FEM can also be found in
much earlier works, such as the paper of Schellbach 1851. According to Clough 1990, the
breakthrough in the engineering community was made in 1953 at the Boeing company,
where access to the best computers was available. The need to model the increasing
complexity of airplane structures yielded the idea that “deformations of any plane stress
element be approximated by assuming a combination of simple strain fields” (Clough
1990, p. 93). These results were published in the seminal work of Turner et al. 1956.
Due to Clough, the review of Argyris and Kelsey 1960 on matrix formulation of force
and displacement methods is the “by far (...) most significant contribution”.

3.2 Displacement-Based Finite Elements

3.2.1 Discretization

This formulation – also denoted as irreducible displacement method – uses the compat-
ible displacement field as primary variable. Within the element, the Bubnov-Galerkin
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approximation of the actual, virtual and incremental displacement field is given by

{u, δu, ∆u} =
nno∑
A=1

N A{dA, δdA, ∆dA}, (3.7)

where {dA, δdA, ∆dA} is the respective nodal vector. The basis of a nonlinear finite
element procedure is the incremental representation of weak form expression (2.69) in
terms of the assembled element approximations (3.7). Linearization yields a system of
ndof equations

δDT (R + K∆D) = 0 ∀ δD ⇒ K∆D = −R (3.8)

with global displacement vector

{D, δD, ∆D} =
ne

A
e=1

{de, δde, ∆de}, (3.9)

and global stiffness matrix and residual vector

K =
ne

A
e=1

(km + kg)e and R =
ne

A
e=1

re, (3.10)

respectively. Here, the matrices and the vectors on element-level are denoted with
lowercase symbols.

Finite element operators. The discretized counterparts of the strain measures pre-
sented in Section 2.1 are

Hc = Gradu, Fc = I + Hc and Ec = 1
2
(
HcT + Hc + (Hc)T Hc

)
. (3.11)

Here, superscript “c” refers to the fact that they are derived by the compatible dis-
placement approximation (3.7) and helps later to distinguish between other strain in-
terpolations. Using Voigt notation, the virtual and incremental Green-Lagrange strain
approximations on element level read

δuE
c =

nno∑
A=1

BAδdA and ∆uE
c =

nno∑
A=1

BA∆dA, (3.12)

with nodal strain-displacement operator

BA = ∂Ec

∂dA =


F c

11N A
,1 F c

21N A
,1

F c
12N A

,2 F c
22N A

,2
F c

12N A
,1 + F c

11N A
,2 F c

21N A
,2 + F c

22N A
,1

 . (3.13)
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This operator can also be split into BA = BA
lin + BA

nln, where BA
lin is the operator from

linear theory and BA
nln the nonlinear remainder, i.e.

BA
lin =


N A

,1 N A
,1

N A
,2 N A

,2
N A

,1 + N A
,2 N A

,2 + N A
,1

 and BA
nln =


H c

11N A
,1 H c

21N A
,1

H c
12N A

,2 H c
22N A

,2
H c

12N A
,1 + H c

11N A
,2 H c

21N A
,2 + H c

22N A
,1

 .

(3.14)

Further introduced is the nodal strain-displacement operator

BA
H =


N A

,1 0
0 N A

,2
N A

,2 0
0 N A

,1

 , (3.15)

associated with the displacement gradient
[
H c

11 H c
22 H c

12 H c
21

]T
and providing

δuH
c =

nno∑
A=1

BA
HδdA and ∆uH

c =
nno∑
A=1

BA
H∆dA. (3.16)

Linearization of the virtual Green-Lagrange strain expression (3.12) double contracted
with the second Piola-Kirchhoff stress yields

∆uδuE
c : S = δdT

(
∂2Ec

∂d∂d
: S
)

∆d := δdTG(Ec,S)∆d. (3.17)

Here, G represents the integrand of the geometric element stiffness matrix, referred to
as geometric operator. It depends only on the nonlinear part Enln = 1

2 (Hc)T Hc of the
Green Lagrange strain and may be further specified as

G((Hc)T Hc,S) =
[
GAB

]
with GAB = 1

2
∂2H c

iI H c
iJ

∂dA
j ∂dB

k
SIJ = N A

,I N B
,J SIJδAB

jk (3.18)

Here, lower indices i,j, . . . and I ,J , . . . refer to the spatial and material coordinates,
respectively.
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Chapter 3 A Family of Nonlinear Finite Element Formulations

Element stiffness matrix and residual vector. Substituting (3.7) and (3.12) into the
weak form (2.71) yields δdTr, with virtual element displacement vector δd and element
residual vector

r =
∫
Ω

BTS dV

︸ ︷︷ ︸
fint

−

∫
Ω

NTB̂ dV +
∫

∂Ωσ

NTT̂ dA


︸ ︷︷ ︸
fext

−
∫

∂Ωi

NTTi dA

︸ ︷︷ ︸
fi

(3.19)

Here, ∂Ωσ ⊂ Γ, ∂Ωi represents the interelement edges and Ti the interelement contact
forces. The resulting force vector fi vanishes after assembly, i.e.

ne

A
e=1

f e
i = 0. The

nonlinear solution process is typically based on a Newton-Raphson scheme and requires
a linearization (3.19). The increment of the virtual work δdTr reads δdT(km + kg)∆d,
with material element stiffness matrix

km =
∫
Ω

BTĈB dV =
∫
Ω

BT
HÂmBH dV (3.20)

and geometric element stiffness matrix

kg =
∫
Ω

G(Ec,S) dV =
∫
Ω

BT
HÂgBH dV . (3.21)

Here, Âm and Âg represent the constitutive tensors (2.46) in Voigt notation.

3.2.2 Fundamental Mathematical Properties

The basic mathematical properties of displacement-based finite elements in the context
of linear elasticity, i.e. linear elliptic BVPs, are summarized. These properties become
particularly helpful in the assessment of finite element results. However, the transfer
to nonlinear problems should be treated with caution and is only applicable to the
corresponding incremental problem. For further engineering-oriented references, the
reader is referred to the textbooks of Hughes 2012, Bathe 1996 and Babuska et al.
2011.

Approximation properties. A BVP with homogeneous Dirichlet and Neumann condi-
tions on Γ0 is considered. Introduced are the inner product and the strain energy inner
product

(b̂, δu)L2 =
∫
B0

b̂ · δu dV and a(u,u) =
∫
B0

Grads u : Clin : Grads u dV , (3.22)
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3.2 Displacement-Based Finite Elements

respectively, both representing symmetric bilinear forms. Herein, unlike the notation
from the previous section, u represents the continuous solution and uh the finite element
approximation. The weak form of the mathematical problem can be stated as: find the
exact solution u ∈ U such that

a(u, δu) = (b̂, δu)L2 ∀ δu ∈ U , (3.23)

with

U =
{
H1(Ω); u = 0 on Γu

}
(3.24)

and Hs being the Sobolev space defined in Appendix A.1.2. The finite-dimensional
approximation to U is given by Uh ⊂ U and furnishes the discrete problem: Find the
finite element solution uh ∈ Uh such that

a(uh, δuh) = (b̂, δuh)L2 ∀ δuh ∈ Uh. (3.25)

For a sequence of uniformly refined spaces Uh (until theoretically Uh = U), the standard
finite element method yields

∥u − uh∥H1→ 0 for h̄ → 0, (3.26)

where h̄ is a characteristic element size measure. Monotonic convergence of the form
(3.26) is ensured by compatibility and completeness of the element ansatz. Compatibility
requires the displacement ansatz (3.7) to be at least C 0-continuous across the element
boundaries (no gaps between adjacent elements). The correct representation of con-
stant strain modes (including rigid body displacements) is meant by the completeness
requirement.

The error in the finite element approximation e = u − uh gives rise to the following
statements:

(i) Galerkin error orthogonality:

a(e, δuh) = 0 ∀ δuh ∈ Uh (3.27)

The error is orthogonal to Uh, i.e. uh is the projection of the exact solution onto
Uh.

(ii) Best approximation property:

a(e, e) ≤ a(u − wh,u − wh) ∀wh ∈ Uh (3.28)
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Chapter 3 A Family of Nonlinear Finite Element Formulations

From all possible solutions wh in Uh, uh is the one which approximates u best.
Here, “best” refers to the energy norm, i.e. the best approximation of the first
derivative (strain and stress) in a weighted least-squares sense.

(iii) “Underestimation” of the exact solution:

a(uh,uh) ≤ a(u,u) (3.29)

The strain energy of the finite element solution always underestimates the exact
strain energy. Consequently the (finite) discrete structure performs stiffer and
displacements are underestimated.

Remark 3.2.1. For stress driven “equilibrium” finite elements based on complementary
energy principles (see Section (2.4.2)) with a direct approximation of stress fields, State-
ment (iii) is just the opposite. The strain energy is larger than the exact value, the
corresponding displacement solution is overestimated and the discrete structure per-
forms softer. The established error bounds become particularly useful in the context of
a dual error analysis. See the textbook of Moitinho de Almeida and Maunder 2017.

A priori error estimates. Considered is a variational problem with highest order of
derivative m and a smooth (exact) solution u ∈ Hp+1. Furthermore a (p, m)-regular
mesh1 is assumed. The standard error estimate for elliptic BVP’s is given as

Ĉ2∥e∥E ≤ ∥e∥Hm ≤ Ĉ h̄p+1−m∥u∥Hp+1 . (3.30)

Here, Ĉ2 is a constant and Ĉ is a constant that is independent of h̄ but dependent on the
material properties, the finite element mesh and the exact solution u. Estimate (3.30)
is a direct consequence of the the best approximation property (3.28). The result holds,
since the Sobolev norm of order m is equivalent to the energy norm ∥e∥E. Using C =
Ĉ∥u∥Hp+1 , the natural logarithm of the right hand side of (3.30) yields

ln (Ch̄β) = β ln h̄ + ln C ≈ −β ln √
nno + ln C . (3.31)

Here, the last term holds for uniform two-dimensional meshes and is used typically for
convergence plots. For further details and references it is referred to Babuska et al.
2011. For linear elasticity m = 1, it can be shown that displacement and first derivative
quantities follow

∥u − uh∥L2 ≤ Ch̄p+1,

∥Gradu − Graduh∥L2 ≤ ∥u − uh∥H1 ≤ Ch̄p.
(3.32)

1A mesh where the aspect ratio of all elements remains sufficiently uniform Uh ∈ Hm.
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3.3 Enhanced Assumed Strain Finite Elements

Details on that can be found in Hughes 2012 (p. 190). In other words, the L2-norm
of the displacement error is p + 1, whereas the L2-norm of the displacement gradient
quantities (e.g., strain, stress, or energy) is p. The latter is true because derivatives
dominate the H1-norm of the error. However, these are optimal estimates that depend
on the nature of the solution u as well as the material properties via constant Ĉ . This
latter gives rise to the volumetric locking phenomenon; see for instance Suri 1996.

3.3 Enhanced Assumed Strain Finite Elements

3.3.1 A Lagrangian Formulation (Qp/Em)

The simplest type of nonlinear EAS formulation is based on an additive enhancement
of the compatible Green-Lagrange strain expression (3.11)3 of the form

E(d,α) = Ec(d) + Ẽ(α) (3.33)

where Ẽ is the strain enhancement which depends linear on m enhanced mode degrees
of freedom which are collected in the vector α. The enhanced strain expression then
provides

SE := ∂W (E)
∂E

and CE := ∂2W (E)
∂E∂E

. (3.34)

This formulation is closely related to the original work of Simo and Rifai 1990 and is
especially popular for the membrane part of shell elements; see references Betsch et al.
1996 and Bischoff and Ramm 1997. For three-dimensional brick elements it is referred to
the work of Klinkel and Wagner 1997. The reason for its simplicity is twofold: first, the
Green-Lagrange strain is a total Lagrangian-type tensor and consequently objectivity is
ensured a priori. Second, since (3.33) depends linearly on α, its linearization is trivial
and close to the geometrically linear framework.

A variationally sound basis was provided by Simo and Rifai 1990. Inserting (3.33)
and (3.7) into the total Lagrangian version of the three-field Hu-Washizu functional (2.76)
yields

ΠHW(d,α,S) =
∫
B0

(
W (Ec + Ẽ) − S : Ẽ − B̂ · u

)
dV + BT. (3.35)
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Chapter 3 A Family of Nonlinear Finite Element Formulations

Applying the Hu-Washizu principle δΠHW = 0 provides the global and local Euler
equations

∫
B0

(
∂W (E)

∂E
: δuE − B̂ · δu

)
dV = 0 ⇒ Div (FcSE) + B̂ = 0, (3.36a)

−
∫
B0

Ẽ : δS dV = 0 ⇒ Ẽ = 0, (3.36b)

∫
B0

(
∂W (E)

∂E
− S

)
: δẼ dV = 0 ⇒ SE = S. (3.36c)

The weak form does not contain derivatives on the enhanced strain field and the inde-
pendent stress field and, consequently, they do not have to be continuous. In fact, they
will be defined as discontinuous across element boundaries. The specific design feature
of EAS elements is based on the enforcement of L2-orthogonality between the discrete
stresses and the enhanced strain interpolation. Exploiting this orthogonality removes
the underlined term in (3.35) and consequently the weak form expressions∫

Ω

Ẽ : δS dV = 0 and
∫
Ω

S : δẼ dV = 0 (3.37)

vanish. The Euler equation in (3.36a) reveals an obvious kinematic ambiguity. While
the Lagrangian stress tensor SE is based on the enhanced Green-Lagrange strain, its
two-point analogue emanates from a transformation with (only) the compatible defor-
mation gradient, i.e. PE = FcSE. This questions the consistency of the formulations
with respect to transformations into the spatial setting or two-point setting. Another
issue is consistency of stress recovery since the independent stress field is eliminated
on theory level. As shown by Bischoff et al. 1999 for the linear case, stress recovery
can be accomplished by exploiting the equivalence to assumed stress formulations, see
also Klinkel and Wagner 1997 for geometrically nonlinear problems (restricted to the
SVK material). However, this issue is not further discussed herein and stresses are
recovered via (3.34)1 in this work.
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3.3 Enhanced Assumed Strain Finite Elements

Discretization. The enhanced strain interpolation is constructed as

Ẽ = detJ0

detJ J−T
0 ẼparJ−1

0 , (3.38)

where Ẽpar is defined in the parent element configuration. In Voigt notation it is ex-
pressed as

Ẽ = detJ0

detJ T−T
0 Mpar

E α = MEα with
∫
Ω

ME dV = 0. (3.39)

Here, similar to B, ME is the respective enhanced strain operator in Voigt notation.
Here, T0 resembles the transformation in (3.38) in matrix form, see Equation (4.1)
in Andelfinger and Ramm 1993. Both, the manipulation with the element Jacobian in
Equation (3.38) as well as the vanishing integral in (3.39) are fundamental requirements
for passing the patch test. Furthermore, the space of the enhanced strain interpolation
has to be independent of the compatible strain approximation. For further details it is
referred to Section 2.2 in Simo and Rifai 1990.

Linearization of (3.36) provides, for arbitrary δd and δα, the discrete set of element
equationskm + kg L

LT D

 ∆d

∆α

 = −

r
r̃

 , (3.40)

where r and km + kg are computed using (3.34). The EAS residual vector reads

r̃ =
∫
Ω

MT
ESE dV (3.41)

and the material EAS tangents are

L =
∫
Ω

BTĈEME dV and D =
∫
Ω

MEĈEME dV . (3.42)

The enhanced strain parameters can be eliminated on element level via static conden-
sation(

km + kg − LD−1LT
)

︸ ︷︷ ︸
kred

∆d = −
(
r − LD−1r̃

)
︸ ︷︷ ︸

rred

, (3.43)
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Chapter 3 A Family of Nonlinear Finite Element Formulations

with kred and rred being the reduced element stiffness matrix and element residual vec-
tor. For details on efficient update procedures within the Newton-Raphson scheme it is
referred to Klinkel and Wagner 1997.

Q1/E4, Q1/E2n and Q1/E2s. A popular formulation for plane solid elements is the
Q1/E4 element. It is defined by the enhancement

Ẽpar =
[

ξα1 ξα3 + ηα4

ξα3 + ηα4 ηα2

]
. (3.44)

Provided that the element is undistorted (rectangular shaped) and subjected to homo-
geneous deformations, parameter α1 and α2 remove volumetric locking and α3 and α4

remove shear locking. The element formulations that only handle one of the two locking
issues are denoted as Q1/E2n (using only α1 and α2) and Q1/E2s (using only α3 and
α4).

Q2/E11. Another element that will be considered in the subsequent analysis is the
Q2/E11 element proposed by Bischoff and Ramm 1997. It is designed to remove “higher-
order” volumetric locking and shear locking, present in the displacement-based nine-
noded Q2. The strain enhancement reads

Ẽpar
11 = α1(1 − 3ξ2) + α2(η − 3ξ2η) + α3(η2 − 3ξ2η2)

Ẽpar
22 = α4(1 − 3η2) + α5(ξ − 3ξη2) + α6(ξ2 − 3ξ2η2)

Ẽpar
12 = α7(1 − 3ξ2) + α8(1 − 3η2) + α9(η − 3ξ2η)

+ α10(ξ − 3ξη2) + α11(1 − 3(ξ2 + η2) + 9ξ2η2).

(3.45)

3.3.2 Two-Point Formulations (Q1/Hm) and (Q1/HTm)

This nonlinear EAS formulation is based on an additive enhancement of the compatible
displacement gradient (3.11)1 of the form

H(d,α) = Hc(d) + H̃(d,α) (3.46)

and provides via F = I + H

PH := ∂W (F)
∂F

and AH := ∂2W (F)
∂F∂F

. (3.47)

This enhancement, often referred to as a “fully nonlinear” EAS formulation, was first
proposed by Simo and Armero 1992. Important further developments regarding element
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stability and frame invariance can be found in Simo et al. 1993, Glaser and Armero 1997
and Pfefferkorn and Betsch 2019. Inserting (3.46) and (3.7) into the the three-field Hu-
Washizu functional (2.76) yields

ΠHW(d,α,P) =
∫
B0

(
W (Fc + H̃) − P : H̃ − B̂ · u

)
dV + BT. (3.48)

The stationary condition δΠHW = 0 provides the global and local Euler equations
∫
B0

(
∂W (F)

∂F
: δuF − B̂ · δu

)
dV = 0 ⇒ Div (PH) + B̂ = 0, (3.49a)

−
∫
B0

H̃ : δP dV = 0 ⇒ H̃ = 0, (3.49b)

∫
B0

(
∂W (F)

∂F
− P

)
: δH̃ dV = 0 ⇒ PH = P. (3.49c)

As before, L2-orthogonality between the enhanced strain and stress interpolation re-
moves the underlined term in (3.48) and consequently∫

Ω

H̃ : δP dV = 0 and
∫
Ω

P : δH̃ dV = 0. (3.50)

In contrast to the total Lagrangian formulation, the present formulation allows to recast
the enhanced strain in other geometric settings. Based on (3.46), the resulting Green-
Lagrange strain may be expressed as

EH(d,α) = Ec + 1
2
(
H̃T + H̃ + H̃TH̃ + (Hc)TH̃ + HcH̃T

)
. (3.51)

The total Lagrangian stress tensor and constitutive tangent read

SH := ∂W (EH)
∂EH

= F−1PH and CH := ∂2W (EH)
∂EH∂EH

. (3.52)

Discretization of Q1/H4. The enhanced strain interpolation of this element reads

H̃(α) = detJ0

detJ J−T
0 H̃parJ−1

0 , (3.53)

with

H̃par =
[
ξα1 ηα3

ξα4 ηα2

]
. (3.54)
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This enhancement allows an interpretation as a nonlinear version of the incompatible
mode element by Wilson et al. 1973. The corresponding EAS element operators are
defined as

MH = ∂EH

∂α
, Gdα = ∂2 sym(H c

iI H̃iJ )
∂dB

k ∂αC
SH|IJ , Gαα =

∂2 1
2(H̃iI H̃iJ )

∂αC ∂αD
SH|IJ , (3.55)

where (C ,D) = 1, . . . ,m refers to the enhanced parameters. This provides the EAS
tangents

L =
∫
Ω

BTĈHMH dV

︸ ︷︷ ︸
Lm

+
∫
Ω

Gdα(EH,SH) dV

︸ ︷︷ ︸
Lg

(3.56)

and

D =
∫
Ω

MT
HĈHMH dV

︸ ︷︷ ︸
Dm

+
∫
Ω

Gαα(EH,SH) dV

︸ ︷︷ ︸
Dg

. (3.57)

Unlike for Qp/Em, EAS-related geometric contributions occur.

Discretization of Q1/HT4. An alternative enhancement is given by the following
simple modification

H = I + Hc + Fc
0H̃

T. (3.58)

Here, H̃(α) is defined in (3.53) and Fc
0(d) denotes the compatible deformation gradient

at the element centroid. This enhancement was proposed by Glaser and Armero 1997 and
the corresponding element is denoted as Q1/HT4. As shown by Bieber et al. 2022, the
transposition has a beneficial effect on the geometric stiffness matrix such that artificial
instabilities for compression problems are fully removed, see Section 6.2.3 for further
details. The strain enhancement can not be interpreted by the incompatible mode
ansatz, which is why the modification with Fc

0 is a prerequisite for frame-invariance.
Detailed derivations and an overview of alternative transformations are given in the
review article by Pfefferkorn and Betsch 2019.
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3.4 Assumed Stress Element (Q1/S5)

This type of element can be derived on the basis of the two-field Hellinger-Reissner
functional (2.77). Considered is the stress interpolation proposed by Pian and Sumihara
1984

S = JT
0 S

parJ0, (3.59)

with

S̃par =
[
β1 + ηβ4 β3

β3 β2 + ξβ5

]
. (3.60)

In Voigt notation it is expressed as

S = T0Q
parβ = Qβ. (3.61)

The independent stress field provides

ES := ∂Wc(S)
∂S

and DS := ∂2Wc(S)
∂S∂S

. (3.62)

Inserting (3.61) and (3.7) into the weak form of (2.77) provides the global and local
Euler equations∫

B0

(
S : δuE

c − B̂ · δu
)

dV = 0 ⇒ Div (FcS) + B̂ = 0, (3.63a)

∫
B0

(Ec − ES) : δS dV = 0 ⇒ Ec = ES, (3.63b)

Linearization of (3.63) provides, for arbitrary δd and δβ, the discrete set of element
equations kg G

GT V

∆d

∆β

 = −

 r

rkin

 , (3.64)

where r and kg are computed on the basis of (3.59). The kinematic element residual
vector reads

rkin =
∫
Ω

QT (Ec − ES) dV , (3.65)
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and tangents are

G =
∫
Ω

BTQ dV and V =
∫
Ω

QTD̂SQ dV . (3.66)

Q1/S5 based on SVK. For the SVK case the element designer is fortunate. From the
corresponding strain energy function (2.53) it follows

Wc(S) = Λ
4µ(3Λ + 2µ)(trS)2 + 1

4µ
trS2 = 1

2S
TĈ−1S (3.67)

providing

SS = Ĉ−1S and D̂S = Ĉ−1 (3.68)

Here Ĉ is defined in (2.55), see also Gao and Hajilarov 2017 for a mathematical back-
ground.

Q1/S5 based on NH. Following Wriggers 2008, a finite element formulation can be
derived directly on the basis of the weak-form expression (3.63b). By that, one can
circumvent the need for a complementary strain energy function by using the inverse
of the stress-strain relation. For the Neo-Hookean material based on the volumetric
strain energy in (2.58) an explicit inversion of the stress-relation is given in Appendix 2
in Pfefferkorn et al. 2021.2 The constitutive tensor is obtained via

C(ES) = ∂2W (ES)
∂ES∂ES

⇒ D̂S = Ĉ−1
S . (3.69)

2See also Wriggers 2008 for a Neo-Hookean material based on the volumetric part of Equation (2.59).
An algorithmic treatment of the inversion is also given in Viebahn et al. 2019. However, both have
the same limitations as discussed in Section 2.2.
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Chapter 4

Analytical Solutions for Some Classical
Problems in Finite Elasticity

The purpose of this chapter is to present some of the rare problems in finite elasticity for
which analytical solutions are available. For the remainder of this work, these solutions
serve as a basis for the analysis and development of advanced nonlinear finite elements.
The pioneering works originate mainly from the 50s and 60s where the lack of numerical
simulation methods promoted the development of analytical solutions. These examples
are nowadays well established (in the respective scientific community) and found their
way into standard textbooks, such as Ogden 1997 or Bigoni 2012. In this sense, the
subsequent derivations of analytical solutions do not claim novelty but rather keep the
problem descriptions within this work as self-contained as possible.

4.1 Bifurcations in Plane Strain Tension and
Compression

Euler’s celebrated “Elastica” provided the first sound analysis of axially loaded thin
structural members. His formulae became an essential tool in structural engineers’
everyday lives. While Euler’s focus lied on the axial compression case, the pioneering
work of Considerè 1885 dealt with the necking instabilities of columns under tension1.
Both, however, restricted their analysis to one-dimensional problems.

The first successful attempt to consider a more general large strain continuum case,
namely two-dimensional plane strain bodies, can be traced back to Biot 1963a and his
monograph Biot 1965. Based on that, a more general analysis of incompressible solids
is presented in the work of Hill and Hutchinson 1975 and Young 1976, which focus on
1This is, compared to Euler’s buckling cases, less intuitive and the interested reader is referred to the
recent contribution by Audoly and Hutchinson 2016.
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Figure 4.1: Bifurcation problem; deformation exemplified for a compression test.

uniaxial tension and compression, respectively. Both references provide an asymptotic
analysis for slender blocks and thus a link of the general approach to the known struc-
tural approximations. It is also worth noting the extensions to elasto-plastic solids by
Needleman 1979, as well as the analysis of surface instabilities of compressible solids
in Bardet 1990a and Bardet 1990b. To the best of the author’s knowledge, the latter
reference is the only one where analytical solutions are compared with finite element
results for that specific problem. For a general overview it is referred to Chapter 6.3 of
Ogden 1997.

It is pointed out that the above-mentioned references leave out a post-bifurcation analy-
sis. An important case that bears great difficulties in the analytical treatment. However,
Triantafyllidis et al. 2007 discusses aspects of post-bifurcation behavior via a Lyapunov-
Schmidt-Koiter expansion. The notation of this paper is adopted subsequently.

4.1.1 Problem Setup and Principal Solution

The stress-free reference configuration B0 consists of an isotropic compressible elastic
2L1 × 2L2 block under plane strain conditions, see Figure 4.1. Here, LI are aligned to
the Cartesian reference coordinates XI and define the block’s aspect ratio as r = L1/L2.
The deformation is controlled at the top and bottom edges, at X2 = ±L2, by a uniformly
vertically displaced roller support (no shear is transmitted), whereas the lateral edges,
at X1 = ±L1, remain traction-free. The corresponding essential and natural boundary
conditions read

u2(X1, ± L2) = ±γû, u1(0,0) = 0 (4.1)
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and

P11(±L1,X2) = 0, P21(±L1,X2) = 0, P12(X1, ± L2) = 0. (4.2)

Here, γ ∈ R+
0 is the load factor, ui(X1,X2) is the respective displacement component

and PiJ denotes the first Piola-Kirchhoff stress. The second part of (4.1) is imposed for
definiteness. With these boundary conditions at hand, the solution of the displacement-
controlled problem is governed by the weak equilibrium equation

Π,u[u, γ]δu =
∫
B0

δuF : P(u,γ) dV = 0, (4.3)

with admissible virtual displacements δu and elastic potential Π. For a sufficiently small
load factor γ ∈ [0, γ(1)

c ) a unique solution (i.e., a minimizer of Π) is given by the deformed
configuration 2L1λ1 × 2L2λ2. The homogeneous stress and strain tensor become

P = diag (0, P22) and F = diag (λ1, λ2), (4.4)

respectively, describing a uniaxial stress and a biaxial stretch state. Here the loading
directly determines the vertical stretch as λ2 = 1 + γû/L2. Moreover, the constraint
P11 = 0 provides λ1(λ2) and P2(λ2) as a function of the vertical stretch via the consti-
tutive law; see Section 2.3.5. The corresponding displacement field

u0(λ2) =
[
(λ1 − 1)X1 (λ2 − 1)X2

]T
(4.5)

is denoted as principal solution u0. Since the elastic potential depends directly on the
vertical stretch it is convenient to use the stretches λ2 (instead of the load factor) as
quantity of interest.

4.1.2 Euler Buckling – Introductory Example

The purpose of this section is to provide a smooth transition to the more general case.
For a block with sufficient slenderness r ≪ 1 the problem setup described before depicts
the special case of Euler’s column buckling. The onset of buckling occurs at small strain
and thus the block is considered as a slice (with a unit thickness in third dimension) of
an infinitely wide plate2 with deflection w ≡ u1 as only degree of freedom. Elasticity
constants E and ν provide the bending and axial stiffness

EI = E
1 − ν2

(2L1)3

12 = Ẽ 2L3
1

3 and EA = Ẽ2L1, (4.6)

2With a slight misuse of the terminology: the wording “beam” or “column” will also be used.
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respectively, with modified Young’s modulus Ẽ = E/(1 − ν2). Figure 4.2 sketches
the thin beam-equivalent to the previously introduced general problem setup. Small
deflections are assumed, such that w ′ ≪ 1, with w ′ = dw/dX2. Equilibrium is governed
by the linearized virtual work principle

L2∫
−L2

(δw ′′EIw ′′ − δw ′Pw ′) dX2 = 0, (4.7)

subject to boundary conditions

w ′(±L2) = 0, Q(±L2) = 0, w(0) = 0. (4.8)

Here, P denotes the axial force and Q = −EIw ′′′ − Pw ′ denotes the shear force. The
Euler equation of (4.7) yields Euler’s buckling criterion

w ′′′′ + p̃2w ′′ = 0 with p̃2 =
√

P
EI . (4.9)

The general solution of (4.9) is provided by

w(X2) = A cos (p̃2X2) + B sin (p̃2X2) + Cp̃2X2 + D. (4.10)

This ansatz together with boundary conditions (4.8) yields the coefficient matrix

M =


p2 sin (p̃2L2) p̃2 cos (p̃2L2) p̃2 0

−p̃2 sin (p̃2L2) p̃2 cos (p̃2L2) p̃2 0
0 0 EI p̃3

2 0
1 0 0 1

 (4.11)

with respect to the coefficient vector
[
A B C D

]T
. The non-trivial solution is deter-

mined by detM = 0, providing

sin (p̃2L2) cos (p̃2L2) = 0 ⇒ p̃2 = n π

L2
or p̃2 = (n − 1

2) π

L2
, (4.12)

with n ∈ N. This gives rise to the following two classes of buckling cases

S1 :

 w = A cos (p̃2X2) − A
p̃2 = nπ/L2

and A1 :

 w = B sin (p̃2X2)
p̃2 = (n − 1

2)π/L2
(4.13)

Here, in view of the next section, the solutions are divided into buckling modes which
are symmetric S1 and antisymmetric A1 with respect to the X1-axis. The critical axial
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4.1 Bifurcations in Plane Strain Tension and Compression

2L1

2L2
X1,w

X2

EI

n = 1 n = 2

A1 S1 A1 S1

Figure 4.2: Left: beam-equivalent to the general setup of Figure 4.1; middle to right: a
sketch of the first four buckling modes.

force is then given by

P(j)
c = p̃2

2EI (compression) (4.14)

with the critical stress component

σ22,c = −P(j)
c

2L1
= −1

3 Ẽn2π2r2 or σ22,c = −1
3 Ẽ(n − 1

2)2π2r2. (4.15)

Here, the integer j denotes the P(j)-value sorted in ascending order. In view of the next
section, the critical state may also be expressed in terms of a “post-processed” critical
axial stretch. Using P = (λ2 −1)EA = εEA, where the axial strain ε = γû/L2 is induced
by the (small) prescribed displacement, the critical stretch reads

λ(j)
c = 1 − p̃2

2EI
EA . (4.16)

It is obvious that the assumed small strain condition is only met for small ratio’s of
EI/EA. The subsequent derivation aims to provide a more general results, also valid
for bulky structures. For an excellent review on thin column buckling, it is referred to
the book of Hjelmstad 2005.

4.1.3 Bifurcation Analysis

As for the simple Euler buckling case from before, the interest lies in the onset of critical
deformation states where - apart from the principal solution - bifurcated equilibrium
branches emerge. The theory of incremental deformations by Biot 1965 is used to
analyze this problem.
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Incremental problem. Starting point for the stability analysis is the frozen set of de-
formed configurations along the primary path. Each set, i.e., each prescribed λ2(γ), is
checked for the existence of bifurcated incremental equilibrium states. The correspond-
ing criterion for a critical point is described by the incremental eigenvalue problem

(Π,uδu),u · ∆u(j) =
∫
B0

δuF : A(u0(λ(j)
c )) : Grad ∆u(j) dV = 0, (4.17)

where A is the two-point constitutive tensor of the current principal deformation state
and ∆u(j) is the the (unknown) incremental bifurcation mode (“buckling mode”), which
obeys the boundary conditions below. In ascending order, the integer j denotes the
jth bifurcation point with critical stretch λ2 = λ(j)

c . Once a critical mode is found, the
presence of a bifurcation point, rather then a limit point, is ensured by the orthogonality
condition

Π,u∆u(j) =
∫
B0

Grad ∆u(j) : P(u0, λ(j)
c ) dV = 0. (4.18)

The superscript j is skipped subsequently for readability reasons, keeping in mind that
infinitely many bifurcations can occur. The incremental equivalent to the set of bound-
ary conditions (4.1) and (4.2) reads

∆u2(X1, ± L2) = 0, ∆u1(0,0) = 0 (4.19)

and

∆P11(±L1,X2) = 0, ∆P12(±L1,X2) = 0, ∆P21(X1, ± L2) = 0. (4.20)

With A(u0), the explicit form of the incremental stress-strain relation reads

∆P11 = A1111∆u1,1 + A1122∆u2,2, ∆P12 = A1212∆u1,2 + A1221∆u2,1,

∆P21 = A2121∆u2,1 + A2112∆u1,2, ∆P22 = A2222∆u2,2 + A2211∆u1,1.

 (4.21)

Providing the Euler equation

Div(∆P) = Div(A(u0,λc) : Grad∆u) = 0 (4.22)

of the incremental stability criterion (4.17). With Equation (4.21), the governing partial
differential equation can be specified as

A1111∆u1,11 + A1122∆u2,21 + A1212∆u1,22 + A1221∆u2,12 = 0, (4.23a)
A2222∆u2,22 + A2211∆u1,12 + A2121∆u2,11 + A2112∆u1,21 = 0. (4.23b)
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Elimination of either u1 or u2 from (4.23) yields the characteristic equation

a∆uα,1111 + 2b∆uα,1122 + c∆uα,2222 = 0 (4.24)

with α = 1,2 and coefficients

a := A1111A1212, c := A2222A2121,

2b := A1111A2222 + A1212A2121 − (A1122A2112)2.
(4.25)

General solution and local uniqueness. Following Ogden 1997 (p. 415) a general
ansatz for the incremental displacements of the form

∆uα = mαfα(p1X1 + p2X2), α = 1, 2 (4.26)

is adopted. Here, mα and pα are constants and fα is a sufficiently differentiable function.
Substitution into (4.24) provides the characteristic equation

a
(

p1

p2

)4

+ 2b
(

p1

p2

)2

+ c = 0 (4.27)

which has the four roots

p1

p2
= ±

√
−b ∓

√
b2 − ac

a . (4.28)

Real, imaginary, and complex solutions are all possible depending on the elastic con-
stants, specifically the sign of b2 −ac. This work is restricted to cases where the material
remains strongly elliptic and therefore

a > 0, c > 0, b > −
√

ac. (4.29)

This is a direct result of the ellipticity condition (2.47) (see Equation (6.2.151) in Ogden
1997). The solutions of p1/p2 can be found in the following regimes:

• The Elliptic-Imaginary regime (EI) occurs for b2 > ac and provides four purely
imaginary roots

p1

p2
= ±iα and p1

p2
= ±iβ, (4.30)
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with the real constants

α =

√
b +

√
b2 − ac
a and β =

√
b −

√
b2 − ac
a . (4.31)

Here i =
√

−1 denotes the imaginary unit.

• The Elliptic-Complex regime (EC) occurs for b2 < ac and provides four complex
roots

p1

p2
= ±i (γ + iδ) and p1

p2
= ±i (γ − iδ) , (4.32)

with the real constants

γ =
√√

ac + b
2a and δ =

√√
ac − b
2a . (4.33)

Both cases complete the required classifications within this work. The case where the
ellipticity assumption (4.29) does not hold brings up two additional cases. For sake of
completeness, these are briefly sketched: the hyperbolic regime with −b/a > 0, b2 > ac
and ac > 0 yields four real roots and the parabolic regime with ac < 0 has two real
and two imaginary roots. These cases allow for localized solutions such as shear bands,
which are not present in the elliptic regime, see the discussion in Hill and Hutchinson
1975.

Buckling ansatz. The ansatz for the incremental bifurcation components ∆uα must
be constructed in such a way that dependence of the argument p1X1 + p2X2 in (4.26)
and the essential boundary conditions (4.19) are ensured. This is achieved with an
exponential ansatz, and it is referred to Appendix A.2.1 for technical details. A set of
solutions that comply with these criteria is of the form

S1 :


∆u1 = v1(X1) cos (p2X2) − v1(0)
∆u2 = −v2(X1) sin (p2X2)

p2 = nπ/L2

(4.34a)

or

A1 :


∆u1 = v1(X1) sin (p2X2)
∆u2 = −v2(X1) cos (p2X2)

p2 = (n − 1
2)π/L2

(4.34b)
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Here, n is an arbitrary integer and S1 and A1 designate modes where ∆u1 is symmetric
and antisymmetric with respect to the X1-axis. The functions vα(X1) are determined
for each regime individually.

EI case. The four purely imaginary solutions (4.30) of Equation (4.27) provide3

p1 = p2 · {+iα, − iα, + iβ, − iβ} (4.35)

and require the X1-dependent part of ansatz (4.34) to be of the form

S2 :
{

v1 = B1 sinh (αp2X1) + D1 sinh (βp2X1)
v2 = B2 cosh (αp2X1) + D2 cosh (βp2X1)

(4.36a)

A2 :
{

v1 = A1 cosh (αp2X1) + C1 cosh (βp2X1)
v2 = A2 sinh (αp2X1) + C2 sinh (βp2X1)

(4.36b)

Here, S2 and A2 denote modes in which v1 is symmetric or antisymmetric with re-
spect to the X2-axis. For the antisymmetric case A2, the incremental equilibrium equa-
tions (4.23a) together with natural boundary conditions (4.20) provide the coefficient
matrix

M =


A1111αsα A1111βsβ ♭1A1122sα ♭1A1122sβ
♭1A2112cα ♭1A2112cβ −A2121αcα −A2121βcβ

α2A1111 − A1212 0 ♭1α(A1122 + A1221) 0
0 β2A1111 − A1212 0 ♭1β(A1122 + A1221)


(4.37)

with respect to coefficient vector
[
A1 C1 A2 C2

]T
, correspondence

{
S1 → ♭1 = −1
A1 → ♭1 = +1 (4.38)

and abbreviated hyperbolic functions

c{α, β} = cosh ({α, β} p2L1) and s{α, β} = sinh ({α, β} p2L1). (4.39)

The results for the symmetric case S2 are obtained simply by swapping all hyperbolic
functions in (4.37) and (A.15). Of interest are the non-trivial solutions that require

3Notation: curly brackets are used to shorten the representation of a set of relations, e.g. z = {x,y} ⇒
z = x or z = y and {w,z} = {x,y} ⇒ w = x and z = y.
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detM = 0. After some algebraic manipulations and using

s{α, β} = A1111A1221 {α, β}2 + A1122A1212,

t{α, β} = A2121(A1111 {α, β}2 − A1212) + A2112(A1122 + A1221),
(4.40)

the critical stretches are obtained by

tanh (βp2L1)
tanh (αp2L1)

=
(

βsαtβ

αsβtα

)♭2

, (4.41)

with {
S2 → ♭2 = −1
A2 → ♭2 = +1 . (4.42)

Here the S1 and A1 cases are not directly present but come into play via the odd or
even values for p2 in (4.34). The critical stretch is then calculated by taking the first
root (starting from the reference state λ2 = 1) for all four combinations S jAi and all
integers n.

EC case. The four complex solutions (4.32) of Equation (4.27) provide

pj
1 = p2 · {iγ − δ, − iγ − δ, iγ + δ, − iγ + δ} (4.43)

and requires the X1-dependent part of ansatz (4.34) to be of the form

S2 :
{

v1 = B1 sinh (γp2X1) cos (δp2X1) + D1 cosh (γp2X1) sin (δp2X1)
v2 = B2 cosh (γp2X1) cos (δp2X1) + D2 sinh (γp2X1) sin (δp2X1)

(4.44a)

A2 :
{

v1 = A1 cosh (γp2X1) cos (δp2X1) + C1 sinh (γp2X1) sin (δp2X1)
v2 = A2 sinh (γp2X1) cos (δp2X1) + C2 cosh (γp2X1) sin (δp2X1)

(4.44b)

As for the previous EI case, the non-trivial solutions provide the equation for the critical
stretches

sinh (2γp2L1)
sin (2δp2L1)

= ♭2V

U
, (4.45)

where U and V are defined in Appendix A.2.
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PDE classification 1st singularity
ν elliptic domain EI EC A C

NH 0.3̄ (0, ∞) (0, ∞) - - -
0.499 (0,∞) (0, ∞) - - -

SVK 0.3̄ (0.613, 1.732) (1.701, 1.732) (0.613, 1.701) 1.732 -
0.499 (0.632, 1.415) - (0.632, 1.415) 1.415 -

OGD 0.3̄ (0.230, 3.925) - (0.230, 3.925) 3.151 1.690
0.499 (0.267, 3.732) - (0.267, 3.732) 3.000 1.666

BK 0.25 (0.372, 2.685) - (0.372, 2.685) 2.279 1.509

Table 4.1: Vertical stretch values λ2 or intervals in λ2 of the local constitutive behavior
for a uniaxial stress state. Various hyperelastic materials are examined. Sin-
gularity of the constitutive operators refers to the first singularity encountered
in the tension loading program (λ2 > 1). The situations at the regime bound-
aries are not discussed, see the general treatment in Ogden 1997.

4.1.4 Example I: Geometric Instabilities

The first set of examples covers the class of instabilities that appear under compressive
deformation states, i.e., λ2 < 1. These instabilities are driven by the geometric term Ag

(Equation (2.46)) in the incremental eigenvalue problem (4.17). A descriptive engineer-
ing interpretation is the “continuum version” of the P-∆ effect studied in Section 6.2.
The roots of transcendental equations (4.41) and (4.45) are calculated with the com-
puter algebra system Maple via the built-in root-finding algorithm “fsolve”. Hereby, a
specification of a sufficiently narrow interval via a predictor calculation proved useful.

Table 4.1 shows the stretch domains of interest of the local stability behavior for the
uniaxial tension/compression case: the column “elliptic domain” provides the interval
where ellipticity holds. This determines the stretch-domain for the subsequent analysis.
Moreover, the EI and EC regimes as well as possible singularities of the constitutive
operators are shown.

Overview and principal solution procedure. First, a compressible Neo-Hookean (NH)
material with ν = 1/3 is considered. Figure 4.3 depicts 20 branches of critical stretches
plotted over the block’s aspect ratio r = L1/L2. The curves correspond to all symmet-
ric/antisymmetric mode combinations for the first five mode numbers n. The “most
critical curve”, which corresponds to the maximum stretch value in the compression
case, is usually of primary interest in engineering problems. However, the purpose of
this plot is to provide a deeper insight into the general stability behavior, which is why
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Figure 4.3: Critical stretches for all mode combinations up to n = 5. Neo-Hookean
material with ν = 1/3. The boxed numbers between two curves indicate
their corresponding mode number.

several solution branches are considered independent of their magnitude. As expected,
the results are sensitive with respect to the block’s aspect ratio, the mode number n
and the chosen symmetric/antisymmetric buckling mode ansatz. Combinations with A2

modes buckle earlier in the compression state than combinations with S2 modes. On
one hand, the limit cases of r include r → 0, which corresponds to the classical Euler
buckling cases of Section 4.1.2. On the other hand, for r → ∞, all critical curves accu-
mulate around a halfway compressed block, a phenomenon that physically characterizes
surface buckling. Both cases will be dealt with separately later.

Selected materials. Next, the influence of the aspect ratio on the stability behavior of
various compressible hyperelastic blocks is considered. The first four critical stretches
are plotted in Figure 4.4. The following graphs can be read from “top to bottom”,
i.e., onset of compression (λ2 = 1) until bifurcations occur.

Figure 4.4 (a) shows the results of three hyperelastic materials. The critical stretches
of all materials coincide with the linear theory in the thin limit r → 0 and reproduce
Euler’s buckling solution. The branches of the NH block, which correspond to the

58



4.1 Bifurcations in Plane Strain Tension and Compression

first four curves in Figure 4.3, are A2-antisymmetric but alternate between A1 (λ{1,3}
c )

and S1 (λ{2,4}
c ). They follow the same order as for the Euler case, see Figure 4.2.

In contrast to that, the results based on the Blatz-Ko rubber (BK) and Saint-Venant
Kirchhoff material (SVK) show alternating hierarchies with respect to the mode-type
of the critical stretches (see the enlarged detail for BK). For the BK rubber this is also
observed in the work of Triantafyllidis et al. 2007.

The same curves, but with an extended aspect ratio, are depicted in Figure 4.4 (b). All
critical branches of each material converge towards the same value for the limit r → ∞.
This physically characterizes the surface buckling phenomenon, in which deformations
are concentrated at the traction-free boundary surface and decay towards the inside of
the block; see the buckling modes in Figure 4.5. Figure 4.4 (c) is concerned with the
influence of Poisson’s number. An interesting observation is that thin blocks buckle
earlier (i.e., larger stretches) for “more compressible” materials, whereas bulky blocks
buckle later. For the nearly incompressible case, surface buckling accumulates around
λ2 = 0.5436, a value also documented in Biot 1965, Equation (6.25).4

Asymptotic analysis. Similar to Biot 1965, the limit cases of the block’s aspect ratio
are considered. The EI case is used for the analysis. However, in a similar manner the
asymptotic results can also be derived for the EC case. For the sequel it is convenient
to introduce the wave number

κ = p2L1 =
{

n, n − 1
2

}
πr . (4.46)

Block’s thin limit - Euler buckling. The general solution naturally raises the question
if or how the general solution is linked to Euler’s buckling results. To gain insights,
an asymptotic analysis of the EI solution is considered. Only the left hand side of
Equation (4.41) is affected by the geometry of the block, i.e., κ, whereas the right hand
side is affected only by the material. A Maclaurin series in κ yields

tanh (βκ)
tanh (ακ) = β

α
+ βα2 − β3

3α
κ2 + O(κ4). (4.47)

For small strain, the linearized constitutive two-point tangent reads CIJKL|F=I + δIKσJL,
with σ = diag (0, σ22) being the linear stress tensor. For the antisymmetric A2-case it

4Biot gives the stretch as 0.544 (presumably rounded) for the incompressible case. Herein, numerical
calculations show that for the “quasi” incompressible case 0.499 < ν < 0.5, this value does not change
up to the fifth digit.
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Figure 4.4: First four critical stretches, i.e., the four largest critical stretches in the com-
pression loading program (λ2 < 1), for various materials and varying aspect
ratio.

follows the critical compressive stress as

σ22 = − E
3(1 − ν2)κ2 + O(κ4), (4.48)

reproducing, for small κ, Euler’s beam results of (4.15). In contrast, the symmetric
modes S2 do not allow for a solution within the small strain regime. In fact, the linear
solution estimates a fully compressed block. Both results are indicated on the very left
of Figure 4.3. Therefore, the smallest critical stress is always one with an antisymmetric
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Figure 4.5: Buckling modes due to compression, superimposed onto the reference con-
figuration, NH with ν = 1/3; top and middle: first six buckling modes for
aspect ratio r = 1/2 and r = 2; bottom: detail of four selected modes for a
bulky block with r = 10.

bending-type buckling mode and not with a symmetric barreling-type mode. This is
also true for finite r in the incompressible limit; see Section 6.2 in Young 1976.

Block’s thick limit - surface buckling. For the limit case r → ∞ the block can be
considered as a semi-infinite elastic half-space. This was investigated in the contribution
of Biot 1963b for a Neo-Hookean block. Now, the left hand side of Equation (4.41) yields

lim
κ→∞

tanh (βκ)
tanh (ακ) = 1, (4.49)

leaving a surface buckling criterion which only depends on the material-dependent right
hand side of (4.41), i.e.,

βsαtβ = αsβtα. (4.50)
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This implies that surface buckling occurs independently of the geometry parameters
(e.g. r , n or mode shape type) and can be regarded as purely material dependent
local stability criterion.5 The exponential decay of the hyperbolic functions in X1 also
indicates that the buckling patterns will only appear in a narrow region at the boundary.
This is demonstrated by the buckling modes at the bottom of the Figure 4.5.

4.1.5 Example II: Material-Induced Instabilities

The second set of examples covers the class of instabilities that appear under tensile
deformation states, i.e., λ2 > 1. These instabilities are caused by the material term Am

of the incremental eigenvalue problem (4.17) (Equation (2.46)).

Selected materials. Focus lies on the BK and OGD materials, since NH does not ex-
hibit instabilities under this loading scenario (see Hill and Hutchinson 1975, however, not
necessarily for biaxial stress states, see Figure 2.1). As exemplarily shown in Table 4.1,
both materials exhibit strain softening at a certain stretch level, i.e., a singularity of the
constitutive operator. The interval between the onset of strain softening and the loss of
ellipticity, aka material instability, is the domain of interest. In Figure 4.6 the interval is
indicated by blue dash-dotted lines. Similarly as before, 20 branches of critical stretches
are shown. A multitude of mode jumps govern the instability behavior, particularly for
larger r . The dominant modes for small r ’s are the symmetric modes S2, as opposed to
the compression problem.

Figure 4.7 shows the first four critical stretches for BK and a quasi incompressible
Ogden material. Both materials show qualitatively a similar bifurcation behavior. Some
buckling modes for the BK material are shown in Figure 4.8. The modes are often
denoted as diffuse bifurcations.

Asymptotic analysis. Similarly as before, an asymptotic analysis for small and large
r is considered. The left hand side of (4.45) provides the two limits

lim
κ→0

sin (2δκ)
sinh (2γκ) = δ

γ
and lim

κ→∞

sin (2δκ)
sinh (2γκ) = 0. (4.51)

The block’s thin limit is then determined by

Uδ

♭2Vγ
− δ

γ
= 0 ⇔ U = ♭2V. (4.52)

5It can be shown that for isotropic hyperelastic materials surface buckling always occurs before ellipticity
is lost, see Bigoni 2012, Section 12.2.3.
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indicate their corresponding mode number n.
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A1S2,n=1 S1S2,n=1 A1S2,n=2 S1S2,n=2 A1S2,n=3 S1S2,n=3

A1S2,n=1 A1A2,n=2 S1A2,n=1

A1S2,n=3 S1S2,n=2 A1A2,n=4

A1,n=1 A1,n=4 S1,n=8S1,n=1

Figure 4.8: Buckling modes due to tension, superimposed onto the reference configura-
tion; top and middle: first six buckling modes for aspect ratio r = 1/2 and
r = 2; bottom: detail of four selected modes for a bulky block with r = 10.

It can be shown that a solution is given by detA = 0 and corresponds to necking of a
axially-loaded column. The Block’s thick limit simply requires

Uδ = 0 ⇒ U = 0 or δ = 0. (4.53)

This corresponds to a purely material-induced surface buckling. As before, this implies
that surface buckling is independent of the geometry parameters and can be regarded
as a local instability.

4.2 Finite Bending of a Rubber Block

Pure bending of beam-like specimens is a classical problem in the field of finite elas-
ticity. Typically considered are plane strain deformations of elastic rectangular blocks

64



4.2 Finite Bending of a Rubber Block

subjected to terminal moments. Under the premise of an incompressible, homogeneous
and isotropic hyperelastic material, an analytical solution was presented in the seminal
work of Rivlin 1949. As elaborated by Ericksen 1954, this is one of the few examples
where so called controllable universal solutions are possible for inhomogeneous deforma-
tions. Within this special class of materials, involving a strongly elliptic strain energy
function, the solutions characterize deformation states that can be maintained by surface
tractions alone, independent of the considered material.

Since Rivlin’s original work, various aspects of this problem type have been studied, such
as the case of compressible materials6, bending instabilities, and related deformations
like the unbending (straightening) of circular tubes. Some of these aspects are discussed
in the subsequent sections. For more details and references, the interested reader is
referred to the recent overview by Sigaeva 2018 as well as Sections 5.5 and 12.4 in Bigoni
2012.

The motivation to deal with this problem concerns its application as a benchmark for
numerical methods. For the sake of a general understanding, it is also noted that large
bending appears in many engineering applications or natural processes. For instance,
the modeling of bending instabilities of gastrointestinal tracts by Balbi et al. 2015, the
bio-inspired study of elasmoid fish scales in Rudykh and Boyce 2014 or the structural
analysis of offshore pipelines in Kyriakides and Corona 2007.

4.2.1 Principal Solution

Besides Rivlin’s original work, the subsequent derivations follow partly Bigoni 2012
(Section 5.5 therein) and Destrade et al. 2010.

Geometry and kinematics. Starting point is the semi-inverse7 approach of the pi-
oneering work of Rivlin 1949. Assumed is a plane strain flexural deformation of an
incompressible hyperelastic rectangular L × T block into a sector of cylindrical tube,
with opening angle α and inner and outer radii ri and ro, see Figure 4.9. The stress-free
reference configuration is described with Cartesian coordinates as

X = XiEi , with X1 ∈ [−T/2, T/2] and X2 ∈ [−L/2, L/2] , (4.54)

6Unlike for incompressible materials, the underlying equations become far more elaborated due to the
absence of the volume constraint. The rare studies are restricted to a specific material such as the
“special” Blatz-Ko rubber in Horgan and Murphy 2005.

7In contrast to inverse methods, the prefix “semi” implies that certain parts of the assumed displacement
field are arbitrary parameters which have to be determined by the underlying differential equations,
see the dissertation of De Pascalis 2010 for further details.
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B

Figure 4.9: Finite bending deformation of a 4×1 rubber block. The figuration is adapted
from Bigoni 2012.

where Ei are the material base vectors. It is convenient to use cylindrical coordinates
(r , θ) for the deformed configuration

x = rer = r
[
cos θ

sin θ

]
with

 r ∈ [ri, ro]
θ ∈ [−α/2, α/2]

(4.55)

and spatial base vectors er and eθ = − sin θE1 + cos θE2. The assumed deformation can
be interpreted as follows: planes normal to X1 deform to sectors of cylindrical surface
that are constant in r and planes normal to X2 remain planes that are constant in θ.
This implies a deformation field of the form

r = f (X1) and θ = g(X2), (4.56)

with unknown functions f and g. The deformation gradient follows as

F = ∂f
∂X1

er ⊗ E1 + f ∂g
∂X2

eθ ⊗ E2, (4.57)

directly providing the principal stretches λr = ∂f /∂X1 and λθ = f ∂g/∂X2. The incom-
pressibility constraint yields

J = λrλθ = ∂f
∂X1

(
f ∂g

∂X2

)
= 1 ⇒ ∂

∂X1

 1
∂f

∂X1
f

 = 0. (4.58)
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This is fulfilled by the ansatz

f (X1) =
√

2AX1 + B and g(X2) = X2

A + C , (4.59)

with real constants A, B and C . Obvious geometrical considerations provide

g(+L/2) != g(−L/2) ⇒ C = 0, (4.60a)

g(±L/2) != ±α/2 ⇒ A = L/α, (4.60b)

f (−T/2) != ri ⇒ B = r2
i + LT

α
= 1

2
(
r2

o + r2
i

)
. (4.60c)

Without loss of generality, Equation (4.60a) exploits the symmetry of the deformed block
with respect to the X1-axis. The last term in Equation (4.60c) uses the isochoric relation
LT/α = (r2

o −r2
i )/2, which constitutes that the bodies deformed and undeformed volume

are identical.

In summary, it can be concluded that deformation (4.55) or, more specifically, ansatz (4.59)
is determined by two of the three variables ri, ro and α. Following Destrade et al. 2010,
the opening angle α is chosen as a prescribed variable8, leaving, due to relation (4.60c),
either ri or ro as unknown. The functions (4.59) can be specified as

f (X1) =
√

2L
α

X1 + 1
2 (r2

i + r2
o ) and g(X2) = α

LX2. (4.61)

Equilibrium. Using the correspondence r → 1 and θ → 2, the principal components of
the deformation gradient are

F = diag (λ, λ−1,1) with λ := λ1 = 1
λ2

= L
αr . (4.62)

Using Equation (2.36), the principal Cauchy stresses are given as

σjj(r) = −p + λjW,j (no summation) (4.63)

with an arbitrary scalar pressure field p(r ,θ) and (•),j = ∂(•)/∂λj . With the absence of
body forces, equilibrium in radial and circumferential direction reads

∂σrr

∂r + σrr − σθ

r = 0 and ∂σθθ

∂θ
= 0. (4.64)

8More common in literature is to prescribe a terminal moment.
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The second term provides p = p(r), then solving (4.64)1 for p yields

p(r) =
∫
r

1
r (λ1W,1 − λ2W,2) dr + λ1W,1 + D, D ∈ R. (4.65)

Following Destrade et al. 2010 (see Equation (3.5) and (3.6) therein) a modified strain
energy function is introduced as

W̃ (λ) = W (λ,
1
λ

) ⇒ λW̃ ′ = λW,1 + 1
λ

W,2, (4.66)

where the prime denotes the derivative with respect to λ. Together with (4.65), (4.66)
and relation dr = −L/(αλ2) dλ, the stress components can be simplified to

σrr = −
∫
λ

1
r (λ1W,1 − λ2W,2)

−L
αλ2 dλ − D = W̃ − D, (4.67a)

σθθ = W̃ − λW̃ ′ − D. (4.67b)

With λi = L/(αri) and λo = L/(αro), the stress-free boundaries at the inner and outer
curved edges dictate

σrr(λi) = 0 and σrr(λo) = 0, (4.68a)

and determine

D = W̃ (λi) = W̃ (λo) (4.69)

in dependency of either ri or ro. This allows to write the stress in a simple form as

σrr = W̃ − W̃ (λi), (4.70a)
σθθ = W̃ − λW̃ ′ − W̃ (λi). (4.70b)

For a more concrete solution, material symmetry provides

W (λi,
1
λi

) = W ( 1
λi

, λi) = W (λo,
1
λo

) = W ( 1
λo

, λo). (4.71)

It follows

ro = L2

riα2 (4.72)
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and substituting that into the expression for B, Equation (4.60c), yields

r2
i − L4

α4r2
i

+ 2LT
α

= 0. (4.73)

The physically meaningful solution provides the inner radii

r2
i = −LT

α
+ L

√
T 2α2 + L2

α2 , (4.74)

and thus

B = L
√

T 2α2 + L2

α2 . (4.75)

For a prescribed α this fully determines the deformed configuration.

4.2.2 Example: Bending of a Neo-Hookean Block

The behavior of the stress states is discussed for the Neo-Hookean strain energy func-
tion (2.57). Using the simplifications (4.62) and (4.66) it can be expressed as

W̃ (λ) = µ

2

(
λ2 + 1

λ2 − 2
)

(4.76)

and provides the principal Cauchy stresses

σrr = µ
λ4λ2

i − λ2λ4
i − λ2 + λ2

i
2λ2λ2

i
, (4.77a)

σθθ = −µ
(λ2λ4

i + (λ4 − 3)λ2
i + λ2)

2λ2λ2
i

. (4.77b)

Here, using Equation (4.74), the inner radial stretch is given by λi = L/(αri). A block
with initial dimensions L = 4 and T = 1 is considered. Figure 4.10 shows the principal
Cauchy stress for various bended block configurations. The purpose of these plots is to
illustrate the influence of nonlinearity on the stress state. On the top, both principal
stresses are plotted onto the deformed geometry. Here, the dash-dotted line represents
the neutral fibre, i.e. the radial location where σθθ = 0. The neutral fiber moves inwards
as the deformation progresses. This effect is explained by the strain-stiffening in the
compression zone of the NH model, see also the discussion in Kanner and Horgan 2008.
The stress distribution in thickness direction is depicted by the graphs at the bottom of
Figure 4.10. As expected, the smallest angle α = π/3 resembles a good approximation
to a linear circumferential stress distribution across the thickness.
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Figure 4.10: Principal Cauchy stress for NH and parameters L = 4, T = 1 and µ = 1;
top: Cauchy stress plotted onto the deformed configuration; bottom: stress
distribution over the referential thickness for various opening angles.
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Stress resultants. The available stress components give rise to consider the underlying
structural problem. It consists of an “out-of-plane” infinitely wide plate. The corre-
sponding stress resultants are obtained via integration over the thickness. The normal
force reads

N =
ro∫

ri

σθθ dr = 0 (4.78)

and the bending moment is

M =
ro∫

ri

σθθr dr = µL2

4α2

(
2 ln λo

λi
− λ2

i
λ2

o
+ 3

2λ4
o

− 1
λ2

i λ
2
o

− 1
2λ4

i
+ 1

)
. (4.79)

Technical details of both integrals are provided in Appendix A.3. The bending moment
M can be related to the well-known linear bending moment

Mlin = α
EI
L = α

E/(1 − ν2)T 3

12L
ν=0.5= αµT 3

3L , (4.80)

valid for the thin limit T → 0. Inspired by Destrade et al. 2010 (Section 5 therein), the
non-dimensional parameter ϵ = αT/L is introduced. It contains all parameters that
describe the nonlinear deformation. With λ2

i =
√

1 + ϵ2 +ϵ an alternative representation
of the bending moment is

M = Mlin

(
ln (

√
ϵ2 + 1 − ϵ)

ϵ3 +
√

ϵ2 + 1
ϵ2

)
. (4.81)

Expansion in ϵ yields

M
Mlin

= 1 − 3
10ϵ2 + 9

56ϵ4 + O(ϵ6) (4.82)

and recovers the thin limit for small ϵ, i.e. small bending angles α ≪ 1 or a thin block’s
aspect ratio T/L ≪ 1.

To enhance the understanding of nonlinear bending, the interplay of both principal
stress components is illustrated in Figure 4.11. The physical need for the less intuitive
radial stress becomes obvious from the free body diagram of a (ro − rn) × ᾱ cylindrical
sector. The resulting radial and circumferential stresses, as shown in Figure 4.11, are as
follows:

Rr =
ᾱ/2∫

−ᾱ/2

cos θ
2σrrrn dθ and Rθ =

ro∫
rn

σθθ dr . (4.83)
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Figure 4.11: Illustration of the load-carrying behaviour of large bending equilibrium.
The neutral fibre is located at r = rn.

The radial resultant Rr contributes to equilibrium by “eating up” the vertical compo-
nents Rθ sin (ᾱ/2) of the circumferential resultant. Of course, at the inner boundary ri

the radial stress becomes obsolete, since Rθ = N = 0, see Equation (4.78).

4.2.3 Bending Instabilities

For a small ϵ, that is, a small bending angle α or a small aspect ratio T/L, the solution
to the bending problem remains unique. For sufficiently large ϵ, on the other hand,
one can expect a critical deformed state where buckling occurs. To avoid this in the
numerical studies, it becomes crucial to deal with this issue.

The incremental analysis of, among others, Coman and Destrade 2008 predicts a surface-
type buckling pattern in the form of smooth sinusodial wrinkles at the compressed side.
However, these types of instabilities are not directly observed in rubber experiments or
finite element simulations; see Gent and Cho 1999 or Sigaeva et al. 2018. The develop-
ment of creases (Sulci9) is observed as actual instability mode, earlier than the predicted
wrinkles. As remarked in Sigaeva 2018 the critical predictions of the incremental theory
are nonetheless close to the finite element results (a deviation of 4% was observed for
the eversion of a cylindrical tube). However, as shown by Cao and Hutchinson 2012,
wrinkling modes may be viewed as an incipient form of creasing deformations and the
number of predicted wrinkles appear to be similar to the developed number of creases,
see the discussion in Sigaeva 2018.

From these observations, a surface buckling criterion is assumed to be sufficient as an
estimation for the critical bending angle α. As shown in Section 4.1.4 the critical stretch

9Typically observed on the surface of greasy arms of infants or on the inner side of the reader’s elbow
while flexing the arm; see also Hohlfeld and Mahadevan 2011.
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of λc = 0.544 yields surface buckling. For thick (nearly) incompressible NH blocks, an
estimation of the critical bending angle is given by

λi
!= 0.544 ⇒ αc ≈ 0.77 L

T (4.84)

This formula will be used for the finite element simulations in the next section.10

10A similar formula is given in Bigoni 2012, Equation (12.146) in Section 12.4.
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Chapter 5

Nonlinear Locking Phenomena

Since the early days of the finite element method, research efforts have been devoted
to locking and unlocking of elements. The majority of publications either deal with
geometrically linear problems or apply unlocking schemes known from linear theory
to the nonlinear case, without special regard to geometrically nonlinear aspects. In the
following, locking effects that are induced by geometric nonlinearity are discussed. They
are referred to as nonlinear locking as opposed to locking from the linear theory.

In the context of three-dimensional shell formulations, Willmann et al. 2022 showed that
higher-order integration in combination with large bending deformations can trigger a
nonlinear Poisson stiffening effect. This effect is called nonlinear volumetric locking
in this work. It was identified as a deformation-dependent phenomenon with similar
characteristics as the volumetric locking effect known from linear theory. The reason
why this topic barely received attention in literature is related to numerical integration.
Standard rank sufficient integration, usually referred to as “full integration” (e.g. 2 × 2
Gauss points for a Q1 element), does automatically avoid nonlinear locking. It may be
interpreted as “reduced integration” with respect to critical nonlinear locking terms. The
purpose of this chapter is to answer the question, to what extent geometric nonlinearity
influences the volumetric and geometric locking behavior of the plane solid elements
described in Chapter 3.

Based on that, a model problem for the analysis of nonlinear locking is investigated and
possible remedies for nonlinear locking are discussed. Finally, a set of benchmarks shows
the effects of nonlinear locking on large deformation finite element simulations.
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5.1 Analysis of Nonlinear Locking Phenomena

5.1.1 Recap on Linear Locking

Locking manifests itself in reduced preasymptotic convergence rates, smaller than the op-
timal predicted one in error estimate (3.30). This effect depends on a critical parameter,
such as a material parameter describing the degree of incompressibility or the aspect ra-
tio of the element. The related locking phenomena are denoted as geometric locking and
volumetric locking, respectively. From a practical engineering perspective, a locking-free
response can be related to the ability to represent simple inhomogeneous deformation
states. For the present Q1 element variants this means that constant bending states
should be represented without showing parasitic stress/strain terms. This approach is
also used in the following nonlinear analysis. For further details, reference is made to
the dissertation of Koschnick 2004 as well as the mathematical oriented article by Suri
1996.1

5.1.2 Model Problem

Inspired by Andelfinger and Ramm 1993, Table 5.1 shows the displacement modes and
the resulting Green-Lagrange strain of a Q1 element. Terms added due to nonlinearity
are underlined. The modes 1-6 represent constant strain modes and are a prerequisite for
passing the nonlinear patch test. Modes 7-8 represent the hourglass modes, sometimes
referred to as linear bending modes. Focus lies on the approximation properties of a
single Q1 element to represent pure bending. The analytical solution of the finite bending
problem from Section 4.2 serves as a reference for the locking analysis. Figure 5.1
sketches the deformed and undeformed configuration of a bent block for the analytical
case (top) and discrete case (bottom). Due to the symmetry of the problem, only
modes 3, 6 and 7 contribute to the element deformation. The best approximation, a
single displacement based element can provide, is given by

u =
[
u
v

]
= 1

2

[
c3ξ + c7ξη

c6η

]
. (5.1)

Here, ci denote coefficients of generalized modal degrees of freedom of a Q1 element. The
coefficients of the bilinear bending mode 7 and the homogeneous stretch modes 3 and 6

1In Suri 1996, the authors proposed a definition of (volumetric) locking via a “locking ratio” that
compares the energy norm of the error e = uh − u of a compressible (ν = 0.3) finite element solution
with the one of nearly incompressible (ν → 0.5) one. This definition takes into account non-locking-
related effects, such as the smoothness of solution u, which can also deteriorate the convergence.
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depend on αe, the block’s aspect ratio re and the material properties. The compatible
displacement gradient of the displacement field given in Equation (5.1) reads

Hc =
[
(c3 + c7η) /Le c7ξ/Te

0 c6/Te

]
(5.2)

and provides the Green-Lagrange strain tensor Ec = 1
2

[
(Hc)T + Hc + (Hc)THc

]
. A

square element (re = 1) yields
E c

11
E c

22
2E c

12

 =


c3 + c7η

c6

c7ξ


︸ ︷︷ ︸

εc

+ 1
2


c2

3 + c7c3η + c2
7η2

c2
7ξ2 + c2

6
c2

7ξη + 2c7c3ξ


︸ ︷︷ ︸

Ec
nln

, (5.3)

with a split into a linear part εc and nonlinear part Ec
nl.

5.1.3 Deformation-Dependent Modal Analysis

Before considering an actual analysis, the effects of nonlinear locking are illustrated by
means of a modal analysis of the element stiffness matrix. This is a typical way to
analyze the locking behavior of elements. However, the major difficulty encountered in
the analysis of nonlinear locking is its deformation-dependent nature. As described later,
nonlinear locking is triggered by inhomogeneous element deformations. This means that
the eigenvalue analysis must involve an element deformation with nonzero displacement
mode 7 and/or mode 8. As a result of this, various deformed bending states with
αe = {0, 0.2, 0.4, 0.8} are considered. Figure 5.1 shows an example of such a deformation
for αe = π/2. The compressible Neo-Hookean (NH) strain energy function (2.58) is
used. The bending angle αe imposes an inhomogeneous Dirichlet constraint on the
lateral edges of the element. This is realized via Lagrangian multipliers; for technical
details, see Section 5.3.1. After the converged solution is obtained, an eigenvalue analysis
of the unconstrained 8 × 8 stiffness matrix2 is conducted. Apart from the increasing
stiffness, which affects the eigenvalues of the volumetric mode in the incompressible
limit (Λ → ∞), both hourglass eigenvalues of a locking-free stiffness matrix should
remain finite - independent of any parameter. Thus, a bending-like eigenvalue ωb is
computed for each set of eigenvalues. It is defined as the eigenvalue whose normed
eigenvector Φi is closest to the bending vector Φlin

b from linear theory:

min
i=1,...,8

{|ΦT
i Φ

lin
b − 1|} with Φlin

b = 1
2
[
−1 0 1 0 −1 0 1 0

]T
. (5.4)

2For EAS elements the enhanced parameters are eliminated via static condensation.
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modes

u c1 0 c3ξ c4η 0 0 c7ξη 0

v 0 c2 0 0 c5ξ c6η 0 c8ξη

E c
11 0 0 c3+ 1

2c2
3 0 1

2c2
5 0 c7η+ 1

2c2
7η2 1

2c2
8η2

E c
22 0 0 0 1

2c2
4 0 c6+ 1

2c2
6

1
2c2

7ξ2 c8ξ+ 1
2c2

8ξ2

2E c
12 0 0 0 c4 c5 0 c7ξ+ 1

2c2
7ξη c8η+ 1

2c2
8ξη

Table 5.1: Green-Lagrange strain space of the displacement based Q1 modes (Andelfinger
and Ramm 1993). Nonlinear strain terms are underlined. Possible mixed
strain terms due to mode interactions are not shown.

This cumbersome procedure is necessary since the bending-like mode of the nonlinear
stiffness matrix is not known a priori. The modal stiffness

(
Φlin

b

)T
KΦlin

b , typically used
in the linear case, turns out to be a combination of the eigenvalues of different strain
modes. These can deteriorate the desired bending-like modal stiffness, in particular
through the volumetric strain energy for nearly incompressible scenarios.

Figure 5.2 shows the eigenvalue ωb versus a critical parameter: (a) the element aspect-
ratio re and (b) the first Lamé constant Λ. The solid lines correspond to the eigenvalues
of the geometrically linear stiffness matrix of Q1 (black) and Q1/E4 (red). These are
given as

ωlin,Q1
b = Λ + 2µ

3re
+ µre

3 , ωlin,EAS
b = E

3re(1 − ν2) = Ẽ
3re

. (5.5)

Volumetric locking and shear locking are related to the incompressible limit Λ → ∞ and
the thin limit re → ∞, respectively. The triangles on the lines represent the calculated
eigenvalues of the (statically condensed) stiffness matrix of Q1/E4.

Although Q1/E4 is free from locking in the geometrically linear case, an artificial stiffen-
ing is observed. In situations where αe ̸= 0 and more than 2 × 2 Gauss points are used,
the eigenvalues critically depend on the parameters Λ and re. Furthermore, the effect
depends on αe, i.e., the degree of nonlinearity. Similar results to Q1/E4 are obtained
for Q1/H4 (not shown). Interestingly, Q1/HT4 only suffers from nonlinear volumetric
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Figure 5.1: Finite bending deformation of a an incompressible rectangular rubber block
exemplified for α = αe = π

2 ; top: reference solution; bottom: element ap-
proximation.
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Figure 5.2: Bending eigenvalue ωb according to Equation (5.4); left: geometric locking
test with µ = 5, Λ = 0 (ν = 0) and variable re; right: volumetric locking test
with µ = 5, re = 1 and variable Λ. Here, (♭ × ♯) denotes the number of Gauss
quadrature points in ξ- and η-direction.

locking, whereas the thin limit case does not yield locking. The reasons for these oberved
phenomena are discussed in the sequel.
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Chapter 5 Nonlinear Locking Phenomena

5.1.4 Geometric Locking Phenomena

The generic term nonlinear geometric locking is used to describe locking that is induced
by geometric nonlinearity and related to the geometric properties of the element, namely
the aspect ratio. This issue becomes especially relevant for the modeling of thin-walled
structures, where the element dimension in thickness direction is significantly smaller
than it is in-plane.

Q1. Considered is the bending scenario of the model problem from before. The Green-
Lagrange tensor 2E = diag (λ2, λ−2) − I is obtained from the reference deformation
gradient (4.62). Two simple observations can be made: first, the in-plane shear compo-
nent E12 is zero and second, the normal strain E11 and E22 depend only on X2, i.e., strain
and stress quantities are constant in X1. This is obviously not possible for the nonlinear
part of the strain approximation (5.3): E c

12 has a bilinear term and E c
22 has a quadratic

term in ξ, accounting for the stretch of transverse fibers. The latter is illustrated in
Figure 5.1 by the length change of the deformed and undeformed thickness fibers te and
Te, respectively.

To gain further insights, the stiffness matrix

K̆m =
∫
Ω

B̆TC
∣∣∣
u=0

B̆ dV (5.6)

is considered. Here, B̆(ci) is the nonlinear (Green-Lagrange) strain-displacement oper-
ator in terms of the modal degrees of freedom ci . The modal stiffness matrix K̆m can
be interpreted as the material part of the element stiffness based on the Saint-Venant
Kirchhoff model. Focus is put on the stiffness associated with the linear bending mode 7,
i.e., stiffness entry3

K̆m,77 = M
3re︸︷︷︸
(i)

+ reµ

3︸︷︷︸
(ii)

+c2
7

 TeM
5L3

e︸ ︷︷ ︸
(iii)

+ 2Λ
9LeTe︸ ︷︷ ︸

(iv)

+ LeM
5T 3

e︸ ︷︷ ︸
(v)

+ 4µ

9LeTe︸ ︷︷ ︸
(vi)

)
+ k(c3,c6). (5.7)

Here, M = Λ + 2µ is the longitudinal modulus and k a stiffness contribution that comes
from the constant stretch modes. Geometric locking concerns the following terms in
Equation (5.7): The contribution (ii) in (5.7) is well known from linear theory and related
to linear shear locking. It is independent of the deformation state but scales linearly
with the element’s aspect ratio re; see the black curve in Figure 5.2 (a). Contribution
(v) originates from the quadratic ξ-term in E c

22. Using re = Le/Te, its denominator

3This is related to the nodal stiffness matrix Km, i.e., the equivalent to (5.6), via K̆m,77 =(
Φlin

b
)T

KmΦlin
b , with Φlin

b defined in (5.4).
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5.1 Analysis of Nonlinear Locking Phenomena

contains the thickness Te raised to the third power. This produces severe stiffening in
the thin limit. Furthermore, the term depends on the “amount” of bending deformation
c2

7, hence locking becomes more intense with increasing nonlinearity. However, for the
linear case as well as for nonlinear homogeneous deformations c7 = 0 and nonlinear
locking does not occur. This phenomenon is related to E c

22 and denoted as nonlinear
trapezoidal locking in analogy to the linear locking phenomenon described in Macneal
1987. Finally, contribution (vi) comes from the bilinear term in E c

12 and scales linearly
with 1/(LeTe). Therefore, it does not cause “nonlinear shear locking”, since it does not
depend critically on re. However, parasitic shear strain/stress will occur. The remaining
terms (i, iii, iv) are discussed in the context of volumetric locking.

Q1/E4. In the context of geometric locking, the enhancement of this element removes
linear shear locking, such that term (ii) cancels. However, the nonlinear contributions,
in particular (v), remain. The results of the modal analysis, namely the gap between
the nonlinear branches and the linear one in Figure 5.2 (a), can be interpreted as the
impact of nonlinear geometric locking due to (v). Here, the Poisson’s ratio is set to zero
(i.e., Λ = 0 and M = 2µ) in order to exclude any effects that are related to volumetric
locking. Nonlinear geometric locking shows up for the 4 × 4 integrated elements. At a
specific slenderness the eigenvalues become larger as the aspect ratio re increases. This
effect is more pronounced for larger α. In contrast to that, the “reduced” integrated
version of Q1/E4 provides reasonable results, i.e., reduced bending stiffness in the thin
limit. This is due to the fact that the quadratic ξ-terms that cause (v) are not covered
by the 2 × 2 quadrature.

Q1/H4. By assigning α3 = −c7/Te, the parasitic shear terms in (5.3) are cancelled.
For α1 = 0 and α4 = 0 (these parameters are required for the rotated bending case
c8 ̸= 0) the remaining Green-Lagrange strain expression then reads


E11

E22

2E12


H4

=


c7η + c3

c6 + α2η

0

+ 1
2


c2

7η2 + c7c3η + c2
3 + c2

7ξ2

α2η
2 + 2α2c6η + c2

6 + c2
7ξ2

−c7α2ξη + c2
7ξη − c6c7ξ + c7c6ξ

 . (5.8)

The enhancement of Q1/H4 does not improve with respect to the nonlinear locking
terms. In addition to Q1/E4 there even appears a ξ2-term in E11. However, the behavior
of the eigenvalues ωb (not shown) are comparable to the ones of Q1/E4 in Figure 5.2.

Q1/HT4. The enhancement of Q1/HT4 directly influences the locking behavior in a
favorable way. Again, by assigning α3 = −c7/Te, the parasitic shear terms in (5.2)
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Chapter 5 Nonlinear Locking Phenomena

are cancelled. As a result, the parasitic ξ2-term and thus stiffness contribution (v) are
automatically avoided and the element is free from nonlinear geometric locking. For
α1 = 0 and α4 = 0 the remaining Green-Lagrange strain expression reads


E11

E22

2E12


HT4

=


c7η + c3

c6 + α2η

0

+ 1
2


c2

7η2 + 2c7c3η + c2
3

α2η
2 + 2α2c6η + c2

6
0

 . (5.9)

The corresponding eigenvalues ωb (not shown) for all integration variants are comparable
to the ones in Figure 5.2 (a) for Q1/E4 with 2 × 2 quadrature points.

5.1.5 Volumetric Locking Phenomena

The term nonlinear volumetric locking is used to describe volumetric lockingthat is in-
duced by geometric nonlinearity. In order to analyze the locking issue, the incompressible
limit ν → 0.5 (or equivalently Λ → ∞) is studied. This is rather a thought experiment,
since full incompressibility is not possible for the present strain driven formulations.
The nonlinear isochoric volume constraints can be expressed via

detF = 1 and detC = 1. (5.10)

For the energy to remain finite, (5.10) must be met exactly. The approximation prop-
erties to reproduce this volume constraint determine the locking behavior in the quasi-
incompressible case. However, this is required only at the integration points and gives
rise to advantageous integration schemes, see the later discussion in Section 5.2.1. This
topic, however, is not taken into account in the analysis that follows.

Q1. The right Cauchy-Green tensor based on (5.3) is given as Cc = 1+2Ec. It follows
that the approximation of nonlinear volume constraint (5.10)2 is

detCc = A1 + A2η + A3η
2 != 1, (5.11)

where the deformation-dependent coefficients Ai are given in Appendix A.4. Assumed is
the correct representation of the constant part of the isochoric strain state, i.e., A1 = 1.
This yields

c3 = −c6/(c6 + 1), (5.12)
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5.1 Analysis of Nonlinear Locking Phenomena

and Equation (5.11) simplifies to

detCc = 1 + 2 (c6c7 + c7) η +
(
c2

6 + 2c6 + 1
)

c2
7η2 != 1. (5.13)

In comparison with the linear volume constraint tr εc = 0, Equation (5.13) contains
additional nonlinear terms, which give rise to term (iii), (iv) and (v) in Equation (5.7).
They spoil the element’s ability to represent the volume constraint exactly and are the
reason for nonlinear locking. However, it has been shown in Willmann et al. 2022 that
the locking behavior is, first of all, dominated by the linear terms. Thus, it becomes
interesting to study elements that are locking-free in the linear case. This is approached
next.

Q1/E4. The right Cauchy-Green tensor is given as CE4 = 1 + 2
(
Ec + Ẽ4

)
. The

approximation of the nonlinear volume constraint (5.10)2 is

detCE4 = A1 + B2η + B3η
2 + B4ξ

2 + B5ξ
2η + B6η

3 != 1. (5.14)

Here, Bi(c7,c3,c6,α2,α3) are further nonlinear deformation-dependent constants provided
in Appendix A.4. In addition to (5.12), the relations

α3 = −c7(c3 + 1)
2 , α2 = −c7c3

6 − 3c7c2
6 − 3c7c6 − c7, (5.15)

are assumed. By that, shear locking as well as a violation of the volume constraint for
linear kinematics are avoided. Now, Equation (5.14) can be expressed as

detCE4 = 1 + c2
7

(1 + c6)2 ξ2 − 3(1 + c6)2c2
7η2 + 2c3

7
1 + c6

ηξ2 − 2(1 + c6)3c3
7η3. (5.16)

Remarkably, the comparison with the Q1 element shows that this strain enhancement
yields additional nonlinear terms. The terms with ξ2 and ξ2η are caused by α3 and the
η3-term by α2.

Figure 5.2 (b) shows the impact of nonlinear volumetric locking on the stiffness matrix
of Q1/E4. It is less severe than linear volumetric locking, but it also depends critically
on Λ and on the degree of nonlinearity, i.e., the value of αe. The sudden increase of
eigenvalues is caused by the fact that the eigenvalue of the homogeneous stretch mode
(which remains finite at around ten, not shown) continuously merges with the bending
mode over a certain range of Λ. It can also be seen that the eigenvalues for “reduced”
2 × 2 Gauss integration and αe = 0.8 do not depend critically on Λ. The reason for that
is that all non-constant terms in (5.16) are not “seen” by the quadrature rule used.
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Q1/H4. Again, using (5.12), the discrete version of volume constraint (5.10)1 reads

detFH4 = 1 + (α2c3 + c7c6 + α2 + c7)η + α2c7η
2 − α3c7ξ

2 != 1. (5.17)

The enhanced coefficients

α3 = −c7

2 , α2 = −c7 + c6c7

c3 + 1 , (5.18)

provide

detFH4 = 1 −
(
c2

6 − 2c6 − 1
)

c2
7η2 + 1

2ξ2c2
7

!= 1. (5.19)

Similar to Equation (5.16), the presence of nonlinear terms prevents a correct represen-
tation of the volume constraint.

Q1/HT4. A favorable behavior is observed for the enhancement (5.23c). It is possible
to eliminate the parasitic shear term for this formulation at the displacement gradient
level. Thus, the element does not suffer from nonlinear ξ-terms and the locking issue
reduces to

detFHT4 = 1 −
(
c2

6 − 2c6 − 1
)

c2
7η2 != 1. (5.20)

The behavior of the eigenvalues ωb for both (not shown), Q1/HT4 and Q1/H4, are
qualitatively comparable the one of Q1/E4 in Figure 5.2 (b).

Special case: Saint-Venant Kirchhoff material. The locking behavior in the context
of the widely used SVK material with a strain energy function (2.53) is somewhat
different compared to the NH material. The trace of the Green-Lagrange strain tensor
governs the volumetric part of the strain energy and the incompressibility constraint is
modeled by

trE = 0. (5.21)

As before, linear shear locking and volumetric locking are avoided by assigning specific
values to α2 and α3. This yields the expressions

2trEE4 = c2
7η2 + ξ2c2

7, (5.22a)
2trEH4 = D1η

2 + ξ2c2
7, (5.22b)

2trEHT4 = D1η
2. (5.22c)

84



5.2 Remedies to Avoid Nonlinear Locking

with D1 = c2
7 + [−c7(c3 + 1)/(c6 + 1)]2. The results of Q1/H4 and Q1/HT4 are similar

to the fully nonlinear analysis from before. However, the results of Q1/E4 only contains
quadratic terms in ξ and η.

5.2 Remedies to Avoid Nonlinear Locking

5.2.1 Numerical Integration: Theory and Practice

The locking analysis of the previous section is based on the premise that exact integra-
tion is used. However, in practice, it is common to use numerical integration schemes.
Typically, the number of Gauss points is chosen such that a rank sufficient element
stiffness matrix is ensured, e.g., 2 × 2 Gauss points for bilinear quadrilaterals. In the
context of reduced integration techniques, the number of Gauss points may even be
further decreased. In both cases, the issue of nonlinear locking is avoided a priori. This
naturally raises the question:

Is nonlinear locking a purely academic artefact – not relevant in practice?

The answer to that depends on the application. For most cases, however, this issue is not
relevant, since standard or reduced integration schemes are common practice. Further-
more, the phenomenon becomes only relevant for scenarios with large inhomogeneous
deformations in combination with a critical parameter. Such situations appear only in
a minority of solid mechanic problems.

Nevertheless, scenarios exist where higher-order integration is demanded. As shown
in Willmann et al. 2022, a typical example is the simulation of a sheet metal forming
process with 3d shell elements. Large bending scenarios require higher-order integration
in shell thickness directions in order to capture plastic effects. Another example is
the EAS formulation proposed in Simo et al. 1993. Here, higher-order integration was
proposed to alleviate hourglassing under plane strain tension. Both examples fulfill the
conditions that yield nonlinear volumetric locking, i.e., the presence of large strain in
combination with a quasi-incompressible material.

To understand the impact of higher-order integration, the previous analysis of the EAS
formulations provides useful insights. Exemplified is a quasi-incompressible bending
scenario of Q1/E4. The constraint (5.14) contains quadratics and cubics in ξ and η

and thus quartic and sextic functions in the energy expression, e.g., in the integrand
of residual vector and stiffness matrix. Standard Gauss-Legendre integration, which is
exact up to a polynomial degree p = 2NQP − 1, requires at least 3 × 3 Gauss points to
capture the quadratic expressions in (5.14).
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5.2.2 Assumed Stress Elements

The assumed stress element Q1/S5 from Section 3.4 fully avoids nonlinear locking. In
a nutshell, the problematic strain terms in Ec are projected onto the stress-based strain
E(S) via the kinematic constraint (3.63b). Theoretically, nonlinear locking can be rein-
troduced by enhancing the stress ansatz (3.60) with higher-order polynomials. Nu-
merical experiments have shown that equivalent (up to machine precision) results to
Q1/Em versions can be obtained. This analogy to EAS elements is also known from
linear theory; see Andelfinger and Ramm 1993. Similar to that, it can be shown that
displacement-pressure element formulations can avoid nonlinear volumetric locking.

5.2.3 Novel Enhanced Assumed Strain Elements

In Section 3.3, various EAS formulations are presented that use an enhanced compat-
ible displacement gradient (5.2) as well as an enhanced compatible Green-Lagrange
strain (5.3). The following extended versions of these formulations are introduced as:

Q1/Em: EEm = Ec + Ẽm, (5.23a)
Q1/Hm: HHm = Hc + Fc

0H̃m, (5.23b)
Q1/HTm: HHTm = Hc + Fc

0H̃
T
m. (5.23c)

Here, m indicates the number of enhanced strain modes. For m = 4, the elements
resemble the classical formulations Q1/E4, Q1/H4 and Q1/HT4 presented in Section 3.3,
with

Ẽpar
4 =

[
α1ξ α3ξ + α4η

α3ξ + α4η α2η

]
and H̃par

4 =
[
α1ξ α4η

α3ξ α2η

]
. (5.24)

The F0-modification for Q1/H4 is the only exception, as it is required to ensure frame
invariance for arbitrary strain enhancements. Due to the orthogonality condition of the
enhanced strain, see Bischoff et al. 1999, Legendre polynomials are used for the enhanced
strain interpolation functions. They are defined as

Lξ
k = 1

2kk!
dk

dξk

(
ξ2 − 1

)k
, Lη

l = 1
2l l!

dl

dηl

(
η2 − 1

)l
, Lξη

kl = Lξ
k(ξ)Lη

l (η). (5.25)

Q1/Em. Considered is the model problem from before for the derivation of novel
strain enhancements. To overcome nonlinear locking, the additive extension of enhance-
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ment (5.24)1 is further specified as

Ẽpar
Em = Ẽpar

E4 +
[
ẽ(ξ,η) α5ξη

α5ξη α6Lξ
2

]
. (5.26)

Here, ẽ is introduced as a (still unknown) function that will be used to alleviate vol-
umetric locking. The enhanced mode α5ξη is introduced to eliminate the parasitic
shear term c2

7ξη and α6Lξ
2 eliminates the nonlinear trapezoidal locking term 1

2c2
7ξ2 in

the Green-Lagrange strain expression (5.3). They effectively eliminate the nonlinear
parasitic contributions (v) and (vi) of the material stiffness (5.7). Enhancement ẽ is
constructed such as to avoid the issue of nonlinear volumetric locking. With (5.12) and
(5.15) the volume constraint detCEm != 1 is solved for ẽ. Transforming the equation
provides

ẽ = 2c3
1c3η

3 + 2c3
1η3 + 3c2

1η2

−2 + 4c1(1 + c3)η
= (3c2

1η2)/2 + 4c3
1(1 + c3)η3 + 8c4

1(1 + c3)2η4 + O(η5)

= (3c2
1η2)/2 +

∞∑
n=2

2ncn+1
1 (1 + c3)n−1ηn+1.

(5.27)

Depending on the numerical integration scheme, this provides clear guidance on how
to construct an ansatz for ẽ in order to avoid nonlinear volumetric locking. Introduced
is ẽ = ẽn as a set of n enhanced interpolation functions. Exemplified for NQP Gauss-
Legendre points in η-direction, the terms in the expansion of (5.27) must be covered up
to η(NQP−1). Thus NQP > 2 requires

ẽ(NQP−1) = α7Lη
2 + α8Lη

3 + . . . + α(NQP+4)Lη
(NQP−1). (5.28)

The preceding considerations are based on a special case of the previous model problem,
in which only bending mode c7 is active. More generally, it is desired to cover bending in
both directions. Switching to Voigt notation, the following enhanced strain interpolation
matrix is introduced

Mpar
Em =


ξ 0 0 0 0 0 Lη

2 . . . 0 Lη
n+1

0 η 0 0 0 Lξ
2 0 . . . Lξ

n+1 0
0 0 ξ η ξη 0 0 . . . 0 0

 , (5.29)

with m = 5 + 2n. The corresponding element formulations which will be used in the
remainder of the work are Q1/E7, Q1/E9 and Q1/E11.
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Q1/HTm. An additive extension of the enhancement (5.24)3 is considered

H̃par
HTm =

(
H̃par

4

)T
+
[
h̃(ξ,η) 0

0 0

]
. (5.30)

Introducing h̃ = h̃n and using the simplification (5.12) and (5.18), the volume constraint
detFHTm != 1 requires

h̃ = α2
2η2

(1 + c3)3 − α3
2η3

(1 + c3)4 + α4
2η4

(1 + c3)5 + O(η5)

=
∞∑

n=2

(−α2η)n

(1 + c3)n+1

(5.31)

Thus, for NQP > 2 the enhanced ansatz is given by

h̃(nQP−1) = α5Lη
2 + α6Lη

3 + . . . + α(nQP+2)Lη
(nQP−1). (5.32)

Again, the general strain interpolation matrix is given by

Mpar
HTm =


ξ 0 0 0 0 Lη

2 . . . 0 Lη
n+1

0 η 0 0 Lξ
2 0 . . . Lξ

n+1 0
0 0 ξ 0 0 0 . . . 0 0
0 0 0 η 0 0 . . . 0 0

 (5.33)

with m = 4+2n. In this case, Mpar
HTm is related to the displacement gradient, as opposed

to (3.55). The corresponding element formulations, that will be used in the remainder
of the work, are Q1/HT6 and Q1/HT8.

Q1/Hm. In analogy to Equation (5.30), and using (5.12) and (5.18), the volume con-
straint detFHm != 1 requires

h̃ = α3c1ξ
2

1 + c3
+ α2

2η2

(1 + c3)3 − α3c1α2ηξ2

(1 + c3)2 − α3
2η3

(1 + c3)4 + O(η4,η2ξ2)

=
∞∑

n=2

αn
2 ηn

(1 + c3)n+1 +
∞∑

m=1

α3c1(−α2η)m−1ξ2

(1 + c3)m .

(5.34)

Compared to (5.31), additional mixed terms appear. These arise due to the ξ-terms
enhanced displacement gradient. Proposed is a strain interpolation matrix of the form
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MH10 =


ξ 0 0 0 Lξ

2 Lη
2 Lξη

12 0 0 0
0 η 0 0 0 0 0 Lη

2 Lξ
2 Lξη

21
0 0 η 0 0 0 0 0 0 0
0 0 0 ξ 0 0 0 0 0 0

 , (5.35)

with m = 10. The corresponding element, that will be used in the remainder of the
work, is Q1/H10.

5.3 Numerical Experiments

Various simulations are performed to highlight the impact of nonlinear locking. All
simulations are performed under the following technical specifications:

• Numerical integration crucially influences the locking behaviour. For that rea-
son, various scenarios with Gauss-Legendre as well as Gauss-Lobatto4 quadrature
schemes are considered.

• Stress resultants, e.g., the bending moment, are calculated with the same integra-
tion points that are used for the computation of the stiffness matrix.

• Stress recovery is based on the stress values at the integration points. Stress-
plots are produced via bilinear interpolation between these points. Therefore,
the presented results may differ from simulations with “standard” finite element
routines, where special stress recovery techniques (see for instance Chapter 13 in
Zienkiewicz and Taylor 2000) are used.

• The considered element formulations are:

– Qp: Displacement-based quadrilateral with polynomial degree p.

– Q1/Em: EAS formulation based on enhanced Green-Lagrange strain. Here
m denotes the number of enhanced modes according to Equation (5.29).

– Q1/Hm: EAS formulation based on enhanced displacement gradient with
the incompatible “Wilson” modes. Here m denotes the number of enhanced
modes according to Equation (5.35).

4They have the special feature that the outer points are always located at the element boundary at
(ξ,η) = ±1.
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– Q1/HTm: EAS formulation based on enhanced displacement gradient with
the transposed of the Wilson modes. Here m denotes the number of enhanced
modes according to Equation (5.33).

– Q1/S5: Assumed stress element according to Section 3.4.

The results of Q1/S5 are considered to be, besides the analytical solution, a numerical
reference solution. Its performance can be considered a “target” for all other Q1-based
formulations.

5.3.1 Finite Bending Problem – Displacement Controlled

First, the bending problem of Section 4.2 is considered. The isochoric analytical solution
of the principal stress components serves as a reference solution. Figure 5.3 sketches
the deformed and undeformed mesh configuration of an exemplary finite element model.
The left and right edge, are supported with a roller support, whereas the lower and
upper edges remain traction-free. The deformation is controlled by the opening angle α,
which prescribes the inclination of the right support axis, i.e. each element edge at ∂Ωα.
This is computationally realized via the method of Lagrangian multipliers, incorporating
the constraints

n̂(α) · ne(de) = 0 e ∈ Ê . (5.36)

Here, Ê denotes the set of elements with edges at ∂Ωα, ne the corresponding outward
normal vector and n̂ the normal with the desired inclination.

The compressible Neo-Hookean strain energy (2.58) is used for the numerical computa-
tions. To reproduce a quasi-incompressible material response, Young’s modulus E = 100
and Poisson’s ratio ν = 0.499 (cf. Λ ≈ 16644.42 and µ ≈ 33.356) are used unless oth-
erwise stated. The mesh is nX1

e × nX2
e , where nXi

e is the number of elements in the Xi-
direction. In most cases, square-shaped elements are considered, i.e., nX1

e = ⌈T/L⌉ ·nX2
e .

Quadrature with 5×5 Gauss-Lobatto points (comparable to 4×4 Gauss points) is used.
Depending on α and aspect ratio T/L, physical instabilities and artificial instabilities
(“hourglassing”) can occur. As elaborated previously, a rough estimate for the critical
opening angle is given in Equation (4.84), i.e., αc = 0.77L/T . In the subsequent analysis
α is chosen to be below that value. However, depending on the element’s aspect ratio,
some formulations also suffer from artificial instabilities. These may occur before αc is
reached.
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Figure 5.3: Finite bending problem; example of a FE model with a (3 × 12) mesh and
parameters {L = 4, T = 1, α = 4π/5}.

Stress quality. The geometric parameters L = 4, T = 1 and α = π/2 are consid-
ered. Figure 5.4 and 5.5 show the normal components of the second Piola-Kirchhoff
stress S (using correspondence X1 → 1 and X2 → 2), plotted on the deformed mesh
configuration. For reasons of simplicity and reproducibility, this stress measure is pre-
ferred (instead of the Cauchy stress), since no coordinate transformation on element
level is required. Moreover, the results of S11 and S22 coincide qualitatively with the
circumferential and radial Cauchy stresses, respectively.

Figure 5.4 shows the analytical solution as well as various finite element results. The
results of Q1 show severe (mainly linear) volumetric locking and shear locking. The
stress oscillations show high deviations to the analytical solution. The effect of nonlinear
volumetric locking is observed for Q1/E4 and Q1/HT4. Both show milder oscillations
than Q1, but still fail to reproduce the analytical solution properly, in particular at the
element boundaries. As predicted, the oscillations of Q1/H4 are constant in X1-direction
(ξ-direction within the element), whereas Q1/E4 oscillates in both directions. The stress
results of Q1/H4 (not shown) are similar to the ones of Q1/E4.

Figure 5.5 depicts the results of elements elements that avoid or alleviate nonlinear
locking. In contrast to the standard EAS results, Q1/S5 shows a good agreement with
the analytical solution (within the limits of coarse mesh accuracy). The results of the
novel EAS formulations show great improvements compared to the standard versions.
Q1/HT6, Q1/E7, and Q1/E9 stresses are visually comparable to Q1/S5, with only minor
oscillations in S22.
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Figure 5.4: Stress quality; finite bending problem {L = 4, T = 1, α = π/2, ν =
0.499 (ν = 0.5 analytical)}. Second Piola-Kirchhoff stress plotted onto the
deformed configuration. Colour plots are produced with bilinear interpola-
tion between the 5 × 5 Gauss-Lobatto points inside each element.
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Figure 5.5: Stress quality; finite bending problem {L = 4, T = 1, α = π/2, ν =
0.499 (ν = 0.5 analytical)}. Second Piola-Kirchhoff stress plotted onto the
deformed configuration. Colour plots are produced with bilinear interpola-
tion between the 5 × 5 Gauss-Lobatto points inside each element.
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Figure 5.6: Cauchy stress at the clamped edge at x1 = 0; (a) circumferential stress
and (b) radial stress; numerical results are computed with three elements
in thickness direction; finite bending problem {L = 4, T = 1, α = π/2, ν =
0.499 (FEM), ν = 0.5 (analytical)}. Note: at the clamped edge σθθ = σ11
and σrr = σ22, plots are produced with linear interpolation between the five
Gauss-Lobatto points at the corresponding each element edge.

Figure 5.6 shows the principal Cauchy stress distribution along the radial section at the
clamped edge. The analytical solution and linear interpolated stress values for various
Q1/Em formulations are plotted. The plots show the dominant order, that degrades
the accuracy; for example, Q1/E7 is free of quadratic oscillations, which are present in
Q1/E4, but still shows cubic oscillations. These are not present for Q1/E9, where, on
the other hand, quartic oscillations appear.

Convergence study. For various input parameters the relative L2-error

e(σij) =
∫ t

0 (σij − σh
ij)2dx2∫ t

0 (σij)2dx2
(5.37)

of the Cauchy stress at the clamped edge (at X1 = 0) is computed. The error will
not converge to zero because the numerical results are based on a quasi-compressible
material. However, for the present investigations this is not relevant for the mesh-sizes
used herein.

For α = π/2, L = 4 and T = 1, Figure 5.7 (a,b) plots the relative error of the circum-
ferential stress σ11 and radial stress σ22, respectively, over the number of elements in
X2-direction. The standard Q1 element shows the typical locking symptoms. Reduced
preasymptotic convergence behaviour as well as a larger error than the fully locking-free
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Figure 5.7: Finite bending problem (a,b,c) {α = π/2, L = 4, T = 1} and (d) {L =
8, T = 1}. Stress convergence.

assumed stress element Q1/S5. The results of the Q1/Em versions are visible between
those curves. They lack linear locking but suffer from nonlinear locking that is inversely
proportional to m. As expected, the nonlinear locking pathology is reduced by the higher
order EAS elements Q1/E(7,9,11), each of which improves the error. Interestingly, the
results of all Q1/Em show higher preasymptotic convergence rates than theoretically
predicted. These rates eventually fit into the curve of the “target” Q1/S5. This be-

95



Chapter 5 Nonlinear Locking Phenomena

Q1
Q1/HT4

Q1/HT6
Q1/HT8

Q1/H4
Q1/H8

Q1/S5

10−3

10−2

10−1

100

101

102

1 10 100

1
1

2

1

1
1

e(
σ

θ
θ
)

nX2
e

(a)

10−2

10−1

100

101

102

103

1 10 100

1
1

2
1

1
1

e(
σ

rr
)

nX2
e

(b)

10−3

10−2

10−1

100

101

102

101 102 103 104 105 106

nX2
e = 10

e(
σ

θ
θ
)
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Figure 5.8: Stress convergence; finite bending problem (a,b,c) {α = π/2, L = 4, T = 1}
and (d) {L = 8, T = 1}.

haviour contradicts the mathematical definition of locking which constitutes reduced
preasymptotic convergence rates; see Babuška and Suri 1992.5

Figure 5.7 (c) plots the error against an increasing Lamé constant Λ for a fixed (100×10)
mesh. First, the error slightly decreases, since the error is dominated by the difference
between the compressible (FEM) and incompressible (reference) solutions. Following

5A similar preasymptotic behaviour is observed for locking in the context of isogeometric formulations,
see Adam et al. 2014.
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that, the simulations where volumetric locking becomes dominant branch off from the
locking-free curve of Q1/S5.

An interesting feature of nonlinear locking is its deformation dependency, e.g. the larger
the (bending-) deformation the stronger is its impact. To analyze this further, a series
of simulations is conducted for various opening angles α and fixed geometry parameters
L = 8 and T = 1. For nX2

e = 3, Figure 5.7 (d) shows the error versus increasing values
of α.

The plots in Figure 5.8 correspond to the same problems. Here, Q1/Hm and Q1/HTm
formulations show a similar behaviour than Q1/Em. It is remarked that the difference
between Q1/H4 and Q1/HT4 is related to the mixed terms in (5.34).

5.3.2 Slender Beam Problem – Force Controlled

The introductory example of Figure 1.2 is reconsidered. It consists of a slender beam-
like block, discretized with a single element layer over the thickness. The Saint-Venant-
Kirchhoff material model is used. The tip of the beam is subjected to an end bending
moment M̂ such that the initially straight configuration coils up to a circle. The results
are compared with the analytical thin-beam solution, also valid for compressible mate-
rials, see Equation (4.80). Unless otherwise stated, 3 × 3 Gauss integration is used. As
a measure of accuracy, the “coiling ratio” rc = θ/(2π) is introduced. Here, θ denotes the
change of angle of the edge at the tip of the beam with respect to the initial configura-
tion. The thin limit target is rc = 1, i.e., θ = 2π. The cases rc > 1 and rc < 1 indicate
simulation results that are too soft or too stiff, respectively.

The results for Q1 and Q1/E4 are depicted in Figure 5.9. The stiffness increases with
Λ (a) and with the slenderness L/T (b), i.e., for Λ → ∞ (or ν → 0.5) and T → 0. The
difference between these curves reflects linear locking, whereas the gap between Q1/E4
and the reference value occurs mainly due to nonlinear locking. It can be observed that
the influence of nonlinear locking is less intense than it is for linear locking. Similar to
the 2 × 2 integrated Q1/E4, the novel EAS formulation Q1/E7 performs superior. It is
capable of modeling a full coiling of the beam, independent of the critical parameters.
As shown in Equation (5.22), this enhancement of Q1/E7, in the context of a SVK
material, is sufficient to fully remove nonlinear locking. Again, similar results, as with
the novel EAS elements, can be obtained by applying 2 × 2 “reduced integration”.
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Figure 5.9: Coiling ratio (rc) in dependence of the Lamé parameter (a) and the slender-
ness (b). The reference solution for the thin limit is rc = 1.0.

5.3.3 Comment on Further Numerical Results.

It is once again emphasized, that the described nonlinear locking phenomena depend
on the joint interaction of (i) a critical locking parameter, (ii) the integration scheme
and (iii) the presence of large inhomogeneous element deformations. For this reason,
the effects of nonlinear locking are negligibly small for a large number of benchmarks.
Two main points are of importance: first, mesh refinement will immediately reduce the
“amount” of inhomogeneous deformations on element level. This is because the constant
strain modes increasingly dominate the element response with (uniform) mesh refine-
ment. Second, many solid mechanic problems, even for coarse meshes, do not involve
such severe inhomogeneous deformations as shown in the previous bending experiments.
Thus, for problems, as for instance the well-known “Cook’s Membrane” (see for instance
Glaser and Armero 1997), with coarse meshes and the presence of (i) and (ii), nonlinear
locking has no significant influence on the simulation results.
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Chapter 6

Physical and Artificial Instabilities of
Nonlinear Finite Elements

This chapter contains further aspects already published in Bieber et al. 2022. The
underlying mechanisms of physical and artificial instabilities within a finite element
analysis are investigated using simple concepts known from structural mechanics. This
provides insights into the causes of hourglassing and is an important step towards un-
derstanding possible stabilization strategies. The proposed class of stabilized elements
is tested by means of a deformation-dependent eigenvalue analysis and a selected set of
benchmarks.

6.1 Literature Review

Due to the extensive literature in this area, the following overview is limited to the
most important contributions, primarily related to the enhanced assumed strain (EAS)
method. A particular focus lies on two topics: first, works related to the analysis of
artificial instabilities in finite element analysis, including contributions that deal with
the issue of benchmarking against physical instabilities. The second topic focuses on
works that deal with potential remedies. For further details, reference is made to the
textbook by Wriggers 2008, the review article by Pfefferkorn and Betsch 2019 and the
introduction in Bieber et al. 2022.

The first study on the hourglassing phenomenon was presented in Wriggers and Reese
1996 and Neto et al. 1995. The source of this pathology was related to large strain
compressive element deformations. Herein, the corresponding hourglassing effect is re-
ferred to as geometric hourglassing. Korelc and Wriggers 1996 determined the necessary
conditions for stable EAS elements using a parameter-dependent eigenvalue analysis.
The connection of hourglassing under tensile deformations to material instabilities was
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addressed in the readable article by Armero 2000. Herein, this pathological phenomenon
is referred to as material hourglassing. Armero also emphasized the influence of the el-
ement’s aspect ratio with respect to geometric hourglassing. Interestingly, the obvious
analogy to established concepts in structural mechanics received less attention in the
aforementioned references. Exceptional contributions are Wall et al. 2000, Sussman and
Bathe 2014 and Bieber et al. 2022. All three use the buckling phenomenon of thin struc-
tural members to explain geometric hourglassing. As a result of this, the latter reference
discovered also a new hourglassing effect for axially compressed thin incompatible mode
elements (see Section 6.2 herein).

A decisive topic in the analysis of hourglassing is a thorough benchmarking. The fi-
nite element model should accurately capture physical instabilities, without showing
unphysical numerical instabilities. A particular focus on that can be found in Auricchio
et al. 2005 and Auricchio et al. 2013. Both publications point out the problems of some
displacement-pressure type element formulations of showing an accurate stability behav-
ior. Many elements were shown to be numerically stable under tension or compression,
with hourglassing in the other case. A further discussion, including a three-dimensional
bifurcation benchmark, can be found in Schröder et al. 2017. An analyses with regard
to the influence of mesh-distortion can be found in Korelc and Wriggers 1996.

The groups around Peter Wriggers and Stefanie Reese devoted intense research on pos-
sible remedies. Within the framework of reduced integrated Q1 elements, they proposed
various element formulations with a particular focus on hourglassing-free behavior (both
geometric- and material-induced); see for instance Reese and Wriggers 2000 and Reese et
al. 2000 for two- and three-dimensional problems, respectively. The elements are based
on a physical EAS-derived “stabilization” technique, and thus carry the same hourglass-
ing problem as the corresponding EAS element. A drawback is that the methods require
the stabilization matrix to be constant within one load increment in order to preserve
quadratic convergence in the Newton-Raphson scheme. This results in an element that is
efficient in terms of the required Gauss points but also drastically restricted with respect
to the size of the load steps. This obvious disadvantage, however, allows for appropriate
modifications of the stabilization matrix, such as enforcing positive definiteness in criti-
cal situations or skipping the geometric stiffness to avoid geometric hourglassing (Reese
et al. 1999). An elegant way to avoid geometric hourglassing was proposed by Korelc
and Wriggers 1996, and relies on a modified shear enhancement of the displacement
gradient. By that, destabilizing geometric stiffness terms cancel; see Bieber et al. 2022.
However, Glaser and Armero 1997 showed that objectivity requires a modification of
the enhancement, yielding, compared to the standard Q1/H4, the more complicated
Q1/HT4. A particularly interesting EAS formulation based on an enhancement of the
spatial displacement gradient has recently been proposed by Pfefferkorn and Betsch
2022. Numerical evidence has shown that the element is free from geometric and mate-
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rial hourglassing. However, this approach results in a more complicated implementation
and an unsymmetric stiffness matrix.

6.2 Introductory Example – Ritz Method

The classical method of Ritz 1909 as well as modifications of it are considered. The
purpose of this “old-fashioned” method is to illustrate various instability mechanisms
and enhance the understanding of the hourglassing phenomena. The bifurcation problem
of Section 4.1.3, Figure 4.1, is considered. It is sought for an approximate Ritz solution
∆uRitz of the incremental eigenvalue problem (4.17), i.e. the criterion for a critical point.
A Galerkin approximation of the form

∆uRitz
1 =

nR1∑
A=1

∆cARA
1 and ∆uRitz

2 =
nR1+nR2∑
A=nR1+1

∆cARA
2 , (6.1)

and likewise for δuRitz, is used. Here, RA
I (X1, X2) denote the admissible set of base

functions that satisfy the essential boundary conditions (4.19) and nRI the number of
required Ritz coefficients ∆cA for displacement direction ∆uI . An admissible set Up

from a complete polynomial space up to order p is given by

Qp :


∆uRitz

1 ∈ Up
1 = span

(
X1, X2, X1X2, X 2

1 X2, . . . , X p
1 X p

2

)
∆uRitz

2 ∈ Up
2 = span

(
R̂, R̂X1, R̂X1X2, . . . , R̂X p

1 X p−2
2

)
for p ≥ 2

, (6.2)

with R̂ = (L2
2 − X 2

2 ) and thus nR1 = (p + 1)2 − 1 and nR2 = p2 − 1. Here, ∆uRitz
1

is constrained by the rigid body translation and ∆uRitz
2 by the upper and lower roller

support. Figure 6.1 sketches the contour plots of the involved Ritz base functions up to
cubic order, for a block with r = 1/2. In analogy to Section 4.1.3, SI and AI designate
R1 modes which are symmetric and antisymmetric with respect to the XI -axis.

The discrete counterpart to criterion (4.17) reads(
KRitz

m + KRitz
g

)
∆c(j) = 0 with ∆c(j) ̸= 0, (6.3)

where KRitz
m and KRitz

g represent the material and geometric “Ritz stiffness matrices”
(consistent unit scaling of (6.1) is assumed), index j denotes the correspondence to the
j’th critical buckling mode and ∆c =

[
∆c1 ∆c2

]T
the vector of mode coefficients. Both

matrices depend on the homogeneous principal solution, which is explicitly given by (4.5)
and (2.63). The ansatz space (6.2) is equivalent to a single compatible quadrilateral Qp
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Figure 6.1: Contour plot of Ritz base functions RA
I superimposed onto a reference grid

on a block with aspect ratio r = 1/2. The mode designations AI and SI are
only related to the RA

1 modes. The equivalence with a single Qp element is
indicated at the bottom right corner in the respective block group.

element with imposed displacement boundary conditions. Therefore this denomination
is adopted herein.

6.2.1 Geometric Instability Mechanisms

A Neo-Hookean (NH) block with E = 1000, ν = 0.45 and aspect ratio r = 1/2 serves
as a model problem. The reference solution and Ritz solutions up to quintic order for
the first four critical stretches are provided in Table 6.1. The corresponding reference
buckling modes are similar (but not identical, due to a slightly different Poisson’s ratio)
to the ones in Figure 4.5. The underlying instability mechanism is driven by certain
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Figure 6.2: Top: stability spectrum of the first four critical stretches λ
(j)
c of the reference

solution and Ritz approximations vs. the aspect ratio. Numbering (j) refers
only to the reference branches. Bottom: selected buckling modes superim-
posed on the undeformed configuration; further reference modes are depicted
in Figure 4.5.

terms of the geometric stiffness. To explain this further, a loading program γ = [0, γc]
from the undeformed state λ2 = 1 until the critical state λ2 ≡ λ(1)

c < 1 is considered. The
material stiffness, obviously present from the start, experiences a slight stiffening during
compression due to strain stiffening of the NH material. This positive “stabilizing”
material stiffness is opposed by a negative geometric stiffness that accumulates in relation
to the uniaxial stress state S = diag (0, S2). For the present uniaxial stress scenario the
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Reference Q1 Q2 Q3 Q4 Q5
λ(1)

c 0.806 (A1A2, n = 1) - 0.688 0.797 0.805 0.806
λ(2)

c 0.582 (S1A2, n = 1) - (0.101) (0.356) 0.563 0.578
λ(3)

c 0.544 (A1A2, n = 2) - - 0.248 (0.429) (0.493)
λ(4)

c 0.537 (S1A2, n = 2) - - - (0.378) (0.485)

λ(∞)
c 0.386 (A1S2, n = 1) - 0.101 0.356 0.378 0.386

Table 6.1: Geometric instability; the first four critical stretches λ
(j)
c for j = {1,2,3,4} and

the first critical reference stretch λ
(∞)
c whose buckling mode is S2 symmetric

(“∞” refers to the fact that infinitely many reference A2 modes buckle earlier,
see Figure 4.3). Critical stretches where the corresponding modes can not
– according to the numbering with (j) – be assigned to the reference modes
(Figure 4.5) are put in parentheses.

geometric stiffness can be boiled down to∫
B0

(δHc)T ∆Hc : S dV =
∫
B0

(
δH c

12∆H c
12︸ ︷︷ ︸

(i)

+ δH c
22∆H c

22︸ ︷︷ ︸
(ii)

)
· S2 dV = δcTKRitz

g ∆c. (6.4)

Term (i) is the origin of the essential trigger mechanism for geometric instabilities. It
is caused by the displacement modes in gradient component H c

12. This corresponds
to all X2-dependent terms of RA

1 in Figure 6.1. The resulting stiffness is related to
the “P-∆ effect” in structural mechanics. This effect describes the destabilizing lateral
stiffness of a truss that is caused by a change in lever arm ∆ perpendicular to axial
compression forces P. For the corresponding 2d modes, referred to as “P-∆ modes”
in the sequel. The analogy is given by ∆=̂∆uRitz

1 and P=̂S2. The P-∆ modes can be
classified into A1 and S1 modes; see the corresponding columns in Figure 6.1. However,
only the mode combinations that involve A2-bending modes are physically relevant for
geometric instabilities, because their material stiffness is significantly lower than that of
S2 modes.1 These observations are in full agreement with the analytical results sketched
in Figure 4.3. Term (ii) also contributes to the geometric stiffness. The displacement
modes involved are all X2-dependent terms of RA

2 , i.e., all modes in the right block
of Figure 6.1. For geometric instabilities, these modes do not contribute significantly.
However, they play a role in “stabilizing” the structure in the context of critical tensile
deformation states.

1Physically “relevant” in the sense that the first upcoming bifurcations correspond all to A1 modes.
However, this statement is only valid for the present example. For different displacement boundary
conditions, the S1S2 modes may also represent critical “bending modes”.
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Concrete examples are considered. A bilinear ansatz with p = 1 yields

Q1 :
{

∆uRitz
1 ∈ U1

1 = span (X1, X2, X1X2)
∆uRitz

2 ∈ U1
2 = ∅

(6.5)

For this coarse ansatz no critical deformation state occurs. This is not too much of a
surprise, since the reference solution

∆u1 = C sin (0.785X2) [0.841 cosh (1.119X1) − 1.472 cosh (0.785X2)]
≈ C

(
−0.496X2 + 0.051X 3

2 + 0.057X 2
1 X2 − 0.002X 5

2

)
,

∆u2 = C cos (0.785X2) [0.869 sinh (1.119X1) − sinh (0.785X1)]
≈ C

(
0.187X1 − 0.057X1X 2

2 + 0.122X 3
1

)
,

(6.6)

with the arbitrary constant C ∈ R, is barely contained in U1
I . A biquadratic ansatz with

p = 2 is given by

Q2 :

 ∆uRitz
1 ∈ U2

1 = U1
1 + span (X 2

2 , X1X 2
2 , X 2

1 , X 2
1 X2, X 2

1 X 2
2 )

∆uRitz
2 ∈ U2

2 = span
(
R̂, R̂X1, R̂X 2

1

) (6.7)

Now, two critical deformation states are met. The corresponding buckling modes are
given by

(
∆uRitz

)(1)
= C ·

[
−0.496X2 + 0.122X 2

1 X2

0.352X1 − 0.088X1X 2
2

]
(6.8)

and

(
∆uRitz

)(2)
= C ·

[
−0.998X1X2

−0.11 + 0.028X 2
2 + 0.247X 2

2 − 0.062X 2
1 X 2

2

]
, (6.9)

with the arbitrary real constant C . The bottom part of Figure 6.2 shows the corre-
sponding buckling modes for p = 2 and p = 3. Interesting to observe: for the quadratic
and cubic case, the first buckling mode is properly modeled according to the given
Ritz ansatz. Surprisingly, the second buckling modes initially correspond to the first
S2-symmetric reference mode depicted in Figure 6.2. It is a good approximation to
a physically irrelevant mode. In fact, higher-order bifurcation modes do not necessar-
ily involve more complex buckling patterns. See also the analytical investigations in
Section 4.1.4, in particular Figure 4.3.
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This explains the critical branches of the Ritz solutions in the domain r < 1 (log10 r <

0) in Figure 6.2.2 Depending on the approximation power, the first critical reference
branches are captured. Followed by that, a gap occurs and the subsequent critical
branches are found in severe compression states. The gap indicates a mode shift of the
corresponding solutions from A2 to S2 (indicated by the double arrow). As expected,
the surface buckling phenomenon is hardly captured by the considered approximations,
since a global Ritz ansatz is not suitable to model this local phenomenon. Another
insight into the problem is that all j’th reference branches provide an upper bound for
the corresponding j’th branch of the numerical solutions, which is directly related to
approximation property (3.29). In other words, the Ritz approximations perform too
stiff and consequently, the j’th branch should not appear above the analytical solution
of that branch. This further implies that none of the approximated branches should
appear in the stable region. Of course, this also applies for displacement-based finite
element solutions.

6.2.2 Geometric Hourglassing Phenomenon

A special “incompatible” Ritz approximation can be used to recover the incompatible
mode element from Wilson et al. 1973. Under certain conditions, the latter is also
equivalent to the Q1/H4 formulation from Section 3.3.2. The purpose of this approach
is to illustrate the mechanism of geometric hourglassing in terms of the Ritz modes from
Figure 6.1 and how a simple modification provides a remedy. Similar investigations, all
within the framework of a structural instability concepts, are presented in Section 2 of
Bieber et al. 2022 as well as Sussman and Bathe 2014 and Wall et al. 2000.

Incompatible Ritz ansatz. A single Q1/H4 element can be mimicked via an incom-
patible Ritz ansatz of the form

Q1/H4 :
{

∆uIRitz
1 ∈ U1

1 + span (X 2
1 , X 2

2 )
∆uIRitz

2 ∈ U1
2 + span (X 2

1 , X 2
2 ) (6.10)

providing

∆uIRitz =
[
∆c1X2 + ∆c2X1 + ∆c3X1X2 + ∆c4X 2

1 + ∆c5X 2
2

∆c6X 2
1 + ∆c7X 2

2

]
(6.11)

Here the underlined terms are introduced, irrespective of the essential boundary condi-
tions. The gradient resembles the EAS ansatz (3.54) with correspondences ξ → X1 and
2The graph can be read “from top to bottom” with respect to the vertical axis, i.e., from the undeformed
state λ2 = 1 to full compression of the block λ2 → 0.
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η → X2. For the present scenario, modes 6 and 7 violate the displacement constraint
at the top and bottom edges. In the context of finite elements, these modes provide
a locking-free element, i.e., the material part of the stiffness matrix is improved.3 The
focus of the present study lies on the influence of ansatz (6.11) on the geometric stiffness
matrix and on the stability behaviour. According to Equation (6.4) only the displace-
ment gradient component

∆H12 = ∂∆uIRitz
1

∂X2
= ∆c1︸︷︷︸

(i)

+ ∆c3X1︸ ︷︷ ︸
(ii)

+ 2∆c5X2︸ ︷︷ ︸
(iii)

(6.12)

contributes to the destabilizing P-∆ stiffness. The three terms in H12 fully explain the
physical and artificial stability behaviour of the Q1/H4 element:

• Term (i) comes from the compatible linear shear mode R1
1 = X2. It is the lowest-

order A1-antisymmetric P-∆ mode required for modeling A1A2 buckling modes.
In the context of finite elements, this term is essential for modeling physical insta-
bilities, in particular with mesh refinement.

• Term (ii) comes from the compatible bilinear mode R3
1 = X1X2. Its resulting

geometric stiffness is responsible for the A1S2 buckling modes. However, when
combined with the incompatible Ritz mode 6, it results in an artificial instability:

Hourglassing effect I: Figure 6.3 (a) depicts a critical buckling mode, caused
by geometric stiffness due to (ii). The violation of the kinematic BC is obvi-
ous. In the context of finite elements, this yields the well-known hourglassing
phenomenon.

• Term (iii) comes from the quadratic mode R5
1 = X 2

2 . It is the lowest-order S1-
symmetric P-∆ mode, and the geometric stiffness it produces gives rise to the
S1A2 buckling modes. For the classical Euler buckling of an axially loaded beam
pinned at both ends, this is the essential trigger mechanism. Because the involved
displacement modes necessitate the bilinear mode R2 = X1X2, no related insta-
bility appears in this example. However, for other boundary conditions or inside
assembled finite element patches, this instability is present and yields an artificial
instability:

Hourglassing effect II: Figure 6.3 (b) illustrates a critical buckling mode caused
by the geometric stiffness of R6

2 = X 2
1 , i.e., the rotated equivalent to term (ii).

The violation of the kinematic BC is obvious. In the context of finite elements,
this yields an hourglassing phenomenon that was only recently discovered by
Bieber et al. 2022.

3Locking phenomena are theoretically present in the Ritz method as well. However, lower-order Ritz
base functions are rarely used, and higher ansatz spaces, such as p-refinement, are used to compensate.
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r = 1
2

(a) Disp.-controlled

Violation of BC

γû
γT̂

r = 4 S1 < S2 < 0

(b) Force
controlled

Figure 6.3: Illustration of two geometric hourglassing phenomena via an incompatible
Ritz approximation; left: hourglassing effect I; right: hourglassing effect II.

The critical stretch values of the problems in Figure 6.3 are λ2 = 0.483 (a) and λ1 =
0.531 (b). However, it is remarked that both pathological instabilities strongly depend
on the aspect ratio of the block (or the element in the context of hourglassing). The
critical stress estimates based on a pre-buckling analysis provide

S2 = Ẽ
r2

e
and S2 = Ẽr2

e
1 + r2

e
≈ Ẽr2

e , with Ẽ = E/(1 − ν2) (6.13)

for hourglassing effect I and II, respectively; see Section 2 in Bieber et al. 2022. The
former is particularly relevant (in the sense that buckling occurs early, i.e., in small
strain regimes) for large aspect ratios, and the latter for small ones.

6.2.3 Material-Induced Structural Instability Mechanisms

A Blatz-Ko (BK) block with µ = 100 and r = 1/2 serves as a model problem. The
reference solution and some Ritz solutions for the first four critical stretches are provided
in Table 6.2. The buckling modes that correspond to the reference solutions are provided
in Figure 4.6.

As opposed to geometric instabilities, the underlying instability mechanism is driven by
the material part of the stiffness matrix. For the present uniaxial stress scenario, the
material stiffness reads∫

B0

δH c
aBAm

aBcD∆H c
cD dV =

∫
B0

δE c
ABCABCD∆E c

CD dV = δcTKRitz
m ∆c. (6.14)
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Reference Q1 Q2 Q3 Q4 Q5
λ(1)

c 2.285 (A1S2, n = 1) - 2.286 2.286 2.285 2.285
λ(2)

c 2.302 (S1S2, n = 1) - - 2.314 2.312 2.302
λ(3)

c 2.328 (A1S2, n = 2) - - - 2.371 2.355
λ(4)

c 2.363 (S1S2, n = 2) - - - - 2.459

Table 6.2: Material-induced structural instability; the first four critical stretches λ
(j)
c for

j = {1,2,3,4} and the first critical reference stretch.

Here, Am is the material part of the constitutive elasticity tensor, defined in Equa-
tion (2.46). Certain parts of the material stiffness become negative as the strain softens
in the X2-direction. The part that primarily contributes to the destabilizing material
stiffness can be identified as∫

B0

δH c
22Am

2222∆H c
22 dV =

∫
B0

δH c
22λ

2
2C m

2222∆H c
22 dV . (6.15)

Here, C2222 is the axial stiffness at the continuum point, which experiences softening.
The axial stiffness becomes negative when λ2 > 23/4 ≈ 1.681. This means that all
displacement modes present in the gradient component H c

22 contribute to the material
stiffness destabilization. This includes all RA

2 modes in Figure 6.1. These modes are
referred to as “strain-softening” modes.

Again, concrete examples are considered. The linear Ritz ansatz (6.5) does not provide
any instability, because U1

2 = ∅ and thus H22 = 0. Figure 6.4 shows the buckling modes
for a quadratic and cubic approximation. The corresponding critical stretch values in
Table 6.2 are in good agreement with the reference solution. It is noted that, similar
to the geometric instability problem, higher-order bifurcations as well as bulkier blocks
are more poorly approximated as the buckling patterns become more complex.

6.2.4 Material Hourglassing

The incompatible Ritz approximation (6.11) is considered. In contrast to Q1, Q1/H4 is
able to capture the stretch that corresponds to the first critical necking mode. Through
the incompatible mode c7X 2

2 , the decreasing stiffness of C2222 propagates into the ma-
terial stiffness matrix. In the context of finite elements, this mode is introduced to
eliminate volumetric locking. However, as illustrated in Figure 6.4 this goes hand in
hand with a severe violation of the kinematic boundary conditions.
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Violation of BC

Q2 – Ritz Q3 – Ritz

Figure 6.4: Material-induced structural instability; middle-left: selected buckling modes;
right: illustration of material hourglassing phenomena via an incompatible
Ritz approximation.

?

modification

modification

Figure 6.5: Illustration of implications of modifications of a finite element formulation.

6.3 Approach to Avoid Hourglassing

Geometric Hourglassing. In the previous section, it was shown that certain displace-
ment modes are responsible for geometric hourglassing. For the actual finite element
implementation, however, it is not efficient to simply skip the corresponding terms from
the geometric stiffness matrix. In order to preserve quadratic convergence within the
Newton-Raphson scheme or to use explicit solvers, modifications of the residual vector
are required. Figure 6.5 shows the inverse problem in the upper row. A possible rem-
edy to that is a (within one load increment) constant stabilization procedure; see for
instance Reese et al. 1999. This goes along with an additional implementation effort
as well as limitations with respect to the size of the load increment. For a generally
applicable method it is desired to provide a modified potential of the respective problem,
followed by a computation of residual and tangent in a standard manner. The envis-
aged “one-way street” is shown in Figure 6.5, where the accent denotes the modifications
described next.

An efficient way to circumvent these drawbacks is based on the following observation:
according to Equation (6.4), only the quadratic part HTH of the Green-Lagrange strain
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tensor influences the geometric stiffness and thus potentially geometric hourglassing.
Remedy provides a modified Green-Lagrange strain expression of the form

É := 1
2
(
HT + H + HT

r Hr + HT
r Hh + HT

hHr + βHT
hHh

)
(6.16)

with an additive split H = Hr + Hh, where Hh denotes the part that is responsible for
geometric hourglassing. For β = 0, this yields the modified geometric tangent

ḱg =
∫
Ω

1
2
(
HT

r Hr + HT
r Hh + HT

hHr
)

,d̄d̄
: S(É) dV . (6.17)

Here, with a slight abuse of notation, d̄ may also represent a more generic element vector
of degrees of freedom (e.g. d̄ =

[
d α

]T
) and ḱg is the corresponding geometric element

stiffness matrix. In addition to that, the material stiffness matrix and the residual
vector are also modified. Consistent linearization automatically preserves quadratic
convergence. Furthermore, it is efficient to implement since only minor changes to
existing element routines are required. The method can be viewed as a self-adaptive
stabilization procedure that is only activated for geometric nonlinearity, i.e., when the
quadratic part of the Green-Lagrange strain tensor plays a role. In the linear regime,
however, the modifications do not affect the element. The fact that det Ć < 0 (matter
penetration) is possible is a critical aspect of the modification (6.16). It can be shown
that this corresponds to very large in-plane bending deformations. This is of minor
relevance for practical computations and, more importantly, with mesh refinement this
defect diminishes.

For details on one possible efficient implementation, it is referred to Bieber et al. 2022.
However, this implementation is based on a modification of the shape functions. This
approach also modifies the H22-term in Equation (6.4). However, since these terms
do not lead to hourglassing, elimination is not necessary. In order to allow simple
implementation, these terms are nevertheless included in Hh. Table 6.4 gives an overview
of the modified versions of the original element formulations from Section 3.3.

Material Hourglassing. Avoiding the issue of material hourglassing by means of a
similar strategy is substantially more difficult. In terms of the Ritz stiffness, the cause of
instability can be traced back to certain parts of the material stiffness matrix in (6.14).
In contrast to the geometric instability, the responsible trigger mechanism emanates
mainly from the linear part of the Green-Lagrange strain tensor. In analogy to (6.16),
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Modified strain measure P-∆ modes⋆

Q1/ME4 Hr = Hc
0, Hh = Hc

1

withE = Éc + Ẽ

Q1/MS5 Hr = Hc
0, Hh = Hc

1

Q1/MH4-I Hr = Hc
0 + H̃, Hh = Hc

1

Q1/MH4-II Hr = Hc
0, Hh = Hc

1 + H̃

Q2/ME11 Hr = Hc
0 + Hc

1, Hh = Hc
2 + Hc

3

withE = Éc + Ẽ

Table 6.3: Definitions of Hr and Hh for various finite element formulations and an illus-
tration of the involved P-∆ modes. Here Hc

m denotes a multivariate Taylor
expansion of order m. ⋆Likewise for the modes in X2-direction (not displayed).

a modification of the form

Ĕ := 1
2

HT
r + Hr + HT

h + Hh︸ ︷︷ ︸
:=0

+HTH

 (6.18)

would be required. Here, as before, Hh represents both compatible hourglass modes.
The corresponding element based on Q1/E4 is denoted as Q1/ME4⋆. Of course, the
strain measure Ĕ is a poor choice, because it does not resemble the strain tensor from
linear theory. In addition, the stiffness matrix is singular at the initial state, and ar-
tificial stabilization is required. However, numerical experiments have indicated that
material hourglassing can be avoided while still capturing material-induced structural
instabilities. Potential remedies may be obtained by a modification of the constitutive
law of the responsible “strain-stiffening” modes; see Equation 6.15. A principally similar
strategy can also be found in Mueller-Hoeppe et al. 2009.
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1 detCn
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2re detCn
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Table 6.4: Hourglass eigenvalues of a rectangular-shaped element with aspect ratio r =
Le

1/Le
2 and biaxial stress state S = diag (S1, S2). Here An, As and Cs refer to

the constitutive tangets defined in (2.50) and (2.51).

6.4 Modal Analysis

The eigenvalue monitoring of a fully unconstrained tangent stiffness matrix in combina-
tion with parameter variations is a crucial tool in the stability analysis of finite elements,
see Armero 2000. A single Le

1 × Le
2 element under plane strain condition is subjected

to a homogeneous uniaxial stress state with S = diag (0, S2(λ2)). A compressible BK
rubber is considered. The hourglass eigenvalues are given as

ωhg
i = (Φlin

b,i)Tkred(λ1,λ2)Φlin
b,i i = 1, 2, (6.19)

with the reduced stiffness matrix defined in (3.43) and the normalized hourglass eigen-
vector Φlin

b,i (Equation (5.4)). Closed-form expressions of the hourglass eigenvalues are
summarized in Table 6.4. For lower-order Q1 elements, no physically relevant instability
can be expected. Thus, a negative hourglass eigenvalue is an indicator that hourglassing
is likely to occur. Both are considered separately next.
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Geometric Hourglassing. The focus lies only in the compression domain λ2 < 1. Fig-
ure 6.6 shows the first hourglass eigenvalue for aspect ratios re = 1, re = 0.2 (tall skinny
element) and re = 5 (flat bulky element). Both standard EAS formulations Q1/E4 and
Q1/H4 as well as Q1/E2s suffer from geometric hourglassing (see Hourglassing effect
I in Section 6.2). The critical stretch where ωhg

1 = 0 depends on the aspect ratio, i.e.
geometric hourglassing is particularly pronounced for large aspect ratios. In contrast to
that, Q1/ME4 and Q1/MH4-I are free from geometric hourglassing and provide similar
results as Q1/HT4. Figure 6.7 shows the results for the second hourglass eigenvalue.
The only geometric hourglassing defect is observed for the tall skinny element in Fig-
ure 6.7 (b). Here Q1/H4 and Q1/MH4-I become unstable due to the quadratic P-∆
mode (Hourglassing effect II in Section 6.2). However, for hyperelastic materials, this
hourglassing effect does not occur at more moderate aspect ratios. The reason for that
is the strain-stiffening of An

22 under large strain compression.

Material Hourglassing. The focus lies only in the tensile domain λ2 > 1. The ele-
ments that suffer from volumetric locking4, namely Q1 and Q1/E2s, show no material
hourglassing. With the exception of Q1/H4 and Q1/MH4-I in Figure 6.7 (b), material
hourglassing for ωhg

1 and ωhg
2 shows up for all other elements. The stability of the former

is a pyrrhic victory: the incompatible quadratic P-∆ mode, causing hourglassing in
compression, stabilizes both elements under tension. The failure of the other elements
is closely related to loss of positive definiteness of A and C (Section 2.3.4). For further
details it is referred to Section 3.4 in Bieber et al. 2022.

Furthermore, an analysis of elastoplastic materials can be found in the work of Pfeffer-
korn and Betsch 2020 and Armero 2000. The former also considered a three-dimensional
eigenvalue analysis of brick elements. Here 12 non-constant strain modes appear, i.e. bi-
and trilinear perturbations of X1, X2 and X3 in each spatial direction. The authors have
shown that the hourglass mechanisms are similar to those of a two-dimensional analysis.
It is expected that the same holds for the present results.

4Of course, volumetric locking is only mild for the present BK material, since ν = 1/3.
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Figure 6.6: Hourglass eigenvalue ωhg
1 for a uniaxial stress state S1 = 0.
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Figure 6.7: Hourglass eigenvalue ωhg
2 for a uniaxial stress state S1 = 0.
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6.5 Numerical Experiments

6.5 Numerical Experiments

The main purpose of this section is to test the newly proposed elements Q1/ME4,
Q1/MH4-I, Q1/MS5 and Q2/ME11 for accuracy in terms of modeling physical instabil-
ities. Standard Gauss quadrature is applied, e.g., 2 × 2 for Q1 and 3 × 3 for Q2.

6.5.1 Euler Buckling: Coarse Mesh Accuracy

Figure 6.8 (a) depicts a moderately thin beam-like structure with an aspect ratio
r = 1/10, pinned at both ends, and subjected to uniaxial compression. Using a NH
material with E = 100 and ν = 0, the critical Euler load T̂ Euler

c = π2Er2/12 ≈ 8.22
provides a thin-limit (r → 0) reference solution of the underlying buckling problem.
The finite element model uses a single element layer in thickness direction. The goal of
this benchmark is to evaluate the coarse mesh accuracy in terms of physical stability
behavior.

Numerical results are given in Table 6.5. As expected, the models with a single Q1/H4
and Q1/MH4-I element provide a good approximation to the Euler load, since the lion’s
share of the destabilizing P-∆ mode can be captured with the quadratic incompatible
mode, see Figure 6.8 (b). The slight difference between both of them is related to
the bilinear bending mode (S2-symmetric), which does not contribute to the geometric
stiffness in Q1/MH4-I. In contrast to that, Q1/ME4 and Q1/HT4 require at least two
elements in thickness direction for a rudimentary modelling of the buckling mode (cf.
Figure 6.8 (d,e)). Here the “global” destabilizing P-∆ mode is approximated via an
assembly of linear A2-antisymmetric P-∆ shear modes.

The softer response of Q1/H4 and Q1/MH4-I, often associated with a “better” element
performance, is deceptive. The geometric hourglassing phenomenon II can be triggered
with a model where the mesh is refined in the thickness direction, as shown in Fig-
ure 6.8 (c). Here, the global (physical) buckling load is larger than the one of a single
element and each single element buckles individually.

6.5.2 Block under Compression: Physical vs. Artificial Instabilities

Main results of Bieber et al. 2022. In Section 5 of the respective publication, the
authors present an in-depth analysis of the bifurcation problem presented in Section 4.1
(herein). It is described how the block problem can be used as a benchmark: set-
ting r = re, i.e. having the same aspect ratio for the block and for the element (uniform
meshes are assumed), allows investigating the element’s stability properties with respect
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nele Q1/HT4 Q1/H4 Q1/ME4 Q1/MH4-I
1 - 10.00 - 10.10
2 13.33 10.00 13.50 10.10
3 10.00 9.00 10.10 9.08
5 8.80 8.50 8.88 8.57
10 8.36 8.29 8.36 8.29

Table 6.5: Critical buckling load T̂c of the first critical point. Euler’s critical buckling
load is T̂ = 8.22.

T̂

(a) (b) (d) (e)

L=10

T=1

(c)

Figure 6.8: Euler buckling; (a) problem setup; (b-e) plots of the first buckling mode; (b,
c) is computed with Q1/H4 and (d, e) with Q1/ME4.

to a large set of element aspect ratios. This is essential in a proper analysis of geometric
hourglassing defects, since, for certain advantageous mesh configurations, one can always
find a case where hourglassing does not occur. A certain set of higher-order bifurca-
tions can be computed and compared with the reference solutions. By that, potential
hourglassing issues can be detected and, at the same time, the accuracy in modelling
physical instabilities is tested. On the other hand, the authors also investigate the case
of undistorted meshes as well as the convergence towards physical instability points.

The results have shown that the modified element formulations Q1/ME4, Q1/ME11
and Q1/MH4-II are free from geometric hourglassing artefacts. Furthermore, the ability
to capture physical instability is preserved. To avoid redundancy, those results are not
shown here, and the focus is rather on complementary aspects of this benchmark-type.
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γû
γ

(1)
c =0.128

Fimp

A

L2 = 5

L1 = 2

γ
(2)
c =0.366

Figure 6.9: Post-bifurcation analysis; left: discrete problem setup (Q2); middle-right:
reference buckling modes. In contrast to preceding sections the buckling
mode is superimposed on the respective deformed configuration.

Post-bifurcation analysis. The analytical investigations in Section 4.1 as well as the
numerical study in Bieber et al. 2022 focus only on the computation of the bifurcation
points themselves. Complementing these studies with a post-bifurcation analysis is the
purpose of this section. The focus lies on the analysis of imperfection sensitivity as well
as the post-critical behavior of the modified elements under severe deformations.

An NH 2 × 5 block with E = 1000, ν = 0.45 and r = 0.4 is subjected to a uniaxial
compression state. Prescribed is the displacement γû = γ5 at the upper edge. Fig-
ure 6.9 shows a discrete problem setup with Q2 elements. The displacement boundary
conditions are slightly different than the ones of the reference problem (cf. Figure 4.1);
however, the principal stability behavior remains the same. Furthermore, a small hor-
izontal load imperfection Fimp is applied at an upper node on the left side. Perfect
(Fimp = 0) and imperfect (Fimp > 0) finite element models are considered.

Figure 6.10 (a) shows the load-displacement curves for various values of Fimp. As an
analytical reference solution is not available for the post-bifurcation state, a numerical
solution with a 3 × 6 mesh of bi-quadratic Q2 elements is considered. Of course, this
does not provide a converged solution, but rather a target solution for the lower-order
locking-free elements (Figure 6.11). The perfect model follows the exact primary solu-
tion (homogeneous compression). Bifurcations, i.e., singularities of the stiffness matrix,
are indicated with black dots. They are in good correlation with the analytical solution
(red triangles). The imperfect structures obviously show a different stability behavior.
The equilibrium branch deviates from the principal solution depending on the imper-
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Figure 6.10: Post-bifurcation analysis; Q2 elements; various load-displacement curves for
a perfect system (solid) and an imperfection system (dashed) with Fimp =
{10−2, 10−1, 1, 5 , 10}; for the perfect structure the bifurcation load γj

c is
indicated by black dots (FEM, Q2) and red triangles (analytical).

fection load. The block runs into a bending-type deformation in the shape of the first
buckling mode. However, for all scenarios, the post-bifurcation path is stable, i.e., the
smallest eigenvalue does not become negative; see Figure 6.10 (b). Interestingly, the
post-bifurcation behavior for more bulky blocks may also be unstable. For details on
post-bifurcation behavior of that problem, it is referred to Section 3.3 in Triantafyllidis
et al. 2007.
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Ref. Q2 /E11 /ME11 Q1 /H4 /HT4 /ME4 /MH4-I /ME4⋆

-6.6 -6.95 -0.56 -0.438 -38.98 -1.69 -2.16 -1.02 -1.14 -7.46
+∞ ∞ 10.10 ∞ ∞ 1.88 ∞ ∞ 2.61 0.00

Table 6.6: Critical load factor; top row: tension problem; bottom row: compression
problem.

A fixed load imperfection Fimp = 0.1 and a set of lower-order Q1 elements are taken into
account. Figure 6.11 shows the corresponding load-displacement curves. The principal
behavior of all EAS elements is in line with the preceding results. Focusing on the
domain around the bifurcation (cf. the enlarged detail), it is observed that the elements
with “higher” geometric stiffness perform softer, i.e., Q1/H4 is the softest element,
followed by Q1/MH4-I, Q1/HT4 akin Q1/E4 and finally Q1/ME4. However, in view of
the overall performance, this difference is of minor relevance.

6.5.3 Compression and Tension of a Constrained Block

The introductory example from Figure 1.2 (b) is reconsidered. The main purpose of this
benchmark is to test the coarse mesh accuracy of various elements with respect to geo-
metric and material hourglassing. The 2 × 2 block consists of the nearly incompressible
NH material defined in Equation (2.58). The block’s bottom and lateral edges are fully
constrained. In contrast to Auricchio et al. 2005, slightly more “compressible” material
parameters are considered: µ = 40 and Λ = µ · 103 (ν = 0.4995). Two different scenarios
for the body load B̂ = −γµE2 are considered; tension (γ < 0) and compression (γ > 0).
Auricchio et al. 2010 provided a reference value for the fully incompressible tension case
of the critical load factor as γ(1)

c = −6.6. On the other hand, the compression case does
not become unstable. Hence, the target load factor value is γ = ∞. For the numerical
computation, stable behavior is assumed when γ = 100 is reached, see Auricchio et al.
2005.

Tension case. Table 6.6 depicts the critical load factors that are associated with a
singular stiffness matrix. Q1 suffers from severe volumetric locking and overestimates
the critical tension load by a factor six. In contrast, Q2 and Q1/ME4⋆ (the modification
based on the Green-Lagrange strain (6.18)) provide a good approximation to the refer-
ence load. The corresponding critical buckling modes are depicted in Figure 6.12 (a,c)
and appear to be in good agreement with Auricchio et al. 2010. This is particularly
interesting for Q1/ME4⋆, as it shows (at least conceptually) how to avoid material hour-
glassing. However, all other elements fail to reproduce the reference load factor value.
The elements become more unstable in the range γ ∈ [−2.16, − 0.56]. Figure 6.12 (b)
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Figure 6.11: Post-bifurcation analysis; top: load-displacement curve with Fimp = 0.1;
bottom: deformed configurations of the final step in the corresponding load-
displacement curve, i.e. ∥dA∥ = 4.

depicts the typical hourglassing patterns of the deformed configuration (right) as well as
the corresponding buckling mode (left) for Q1/H4. The biaxial stress states of the NH
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Figure 6.12: Selected plots of deformed mesh configurations at the critical state and crit-
ical buckling modes (marked with ∆d(1)); top: tension instability; bottom:
compression instability.

material result in a loss of positive definiteness in the constitutive operators of first C
and then A, as shown in Figure 2.1. This is especially noticeable in the lower region of
the block (where stresses are greatest). As a result, E-enhanced elements become unsta-
ble before H-enhanced elements do. Further, the different properties of the (stabilizing)
geometric stiffness explain the differences in the critical load values.

Compression case. In contrast to before, the newly proposed elements Q2/ME11 and
Q1/ME4 do not suffer from geometric hourglassing. Figure 6.12 (d,f) shows the stable
deformed configurations for the final load factor value γ = 100. Of course, Q1/ME4⋆

becomes immediately unstable. As expected, Q1/MH4-I becomes later unstable than
Q1/H4, where the differences is explained by the absence of the destabilizing bilinear
P-∆ mode for the former.
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Chapter 7

Algorithmic Aspects

7.1 Computational Aspects in the Determination of
Critical Points

This section covers algorithms to compute instability points in nonlinear finite element
simulations. The intense research on physical and artificial instabilities revealed large
numerical difficulties arising in the determination of critical points. Under certain cir-
cumstances, tedious and inefficient “trial and error” computations are required, e.g., re-
modifying the size of the load steps1 or implementing problem-specific conditional state-
ments in the code. Difficulties arise in particular in the context of bifurcation problems
as well as limit point problems with sharp turns of equilibrium paths, typically present
in modified bifurcation problems with relatively small imposed imperfections. In both
cases, the onset of instability can appear abruptly without an obvious “announcement”,
such as a stiffness softening in the current displacement direction. The principal issues
can be described as follows:

1. Sufficiently small load increments are desired in order to avoid numerical or algo-
rithmic difficulties in the exact determination of critical points.

2. Reducing the number of load steps is desired in order to save computational costs,
i.e., avoid an unnecessarily large number of iterations.

The main objective of this section is to find a proper balance between those extremes.
At first, the principal stability mechanism of discrete structures and its algorithmic
treatment are outlined. Furthermore, a novel adaptive load control scheme (ALC) is
derived, tailored for the efficient and reliable computation of critical points.

1With a slight abuse of terminology, this refers also to other control variables, such as the arc-length.
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7.1.1 A Short Review On Nonlinear Solution Techniques

Various abbreviations and notational specifications are introduced for ease of readabil-
ity. A summary is given in Table 7.1. The behavior of nonlinear stability problems is
typically illustrated by equilibrium paths; see e.g., Budiansky 1974. Thus, the wording
“point” refers to a point on the equilibrium path. Without loss of generality, propor-
tional loading scenarios are assumed throughout this section.

n ∈ N0 load step counter (•)n “current” quantity (•)
(•)n+1 (•) of “next” step (•)n−1 (•) of “previous” step
∆(•)n = (•)n+1 − (•)n Kn = K(γn) stiffness matrix

increment of (•) γn “current” load factor
Λ(j) j’th eigenvalue of K D(j) j’th diagonal term

(in ascending order) (in ascending order)
Λ(1) smallest eigenvalue D(1) smallest diagonal term
Λ(j)

0 initial eigenvalue D(j)
0 initial diagonal term

Λ̄(j) = Λ(j)

Λ(j)
0

scaled eigenvalue D̄(j) = D(j)

D(j)
0

scaled diagonal term

Table 7.1: Basic variables and notation. Diagonal terms D(j) refer to the entries of the
diagonal matrix D in the Cholesky decomposition K = LDLT, see Section 1.3
in Strang 1986.

The computation of critical points has been intensively studied in the literature, see
e.g., Chapter 7 in Wriggers 2008 for an overview. For small strain and small displace-
ment problems, a linear pre-buckling analysis is often the way to go. However, this
provides only an approximation of the critical load and is less suited for large strain
problems. Here, the focus lies on the exact determination of critical points and algo-
rithms applicable for general problems, i.e., without limitation to small deformations.
In the context of bifurcation problems, Riks 1984 classified two principal approaches:
indirect and direct methods. The first one is based on a perturbation approach, where
initial geometry, loading or material imperfections provide a slightly modified structure.
Hereby, the original problem is, in most cases, transformed into a limit point problem
(however, stable bifurcations may also occur, see the numerical experiments in Sec-
tion 6.5.2). In the pre-critical state, the structural behavior of imperfect structures is
often accompanied by a pronounced stiffness reduction, which yields a flattening of the
load-displacement curve. The critical point is then characterized by a local load maxi-
mum. Tracing these equilibrium paths typically requires continuation methods, like the
arc-length method, which are summarized in detail in a recent review article by Leon
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et al. 2012. However, the direct approach specifies a priori the type of instability and
thus may spoil the accuracy compared to the (perfect) mathematical model.2 Further-
more, the computation of higher-order bifurcations is not straightforward. In contrast
to that, direct methods are based on the original model. Stability is analyzed through
an accompanying analysis of the stiffness matrix.

A typical computational approach to detect the first critical points for both direct and
indirect methods consists of the following consecutive steps:

1. Following the principal equilibrium path. Starting from the undeformed config-
uration γ0 = 0, the deformed structure first follows a stable equilibrium path,
controlled by load factor γ ∈ [0, γ(1)

c ).

2. Isolation of critical point. The tangent stiffness matrix remains positive definite
until, at load increment n, the critical load factor γc is exceeded. In case only a
single critical point3 is passed, the sufficiently narrow post-critical domain provides

detKn < 0 ⇔ Λ(1)
n < 0 ⇔ D(1)

n < 0. (7.1)

Here, Λ(1)
n and D(1)

n denote the smallest eigenvalue and smallest diagonal entry, see
Table 7.1. It follows that the interval I(1)

c = [γn−1, γn] contains γ(1)
c .

3. Exact determination of the critical point. The critical load factor γ(1)
c is determined

by the criterion

K(γ(1)
c )∆d(1) = 0 with ∆d(1) ̸= 0. (7.2)

This implies equivalently

detK = 0 ⇔ Λ(1) = 0 ⇔ D(1) = 0, (7.3)

since

detK =
ndof∏
j=1

Λ(j) =
ndof∏
j=1

D(j). (7.4)

The eigenvector ∆d(1), associated with the zero eigenvalue, represents the incre-
mental buckling mode.

2Of course, imperfections are inherent in real-world structures. However, this does not play a role in
the present discussion.

3A special case is the simultaneous vanishing of eigenvalues, implying multiple bifurcations. However,
this case is not further considered herein.
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A simple method are bisection methods. They are simpler to implement but have only
a linear convergence behavior. Furthermore, the ill-conditioning of the stiffness matrix
close to critical points can lead to severe convergence issues with the Newton-Raphson
procedure. Possible remedies are stabilization schemes based on the (computationally
expensive) eigenvectors of the stiffness matrix; see e.g., Müller 2007. An alternative
tailor-made technique for solving (7.2) is the method of extended systems; see Wrig-
gers et al. 1988. The method is quadratically convergent and allows, within a specified
numerical tolerance, an exact determination of critical points. For problems with inho-
mogeneous boundary conditions it is referred to the dissertation of Roth 2020. Both
methods share the property of being sensitive to the interval I(j)

c , which will be discussed
further below.

Remark 7.1.1. This work is restricted to formulations where tangents are solely related
to the incremental displacement degrees of freedom. However, it is pointed out that some
multi-field mixed formulations, for instance fully incompressible displacement-pressure
type formulations or formulations with continuous (e.g., pressure or stress) fields at the
element boundary, do not allow static condensation to a pure displacement formulation.
These cases require special attention because the criterion (7.1) no longer holds. For
further details it is referred to the discussion in Schröder et al. 2017.

7.1.2 Pre- and Post-Critical Behaviour of Discrete Structures

The numerical obstacles that appear in the computation of critical points are discussed in
this section. It is anticipated that the overall target in the next section will be to predict
the onset of bifurcations. Nevertheless, for the sake of a more general understanding,
limit point problems are also discussed herein.

Structural characterization of pre-critical states. The onset of a structural instability
is determined by criterion (7.3). Since K is positive definite in the pre-critical state, it
is evident that the scaled determinant detK/ detK0, the scaled eigenvalue Λ̄(1) as well
as the scaled diagonal entry D̄(1) are continuous functions of γ, which have the value
of unity at γ = 0 and zero at γ = γ(1)

c . In particular, detK(γ) is a C ∞-continuous
function implying at least C 0 of Λ̄1(γ) and D̄1(γ); see Strang 1986. The propagation
of these quantities during the deformation process can be used to predict the critical
point, making them potential candidates to describe the pre-critical behavior of the
structure.

However, from criterion (7.3), only the last two, namely Λ(1) and D(1) are considered.
The reason for that is the infeasible range of detK. It depends on the mesh size,
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material, etc. and usually takes large values.4 E.g., while bypassing the first critical
point, the determinant typically switches from plus to minus infinity, providing only the
information that a critical point is passed and not how. Thus, the determinant might be
useful for structures with few degrees of freedom (e.g., small truss system – omnipresent
in pertinent literature on this topic), but not for general finite element models. The
post-critical analysis of higher-order bifurcations, i.e., j > 1, excludes D(j). The reason
for that is the non-uniqueness of the factorization LDLT; see Strang 1986. For that
reason, the eigenvalues are most generally usable.

Four examples of deformation-dependent analyses. Throughout this section the
following examples will serve as a benchmark setup.

• Example I: bifurcations of a plane strain Neo-Hookean block (E = 1000, ν =
0.45, r = L1/L2) under compression (û = −L2), see Section 4.1.4 and Section 6.5.2
for the continuous and discrete problem, respectively.

• Example II: bifurcations of a thin plate under compression; material: E1 = 2.1 ·
105, E2 = 3.0359 · 105, ν = 0; geometry: thickness T = 0.2, height L2 = 24 and
width L1 = 5; boundary conditions: simply supported at the top and bottom,
the top edge is subjected to a vertical displacement u2 = γ · 0.001; discretization:
isogeometric Kirchhoff-Love shell elements based on quadratic B-Splines; mesh:
10 × 20.5

• Example III: bifurcation problem of a plane strain Blatz-Ko block under tension
(û = L2), see Section 4.1.5 and Section 6.5.2 for the continuous and discrete prob-
lem, respectively.

• Example IV: limit point problem; inhomogeneous compression of a plane strain
block, see Example 6.3 in Bieber et al. 2022 (mesh in Figure 21, nele = 198).

For Example I,III and IV, the graphs in Figure 7.1 show the scaled versions of the
first four eigenvalues (left column) and the smallest eigenvalue and diagonal term (right
column) versus the load factor.

The graphs on the left show the typical eigenvalue characteristics of discrete stability
problems (note the unconventional vertical axis label). The imminent instability is
announced by a decrease of the smallest eigenvalue. However, the shape of this curve

4This is particularly pronounced in the context of problems involving nearly incompressible materials.
Here, in relation to the small ones, very large eigenvalues of volumetric modes occur (physical, not
necessarily locking-related). This makes the determinant even less practicable for structures with few
degrees of freedom.

5All numerical results for this example were calculated by Anika Strauss (IBB, University of Stuttgart).
The author is most grateful for this support.
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strongly depends on the problem type. While a smooth decrease is observed for (a), the
curves in (b,c) show several kinks. These indicate mode swapping, i.e., the branches of
individual (not sorted) eigenvalues cross each other. For higher-order bifurcations (a,b),
these swaps become more pronounced. For the limit point problem (c), the instability
comes without “alert”. Shortly before the first critical point is reached, the eigenvalue
experiences an abrupt drop and the stiffness matrix becomes singular.

The graphs on the right show the scaled versions of the smallest eigenvalue and smallest
diagonal entry in course of the deformation process. Interestingly, the shape of both
curves is similar in the stable domain and, as expected, both values become zero at the
critical point. This analogy is exploited in the next section to avoid the more expensive
computation of the eigenvalues.

Algorithmic issues. The aforementioned steps to compute instability points are problem-
dependent and their numerical treatment often requires a priori knowledge of the prob-
lem at hand. Typical issues are:

(i) Load steps are too large and the critical point is overshooted. This can give rise to
the following problems:

• Inequalities (7.1) may not be reliable in the broader range of post-critical
states. Surpassing the first two bifurcations within one load step can provide,
again, a positive detK. The same applies for negative eigenvalues that turn
positive in the post-critical state.

• Convergence towards a wrong (i.e., not aimed) critical point.

• The extended systems solver fails to converge.

• Large number of bisections are required.

(ii) To avoid the issues in (i), load increments have to be selected sufficiently small.
However, when load increments are kept constant, a large number of load steps is
required.

(iii) The search for higher-order bifurcations usually comes along with a non-definiteness
of K and consequently LDLT is not unique anymore. This means that techniques
based on an accompanying D(j)-observation are only reliable in the pre-critical
domain, i.e., for computing only the first bifurcation point.

(iv) For many problems, the onset of a bifurcated equilibrium branches comes abruptly.
Often, this onset is followed by a large accumulation of further higher-order bifur-
cations. Typical examples are the surface buckling phenomenon, buckling of thin
walled structures as well as artificial instabilities (hourglassing).

130



7.1 Computational Aspects in the Determination of Critical Points

(a) Example I: large strain compression with r = 0.75, Q2 (5 × 5)
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(b) Example III: large strain tension with r = 1.0, Q2 (5 × 5)
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Figure 7.1: Left column: first four scaled (only for illustrative reason) eigenvalues j ·
D̄(j), versus load factor. Right column: scaled smallest eigenvalue Λ̄(1) and
smallest diagonal term D̄(1) versus load factor. It is noted that the (c) is a
limit point problem, which is why the curves turn back.
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In practical applications, a pre-calculation with larger load increments may provide in-
formation for specific individual remedies, e.g., conditional load step refinements. Some
approaches from the literature, where pre-critical “measures of nonlinearity” are used
to adapt the load control, are described next.

Limit point problems: “measures of nonlinearity”. Adaptive path-following schemes
often rely on measures that characterize the current degree of “nonlinearity” of the
equilibrium path. In the context of the arc-length method, various approaches exist, of
which the two most prominent ones are sketched. First, for limit point problems, Bergan
et al. 1978 introduced a scalar “current stiffness parameter” Sp to describe the nonlinear
behavior. This parameter relates the current stiffness in the (current) displacement-
direction to the initial one and provides valuable information on the softening behavior,
which is particularly useful to adapt the arc-length. A possible formulation is given by
(see Bergan et al. 1978, Eq. (12)). Parameter Sp is equal to one at the initial loading
state and zero at the critical point. For a softening/stiffening structural response, Sp

becomes smaller/greater. For further details it is referred to Eriksson 1988 as well as
the recent discussion in Maghami and Schillinger 2020. Another elegant method was
proposed by Ramm 1981. It is based on a simple adjustment of the arc-length by
comparing the number of required iterations in the Newton-Raphson scheme.

Bifurcation problems: “measures of nonlinearity”. As opposed to limit point prob-
lems, a measure should be related to the properties of the stiffness matrix rather than
the displacement increments, since the principal solutions do usually not provide in-
formation on forthcoming bifurcations. To the author’s best knowledge, this topic is
rarely discussed in literature and approaches do not go beyond a simple accompanying
eigenvalue analysis. The approach closest to what comes next can be found in Kouhia
1992. In order to predict forthcoming critical points, the author proposed an extrapola-
tion of the load increment in dependence on a scaled determinant of the stiffness matrix
(see Equation (24) in Kouhia 1992). However, a modification of the load control is not
further discussed.

7.1.3 Adaptive Load Control – Model Problem

Let M = M (K(γ)) be a scalar measure that quantifies a structural system’s “soften-
ing” during deformation. Possible choices for M are discussed later. Assumed are the
following properties:

• M becomes zero at the critical point,
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Figure 7.2: Model problem; load-“measure” curve M̄ , exemplified for two load incremen-
tations with constant ∆γn = ∆γ.

• M is monotonously decreasing,

• In analogy to before, the scaled version of M is denoted as M̄ = M/M0. At load
increment n it takes the form M̄n.

Model problem. The principal idea of the proposed ALC scheme is explained in terms
of a simple model problem. A fabricated M̄ ≡ M is introduced as a continuous,
monotonously decreasing function of the form

M̄ (γ) = 1 − 1
70γ4 − 1

20γ. (7.5)

Each evaluation M̄ (γ) may be interpreted as the outcome of a nonlinear finite element
calculation. The typically employed load factor update is

γn+1 = γn + ∆γ, (7.6)

with a constant user-defined load increment ∆γ. A plot of M̄ over load factor γ for
a coarse (a) and fine (b) load incrementation is shown in Figure 7.2. The red dots
represent discrete M̄ evaluations at equidistantly distributed γn. Red circles indicate
the initial state. Large load increments are obviously more prone to “overshoot” γc than
small ones, which provide a better interval, I(1)

c . However, the total number of required
evaluations increases. This is often unnecessary for trivial principal solutions. A typical
example is the bifurcation problem of Section 4.1.3 where the principal solution can even
be derived “by hand”.
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Principle idea. The main idea of ALC consists of two simple considerations.

(1) Instead of the conventional load factor incrementation ∆γn = const., the measure
increments ∆M̄n are prescribed.

(2) Close to critical points ∆M̄ should be small, otherwise ∆M̄ should be large. Of
course, specifying “close, small and large” will require user-defined input parame-
ters.

Consideration (1) bears an obvious obstacle: from the viewpoint of the “current” Mn

the future propagation of M is unknown and a result of γn+1 itself. Extrapolation of
M̄ provides a remedy. A Lagrangian interpolation based on a subset of the preceding
(known) discrete values is used

M̄ ext
n (γ) =

n∑
i=n̂

M̄iLi with n̂ = n − p, (7.7)

with ith Lagrange basis function of degree p

Li(γ) =
n∏

i=n̂,i ̸=j

γ − γj

γi − γj
. (7.8)

The constructed polynomial interpolates the preceding set of (γi , M̄i) and provides and
approximation of M̄ beyond the current loading state. Exemplified for linear extrapo-
lation with p = 1, one obtains

M̄ ext
n (γ) = M̄n−1Ln−1 + M̄nLn = M̄n−1

γn − γ

∆γn−1
+ M̄n

γ − γn−1

∆γn−1
. (7.9)

Using γ = γn + ∆γn, this can also be written as

M̄ ext
n (∆γn) = M̄n + ∆M̄n−1

∆γn−1
∆γn︸ ︷︷ ︸

unknown

. (7.10)

Technical details on the quadratic extrapolation are given in Appendix A.5. Figure 7.3
shows a sketch of both extrapolation schemes.

The extrapolation (7.7) is used to predict the next load increment ∆γn. In regard to
consideration (2), the activation function α(M̄ ) is introduced. It is a function of M̄
that represents the desired (user-defined) incremental decrease of M̄ for the next load
step. An example is sketched for a constant α = 0.05: this means that the upcoming
load increment ∆γn should be calibrated such that the next load step provides ∆M̄n =
M̄n+1(∆γn) − M̄n = 0.05 = α(M̄n), i.e., the measure decreases by around five percent.
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n − 1

n
M̄ ext

n (linear)α(M̄ )n
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γ
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−0.4
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0.2
0.4

0 2 3

M̄

0.6
0.8

∆γn = ?
(quadratic)

Figure 7.3: Model problem; exemplified extrapolation of M̄ at γn based of linear and
quadratic Lagrange interpolation.

The increment of the extrapolated measure is enforced via

α(M̄n) != M̄ ext
n (∆γn) − M̄n. (7.11)

Solving for ∆γn provides an estimate for the update of the load factor. Exemplified for
the linear extrapolation (7.9) this reads

∆γn = αn

∆M̄n−1
· ∆γn−1 (7.12)

and yields a load factor update

γn+1 = γn + ∆γn = γn + αn

∆M̄n−1
∆γn−1 (7.13)

Here, αn
∆M̄n−1

scales the previous (known) load increment by the desired amount.

Estimation of required number of load steps. The activation function α can be
interpreted as the “velocity” of M̄ in pseudo-time γ.

As a result, the number of required load increments from the initial state M̄0 = 1 to the
critical point M̄ = 0 is given by

nest =
1∫

0

1
α

dM̄ . (7.14)
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In case the ALC scheme is not activated at the initial state, e.g., when np predictor
steps are used, the estimate is

nest =
1∫

M̄np

1
α

dM̄ + np. (7.15)

Of course, due to the extrapolation error, this is only an approximation. Nevertheless,
it provides practical guidance on how to choose the activation function. Two possible
choices for α are discussed. The most obvious option is to keep α = α0 constant and
independent of M̄ . The estimate of the required load steps becomes

nest = 1
α0

. (7.16)

A more advanced choice is the piecewise linear function

α =


α0 + αi − α0

M̄i
M̄ , M̄ ≤ M̄i

M̄iα1 − αi

M̄i − 1
+ α1 − αi

1 − M̄i
M̄ , M̄ > M̄i

(7.17)

This function depends on four input parameters: left, right and inner α-values α0, αi

and α1, respectively, as well as the location M̄i where both linear functions intersect
(however, continuity is not required for α). An estimate of the required steps is given
by

nest = M̂i
ln αi − ln α0

αi − α0
+ (M̂i − 1)ln (−α1) − ln (−αi)

αi − α1
. (7.18)

Figure 7.4 depicts the resulting steps for a constant activation function α0 = 0.1 (a,b)
and for the linear activation function of (7.17) (c,d) with parameters α0 = 0.01, αi =
0.05, α1 = 0.1 and M̂i = 0.1. The corresponding activation function is sketched on the
very left, sharing the same vertical axis. Quadratic extrapolation with two predictor
steps ∆γ = 0.5 is used. For linear extrapolation, the total number of iterations, using
the same predictor steps, is also provided in the graphs. Here, (a,c) represent M̄ of (7.5)
and (b,d) is a slightly modified function M̄ with a steeper initial slope. The main insights
of Figure 7.4 may be described as follows:

• For (a,c), the extrapolation error of the third step is larger than for (b,d). This is
explained by a sub-optimal predictor which emanates from the linear-dominated
part for γ < 1, whereas the M̄ in (b,d) has a smaller curvature and consequently
the extrapolation scheme provides better results.
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Figure 7.4: Model problem; load-“measure” curve, exemplified for the proposed load
incrementation; illustrated are the steps (red dots) using a quadratic inter-
polation scheme for two different M̄ (left and right) and two different α (top
and bottom, α(M̄ ) sketched on the very left). Two predictor steps are used.

• The estimate from (7.14) can be used as a criterion for reliability and efficiency of
the ALC.

• For convex shapes of M̄ (dM̄/dγ < 0), nest provide an upper bound of ntot.

• For concave shapes of M̄ , nest (dM̄/dγ > 0) provide a lower bound of ntot.

7.1.4 Numerical Experiments

The purpose of this section is to show how the proposed ALC scheme performs in a
variety of stability problems. Within this section, the eigenvalues are used as a measure
due to the reasons listed in the previous section. The corresponding eigenvalue Λ(j)

serves for the computation of the jth bifurcation point, i.e.

M̄ (j) = Λ(j)

Λ(j)
0

. (7.19)
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This means, that for each critical point, a separate ALC computation is started. With
parameters α0 = 0.01, α1 = 0.15, αi = 0.05 and M̂i = 0.1, the piecewise linear activation
function (7.17) is used. The estimated number of iterations nest = 13.91 is compared to
the number of actually required load steps ntot in γ ∈ [γ(j−1)

c , γ(j)
c ] (of course, γ(0−1)

c =
γ0). It is noted that Equation (7.19) does not cover the case when negative eigenvalues
(associated with a preceding critical point) turn back to zero. However, this does not
play a role for the present examples. Alternative approaches to suitable measures M
are discussed in the next section.

The absence of a reference “target solution” impedes a concrete assessment of the ALC
scheme. In the sequel, the step size estimate (7.14) is used to test the performance
of ALC and, indirectly, the quality of M . Standard load stepping schemes completely
depend on the problem at hand and the chosen ∆γ = const. is usually determined
iteratively. As a result, a comparison with ALC is difficult to measure objectively and
therefore not considered in the sequel.

Example I and II: geometric bifurcations of compressed specimens. Figure 7.5
shows the results of various finite element simulations based on ALC. Lines in black,
green, and blue are linear interpolants between the discrete set of M̄ (j) branches. Again,
red dots represent the discrete set (γn,M̄ (j)

n ). For illustrative purposes these dots are
plotted on the eigenvalue branch of the current ALC section (starting with a red circle).
Linear extrapolation is used with the piecewise linear activation function (7.17). In
contrast to the model problem, a small ghost-predictor (not shown) is used to compute
the values for n = 1 as well as the second step for the sections of the higher bifurcations.

The deformation-dependent eigenvalue change strongly depends on the problem at hand.
Large strain problems (a,b) show large curvature variations, whereas, as expected, the
small strain examples (c,d) are nearly linear. As shown for the model problem, extrap-
olation underestimates the predicted load steps for convex curves (convex side oriented
to the origin). This is the reason for the suboptimal performance (in the sense that nest

is badly approximated) for j = 1 in (a) and particularly (b). However, this is the other
way around for j = (2,3) in (b). Here, the concave shape of the branches overestimates
the required load steps. In contrast to that, the ALC scheme provides excellent results
for the small strain examples (c,d).

Example III: diffuse bifurcations of a block under tension. Figure 7.6 shows the
simulation results for a material-induced instability problem. The results are somewhat
different than for the preceding problem types. On the one hand, the number of mode
jumps, i.e., kinks in the eigenvalue branches, is more pronounced than for the preceding
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(a) Example I: r = 0.75, Q2 (5 × 5)

0
0.5

1
1.5

2
2.5

3

0 0.1 0.2 0.3 0.4 0.5

ntot

(j) =



j·
Λ̄(j

)

γ

(1)
(2)
(3)
γn

0
1
2
3
4
5
6

0.3 0.35 0.4 0.45 0.5 0.55

10

12

13

nest=13.91

j·
Λ̄(j

)
·1

0

γ

Zoom

(b) Example I: r = 2.0, Q2 (20 × 20)
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(c) Example I: r = 0.1, Q2 (2 × 10) (d) Example II: shell buckling
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Figure 7.5: ALC scheme for various large strain (a,b) and small strain (c,d) geometric
instability problems; linear extrapolation with piecewise linear α.
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Example III: r = 1.0, Q2 (5 × 5)
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Figure 7.6: ALC scheme for the large strain tension problem; linear extrapolation with
piecewise linear α.

compression problems. For the present discrete problem, however, this is not an issue.
On the other hand, the value of the smallest eigenvalue increases initially. This is
explained by the stiffening (stabilizing) effect of the geometric stiffness due to the tensile
stress state. However, at a later loading-state (γ ≈ 0.3), the BK rubber’s strain-softening
characteristic takes over, and the smallest eigenvalue begins to decrease. The present
ALC scheme is designed for a decreasing M . As a result, the computation begins with
a standard load incrementation of ∆γ = 0.15, and the ALC procedure is activated by a
user-defined threshold of ∆M̄ > 0.1. For the present example this occurs at n = 7 and
γ = 1.05.

Additional comments. The presented results are based on the eigenvalue measure (7.19).
Similar results are obtained when M (1) = D(1) is used to compute the first critical point.
Furthermore, only minor differences between the ALC results of a linear or quadratic
extrapolation are observed. For sake of brevity these results are not shown.

7.1.5 Open Issues

The success of ALC stands or falls with the quality of the measure M . Abrupt curva-
ture variations, kinks, etc., deteriorate the accuracy of the extrapolation and M should
preferably be of linear shape.
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For some preliminary investigations, Example I and Example III are reconsidered. The
left graph in Figure 7.7 (a) and Figure 7.8 (a) show scaled versions of the first 10
eigenvalues. In course of the loading scenario, the eigenvalues become significantly
smaller. In fact, this holds not only for the first few but also for the majority of all
eigenvalues, see the corresponding full eigenvalue spectrum in Appendix A.3. Numerous
mode swappings occur here because the eigenvalues of different modes have different
slopes and must inevitably intersect. This shows that only a finite number of eigenvalues
of K represent the fundamental stability properties of the discrete structure and that
the choice M = Λ(1) may not be optimal in general. Initially, higher-order bifurcations
can “shoot down” and spoil the smoothness of M .

Deformation-dependent mode tracking, which identifies critical individual eigenvalue
branches in the pre-critical state, is an obvious solution. This, however, is not pursued
further since the continuous computation of eigenvectors is economically infeasible for
larger finite element models.6

Ideas for alternative measures. The proposed measure is inspired by the eigenvalue-
based representation of the determinant (7.4). However, to avoid the infeasibly large
range of detK, a special minor-type variant of K is considered. With nthr being a user-
defined threshold, defining the number of (smallest) eigenvalues taken into account, the
proposed measure reads

M (nthr, Λ(i)) =
nthr∏
i=1

ln
(

1 + Λ(i)

Λ(1)
0

)
. (7.20)

Here, each eigenvalue of the logarithmic argument is normalized by the smallest initial
eigenvalue Λ(1)

0 (not to be confused with the scaled eigenvalue Λ̄). By that, the magnitude
of the eigenvalues becomes (more) independent of the problem at hand, e.g., material
or geometry parameters. Furthermore, the natural logarithm reduces the influence of
large eigenvalues. In analogy to before, the measure is scaled with its initial value at
γ = 0, i.e.

M̄ = M̄n = M (nthr, Λ(i)
n )

M (nthr, Λ(i)
0 )

. (7.21)

The question that remains to be answered is how to choose the threshold nthr. For the
current finite element model (Q2, 5 × 5) as well as a finer one (20 × 20), Figure 7.7 (b)
and Figure 7.8 (b) shows the eigenmodes which correspond to the respective eigenvalues
at the nearly critical loading state γ = 1.2 and post-critical state γ = 0.4, respectively
6However, the issue of efficient mode tracking appears to be relevant in other research fields such as
the proper modeling of electromagnetic radiation, see for instance Li et al. 2018.
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(a) Eigenvalues and diagonal terms
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(b) Eigenmodes corresponding to Λ(j) with j = 1,..,10 (left to right), γ = 1.2

(c) Alternative measures M
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Figure 7.7: Example III; Q2 (5 × 5); (a) first 10 eigenvalues (left) and diagonal terms
(right) over the load factor; (b) first 10 eigenmodes corresponding to Λ(j) at
γ = 1.2, Q2 (5 × 5 (top) and 20 × 20) (bottom), plotted on the undeformed
geometry shortly before the critical reference load γ

(1)
c = 1.302; (c) newly

proposed measures.
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(a) Eigenvalues and diagonal terms
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Figure 7.8: Example I; Q2 (5 × 5); r = 0.75, (a) first 10 eigenvalues (left) and diagonal
terms (right) over the load factor; (b) first 10 eigenmodes corresponding to
Λ(j) at γ = 0.4 – shortly after the first critical reference load γ

(1)
c = 0.347,

Q2 (5 × 5 (top) and 20 × 20) (bottom), plotted on the undeformed geometry;
(c) newly proposed measures.
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(recall the critical reference load factor is γ(1)
c = 1.302 and γ(1)

c = 0.347). Though the fine
model has around 14 times more degrees of freedom (and thus eigenvalues), the 10 lowest
modes are very similar. They correspond to the upcoming bifurcation modes, compare
the reference modes in Figure 4.8 and Figure 4.5, respectively. For both examples, it is
concluded that the lowest set of eigenvalues mainly represents the upcoming structural
instability – relatively independent of the mesh size. Thus, a single-digit nthr may be
sufficient instead of a threshold that is percentage-related to the total number of degrees
of freedom. For a set of thresholds nthr up to 10, the left graphs in Figure 7.7 (c) and
7.8 (c) depict the newly proposed measure (7.21). A detailed graph of the higher-order
bifurcations is provided in Appendix A.5.2. Good results, in the sense that the slope is
“more” linear, are obtained for nthr = 2 and nthr = 3.

For reasons of efficiency, the pre-critical behavior of the diagonal terms is of particular
interest. The right graphs in Figure 7.7 (a,c) and 7.8 (a,c) show the behavior of the
diagonal entries (a) and, based on D(j), the behavior of the new measure (7.20) (c), i.e.,
M (nthr, D(i)). Unlike the eigenvalue measure, both sets of diagonal term measures show
sharp kinks.

Discussion. Despite the good performance for a selected set of examples, some aspects
deserve further attention. Of particular concern are the following questions:

• To what extent is M (j) = Λ(j) a reliable choice?

• To what extent is the numerical effort to compute a small set of Λ(j) justifiable?

• With respect to the computation of the first critical point: Does the diagonal
measure M = D(1) always provide comparable results to M = Λ(1)?
In other words: is there a relation between the eigenvalues and the diagonal entries?

• Does D(j) admit any physical interpretation?

• With respect to the choice of the activation function α: What is a good shape of
α(M̄ ) and what is a good nest? In other words: What is the best trade-off between
small and large load increments in dependence of M̄?
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Figure 7.9: Robustness study; problem setup.

7.2 Robustness and Efficiency in the Newton-Raphson
Scheme

This section gives a short overview of robustness issues in the Newton-Raphson process
in nonlinear finite element analysis. Of concern are two questions:

• Does the strain modification of Q1/ME4 and Q1/MS4 preserve quadratic conver-
gence in the Newton-Raphson process?

• Can, similar to standard EAS elements, the method proposed in Pfefferkorn et al.
2021 be successfully applied to the newly proposed EAS elements Q1/ME4 and
Q1/E7?

Figure 7.9 shows the clamped beam problem from Pfefferkorn et al. 2021. The beam-
like structure of length L = 10 and height H = 1 is discretized with a 10 × 1 mesh.
A Saint-Venant Kirchhoff material with E = 1000 and ν = 0.499 is used. The beam
is subjected to a tip load F̂ = T 3/(1 − ν2) ≈ 1.3315. The moderately large deformed
configuration is depicted in Figure 7.9.

Table 7.2 shows the number of required iterations for a single load increment as well
as the residual norm ∥R∥. In analogy to the standard elements Q1/E4 and Q1/S5, a
proper asymptotic convergence behavior is observed for all newly proposed formulations.
The slightly stiffer behavior, i.e. the smaller tip displacement, of Q1/ME4 and Q1/MS4
is in accordance with the results of Bieber et al. 2022 and related to the strain mod-
ification (6.16). This example shows that the newly proposed elements, in particular
Q1/ME4, share the same convergence properties as its “parent” Q1/E4, without further

145



Chapter 7 Algorithmic Aspects

k Q1/E4 Q1/ME4 Q1/E7 Q1/S5 Q1/MS5

0 9.416e − 01 9.416e − 01 9.416e − 01 9.416e − 01 9.416e − 01
1 1.958e + 05 1.956e + 05 1.958e + 05 1.958e + 05 1.956e + 05
2 2.657e + 04 2.652e + 04 2.657e + 04 1.021e + 04 1.021e + 04
3 9.305e + 02 9.254e + 02 9.305e + 02 5.202e + 01 5.222e + 01
4 2.031e + 01 2.200e + 01 2.016e + 01 2.061e − 03 2.160e − 03
5 2.307e + 01 2.436e + 01 2.286e + 01 3.214e − 10 1.534e − 10
6 2.247e + 00 2.457e + 00 2.223e + 00 - -
7 7.268e + 00 8.275e + 00 7.109e + 00 - -
8 9.827e − 02 1.100e − 01 9.668e − 02 - -
9 1.258e − 01 1.796e − 01 1.185e − 01 - -
10 2.950e − 05 5.703e − 05 2.707e − 05 - -
11 1.281e − 08 4.459e − 08 1.042e − 08 - -
12 9.059e − 11 1.574e − 10 1.070e − 10 - -
uA

2 3.443 3.438 3.444 3.444 3.438

Table 7.2: Iteration process of the newly proposed elements based on the residual norm
∥R∥.

modifications. However, as described in Pfefferkorn and Betsch 2022, all EAS formula-
tions suffer from suboptimal preasymptotic convergence performance. The strain driven
elements require more than twice the number of iterations as the assumed stress ele-
ments. This effect is even worsened by an increase of Poisson’s ratio (ν → 0.5) as well
as more slender elements (re → ∞).

The reason for that discrepancy is related to the strain-driven format of EAS formula-
tion. During the iteration process, stresses are evaluated at non-equilibrated deformation
states that degrade from physically meaningful stress. As shown in Kuo-Mo 1987, these
stresses can yield a suboptimal geometric stiffness and consequently they significantly
spoil the fast convergence within the Newton-Raphson scheme. The number of required
iterations can become ineffectively large. It has been shown in Magisano et al. 2017 and
Pfefferkorn et al. 2021 that, similar to locking, this effect depends critically on certain
parameters, e.g., Poisson’s ratio or the element aspect ratio. This means that, although
the nonlinear deformations are similar in size (for a certain set of problem parameters),
the number of iterations increases. In contrast to strain-driven formulations, stress-based
formulations with an independent pressure or stress fields show an improved behavior.
This effect has been observed in Brink and Stein 1996 and Klinkel et al. 2006.

A simple and efficient remedy is the Mixed Integration Point (MIP) method. It has
been proposed in Magisano et al. 2017 and further developed by Pfefferkorn et al. 2021
in the context of EAS formulations. The main idea is based on a modified computation
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k Q1/E4-MIP Q1/ME5-MIP Q1/E7-MIP

0 9.416e − 01 9.416e − 01 9.416e − 01
1 1.958e + 05 1.958e + 05 1.958e + 05
2 1.021e + 04 2.622e + 04 1.021e + 04
3 5.206e + 01 6.252e + 01 5.202e + 01
4 2.073e − 03 4.979e − 03 2.061e − 03
5 6.135e − 11 1.671e − 10 1.194e − 10

uA
2 3.443 3.438 3.444

Table 7.3: Iteration process of the newly proposed elements with MIP modification.

of stresses

SMIP
(k+1) = S(k) + Ĉ

(
B(k)∆d(k) + ME,(k)∆α(k)

)
. (7.22)

Here, the index k refers to the current iteration step with the Newton-Raphson method
and Sk = S(Ek) refers to the “normal” constitutive stresses computed via E. For the
upcoming iteration k + 1, stresses (7.22) are then used for the computation of the ge-
ometric stiffness matrices (instead of S(Ek+1)). Residual quantities are computed in a
standard manner and thus convergence towards the original equilibrium state is pre-
served. The corresponding element formulations are marked with the semi-suffix MIP.
Table 7.3 shows the results for MIP-modified EAS formulations. Great improvements,
comparable to the assumed stress elements, are obtained. However, an extension to
the large strain materials (e.g., Neo-Hooke) is not straightforward; see the discussion
in Pfefferkorn et al. 2021.
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Chapter 8

Concluding Remarks and Outlook

Several problems that arise in nonlinear finite element analysis were described, analyzed
and solved. The investigations were limited to two-dimensional finite elasticity problems.
The main findings of this work can be summarized in two main aspects: the development
of benchmarks based on existing analytical solutions to finite elasticity problems, as well
as the discovery of new issues in nonlinear finite element technology’s “old hats”, locking
and hourglassing, including possible solutions.

Analytical solutions to two nonlinear elasticity problems were presented: large bending
of an incompressible rubber block and the underlying bifurcation problem of a compress-
ible block under tension and compression. The problems themselves are simple but still
contain important nonlinear phenomena. In the course of the numerical investigations in
this thesis, various aspects of their usefulness as finite element benchmarks were demon-
strated. While the solutions of the problem’s thin-limit cases, namely the bending and
buckling of a thin beam, are well-known and widely used in benchmarks, the presented
general solutions were, to the best of the author’s knowledge, never used in the context
of a finite element benchmark. This is remarkable given that the solutions date back
more than a half-century to the seminal works by Maurice A. Biot and Ronald S. Rivlin.
Both problems enable substantial improvements in reliable benchmarking of nonlinear
simulation methods. Future work could complete the large bending benchmark with
respect to the underlying stability problem, including an improvement of the observed
contradictions between analytical and numerical solutions (cf. Sigaeva et al. 2018). An
extension of the bifurcation problem to anisotropic materials, plastic materials as well
as three-dimensional problems is evident (cf. Guz 2012, Bigoni 2012). Furthermore,
a numerical in-depth analysis of the post-bifurcation problem for a large spectrum of
parameters would substantially enhance the overall understanding of the problem.

Two topics related to finite element technology were investigated. Based on the work
of Willmann et al. 2022 the issue of volumetric nonlinear locking was further explained
in the context of various solid Enhanced Assumed Strain (EAS) finite elements. It was
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shown that, for some EAS elements, this stiffening depends on the aspect ratio through
a nonlinear effect. However, the special conditions under which the phenomenon oc-
curs, namely higher-order integration and large inhomogeneous element deformations,
make it a particularly peculiar occurrence. Possible remedies were presented, including
modifications to the strain enhancement of popular EAS formulations. Another topic
concerns the issue of artificial instabilities, classified as geometric and material hour-
glassing. By means of the Ritz method, the results by Bieber et al. 2022 were refined.
The trigger mechanisms of geometric- and material-induced instabilities, of both phys-
ical and artificial nature, were boiled down into a simple and accessible form. Based
on these findings, a potential treatment strategy is straightforward: combat the causes
(trigger mechanisms) of hourglassing rather than its symptoms. This deviates from most
stabilization methods available in the literature, where artificial instability is alleviated
by adding stiffness. Presented were simple modifications of the discrete Green-Lagrange
strain tensor at the element level. Numerical examples verify that the method avoids
geometric hourglassing with only a slight reduction of accuracy with respect to the
modeling of physical instabilities. Future work should focus on an extension into three
dimensions as well as a further study on proper selection of the critical deformation
modes, including a study on alternative efficient implementations. Based on the present
study, the remedies to material hourglassing could be addressed. A future study should
include the popular class of displacement-pressure type elements as well as physically
more motivated strain-softening materials, such as elastoplastic materials.

A method for the algorithmic treatment of an adaptive load-stepping scheme was pre-
sented. It alleviates a major difficulty encountered in the computation of bifurcation
points, namely the strongly input-parameter-dependent problem of finding an optimal
starting point for the activation of algorithms for the exact determination of critical
points (e.g., extended systems or bisection methods). The idea is based on a load-
dependent scalar measure, e.g., the smallest eigenvalue of the stiffness matrix, that
quantifies a structural system’s softening and thus “announces” the upcoming critical
point. This measure is used to adapt the load step size appropriately. Numerical ex-
amples indicated that the method shows excellent results as long as the measure does
not involve large curvatures. Alternative measures were discussed, opening the path for
future work.
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Appendix

A.1 Technical Aspects of the Finite Element Method

A.1.1 Numerical Quadrature

Table A.1 provides the data of the Gauss-Lobatto and (standard) Gauss-Legendre
quadrature. Polynomial of degree pex = 2NQP − 3 (Gauss-Lobatto) and pex = 2NQP − 1
(Gauss-Legendre) are computed exact for a given number of quadrature points NQP.

Gauss-Lobatto Gauss-Legendre
NQP pex abscissas {±ξi} weights {ωi} pex abscissas {±ξi} weights {ωi}

2 1 1.0000000000 1.0000000000 3 0.5773502692 1.0000000000
3 3 0.0000000000 1.3333333333 5 0.7745966692 0.5555555556

1.0000000000 0.3333333333 0.0000000000 0.8888888889
4 5 0.4472135954 0.8333333333 7 0.8611363116 0.3478548451

1.0000000000 0.1666666667 0.3399810436 0.6521451549
5 7 0.0000000000 0.7111111111 9 0.9061798459 0.2369268851

0.6546536707 0.5444444444 0.5384693101 0.4786286705
1.0000000000 0.1000000000 0.0000000000 0.5688888889

6 9 0.2852315164 0.5548583770 11 0.2386191861 0.4679139346
0.7650553239 0.3784749562 0.6612093865 0.3607615730
1.0000000000 0.0666666666 0.9324695142 0.1713244924

Table A.1: Numerical data for quadrature rules adopted from Zwillinger 2003.
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A.1.2 Sobolev Spaces

The presented function norms and spaces are exemplified for a vector-valued function
u : Ω0 = Ω → R2. The energy norm is defined as

∥u∥E =
√

a(u, u) (A.1)

and corresponds to twice the strain energy of the body. The space of square integrable
functions in Ω is introduced as

L2(Ω) =

u ∈ L2 :
∫
Ω

u · u dΩ = ∥u∥2
L2 < ∞

 . (A.2)

Here ∥u∥L2 denotes the L2-norm of u, i.e. the generalization of the Euclidean vector
norm to functions. The Sobolev norms are denoted as ∥u∥Hs . They are defined via the
sum of the L2-norm of function u and its (square integrable) s spatial derivatives, i.e.

∥u∥Hs =
(

∥u∥2
L2 + ∥ ∂u

∂X
∥2

L2 + . . . + ∥ ∂su

∂Xs ∥2
L2

) 1
2

. (A.3)

The collected functions u with a Sobolev norm of order s induce the Sobolev spaces Hs.
Important in linear elasticity is H1 in Ω, i.e.

H1(Ω) =

u ∈ H1 : ∥u∥H1 =
(

∥u∥2
L2 + ∥ ∂u

∂X
∥2

L2

) 1
2

< ∞

 . (A.4)

Of course, L2(Ω) = H0(Ω). The norms ∥u∥♯ and ∥u∥♭ are called equivalent norms if

C1∥u∥(♭) < ∥u∥(♯) < C2∥u∥(♭), (A.5)

with constants C1 and C2 independent of u. It can be shown that the energy norm is
equivalent to all Sobolev norms.

A.2 Supplements to the Bifurcation Problem

A.2.1 Derivation of the Trigonometric Ansatz Functions

As a subsidiary argument concerning Section 4.1.3, the derivation of the specific ansatz
functions for the EI and EC cases are provided. The final buckling mode has to be
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real, which can be achieved via various technical options. The ansatz functions can be
constructed complex such that complex coefficients provide finally a real buckling mode,
see e.g Ogden 1997. In contrast to that the ansatz functions here are constructed to be
real.

Starting point is the general ansatz (4.26) which can be specified as

∆uα = Fα

 4∑
j=1

m(j)
α eizj

 , (A.6)

where Fα denotes a function which arguments contains zj = p(j)
1 X1 +p2X2, where p2 ∈ R

is determined by the (odd or even) wave numbers and completes the resulting four
solutions p(j)

1 of the characteristic equation (4.27). The subsequent derivations make use
of Euler’s formulae

e±ix = cos x ± i sin x and e±x = cosh x ± sinh x , x ∈ R, (A.7)

such that the exponential form can be expressed in a more intuitive trigonometric
form.

EI case. The four purely imaginary solutions (4.35) define z(1,2,3,4) = p2 · {±α, ± β}.
Exemplified for the S1 case, the ansatz for the real incremental displacement field can
be derived via

∆u1 =
4∑

j=1
mj

1

(
eizj + eizj

2

)

= Re
[ (

m(1)
1 eαp2X1 + m(2)

1 e−αp2X1 + m(3)
1 eβp2X1 + m(4)

1 e−βp2X1
)

eip2X2
]

= [A1 cosh (αp2X1) + B1 sinh (αp2X1) + C1 cosh (βp2X1) + D1 sinh (βp2X1)] cos (p2X2)

(A.8)

and

∆u2 =
4∑

j=1
mj

2

(
eizj − eizj

2i

)

= Im
[ (

m(1)
2 eαp2X1 + m(2)

2 e−αp2X1 + m(3)
2 eβp2X1 + m(4)

2 e−βp2X1
)

eip2X2
]

= − [A2 sinh (αp2X1) + B2 cosh (αp2X1) + C2 sinh (βp2X1) + D2 cosh (βp2X1)] sin (p2X2)

(A.9)

where a rearrangement provides the real constants (Aα,Bα,Cα,Dα). It remains to verify
(4.36), i.e. that constants (Aα, Cα) are decoupled from (Bα, Dα). Substituting (A.8) and
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(A.9) in one of the incremental equilibrium equations (4.23) demands

Aα = Bα or Aα ̸= 0, Bα = 0 or Aα = 0, Bα ̸= 0, (A.10a)
Cα = Dα or Cα ̸= 0, Dα = 0 or Cα = 0, Dα ̸= 0. (A.10b)

Furthermore the incremental boundary conditions (4.20)1 (or alternatively (4.20)2) yields

sinh (αp1{±L1}) [A1111A1α + A1122A2] + cosh (αp1{±L1}) [A1111B1α + A1122B2]

+ sinh (βp1{±L1}) [A1111C1β + A1122C2] + cosh (βp1{±L1}) [A1111D1β + A1122D2] = 0,
(A.11)

showing that the very left relations (A.10) are not compatible for both boundaries in
(A.11) in contrast to the middle and left relations (A.10). Consequently only purely
symmetric or antisymmetric modes are simultaneously are possible.

EC case. The four complex solutions (4.43) define the trigonometric representation.
Again exemplified for the S1 case, the ansatz for the real incremental displacement field
can be derived via

∆u1 =
4∑

j=1
mj

1

(
eizj + eizj

2

)

=
[
A1 cosh (γp2X1) cos (δp2X1) + B1 sinh (γp2X1) cos (δp2X1)

+ C1 sinh (γp2X1) sin (δp2X1) + D1 cosh (γp2X1) sin (δp2X1)
]

cos (p2X2)

(A.12)

and

∆u2 =
4∑

j=1
mj

2

(
eizj − eizj

2i

)

= −
[
A2 sinh (γp2X1) cos (δp2X1) + B2 cosh (γp2X1) cos (δp2X1)

+ C2 cosh (γp2X1) sin (δp2X1) + D2 sinh (γp2X1) sin (δp2X1)
]

sin (p2X2).

(A.13)

Similar considerations as for the EI case (A.10) verify the decoupling.
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A.2.2 Elliptic-Complex Case – Coefficients

The coefficients read

U=A1221A2121(δ2+γ2)2A2
1111+A1122A1212(A1122A2112−A1212A2121+A1221A2112)

+ [(−A2
1221A2112+(−A1122A2112+A1212A2121)A1221+3A1122A1212A2121)γ2

−δ2(A2
1221A2112+(A1122A2112−A1212A2121)A1221+A1122A1212A2121)]A1111

V=A1221A2121(δ2+γ2)2A2
1111+A1122A1212(A1122A2112−A1212A2121+A1221A2112)

+ [(A2
1221A2112+(A1122A2112−A1212A2121)A1221+A1122A1212A2121)γ2

−3(−A2
1221A2112/3+(−A1122A2112/3+A1212A2121/3)A1221+A1122A1212A2121)δ2)A1111].

(A.14)

A.2.3 Bifurcation Modes – Coefficients

Once a critical stretch is calculated the coefficients of the critical mode are

A1 = −♭1A2
α(A1122 + A1221)
A1111α2 − A1212

,

A2 = −Ĉ2
βtβ cosh (βp2L1)(A1111α

2 − A1212)
αtα cosh (αp2L1)(A1111β2 − A1212)

,

C1 = −♭1Ĉ2
β(A1122 + A1221)
A1111β2 − A1212

,

C2 = Ĉ2.

(A.15)

and

B1 = −♭1B2
α(A1122 + A1221)
A1111α2 − A1212

,

B2 = −D̂2
βtβ sinh (βp2L1)(A1111α

2 − A1212)
αtα sinh (αp2L1)(A1111β2 − A1212)

,

D1 = −♭1D̂2
β(A1122 + A1221)
A1111β2 − A1212

,

D2 = D̂2.

(A.16)
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for the EI case. The EC case yields

A1 = −♭1χ1
2A1111A2δ

2γ + Ĉ2(−2A1111γ
2 + χ4)δ + A2γχ4

4A2
1111δ

2γ2 + χ2
4

A2 = −4Ĉ2
Anum

Adenum
with:

Anum =−cδδ(−2γ2A2
1111A2121δ2+γ2χ1A1111A2112−χ4(A2112χ1+A2121χ4)/2)cγ/2

+γA1111(γ2A1111A2121+χ1A2112/2)δ2+χ4(A2112χ1+A2121χ4)/4sγsδ

Adenum=4γ(A1111(γ2A1111A2121+χ1A2112/2)δ2+χ4A2112χ1+A2121χ4)/4) cos(δp2L1)cγ

+2δcγ(−2γ2A2
1111A2121δ2+γ2χ1A1111A2112−χ4(A2112χ1+A2121χ4)/2)sδ

C1 = (2A1A1111δγ + ♭1A2δχ1 − ♭1Ĉ2γχ1)/χ4

C2 = Ĉ2.

and

B1 = −♭1χ1
2A1111B2δ

2γ + D̂2(−2A1111γ
2 + χ4)δ + B2γχ4

4A2
1111δ

2γ2 + χ2
4

B2 = −4D̂2
Bnum

Bdenum
with:

Bnum=
(

γ(A1111(γ2A1111A2121+A2112χ1/2)δ2+χ4(A2112χ1+A2121χ4)/4) sin(δp2L1)cγ

−cos(δp2L1)(−2γ2A2
1111A2121δ2+γ2χ1A1111A2112−χ4(A2112χ1+A2121χ4)/2)sγδ/2

)
Bdenum=

(
2 sin(δp2L1)(−2γ2A2

1111A2121δ2+γ2χ1A1111A2112−χ4(A2112χ1+A2121χ4)/2)δ cosh(γp2L1)

+4(A1111(γ2A1111A2121+A2112χ1/2)δ2+χ4(A2112χ1+A2121χ4)/4)γ cos(δp2L1)sγ

)
D1 = ♭1

−B2γχ1 − D̂2δχ1 − ♭1B1χ4

2γA1111δ

D2 = D̂2.
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A.3 Finite Bending Problem – Stress Resultants

The the integral for the bending moment (4.79) can be computed as follow:

M =
λ(ro)∫

λ(ri)

σθθ

(
L

αλ

)
︸ ︷︷ ︸

r

(
− L

αλ2 dλ

)
︸ ︷︷ ︸

dr

= L2

α2

λo∫
λi

(
W̃ ′

λ2 − W̃
λ3 + W̃ (λi)

λ3

)
dλ

= L2

α2

{ λo∫
λi

W̃
λ3 dλ +

λo∫
λi

(
W̃ ′

λ2 − 2W̃
λ3

)
dλ +

λo∫
λi

W̃ (λi)
λ3 dλ

}

= L2

α2

{ λo∫
λi

W̃
λ3 dλ +

[
W̃
λ2 − W̃ (λi)

2λ2

]λo

λi

}

= L2

α2

{ λo∫
λi

W̃
λ3 dλ + W̃ (λi)

α2

2L2 (r2
o − r2

i )
}

= L2

α2

λo∫
λi

W̃
λ3 dλ + LT

α
W̃ (λi)

(A.17)

Here relations (4.60c) and (4.69) are used. In a similar manner the vanishing normalforce
(4.78) can be confirmed via

N =
λo∫

λi

(
W̃ ′

λ
− W̃

λ2 + W̃ (λi)
λ2

)
dλ

= L
α

[
W̃
λ

− W̃ (λi)
λ

]λo

λi

= 0

(A.18)

A.4 Constants

Coefficients of isochoric constraints for the model problem for Q1 read

A1 = c2
2c2

3 + 2c2
2c3 + 2c2c2

3 + c2
2 + 4c2c3 + c2

3 + 2c2 + 2c3 + 1
A2 = 2c1(c2c2

3 + 2c2c3 + c2
3 + c2 + 2c3 + 1)

A3 = c2
1(c2

3 + 2c3 + 1)
(A.19)
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and for Q1/E4 they read

B2 = 2(c1c2c2
3 + α2c2

2 + 2c1c2c3 + c1c2
3 + 2α2c2 + c1c2 + 2c1c3 + α2 + c1)

B3 = c1(c1c2
3 + 4α2c2 + 2c1c3 + 4α2 + c1)

B4 = −4α3(c1c2 + α3 + c1)
B5 = −4α3c2

1

B6 = 2α2c2
1

. (A.20)

A.5 Adaptive Load Control – Technical Aspects

A.5.1 Quadratic Extrapolation

Using γn+1 = γn + x∆γn−1, quadratic extrapolation yields

M̄ ext
n (γ) = M̄n−2Ln−2 + M̄n−1Ln−1 + M̄nLn = ax2 + bx + M̄n. (A.21)

with γn+1 = γn + ∆γn = γn + x∆γn−1

a :=
∆M̄n−1

(
∆M̄n−1∆γn−2 − ∆M̄n−2∆γn−1

)
∆γn−2 (∆γn−2 + ∆γn−1)

, (A.22a)

b := ∆M̄n−1 · ∆γn−2(∆γn−2 + 2∆γn−1) − ∆M̄n−2∆γ2
n

∆γn−2(∆γn−2 + ∆γn−1)
. (A.22b)

Similar to Equation (7.11) this yields

ax2 + bx = α(M̄n) ⇒ x =
−b ±

√
b2 − 4aα(M̄n)

2a (A.23)

The correct x can then be used to update the load factor according to Equations (7.13).
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A.5.2 Supplements to Figure 7.7 and 7.8
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Figure A.1: Example III of Section 7.1.4; BK block with r = 1.0 under tension; Q2
(5 × 5).
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Figure A.2: Example I of Section 7.1.4; NH block with r = 0.75 under compression; Q2
(5 × 5).
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Figure A.3: Eigenvalue spectrum; Example III of Section 7.1.4; BK block with r = 1.0
under tension; Q2 (5 × 5); complete set of all 219 eigenvalues Λ(j) over the
load factor.
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Figure A.4: Diagonal term spectrum; Example III of Section 7.1.4; BK block with r = 1.0
under tension; Q2 (5 × 5); complete set of all 219 diagonal terms D(j) over
the load factor.
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Figure A.5: Eigenvalue spectrum; Example I of Section 7.1.4; BK block with r = 0.75
under compression; Q2 (5 × 5); complete set of all 219 eigenvalues Λ(j) over
the load factor.

162



A.5 Adaptive Load Control – Technical Aspects

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6

lo
g
1
0
(1
0
+

D
(j
)
)

γ

Figure A.6: Diagonal term spectrum; Example I of Section 7.1.4; BK block with r = 0.75
under compression; Q2 (5 × 5); complete set of all 219 diagonal terms D(j)

over the load factor.
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This thesis deals with locking and hourglassing issues that arise in nonlinear finite
element analyses of problems in mechanics. The major focus lies on the analysis of these
numerical deficiencies, the design of suitable benchmarks and the development of novel
remedies.
A new nonlinear locking phenomenon is described. It is caused by parasitic nonlinear
strain terms and it is particularly pronounced for large element deformations in
combination with higher-order integration and a critical parameter, such as the element
aspect ratio or the Poisson's ratio. To avoid this problem within the popular class of
enhanced assumed strain formulations, novel strain enhancements are presented. An
analytical solution of a tailored finite bending problem is used to benchmark the newly
proposed element formulations.
Further, the problem of hourglassing in both compression and tension of solid bodies is
analysed. It is shown that the underlying causes of hourglassing can be explained by
geometry-induced and material-induced trigger mechanisms of structural instabilities.
Crucial for understanding as well as benchmarking is the analytical in-depth analysis of a
large strain bifurcation problem. Based on these insights, an obvious remedy for the
geometric hourglassing phenomenon is presented.
The last part of this thesis is devoted to the efficient algorithmic treatment of the
computation of instability points. The difficulties in choosing a suitable load-stepping
approach with methods from the literature are discussed and a methodological idea of an
adaptive load-stepping scheme is presented. Efficiency and practicability are
demonstrated for several benchmarks.
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