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Kurzfassung

Kurzfassung

Dünnwandige Strukturen üben seit jeher eine große Faszination auf den Menschen aus.
Diese Faszination rührt daher, dass die dünnwandigen Strukturen zwar zerbrechlich
wirken, aber dennoch in der Lage sind, hohe Lasten zu tragen. Die Vorteile der hohen
Tragfähigkeit und des geringen Materialeinsatzes sind nicht selbstverständlich, da diese
guten Eigenschaften mit einem hohen Beulrisiko einhergehen. Der Ingenieur, der die
Tragfähigkeit von Schalenstrukturen untersucht, muss daher immer auch die Wahrschein-
lichkeit des Versagens berücksichtigen.

Um dieses potenziell katastrophale Versagen vorhersagen zu können, kommen seit jeher
Strukturmodelle zum Einsatz. Computersimulationen, verwenden numerische Lösungsver-
fahren, die aus diesen Strukturmodellen abgeleitet werden. Diese numerischen Lösungsver-
fahren müssen einerseits korrekte Ergebnisse liefern und andererseits robust und effizient
sein. Die vorliegende Arbeit befasst sich mit diesen numerischen Lösungsverfahren und
macht Vorschläge um jede der drei genannten Eigenschaften zu verbessern. Dies geschieht
im Rahmen des Reissner-Mindlin-Schalen-Modells.

Die vorliegende Arbeit zielt darauf ab, das Reissner-Mindlin-Schalen-Modell und seine
Finite-Elemente-Formulierung durch theoretische und numerische Untersuchungen weit-
erzuentwickeln. Dabei wird ein breites Themenspektrum abgedeckt: die exakte Herleitung
der Schnittgrößen der Schale, die Untersuchung der Reissner-Mindlin-Annahmen, korrekte
Linearisierungsverfahren für eine konsistente und symmetrische SteiĄgkeitsmatrix, Eigen-
schaften geeigneter Direktor-Interpolationsverfahren, die numerische Durchsetzung der
Annahme verschwindender Normalspannungen und die Funktionsanalysis in nichtlinearen
Funktionsräumen.

Um diese Ziele zu erreichen, legt diese Arbeit großen Wert auf die Grundlagen der
Differentialgeometrie, um eine solide mathematische Basis für das Schalenmodell und
die Formulierung zu schaffen. Dabei wird vor allem die Optimierung auf Mannig-
faltigkeiten verwendet, um den korrekten Linearisierungsprozess für eine Reissner-Mindlin-
Schalenformulierung herzuleiten. Durch die Interpretation der Einheitslängen-Neben-
bedingung als ein Optimierungsproblem in einem beschränkten Raum, ergibt sich eine
Formulierung mit fünf Freiheitsgraden pro Knoten. Dies stellt die optimale Anzahl von
Freiheitsgraden für diese Schalen-Formulierung dar und übertrifft traditionelle Ansätze
wie die Lagrange-Multiplikator-Methode oder die Penalty-Methode, die beide zu einer
höheren Anzahl von Freiheitsgraden führen.

Die Differentialgeometrie auf Mannigfaltigkeiten wird verwendet, um die korrekten
Schnittgrößen im Detail herzuleiten. Diese werden dann verwendet, um die Bewegungsgle-
ichungen des Schalenmodells aufzustellen. Darüber hinaus trägt die Differentialgeometrie
zum Verständnis des speziellen Direktorfeldes im Reissner-Mindlin-Schalenmodell bei.
Durch die gründliche Analyse dieses speziellen Direktorfeldes und seiner Auswirkungen
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liefert die Arbeit ein umfassendes Verständnis mechanischer Modelle mit Nebenbedin-
gungen. Deshalb kann die vorliegende Abhandlung als Grundstein für Finite-Elemente-
Formulierungen anderer Strukturmodelle dienen.

Die Annahme der verschwindenden Normalspannung und ihre numerische Umsetzung
werden ebenfalls untersucht, und es wird ein neuer, vielversprechender Ansatz vorgeschla-
gen, der die bestehenden Methoden übertrifft. Dies wird wiederum durch die konsequente
Anwendung der Optimierung auf Mannigfaltigkeiten erreicht, die in den Methoden aus der
Literatur fehlt. Daraus wird ein effizientes und robustes numerisches Verfahren entwick-
elt, das auch auf andere Modelle mit Spannungsnebenbedingungen anwendbar ist. Die
Leistungsfähigkeit wird anhand eines einfachen Modellproblems und einer geometrischen
und materiellen nichtlinearen Schalensimulation untersucht.

Die Symmetrie der SteiĄgkeitsmatrix wird auf zwei Arten behandelt. Zunächst wird
ein konsistenter Linearisierungsprozess für die Reissner-Mindlin-Schalenformulierung
angegeben, der eine symmetrische SteiĄgkeitsmatrix ergibt. Dies steht im Gegensatz zu
Linearisierungsverfahren, die in der Literatur zu Ąnden sind und die die SteiĄgkeitsmatrix
ad hoc symmetrisieren oder eine unsymmetrische SteiĄgkeitsmatrix verwenden, die nur im
Gleichgewicht symmetrisch ist. Zweitens wird gezeigt, dass die Symmetrie der SteiĄgkeits-
matrix direkt aus der Symmetrie der Riemannschen Hesse-Matrix abgeleitet werden kann.
Dies steht im Gegensatz zur fehleranfälligen und möglicherweise unsymmetrischen zweiten
Variation, die in der Literatur verwendet wird. Diese Ergebnisse gelten auch wiederum
für andere Strukturmodelle, die Freiheitsgrade auf Mannigfaltigkeiten einbeziehen.

Finite-Elemente-Formulierungen aus der Literatur für das Reissner-Mindlin-Schalenmodell
diskretisieren das Direktorfeld auf unterschiedliche Art und Weise. Diese haben ihre
jeweiligen Vor- und Nachteile, die in dieser Arbeit diskutiert werden. Aus dieser Diskussion
geht hervor, dass die direkte Interpolation auf Mannigfaltigkeiten die einzige Möglichkeit
ist, verschiedene Nachteile zu vermeiden. Im Gegensatz zur Interpolation in Vektorräumen,
in denen eine kanonische Interpolationsregel existiert, gibt es bei der Interpolation auf
Mannigfaltigkeiten verschiedene Möglichkeiten. Diese Möglichkeiten werden verglichen
und hinsichtlich ihrer Konvergenzrate und ihres EinĆusses auf Locking-Phänomene
analysiert. Dies geschieht durch den Vergleich der Finite-Elemente-Lösungen mit der
analytischen Lösung für ein geometrisch nichtlineares Problem. Die Untersuchung wird
für lineare LagrangeŠsche Ansatzfunktionen und B-Splines-Ansatzfunktionen höherer
Ordnung durchgeführt.

All diese Untersuchungen führen zu einer statischen Schalenformulierung, die mehrere
wünschenswerte Eigenschaften aufweist, die denen bestehender Formulierungen überlegen
sind. Dazu gehören Objektivität, die Fähigkeit, unbegrenzte Gesamtrotationen richtig
abzubilden, die Erfüllung der Längeneinheitsbeschränkung für interpolierte Direktoren,
keine künstliche Pfadabhängigkeit, Vermeidung von Singularitäten und das Erreichen
optimaler Konvergenzordnungen. Darüber hinaus sind die resultierenden Elementvek-
toren und -matrizen unabhängig von der Nummerierung der Finite-Elemente-Knoten.
Die konsistente Aktualisierung der Knotendirektoren ermöglicht in Verbindung mit

ii



Kurzfassung

dem konsistenten Linearisierungsprozess eine Formulierung, die hinsichtlich der erforder-
lichen Lastinkremente und der Anzahl der erforderlichen Iterationen besser abschneidet
als bestehende Formulierungen. Diese Vorteile wurden durch die Untersuchung der
mathematischen Literatur auf dem Gebiet der Optimierung und der Interpolation auf
Mannigfaltigkeiten möglich gemacht.

Zusammenfassend kann gesagt werden, dass die vorliegende Arbeit offene Fragen des
geometrisch nichtlinearen Reissner-Mindlin-Schalenmodells und seiner Finite-Elemente-
Formulierung aufgreift und behandelt. Sie liefert Analysen und schlägt Lösungen vor.
Durch eine strenge Herleitung des Reissner-Mindlin-Schalenmodells in Verbindung mit
einer soliden mathematischen Grundlage im Bereich der Differentialgeometrie versucht
die vorliegende Arbeit einen Fortschritt auf dem Gebiet der Strukturmechanik zu erzielen.
Die Analysen und Lösungen, die in dieser Studie vorgestellt werden, verbessern nicht nur
das Verständnis und die Verfeinerung des Reissner-Mindlin-Schalenmodells und seiner
Finite-Elemente-Formulierung, sondern können auch Auswirkungen auf die Verbesserung
der Genauigkeit, der Effizienz und der Zuverlässigkeit von Lösungsverfahren für die
numerische Behandlung anderer Strukturmodelle.
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Abstract

Abstract

Thin-walled structures have always fascinated mankind. This fascination stems from the
fact that, although thin-walled structures look fragile, they can carry high loads. The
advantages of the high load-bearing capacity and low material input cannot be taken
for granted, as these good properties come with a high risk of buckling. The engineer
designing these structures for their load-bearing capacity must always keep the probability
of failure in mind.

Structural models have always been used to predict this potentially catastrophic failure.
Computer simulations designed to predict it, use numerical solution procedures derived
from these structural models. These numerical solution methods must provide correct
results on the one hand and be robust and efficient on the other hand. The present work
deals with these numerical solution methods, by improving each of the two properties
mentioned. This is done within the framework of the Reissner-Mindlin shell model.

Thus, the aim of the present work is to advance the Ąnite element formulation for the
geometrically non-linear Reissner-Mindlin shell model through theoretical and numerical
investigations. The work covers a wide range of topics, including the exact derivation of
the shellŠs stress resultants, the investigation of the Reissner-Mindlin assumptions, correct
linearization procedures for a consistent and symmetric stiffness matrix, properties
of suitable director interpolation schemes, the inĆuence of locking phenomena, the
enforcement of the zero normal stress assumption, and functional analysis in non-linear
function spaces.

In order to achieve these goals, this thesis places signiĄcant emphasis on the fundamentals
of differential geometry to provide a solid mathematical basis for the shell model and
formulation. In particular, optimization on manifolds is used to derive the correct
linearization process for a Reissner-Mindlin shell formulation. By interpreting the unit-
length constraint of the shellŠs director as an unconstrained optimization problem in a
constrained space, a formulation with Ąve degrees of freedom per node is obtained. This
is the optimal number of degrees of freedom for this shell formulation and outperforms
traditional approaches, such as the Lagrange multiplier method or the penalty method,
which result in higher numbers of degrees of freedom.

Differential geometry of manifolds is used to revisit and derive the correct stress resultants
in detail. These are then used to formulate the differential equations of the shell model, the
balance of linear and angular momentum. Additionally, differential geometry guides the
understanding of the unit-length constraint for the director Ąeld in the Reissner-Mindlin
shell model. By thoroughly analyzing this constraint and its implications, the thesis
provides a comprehensive understanding of constraints in mechanical models in general,
thus serving as a cornerstone for future studies.

The zero normal stress assumption and its numerical realization are investigated, and a
novel and promising approach is proposed that outperforms existing methods. This is done
again by rigorously applying the notion of optimization on manifolds, which is missing
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in the methods proposed in the literature. In comparison to these methods found in the
literature, this results in fewer iterations and a more robust numerical procedure. This
applies also to other models with zero stress constraints. The performance is investigated
by studying a small model problem and a fully geometrically and materially non-linear
shell simulation.

The symmetry of the stiffness matrix is investigated in two ways. First, the consistent
linearization process is stated for the Reissner-Mindlin shell formulation, which yields
an unconditionally symmetric stiffness matrix. This is in contrast to the linearization
procedures found in the literature, which symmetrize the stiffness matrix ad hoc or use an
unsymmetric stiffness matrix, which is symmetric only at equilibrium. Second, it is shown
that the symmetry of the stiffness matrix is directly derived from the symmetry of the
Riemannian Hessian. This contrasts with the error-prone and potentially unsymmetric
second variation, which is used in literature. These results also apply to other structural
models involving degrees of freedom on manifolds.

Finite element formulations for the Reissner-Mindlin shell model from the literature
discretize the director Ąeld in different ways. These have their respective advantages
and disadvantages, which are discussed in this thesis. From this discussion, it appears
that direct interpolation on manifolds is the only way to avoid the various drawbacks.
Unlike interpolation in vector spaces, where a canonical interpolation rule exists, there are
several options for interpolation on manifolds. These options are compared and analyzed
in the context of the rate of convergence and their inĆuence on locking phenomena. This
is done by comparing the Ąnite element solutions with the analytical solution for a highly
geometrically non-linear problem. The investigation is carried out for linear Lagrangian
ansatz functions and higher-order B-spline ansatz functions.

All of these key questions and their answers lead to a static shell formulation, that
achieves several desirable features, superior to those of existing formulations. These
include objectivity, the ability to accommodate unlimited magnitudes of rotations, the
satisfaction of the unit length constraint for interpolated directors, no artiĄcial path
dependence, the avoidance of singularities, and the achievement of higher convergence
orders. In addition, the resultant element vectors and matrices are independent of the
numbering of nodes. The consistency of the update of the nodal directors enables,
in conjunction with the consistency of the linearization process, a formulation that
outperforms existing formulations in terms of required load increments and the number
of required iterations. These achievements were made possible by investigating the
mathematical literature in the Ąeld of optimization on manifolds and interpolation on
manifolds.

In summary, the present work revisits and addresses open questions in the geometrically
non-linear Reissner-Mindlin shell model and its Ąnite element formulation, providing
comprehensive analyses and proposing solutions. By providing a rigorous derivation of
the Reissner-Mindlin shell model and its Ąnite element formulation, coupled with a solid
mathematical foundation in the realm of differential geometry, this research proposes an
advance in the Ąeld of structural mechanics. The comprehensive analyses and solutions
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presented in this study do not only enhance the understanding and reĄnement of the
Reissner-Mindlin shell model and its Ąnite element formulation but also have implications
for improving the accuracy, efficiency, and reliability of various other structural models,
thus contributing to the broader Ąeld of structural mechanics.
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1
Introduction

Life as we perceive it is fundamentally inĆuenced by various forces. The study of
mechanical behavior has a tradition dating back thousands of years. This is mainly
because mechanics can be experienced. Displacements can be measured. Dents in cars
can be repaired. Ships can be sunk by collisions with icebergs. Galaxies collide. People
die. Everything in our environment screams mechanics.

Some things are disturbing, while others are simply fascinating. Among the latter are shell
structures that seem to defy gravity as if by magic. These include leaves, seashells, eggs,
jet Ąghters, and those big gymnastics balls that, when bounced while sitting on them,
help our blood Ćow and train our muscles and coordination. All these shell structures
have one thing in common: As three-dimensional objects, they have two dimensions that
are signiĄcantly larger than the remaining direction. For this reason, shell structures
are also called thin-walled structures. In addition to the geometric description, shells
can also be described based on their mechanical load-carrying behavior. For example,
there are Ćat plates that are loaded transversely or membranes that have practically no
bending stiffness, such as trash bags. All these shells, from trash bags to watermelons
to the International Space Station, have a high stiffness-to-material ratio in addition to
their geometric commonality.

1.1 Motivation

Starting from nature, shells have always been an inspiration for people to overcome
their challenges. One example is the Pantheon in Rome as a prominent representative of
historical buildings, whereas hollow nanomaterials in drug delivery systems are modern
applications of shell structures. Thus, our environment often does not scream mechanics

but structural mechanics at us. Research in structural mechanics is still largely motivated
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by the need to simulate thin-walled structures in a variety of Ąelds, including civil engi-
neering, mechanical engineering, aerospace, shipbuilding, and biology. This is motivated
by the fact that simulation can be used to make predictions about real behavior. This is
especially important because the beneĄts of shells are accompanied by being always close
to a very rapid, unannounced and catastrophic failure. Thus, these limits have to be
predicted as accurately as possible. These characteristics are summed up in the sentence
stated by Ramm et al. [Ram02]: ŞThe shell is the prima donna among structures. Capable
of maximum performance, but temperamental and sensitive if not properly treated.Ť (cf.
p. 29). Another Ątting quote is ŞGod made the bulk; the surface was invented by the
devil.Ť by the physicist Wolfgang Pauli, as quoted in Jamtveit and Meakin [JM99]. These
quotes are an excellent overview of the issues of shell simulations because the requirement
to handle the design of thin-walled structures with great care also carries over to the
simulation of these structures. As a result, simulating thin-walled constructions is not
only difficult because the thin direction is only geometrically small, but this translates
to challenging mechanical behavior. As computer use has increased since the mid-1970s,
many researchers have tackled this problem by developing Ąnite element formulations.
Geometrically non-linear shell models and their Ąnite element formulations have a bumpy
and eventful history dating back to the 1940s. In particular, the theoretical and numerical
work has helped to make Reissner-Mindlin shell formulations the workhorse of modern
simulation software involving shell simulations. However, there are still some inconsisten-
cies in deriving a correct formulation to allow a computer to make predictions about the
structural behavior. There are also some blind spots in the theoretical derivations.

The present work deals with both the improvement of the theoretical basis of the geomet-
rically non-linear Reissner-Mindlin shell model and the improvement of the numerical
formulation to make the computer predictions better, faster, and more reliable.

Accordingly, the present work represents a comprehensive advancement that signiĄ-
cantly enhances the geometrically non-linear Reissner-Mindlin shell model, improving its
theoretical and numerical foundations on all fronts.

The driver for shell theories is, from the beginning, a fundamental understanding of
differential geometry. However, the negotiations over which shell theory is best are not
solely driven by purely geometric reasoning; The interaction between forces and the shell
also plays a crucial role. This is especially true in dynamic scenarios, where the design
space for modeling inertia effects is quite large. As a result, there is ample room for
assumptions and approximations in order to develop a computationally efficient model for
the speciĄc scenario of interest. Consequently, deriving a perfect shell model is impossible,
partly due to the varying interpretations of ŞperfectionŤ in different contexts. Therefore,
the only viable solution is to establish a hierarchy of models, each tailored to address a
particular type of problem. In this hierarchy, two classic shell models are named after
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Kirchhoff [Kir50] and Love [Lov88] and after Reissner [Rei45] and Mindlin [Min51]. These
models are not only useful because they are more computationally efficient than a full
three-dimensional formulation but also for enhancing our understanding of underlying
physical effects and facilitating informed assumptions about structural behavior Ů a
feat that a fully three-dimensional theory cannot accomplish. Consequently, this work
places equal emphasis on achieving consistent and efficient numerical behavior, as well
as understanding the underlying theory.

Shell models are primarily concerned with simplifying the mechanical behavior of thin-
walled structures along the thin direction. In addition to the approximations provided
by a shell model, various numerical formulations to solve the underlying equations with
the Ąnite element method may also incorporate approximations. The nature of these
approximations can lead to erroneous numerical results, ranging from intentional to
inadvertent.

As opposed to the past, shell formulations suitable for deformations that result in small
displacements are no longer the subject of heated debate. The controversy regarding shell
formulations capable of predicting large displacement persists to this day. This is notably
true for so-called Reissner-Mindlin shell formulations that are geometrically non-linear.

In conclusion, the research at hand addresses the unresolved theoretical and practical
issues related to the geometrically non-linear Reissner-Mindlin shell model. The core
aim of this work is the development of a consistent Reissner-Mindlin shell formulation
while striking a balance between computational efficiency and accuracy. It focuses on
identifying and addressing the pitfalls and approximations associated with shell models
and numerical formulations. These pitfalls are studied in detail to also give future
researchers a better understanding of the underlying issues. By doing so, the study aims
to contribute to a better understanding of the behavior of thin-walled structures and
improve the prediction quality of Reissner-Mindlin shell formulations. This is done by
rigorously deĄning the underlying foundations of differential geometry and continuum
mechanics to derive a consistent and efficient formulation of the geometrically non-linear
Reissner-Mindlin shell model.

1.2 State of the Art

1.2.1 Historical Overview

In the following, some historical milestones in the development of (non-linear) shell
theories are presented. Classical shell models can be grouped into Kirchhoff-Love-type
and Reissner-Mindlin-type models. The former rely on a kinematic description that is
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based only on the midsurface position, while the latter incorporate independent rotations
of the director Ąeld, thus taking into account transverse shear deformation. Here, the
director Ąeld is usually associated with the material Ąbers in the normal direction in
the undeformed conĄguration. Despite KoiterŠs opinion that LoveŠs shell model was
perfect1, with the advent of computers, it became clear, that shell formulations based
on the Kirchhoff-Love model have several drawbacks. Due to the underlying fourth-
order differential equation, one needs special Ąnite elements, which are equipped with
a continuous derivative of the displacements at the element boundaries. Furthermore,
the lack of rotational degrees of freedom makes the application of boundary conditions
challenging. Both problems do not occur in Reissner-Mindlin shell formulations, at the
price of more degrees of freedom due to the independent director Ąeld. Unfortunately,
the director Ąeld introduces new problems. These stem from the fact that the director
Ąeld is assumed to be inextensional. This yields a theory that has to deal with non-linear
conĄguration spaces since the director Ąeld lives on the unit sphere.

The derivation of these shell theories has been accomplished by considering different
approaches. LoveŠs shell theory [Lov88] was developed by reducing the three-dimensional
body to a two-dimensional surface called the midsurface. In this derivation, several
geometric assumptions and mechanical assumptions for the stresses are made to arrive at
the Kirchhoff-Love shell model. In contrast to this, the brothers E. and F. Cosserat [CC09]
developed a shell model, by directly assuming a two-dimensional surface and stating
the equilibrium using stress resultants. The mathematical description of the surface
is done not only by describing the midsurface, but also by introducing independent
director Ąelds. These are then coupled with the stress resultants to yield the equilibrium
equations. This method of directly assuming a two-dimensional surface is called the
direct approach. A major contribution to this approach is the paper series by Simo
and coworkers [Sim89; SF89; Sim90a; Sim90b; SK92; Sim92b]. This direct approach
yields so-called geometrically exact shell models. A third method, introduced in Ahmad
et al. [Ahm68], is the degenerated solid approach, where the three-dimensional body is
discretized and into these discrete equations, shell assumptions are plugged in.

All these derivations can lead to the same differential equation if equivalent assumptions
are made. Especially, the equivalence of the direct approach and the degenerated solid
approach was shown in Büchter [Büc92].

A Ąxed set of assumptions can be a limiting factor. Consequently, these restrictions can
also be made optional, through a power series expansion of the displacement Ąeld in the
thickness direction as done in Naghdi [Nag73]. By using an inĄnite number of terms, this
approach yields the three-dimensional response.

1Koiter gave a talk, titled ŞAll you need is LoveŤ in the 1960s [Cam99].
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Much more can be said about the historical development of shell models in general, but
the reader is referred to the following works: The origins of geometrically non-linear shell
formulations can be traced back to Chien [Chi44]. For a historical review of non-linear
shell theory, the reader is referred to Seidel [Sei73], Waltersdorf [Wal71], and Bischoff
[Bis99]. For a concise summary of geometrically exact shell formulation using stress
resultants, see Zienkiewicz et al. [Zie14].

1.2.2 The Reissner-Mindlin Shell Model

In the following, the historical developments of the geometrically non-linear Reissner-
Mindlin model will be described, along with the disadvantages that still exist or have
been overcome in the past. Especially, the treatment of the unit director Ąeld is the focus
of this section.

Initially, director rotations in shell formulations were represented by angle pairs in
linear spaces [Ram76]. This linearity naturally results in a symmetric stiffness matrix.
Unfortunately, this straightforward approach is Ćawed because it contains singularities,
which may cause convergence issues and limit the rotationŠs magnitude [IT02; Bet98;
Ram76; BR92]. This can be explained by the so-called hairy ball theorem [Bro12, ğ2],
which proves that no parameterization exists, that yields a smooth non-degenerate tangent
vector Ąeld for the unit sphere. Hence, addressing the singularity necessitates a transition
between parameterizations in its vicinity [Ram76]. Moreover, these formulations require
the evaluation of trigonometric functions for the residual vector and the stiffness matrix.
A similar history can be observed for Kirchhoff-Love rods, starting with Antman [Ant74],
where Euler angles are used to rotate the cross-section frame. Similarly, it has been
common to tackle the problem by allowing only moderately large rotations, e.g., Argyris
[Arg82] proposed to include the Taylor expansion of the rotations up to the quadratic
term, which leads to a formulation, that actually allows moderate rotations but non-
objective results. A solution to the problem is to avoid parameterization of the unit
sphere at all.

To address the singularities inherent in a parameterization, Hughes and Liu [HL81]
employed direct interpolation of the director. This formulation leads to an objective
and path-independent approach. An alternative approach was proposed by Simo and
co-workers for Timoshenko beams [Sim85] and Reissner-Mindlin shells [SF89]. There, the
authors exploited the manifold structure of SO(3) and S2. The Riemannian manifold
SO(3) is a compact three-dimensional Lie Group called the special orthogonal group
and the Riemannian manifold S2 is the two-dimensional unit sphere. These manifolds
can be deĄned as SO(3) = ¶X ∈ R3 ×R3 ♣ XTX = I ∧ det X = 1♢ and S2 = ¶x ∈ R3 ♣
xTx = 1♢.
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Nevertheless, these formulations are artiĄcial path-dependent and non-objective due
to the interpolation of rotation increments. Moreover, it is necessary to keep track of
history variables at each quadrature point. CrisĄeld and Jelenić [CJ99] pointed out these
shortcomings and presented a remedy for the case of a non-linear Timoshenko beam
formulation. In this formulation, the nodal quantities living in SO(3) are interpolated, in
contrast to the erroneous interpolation of quantities in the tangent bundle TSO(3). This
approach yields an objective and path-independent formulation. The proposed formula is
well-known in computer graphics and is called SLERP (Spherical Linear intERPolation),
see Romero and Arnold [RA17]. In CrisĄeld and Jelenić [CJ99, Ch. 5b], this concept is
extended to higher-order polynomials, but it is still restricted to one-dimensional spaces.
Therefore, it is only useful for beams. For a summary of several interpolation schemes
for beams and their drawbacks, refer to Romero [Rom04].

For the two-dimensional representation in the context of shells, the generalization of
SLERP does not lead to a satisfactory concept. For example, the formulation proposed
in Areias et al. [Are13] generalizes SLERP and leads to an objective and path-independent
approach, but it suffers from a spurious dependence of the computational results on the
node numbering. Furthermore, since the nodal director components are arguments inside
trigonometric functions, evaluation, and linearization are expensive. Additionally, the
formulation is only applicable to states, where the nodal directors are not parallel, which
is not desirable.

Recently proposed formulations limit the transverse shear to be geometrically linear, thus
avoiding the treatment of large rotations. The approach by Benson et al. [Ben10] inherits
this property directly from the formulations of Belytschko et al. [Bel84] and Belytschko
et al. [Bel92]. Furthermore, in Oesterle et al. [Oes17] and Long et al. [Lon12], the ansatz
space must be C 1-continuous between elements due to the presence of second derivatives
in the weak form. This requirement is inherited from the Kirchhoff-Love model since
the shear deformation is hierarchically added to the Kirchhoff-Love formulation. This
continuity constraint can be fulĄlled by using splines as shape functions. Nevertheless, the
needed C 1-continuity may compromise the elegance of this hierarchic approach and needs
special attention [Kie10]. Nevertheless, the formulations from Oesterle et al. [Oes17] and
Long et al. [Lon12] are path-independent and objective.

An isogeometric approach that includes the director rotation has been proposed by Dor-
nisch et al. [Dor16]. It is based on the formulation of [Sim90a] and thus suffers from
similar shortcomings, such as path dependence and non-objectivity, inherited from the
history Ąelds at each integration point, see [Dor16, Table A.2.].

Finally, the formulation of Sander et al. [San16b] must be mentioned, which inherits
objectivity and path independence from the continuous model at the cost of solving a small
non-linear minimization problem at each integration point to obtain the interpolated
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value. The formulation is not derived from the Reissner-Mindlin model, but due to
its importance for the subsequent chapters, it is included here. This formulation is
constructed from a Cosserat-type shell model with drilling rotations, which requires
interpolation in SO(3). The resulting Ąnite elements are called geodesic Ąnite elements,
which use tools of interpolation on manifolds to obtain a consistent formulation.

1.2.3 Linearization of Finite Elements for Non-linear Fields

The solution of the algebraic equations derived from the differential equation is usually
obtained by a Newton-Raphson scheme. This is the work-horse for non-linear problems
in structural mechanics, even though it is not guaranteed to converge. Nevertheless,
it is widely used and provides a good balance between accuracy and efficiency. The
Newton-Raphson scheme requires the solution of a linearized problem at each iteration
step, whereas the linearized problem is stated with the tangent stiffness matrix. To at
least guarantee the best possible convergence behavior, the tangent stiffness matrix needs
to be derived by consistent linearization. The foundations of a consistent linearization
can be found in the works Hughes and Pister [HP78], Marsden and Hughes [MH94], Simo
and Marsden [SM84], and Wriggers [Wri88]. Historically, the linearization of complex
material behavior has been a major issue in the development of Ąnite element formulations.
The correct linearization was often difficult to obtain, but in several cases, it was very
beneĄcial for the convergence behavior of the Newton-Raphson scheme. Impressive
consistent linearizations are, for example, in the context of geometrically linear but
materially non-linear problems, the consistent linearization of Simo and Taylor [ST85]
and for geometrically non-linear contact problems Wriggers and Simo [WS85].

Unfortunately, almost 50 years later, most of the Reissner-Mindlin shell formulations
still suffer from a lack of consistent linearization, which leads to several problems such
as poor convergence behavior. This usually necessitates introducing small load steps,
which is not desirable. In contrast to consistent linearization in the context of material
non-linearity or non-linearity from contact problems, the non-linearity coming from non-
linear solution Ąelds is still not well understood. This applies to geometrically non-linear
Reissner-Mindlin shells, to geometrically non-linear three-dimensional beams, as well as
to geometrically non-linear Cosserat-type shells.

In [Sim85], Simo derived a tangent operator in the context of beams that may be
unsymmetric, away from equilibrium for a potential taking values from SO(3). This is a
result of using the second variation as a tool to construct the tangent operator.

Later, Simo [Sim92a] concluded that the Hessian Ů speciĄcally, the Riemannian Hessian

Ů can be obtained by symmetrizing the unsymmetric second variation. This procedure
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is only valid for manifolds that can be classiĄed as compact Lie Groups, which does
not apply to the two-dimensional unit sphere. In Makowski and Stumpf [MS95], these
results of [Sim92a] were revisited. There, the authors stated that an unsymmetric tangent
operator can result from the second variation, but it lacks a well-deĄned nature. Therefore,
they concluded that the Riemannian Hessian is the appropriate and well-deĄned tensorial
quantity to be used as a tangent operator. For this Hessian, several works concluded
that it needs to be symmetric for a torsion-free connection [Mis73; dC92; Sim92a; MS95;
Rom05; Abs08; Ste15; RA17]. The present work explores the second variation as well as
the Riemannian Hessian as candidates for the tangent operator on a theoretical level
and also provides the quantities needed for implementing the latter. Nevertheless, the
symmetry of the tangent operator is still controversially discussed in, e.g., Suetake et al.
[Sue03]. For a historical reference, a short note on the history of unsymmetric tangent
operators can be found in Ray [Ray15, Ch. 1.7].
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1.3 Scope of This Work

This work aims to rigorously present the structural-mechanical fundamentals of the
Reissner-Mindlin shell model and shell formulation in order to gain knowledge for both
theory and numerical simulation.

Is summary, this thesis deals with the following topics in the context of the Reissner-
Mindlin shell model:

• Exact derivation of the shell stress resultants.

• Investigation of the Reissner-Mindlin assumptions.

• Consistent linearization procedure for a consistent and symmetric stiffness matrix.

• Properties of suitable director interpolation schemes to obtain a path-independent
and objective formulation.

• The inĆuence of locking on the correct choice of the director interpolation.

• Enforcement of the zero normal stress assumption.

• Functional analysis in non-linear function spaces from an engineering perspective.

From the conglomerate of these derivations, a shell formulation can be distilled that has
the following features:

• It inherits the objectivity of the continuous shell model.

• The magnitude of total rotations is not limited.

• The unit length constraint of the interpolated director is satisĄed in the domain.

• Since no history Ąelds are introduced at the integration points, the interpolation of
the director is path-independent.

• Singularities are avoided by not parametrizing the unit sphere.

• The stiffness matrix is symmetric without neglecting any terms and without applying
symmetrization procedures.

• The resulting element vectors and matrices are invariant to node numbering.

• Fewer load steps and iterations are needed in comparison to formulations found in
the literature.

• Convergence orders are not artiĄcially decreased.
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While individual features of the proposed formulation can be found in various shell
formulations in the literature, it is worth noting that, to the authorŠs knowledge, there is
currently no Reissner-Mindlin shell formulation that encompasses all of these features
simultaneously, except for the authorŠs contribution [MB22]. These conclusions led to the
shell formulation from Müller and Bischoff [MB22]. SpeciĄcally, this means that it works
for Lagrangian Ąnite elements with arbitrary polynomial order, as well as for isogeometric
Ąnite elements, which also incorporate higher polynomial orders as ansatz functions.
Additionally, the underlying geometrically non-linear shell model is revisited and the
derivations of the balance laws, stress resultants, and the Reissner-Mindlin assumptions
are discussed.

Furthermore, the present work aims to answer questions concerning the consistent
linearization of the Reissner-Mindlin shell model. By using the notion of optimization
on manifolds, the correct linearization process is derived. To achieve this, the notion of
optimization on manifolds is used to derive the correct linearization process. A key aspect
of this approach is to interpret the unit-length constraint as a problem of unconstrained

optimization on a constrained space rather than a problem of constrained optimization on

an unconstrained space. The foundations of algebraic optimization on manifolds, which
form the basis for this interpretation, are summarized in the works by Absil et al. [Abs08]
and Boumal [Bou23]. By adopting this perspective, a formulation with Ąve degrees of
freedom per node is obtained, which represents the optimal number. It is worth noting
that this optimal number of degrees of freedom cannot be achieved by using approaches
such as the Lagrange multiplier method or the penalty method, which are commonly used
to handle constraints. These methods would result in seven or six degrees of freedom per
node, respectively, which is more than the optimal number. Despite their suboptimal
nature, these approaches are still widely used in the literature, as seen in works by Weeger
et al. [Wee19], Betsch and Janz [BJ16], and Harsch et al. [Har21], among others.

Thus, covering all these given aspects, the result yields a geometrically non-linear Reissner-
Mindlin shell formulation, which is an improvement in several directions.
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1.4 Overview

Chapter 2 and Chapter 3 introduce the mathematical foundations of differential
geometry, which are necessary to fully investigate the Reissner-Mindlin shell model in
later chapters. In particular, the concept of manifolds, tangent spaces, vector Ąelds,
differential forms, and the Riemannian metric are introduced, while simultaneously
deĄning the notation used throughout this work.

Chapter 4 describes the foundation of elasticity in the context of continuum mechanics,
which is used as a starting point for the derivation of the shell model and the shell
formulation.

Chapter 5 is the heart of this thesis and describes the Reissner-Mindlin shell model
from kinematics, stress resultants, and balance laws up to the aspects of implementation
of the residual vector and stiffness matrix in the Ąnite element context. Additionally, the
numerical enforcement of the vanishing normal stress assumption is discussed.

Chapter 6 describes various aspects and pitfalls that arise in the context of solving
partial differential equations on manifolds. In particular, the role of functional analysis
and the symmetry of the tangent operator is examined. Furthermore, the requirements
and possibilities for a consistent director interpolation are discussed.

Chapter 7 presents numerical experiments that demonstrate and compare the prop-
erties of the proposed shell formulation. This is done in the context of various director
interpolations and various locking prevention techniques.
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2
First-Order Differential Geometry

Several deĄnitions of differential geometry are used throughout this thesis. They lay
the foundations for understanding the developments in the rest of the thesis, i.e., the
later deĄned Reissner-Mindlin shell model and the numerical methods. This chapter
introduces some fundamental concepts, such as the notion of manifolds, tangent spaces,
Riemannian manifolds, Riemannian metric, and differentiation.

First, the abstract notion of manifolds is established, and then more geometric structure
is added to it. In terms of differential geometry, the chapter is based on Absil et al.
[Abs08], Boumal [Bou23], Marsden and Hughes [MH94], Abraham et al. [Abr84], do
Carmo [dC92], Lee [Lee03], OŠNeill [ONe83], Steenrod [Ste99], and Misner et al. [Mis73].
See Munkres [Mun00] for more information on topology. For details on the historical
context of differential geometry, the reader is referred to Reich [Rei13].

2.1 Manifolds, Charts, Atlases and Parameterization

A manifoldŠs abstract deĄnition is based on the concepts of charts and atlases. As these
terms suggest, a manifold can be imagined as the EarthŠs surface with two-dimensional
charts and an atlas as a collection of these charts that covers the whole Earth. LetM be
a set. A bijection ϕ, that maps a subset U of M onto an open subset D of Rm is then a
chart of the setM with dimension m. This chart can be identiĄed by the pair (U ,ϕ).

DeĄnition 1. The pair (U ,ϕ) is called a (m-dimensional) chart on the set M, if the
mapping

ϕ :







U → D,

x 7→ (ϕ1(x), . . . , ϕm(x)),
(2.1)
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Figure 2.1: Commutative diagram of Eq. (2.2).

is continuous, maps to an open set D ⊂ Rm and has a continuous inverse ϕ−1. The
number ϕi(x) is called the i-th coordinate of the point x in the chart ϕ. The inverse
mapping ϕ−1 : D → U is called (local) parameterization of M.

In the following, if U is clear from the context, we use ϕ as a shortcut for a chart. Charts
can be used to study the set U by transforming them to D = ϕ(U), which is a subset
of Rm, where the usual linear analysis rules apply. Particularly, a function f taking
arguments from U can be studied using the function

f̂ = f ◦ ϕ−1 :







ϕ(U)→ D ⊂ Rm,

θ 7→ f̂ (θ),
(2.2)

as shown in Fig. 2.1. The quantity f̂ is referred to as the coordinate representative of f .
Additionally, it maps from an Euclidean space, which simpliĄes the study of f .

A family of charts (Ui ,ϕi) is needed to study M, as a single chart (U ,ϕ) does not
necessarily cover each point of M. If a family of charts covers every point of M, it is
called an atlas of M, i.e.,

⋃

i Ui =M.

DeĄnition 2. A set M is called a (topological) manifold1, if there exists an atlas of it.

Following that, we reĄne the concept of manifolds by limiting the set of possible charts
on M. Particularly, if two charts (U1,ϕ1) and (U2,ϕ2) map the same point x ∈ U1 ∩ U2,
these two mapping should be compatible, see Fig. 2.2. Therein, two charts are deĄned
on the setM and these charts map the dashed regions. Then, where the two charts map
the same subset, i.e., the intersection of the two charts ϕ(Ua ∩Ub), these mappings of the
two charts should be compatible. This means a coordinate change from one chart to the
other should be smooth to some degree. This requirement leads to a reĄned deĄnition of
an atlas of M.

DeĄnition 3. A C l-atlas A of the set M is a collection of charts (Ui ,ϕi) such that

1.
⋃

i Ui =M,

1We have omitted the fact that the setM must be a Hausdorff space and second countable. See [Mun00]
for topological details.
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Figure 2.2: Charts and change of coordinates. Figure adapted from [Abs08, Fig. 3.1].

2. for all (Ua,ϕa) and (Ub,ϕb) with Ua ∩ Ub ̸= ∅, where the change of coordinates

ϕb ◦ ϕ−1
a :







ϕ(Ua ∩ Ub)→ ϕ(Ua ∩ Ub),

θ 7→ ϕb(ϕ
−1
a (θ)),

(2.3)

is C l-smooth.

If a manifold admits such an atlas, it is a differentiable manifold.

DeĄnition 4. A (topological) manifold (M,A) is called C l-differentiable manifold, if
there exists a C l-atlas of it.

In the following, a manifold is referred not by the pair (M,A), but simply byM, and it
is assumed that the differentiability is clear from the context or is unimportant. This
also refers to the topologies deĄned on the manifold induced by the atlas.

2.2 Differential Topology

Similar to Eq. (2.2) where a function f maps from a manifoldM to R, consider a function
f that maps from manifold M of dimension m onto another manifold N of dimension
n. This abstract deĄnition is used later, to deĄne functions between the reference
conĄguration and the current conĄguration in the context of continuum mechanics.

One special class of such functions is the class of homeomorphisms.
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Figure 2.3: Mapping of coordinate representation of a function mapping between mani-
folds.

DeĄnition 5. A homeomorphism f : M → N is a bijection where, f and its inverse
f−1 are continuous. Two manifolds M and N are homeomorphic, if there exists a
homeomorphism between them.

Hence, homeomorphisms preserve topological invariants, or vice versa topological invari-
ants are deĄned as properties that are preserved by homeomorphisms. Moreover, because
the charts ϕi in an atlas deĄne homeomorphisms from each subset Ui to a subset of Rm,
a (topological) manifold may also be conceptualized as follows: A manifold is a set in
which, for any point x, there exists a neighborhood that is homeomorphic to a subset of
Rm. This leads to the sloppy deĄnition: ŞA manifold is a space that resembles Euclidean
space locally.Ť

If we want to study the derivatives of the function f in a convenient way, we can use a
coordinate representative, as in Eq. (2.2). This can be done by introducing a chart ϕ1 in
the neighborhood of x ∈M and a chart ϕ2 in the neighborhood of f(x) ∈ N . Then, the
coordinate representation of f is given by

f̂ = ϕ2 ◦ f ◦ ϕ−1
1 :







Rm → Rn,

θ 7→ ϕ2(f(ϕ−1
1 (θ))),

(2.4)

where the mapping is visualized in Fig. 2.3. Since f̂ is a mapping from a Euclidean space
to a Euclidean space with f̂ . DeĄning a directional derivative is trivial. Additionally, since
the notion of tangent vectors or embeddings is not yet introduced, the only possibility to
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deĄne the directional derivative of f in direction v Şthrough the chartsŤ ([Abs08, Ch. 3.2,
p. 24]) ϕ1 and ϕ2. Thus, the directional derivative of f in direction v is deĄned, through
the charts, as

D̂f(θ) :







Rm → Rn,

v 7→ Dv̂f(θ) = D̂f(θ)[v]
, (2.5)

with v ∈ Rm. This also deĄnes the notation of directional derivatives in Euclidean spaces
as Dvf(θ) = Df(θ)[v]. Here, the Ąrst one achieves a compact notation. The second
emphasizes that the directional derivative (of f) is a machine2 with two slots2 into which
the position x and the direction v are inserted.

Since the concept of derivation is available, also differentiability can be deĄned. The
function f is differentiable of class C l , if f̂ is. This can be used to deĄne diffeomorphisms.

DeĄnition 6. A C l-diffeomorphism f :M→N is a bijection where, f and its inverse
f−1 are C l-continuous. Two manifolds M and N are C l-diffeomorphic, if there exists a
diffeomorphism between them. Hence, every C l-diffeomorphism is a homeomorphism but
the vice versa is not true.

2.3 Embeddings and Submanifolds

Some functions between manifolds can be categorized as immersions, inclusions, and
embeddings. This allows the deĄnition of embedded submanifolds, which is the main use
of these concepts here. Consider once again the function f :M→N and its coordinate
representation f̂ , as described in Eq. (2.4). Again, the dimensions ofM and N are m and
n, respectively. If f is injective at every x ∈M, it is referred to as an immersion. When f

is surjective, it is referred to as a submersion. Using the differential D̂f(θ)[•] : Rm → Rn,
a comparable classiĄcation can be obtained. Let the rank of f̂ denote the dimension of
its differential image. If the rank of f̂ is m, it is an immersion at each point and m ≤ n.
In contrast, if the rank is n, it is a submersion at each point and m ≥ n. Using these
deĄnitions, the concept of embeddings can be deĄned.

DeĄnition 7. An embedding f of a manifoldM in a manifold N is an immersion, which
is a homeomorphism between M and its image f(M) ⊂ N .

For the notion of an embedded submanifold, we need the notion of inclusions. An inclusion

is a function ι that maps an element x of a subset to x, but as an element of the superset.
For visualization, see Fig. 2.4. Therein, the inclusion map sends all elements of the subset

2This wording is taken from [Mis73].
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2.4 Directional Derivatives, Tangents and Cotangents

Understanding the local behavior of manifolds requires a Ąrm understanding of tangent
vectors and direction derivatives. They also allow the concept of the local change of a
function. In addition, they allow for the approximation of manifolds via linear subspaces
known as tangent spaces.

2.4.1 Abstract Manifolds

Consider a real-valued function f : Rn → R. The Euclidean directional derivative of f in
direction v ∈ Rn at x ∈ Rn is deĄned as

Dvf (x) = Df (x)[v] = lim
t→0

f (x + tv)− f (x)

t
. (2.7)

In order to generalize this for an abstract manifold Ů that is not embedded in an ambient
space
in a vector space. This problem can be circumvented, again, through the aid of charts.
Consider a function γ : R→M; t 7→ γ(t). This deĄnition of γ, can be used to deĄne
the function

f̃ = f ◦ γ :







R→ R,

t 7→ f (γ(t))
. (2.8)

Now, the manifold-valued function f is replaced by the simpler real-valued function f̃ .
See Fig. 2.6 for a visual representation of the situation. Since we are now searching
for a function that maps from R to R, which can be found by a classical vector space
derivative, the complexity of the problem has been drastically reduced. This yields

γ̇(0)[f ] =
d(f (γ(t)))

dt

∣
∣
∣
∣
∣
∣
t=0

= lim
t→0

f (γ(t))− f (γ(0))

t
, (2.9)

but this unusual notation needs some explanation. In this abstract setting, where there
is no embedding space, tangent vectors have no visual meaning. The mapping γ̇(0)[•]
nevertheless accepts a function f ∈ D(M) and maps it to a scalar. It is the derivative
in the direction γ̇(0) of the function f . Thus, γ̇(0) is the tangent vector. It should not
be interpreted as a time derivative of γ, despite the notation, because the difference
quotient limt→0(γ(t)− γ(0))/t is not deĄned. The tangent vector γ̇(0) is only implicitly
deĄned by Eq. (2.9).
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DeĄnition 10. A tangent vector ξx is deĄned at a speciĄc point x of a manifold M.
Consider a mapping from D(M) to R such that there exists a curve γ on M with
γ(0) = x. This curve should satisfy

ξx[f ] = γ̇(0)[f ] =
d(f (γ(t)))

dt

∣
∣
∣
∣
∣
∣
t=0

, ∀f ∈ D(M). (2.10)

This curve γ is said to realize the tangent vector ξx [Abs08].

This also deĄnes now a directional derivative as follows

Dξf (x) =
d(f (γ(t)))

dt

∣
∣
∣
∣
∣
∣
t=0

, (2.11)

where γ(t) again realizes ξ at x. However, the question arises as to how to deĄne the
curve γ so that it realizes ξx. In particular, this means informally Ş ∂

∂t
γ(t)♣t=0Ť = ξx. The

presence of such a curve is assumed for the time being. The construction of such a curve
will be discussed in Section 2.6 on page 33. However, we return Ąrst to tangent vectors
and provide a graphical intuition for them.

2.4.2 Embedded Submanifolds

Consider the manifold M as being embedded into a vector space E ; hence, the tangent
vector of the curve γ on M can be determined as

γ ′(0) = lim
t=0

ι(γ(t))− ι(γ(0))

t
, (2.12)
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where ι is the inclusion map that sends an element from M to the same element in E .
Now the difference in Eq. (2.12) is well-deĄned since E is a vector space. In particular,
the tangent vector γ ′(0) is now an element of TxE ∼= E , where TxE is the tangent space
at x of E . Given that E is considered to be a vector space, TxE is isomorphic to the
space itself. In particular, this means TxE ∼= E .

The following relationship between γ ′ and γ̇ may now be constructed from DeĄnition 10.
Consider a function f :M→ R and again γ(0) = x, the relationship reads

γ̇(0)[f ] = Dγ′ f̄ (γ(0)), (2.13)

where f̄ is the extension of f into a neighborhood U of x in E .

In an abuse of notation, γ ′ and γ̇ are used interchangeably. Additionally, we can now
relate the directional derivative of the embedding space and the directional derivative on
the manifold by

Df (x)[ξ] =
d(f (γ(t)))

dt

∣
∣
∣
∣
∣
∣
t=0

=
d(f̄ (γ(t)))

dt

∣
∣
∣
∣
∣
∣
t=0

= Df̄ (x)[ξ], (2.14)

where γ(t) again realizes ξ at x and ξ ∈ TE . Thus E is viewed as an element of the
embedding space.

Tangent vectors From Local Parameterization The concept of tangent vectors was
previously abstract. Now a more geometric way is presented. Consider a local parameter-
ization, as described in DeĄnition 1 on page 14, such that

φ :







Rm → U ,
θ 7→ φ(θ).

(2.15)

This parameterization maps from the Euclidean space Rm to a neighborhood U ⊂M as
indicated in Fig. 2.7. Let M be embedded into RM . Consider ¶êi♢ as the standard basis
of RM and ¶ei♢ as the standard basis of Rm. Then, the parameterization can be written
as φ(θ) = φi(θ)êi . Consequently,

gj(θ) =
∂φi(θ)

∂θj
êi (2.16)

deĄnes a tangent vector on the manifoldM and is represented as a vector of RM . These
tangent vectors ¶gj(θ)♢ deĄne a basis for Tφ(θ)M embedded into RM . This basis is usually
called holonomic basis or coordinate basis. The scalars θ1, . . . , θn are called curvilinear

coordinates. If we keep all coordinates constant, except one, we get coordinate curves
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Consequently, η is used to denote a vector Ąeld, and ηx denotes a speciĄc tangent vector
at x.

2.4.4 Covectors and Cotangent Bundle

Covectors are deĄned as linear functionals acting in the tangent space TxM at a point
x ∈M. A covector takes a vector and returns a real number. Thus, a covector is a linear
map

ωx :







TxM→ R,

η 7→ ωx(η).
(2.22)

This space of linear functionals acting on TxM is called T ∗
xM. It is also called the dual

space of TxM. This notation is also used for other vector spaces V and its dual space V ∗.
For this dual space, a basis can be deĄned, which is the content of the next deĄnition.

DeĄnition 11 (Dual basis). Let V be a Ąnite-dimensional vector space with a basis
gi , . . . ,gn. The covectors gi , . . . ,gn that satisfy

gi(gj) = δi
j , (2.23)

deĄne a basis for V ∗ and this basis is called dual basis to gi , . . . ,gn. The object δi
j is

called Kronecker delta.3

Using this dual basis it is apparent that each covector ω ∈ V ∗ can be written as

ω = ωig
i , (2.24)

where the components ωi can be calculated by ωi = ω(gj). Index notation always uses
the Einstein summation convention, which neglects the summation sign over repeating
indices. Therefore, the action of a covector ω = wig

i on a vector η = ηigi is

ω(η) = wiη
i . (2.25)

This can be graphically interpreted as seen in Fig. 2.9. A covector can be represented as
the collection of level sets, i.e. as parallel planes. The longer the covector is, the closer
these planes are to each other. A vector can be graphically represented as an arrow. Thus,
the action of a covector onto a vector is the measurement of how often the vector pierces

through the level sets of the covector. Since the vector η in Fig. 2.9 pierces through the

3Named after Leopold Kronecker, who used it in Kronecker, Leopold [Kro95, Ch. Über Systeme von
Functionen mehrer Variablen, p. 216].
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with the basis ei and coordinates x i ,

Dvf = va ∂f

∂xa
= va ∂

∂xa
f . (2.28)

Therefore, it is common to write vf as shorthand for Dvf by identifying v ≡ va ∂
∂xa . This

notation is not often used in the work at hand but in some appropriate places in the
context of base vectors. Considering the derivative in the direction of a base vector, this
yields

Dei
f =

∂f

∂xa
=

∂

∂xa
f , (2.29)

which leads to

ei ≡
∂

∂x i
, (2.30)

where the partial symbol is bold to indicate the vector nature of the object. The same is
done for the dual basis as

ei ≡ dx i . (2.31)

Therefore, by deĄnition of the dual basis, we also have

ei

(

∂

∂x j

)

= δi
j . (2.32)

For a more elaborate reasoning, see Misner et al. [Mis73], Marsden and Hughes [MH94],
and Lee [Lee03].
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2.5 Tensors

Tensors generalize the notion of vectors and covectors. According to Reich [Rei13],
the term tensor can be traced back to the works of Voigt [Voi98]. Tensors can be
deĄned as follows. Covectors are linear functionals that can be generalized to multilinear
functionals. Consider the Ąnite-dimensional vector spaces V1, . . . ,Vn and W . A map
T : V1×· · ·×Vn →W is said to be multilinear, if it is linear for each function separately.
In particular, this requirement can be stated as

T(v1, . . . ,avi + bṽi , . . . ,vn) = aT(v1, . . . ,vi , . . . ,vn) + bT(v1, . . . ,ṽi , . . . ,vn).

(2.33)

Then, a covariant k-tensor is a multilinear map

T : V × · · · × V
︸ ︷︷ ︸

k times

→ R, (2.34)

and a contravariant k-tensor is deĄned as

T : V ∗ × · · · × V ∗

︸ ︷︷ ︸

k times

→ R. (2.35)

For a mixed tensor of type (k,l) it holds

T : V ∗ × · · · × V ∗

︸ ︷︷ ︸

k times

×V × · · · × V
︸ ︷︷ ︸

l times

→ R. (2.36)

In the following, the order of the covariant and contravariant slots of a mixed tensor
may differ. However, it is commonly denoted as being of type (k, l). The rank of a tensor
refers to the number of slots, where covariant or contravariant vectors can be inserted,
effectively determining the number of arguments it accepts. Therefore, a tensor of type
(k, l) has rank k + l.

The space of tensors on V , is denoted by

T k(V ∗) = ¶covariant k−tensors on V ♢,
T k(V ) = ¶contravariant k−tensors on V ♢,

T (k,l)(V ) = ¶mixed (k,l)−tensors on V ♢.
(2.37)

Consider again a basis gi , . . . ,gn for V and the dual basis gi , . . . ,gn for V ∗, the basis for
the space T (k,l)(V ) is given by

gi1 ⊗ · · · ⊗ gik ⊗ gj1 ⊗ · · · ⊗ gjl , (2.38)
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2.5 Tensors

where (⊗) denotes the tensor product, outer product or dyadic product. For two tensors
A = A j

i gi ⊗ gj and B = Bkl gk ⊗ gl , the tensor product is deĄned as

C = A⊗B = A j
i Bkl gi ⊗ gj ⊗ gk ⊗ gl = C

j
i kl gi ⊗ gj ⊗ gk ⊗ gl , (2.39)

which yields a fourth-order (1, 3)-tensor. Then, a multiplication of this (1, 1)-tensor and
a (0, 2)-tensor can be deĄned by the contraction of indices as follows

C = contract(A⊗B) = A ·B = A j
i Bklgj · gk gi ⊗ gl (2.40)

= A j
i Bklδ

k
j gi ⊗ gl = A j

i Bjl gi ⊗ gl = Cil gi ⊗ gl , (2.41)

which yields a new (2, 0)-tensor. The contraction of purely covariant or contravariant
indices is not possible without the deĄnition of a Riemannian metric, which will be deĄned
in Section 2.7.1. First, further operations on tensors that do not need the deĄnition of a
metric are deĄned.

Push-Forward and Pull-Back

Due to their multilinear nature, tensors can be transformed so that they accept arguments
from a different vector space. These actions are denoted by push-forward and pull-back.
As a means to do this, functions between manifolds are revisited, which were stated
in Section 2.2 on page 15. First, we already witnessed several versions of pull-back of
functions. For example, consider the functions f :M→N and g : N → R. Then, the
pull-back of g under f is the map f∗(g) :M→ R simply deĄned by

f∗(g) = g ◦ f . (2.42)

Despite this being trivial it enables the following deĄnition for vectors.

DeĄnition 12 (Push-forward). Let M and N be smooth manifolds and f :M→ N
a smooth map. Additionally, let γ : R → M be a function from a C 1-function space
D(M) and γ ′(0) is tangent vector at x = 0 as deĄned in DeĄnition 10 on page 21. Then,
the action

f∗ :







TxM→ Tf(x)N ,
γ̇(0) 7→ f∗(γ̇(0)) = (f ◦ γ)′(0) = ˙

γ∗(f)(0),
(2.43)

is called the push-forward of γ ′(0) to Tf(x)N .

Let us shortly interpret this in coordinates by introducing two charts ϕ and ψ around
x and f(x), respectively. Then, we get, similar to Eq. (2.4) on page 16, a function
f̂ : Rm → Rn, deĄned by ψ ◦ f̂ ◦ ϕ. Thus, we can Ů similar to Eq. (2.4) on page 16
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2 First-Order Differential Geometry

Ů use partial derivatives. Consider ¶Ei♢ as basis for Rm with the coordinates X i and
the function γ̂ : R → Rm as coordinate representative of γ : R →M. Again we have
γ(0) = x. The coordinate representative of x is denoted by x̂ = ϕ(x). Furthermore,
denote ¶ej♢ as basis for Rn with the coordinates x j . Then, the push-forward of the vector
γ̂ ′(0) = ∂γ̂i

∂t
♣t=0Ei = v = viEi reads

f̂∗(v) =
∂̂f(γ̂(t))

∂t

∣
∣
∣
∣
∣
∣
t=0

=
∂ f̂ i(γ̂(t))

∂t

∣
∣
∣
∣
∣
∣
t=0

ei =
∂ f̂ i

∂X j

∣
∣
∣
∣
∣
∣
x̂

∂γ̂j

∂t

∣
∣
∣
∣
∣
∣
t=0

ei =
∂ f̂ i

∂X j

∣
∣
∣
∣
∣
∣
x̂

vjei . (2.44)

Therefore, if we write w = f̂∗(v) = wiei and F̂ = ∂ f̂ i

∂X j

∣
∣
∣
∣
∣
∣
x̂

ei ⊗ Ej = F̂ i
jei ⊗ Ej , then the

components of the pushed vector read

wi = F̂ i
jv

j . (2.45)

Consequently, tangent vectors are pushed forward simply by the Jacobian of the function
under which the pushing takes place. This Jacobian can be written using two charts
and the corresponding bases as F̂ = F̂ i

jei ⊗ Ej . Often, such tensors are called two-point

tensors, since they are deĄned w.r.t. two different coordinate systems. In tensor notation,
Eq. (2.45) reads

w = wiei = F̂ · v, (2.46)

or without coordinate representatives ζ = F · η, which will be possible, if an embedding
space is employed. Thus, if an embedding space exists, we can use the notion of tangent
vectors as vectors in the embedding space as in Eq. (2.12). The explicit functional
dependence of this inclusion mapping as deĄned in Eq. (2.6) is discarded to simplify the
notation and now f :M→ N should be read as f : RM → RN . Thus, the embedding
space ofM is RM . Consider ¶Êi♢ as the Euclidean standard basis with coordinates Z i in
RM , and similar for N , where the embedding space is RN with the Euclidean standard
basis ¶êi♢ and the coordinates z i . Therefore, we can use chain rule and get

f̂∗(v) =
∂̂f(γ̂(t))

∂t

∣
∣
∣
∣
∣
∣
t=0

=
∂(ψ(f(ϕ−1(γ̂(t)))))

∂t

∣
∣
∣
∣
∣
∣
t=0

=
∂ψi

∂z j

∂f j

∂Z k

∂(ϕ−1)
k

∂X l

∂γ̂l

∂t

∣
∣
∣
∣
∣
∣
t=0

ei

=
∂ψi

∂z j

∂f j

∂Z k

∂(ϕ−1)
k

∂X l

∣
∣
∣
∣
∣
∣
x̂

v lei ,

(2.47)
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Figure 2.10: Push forward of a function mapping between manifolds.

where again the inclusion maps ι and the extension of f : M → N to RM → RN are
neglected. These deĄnitions are also visualized in Fig. 2.10. In this Ągure, the commutative
nature of the discussed quantities is shown. In the lower left corner the curve γ with the
tangent vector η is shown, which is mapped to the curve f ◦ γ with the tangent vector
ζ on the lower right corner. If we go through the charts, the path goes Ąrst up and η
becomes v = J · η, from there, using the differential D̂f it becomes w = D̂f · J · η ending
up in the top right corner and Ąnally it becomes ζ = j−1 · D̂f · J · η and we are back in
the lower right corner.

This, yields a bouquet of possible identiĄcations, since Eq. (2.47) is a chain of several
push-forwards from Rm to TxM to Tf (x)N to Rn. We can identify

J−1 =
∂(ϕ−1)

k

∂X l

∣
∣
∣
∣
∣
∣
x̂

Êk ⊗ El = (J −1)
k

l Êk ⊗ El ,

Df =
∂f j

∂Z k

∣
∣
∣
∣
∣
∣
x

êj ⊗ Ê
k

= (Df)j

k êj ⊗ Ê
k
,

j =
∂ψi

∂z j

∣
∣
∣
∣
∣
∣
f(x)

ei ⊗ êj = j i
j ei ⊗ êj .

(2.48)
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2 First-Order Differential Geometry

This allows the creation of several intermediate pushed vectors and vector components
as follows

η = ηkÊk = J−1 · v, ηk = (J −1)
k

lv
l ,

ζ = ζ j êj = Df · J−1 · v, ζ j = (Df )j

k(J −1)
k

lv
l ,

w = wiei = j ·Df · J−1 · v, wi = j i
j(Df )j

k(J −1)
k

lv
l .

(2.49)

This is also connected to the coordinate base vectors in Eq. (2.16). The charts ψ and ϕ
or their inverses deĄne (local) parameterizations, which deĄne coordinate base vectors.
Thus, we have

Gi = Gk
iÊk , Gk

i = (J −1)
k

lδ
l
i ,

gi = gk
i êk , gj

i = (Df )j

kGk
i .

(2.50)

The quantity Gi is the tangent vector at x represented as an element of the embedding
space. It can be interpreted as the pushed-forward vector of Ei . Sloppily, Gi can further-
more be simply interpreted as columns of J−1. For example, the vector η can now also
be deĄned with components in the basis Gi . Thus, this yields

η = ηjÊj = η̂αGα, (2.51)

where Greek superscripts and subscripts are used to denote the indices of the components
in the curvilinear coordinate system.

The push-forward also induces its dual concept as follows.

DeĄnition 13 (Pull-back). Let M and N be smooth manifolds and f : M → N a
smooth map. Additionally, let ω ∈ T ∗

f(x)N be a tangent covector on N at f(x) and
η ∈ TxM be a tangent vector on M at x. Then, the action

f∗ : T ∗
f(x)N → T ∗

xM, (2.52)

which can be characterized by

f∗(ω)(η) = ω(f∗(η)), (2.53)

is called the pull-back of ω to T ∗
xM.

Let us also interpret this in coordinates by introducing two charts ϕ and ψ around x

and f(x) and the coordinate representative f̂ : Rm → Rn, deĄned by ψ ◦ f̂ ◦ ϕ. Consider
¶Ei♢ as basis for Rm with the coordinates X i and the coordinate representative of x

given by x̂ = ϕ(x). Furthermore, ¶ej♢ denotes the basis of Rn with the coordinates x j .
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2.6 Retractions

Consider the coordinate representative of ω by ω̂ = ω̂je
j . Furthermore, let χ̂ = ω̂jE

j

be the coordinate representative of the pull-back of ω̂. Finally, again let the coordinate
representative of η be again v = viei Then, using Eq. (2.45), the pull-back Eq. (2.53) of
ω̂ = ω̂jej in the basis ¶Ej♢ reads

χ̂iv
j = ω̂iF̂

i
jv

j . (2.54)

Comparing coefficients yields the pull-back of the coefficients

χ̂i = ω̂iF̂
i
j , (2.55)

which would be written in tensor notation as χ̂ = F̂
T · ω̂ or without coordinate repre-

sentatives as χ = FT · ω. Thus, the transpose of the Jacobian of the mapping can be
used to pull back covectors. Again, if we assume an embedding space exists, as before for
vectors, similar results of intermediate pulled covectors would apply.

2.6 Retractions

The following tool can be motivated by the desire to extend line search from a vector
space to non-linear manifolds. Consider the function f : Rn → R, which is supposed to
be minimized. In such a vector space, line search can be stated as follows

xk+1 = xk + αv, with α = arg min
t

f (xk + tv) (2.56)

where xk+1,xk ,v ∈ Rn and α ∈ R+. Here, v is the search direction, which is the negative
gradient in the gradient descent method. This search direction can then be used to
parameterize the line of search as γ(t) = xk + tv as shown on the left in Fig. 2.11.
The step size α ∈ R+ is calculated by solving α = arg mint f (γ(t)) approximately. The
straight line γ(t) is then the search space for the minimization problem at the current
position xk in the direction v as depicted in Fig. 2.11. This procedure is then repeated
until a convergence criterion is met.

Consider now the manifold-valued function f :M→ R and the manifold as shown on
the right-hand side in Fig. 2.11. If the line search is generalized for manifolds, the only
reasonable choice of a search direction v is a tangent vector η ∈ Txk

M at the current
position xk . This does not help, since now a search direction is chosen, but the position
xk ∈M and the search direction η, do not stem from the same space. In a vector space,
this identiĄcation is trivial since Txk

Rn is isomorphic to Rn itself and the addition x +αv

is well-deĄned.
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Figure 2.11: Line search in a vector space and on a manifold

This problem can be resolved by so-called retractions, which generalize the notion of
straight lines to manifolds.4 A retraction describes motion in the direction of a tangent
vector while remaining on the manifold. Therefore, a retraction Rx is a mapping that
takes a tangent vector of TxM and returns a point on the manifold. In Fig. 2.11 the
result of the retraction would then be the new point xk+1 = Rx(αη).

DeĄnition 14 (Retraction). A retraction on a manifold M is a smooth mapping R

from the tangent bundle TM to M, with the following properties. Let x ∈M and let
Rx be the restriction of R to TxM, then

• R(0) = x, where 0 denotes the zero element of TxM and

• the curve γη : t 7→ Rx(tη) satisĄes γ̇η(0) = η.

A canonical example of a retraction is the Riemannian exponential mapping, which will
be deĄned in Section 3.4 on page 60.

For embedded submanifolds, as deĄned in Section 2.4.2 on page 21, there is a natural
retraction described as follows.

1. Move in the linear embedding space to x + η.

2. Project back onto the manifold by Ąnding the closest point to x +η on the manifold.

The most obvious example is the unit sphere Sn−1 ⊂ Rn, for which the closest point
projection is given by the radial return normalization

Rx(η) =
x + η

♣♣x + η♣♣ . (2.57)

4This is usually attributed to geodesic curves, but these were not introduced yet, therefore this property
is attributed to the more general concept of retractions.
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2.7 Riemannian Manifolds

2.7 Riemannian Manifolds

For a short historical overview of Riemannian geometry, the reader is referred to do Carmo
[dC92, Ch. 1.1]. For the interested reader of the biographies of Gauss and Riemann, the
reader is referred to Bell [Bel37].

A Riemannian manifold is a manifold endowed with additional geometric structure. The
notions of tangent vectors and directional derivatives, which do not depend on a metric,
were deĄned in Section 2.4. For our goal to do structural mechanics, it is important to
measure angles, length, and deviation of angles or length. This is the job of Riemannian
metrics.

2.7.1 Riemannian Metric

Every tangent space TxM of a manifoldM can be equipped with an inner product ⟨·, ·⟩x.
This inner product is a symmetric, bilinear positive-deĄnite form and therefore induces
the norm ♣♣ηx♣♣x =

√

⟨ηx,ηx⟩x.

DeĄnition 15. A Riemannian metric g of a smooth manifoldM assigns to each point x

an inner product ⟨·, ·⟩x on the corresponding tangent space TxM. This yields a smooth
map

gx :







TxM× TxM→ R,

(η, ζ) 7→ gx(η, ζ) = g(η, ζ) = ⟨η,ζ⟩.
(2.58)

A Riemannian manifold is thus a pair (M, g), where M is a manifold and g is the
Riemannian metric on M.

If coordinate vector Ąelds gi are introduced, the components of the Riemannian metric
gij can be calculated as

gij = g(gi ,gj) = ⟨gi ,gj⟩x. (2.59)

Additionally, this induces the deĄnition of the metric tensor, which deĄnes a (0,2)-tensor
Ąeld. It is given by

g = gij gi ⊗ gj . (2.60)

35
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With these deĄnitions, the inner product of the vectors η = ηigi and ζ = ζ jgj can be
stated as

g(η,ζ) = ⟨η,ζ⟩x = ηT g̃ζ = η · g · ζ = ηiζ jgij , (2.61)

where the second term emphasizes the fact that the metric tensor stems from an inner
product; the third, fourth, and Ąfth terms represent the same results but in matrix,
direct5 or index6 notation, respectively. The matrix g̃ simply contains the coefficients gij .
With an abuse of notation, the tilde ornaments are dropped and also refer to this matrix
g̃ by g.

Example 7 (Euclidean space). The space Rm has as basis ei = (0, . . . , 1, . . . ,0). The
canonical metric is therefore, ⟨ei , ej⟩ = δij . Here, the inner product ⟨ei , ej⟩x is the simple
dot product ei · ej .

2.7.2 Musical Isomorphisms

The deĄnition of covectors in Section 2.4.4 on page 25 does not need the deĄnition
of a Riemannian metric. However, if a Riemannian metric is given, covectors can be
transformed into vectors and vice versa. Consider a map h : TxM→ T ∗

xM with the
vectors at x, η = ηigi and ζ = ζ jgj as

h(η)(ζ) = ⟨η, ζ⟩, (2.62)

and in coordinates

h(η)(ζ) = gijη
jζ j . (2.63)

This implies that the covector h(η) can be written as

h(η) = gijη
jgi . (2.64)

As a shorthand, the following deĄnition is used

ηi = gijη
j . (2.65)

This procedure is usually named lowering the indices, since h(η) is obtained by lowering
the index of η.

5Alternatively called vector notation
6Alternatively called subscript notation and suffix notation
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Figure 2.12: Commutative diagram between musical isomorphisms and pull-back and
push-forward operations

Analogously, we can deĄne, using the inverse mapping h−1 : T ∗
xM→ TM, which can

be represented by the inverse matrix of ¶gij♢. These matrix coefficients are denoted by
gij such that

gijg
jk = δk

i . (2.66)

Therefore, h−1 or gij can be used for raising the indices of a covector ω = ωig
i such

that

ωi = gijωj . (2.67)

This also deĄnes a relation between the covariant and contravariant base vectors, namely

gi = gijgj and gi = gijg
j . (2.68)

Consequently, h and its inverse deĄne isomorphisms between T ∗
xM and TxM. Formally,

these isomorphisms are deĄned as

g :







TxM→ T ∗
xM,

η 7→ η♭ = g · η, and
g−1 :







T ∗
xM→ TxM,

η 7→ η♯ = g−1 · η.
(2.69)

A vector representation of a covector ω is often denoted by ω♯, and similarly, the covector
representation of a vector η is often denoted by η♭. These musical symbols are motivated
by the fact that in musical notation, Ćat and sharp mean lowering and raising the
pitch. Therefore, these isomorphisms are called musical isomorphisms. The musical
isomorphisms close the commuting diagram in Fig. 2.12 along with the push-forward
and pull-back operations. These isomorphisms can also be used to deĄne the transpose

of a tensor. Consider a tensor C = C i
jgi ⊗ gj . The components of the metric transpose

CT are deĄned as

(CT )
l

k = gkiC
i
jg

lj , (2.70)
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see also Marsden and Hughes [MH94, 3.4 Proposition (ii)] or Federico [Fed15]. It can
be derived via the statement involving the metric ⟨w,C · v⟩x = ⟨CT ·w,v⟩x. This is in
general not identical to the algebraic transpose or dual to C i

j , which can be stated as
(Ct)

i

j .7 The metric transpose and algebraic transpose are related via

(CT )
l

k = gkiC
i
jg

lj = gki(C
t)

i

j g lj . (2.71)

2.7.3 Riemannian Gradient

Let f :M→ R be a function deĄned on a manifold (M, g). The directional derivative
of f in the direction of the tangent vector η is deĄned as Dηf (x) since an embedding
space is assumed. The Riemannian gradient of f is deĄned as follows:

DeĄnition 16. Let f : M → R be a function deĄned on a manifold (M, g). The
Riemannian gradient is the vector Ąeld deĄned by

Dηf (x) = gx(η, grad f (x)) = ⟨η, grad f (x)⟩x. (2.72)

Therefore, in contrast to the directional derivative, the Riemannian gradient directly
depends on the deĄnition of the chosen Riemannian metric.

Consider M embedded into RM with basis vector Êi with the coordinates Z i . Also, con-
sider a parameterization φ : Rm → U ⊂M as given by Eq. (2.15) and the corresponding
base vectors gj(θ) = ∂φi(θ)

∂θj Êi as introduced in Eq. (2.16). This parameterization deĄnes
the function f̃ = f ◦φ : Rm → R. The directional derivative can then be stated as

Dx̂f̃ (θ) =
∂ f̃

∂θj
gj , (2.73)

where gj can be written as in Eq. (2.68). Considering η = vigi , Eq. (2.72) reads

∂ f̃

∂θi
ηi = ηigij(θ)(g̃rad f (θ))

j

. (2.74)

The notation g̃rad f denotes the components of grad f in the basis gi and θ contains the
coordinates in this chart of the point x as before. The coordinate representation of the

7This is also used in [Fed15], where (·)t and (·)T are swapped to the notation used here. The algebraic
transpose has also been named the dual of C in [MH94].
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gradient then reads

(g̃rad f (θ))
i

= gij ∂ f̃

∂θj
, (2.75)

due to the arbitrariness of ηi . This also underlines the dependence on the Riemannian
metric through the metric coefficients gij . Furthermore, the Riemannian gradient can
be expressed in a coordinate-free way as grad f (x) = (Df )♯ using musical isomorphisms
from Section 2.7.2.

In Euclidean spaces, e.g., Rn, the Riemannian gradient boils down to

grad f (x) =







∂f

∂x1

...
∂f

∂xn







Ei . (2.76)

2.7.4 Riemannian Submanifolds

Riemannian submanifolds have several nice properties, that make the later optimization
problem for the Reissner-Mindlin shell formulation convenient. This realization is also a
main contribution of this thesis. This is elaborated on in Section 6.1.3 on page 153.

Let M be an embedded submanifold of M. Since the tangent space TxM can be seen
as a subspace TxM, the Riemannian metric ḡ of M induces a metric g on M as

gx(η, ζ) = ḡx(η, ζ), (2.77)

where η and ζ are viewed as elements of TxM or TxM. This metric turns M into a
Riemannian manifold. If the metric is chosen in such a way that it is compatible with the
embedding space, then the manifold M is called Riemannian submanifold. Additionally,
such a metric is called an induced metric. Conversely, if M is embedded into M, but we
choose a different metric, it is not a Riemannian submanifold but merely a Riemannian
manifold.

Additionally, the embedding admits the orthogonal complement to the tangent space. If
M is embedded into Rm, the one-dimensional normal space is

NxM = ¶v ∈ Rm : ḡx(v,η) ∀η ∈ TxM♢. (2.78)

Since the deĄnition of the normal space needs the notion of orthogonality, a metric is
needed. Therefore, the normal space can only be deĄned, if a Riemannian metric is chosen.
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Figure 2.13: Decomposition of a vector into components tangent and normal to a manifold.

In contrast to this, the tangent space was deĄned by directional derivatives without the
need for a metric. Furthermore, an embedding space needs to be available.

Projection of Vector Fields

The deĄnition of normal space and tangent space can be used to decompose elements of
the embedding space. Consider a vector v ∈ Rm, that can be decomposed as

v = Px(v) + P⊥
x (v), (2.79)

where Px denotes the orthogonal projection onto TxM and P⊥
x the orthogonal projection

onto NxM as depicted in Fig. 2.13. This decomposition gives rise to a convenient
construction of the Riemannian gradient. Consider a function f : M → R and its
extension f̄ : Rm → R. From DeĄnition 16 and Eq. (2.14), the following holds for the
Riemannian gradient of f

gx(η, grad f (x)) = Dηf (x) = Dη f̄ (x) = ḡx(η, grad f̄ (x)), η ∈ TxM. (2.80)

The right-hand side can then be decomposed into the normal and tangent parts as
follows

grad f̄ (x) = grad f̄ (x)∥ + grad f̄ (x)⊥. (2.81)

Inserting this into Eq. (2.80) gives

gx(η, grad f (x)) = ḡx(η, grad f̄ (x)∥ + grad f̄ (x)⊥) = ḡx(η, grad f̄ (x)∥), (2.82)

where the normal part of the gradient vanishes, since η ∈ TxM and grad f̄ (x)⊥ ∈ NxM.
Since the metrics g and ḡ can be identiĄed through Eq. (2.77), we have grad f (x) =

grad f̄ (x)∥. The usage of the projection operators from Eq. (2.79) yields

grad f (x) = Px(grad f̄ (x)). (2.83)
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This results in a very convenient representation of the Riemannian gradient represented
as a vector in the embedding space, since the gradient in Euclidean spaces is simply
given by Eq. (2.76). A smooth extension of a function f needs to be differentiated in the
linear embedding space Ů which is trivial Ů and the intermediate quantity needs to be
orthogonally projected onto the tangent space. As an additional remark, this projection
method of gradients is not new. It can be traced back at least to Rosen [Ros60], and
the subsequent article [Ros61]. For the case of the unit sphere, where the tangent space
projection is simply Px = I− x⊗ x, this yields the Riemannian Gradient as

grad f (x) = (I− x⊗ x) grad f̄ (x) = grad f̄ (x)− x(x · grad f̄ (x)), (2.84)

which simply uses the Euclidean gradient from the embedding space and subtracts the
component in the direction of x, namely in the direction of the normal space.
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2 First-Order Differential Geometry

2.8 Alternating Tensors and Volume Forms

Alternating tensors are needed to generalize the notion of the volume map from Cartesian
coordinates. These are needed to correctly integrate stress resultants and the energy on
the shellŠs midsurface.

Consider a permutation σ and its sign as sgn σ, where sgn σ is 1 or −1, depending on
whether the permutation σ is even or odd, respectively. For any vectors v1, . . . ,vn of the
vector space V , alternating tensors can be deĄned by

T(vσ(1), . . . ,vσ(n)) = sgn σT(v1, . . . ,vn). (2.85)

Thus, we have, e.g., T(v1,v2) = −T(v2,v1). Equivalently, an alternating 2-tensor is
simply a skew-symmetric bilinear form on V . Additionally, if two elements are repeated,
then an alternating tensor is zero. Alternating tensors are also called k−forms since they
are constructed from k covectors. Like a one-form, k−forms map k vectors to a scalar.
Their construction can be deĄned via the deĄnition of the wedge product.

2.8.1 Wedge Product

The wedge product is the antisymmetric tensor product as follows

ω ∧ χ = ω ⊗ χ− χ⊗ ω. (2.86)

Therefore, like the tensor product (⊗), the wedge product ∧ creates a second-order tensor,
i.e., a two-form from two Ąrst-order tensors. If ω and χ are vectors, ω ∧ χ is called
bivector and if ω and χ are one-forms, the result is a two-form.

Three vectors combined with the wedge product yield a trivector or three-form as

ω ∧ χ ∧φ =ω ∧ (χ ∧φ) = ω ∧ (χ ∧φ)

=ω ⊗ χ⊗φ+ χ⊗φ⊗ ω +φ⊗ ω ⊗ χ
−χ⊗ ω ⊗φ− ω ⊗φ⊗ χ−φ⊗ χ⊗ ω.

(2.87)

Consider an alternating tensor T = ω1 ∧ . . . ∧ ωk . The full contraction with k vectors to
a scalar can be written as

T(v1, . . . ,vk) = ω1 ∧ . . . ∧ ωk(v1, . . . ,vk) = det([ωi(v
j)]), (2.88)

where det : Rk×k → R is the usual determinant function of a square matrix.
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2.8 Alternating Tensors and Volume Forms

2.8.2 Riemannian Volume Form

Using the deĄnition of alternating tensors, the quantities to integrate volumes on manifolds
can be deĄned. Consider a Cartesian basis ¶ei♢ of V and a basis ¶ei♢ of V ∗. The special
tensor

ε̃ = e1 ∧ · · · ∧ ek = εa1...ak
ea1 ⊗ · · · ⊗ eak (2.89)

is called Levi-Civita tensor. The values εa1...ak
are sometimes called Levi-Civita symbols.

They can be derived as being 1 or −1, if the permutation of the indices a1 . . . ak is even
or odd, respectively. Consider the restriction to k = 3 and the three vectors v1,v2 and v3

deĄned as vi = vijej . Then, the Levi-Civita tensor can be used to compute the volume
of the parallelepiped P spanned by the vectors v1,v2 and v3, which is deĄned as

P = ¶t1v
1 + t2v

2 + t3v
3 ♣ 0 ≤ ti ≤ 1♢. (2.90)

The volume can then be computed as

Vol(P) = ε̃(v1,v2,v3) = εijkv1iv2jv3k = det([ei(vj)]) = det([δi
j ]) det([vij ])

= det([vij ]),
(2.91)

where [vij ] is a matrix with the components vij .
The identity det([ei(vj)]) = det([δi

j ]) det([vij ]) can be derived by revisiting Ex. 6 on
page 26.

In a general curvilinear coordinate system with the basis ¶gi♢ and the dual basis ¶gi♢
the covariant Levi-Civita tensor and contravariant Levi-Civita tensor read

ε =
√

det([gab]) gi ∧ gj ∧ gk =
√

det([gab])εijk gi ⊗ gj ⊗ gk ,

ε♯ =
√

det([gab]) gi ∧ gj ∧ gk =
√

det([gab])εijk gi ⊗ gj ⊗ gk ,
(2.92)

which are now tensors since they now transform like one. The symbols εijk can be derived
via the identity εijkεijk = 1. For more details on the correct deĄnition, see [Car19, Sec.
2.8] and [Lee03, Sec. 10.35]. Since ε is central to computing the volume of manifolds, it
is also called Riemannian volume form.

Consider again the vectors vi = vijgj , now deĄned in the curvilinear basis, which span
the volume of P. This volume can now be calculated as follows:

Vol(P) =ε(v1,v2,v3) =
√

det([gab]) det(gi(vj)) =
√

det([gab]) det(gi(gj)) det([vij ])

=
√

det([gab]) det([δi
j ]) det([vij ]) =

√

det([gab]) det([vij ]).
(2.93)
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2 First-Order Differential Geometry

Since the measure also depends on the orientation and length of gi , it is crucial to multiply
by

√

det([gab]) to get the true volume. The quantity
√

det([gab]) is the volume of the
parallelepiped spanned by the base vectors gi = qijEj . This can be seen by calculating it

with Eq. (2.91), which results in det[qij ] =
√

det([gab]).

Using these results, a coordinate-independent integration on a manifold can be deĄned.
In the spirit of Section 2.4.5 on page 26, this is done by deĄning the differential volume
element as

dv = ε(e1,e2,e3) =
√

det([gab]) dx1 ∧ dx2 ∧ dx3 =
√

det([gab]) dv, (2.94)

see [Lee03]. Thus, the total volume of a manifold M is

Vol(M) =
∫

M

dv =
∫

M

√

det([gab]) dv. (2.95)

In the following derivations, the Riemannian volume form is indicated with a bold symbol
dv to make the dependence on the metric explicit. The usual inĄnitesimal volume element
is denoted with dv.

2.8.3 Cross Product

The covariant Levi-Civita tensor is also related to the cross product of two vectors.
Consider two three-dimensional vectors v = viei and w = wiei from a vector space V

with the Cartesian basis ¶ei♢. The wedge product of these two vectors results in the
bivector

v ∧w =viwj ei ∧ ej

=(v1w2 − v2w1) e1 ∧ e2 + (v1w3 − v3w1) e1 ∧ e3 + (v2w3 − v3w2) e2 ∧ e3.
(2.96)

If we identify e1 ∧ e2 → e3, e1 ∧ e3 → −e2 and e2 ∧ e3 → e1, the usual deĄnition of the
cross product v×w is obtained. This process of transformation is called the Hodge star

operator, which produces the Hodge dual. In three dimensions this yields the identiĄcation
v×w = ⋆(v ∧w).

In a curvilinear coordinate system, these relations are more complicated. The cross
product v×w of two three-dimensional vectors v = vigi ,w = wigi , now deĄned in the
curvilinear basis ¶gi♢ cannot be deĄned via

v×w =vivjgk(v1w2 − v2w1) g3 − (v1w3 − v3w1) g2 + (v2w3 − v3w2) g1, (2.97)
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2.8 Alternating Tensors and Volume Forms

and the identiĄcation g1 ∧ g2 → g3,g1 ∧ g3 → −g2 and g2 ∧ g3 → g1. The right-hand
side would not transform correctly since it is artiĄcially linear in the base vectors and
a transformation would therefore also only appear to be linear. In contrast to this, the
left-hand side v ×w = (vigi) × (wigi), transforms with two transformation matrices.
Thus, the cross product produces only a so-called pseudovector.

The coordinate-independent version of the cross product is given via the covariant
Levi-Civita tensor from Eq. (2.92) as

ω = v×w =
√

det([gab])εijkvivjgk = ωkgk , (2.98)

which yields a covector. This is the deĄnition of the cross product, that is used in the
present work. To obtain a vector from the cross product, the musical isomorphisms from
Section 2.7.2 can be used to raise the index. This yields

u = (v×w)♯ =
√

det([gab])εijkgklviwjgl = ulgl , (2.99)

which yields a vector.

2.8.4 Determinant of a Tensor

The textbook deĄnition of the determinant of a mapping Φ : V → V relies on the
property that the mapping is an endomorphism. An endomorphism is a mapping that
maps to the same space, from which the input is taken. This is only given for mixed
tensors. E.g. for a mixed tensor A : TxM → TxM, which deĄnes an endomorphism,
we have A = Ai

jgi ⊗ gj , in the basis ¶gi♢ and its dual basis ¶gi♢. Using the covariant
Levi-Civita tensor, we get the general expression of the determinant

√

det([gab])εlmn det A =
√

det([gab])εijkAi
lA

j
mAk

n, (2.100)

which can be simpliĄed by multiplying by
√

det([gab])εlmn from the right as

det A = εijkAi
lA

j
mAk

nε
lmn,

det A = εijkAi
1A

j
2A

k
3 = det([Ai

j ]),
(2.101)

which resembles the usual determinant equation. The tensor determinant for second-
order mixed tensors coincides with the determinant of its components. Only these
mixed tensors deĄne endomorphisms. Therefore, purely covariant or contravariant tensors
can be modiĄed by raising or lowering the indices. Then B : TxM → T ∗

xM and
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2 First-Order Differential Geometry

C : T ∗
xM→ TxM have the determinants

det B = det([gabBbc]) = det([gab]) det(Bbc),

det C = det([gabC
bc]) = det([gab]) det(C bc).

(2.102)

Therefore, for purely covariant or contravariant second-order tensors, the tensor determi-
nant does not coincide with the determinant of its components. This can also be used
to interpret the determinant of the metric tensor. Despite the fact that det([gab]) is in
general not equal to one, det g = det([gabg

bc]) = det([δb
a]) = 1. For a three-dimensional

manifold, this also replicates the common result

ε(g1,g2,g3) =g1 · (g2 × g3) =
√

det([gab])

ε(g1,g2,g3) =g1 · (g2 × g3) =
1

√

det([gab])
.

(2.103)

or

gi × gj =
√

det([gab])εijkgk , and gi × gj =
εijk

√

det([gab])
gk , (2.104)

This result for purely covariant or contravariant tensors works since they are simply
recast to mixed tensors, which again deĄne an endomorphism. Consider a mapping
between two manifolds, i.e., a two-point mixed tensor. The problem gets again more
involved, as described in the following. For a two-point tensor F : TxM→ Tf(x)N , like
the deformation gradient, the endomorphism needed for the determinant calculation, can
be deĄned in two ways. First, by exploiting the fact, that the product FT · F results
in a tensor that deĄnes an endomorphism, the determinant of F can be derived as
follows [Fed15]. Consider ¶gi♢ as the basis of Tf(x)N with the metric g = gabg

a ⊗gb, and
for TxM, the basis ¶Gi♢ with the metric G = gABGA ⊗GB. This yields the following
result

det F =
√

det(FT · F) =
√

det([(FT )A

aFa
B]) =

√

det([gabF b
BGABFa

B]),

=
√

det([gab])
√

det([GAB]) det([F b
B]) =

√

det([gab])
√

det([GAB])
det([F b

B]),
(2.105)

where the deĄnition of the tensor transpose of Eq. (2.70) was used. Furthermore, the fact
that transposing a tensor does not change the determinant was also employed. This is
also the result deĄned in [MH94, Prop. 5.3]. The second way, used in Marsden and Hughes
[MH94], is by introducing two local charts, which results again in an endomorphism,
and then yielding the same result of Eq. (2.105). Alternatively, if we interpret dV from
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2.8 Alternating Tensors and Volume Forms

Eq. (2.94) as the volume form of M it reads

dV = εG(G1,G2,G3) =
√

det([Gab]) dX 1 ∧ dX 2 ∧ dX 3 =
√

det([Gab]) dV ,

(2.106)

and dv as the volume form of N

dv = εg(g1,g2,g3) =
√

det([gab]) dx1 ∧ dx2 ∧ dx3 =
√

det([gab]) dv. (2.107)

Here, εG and εg denote the Levi-Civita tensor on M and N , respectively.

Thus, in curvilinear coordinates, it is crucial to correctly derive the volume element or
determinant of a tensor, since they depend on the metric.

2.8.5 Piola Transform

From the former expressions, the question of how volume elements transform under
a function between manifolds was answered. Now, the question arises, how do areas
transform? This can be answered by relating the area element on M to its volume
element. Consider da as the area element of ∂N , N as a unit normal covector Ąeld also
on ∂N , which is assumed to be the plane X 1 = 0, and w as a vector Ąeld on N . Without
loss of generality, a three-dimensional manifold is considered. Then, the area element
and volume element are related via

w · da = w ·N da = εg(w,g2,g3) = w · (g2 × g3) dv = w · (g2 × g3) dadx1,

(2.108)

where using the latter cross-product identiĄcation yields da = N da = (g2 × g3) da =
√

det([gab])g
1 da. This yields also the result on M as dA =

√

det([GAB])G1 dA

The pull-back da to M is not as simple as before, since the one-form does not only
depend on the base vector but also on the metric tensor itself. The pull-back of g1 can be
done via Eq. (2.55) on page 33 and the pull-back of

√

det([gab]). This yields the relation

( da)a = det F(F−1)
A

a( dA)A, (2.109)

which is sometimes called NansonŠs formula.
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Consider again the example from Eq. (2.108), the transformation reads

(
√

det([gab])g
1 da)

a
= det F(F−1)

A

a

√

det([GAB])(G1)A dA (2.110)

=

√

det([gab])
√

det([GAB])
det([F b

B])(F−1)
A

a

√

det([GAB])(G1)A dA

(2.111)

=
√

det([gab]) det([F b
B])(F−1)

A

a(G1)A dA. (2.112)

The general case, not related to area differential elements as in Eq. (2.109), but to
normals instead, is called Piola transform. The notion of normals is deĄned now as
one-forms that are deĄned via the cross-product Eq. (2.98) or simply by stating that the
object transforms as given in Eq. (2.109). Thus, given a normal Ąeld N on M, the Piola
transform reads

n = JF−T ·N, (2.113)

which yields a normal vector Ąeld n deĄned on N .

Since the determinant and volume form transformations are non-standard in the way they
are presented, one example is provided, in which the mapping properties of Eqs. (2.105)
and (2.107) are shown.

Example 8 (Deformation of quadrilateral with curved edges). Consider a quadrilateral
M with curved edges with the parameterization

R(θ1, θ2) =

[

X

Y

]

=

[

2θ2

2(θ2)
2

+ θ1

]

, (2.114)

which results in the base vectors G1 = ∂R(θ1,θ2)
∂θ1 = [0, 1] and G2 = ∂R(θ1,θ2)

∂θ2 = [2, 4θ2].

This yields for the determinant of the metric coefficients
√

det([GAB]) = 2. Consider
for both quadrilaterals the ranges θ1 = [0, 1] and θ2 = [0, 2] of the parameterization
coordinates. Integrating the area yields

Vol(M) =
∫

M

dV =
∫

M

√

det([GAB]) dV =

1∫

0

2∫

0

2 dθ1 dθ2 = 4. (2.115)

Consider another quadrilateral N with curved edges with the parameterization

r(θ1,θ2) =

[

x

y

]

=

[

4(θ2)
2

4(θ2)
3

+ 2θ1

]

, (2.116)
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with the curvilinear base vectors g1 = ∂r(θ1,θ2)
∂θ1 = [0, 2] and g2 = ∂r(θ1,θ2)

∂θ2 = [8θ2, 12(θ2)
2
].

This yields for the determinant of the metric coefficients
√

det([gab]) = 16θ2. Integrating
the area yields

Vol(N ) =
∫

N

dv =
∫

N

√

det([gab]) dv =

1∫

0

2∫

0

16θ2 dθ1 dθ2 = 16. (2.117)

The map Φ :M→N that deforms M to N can be constructed via

Φ(X ,Y ) = r(R−1(X ,Y )) =

[

X 2

1
2
X 3 − X 2 + 2Y

]

. (2.118)

The Jacobian w.r.t. X ,Y of Φ, later called the deformation gradient of this map in
Cartesian coordinates X and Y with the base vectors E1 and E2 reads,

F(X ,Y ) =

[

2X 0
3
2
X 2 − 2X 2

]

Ea ⊗ EA. (2.119)

Since this is deĄned in the Cartesian coordinate system, it deĄnes an endomorphism
R2 → R2 and its determinant is det F = det([Fa

A]) = 4X . This can be used to integrate
the deformed area via an integration on the undeformed manifold by integrating

Vol(N ) =
∫

N

dv =
∫

M

det F dV =

2∫

0

X2/2+2∫

X2/2

4X dY dX = 16, (2.120)

as expected. It can also be derived similarly the other way around. The undeformed area
can be integrated on the deformed manifold as

Vol(M) =
∫

M

dV =
∫

N

1/ det F(Φ−1(x ,y)) dv =

4∫

0

x3/2/2+4∫

x3/2/2

4
√

x dy dx = 4. (2.121)

If F is deĄned in the coordinates θi , we get

F(R(θ1,θ2)) = δa
Aga ⊗GA. (2.122)
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Now, by repeating Eq. (2.120), we get with Eq. (2.105)

Vol(N ) =
∫

N

dv =
∫

M

det F dV =
∫

M

√

det([gab])
√

det([GAB])
det([δb

B])
√

det([GAB]) dV

(2.123)

=

1∫

0

2∫

0

16θ2 dθ1 dθ2 = 16, (2.124)

as expected.
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3
Second-Order Differential Geometry

Second-order geometry information is the natural additional information that can be
added to a Riemannian manifold. The metric allows the notion of comparing quantities
within a single tangent space and allows the deĄnition of length and angles on the
manifold. Second-order information is needed to compare quantities between different

tangent spaces. This boils down to the notion of parallel transport or covariant derivatives,
which enable the deĄnition of curvature. Thus, second-order information is needed to
capture the curvature information of the manifold. This can be used to derive curvature
information of a physical body or curvature information of the manifold, where our
degrees of freedom later live in for the Reissner-Mindlin shell formulation. This chapter
is mainly based on Absil et al. [Abs08], Boumal [Bou23], do Carmo [dC92], and Lee
[Lee03]. These books present a formal approach to the topic and alternatively the reader
is referred to Misner et al. [Mis73] and Needham [Nee21] for a visual approach.

3.1 Affine Connections

We started with topological information in Section 2.2, followed by directional derivatives
and the deĄnition of tangent spaces. Afterward, a Riemannian metric enabled the
measurement of length and angles on the manifold in Section 2.7. Finally, the deĄnition
of alternating tensors in Section 2.8 allowed the integration on manifolds. Now this
geometric toolbox is Ąlled with affine connections. An affine connection on a Riemannian
manifold is another geometric structure that can be added to a manifold.

An affine connection ∇ solves the problem of obtaining intrinsic derivatives of tangent
vector Ąelds on a manifold. There are inĄnite possibilities to deĄne an affine connection
on a manifold, but the beneĄts of the Riemannian connection or Levi-Civita connection

stand out in contrast to other conceivable affine connections. One beneĄt is that the
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3 Second-Order Differential Geometry

resulting Riemannian Hessian is a symmetric bilinear form and that it is invariant with
respect to the metric. Otherwise, this could lead to an unsymmetric form, see [MS95;
Rom05; Ray15].

DeĄnition 17. An affine connection is a mapping as follows

∇ :







X(M)× X(M)→ X(M),

(ξ,η) 7→ ∇ξη,
(3.1)

where X(M) denotes an arbitrary vector Ąeld deĄned in M in contrast to D(M) which
denotes a scalar Ąeld deĄned in M. Therefore, the connection ∇ takes two vector
Ąelds as arguments and the result is a vector Ąeld. Consider a,b ∈ R, f ,g ∈ D(M)

and ξ,η,ζ ∈ X(M). Then, an affine connection ∇ξη satisĄes the following properties,
see [Abs08, p. 94] or [dC92, DeĄnition 2.1]:

• D(M)-linearity in η: ∇fη+gζξ = f∇ηξ + g∇ζξ
• R-linearity in ξ: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ
• Product rule: ∇η(f ξ) = (Dηf )ξ + f∇ηξ

Based on these deĄnitions, by considering a tangent vector ξ deĄned along a curve
c : I →M, the covariant derivative along c can be deĄned as

Dξ(c(t))

dt
= ∇∂tcξ. (3.2)

This relationship directly connects the affine connection to the concept of a covariant
derivative. Consequently, the covariant derivative is the outcome of equipping an affine
connection ∇ with a derivative direction and a vector Ąeld, the change of which is of
interest.

Consider two tangent vector Ąelds

η = ηigi , and ξ = ξigi ., (3.3)

deĄned in a coordinate basis ¶gi(θ
j)♢ with curvilinear coordinates θi as given by Eqs. (2.15)

and (2.16) on page 22. The dependence on θi is not denoted in the following for a shorter
notation. The covariant derivative of η in direction ξ, using the product rule, reads

∇ξη = ξi∇gi
(ηjgj) = ξi(Dgi

ηjgj + ηj∇gi
gj) = ξi(

∂ηj

∂θi
gj + ηj∇gi

gj). (3.4)
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If the shortcut ∇gi
gj = Γk

ijgk is introduced, Eq. (3.4) can be grouped together and this
yields

∇ξη = ξi(
∂ηk

∂θi
+ ηjΓk

ij)gk . (3.5)

The numbers Γk
ij are denoted in this case as coefficients of the connection ∇, since these

coefficients fully deĄne the connection and vice versa.

Similarly, for a one-form ω = ωig
i , it is possible to derive the analog of Eq. (3.5) as

∇ξω = ξi(
∂ωk

∂θi
− ωjΓ

j
ik)gk . (3.6)

The coefficients of the connection Γk
ij are not necessarily symmetric in the lower indices i

and j.

Example 9. As a motivation, consider a curve C in R2 with the parameterization
c : I → R2. The tangent vector of this curveŠs parameterization is v(t) = dc

dt
(t), which is

always in the tangent space Tc(t)C. Then, the ŞderivativeŤ dv
dt

(t) does not belong to the
tangent bundle, since it has components in the normal direction of the curve. Thus, this
notion of such a derivative is not intrinsic to the manifold C.

To Ąx this inconsistency of Example 9, one can consider, as in Section 2.7.4 on page 40,
the wrong quantity as a quantity in the embedding space and then obtain the correct one
by projecting the result on the tangent space in the covariant derivative. Consequently,
the covariant derivative is constructed as follows: Ąrst, by computing a simple partial
derivative that yields a quantity no longer residing in the tangent space, as illustrated in
Example 9. Subsequently, this deviation is rectiĄed by incorporating the coefficients of
the connection, resulting in a quantity that once again resides in the embedded tangent
space.

A usual shortcut for the covariant derivative of the components of Eq. (3.5) is given by

ηk
♣i =

∂ηk

∂θi
+ ηjΓk

ij . (3.7)

Levi-Civita Connection

Up to this point, the connection ∇ or its coefficients can be chosen freely to satisfy
the requirements of DeĄnition 17. The satisfaction of these requirements does not yield
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3 Second-Order Differential Geometry

a unique connection. If the manifold M is restricted to be a Riemannian manifold
(M, g), i.e. equipped with a Riemannian metric g, then this singles out a well-deĄned and
unique connection. This connection is called the Levi-Civita connection or Riemannian
connection.

DeĄnition 18. The Levi-Civita connection is an affine connection, which satisĄes the
following additional properties

1. It is invariant w.r.t. the metric: ∇η⟨ξ, ζ⟩ = ⟨∇ηξ, ζ⟩+ ⟨ξ,∇ηζ⟩,
2. and symmetric in the sense ∇ηξ −∇ξη = [η,ξ],

where [ξ,η] is the Lie bracket and deĄned as

[ξ,η] =
∂ξi

∂θj
ηj − ∂ηi

∂θj
ξj . (3.8)

The fact that this connection exists and is unique is important enough to have its
own name: the fundamental theorem of Riemannian geometry. As mentioned, both
requirements result in a unique connection. The symmetry requirement property can be
further interpreted as follows:

∇ηξ −∇ξη =
∂ξi

∂θj
ηj + ξkΓi

kjη
j − ∂ηi

∂θj
ξj − ηkΓi

kjη
j

=
∂ξi

∂θj
ηj + ξkΓi

kjη
j − ∂ηi

∂θj
ξj − ηjΓi

jkξ
k

=
∂ξi

∂θj
ηj − ∂ηi

∂θj
ξj + ξk(Γi

kj − Γi
jk)ηj ,

(3.9)

where it is apparent that ∇ηξ −∇ξη = [ξ,η] implies the symmetry of the coefficients
of the connection symbols Γi

kj = Γi
jk . Connections that have symmetric coefficients are

called symmetric or torsion-free.

KoszulŠs formula The requirements in DeĄnition 18 can be recast into a single equation,
which has the name KoszulŠs formula. An affine connection must satisfy the so-called
KoszulŠs formula to be the unique Levi-Civita connection. This formula can be constructed
from the requirements mentioned in DeĄnition 18. It reads

2⟨∇ξη,ζ⟩ = ⟨[ξ,η],ζ⟩ − ⟨[ξ, ζ],η⟩ − ⟨[η, ζ],ξ⟩
+ Dξ⟨η,ζ⟩+ Dη⟨ξ,ζ⟩ −Dζ⟨ξ,η⟩,

(3.10)
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3.2 Parallel Transport

with ξ,η, ζ ∈ TM. In coordinates, in the case of a holonomic basis as deĄned in
Eq. (2.16) on page 22, the Lie bracket of the coordinate base vectors vanishes. This
means [gi ,gj ] = 0, which results in

Γk
ij =

1

2
gkl

(

∂gjl

∂θi

+
∂gil

∂θj

− ∂gij

∂θl

)

=
1

2
gkl (gjl,i + gil,j − gij,l) . (3.11)

These coefficients of the connection, named Christoffel symbols of the second kind, are
attributed to Elwin Bruno Christoffel, who Ąrst deĄned them in [Chr69, p. 48]. For
a non-holonomic basis, additional components arise in Eq. (3.11), see Misner et al.
[Mis73].

For Euclidean spaces, i.e., Rm equipped with the trivial metric g(u,v) = u · v. The
connection simply boils down to the usual directional derivative. Formally, we have
∇uv = Duv.

3.2 Parallel Transport

From the very deĄnition of the covariant derivative, it is apparent to ask what denotes
a vanishing derivative. Consider a vector Ąeld w : Rn → Rn. In Euclidean space, the
directional derivative of w in a direction v ∈ Rn at position x ∈ Rn reduces to

Dvw(x) = lim
ε→0

w(x + εv)−w(x)

ε
, (3.12)

which can be read as the change of the vector Ąeld w at position x in direction v.
Therefore, this derivative vanishes, if w evaluated at x + εv is parallel to, and has the
same length as, w(x).

If this is generalized to manifolds, two pitfalls arise. First, the line x + εv has to be
replaced by a curve γ that realizes the tangent vector ξ as in DeĄnition 10 on page 21.
Otherwise, the point x + εv is adrift, having departed from the manifold. Thus, using
the curve γ and its tangent vector ξ yields

Dξη(x) = lim
ε→0

ηγ(ε) − ηγ(0)

ε
, (3.13)

with γ(0) = x. As shown in Fig. 3.1, this is still not a proper deĄnition, since the
difference is still not well-deĄned. This results from the fact that no well-deĄned concept
exists to deĄne differences (and sums) between different tangent spaces, namely Tγ(ε)M
and Tγ(0)M. Consequently, ηγ(ε) lives in Tγ(ε)M and ηγ(0) in Tγ(0)M indicated by the
quadrilaterals in the Ągure.
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฀push0 g 0 G

Tγ(0)M

γ(0) ηγ(0)

γ(ǫ) Tγ(ǫ)M
ηγ(ǫ)

γ(t)

M

Figure 3.1: Illustration of Eq. (3.13). The vectors ηγ(ε) and ηγ(0) live in different tangent
spaces. Thus, the difference in Eq. (3.13) can not be well-deĄned, since the
vectors are deĄned through different base vectors.

To Ąx this inconsistency, the vector η(γ(ε)) at Tγ(ε)M has to be transported back to
Tγ(0)M. Then, both vectors are deĄned in the same tangent space and differences make
sense again. The transportation of η(γ(ε)) should not change the basic properties of
the vector. This process is called parallel transport.1 The name parallel transport can
be easily understood with the linear example from Eq. (3.12), since the movement from
x + εv to x was merely shifting the vector w. This allows the deĄnition

∇ξη(x) = lim
ε→0

ηγ(ε)♣♣γ(0) − ηγ(0)

ε
, (3.14)

where ηγ(ε)♣♣γ(0) denotes the parallel transport of the vector from γ(ε) to γ(0). For a
visualization, refer to Fig. 3.2. Therein, the vector Ąeld η is evaluated at t = 0 and t = ε.
This gives the vectors ηγ(0) and ηγ(ε). Then, the vector ηγ(ε) is parallel transported back
to γ(0), which is denoted by ηγ(ε)♣♣γ(0), and the difference is taken. This difference is dη.
Taking the limit ε → 0 yields the covariant derivative ∇ξη(x). Parallel transport can
also be used for different algorithms and not only for interpreting the covariant derivative.
This is also indicated in Fig. 3.2, where ηγ(ε) can also be parallel transported to γ(1) or
γ(2). In Euclidean spaces with the standard metric, this means no change at all. In the
non-linear case, parallel transportation can be deĄned by requiring that the covariant
derivative of the parallel transported vector vanishes, indicating that indeed it is parallel
transported.

DeĄnition 19. Consider a vector η̂ deĄned at position t1 of a curve γ : R→M; t 7→ γ(t).
Let ξ be the tangent vector Ąeld of γ. Then, the vector Ąeld η that corresponds to the

1The notion of parallelism can be traced back to Levi-Civita [Lev16], who is referring to Riemann [Rie76],
even though they used Christoffel symbols for their derivation of the earlier work Christoffel [Chr69].
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฀push0 g 0 G

ηγ(0)

t = 0

ηγ(1)

t = 1

ηγ(2)

t = 2

ηγ(ε)t = ǫ

ηγ(ε)||γ(0)

ηγ(ε)||γ(1)

ηγ(ε)||γ(2)

γ(t), M

dη

Figure 3.2: Visual representation of Eq. (3.14). The solid arrows denote snapshots of
the vector Ąeld η. The dashed arrows represent the vector Ąeld stemming
from the parallel transported vector ηγ(ε). Since the Levi-Civita connection is
used, this corresponds to simply rotating ηγ(ε) along the curve, such that the
angle w.r.t. the tangent vector of the curve γ persists. At t = 0, the covariant
derivative can be taken by Dξη = limε→0

dη
ε = limε→0

ηγ(ε)♣♣γ(0)−ηγ(0)

ε . The
tangent vector ξ of the curve γ is not shown.

parallel transported vector η̂ is deĄned through the Ąrst-order differential equation

∇ξη = 0 ⇐⇒ ξi(
∂ηk

∂θi
+ ηjΓk

ij)gk = ξiηk
♣igk = 0, (3.15)

with the initial condition η(t1) = η̂. Thus, η is the parallel transportation of η̂. If M
is a Riemannian manifold and ∇ is the Levi-Civita connection, the parallel translation
generated by ∇ is an isometry. This is also depicted in Fig. 3.2

Thus, a given parallel transport can be used to deĄne the connection ∇, since Eq. (3.15)
can be solved for the coefficients of the connection. Consequently, the knowledge of the
covariant derivative, parallel transport, or the connection itself can be used to deĄne each
other. In other words, if one of them is known, the other two can be derived. Parallel
transportation denotes the process of moving a vector from one point to another with
the least change possible, while simultaneously staying in the tangent space. What least
change means is dictated by the metric and the given affine connection.

3.3 Geodesics

Geodesic curves recover the notion of straight lines from Euclidean spaces. This straight-
ness of lines carries over to manifolds through the deĄnition of the covariant derivative
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and its notion of no change. Straight lines can be characterized by the fact that their
underlying direction does not change. Thus, if a line γ : R→ Rn has the parameterization
γ(t) = x + tv, with x,v ∈ Rn, then the derivative yields ∂γ

∂t
= v. This is a constant,

and thus the straight-line parameterization has no acceleration. The construction of
straight-line parameterization with non-zero acceleration is possible but does not change
the shape. Similarly, geodesic curves can be stated via the requirement of no acceleration.
The intrinsic deĄnition of no acceleration can be provided by the covariant derivative
of the velocity vector of a curve. Consider a curve γ : R →M and its velocity vector
v = ∂γ

∂t
. This yields the deĄning equation

∇vv = 0, (3.16)

which can also be stated informally as Şgeodesics are curves, that parallel transport their
own velocity vectorŤ.

Again, using a chart ϕ with coordinates x i , γ̂ can be given as (γ̂1(t), . . . ,γ̂n(t)) = ϕ(γ(t)).
Then, Eq. (3.16) reads in components

∂2γ̂k

∂t2
+ Γk

ij(γ)
∂γ̂i

∂t

∂γ̂j

∂t
= 0, (3.17)

where Γk
ij(γ) are the Christoffel symbols in the chart φ. Thus, Ąnding geodesics curves

involves the solution of an ordinary second-order differential equation with a given initial
point γ(0) and velocity (direction) ∂γ(t)

∂t
♣t=0, which is the unique geodesic originating

at γ(0) and starting in direction ∂γ(t)
∂t
♣t=0. The solvability of this differential equation

depends highly on the nature of Γk
ij(γ) and on the initial conditions. Even for simple

parameterization of a manifold, the geodesic curve can get quite complicated, see Fig. 3.3.
This dependence usually yields a numerically as well as analytically daunting task.

In the next section, we revisit the geodesic curve from a different viewpoint, but Ąrst,
some examples are given, to provide a physical and geometrical insight into geodesic
curves.

Example 10 (Roller coaster). Consider a roller-coaster ride with constant speed and
with the quantities as introduced in Example 9 on page 53. The curve is denoted by
C. If we ride along this roller coaster with constant velocity, we are tracing out the
one-dimensional geodesic curve on this one-dimensional manifold C. Then, the covariant
derivative of the velocity v gives ∇vv = 0. Thus, there seems to be no acceleration.
In this example, this last statement is false, which can be shown with roller coaster
passengers with sensitive stomachs. The misconception stems from the notion of intrinsic
and extrinsic quantities. The intrinsic acceleration ∇vv along the path is exactly zero
but the extrinsic is not. The extrinsic acceleration is then merely, as in Example 9, the
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This simply means that the initial (covariant) acceleration is zero as in the case of
a geodesic curve and equivalently for the Riemannian exponential map. Thus, D

∂t2 (γ)

indicates the second derivative in a covariant sense, i.e., D
dt2 (γ) = ∇γ̇γ̇. A geodesic curve

fulĄlls this for all t but a second-order retraction only at t = 0. If a retraction fails to
fulĄll Eq. (3.20) but satisĄes DeĄnition 14, it is simply called retraction or to emphasize
the difference to a second-order retraction, it can be called a Ąrst-order retraction.

For the unit sphere S2 the exponential map is given by

expx(∆x) = cos(♣♣∆x♣♣)x +
sin(♣♣∆x♣♣)
♣♣∆x♣♣ ∆x. (3.21)

The closest point projection always provides a second-order retraction, see Boumal
[Bou23], i.e., the closest point projection on the unit sphere, namely the radial return

normalization given by Rx(η) = x+η
♣♣x+η♣♣

in Eq. (2.57) on page 34, is a second-order
retraction.

3.5 Riemannian Hessian

The notion of change of vector Ąelds on manifolds was captured by the covariant derivative
and parallel transport Section 3.2 or, more generally by an affine connection as deĄned
in Section 3.1. Nevertheless, for optimization algorithms, i.e., Newton-type algorithms,
it is of further interest to have a convenient notion of the second-order information of
a cost function, which indicates Ąrst-order derivatives of the Riemannian gradient of
Section 2.7.3.2 This is done by the generalization of a Hessian of an Euclidean cost
function, namely the Riemannian Hessian.

DeĄnition 20. Let f : M → R be a function deĄned on a manifold (M, g) with its
Riemannian connection ∇. The Riemannian Hessian is the mapping Hess f (x) : TxM→
TxM given by

Hess f (x)[ξx] = ∇ξx
grad f (x). (3.22)

Due to its importance in later derivations, several representations of this Riemannian
Hessian are shown. In contrast to the Riemannian gradient of Section 2.7.3 on page 38,
the concept of the Riemannian Hessian is not a standard topic in differential geometry.

2The given derivation also applies, if a root of a tangent vector Ąeld is of interest and no cost function
is given. Then, the Riemannian Hessian is simply the Riemannian Jacobian of a vector Ąeld but the
following derivations are practically analogous.
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3 Second-Order Differential Geometry

There are some results in [Abs08; ONe83]. Often it is deĄned via iterated covariant
differentiation

∇ξ∇ηf (x) = ∇2f (x)[ξ,η] +∇∇ξηf (x), (3.23)

where on the right-hand side the Ąrst term is identiĄed as Riemannian Hessian. Here,
[ξ,η] is not the Lie bracket but simply the two arguments of the function. This yields by
rearranging the terms,

⟨Hess f (x)[ξ],η⟩x = ∇ξ∇ηf −∇∇ξηf . (3.24)

For some vector Ąelds ξ,η ∈ X(M). The deĄnition in Eq. (3.22) requires ξ only at
a speciĄc x, namely ξx as a tangent vector, i.e., an element of TxM but Eq. (3.24)
needs it as a vector Ąeld or as an element of the tangent bundle TM. For reference, see
also [ONe83, DeĄnition 48; Abs08, Proposition 5.5.2].

For completeness, the Riemannian Hessian is deĄned in coordinates. Consider a parame-
terization φ : Rn →M and the corresponding coordinate basis ¶gi♢ as given by Eq. (2.16)
on page 22 with curvilinear coordinates θi . Furthermore, consider the corresponding
transformed function f̂ = f ◦φ. Then, the components of the Riemannian Hessian deĄned
via Eq. (3.22), using the covariant derivative of Eq. (3.5) of the Riemannian gradient
deĄned in Eq. (2.75) on page 39, reads

H̃ess f (θ)k

i = (
∂(g̃rad f )

k

∂θi
+ (g̃rad f )

j

Γk
ij)

= (
∂2f̃

∂θi∂θm
gkm + gjn ∂ f̃

∂θn
Γk

ij),

(3.25)

where the Levi-Civita connection property, being invariant w.r.t. the metric was used,
see DeĄnition 18 on page 54. This means in this case ∇kgij = 0. This deĄnition yields
a (1, 1)-tensor as Riemannian Hessian. For the reader who is familiar with differential
geometry, this deĄnition may seem unfamiliar.

In literature, often a (0,2)-tensor is deĄned as

H̃ess f (θ)li = H̃ess f (θ)k

igkl = (
∂2f̃

∂θi∂θm
gkm + gjn ∂ f̃

∂θn
Γk

ij)gkl

= (
∂2f̃

∂θi∂θl
− Γn

li

∂ f̃

∂θn
),

(3.26)

where the transformation rule of the Christoffel symbols gjnΓk
ijgkl = −Γn

li was used,
which is derived in Appendix A.1. The (0, 2)-tensor has some drawbacks, as mentioned
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in [Abs08, Sec. 5.7], i.e., the (0, 2)-tensor via a congruent transformation3, which does
not preserve eigenvalues, making it dependent on the chosen chart. In contrast to this,
the deĄnition as a (1, 1)-tensor yields transforms via a similarity transformation4, which
preserves eigenvalues. Thus, they do not depend on the chosen chart. Hence, the work at
hand follows do Carmo [dC92] and Absil et al. [Abs08] by choosing the (1, 1)-tensor as
the better deĄnition of the Riemannian Hessian.

Furthermore, the symmetry property of the Riemannian Hessian is discussed here, since
it will be needed to examine the correct tangent operator in Section 6.2. Here, the Ąrst
part of Eq. (3.26) is the second partial derivative, which is automatically symmetric due
to the Schwarz theorem. In contrast to this, the symmetry of the second part depends on
the symmetry of the Christoffel symbols Γn

li . For an arbitrary affine connection, they are
in general not symmetric. They are only symmetric for a torsion-free affine connection,
where the coefficients are deĄned in a coordinate (holonomic) basis. This constraint
is satisĄed by the Levi-Civita connection. Thus, this symmetry yields a self-adjoint
Riemannian Hessian, i.e.,

Hess f (x)[ξx,ηx] = ⟨∇ξx
grad f (x),ηx⟩x = ⟨∇ηx

grad f (x),ξx⟩x
= Hess f (x)[ηx,ξx].

(3.27)

For symmetry or self-adjointness of the Riemannian Hessian, the reader is referred
to [Abs08; Mis73; Rom05; MS95; Sim92a; RA17; Ste15].

In Euclidean spaces, e.g. Rn, with the usual metric, the Riemannian Hessian boils down
to

Hess f (x) =








∂2f

∂x1∂x1 · · · ∂2f

∂xnx1

...
. . .

...
∂2f

∂x1∂xn · · · ∂2f

∂xnxn








Ei ⊗ Ej , (3.28)

where a distinction between (1, 1)-tensor and (0, 2)-tensor is trivial.

Riemannian Submanifolds

If the manifold at hand is embedded, there is a convenient way to construct the Riemannian
Hessian. In particular, even using the (1, 1)-tensor deĄnition of the Riemannian Hessian
in Eq. (3.26) does not provide a convenient way to construct the Hessian. It needs the
introduction of local coordinates, and the explicit calculation of the Christoffel symbols
of the connection, and it suffers from potential singularities of the parameterization. For
example, in the case of the unit sphere S2 a parameterization has necessarily singularities

3A congruent transformation of a matrix is A 7→ PTAP.
4A similarity transformation of a matrix is A 7→ P−1AP.
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as discussed in Section 6.3. Therefore, as in the case of the Riemannian gradient in
Eq. (2.83), there is also a convenient way to derive the Riemannian Hessian by using
Euclidean derivatives and projection into the tangent space. This is elaborated in
Absil et al. [Abs13] and Boumal [Bou23, Ch. 5.11]. Since the Hessian includes curvature
information, it seems natural that the derivative of the projection is needed. The projection
Px : E → TxM onto the tangent space from the embedding space is the same as given
in Eq. (2.79). Consider the projection deĄned as P(x,v) :M× E → TxM, such that
P(x,v) = Px(v). Then the derivative w.r.t. the Ąrst slot encodes how the tangent space
varies (bends) in its embedding space. This derivative is denoted by

Px
u :







E → E
v 7→ Px

u(v) = DuP(x,v).
(3.29)

Due to its deĄnition of taking vectors in the embedding space E as derivative directions,
it also returns a vector living in the embedding space. If the directions are taken from
the tangent space or the normal space, the following notation is common.

DeĄnition 21. The second fundamental form of a manifold M at a point x is given by

IIx :







TxM× TxM→ NxM,

(u,v) 7→ IIx(u,v) = Px
u(v).

(3.30)

Similarly, the Weingarten map of a manifold M at point x is given by

Wx :







TxM× NxM→ TxM,

(u,n) 7→ Wx(u,n) = Px
u(n),

(3.31)

where n is a normal vector to M at x. Thus, the Weingarten map is the directional
derivative of the normal vector Ąeld. It is also sometimes called the shape operator.

Since a vector in the embedding space can always be decomposed into a normal and a
tangent part, the object Px

u can also be decomposed as

Px
u(v) = IIx(u,P⊥

x (v)) +Wx(u,Px(v)) (3.32)

Riemannian Connection on Riemannian Submanifolds

LetM be an embedded submanifold ofM. The Riemannian connection ∇ ofM can be
deĄned using the connection ∇̄ of M [Abs08, Ch. 5.3.3]. The relation is given by

∇ηx
ξ = Px∇̄η̄x

ξ̄, (3.33)
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with ξ ∈ X(M) and η ∈ TxM and for the embedding space we have ξ ∈ X(M) and
η̄ ∈ TxM. If the embedding space is a vector space, the connection boils down to the
usual derivative, and this results in

∇ηx
ξ = PxDη̄x

ξ̄. (3.34)

Plugging in the Riemannian Hessian from DeĄnition 20 yields

Hess f (x)[ηx] = ∇ηx
grad f (x). = PxDη̄x

grad f (x) (3.35)

The quantity grad f (x) is the extension of the Riemannian gradient grad f (x) into the
embedding space. Substituting the projection formula of the Riemannian gradient from
Eq. (2.83) on page 40, in Eq. (3.35) can be stated as

Hess f (x)[ηx] = PxDη̄x
grad f (x)

= PxDη̄x

(

Px grad f̄ (x)
)

= PxDη̄x
Px grad f̄ (x) + PxPx(Dη̄x

grad f̄ (x))

= PxDη̄x
Px grad f̄ (x) + Px(Hess f̄ (x)[ηx]).

(3.36)

In the last equation, the property of projectors, namely PxPx = Px, was used. Thus,
similar to the Riemannian gradient, the Riemannian Hessian can be constructed from a
simple derivative in a vector space and correct the result. So, the Riemannian Hessian
can be written in terms of four quantities: (i) the projection Px from the embedding
space onto the tangent space of the submanifold, (ii) the directional derivative of Px,
(iii) the gradient grad f̄ and (iv) the Hessian Hess f̄ of the Euclidean extension of the
functional, respectively.

In Absil et al. [Abs13] and Boumal [Bou23, Ch. 5.11] the quantity PxDη̄x
Px was derived as

being related to the Weingarten map deĄned in DeĄnition 21. Thus, the Ąnal (convenient)
representation of the Riemannian Hessian seen from the embedding space is

Hess f (x)[ηx] =Wx(ηx,P
⊥
x (grad f̄ (x))) + Px(Hess f̄ (x)[ηx]). (3.37)

Thus, the Riemannian Hessian can be constructed with the projected embedded Hessian
and the change of the normal part of the embedded gradient which encodes the curvature
information of the manifold M.

Example 12 (Unit sphere Sn). For the n-dimensional unit sphere Sn the Weingarten
map can be calculated explicitly. The Weingarten map from Eq. (3.31) is then for the
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embedded unit sphere

Wx(u,n) = −u(x · n), (3.38)

where n is an arbitrary normal vector Ąeld.

For the usage of the Riemannian Hessian in Eq. (3.37), this boils down to

W(ηx,P
⊥
x (grad f̄ (x))) = −ηx(x · grad f̄ (x)), (3.39)

where applying P⊥
x is redundant, since the dot product with ηx already projects onto

the normal space.

Later, in the Ąnite element solution schemeM is the product manifold of nodal position
vectors and nodal directors (R3 × S2)

n. In Eq. (3.37), it is tempting to directly neglect
the gradient part. This is a bad idea for the following reason: the normal part of the
embedded gradient does not vanish at the optimum, since, by deĄnition, only the norm
of the Riemannian gradient vanishes, which is only the tangential part. This results in
more iterations, e.g., in a method of Newton-type, see Müller and Bischoff [MB22] for
details. Consequently, even at equilibrium, where the (tangential) Riemannian gradient
vanishes, the eigenvalues depend on this term, making it crucial for stability analysis.
Even where the relative contribution is small, for the example of the Reissner-Mindlin
shell with (R3 × S2)

n, the needed iterations differ substantially. The signiĄcance of this
part is elaborated on in Müller and Bischoff [MB22, Sec. 10.2.2. and Appendix 8].
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4
Foundations of Finite Elasticity

This chapter deals with the fundamentals of Ąnite elasticity for continua, which is the
point of departure for the structural models discussed later. First, the kinematic equations
are stated, then the notion of traction and stress is presented, and then balance principles
are discussed. Constitutive theory and objectivity are also brieĆy introduced. Basic
textbooks like Marsden and Hughes [MH94], Truesdell and Noll [TN04], Truesdell and
Toupin [TT60], Ogden [Ogd97], Holzapfel [Hol02], and Misner et al. [Mis73] are used
as the basis for this chapter. Thus, together with Chapters 2 and 3 several objects of
continuum mechanics are stated in a precise geometric way.

4.1 Kinematics

In the sense of a phenomenological mathematical description, we deĄne a body B, by
a set of points P ∈ B. These points P are the particles of the body, which are in a
one-to-one relation to a domain B ⊂ R3.

4.1.1 ConĄguration, Motion and Deformation

A conĄguration of a body B is given by the bijective mapping

Φ :







B → B ⊂ R3,

P 7→ Φ(P),
(4.1)

which is an embedding of the body B. A conĄguration describes one particular state
of the body. Since the body is allowed to move, we obtain a family of conĄgurations,
depending on the time t. A motion of a body B is given by the bijective mapping
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Figure 4.1: Motion, conĄguration and deformation of a body B.

Φ :







B × T → Bt ⊂ R3,

(P, t) 7→ Φ(P, t) = Φt(P).
(4.2)

This is also called the material description of the motion since the particle P is inserted
and the placement w.r.t. time is returned. Often, a special conĄguration is picked, which
is called reference conĄguration. This conĄguration has certain properties such as a
known stress state or a homogeneous temperature. This conĄguration is described by
the following mapping

Φ0 :







B → B0 ⊂ R3,

P 7→ Φ(P, 0) = Φ0(P) = X,
(4.3)

where X is the reference position of the particle P . We assume that Φ−1
0 (X) exists and is

smooth. The relation between the reference conĄguration and the current conĄguration
is given by the deformation map

χ :







B × T → Bt ⊂ R3,

X 7→ Φt ◦Φ−1
0 (X) = χ(X, t),

(4.4)

or simply deformation. These three mappings are illustrated in Fig. 4.1. This deformation
is assumed to be a bijective mapping and sufficiently smooth. The notation χX refers to
a path of the particle at X and χt refers to the conĄguration at a Ąxed time t.

With an abuse of notation, it is common to also use X for the parameterization of B0.
Similarly, the current conĄguration of the body is denoted by Φt(B), and the param-
eterization and current position of the particle P is denoted by x of Bt. Formally, the
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4.1 Kinematics

parameterizations of the reference conĄguration and current conĄguration are given by

X :







B → B0 ⊂ R3,

Θ 7→ Φ0(P) = X I (Θ)EI ,
x :







B → Bt ⊂ R3,

θ 7→ Φt(P) = x i(θ)ei ,
(4.5)

where Θ = ΘI ÊI and θ = θi êi are the curvilinear coordinates of the particle P in the
reference and current conĄguration. The notion of (co-)tangent spaces and (co-)tangent
bundles of Sections 2.4.3 and 2.4.4 on pages 23 and 25 is also employed here. Tensor
Ąelds that are deĄned on the tangent bundle TBt are called Eulerian or spatial tensors.
Tensor Ąelds deĄned on tangent bundle TB0 are called Lagrangian or material tensors.
The same holds for cotangent tensor Ąelds living on T ∗B0 or T ∗Bt . For indices related
to the reference conĄguration, capital Latin letters are employed, whereas small Latin
letters are used for the current conĄguration. Similar to Eqs. (2.15) and (2.16) on page 22
these curvilinear coordinates induce a coordinate basis.

This basis consists of the following tangent vectors

GI =
∂XJ (Θ)

∂ΘI
EJ and gi =

∂x j(θ)

∂θi
ej . (4.6)

They can also be used to equip the manifolds B0 and Bt with a Riemannian metric, as
deĄned in Section 2.7.1 on page 35. The metric tensors are

G = (GI ·GJ ) GI ⊗GJ = GIJ GI ⊗GJ

g = (gi · gj) gi ⊗ gj = gij gi ⊗ gj .
(4.7)

Their inverses read

G−1 = GIJ GI ⊗GJ and g−1 = gij gi ⊗ gj . (4.8)

These are also identiĄed by g = g♭,g−1 = g♯,G = G♭ and G−1 = G♯. The contravariant
bases are denoted by ¶GI♢ and ¶gi♢, respectively. The following Jacobians are introduced,
which contain the given base vectors

J :







TΘA → TXB0,

Θ 7→ ∂XJ

∂ΘI EJ ⊗ EI = [G1,G2,G3],
j :







TθA → TxBt ,

θ 7→ ∂xj

∂θi ej ⊗ ei = [g1,g2,g3],

J−T :







T ∗
ΘA → T ∗

XB0,

Θ 7→ ∂ΘJ

∂XI EJ ⊗ EI = [G1,G2,G3],
j−T :







T ∗
θA → T ∗

xBt ,

θ 7→ ∂θj

∂xi ej ⊗ ei = [g1,g2,g3].

(4.9)
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4 Foundations of Finite Elasticity

The Jacobians J and j can also be referred as ∇ΘX(Θ) and ∇θx(θ), respectively. The
metric tensors can also be stated using these quantities G = JT · J and g = jT · j, and
similar for their inverses.

Velocity and Acceleration If the mapping from Eq. (4.4) is a C 1−motion, or a
C 1−diffeomorphism between B0 and Bt, the material velocity V : B0 × T → TxBt

can be deĄned by

V(X,t) =
∂χ(X,t)

∂t
= V a(X,t)ga, (4.10)

where the components V a(X,t) of V are living at the spatial position x = χ(X,t). Thus,
despite the notation of an uppercase V, it lives in the current conĄguration and is an
element of TxBt . The material acceleration A : B0 × T → TxBt can be deĄned by

A(X,t) = V̇(X,t) =

(

∂V a(X,t)

∂t
+ γa

bc(χ(X,t))V bV c

)

ga, (4.11)

where γa
bc(χ(X,t)) are the Christoffel symbols of the current conĄguration, see Eq. (3.11).

The spatial counterparts, namely spatial velocity v = V ◦Φ−1 and spatial acceleration
a = A ◦ χ−1, read

v(x(t),t) = V(χ−1(x(t)),t) = V a(χ−1(x(t)),t) ga = va(x(t),t) ga,

a(x(t),t) = v̇(x(t),t) = aa(x(t),t) ga =
∂va

∂t
+ va

♣bv
b,

(4.12)

where the identity A(χ−1(x(t)),t) = V̇(χ−1(x(t)),t) = v̇(x(t),t) was used in the latter
equation. Additionally, the shortcut of the coordinate expression of the covariant derivative
va

♣b is used, see Eq. (3.7) on page 53. Thus, a covariant derivative was identiĄed, which
yields a = v̇ = ∂v/∂t +∇vv in coordinate-free representation. The quantity v̇ is called
material time derivative of v.

The velocity V answers the question: ŞWhich spatial velocity does the particle at material
position X have at time t?Ť On the other hand, the velocity v answers the question:
ŞWhich spatial velocity does the particle at spatial position x have at time t?Ť The
corresponding quantities deĄned in the reference conĄguration can be obtained by pulling
back these vector Ąelds with χ. This can be done by the inverse operation of the push-
forward of vector Ąelds deĄned in Eq. (2.43) on page 29. This yields the convected velocity
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Figure 4.2: The spatial and material velocities and accelerations.

ν = χ∗(v) and the convected acceleration α = χ∗(a) as

ν(X,t) =
∂χ−1(x)A

∂xa

∣
∣
∣
∣
x=χ(X,t)

va(χ(X,t))GA =
∂χ−1(x)A

∂xa

∣
∣
∣
∣
x=χ(X,t)

V a(X)GA = F−1 ·V,

α(X,t) = F−1 ·A.
(4.13)

The tensor F is the deformation gradient, which is deĄned next. For a visual interpretation
of the given results, see Fig. 4.2. Therein, it becomes clear where which object lives.
The convected velocity for example is a quantity living in the reference conĄguration
and is, therefore, attached to the body on the left, where V is attached to the current
conĄguration, which is the body on the right-hand side.

4.1.2 Deformation Gradient

The deformation from Eq. (4.4) is a diffeomorphism between the reference and current
conĄguration as in DeĄnition 6 on page 17. It induces a push-forward operation between
these two manifolds as in Section 2.5 on page 28. Since the body is embedded into R3

this boils down to the simple statement

χ∗(GI ) =
dΦi

dXJ

∂XJ

∂ΘI
ei =

dΦi

dXJ
G J

I ei , (4.14)

where the notation is slightly abused, since here G J
I denotes the J−th coordinates of the

I−th base vector. This mapping also deĄnes the Jacobian of the deformation χ, which is
called the deformation gradient. It is deĄned as

F =
dΦi

dXJ
ei ⊗ EJ = F i

Jei ⊗ EJ . (4.15)
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Figure 4.3: Motion, conĄguration and the coordinate frames for the parameter space A
as ¶ÊA♢,¶êa♢, for the embedding space of B0 as EA, for the embedding space
of Bt as ea and the coordinate bases for the point X ∈ B0 and x ∈ Bt as ¶ga♢
and ¶GA♢, respectively. The linearized maps between the different coordinate
systems are also shown.

The tensorial mapping is given by F : TXB0 → TxBt . By reviewing the deĄnition of χ in
Eq. (4.4), a different view on the deformation gradient can be obtained. It reads

F = ∇Xχ =
dΦi

dXJ
ei ⊗ EJ =

∂x i

∂θj

∂θj

∂ΘI

∂ΘI

∂XJ
ei ⊗ EJ = j ·T · J−1, (4.16)

where T = ∂θj

∂ΘI êj ⊗ Ê
I

is the tensor responsible for the change of coordinates between θi

and ΘJ . If the same coordinates are chosen, namely θi = Θi and êi = Êi , then T is the
identify mapping. These relations are depicted in Fig. 4.3, where the interplay between
reference conĄguration, current conĄguration, motion, and deformation is shown. Several
bases are also shown, namely the two coordinate bases ¶GA♢,¶ga♢ for the embedding
tangent space of TXB0 and TxBt , respectively, the two bases ¶EA♢,¶ea♢ for the embedding
space of B0 and Bt, and the two bases ¶ÊA♢,¶êa♢ for the parameter space A. and the
two bases ¶EA♢,¶ea♢ for the embedding space of B0 and Bt , respectively.

If both curvilinear coordinate systems coincide, it can be interpreted as a single coordinate
system. This coordinate system is called convective coordinate system, since it follows
the deformation. The deformation gradient then reads F = j ·J−1, which boils down to

F = δi
J gi ⊗GJ . (4.17)
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4 Foundations of Finite Elasticity

energy for such conĄgurations. It can be stated via the requirement

det F(t) > 0, (4.19)

which enforces invertibility.

4.1.3 Strain

The concept of strain can be introduced by the deformation gradient. It can be used to
relate metrics of the current and reference conĄguration. As motivation, consider the
Eulerian stretch of a Lagrangian vector. Let T ∈ TXB0 with ♣♣T♣♣G = 1. The pushed-
forward quantity λ ∈ TxBt is obtained via λ = χ∗(T) = F ·T. The deformed length can
then be calculated as

λ = ♣♣λ♣♣g =
√

⟨λ,λ⟩x =
√

λ · g · λ =
√

(F ·T) · g · (F ·T)

=
√

T · (FT · g · F) ·T =
√

T ·C ·T.
(4.20)

Based on this, the right Cauchy-Green strain tensor C can be identiĄed. It links the
tangent space and cotangent space of the reference conĄguration in the sense, that it is
the Eulerian metric g in the reference conĄguration. This means it can also be used as
a musical isomorphism to map vectors from tangent space to cotangent space and vice
versa. Thus, it can also be deĄned by the pull-back of the Eulerian metric, which can be
derived from generalizing Eq. (2.55) on page 33 as

C = χ∗(g) = FT · g · F or CAB = δa
Agabδ

b
B, (4.21)

where the right-hand side states the components in the convective coordinate basis ¶GI♢
and where the deformation gradient is taken from Eq. (4.17). The tensorial mapping is
given by C : TXB0 → T ∗

XB0. In the reference basis ¶EI♢, these components would read
C̃AB = Fa

AgabF
b

B with the deformation gradient deĄned as in Eq. (4.15).

Similar derivations can be performed for the left Cauchy-Green strain tensor, which
can be obtained through the inverse pull-back operation. This operation differs from
the push-forward operation, as it involves transporting covectors from the reference
conĄguration to the current conĄguration. In this case, the inverse pull-back is needed.
To maintain consistency, the inverse pull-back is denoted as χ∗, while the notation (χ∗)−1

is avoided to prevent confusion. Consequently, we deĄne the left Cauchy-Green strain
tensor as

c = χ∗(G) = F−T ·G · F−1 or cab = δA
aGABδ

B
b, (4.22)
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where the Green-Lagrangian strain tensor can be identiĄed as

E =
1

2
(C−G) or EAB =

1

2
(CAB −GAB) =

1

2
(δa

Agabδ
b
B −GAB). (4.24)

The components are, as before, the ones of a convective coordinate system. The same
comparison can be made in the tangent space in the current conĄguration with t ∈ TxBt

with the deformed length ♣♣t♣♣g = 1 and the initial length ♣♣t♣♣c = 1
λ
. This yields the

Euler-Almansi strain

ϵAlmansi =
1

2
(1− 1

λ2
) =

1

2
(♣♣t♣♣2g − ♣♣t♣♣2c) = t · 1

2
(g− c) · t = T · e ·T, (4.25)

where the Euler-Almansi strain tensor can be identiĄed as

e =
1

2
(g− c) or eab =

1

2
(gab − cab) =

1

2
(gab − δA

aGABδ
B

b). (4.26)

Therefore, in the convective coordinate system, the components of the Euler-Almansi
strain tensor and the components of the Green-Lagrangian strain tensor are equivalent, but
are linked to a different basis. For the sake of completeness, the tensors are e = eab ga⊗gb

and E = EAB GA ⊗GB. These strain measures can be seen as speciĄc cases of more
general possible strain measures. This family of strain measures is called Seth-Hill strain

tensor family, deĄned in the seminal works of Seth [Set64] and Hill [Hil68]. They can be
deĄned as

Em(C) =







1
m

(Cm/2 −G) for m ̸= 0
1
2

ln C for m = 0,
and em(c) =







1
m

(g− cm/2) for m ̸= 0
1
2

ln c for m = 0,

(4.27)

for the Lagrangian and Eulerian settings, respectively. For the Lagrangian setting, the
strain measures Biot strain (m = 1) and Hencky strain (m = 0) are also common [Hen28;
Bio39].

All these strain measures share the same strain-free state, which is equivalent to E = 0 or
G = χ∗(g) = C. Such deformations are called rigid body motions, or in the mathematical
mapping nomenclature, isometric mapping (modulo reĆections), since they preserve the
metric components at each point.
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4.2 Traction and Stress

4.2 Traction and Stress

The stress in a physical body is a central concept for phenomenological continuum
mechanics. The roots of the concept can be found in Navier [Nav21]. He asserts that
two neighboring molecules Pi and Pj exert forces onto each other. In the undeformed
state these forces cancel out, ∆fij = 0 = fi − fj . If external forces act on the body,
the equilibrium still needs to be fulĄlled between neighboring molecules, and therefore,
∆fij ̸= 0.

InĆuenced by Navier [Nav21], the concept of stress originated from the works of Cauchy
[Cau27]. Stress is the response to externally applied loads. This response of the body
can be represented by a second-order tensor Ąeld, which transmits the applied loads
internally. Since Cauchy made this notion precise, the stress Ąeld inside the body bears
his name: Cauchy stress, with the symbol σ.

Cauchy established the relationship between the traction on the surface of a body and
the stress Ąeld σ in [Cau27, p. 48, eq. 20]. EulerŠs cut principle extends this relationship
to an arbitrary cut through the body, as depicted in Fig. 4.6. The resulting free traction
is denoted as t. In addition, Cauchy asserted in [Cau27] that this traction exhibits a
speciĄc functional dependency. The traction depends on time t and on the position x,
where the cut is made. While the dependence on position and time is expected, Cauchy
also asserted that the traction is independent of the curvature of the cut-out surface,
relying solely on its orientation. Thus, we have

t = t(x, t,n), (4.28)

where n denotes the outward normal of the surface at position n, in the sense of
Section 2.8.3 on page 44. This dependence on the normal without dependence on the
curvature is known as CauchyŠs postulate.

Cauchy made this relation more explicit by stating that the dependence on the normal is
even linear. Thus, CauchyŠs stress theorem states that there exists a (0, 2)-second-order
tensor Ąeld such that

t = σ · n or ta = σabnb, (4.29)

where σ is called CauchyŠs stress tensor.3 The tensorial mapping is given by σ : T ∗
xBt →

TxBt .

3Early teaching textbooks are Rankine [Ran51] or Lamé [Lam52], where in the latter, stresses and
strains appear together under the concept of elasticity. Additionally, Lamé studied the transformation
rules of these quantities. More historical details can be found in Reich [Rei13], Belhoste [Bel91], and
Sokolnikoff [Sok56].
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In the Cartesian bases ¶EA♢, ¶ea♢, or in the bases of the convective coordinate system
¶GA♢, ¶ga♢ these stress tensors can be written as

σ =σabea ⊗ eb = σ̃abga ⊗ gb,

P =PaAea ⊗ EA = Jσab(F−1)
A

bea ⊗ EA = J σ̃abδA
bga ⊗GA,

S =SABEA ⊗ EB = Jσab(F−1)
A

a(F−1)
B

bEA ⊗ EB = J σ̃abδA
aδ

B
bGA ⊗GB,

(4.34)

where σ̃dc = σab(ea · gd)(eb · gc) and J = det F.

The last equalities are particularly interesting as they allow a convenient stress description
by exchanging the base vectors (and multiplying by J ), since the Kronecker-deltas are
just leftovers of the notation. This is only numerically useful since in this non-Cartesian
basis, the stresses are difficult to interpret. The reason for this is, that the direction
and magnitude of the base vectors change. Thus, in a post-processing step, the stresses
are usually deĄned in a global coordinate system for solid simulations, and for shell
simulations, they are deĄned in a local Cartesian coordinate system constructed from
ga.

The curvilinear convective coordinate system representation, frequently employed in shell
analysis, is also utilized later in this study. Additionally, the base vectors EA and ea are
usually the same. They are simply the three Cartesian base vectors of R3.
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4.3 Balance Principles

In this section, the common balance principles of solid mechanics are stated, namely,
conservation of mass, balance of momentum and balance of angular momentum in their
spatial and material format. Again, special interest resides in stating these principles in
a non-Cartesian coordinate system, since this is later needed for specializing them for
shells.

4.3.1 Conservation of Mass

Although conservation of mass is an obvious requirement from a physical point of view,
its mathematical description in curvilinear coordinate systems is not. The total mass
of the reference conĄguration B0 is given by M . It can be computed with the density
ρ0(X,t) and the Riemannian volume form dV from Section 2.8 on page 42, as

M = Vol(B0) =
∫

B0

ρ0(X,t) dV =
∫

B0

ρ0(X,t)
√

det([GAB])(X) dV . (4.35)

Conservation of mass means that the total mass remains constant w.r.t. time, i.e., Ṁ = 0.
Using the localization theorem [MH94, Ch. 2, p. 122 ], Eq. (4.35) yields the result ρ̇0 = 0

with d
dt

(ρ) = ρ̇. The same can be stated in the current conĄguration, here the total mass
should be M again. This yields

M = Vol(Bt) =
∫

Bt

ρ(x(t),t) dv =
∫

Bt

ρ(x(t),t)
√

det([gab])(x,t) dv. (4.36)

Equating the total masses of the current and reference conĄguration, yields via the
localization theorem, a relation between the densities given by

ρ0 = ρJ . (4.37)

Requiring Ṁ = 0 yields

Ṁ =
d

dt

∫

Bt

ρ(x(t),t) dv

=
d

dt

∫

B0

ρ(χ(X,t),t)J (X,t) dV, (4.38)

with the identity Eq. (2.105) on page 46.
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Since the integration domain is now time-independent, differentiation and integration
commute. This yields

Ṁ =
∫

B0

d

dt
ρ(χ(X,t),t)J (X,t) + ρ(χ(X,t),t)

d

dt
J (X,t) dV. (4.39)

Both derivatives can be computed separately with the chain rule as

d

dt
ρ(χ(X,t),t) =

∂

∂t
ρ(χ(X,t),t) +

∂ρ

∂x i

∂Φi

∂t
=
∂ρ

∂t
+ DV(X,t)ρ(χ(X,t),t), (4.40)

d

dt
J (X,t) = J (X,t) div v(χ(X,t),t), (4.41)

where the Ąrst equation is often called material time derivative of the spatial scalar Ąeld
ρ. In the second equation, J depends on

√

det([gab])(x(t),t) as seen in Eq. (2.105) on
page 46. For a detailed derivation, we refer to [MH94, Ch. 1, p. 86, 5.4 Proposition]. The
covariant divergence div v = va

♣a is deĄned in Eqs. (3.7) and (A.2) on pages 53 and 201,
respectively. Plugging both results into Eq. (4.39), we have

Ṁ =
∫

B0

ρ̇J + ρJ div v dV,

=
∫

Bt

∂ρ

∂t
+ Dvρ+ ρ div v dv,

=
∫

Bt

∂ρ

∂t
+ div(ρv) dv = 0,

(4.42)

which yields with the localization theorem ρ̇+ ρ div(v) = 0.

Thus, the conservation of mass can be stated as

ρ̇0 = 0 or ρ̇+ ρ div(v) = 0,

∂ρ0

∂t
= 0 or

∂ρ

∂t
+

∂ρ

∂xa
va + ρva

♣a= 0.

(4.43)

(4.44)
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4.3.2 Balance of Linear and Angular Momentum

The balance of linear momentum states that the total linear momentum of a system
stays constant unless external forces act on it. This is equivalent to NewtonŠs second law
of motion, which can be stated as F = ∂(mv)/∂t, where the change of momentum of
a rigid body is equal to the forces acting on it. For continuum mechanics, this can be
stated as follows: Using the mass density and the velocity, the total linear momentum

can be deĄned via the vector-valued integration

L(t) =
∫

Bt

ρ(x,t)v(x,t) dv =
∫

B0

ρ0(X)V(X,t) dV. (4.45)

The balance of linear momentum then states, with b(x, t) as a body force per unit mass
and t as the traction vector deĄned in Eq. (4.29), as

d

dt
L(t) =

d

dt

∫

Bt

ρ(x, t)v(x, t) dv =
∫

∂Bt

t(x, t) da +
∫

Bt

b(x, t) dv. (4.46)

Similarly, the total angular momentum reads

J(t) =
∫

Bt

ρ(x,t) x× v(x,t) dv =
∫

B0

ρ0(X) Φ(X,t)×V(X,t) dV. (4.47)

Then the balance of angular momentum reads

d

dt
J(t) =

∫

Bt

ρ(x,t) x× v(x,t) dv =
∫

∂Bt

x× t(x, t) da +
∫

Bt

x× b(x, t) dv. (4.48)

These equations, involving integrals of vector-valued functions, only make sense in a
vector space, namely R3. Thus, L and J need to be deĄned in the Cartesian coordinate
system ¶Ei♢. To circumvent the remedy of relying on the linear structure of space, as
needed in the case of non-linear spacetime, Marsden and Hughes [MH94] show how to
derive linear and angular momentum using a relativistic view on the balance of energy,
see [MH94, p. 165, 4.13 Theorem]. Either way, the local balance of angular momentum
boils down to symmetry conditions on the stress, namely

σT = σ, ST = S and P · FT = F ·PT . (4.49)
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In contrast to this, the local form of balance of linear momentum can be derived from
Eq. (4.46) as an Eulerian, two-point or material statement as

ρv̇ = ρb + divσ or ρ

(

∂va

∂t
+ vbva

♣b

)

= ρba + σab
♣b,

ρ0V̇ = ρ0B + Div P or ρ0

(

∂V a

∂t
+ V bV a

♣b

)

= ρ0B
a + PaA

♣A,

ρ0α = ρ0F
−1B + DivC S or ρ0α

A = ρ0(F
−1B)

A
+ (DivC S)A,

(4.50)

(4.51)

(4.52)

where the Ąrst equation can be found in [Cau27, P. 111, Eq. 16] and is also named
CauchyŠs equation of equilibrium, if v̇ = 0. The last version is barely stated in literature
but can be found without derivation in [MH94, p. 136]. The divergence w.r.t. the right
Cauchy-Green tensor C is deĄned as (DivC S)A = 1√

det([CCD])

∂
∂XB (

√

det([CCD])SAB).

4.4 Elastic Constitutive Theory

Although in Chapter 7 inelastic material response is studied, this section is dedicated
solely to discussing elastic material response. In the following, the notion of elastic
materials and their constitutive equations are discussed. Especially, the deĄnition of path-
independent material response will be stated, since this is needed to discuss erroneous
interpolation schemes in Section 6.3. Multiple notions of elastic materials exist and will
be mentioned later. This is needed since there are deĄnitions of elastic material models,
which are not path-independent. However, the focus lies on the case of Green-elastic

materials.

Green-elastic material models postulate the existence of a Helmholtz free-energy function

ψ. It is also known as explicit elasticity [Fre14, Ch. 5.1] or hyperelasticity [TN04, Ch. 42].
To derive the constitutive relation between the Helmholtz free-energy function ψ and the
second Piola-Kirchhoff stress S, the second law of thermodynamics is used. The second
law of thermodynamics can be stated as the material version of the Clausius-Planck

inequality. This yields

D = S : Ė− ψ̇ ≥ 0, (4.53)

where D is the dissipation of the process, which should be greater or equal to zero, and
E is the Green-Lagrangian strain tensor. The term S : Ė is called stress power. It can be
interpreted as the rate at which work is done on the material point. Thus, yielding

Ẇ = S : Ė, (4.54)
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4 Foundations of Finite Elasticity

where W is the work. Nevertheless, since ψ in Eq. (4.53) is assumed to be a function of
the strains, the chain rule can be applied and this yields

D = S : Ė− ∂ψ

∂E
: Ė ≥ 0. (4.55)

The second law of thermodynamics should hold for arbitrary processes, therefore

D ≥ 0, ∀ Ė. (4.56)

Consequently,

D =

(

S− ∂ψ

∂E

)

: Ė ≥ 0, ∀ Ė. (4.57)

This yields the constitutive equation

S =
∂ψ

∂E
. (4.58)

This procedure is called Coleman-Noll procedure in literature, named after Coleman
and Noll [CN63]. Therefore, D ≡ 0, for Green-elastic material. Since the stresses can
be derived from a potential, it also follows that the response of the material is path-

independent. Let the work of a time interval t ∈ [t1,t2] be calculated via the stress power
Eq. (4.54). This yields

W =

t2∫

t1

S : Ė dt =

t2∫

t1

∂ψ

∂E
: Ė dt =

t2∫

t1

ψ̇(E(t)) dt = ψ(E2)− ψ(E1), (4.59)

where E2 = E(t2) and E1 = E(t1). Thus, the work done on the particle does only depend
on the initial and Ąnal state and not on the path taken, rendering it path-independent.
For closed paths, where E2 = E1, the net work done is exactly zero.

Remark 1. In literature, taking the derivatives in Eq. (4.58) is not always deĄned
precisely. In the following, using the tools of Chapter 2 on page 13, these statements can
be presented in a more precise way. The internal free energy

ψ :







Sym3 → R,

E→ ψ(E)
(4.60)

is a function of symmetric matrices. This is only half of the truth since by deĄnition
the Green-Lagrangian strain reads E = 1

2
(C− I) in a Euclidean basis. Since C ∈ S3

++,
where S3

++ denotes the space of symmetric positive deĄnite matrices, it follows that E is
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4.4 Elastic Constitutive Theory

not an arbitrary symmetric matrix, due to the dependence on C. Thus, if we consider a
different free energy function in terms of C, we have

ψ̂ :







S3
++ → R,

C 7→ ψ̂(C).
(4.61)

Taking derivatives here is non-trivial. This problem can be tackled with the tools given
in Section 2.7.4 on page 40. Thus, this boils down to simply taking the derivative in the
embedding space and then projecting it onto the tangent space. The tangent bundle of
S3

++ is the space of symmetric matrices at each point, namely Sym3 = TS3
++. Thus, the

tangent space at C, TCS3
++ is also Sym3. Therefore, the correct procedure is creating a

function living in the embedding space

ψ̃ :







R3×3 → R,

C 7→ ψ̂(C),
(4.62)

and then projecting it into the tangent space. Thus, we have

∂ψ̂(E)

∂E
= sym

(

∂ψ̃(E)

∂E

)

, (4.63)

where sym(A) = 1
2

(

A + AT
)

is the projection onto the tangent space TCS3
++, which is

the projection into the space of symmetric matrices. Performing the derivative operation
followed by symmetrization does not yield the same result as taking the derivative of
energy with respect to a symmetric argument, for the example Eq. (4.58). This would
yield a result, where the off-diagonal terms are scaled by a factor of two. Usually, switching
to Voigt notation prohibits this error, see for some discussions Srinivasan and Panda
[SP22] not related to mechanics. Nevertheless, in the context of continuum mechanics,
Chapter 2, i.e., Eq. (2.83) on page 40 provides the tools to rigorously derive the correct
result.

Furthermore, enhanced assumed strain (EAS) methods, such as the inĆuential work
by Simo and Armero [SA92], do usually not investigate the manifold nature of the
enhanced Green-Lagrangian strains, denoted as Ẽ = E + Eenhanced. Consequently, the
new strain can implicitly violate the constraint C ∈ S3

++, which does not represent an
incompatibility between the elements, (which is common for EAS methods) but rather a
localized penetration of matter at the material point, which is undesired. Although this
issue is not discussed in the literature, to the knowledge of the author, it is reasonable
to assume that it is not problematic in practice. However, future considerations should
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4 Foundations of Finite Elasticity

take this into account. Similarly, a related issue concerning the constraint C ∈ S3
++ is

discussed in Section 5.4 on page 124, albeit in a slightly different but related context.

In contrast to this, there is the weaker requirement of Cauchy-elastic materials, which
only requires that the stress depends on the current state and not on the deformation
history. Thus, again in terms of the second Piola-Kirchhoff stress

S = h(E), (4.64)

where h is called response function and Eq. (4.64) is called stress-strain relation.

Implicit Elasticity The last class of elastic materials is the so-called hypo-elastic material
class, see Truesdell and Noll [TN04]. Their constitutive equation in terms of the Cauchy
stress is given by

σ̇ = g(σ,L), (4.65)

where g is the hypo-elastic response function and L = Ḟ · F−1 is the velocity gradient
in terms of the deformation gradient. This elastic material behavior is derived from a
stress-rate/strain-rate relation and is therefore incremental. However, it can be proven
that such material models do not dissipate energy but can model path dependency.
Consequently, these models yield different results, if the path to the Ąnal state is different.
The results of these models depend only on the path and not on the rate at which they
traveled the path as stated in Noll [Nol55, p. 35].

4.5 Potential Energy and Weak Form

The weak form can be obtained via the method of weighted residuals derived by Galerkin
[Gal15]. There are several methods to derive a Ątting formulation, which can be pro-
grammed and solved approximately by a computer. In this work, only the Ąnite element
method is considered, which needs a potential formulation or a weak form. The former
can be derived using e.g. the minimum of potential energy and the latter can be derived
using the principle of virtual work (or principle of virtual displacements). The principle
of virtual work uses the strong form as given, e.g., in Eq. (4.52). This strong form is then
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multiplied by a test function Ąeld δu and integrated over the domain, which yields

G(u,δu) =
∫

Ω

(ρ0V̇− ρ0B + Div P) · δu dv

=
∫

Ω

ρ0(V̇−B) · δu + P : Grad δu dv−
∫

∂B0,N

T · δu da,
(4.66)

where the second line stems from applying the divergence theorem to remove the derivative
of P. The traction T is deĄned as in Eq. (4.30) and ∂B0,N denotes the part of the boundary
of the reference body, where Neumann boundary conditions are applied.

Using the principle of minimum potential energy, Eq. (4.66) can be derived alternatively.
From the potential energy

Π(u) = Πint(u)− Πext(u) =
∫

Ω

ψ(F(u))−B · u dV−
∫

∂B0,N

T · u dA, (4.67)

the weak form can be derived with the Gâteaux derivative, as

δΠ(u,δu) = DδuΠ(u) = G(u,δu) =
dΠ(u + ϵδu)

dϵ

∣
∣
∣
∣
ϵ=0
, (4.68)

which is called the Ąrst variation of the energy. The Gâteaux derivative is the directional
derivative in the direction of the variation in this inĄnite-dimensional function space,
e.g. H 1(R3). Similarly, if the problem at hand is non-linear, the linearization of the weak
form is needed. Thus, the linearization of Eq. (4.68) reads

∆δΠ(u,δu) = D∆uDδuΠ(u) = D∆uG(u,δu). (4.69)

This is called the second variation of the energy or linearization of the weak form,
depending on the context. As mentioned abstractly in Section 1.1, this simple and
seemingly innocent concept will come back to haunt us, as the used Gâteaux derivative
does not generalize straightforwardly to non-linear spaces. For later convenience, the
internal potential energy and its derivatives are restated in material form, as

Πint(u) =
∫

B0

ψ̂(E(u)) dV,

δΠ(u, δu) =
∫

B0

∂ψ̂

∂E
: δE dV =

∫

B0

S : δE dV,

∆δΠ(u, δu,∆u) =
∫

B0

S : D∆uδE + D∆uS : δE dV,

(4.70)
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in terms of the Green-Lagrangian strain E and the second Piola-Kirchhoff stress S.
Historically, Ąnding an approximate solution by minimizing an energy functional w.r.t.
degrees of freedom was suggested by Ritz [Rit09]. The notion of potential energy can be
dated back to Rankine [Ran53]. More details on the history of GalerkinŠs method can be
found in Repin [Rep17].

4.6 Objectivity

In general, objectivity can be stated in several ways. It is the requirement that a physical
quantity is independent of a change of observer. It is also often denoted by material

frame-indifference, stating that the frame in which the process is recorded, does not
inĆuence the process. For details, refer to Truesdell and Noll [TN04] and Holzapfel [Hol02].
This change of an observer can be mathematically encoded in a superimposed rigid-body

motion, which is not the same but leads to the same requirements for the theory. Later,
several interpolations of the director Ąeld and their relation to objectivity are investigated,
and therefore, the notion of superimposed rigid-body motions will be needed.

Consider a motion as given in Eq. (4.2) on page 68 as χ, the deformation map from
Eq. (4.4) reads x = χ(X,t). Consider another motion χ+ and the corresponding defor-
mation reads x+ = χ+(X,t).

The deformation χ+ is assumed to be a superimposed rigid-body motion, then deforma-
tions are related as

x+ = χ+(X,t) = c(t) + Q(t) · χ(X,t), (4.71)

where c : I → R3 is a translation in space and Q : I → SO(3) is a rotation. From this
new deformation, the deformation gradient can be derived as

F+ =
dχ+

dX
= Q(t) · dχ

dX
= Q · F,

(F+)
a

A =Qa
bF

b
A.

(4.72)

From this gradient, several transformation laws for different objects can be derived. For
notational convenience, the explicit dependence of Q on the time t is neglected. For
example, the right Cauchy-Green strain tensor from Eq. (4.21) for the new conĄguration
reads

C+ = (F+)
T · F+ = (Q · F)T ·Q · F = FT ·QT ·Q · F = FT · F, (4.73)
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which results in the same quantity. Here, QT ·Q = I was exploited, since it is an orthogonal
matrix. It yields the same quantity since C is deĄned in the reference conĄguration B0

and should be therefore unaffected by the rotation of the spatial object. Consequently, the
transformation law for C to be an objective quantity is trivial. Similarly, it holds E+ = E

for the Green-Lagrangian strain, which is a quantity derived from C. This is different for
Eulerian quantities, such as the Cauchy stress, as shown below. The transformations of
vectors and covectors are given by

t+ =Q · t,
(t+)

a
=Qa

bt
b,

(4.74)

and

n+ =g ·Q · g−1 · n = QT · n,
(n+)a =gabQ

b
cg

cdnd = (QT )
d

a nd ,
(4.75)

where (QT )
d

a = gabQ
b
cg

cd is the metric transpose, as deĄned in Eq. (2.70) on page 37.
CauchyŠs stress theorem from Eq. (4.29) on page 77, yields for both tractions t = σ · n
and t+ = σ+ · n+. This yields

t+ = Q · t,
σ+ · n+ = Q · σ · n,

σ+ ·QT · n = Q · σ · n,
(4.76)

which gives by comparison

σ+ = Q · σ ·Qt . (4.77)

Note, that Qt denotes the algebraic transpose of Q, see for details Eq. (2.71) on page 38.
Strain energy functions, as given in Section 4.4, can also be investigated concerning their
objectivity properties. These strain energy functions should yield the same energy, inde-
pendent of superimposed rigid-body motions. This simply boils down to the requirement
for different strain energy functions

ψ̃(F) = ψ̃(F+) = ψ̃(QF),

ψ̂(E) = ψ̂(E+) = ψ̂(E),

ψ̄(C) = ψ̄(C+) = ψ̄(C).

(4.78)
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5
The Non-linear Reissner-Mindlin Shell

Model

This chapter focuses on the theoretical and computational derivation of the non-linear
Reissner-Mindlin shell. First, geometric quantities, namely the kinematics of the shell,
are stated. Then, the stress resultants from the three-dimensional stress state are derived
in Section 5.2, followed by the balance laws for the shellŠs stress resultants in Section 5.3.
Later, the corresponding correct variation and linearization using projection-based inter-
polation are derived in Section 5.5. In contrast to Müller and Bischoff [MB22], where
everything is derived in terms of stress resultants, the derivations here assume a stress-
based implementation. Furthermore, in Section 5.3.4 the Reissner-Mindlin assumptions
are discussed.

By formulating everything in a stress-based manner, a more general formulation that
accommodates non-trivial material laws is possible. However, this formulation requires
addressing the vanishing transverse normal stress constraint, which is discussed in detail
in Section 5.4. For an alternative perspective, readers are referred to textbooks such
as Başar and Krätzig [BK13], Green and Zerna [GZ63], Zerna [Zer67], and Green et al.
[Gre71], as well as Simo and Fox [SF89] and subsequent papers [SF89; Sim90a; Sim90b;
SK92; Sim92b]
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5 The Non-linear Reissner-Mindlin Shell Model

5.1 Geometry and Kinematics

5.1.1 Motion, ConĄguration and Deformation

The set of all geometric descriptions of the shell structure can be stated as

M = ¶(φ̄,̄t) : Ω→ R3 × S2♢, (5.1)

where BC
t is the deformed midsurface and S2 is the two-dimensional unit sphere. This

benign kinematic description is the source of the idiosyncrasies of non-linear Reissner-
Mindlin shell formulations discussed in Chapter 6 on page 149. Therefore, M represents
the set of functions mapping from Ω onto M = R3 × S2. The set Ω ⊂ R2 is the
two-dimensional parameter space. The points of the three-dimensional parameter space
A = Ω× [h−,h+] are deĄned as

ξ = ξiẼi (5.2)

where Ẽα denote Cartesian base vectors. Furthermore,

ξ̄ = ξαẼα, (5.3)

denotes the points on Ω with α ∈ [1,2]. Here, h− and h+ denote top and bottom surface
coordinates of the shell and h = (h+ − h−) is the shell thickness. Furthermore, the
parameterization of the shellŠs midsurface is given by

φ : Ω→ BC
t , (5.4)

which induces a convective coordinate system, i.e., we have ξ = Θ = θ in comparison to
Section 4.1.1 on page 67. The director Ąeld is deĄned as

t : Ω→ S2, (5.5)

which deĄnes a Ąeld of unit vectors that are initially normal to the midsurface. The
independent representation of φ̄ and t̄ allows the kinematic description of transverse shear
deformation and thus realizes a Reissner-Mindlin type model. If two speciĄc functions
φ0 and t0 are chosen, the shellŠs reference geometry is deĄned. Using these quantities,
the stress-free reference conĄguration reads

B0 = ¶X ∈ R3 ♣ X = φ0 + ξ3t0 with (φ0,t0) ∈M and ξ3 ∈ [h−,h+] ⊂ R♢ . (5.6)

92





5 The Non-linear Reissner-Mindlin Shell Model

This deĄnition exploits the parameterization as a shortcut to deĄne the spatial velocity.
More formally and following Eqs. (4.10) and (4.12) on page 70,

v(ξ,t) =
dχ(χ−1(Φ(ξ),t),t)

dt
=

dΦ(ξ)

dt
, (5.11)

and equivalently for the spatial acceleration

a(ξ,t) =
d2Φ(ξ)

dt2
. (5.12)

Furthermore, the objects ṫ and ẗ are elements of the tangent bundle of the unit sphere
TS2. Therefore, special care has to be taken in the following derivation to reĆect this
peculiarity. This fact is often accompanied by the deĄnition of angular velocity, which is
deĄned as

ṫ = w× t, (5.13)

where w ∈ TS2, but now the fact that ṫ is an element of the tangent bundle TS2 is
made explicit.

Remark 2. The conĄguration space M can be interpreted as a Ąber bundle. The base
space is the midsurface BC

t and the directors living on the unit sphere S2 are the Ąbers.
This is in high contrast to the three-dimensional case from Chapter 4 on page 67, where
the conĄguration space is no Ąber bundle, except for Cosserat-type theories, where the
base space would be R3 and the Ąbers SO(3). Furthermore, it is worth noting that in
this work only trivial Ąber bundles are considered. Thus, in a more engineering voice,
shells with kinks are not considered, since at the kinks two directors need to be deĄned,
which makes the Ąber bundle non-trivial.

5.1.2 Tangent Space Mappings

From the three-dimensional setting, the Jacobian of the shellŠs body can be directly used.
Thus, from Eq. (4.9) on page 69, the Jacobians J, j are not repeated here. The metrics of
the shellŠs reference and current conĄguration read

g = jT · j = gi · gj = gij and G = JT · J = Gi ·Gj = Gij . (5.14)

Furthermore, the deformation gradient as given in Section 4.1.2 on page 71, now referring
to the shellŠs body, is given as

F = j · J−1. (5.15)
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Additionally, all these maps, Eqs. (5.7) and (5.9) can be restricted to the midsurface
ξ3 = 0. This yields

χ̄ = χ

∣
∣
∣
∣
ξ3=0

, Ĵ = J

∣
∣
∣
∣
ξ3=0

, ĵ = j

∣
∣
∣
∣
ξ3=0

and F̂ = ∇χ̄ = F

∣
∣
∣
∣
ξ3=0

. (5.16)

Furthermore, the Jacobians of the two-dimensional midsurface mapping φ are

J̄ = ∇φ0, j̄ = ∇φ and F̄ = φ ◦φ−1
0 . (5.17)

The parameterization in Eq. (5.8) deĄnes a coordinate basis for both the reference and
the current conĄguration as given in Eq. (2.16). These two bases ¶gi♢i=1..3 and ¶GI♢I=1..3

are given by

∂x

∂ξα
= gα = φ,α + ξ3t,α = aα + ξ3t,α,

∂x

∂ξ3
= g3 = a3 = t,

∂X

∂ξα
= Gα = φ0,α + ξ3t0,α = Aα + ξ3t0,α,

∂X

∂ξ3
= G3 = A3 = t0,

(5.18)

which are also depicted in Fig. 5.1. Additionally, the midsurface parameterization given
by Eq. (5.4) also induces a coordinate basis for the reference and current midsurfaces,
respectively. These are denoted by aα = φ,α and Aα = φ0,α. As indicated, ¶GI♢ and
¶gi♢ deĄne two bases on the tangent space on the reference TXB0 and the tangent space
on the current conĄguration TxBt , respectively. Similarly, ¶AI♢ and ¶ai♢ also deĄne a
basis, but on the shellŠs midsurface on the reference conĄguration Tφ0BC

0 and on the
current conĄguration TφBC

t . Thus, this yields the midsurface mapping of Eq. (5.16)

Ĵ :







TξA → Tφ0BC
0 ,

ξ 7→ ∇ξX♣ξ3=0 = [A1,A2,t0],
ĵ :







TθA → TφBC
t ,

ξ 7→ ∇ξx♣ξ3=0 = [a1,a2,t],

Ĵ
−T

:







T ∗
ξA → T ∗

φ0
BC

0 ,

ξ 7→ (∇ξX♣ξ3=0)
−T = [A1,A2,A3],

ĵ
−T

:







T ∗
ξA → T ∗

φBC
t ,

ξ 7→ (∇ξx♣ξ3=0)
−T = [a1,a2,a3],

(5.19)
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and for Eq. (5.17)

J̄ :







Tξ̄A → Tφ0BC
0 ,

ξ̄ 7→ ∇ξ̄φ0 = [A1,A2],
j̄ :







TθA → TφBC
t ,

ξ̄ 7→ ∇ξ̄φ = [a1,a2],

J̄
−T

:







T ∗
ξ̄
A → T ∗

φ0
BC

0 ,

ξ̄ 7→
(

∇ξ̄φ0

)−T
= [A1,A2],

j̄
−T

:







T ∗
ξ̄
A → T ∗

φBC
t ,

ξ̄ 7→
(

∇ξ̄φ
)−T

= [a1,a2],

(5.20)

where ξ̄ was deĄned in Eq. (5.3).

5.1.3 Shell Shifter and Transformation of Integrals

At this point, the given tensors are deĄned in the base ¶Gi♢ and ¶gi♢. Occasionally, it is
convenient or necessary to represent these tensors on the shell midsurface tangent basis
¶Ai♢ and ¶ai♢. This is simply done by a coordinate transformation. For the representation
of the tensors in the midsurface base system, a tensor that maps between the shellŠs
midsurface base vectors and the shellŠs body base vectors is needed, i.e. ga = z · ab. This
tensor is called shifter tensor or shell shifter.

Similar to the mapping of the deformation gradient ga = F ·GA the shifter tensors Z

and z for the reference conĄguration and current conĄguration can be deĄned as

z = (δµ
α + ξ3bµ

α)aµ ⊗ aα − ξ3bµ
αγµt⊗ aα + t⊗ a3,

Z = (δµ
α + ξ3Bµ

α)Aµ ⊗Aα + t0 ⊗A3,
(5.21)

with bβα = t,β ·aα and bµ
α = aµβbβα and equivalently for the reference conĄguration. Here,

aµβ denotes the coefficients of the metric inverse of the midsurface, such that aµβ = aα ·aβ.
For a derivation, see Appendix A.6. All these mappings are visually summarized in
Fig. 5.2. Therein, the interplay between the mappings of tangent spaces and co-tangent
spaces is indicated and also their commutative relations are made graphically clear.

From the deĄnition of the determinant for mixed tensors Eq. (2.101), it results that the
determinant of the shifter tensor det z is merely the determinant of its component matrix
det([zµ

α]). It can be shown that this determinant is given by

det z = det([zµ
α]) = 1− 2ξ3H + (ξ3)

2
K , (5.22)

where the shortcuts K = det([bµ
α]) and H = −(b1

1 + b2
2)/2 were used. The scalars K

and H , for the case where t is the midsurface unit normal, exactly boil down to the usual
surface deĄnitions of Gaussian curvature and mean curvature. The same statement can
be derived for the reference conĄguration. For details, see Appendix A.7 on page 205.
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Figure 5.2: Linear and non-linear commutative mapping diagram of the shellŠs body and
the shell midsurface.

Additionally, for a convenient reference, all the relevant mappings are summarized in
Table 5.1.

Through-the-thickness Integration In the following, several quantities are interpreted
as integrated quantities on the reference midsurface or current midsurface. This relation
is often attributed to the determinant of the shifter tensor but, as it is shown in the
following, this is not always the correct quantity.

In the end, the three-dimensional integration element dv should be expressed as an
object of the through-the-thickness integration element dl and the midsurface integration
element da. In particular, this means splitting the Riemannian volume form up into a
surface form and a line form. This generically yields

dv = dl · da = z dξ3 da. (5.23)
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5 The Non-linear Reissner-Mindlin Shell Model

Table 5.1: Summary of different tensorial mappings in the shell body and on the shellŠs
midsurface. All the quantity expressions are given in the convective coordinate
basis ¶Gi♢, ¶gi♢, ¶Ai♢, ¶ai♢ and their contravariant counterparts.

Mapping Component-
free

Index
notation

Determinant Expression

J TξA → TXB0 ∇Φ0 [G1,G2,G3]
ij

J G3 · (G1 ×G2)

j TξA → TxBt ∇Φ [g1,g2,g3]
ij

j g3 · (g1 × g2)

G TXB0 → T∗
X
B0 JT · J GI ·GJ G det([G B

A ]) = 1

g TxBt → T∗
x
Bt jT · j gi · gj g det([g b

a ]) = 1

F TXB0 → TxBt j · J−1 δi
J gi ⊗GJ det F = j/J

√
det([gab])√

det([GAB])

J̄ TξΩ→ Tϕ0
BC

0 ∇φ0 [A1,A2]
Iα

J̄
√

det([Aalβ ])

Ĵ TξΩ→ Tϕ0
BC

0 ∇Φ0♣ξ3=0 [A1,A2,t0]
IJ

Ĵ A3 · (A1 ×A2)

j̄ TξΩ→ TϕBC
t ∇φ [a1,a2]

iα
j̄

√

det([aab])

ĵ TξΩ→ TϕBC
t ∇Φ♣ξ3=0 [a1,a2,t]

ij
ĵ a3 · (a1 × a2)

A Tϕ0
BC

0 → T∗
ϕ0
BC

0 J̄
T · J̄ Aα ·Aβ A det([A β

α ]) = 1

a TϕBC
t → T∗

ϕBC
t j̄

T · j̄ aα · aβ a det([a β
α ]) = 1

Z Tϕ0
BC

0 → TXB0 J · Ĵ−1
δI

JGI ⊗AJ det Z = J/Ĵ 1− 2ξ3H0 + (ξ3)
2
K0

z Tϕt
BC

t → TxBt j · ĵ−1
δi

jgi ⊗ aj det z = j/ĵ 1− 2ξ3H + (ξ3)
2
K

F̄ TXBC
0 → TxBC

t j̄ · J̄−1
δα

α ai ⊗AJ det F̄ = j̄/J̄

√
det([aαβ ])√
det([Aαβ ])

B T∗
ϕ0
BC

0 → Tϕ0
BC

0 [t0,1,t0,2]
T · J̄ t0,β ·Aα Aβ ⊗Aα det B

det([Bαβ ])
det([Aαβ ]) = K0

b T∗
ϕBC

t → TϕBC
t [t,1,t,2]

T · j̄ t,β · aα aβ ⊗ aα det b
det([bαβ ])
det([aαβ ]) = K

z = j/j̄

√
det([gij ])√

det([aαβ ])

Z = J/J̄

√
det([GIJ ])√
det([Aαβ ])

Therefore, following Sections 2.8.2 and 2.8.4 and Eq. (2.103) on pages 43, 45 and 46, the
midsurface integration element reads da =

√

det([aab]) dξ1 dξ2 = ♣♣a1 × a2♣♣ dξ1 dξ2 and
the volume integration element reads

dv =
√

det([gab]) dv = g1 · (g2 × g3) dξ1 dξ2 dξ3 =
g1 · (g2 × g3)
√

det([aab])

√

det([aab]) dξ1 dξ2 dξ3

=
g3 · (g1 × g2)

♣♣a1 × a2♣♣
♣♣a1 × a2♣♣ dξ1 dξ2 dξ3 =

g3 · (g1 × g2)

♣♣a1 × a2♣♣
dξ3 da.

(5.24)
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Comparing the last equality to Eq. (5.23), we get for the current conĄguration the scalar
quantity

z =
g3 · (g1 × g2)

♣♣a1 × a2♣♣
, (5.25)

and for the reference conĄguration

Z =
G3 · (G1 ×G2)

♣♣A1 ×A2♣♣
. (5.26)

Remark 3. The Eq. (5.25) does not correspond to the determinant of the shell shifter
as given in Eq. (5.22). Nevertheless, they are the same, if the director t is the shellŠs unit
normal, e.g. in the context of a Kirchhoff-Love-type deformation. The quantity given in
Eq. (5.22) can be restated as

det z =
g3 · (g1 × g2)

t · (a1 × a2)
, (5.27)

which differs from z in the denominator. Alternatively, if the shell shifterŠs deĄning
statement ga = z · ab would be restated with a3 = a1 × a2 instead of a3 = t, they
would directly coincide, see also for similar remarks Büchter [Büc92]. Nevertheless, they
are sometimes, in the authorŠs humble opinion, wrongly used to transform integrals
and push-forward or pull-back quantities, see, e.g., Simo et al. [Sim90a, Eq. 2.13] and
subsequent derivations. Usually the deviation of t from the shell normal is small and
therefore these errors are usually not very pronounced.

5.1.4 Strain

The deĄnition of the Green-Lagrangian strain tensor can directly be taken from Eq. (4.23).
It is given by

E = Eij Gi ⊗Gj , (5.28)
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5 The Non-linear Reissner-Mindlin Shell Model

with the components

Eαβ =
1

2
(gαβ −Gαβ) =

1

2
(gα · gβ −Gα ·Gβ)

= εαβ + 2ξ3καβ + (ξ3)
2
ραβ,

2Eα3 = 2E3α = gα · g3 −Gα ·G3 = γα,

2E33 = g3 · g3 −G3 ·G3 = 0.

(5.29)

Since in the following a stress-based implementation is derived, it is enough to derive this
in the Gi ⊗Gj-basis. Here, the usual Reissner-Mindlin kinematic assumptions t,α · t = 0

and t · t = t0 · t0 = 1 apply via the unit director deĄnition of t. The quadratic part ραβ

of Eαβ in ξ3 is usually neglected but is kept here for the sake of completeness. For the
implications of neglecting it, see Büchter [Büc92, Chapter 3.7, Annahme A4, Chapter
9.1.3, Equation 9.34]. The different components in Eq. (5.29) can be interpreted as
membrane strain εαβ, curvature καβ, second-order curvature ραβ, and transverse shear
strain γα. They read

εαβ =
1

2
(aα · aβ −Aα ·Aβ),

καβ =
1

2
(aα · t,β + t,α · aβ −Aα · t0,β − t0,α ·Aβ),

ραβ =
1

2
(t,α · t,β − t0,α · t0,β),

γα = a,α · t−A,α · t0.

(5.30)

The deĄnitions Eq. (5.30) provide a straightforward method for phenomenologically
interpreting the three-dimensional strains as shell quantities. Vanishing membrane strain,
for instance, indicates a shell deformation in which the midsurface is only bent and not
stretched. Therefore, for such deformation the corresponding midsurface deformation is
isometric.

Furthermore, according to a Voigt-like notation the strain matrix components can be
vectorized as

EV =












E11

E22

2E12

2E13

2E23












(5.31)
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5.2 Stress Resultants

This section deals with the deĄnition of stress resultants. First, the physical stress
resultants from the Cauchy stress are derived in Section 5.2.1 as component-free vectorial
quantities. For more physical insight, the correct components of these vectorial quantities
are investigated in Section 5.2.2. The following derivations can be partially found in
[Sim89] and for the case of the Kirchhoff-Love shell with other simpliĄcations in [BK13].
For completeness, the deĄnitions of these stress resultants are given here including
derivation, since they, in the authorŠs humble opinion, cannot be found in the literature
in this detailed form.

5.2.1 Cauchy Stress Resultants

In the following, to derive resultants of the Cauchy stress w.r.t. to the coordinates ξi ,
consider a cut with ξ1 = const. denoted by

C2 = ¶x ∈ R3 ♣ x = Φ♣ξ2=const.♢, (5.32)

and the corresponding midsurface line by

CC
2 = ¶x ∈ R3 ♣ x = Φ♣ξ2=const.,ξ3=0♢. (5.33)

In the following, the reader can track the derivations with Fig. 5.3. In the cuboid-shaped
parameter space, the one-form Ąeld normal to the surface of this cut can be deĄned
as Ñ dξ2 dξ3 = Ẽ

2
dξ1 dξ3. Since the Cauchy stress lives in the current conĄguration,

this normal has to be pushed forward to get the normal of the deformed surface with
ξ1 = const.. This map transforms the normal from the parameter space to the current
conĄguration, which is denoted by Φ∗ in Fig. 5.3.

This is done using the Piola transform from Section 2.8.5 on page 47, which deĄnes the
push-forward of normals. This yields

Φ∗(Ẽ
2

dξ1 dξ3) = jj−T · Ẽ2
dξ1 dξ3 = jg2 dξ1 dξ3 (5.34)

as the push-forward from the parameter space to the current conĄguration.
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Equating Eqs. (5.36) and (5.37) yields

∫ ∫

n2j̄ dξ1 dξ2 =
∫ ∫ h+

∫

h−

jσ · g2 dξ3 dξ2 dξ1. (5.38)

By comparing coefficients in Eq. (5.38) the stress resultant can be identiĄed. Additionally,
since the derivation are equivalent for the other direction, the 2 is replaced by α, and
now the stress resultant nα is deĄned as

nα =
1

j̄

h+
∫

h−

jσ · gα dξ3 =

h+
∫

h−

zσ · gα dξ3, (5.39)

which is the stress resultant acting on the midsurface line CC
α per unit dξ3−α. The same

procedure can be done for the stress couple mα, where the moment of the traction about
the midsurface, namely (x−φ)× σ · gαj is computed. This yields

mα =
1

j̄

h+
∫

h−

(x−φ)× σ · gαj dξ3 = t×
h+
∫

h−

zξ3σ · gα dξ3, (5.40)

where x−φ = ξ3t was used. Note, that the moment vector mα lies in the tangent bundle
of the unit sphere TS2, due to t× (. . .) in Eq. (5.40). At some points, the alternative
deĄnition will also be used, which is implicitly given as

m̂α =

h+
∫

h−

zξ3σ · gα dξ3, mα = t× m̂α. (5.41)

Finally, the last stress resultant stemming from the integration in the direction of the
normal g3 is missing, it is deĄned as the across-the-thickness stress resultant l. It reads,

l =

h+
∫

h−

zσ · g3 dξ3. (5.42)

All these stress resultants can be stated using the Ąrst Piola-Kirchhoff stress tensor P

instead of using the Cauchy stress. This can be done using the alternative push-forward
between the parameter space and the reference conĄguration similar to Eq. (5.34) as

Φ0,∗(Ê
1

dξ2 dξ3) = JJ−T · Ê1
dξ2 dξ3 = JG1 dξ2 dξ3. (5.43)
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Using the deĄning equation of PN = σn from Eq. (4.31) on page 78, we have

jσ · gi = JP ·GI . (5.44)

This yields the alternative representation

nα =
1

j̄

h+
∫

h−

JP ·Gα dξ3,

mα = t× 1

j̄

h+
∫

h−

ξ3JP ·Gα dξ3,

l =
1

j̄

h+
∫

h−

JP ·G3 dξ3.

(5.45)

5.2.2 Stress Resultant Components

The components of nα from Eq. (5.39) can be written as

nα = nβαaβ + qαt, with n = nαβaα ⊗ aβ, q = qαaα. (5.46)

These components are the normal forces nαβ and the shear forces qα. The decomposition
indicated in Eq. (5.46) is visualized in Fig. 5.4, where a cut along the shellŠs thickness
direction is shown. Therein, the traction jσ · gα and the normal jgα, are shown, which
are needed quantities for the through-the-thickness integration of nα. The dashed line
indicates the shellŠs midsurface and the components of nα in this cut are shown. Plugging
this into the deĄnition of Eq. (5.39), using the results from Appendix A.5 on page 203
and noting that σ · gα = σβαgβ + σ3αt, yields

nα =

h+
∫

h−

z [σβα(aβ + ξ3bλ
β(aλ − γλt)) + σ3αt] dξ3,

=

h+
∫

h−

z [(σβα + ξ3σλαbβ
λ)aβ + (σ3α − ξ3σβαbλ

βγλ)t] dξ3,

=

h+
∫

h−

z [σβα + ξ3σλαbβ
λ] dξ3aβ +

h+
∫

h−

z [σ3α − ξ3σβαbλ
βγλ] dξ3t,

(5.47)
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namely

nβα ≈
h+
∫

h−

σβα + ξ3σλαbβ
λ dξ3, qα ≈

h+
∫

h−

σ3α − ξ3σβαbλ
βγλ dξ3, m̂βα ≈

h+
∫

h−

ξ3σβα dξ3,

m̂3α ≈
h+
∫

h−

ξ3σ3α dξ3, lα ≈
h+
∫

h−

σα3 + ξ3σλ3bα
λ dξ3,

l3 ≈
h+
∫

h−

σ33 − ξ3σα3bµ
αγµ dξ3,

(5.57)

Thus, even for slender shells, these relations are crucial to obtain correct stress resultants.

For reference, there is also a summary of the stress resultant quantities in Table 5.2 and
for the effective stress resultants in Table 5.3.

Remark 4. The effective stress resultants will appear naturally in the balance laws
in the next chapter. Nevertheless, they can be already interpreted, if the moments are
assumed to be symmetric. This yields a trivial relation between the effective stress
resultants and the physical stress, since in Table 5.3, all the term quadratic in ξ3 vanish.
Consequently, the effective membrane stress resultants and moments then read

ñβα =

h+
∫

h−

zσβα dξ3 and m̂βα =

h+
∫

h−

zξ3σβα dξ3, (5.58)

The same quantities can be also derived, if the three-dimensional stress and three-
dimensional strain are transformed using the shell shifter z. For example, the Cauchy
stress can be transformed as σ̂ = z−t ·σ ·z−1, where σ̂ is the stress in the midsurface basis.
For more properties of these mappings refer to [Bis17]. These transformed stresses and
strains then yield the same energy contribution as the physical stress and strain. From
this, using a standard Coleman-Noll procedure and through-the-thickness integration,
effective stress resultants are automatically obtained. These effective stress resultants
are unphysical but provide, with the corresponding midsurface strain components, also
the same energy as the physical stress and strain. Therefore, in a stress-resultant-based
formulation, effective stress resultants can be used to obtain the correct energy. This is
convenient since everything can be carried out, purely in the two-dimensional midsurface
setting.
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Table 5.2: Summary of important stress resultant formulas

Vectorial aα components
∫ h+

h− z(•) dξ3 t components
∫ h+

h− z(•) dξ3

nα
∫ h+

h− zσgα dξ3 nβα, σβα + ξ3σλαbβ
λ qα, σ3α − ξ3σβαbλ

βγλ

m̂α ∫ h+

h− zξ3σgα dξ3 m̂βα, ξ3[σβα + ξ3σλαbβ
λ] m̂3α, ξ3[σ3α − ξ3σβαbλ

βγλ]

l
∫ h+

h− zσg3 dξ3 lα, σα3 + ξ3σλ3bα
λ l3, σ33 − ξ3σα3bµ

αγµ

Table 5.3: Effective stress resultant components

Eff. res. in terms of resultants in terms of stresses
∫ h+

h− z(•) dξ3

ñβα nβα − bβ
λmαλ σβα − (ξ3)

2
bβ

λσ
µλbα

µ

q̃α qα + bγ
λγγmαλ σ3α + (ξ3)

2
γγbγ

λσ
µλbα

µ

m̂βα m̂βα ξ3σβα + (ξ3)
2
σλαbβ

λ

m̂3α m̂3α ξ3σ3α − (ξ3)
2
σβαbλ

βγλ

l̃α lα − bα
λm̂3λ σα3 + (ξ3)

2
bα

λσ
βλbγ

βγγ

l̃3 l3 + γγbγ
λm̂3λ σ33 − (ξ3)

2
γγbγ

λσ
βλbα

βγα

Remark 5. From Eq. (5.57) it is clear that the true membrane forces are intrinsically

unsymmetric even for slender shells, only the moments recover their symmetry in the thin
limit. The membrane forces only become symmetric, if the linear part ξ3 in Eq. (5.57) is
also neglected. In contrast to this, the effective stress resultants Eq. (5.56) are always
symmetric, independent of the thickness, which will be derived as a requirement of
equilibrium in Section 5.3.

Remark 6. Frequently, the quantities qα and mα3 are subject to so-called shear correction

factors. For the stress resultants qα,mα3 and their work-conjugate strains aα · t, t,α · t,
respectively, it is derived that the underlying stress contribution is constant for qα and
linear for mα3. But physically, it would be more appropriate to use a quadratic ansatz
for the former and a cubic ansatz for the latter. Consequently, the energy contribution is
modiĄed to mimic the energy if the stresses have the desired through-thickness distribution
(quadratic or cubic, respectively). Therefore, the shear correction factor for qα is α = 5/6

and for mα3 it is β = 7/10, whereas the latter was derived in Pietraszkiewicz [Pie79a] as
elaborated in Pietraszkiewicz [Pie79b, p. 78]. Also in Bischoff [Bis99] the same factor is
derived. The former, (α = 5/6), was classically derived implicitly in Reissner [Rei45], see
equation 8 therein.
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5.2.3 Pulled-back Quantities

The derived resultants are forces and bending moments acting per deformed area. They can
be recast to resultants acting per reference area, via a simple pull-back using det F̄ = j̄/J̄ .
Since the aforementioned quantities are deĄned in the convective coordinate system aα

and Aα, these pull-back operations are trivial. We have the midsurface deformation
gradient as F̄ = δi

I ai ⊗ AI . This is similar to the reasoning behind why the stress
components differ only by det F = j/J and by exchanging the corresponding base vectors
in Eq. (4.34). The derived resultants are true forces and true moments acting per deformed
area. This yields

Nα = det F̄ nα,

M̂
α

= det F̄ m̂α,

L = det F̄ l,

(5.59)

The stress components only differ by J and by replacing the corresponding base vectors,
see also Eq. (4.34) on page 79.

5.2.4 Calculations in a Local Cartesian Frame

To derive the above-mentioned Cauchy stress resultants, several transformations are
involved from the curvilinear second Piola-Kirchhoff stress tensor to the local Cartesian
Cauchy stress tensor. For simplicity, this section employs matrix notation. This local
Cartesian basis is constructed from the reference basis vectors Gi , which are the columns
of J, by Gram-Schmidt orthonormalization [Llo97]. For the used mappings, refer to
Section 5.1.2 on page 94. The Gram-Schmidt orthonormalization reads

J̆ = GramSchmidt(J) = [Ĕ1,Ĕ2,Ĕ3] (5.60)

For the deĄnition of the mappings refer to Table 5.1 on page 98. Thus, the components
of the Green-Lagrangian strain can be transformed by the identity EIJ GI ⊗ GJ =

ĔKL Ĕ
K ⊗ Ĕ

L
, such that

ĔKL = EIJ (GI · ĔK )(GJ · ĔL). (5.61)

In matrix notation for the components, this yields

Ĕ = (J̆J−1)
T

E(J̆J−1), (5.62)
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which can then be used to compute the second Piola-Kirchhoff stresses in the local
Cartesian frame in the reference conĄguration.

As stated in Eq. (5.15) on page 94, the deformation gradient is given by F = jJ−1. Then,
to obtain the Cauchy stress from it, the push-forward transformation deĄned in Eq. (4.33)
on page 78 is used, such that, again in matrix notation, σ̆ = 1

det F
FSFT . Consequently,

the components σ̆ live in the coordinate system given by Ĕi . These stress components σ̆
can be transformed into a local Cartesian frame on the deformed conĄguration, which
can also be deĄned as j̆ = GramSchmidt(j) = [ĕ1,ĕ2,ĕ3]. This, transformation can also
be deĄned using the identity σ̆IJ ĔI ⊗ ĔJ = σ̌kl ĕk ⊗ ĕl , which yields

σ̌kl = σ̆IJ (ĔI · ĕk)(ĔJ · ĕl), (5.63)

or in matrix notation

σ̌ = (J̆̆j
T

)
T

σ̆(J̆̆j
T

), (5.64)

where it was exploited that j̆
T

= j̆
−1

, since it is an orthonormal matrix.

These components σ̌ij can now be shown on the deformed three-dimensional object or
can be used to integrate the Cauchy stress resultant components in the ĕi-basis, which
will be done in Chapter 7 on page 175. In contrast to the involved representation from
Table 5.2, the integration in a local Cartesian coordinate system is straightforward. The
components of the Cauchy stress resultants are then given by

ňαβ =

h+
∫

h−

σ̌βα dξ3,

m̌αβ =

h+
∫

h−

ξ3σ̌βα dξ3,

q̌α =

h+
∫

h−

σ̌α3 dξ3,

(5.65)

where all the nonlinearity is hidden now in the components σ̌ij . These are also unsymmetric
since also the curvature information of the shell is contained in them.
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5.3 Balance Principles

The following derivation of the balance law can be found in several ways with or without
simpliĄcations in literature but not with the provided differential geometric reasoning.
For example, in Başar and Krätzig [BK13], Green and Zerna [GZ63], and Green et
al. [Gre71], the quantities are derived with the kinematic Kirchhoff-Love assumptions.
Further references are Zerna [Zer67] and Pietraszkiewicz [Pie79b] and Simo et al. [Sim89].
Nevertheless, the author hopes that the following section clariĄes several inaccuracies
found in the given literature.

5.3.1 Conservation of Mass

The local balance of mass is given by Eq. (4.37) on page 80 as

ρ0 = det Fρ =
j

J
ρ. (5.66)

Integrating the spatial mass density ρ using Eq. (5.25) on page 99 and z = j/j̄ yields the
following relations

ρ̄ =
1

j̄

h+
∫

h−

jρ dξ3 ≈
h+
∫

h−

ρ dξ3 = hρ,

1

j̄

h+
∫

h−

jρξ3 dξ3 ≈
h+
∫

h−

ρξ3 dξ3 = 0,

Ī =
1

j̄

h+
∫

h−

jρ(ξ3)
2

dξ3 ≈
h+
∫

h−

ρ(ξ3)
2

dξ3 =
h3

12
ρ,

(5.67)

where ρ̄ and Ī are called surface density and surface inertia, respectively. The following
identities are obtained

ρ̄0 = det F̄ρ̄ =
j̄

J̄
ρ̄, Ī0 = det F̄Ī =

j̄

J̄
Ī , (5.68)

where det F̄ = j̄/J̄ = ♣♣a1×a2♣♣/♣♣A1×A2♣♣ is the midsurface deformation gradient deter-
minant. These identities are derived using the balance of mass of the three-dimensional
theory and with the following simpliĄcation

Z =
(G1 ×G2) · t0

♣♣A1 ×A2♣♣
=

j0
j̄0
≈ 1 (5.69)
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which relates the inĄnitesimal surface area element to the inĄnitesimal volume element
of the reference conĄguration, such that

dV = Z dAξ3. (5.70)
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5 The Non-linear Reissner-Mindlin Shell Model

5.3.2 Balance of Linear Momentum

The total linear momentum of the three-dimensional theory was given in Eq. (4.45) on
page 82, if the velocity deĄnition of the shell Eq. (5.10) on page 93 is plugged in, it reads

L =
∫

Bt

ρv dv =
∫

BC
t

1

j̄

h+
∫

h−

jρv dξ3 da =
∫

BC
t

1

j̄

h+
∫

h−

jρ(φ̇+ ξ3ṫ) dξ3 da,

=
∫

BC
t

1

j̄

h+
∫

h−

jρ dξ3φ̇da +
∫

BC
t

1

j̄

h+
∫

h−

jρξ3 dξ3

︸ ︷︷ ︸

≈0

ṫ da,

=
∫

BC
t

ρ̄φ̇da,

(5.71)

where z = j/j̄ was used, see for reference Table 5.1 on page 98, and the density results of
Eq. (5.67). The following volume-to-midsurface integral transformation will be frequently
used:

∫

Bt

(•) dv =
∫

BC
t

h+
∫

h−

(•)z dξ3 da =
∫

BC
t

1

j̄

h+
∫

h−

(•)j dξ3 da =
∫

BC
t

1

j̄

h+
∫

h−

(•)j j̄ dξ3 da

=
∫

BC
t

h+
∫

h−

(•)j dξ3 da.

(5.72)

The three-dimensional balance of linear momentum as given in Section 4.3.2 on page 82
reads

d

dt
L =

∫

Bt

ρb̂ dv +
∫

∂Bt

t̂ da. (5.73)

Using the Cauchy theorem from Eq. (4.29) on page 77, yields

d

dt

∫

Bt

ρ̄v da =
∫

Bt

ρb̂ dv +
∫

∂Bt

σn da (5.74)

and using Eq. (5.71) for the left-hand side gives

d

dt

∫

BC
t

ρ̄ φ̇da =
∫

Bt

ρb̂ dv +
∫

∂Bt

σn da. (5.75)
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Similar to before, the push-forward of the current normal n can be stated as

n da = j∇Φ−TN̂dΩ, (5.76)

where the last equation is a Nanson-type mapping or the Piola transform from the
parameter space to the current conĄguration, see Section 2.8.5 on page 47. This is the
same procedure as visualized already in Section 5.2 in Fig. 5.3 on page 102. Inserting the
deĄnition Eq. (5.23) in Eq. (5.75) yields

d

dt

∫

BC
t

ρ̄ φ̇da =
∫

BC
t

h+
∫

h−

jρb̂ dξ3 da +
∫

∂BC
t

jσ∇Φ−TN̂ da, (5.77)

where da in the last term has to be understood as the inĄnitesimal top, bottom, and
lateral surface element of the body, respectively. Now, this term is explicitly decomposed
into the surface integral over the top and bottom and over the lateral surfaces (of the
parameter space). Their corresponding normals are N̂ = ναẼ

α
and N̂ = ±Ẽ

3
, respectively.

This results in

d

dt

∫

BC
t

ρ̄φ̇da =
∫

BC
t

h+
∫

h−

jρb̂ dξ3 da +
∫

∂BC
t

h+
∫

h−

jσ∇Φ−TναẼ
α
dξ3 dΓ

︸ ︷︷ ︸

lateral surfaces

+
∫

BC
t

[jσ∇Φ−T Ẽ
3
]
∣
∣
∣
∣

ξ3=h+

ξ3=h−
da

︸ ︷︷ ︸

top and bottom surface

,

(5.78)

where dΓ is the line integration element of the midsurface line at the lateral surface
boundary ∂BC

t , which is deĄned by the relation dΓ = ναẼ
α

dΓ.

With the mapping property gα = ∇Φ−T Ẽ
α

and g3 = ∇Φ−T Ẽ
3

Eq. (5.78) reads

d

dt

∫

BC
t

ρ̄ φ̇ da =
∫

BC
t

h+
∫

h−

jρb̂d dξ3 +
∫

∂BC
t

h+
∫

h−

jσgαναdξ3 dΓ +
∫

BC
t

[jσg3]
∣
∣
∣
∣

ξ3=h+

ξ3=h−
da. (5.79)

If the deĄnition of the stress resultants Eq. (5.39) on page 103 is inserted, the second
part of the right-hand side of Eq. (5.79) can be written as

∫

∂BC
t

h+
∫

h−

jσgαναdξ3 dΓ =
∫

∂BC
t

j̄nανα da (5.80)
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and with the divergence theorem for surfaces, we have

∫

∂BC
t

j̄nανα da =
∫

BC
t

(j̄nα),α da. (5.81)

Furthermore, the loading integrals can be grouped as

∫

BC
t




[jσg3]

∣
∣
∣
∣

ξ3=h+

ξ3=h−
+

h+
∫

h−

jρbdξ3




 da (5.82)

and the integrant can be derived as the loading term

n̄ =
1

j̄




[jσg3]

∣
∣
∣
∣

ξ3=h+

ξ3=h−
+

h+
∫

h−

jρbdξ3




 , (5.83)

which was normalized over the midsurface area.

If Eqs. (5.80) and (5.83) are inserted into Eq. (5.79), it can be written as

d

dt

∫

BC
t

ρ̄ φ̇ da =
∫

BC
t

(j̄nα),α da +
∫

BC
t

j̄n̄ da. (5.84)

Then, exploiting the balance of mass for the surface Eq. (5.68) yields

∫

BC
0

ρ̄0 φ̈ dA =
∫

BC
t

(j̄nα),α da +
∫

BC
t

j̄n̄ da. (5.85)

Using again the volume transport, the balance of mass, and factoring j̄ out from the
right-hand side yields

∫

BC
t

ρ̄ φ̈da =
∫

BC
t

(
1

j̄
(j̄nα),α + n̄)j̄ da. (5.86)

With the identity da = j̄ da this simpliĄes to

∫

BC
t

ρ̄ φ̈da =
∫

BC
t

(
1

j̄
(j̄nα),α + n̄) da, (5.87)
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and Ąnally using the usual localization theorem [MH94, Ch. 2, p. 122 ], the local balance
of linear momentum reads

ρ̄φ̈ =
1

j̄
(j̄nα),α + n̄, (5.88)

which can be found similarly in Green and Zerna [GZ63, Eq. 10.4.12, 10.4.15], Libai
and Simmonds [LS83, Eq. 3.32f]. and Simo and Fox [SF89, Eq. 4.12] but without or less
detailed derivation. These references did not recast the equation in the following form. If
the surface divergence identity is plugged in, see Appendix A.2, then Eq. (5.88) reduces
to

ρ̄φ̈ = div n + n̄, (5.89)

where a bar is added to the Riemannian divergence operator to separate it from the
Euclidean three-dimensional divergence. This recast form provides a striking resemblance
to the three-dimensional theory, see Eq. (4.52) on page 83.

5.3.3 Balance of Angular Momentum

From the three-dimensional equations Eq. (4.47), we have

J(t) =
∫

Bt

ρx× v dv =
∫

BC
t

h+
∫

h−

jρ (φ+ ξ3t)× (φ̇+ ξ3ṫ) dξ3 da, (5.90)

where z = j/j̄ was used, see for reference Table 5.1. This results in

J(t) =
∫

BC
t

h+
∫

h−

jρφ× φ̇+ jρ ξ3(t× φ̇+ φ̇× t) + jρ (ξ3)
2
t× ṫ dξ3 da. (5.91)

Using the simpliĄcations from Eq. (5.67) on page 112, volume transport and the balance
of mass and simultaneously taking the temporal derivative yields

∂

∂t
J(t) =

∫

BC
t

ρ̄φ× φ̈da +
∫

BC
t

Ī ω̇ da, (5.92)
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where the deĄnition ω̇ = t× ẗ was used. Thus, using Eq. (5.92) the balance of angular
momentum from Eq. (4.48) on page 82 reads

∫

BC
t

ρ̄φ× φ̈da +
∫

BC
t

Ī ω̇ da =
∫

∂Bt

x× t̂ da +
∫

Bt

x× b̂ dv. (5.93)

The Ąrst term of the right-hand side of Eq. (5.93) can be transformed using the deĄnition
of the normal from Eq. (5.76) and CauchyŠs theorem to

∫

∂Bt

(φ+ ξ3t)× jσ∇Φ−TN̂ da. (5.94)

It can be decomposed into the surface integral over the top and bottom and over the
lateral surfaces (of the parameter space). The normals reads N̂ = ναẼ

α
or N̂ = ±Ẽ

3
and

gα = ∇Φ−T Ẽ
α

and g3 = ∇Φ−T Ẽ
3
, respectively. This yields,

∫

∂Bt

h+
∫

h−

(φ+ ξ3t)× jσgανα dξ3 dΓ +
∫

BC
t

[(φ+ ξ3t)× jσ · g3]
∣
∣
∣
∣

ξ3=h+

ξ3=h−
da. (5.95)

The loading term or the second term of the right-hand side of Eq. (5.93) reads, with the
shellŠs kinematics,

∫

Bt

x× b̂ dv =
∫

BC
t

h+
∫

h−

j(φ+ ξ3t)× b̂ dξ3 da. (5.96)

The loading of the top and bottom surface at the right-hand side of Eq. (5.95) can be
grouped with Eq. (5.96) such that

∫

BC
t

h+
∫

h−

j(φ+ ξ3t)× b̂ dξ3 da +
∫

BC
t

[(φ+ ξ3t)× jσ · g3]
∣
∣
∣
∣

ξ3=h+

ξ3=h−
da,

=
∫

BC
t

h+
∫

h−

jφ× b̂ dξ3 + [φ× jσ · g3]
∣
∣
∣
∣

ξ3=h+

ξ3=h−
da,

+
∫

BC
t

h+
∫

h−

jξ3t× b̂ dξ3 + [ξ3t× jσ · g3]
∣
∣
∣
∣

ξ3=h+

ξ3=h−
da,

=
∫

BC
t

φ× n̄j̄ + m̄j̄ da,

(5.97)
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where the applied forces from Eq. (5.83) were identiĄed. Furthermore, the applied
moments were also identiĄed as

m̄ =
1

j̄
t×




[jξ3σg3]

∣
∣
∣
∣

ξ3=h+

ξ3=h−
+

h+
∫

h−

ξ3jρb̂dξ3




 , (5.98)

which are living obviously in the tangent bundle TS2. The Ąrst term with t× (•) denotes
the moments from integrated tractions on the top and bottom surfaces and the latter
term denotes the moments from integrated tractions on the lateral surfaces. The Ąrst part
in Eq. (5.95) can be derived similarly as before for the membrane forces. This reads

∫

∂Bt

h+
∫

h−

(φ+ ξ3t)× jσ · gανα dξ3 dΓ. (5.99)

Inserting the deĄnition of the stress resultants Eqs. (5.39) and (5.40) on page 103, and
the divergence theorem for surfaces into Eq. (5.99) yields

∫

∂Bt

h+
∫

h−

(φ+ ξ3t)× jσ · gανα dξ3 dΓ =
∫

BC
t

φ× (j̄nα),α + aα × (j̄nα) + (j̄mα),α da.

(5.100)

Thus collecting everything and factoring with the identity da = j̄ da, and with Eqs. (5.92),
(5.97), (5.98) and (5.100), Eq. (5.93) reads

∫

BC
t

ρ̄φ× φ̈+ Ī ω̇ da =
∫

BC
t

j̄

(

m̄ +φ× n̄ +
1

j̄
φ× (j̄nα),α +

1

j̄
(j̄mα),α + aα × nα

)

da.

(5.101)

The linear momentum from Eq. (5.88) can be identiĄed by grouping all terms with
signature φ× (•). This yields for the remainder

∫

BC
t

Ī ω̇ da =
∫

BC
t

j̄

(

m̄ +
1

j̄
(j̄mα),α + aα × nα

)

da

=
∫

BC
t

m̄ +
1

j̄
(j̄mα),α + aα × nα da,

(5.102)

119



5 The Non-linear Reissner-Mindlin Shell Model

and Ąnally using the usual localization arguments, the local balance of angular momentum
reads

Ī ω̇ = m̄ +
1

j̄
(j̄mα),α + aα × nα, (5.103)

where, as before, the Riemannian divergence term can be identiĄed

Ī ω̇ = m̄ + div m + aα × nα. (5.104)

The three-dimensional angular momentum σT = σ can also be investigated to derive an
alternative version of the angular momentum for the shell. This reads

nα × aα + m̂× t,α + l× t = 0, (5.105)

refer to Appendix A.8 on page 206 for a derivation. Eq. (5.103) is deĄned in the direction
of ω̇ in the tangent bundle TS2. If Eq. (5.105) and the identity Eq. (5.41) with the
product rule div m = t,α × m̂α + t× div m̂ are used, Eq. (5.103) reads

t×
(

div m̂ + ˆ̄m− l− Ī ẗ
)

= 0, (5.106)

with ω̇ = t× ẗ and m̄ = t× ˆ̄m, which is the right-hand side of Eq. (5.98). Eq. (5.106)
can be stated in a more manifold-esque way, such that

div m̂ + ˆ̄m− l− Ī ẗ = 0 in TS2. (5.107)

The last two equations clean up the arguable polluted version of the angular momentum
balance from Eq. (5.104) since it removes the dependence on the membrane forces. Thus,
it is again a PDE with unknowns m̂, l and ẗ deĄned in the tangent bundle of TS2.

Furthermore, investigating the components of Eq. (5.105) and identifying the effective
stress resultants from Eqs. (5.52) and (5.55) on pages 106 and 107 yields

ñβαaα × aβ + t× aα(̃lα − q̃α) + l3t× t = 0. (5.108)

The derivation can be found at Appendix A.8 on page 206. Since the vectors aα and t

are linearly independent, this results in the local angular momentum balance

ñβαεαβ = 0 l̃α − q̃α = 0, (5.109)

which can be, to the authorŠs best knowledge, only found in this form in Simo et al.
[Sim90b, Eq. 2.11]. It states the symmetry of the effective membrane stress resultants and
relates the effective transverse shear stress resultants q̃α to the effective stress resultants
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l̃α. It should be mentioned that using the deĄnitions of the effective stress resultants
from Table 5.3 on page 109 the result can be written in a more compact format. This can
be accomplished by introducing the curvature tensor β = βi

jai ⊗ aj , the stress resultant
tensor n = bijai ⊗aj and the stress resultant moment tensor m̃ = m̂ijai ⊗aj , such that

βi
j =







b1
1 b1

2 0

b2
1 b2

2 0

−γγbγ
1 −γγbγ

2 1






, m̃ij =







m̂11 m̂12 m̂31

m̂21 m̂22 m̂32

0 0 0






, nij =







n11 n12 l1

n21 n22 l2

q1 q3 l3






.

(5.110)

Then, the effective stress resultant tensor ñ = ñijai ⊗ aj can be simply written as

ñ = n− βm̃. (5.111)

Now the angular momentum balance from Eq. (5.109) reads simply

ñ = ñt . (5.112)

The quantity β has a remarkable resemblance with the shifter tensor components from
Eq. (5.21) on page 96. The relation

βi
j = δi

j − z i
j

∣
∣
∣
∣
ξ3=1

(5.113)

holds.

5.3.4 The Reissner-Mindlin Assumptions

This section deals with the intrinsic Reissner-Mindlin assumptions, which separate the
shell model from a three-dimensional solid model. First, the usual assumptions that
are incorporated in the Reissner-Mindlin shell model are stated. For this, Ąrst, the
assumptions of a Kirchhoff-Love shell model are stated. These assumptions are:

1. Straight material Ąbers perpendicular to the midsurface, referred to as transverse
normals, remain straight during deformation.

2. Transverse normals rotate during deformation such that they remain perpendicular
to the midsurface during deformation.

3. The normal stress in the direction of the transverse normals can be neglected.
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5 The Non-linear Reissner-Mindlin Shell Model

The Reissner-Mindlin shell model relaxes the second assumption, allowing the reference
normals to rotate freely. These assumptions are now investigated by using the derived
stress resultants and balance laws.

The component of the through-the-thickness stress resultants l3 and the shear moment

m̂α3 do not appear in Eq. (5.89) or Eq. (5.112). Therefore, equilibrium does not tell
anything about these components, consequently, they are undetermined from the stress-
resultant equilibria.

Consider the strains from Eq. (5.29) enhanced with an extensible director. This yields as
thickness stretch χ = 1

2
(t · t− t0 · t0) and the shear curvature χ,α = t · t,α− t0 · t0,α. Using

a Saint Venant-Kirchhoff material law S = λ tr(E : G−1) + 2µE♯, the stress resultants
can be written as follows

ñαβ =
D

det F̄

(
2ν

1− 2ν
Aαβχ+

[
2ν

1− 2ν
AαβAγδ + (1− 2ν)(AαγAβδ + AαδAβγ)

]

εγδ

)

(5.114)

q̃α =
Gh

det F̄
Aαβγβ (5.115)

m̃αβ =
B

det F̄
(νAαβAγδ +

1− 2ν

2
AαγAβδ + AαδAβγ) (5.116)

m̃3α =
B

det F̄
Aαβχ,β (5.117)

l̃3 =
D

det F̄
(Aαβεαβν − (1− ν)χ)

1− ν
2ν − 1

, (5.118)

with D = Eh/(2(1 + ν)) and B = Eh3/(12(1 − ν2)). LaméŠs Ąrst parameter λ and
LaméŠs second parameter µ are related to YoungŠs modulus E and PoissonŠs ratio ν

via λ = Eν
(1+ν)(1−2ν)

and µ = E
2(1+ν)

. The determinant det F̄ in the denominator is the
push-forward of the reference quantities to the current conĄguration. This derivation uses
the midsurface reference metric tensor and incorporates the simpliĄcations z ≈ 1 and
Gαβ ≈ Aαβ. Furthermore, it assumes that the moments m̃αβ are symmetric. Thus, from
Eq. (5.56) it is clear that l̃3 is

∫ h+

h− σ33 dξ3. Therefore, the Reissner-Mindlin assumption
of negligible transversal stresses yields l̃3 = 0. Consequently, using this in Eq. (5.118), χ
can be derived directly from the in-plane stretch. This yields the common result

χ =
ν(ε11 + ε22)

ν − 1
. (5.119)

Thus, Eq. (5.119) can be inserted in Eq. (5.114), which yields a relation of plane stress
type between the membrane stress resultants and the membrane strains. This yields

ñαβ =
D

det F̄
(AαβAγδ 2ν

1− ν + (AαγAβδ + AαδAβγ))εγδ, (5.120)
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which boils down to

ñαβ =
2D

det F̄(ν − 1)
(νε22 + ε11), (5.121)

in a local Cartesian coordinate system. This is the well-known formula from a plane
stress assumption in solids. The shell itself is not in an in-plane stress state, since the
transverse shear forces are not zero. Additionally, since the spatial change of χ is also
known, m̃3α is also directly derivable from the membrane strains. The spatial change of
χ reads, as the partial derivative of Eq. (5.119),

χ,α =
ν(ε11,α + ε22,α)

ν − 1
, (5.122)

and consequently

m̃3α =
νB

det F̄(ν − 1)
Aαβ(ε11,β + ε22,β). (5.123)

In the authorŠs humble opinion, the literature does not address the consequences of
Eq. (5.123) on a material law. There are some results, e.g., in Green et al. [Gre65], but it
only states, that the transverse shear moment m̃3α will remain indeterminate from an
equilibrium point of view, which was also derived here above. In the context of plane
stress, the apparent inconsistency arising from assuming negligible transversal strain
(χ) in the kinematic description, even when it exists in reality, is effectively addressed
by postulating negligible transversal stress (σ33). Then, the transversal strain can be
computed from the membrane strains via an appropriate post-process. This pivotal
insight was originally formulated by Mindlin [Min51]. In the speciĄc scenario of m̃3α, the
literature, to the best of the authorŠs knowledge, does not provide a resolution for the
omission of the corresponding strain χ,α. Nevertheless, it is conceivable that analogous
reasoning to the plane stress case may be applicable in this context. This issue is brieĆy
explored and discussed here.

The transverse shear moment in Eq. (5.123), m̃3α, is directly derivable from the membrane
strains. In particular, it is a function of the spatial derivatives of the membrane strains.
Thus, often in common applications for a Reissner-Mindlin shell formulation, it seems
reasonable to assume that m̃3α ≈ 0, since often no abrupt changes in the membrane
strains occur. Similar to the vanishing normal stress assumption σ33 = 0, m̃3α ≈ 0

seems to be violated, where the abrupt changing load is applied due to the induced local
transverse normal stress from equilibria. For σ33 ≈ 0, this violation rapidly decays for
slender shells in the vicinity of the load application and this seems also to be reasonable
for m̃3α ≈ 0 since it can be seen as a derived quantity inĆuenced by thickness change
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5 The Non-linear Reissner-Mindlin Shell Model

induced from transverse normal stress. If the simulated problem does not adhere to this
assumption, then the Reissner-Mindlin shell formulation is not appropriate.

Consequently, the same reasoning can be applied in this case as for the plane stress
assumption and this yields m̃3α ≈ 0 and χ,α can be computed from Eq. (5.122) by
a post-process. Thus, a Reissner-Mindlin shell formulation simply assumes t ∈ S2,
which yields χ = 0 and χ,α = 0 from the point of view of an implementation. The
corresponding real strain can then be computed from the membrane strains via an
appropriate post-process.

The previous paragraph can be summarized as follows:

1. The Reissner-Mindlin shell model assumes that the through-the-thickness stress
resultant component l̃3 is negligible.

2. It is reasonable to assume that the shear moment resultant m̃3α ≈ 0 is negligible
for common Reissner-Mindlin applications.

3. The thickness change and the shear curvature are directly derivable from the in-plane
strains through the material model.

4. Since thickness change is not a degree of freedom, Reissner-Mindlin shell formulations
pretend that the corresponding strain component is zero.

5. This is achieved by incorporating an inextensible director Ąeld.

The assumption that the transverse stress σ33 is negligible, follows, for slender shells,
directly from the vanishing of through-the-thickness stress resultant component l̃3. The
stress-based shell formulation has to enforce this constraint on the stress via condensation,
as done by inserting Eq. (5.118) into Eq. (5.114). This can be done analytically only
for simple material models, but not for general ones. The numerical satisfaction of this
constraint is the topic of the next section.

5.4 Stress Normal Constraint for Non-trivial Material

Laws

The following section describes how the vanishing transverse normal stress condition of the
Reissner-Mindlin shell model, can be tackled algorithmically. First, the straightforward
general approach found in the literature and discuss its shortcomings are discussed.
After this, a cure for this problem is presented by interpreting it from the perspective of
differential geometry. This leads to a new algorithm, which can solve the problem of the
vanishing transverse normal stress condition with fewer iterations and without premature
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5.4 Stress Normal Constraint for Non-trivial Material Laws

termination. Thus, yielding a more robust algorithm. Klinkel and Govindjee [KG02]
proposed a solution to the problem of the vanishing transverse normal stress condition.
It is done via iteratively solving for the stretch in the direction of the normal of the shell
from the assumption of vanishing transverse normal stress σ33. It is widely used because
it is implemented, for instance, in the open-source material library MUESLI [Por17] and
for some material laws in the commercial software LS-DYNA [Liv19]. The approach at
hand is quite basic but quite general and can be used for any material model. It also
boils down to a similar algorithm if stress rates and strain rates are used. The approach
of Klinkel and Govindjee [KG02] was used often earlier in industry and academia as
discussed in Schoenfeld and Benson [SB93]. Furthermore, there are other approaches,
such as Schoenfeld and Benson [SB93], Jetteur [Jet86], Simo and Taylor [ST86], and
Simo and Govindjee [SG88], which are restricted to special material laws.

5.4.1 Existing Algorithm

The basic iterative algorithm can be described as follows. To fulĄll the vanishing normal
stress condition, Klinkel and Govindjee [KG02] use a standard Newton iteration to
solve

S33(C33) = 0. (5.124)

All the equations are written in the total Lagrangian setting using the second Piola-
Kirchhoff stresses and the right Cauchy-Green strain tensor. This is without a loss of
generality since the arguments apply similarly to the other settings.

Considering the dependence of the second Piola-Kirchhoff stress tensor on the right
Cauchy-Green tensor S(C), with particular emphasis on the transverse stress S33(C).
Furthermore, given that only C33 is unknown, the functional relation S33(C33) is the sole
point of interest. Using a Newton scheme to solve this yields

S33
i+1 = S33

i +
∂S33(C33)

∂C33

∣
∣
∣
∣
∣
∣
i

∆C33 = S33
i + 2C33

i ∆C33
!

= 0 (5.125)

and this equation can be solved for the update

∆C33 = − S33
i

2C33
i

, (5.126)

which can then be used to update the stretch, such that,

C i+1
33 = C i

33 + ∆C33, (5.127)
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5 The Non-linear Reissner-Mindlin Shell Model

until ♣S33♣ < ϵ, where ϵ is a scalar, which denotes a user deĄned convergence tolerance.
As one can see if ∆C33 has a certain relation to C i

33 the update in Eq. (5.127) can
lead to a C i+1

33 that propagates to a violation of the positive deĄniteness of Ci+1. This
corresponds to a penetration of matter or mathematically speaking the deformation
gradient F is not positive deĄnite anymore. Thus, the deformation mapping is not a
homeomorphism anymore. This unphysical drawback is not academic and is not only
a problem for post-processing. This can be seen directly, if the algorithm of [KG02] is
used in combination with material laws that need to extract the stretches λI of the
deformation gradient F and these appear in C as the squared stretches λ2

I . Therefore,
if negative eigenvalues of C occur during the iteration referenced in Eq. (5.127) on the
preceding page, the iteration stops. This is because the stretches must be obtained by
taking the square root to derive λI , and passing complex numbers to the material routine
is not possible. One can consider workarounds by setting the negative squared stretches
to zero or one and hoping for good enough convergence. This is still an unsatisfactory
situation.

5.4.2 Proposed Algorithm

The algorithm of Section 5.4.1 neglects the geometric structure of the problem. This is
incorporated in the solution in the proposed algorithm. It cannot be found in the literature
for the problem of vanishing transverse normal stress, but the objects of differential
geometry to develop the algorithm can be found in the mathematical literature. This is
indicated at the appropriate places.

The right Cauchy-Green tensor C is an element of the space of symmetric positive deĄnite

matrices, i.e. we have C ∈ S3
++. This space of symmetric positive deĄnite matrices reads

Sn
++ = ¶X ∈ Rn×n ♣ XT = X ∧ X ≻ 0♢. (5.128)

Consequently, the following approach uses update routines that satisfy the geometric
constraint on C exactly to stay in the positive deĄnite (physical) regime. To interpret
everything in terms of differential geometry, it can be shown that S3

++ is a Riemannian
manifold, as deĄned in DeĄnition 15. To satisfy the geometric constraint exactly, the
algorithm uses retractions, as deĄned in Section 2.6. To be precise, a retraction in this
case is a function that maps an object from the tangent space TxS3

++ at the position
x ∈ S3

++ back onto the manifold. A general retraction is in this case a mapping

R : TCS3
++ → S3

++. (5.129)
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As discussed before, the update from Eq. (5.127) violates this constraint, since it does
not always map onto S3

++. The corresponding tangent space is given by

TCSn
++ = ¶η ∈ Rn×n ♣ ηT = η♢, (5.130)

which is the space of symmetric matrices.

This is naturally resolved by using a retraction. Two possible retractions are stated,
namely the exponential map of S3

++ and a second-order retraction. To have the notion
of an exponential map, Ąrst, a Riemannian metric has to be chosen for TS3

++. If the
induced metric g(ξ,η) = ⟨ξ,η⟩ = tr(ξη), given by an embedding space R3×3, is used, the
exponential map boils done to the standard update given by Eq. (5.127). But usually for
S3

++, or in fact for Sn
++, another Riemannian metric is used, namely

gC(ξ,η) = ⟨ξ,η⟩C = tr(C−1ξC−1η), ξ,η ∈ TCSn
++,C ∈ Sn

++. (5.131)

Here, for simpler notation, everything is written in matrix notation. Thus, AB is the usual
matrix product. This metric provides better results (faster convergence) for optimization
on Sn

++ than the induced metric, which is elaborated in e.g. Sra and Hosseini [SH15] and
Jeuris et al. [Jeu12]. Additionally, it circumvents the so-called swelling effect of averaging
symmetric positive deĄnite matrices, see [Yua20, Fig. 3]. Thus, this metric admits the
following property. Consider two matrices A,B of Sn

++ with the same determinant d.
The geodesic curve γ(t) ∈ Sn

++ connecting A and B derived from this metric satisĄes
detγ(t) = d. Thus, the geodesic connecting two matrices is a path with matrices with
the same determinant. This, would not be the case for the induced metric, since then
the geodesic would merely be a straight line in the embedding space Rn×n, namely
γ(t) = A+ t(B−A). For reference, the notion of geodesic curves is deĄned in Section 3.3
on page 57. The general exponential map is deĄned in Section 3.4 on page 60 and
retractions are deĄned in Section 2.6 on page 33. Nonetheless, the exponential map of
Sn

++ equipped with the metric from Eq. (5.131) yields the exponential map

Ci+1
exp = Ci exp((Ci)

−1
∆C), (5.132)

as derived in [Vis18].

As discussed before, the exponential map is not the only way to deĄne retractions, it may
also be handy to have another retraction. For a second-order retraction, it is possible to
deĄne

Ci+1
2nd = Ci + ∆C +

1

2
∆C (Ci)

−1
∆C. (5.133)
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5 The Non-linear Reissner-Mindlin Shell Model

Both retractions fulĄll the constraint that Ci+1 ∈ Sn
++ ∀∆C. The nomenclature of second-

order retraction is deĄned in Section 3.4 on page 60. The given second-order retraction
can be found in [Jeu12; Hua17] in the context of optimization on manifolds, not related
to the mechanical context given here.

Similar to [KG02], we want to use a Newton method, namely a Riemannian Newton
method. Since retractions are already discussed, we only need the Riemannian gradient.
Similar to the derivations of Section 2.7.4 on page 39, S3

++ can be embedded into
Sym(n). Thus, interpreting it as a Riemannian submanifold, we derive this object by
projecting a gradient deĄned in the vector space Sym(n). Consider a scalar-valued
function f̄ : Sym(n)→ R and the restriction f : Sn

++ → R, where Sym(n) is the space of
symmetric matrices. The Riemannian gradient is then given by

gradspd f = C gradsym f̄ (X)C, (5.134)

where (•)sym denotes the derivatives in the space of symmetric matrices Sym(n). This
means taking the symmetric part of a derivative deĄned in Rn×n. It can be derived via
the fact that the (Riemannian) gradient of a function times a tangent vector should be
equal to a directional derivative in the direction of the tangent vector in the embedding
space, see DeĄnition 16 on page 38. This yields

g(gradspd f ,ξ)C = Dξ f̄ (C)

tr(C−1 gradspd f C−1ξ) = tr(gradsym f̄ ξ),
(5.135)

which yields Eq. (5.134) via comparing both sides. This formula of Eq. (5.134) is also
given in [Jeu12] without derivation.

Since now all ingredients are given, they can be applied to the problem of Ąnding a root
of Eq. (5.124). Since C is considered Ąxed, except for the entry C33, the increment ∆C

is nearly empty and has also only one non-zero component in the (3,3)-slot. Therefore,
all values stay the same, except the (3,3)-slot. We get for the different retractions

C i+1
33,exp =C i

33 +
det Ci(exp

∆C33m12
det Ci −1)

m12

, (5.136)

C i+1
33,2nd =C i

33 + ∆C33 +
(∆C33)

2m12

2 det Ci
, (5.137)

with m12 = C i
11C

i
22 − (C i

12)
2, which is the minor of the (3,3)-block of C. The update

∆C33 for this case is also given by Eq. (5.126), since it can be shown, that the right
Cauchy-Green tensors in Eq. (5.134) cancel in the metric deĄnition Eq. (5.131), if the
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5.4 Stress Normal Constraint for Non-trivial Material Laws

update is derived via

Si+1 = Si + ⟨(gradspd f )
i
,∆C⟩C. (5.138)

5.4.3 Model Problem

Consider for the following example that the tensors are all deĄned in an appropriate
Euclidean basis. Consider a Neo-Hookean energy as given by

W (C) =
µ

2
(tr C− 3− 2 ln J ) +

λ

2
(ln J )2, (5.139)

where a common choice of the volumetric contribution was used, see [JW08, Eq. 6.27].
J = det F or here as function of C, it is given via J =

√
det C, since C = FTF. The

derivatives, i.e., the stresses and tangent moduli can be derived as

S(C) = µ(I−C−1) + λ ln JC−1. (5.140)

The corresponding tangent reads

C(C) = λC−1 ⊗C−1 + 2(µ− λ ln J )I , (5.141)

with I = IIJKLEI ⊗ EJ ⊗ EK ⊗ EL with the components

IIJKL =
1

2
((C−1)

IK
(C−1)

JL
+ (C−1)

IL
(C−1)

JK
). (5.142)

Consider an arbitrarily chosen deformation state of an integration point of the Reissner-
Mindlin shell with the following right Cauchy-Green tensor

C =








1.1 0.1 0.5

0.1 1.2 0.2

0.5 0.2 C33








EI ⊗ EJ . (5.143)

Starting from this state, the algorithm from Eq. (5.126) is used to calculate the Newton
step. If this is then updated using the retraction from literature Eq. (5.127) or with one
of the two proposed retractions Eqs. (5.136) and (5.137) different iteration histories are
obtained for the convergence to S33 ≈ 0. This is depicted in Fig. 5.7. It considers the
iteration as converged if ♣S33♣ < 1e−10. The x-axis corresponds to the initial value of C33,0

and the y-axis shows the needed number of iterations to reach convergence. Additionally,
the border, where C is not positive deĄnite anymore, for a given C33,0 is also depicted in
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Figure 5.7: Number of iterations needed to reach ♣S33♣ < 1e−10 as function of the
initial value C33,0. The three different retractions from Eqs. (5.127), (5.136)
and (5.137) are shown. The standard approach from Eq. (5.127) is denoted
by Ş1st orderŤ. The red vertical line indicates, where the tensor of Eq. (5.143)
looses positive deĄniteness.

red. This border is for Eq. (5.143) approximately at C33 ≤ 0.247. If the initial value is
chosen smaller, complex values for S33 are obtained and the algorithm is considered as
failed. For larger values, the exponential map Eq. (5.136) and the second-order retraction
Eq. (5.137) behave superior to the retraction Eq. (5.127) proposed in [KG02]. They
yield fewer iterations and have a wider domain of convergence. For C33,0 > 2.4, the
second-order retraction does not converge, despite being faster for some smaller initial
values, in comparison to the exponential map. In contrast to the other retraction methods,
the exponential map does always converge. Hence, in this example, the exponential map
and the second-order retraction are not only more stable but also converge with fewer
iterations in comparison to the existing algorithm. Thus, the higher computational effort
of Eq. (5.136) can be considered to be a good investment.

The failure of the linear retraction from Eq. (5.127) can be simply explained with Fig. 5.8.
It shows the function S33(C33) and its linearization at C33,0 = 1.9 (the red square) in
dashed black. This is then solved using Eq. (5.126) and then updated via Eq. (5.127),
which yields the value for C33 indicated by the red circle. This yields an indeĄnite tensor
C and the solution procedure fails since the new point yields a point left of the vertical
black line, which indicates where Eq. (5.143) loses positive deĄniteness. ThatŠs why in
Fig. 5.7 the linear retraction from Eq. (5.127) fails for initial values C33,0 larger than
approximately 1.9. The red triangle indicates the value of C33 after the Ąrst update with
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Figure 5.8: The function S33(C33) in black and its linearization in dash-dotted black.
The point of linearization C33,0 = 1.9 is indicated with the red square. The
Ąrst iterate of Eq. (5.126) using Eq. (5.127) yields the value for C33 at the
red circle. The red vertical line indicates, where Eq. (5.143) loses positive
deĄniteness. The red triangle indicates the value of C33 after the Ąrst iterate
updated with the exponential map from Eq. (5.136).

the exponential map from Eq. (5.136), which is closer to the solution and does not violate
positive deĄniteness.

5.4.4 Conclusion

The proposed algorithm solves the problem of fulĄlling zero stress constraints found in
structural models. It circumvents the failure and yields fewer iterations in comparison
to the standard approach found in the literature. It can still be chosen between the
exponential and the second-order retraction. A similar conclusion can be drawn for
material models that directly involve the deformation gradient F, which is an element
of the set of positive deĄnite matrices PD(3). Here, the violation of this constraint
can also lead to termination if the material routine dictates the evaluation of terms
like det F−2/3 or ln det F. In this case, the problem can be transformed to the positive
deĄnite matrices SO(3) by C = FTF. Furthermore, a similar procedure can be used
for incompressible materials with det F = 1 or det C = 1 with different tangent spaces
and different retractions deĄnitions. Beam models, where two zero stress constraints
are present, can be treated similarly. The author assumes that this leads to similar
improvements.
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5.5 Variation, Linearization and Discretization

The following section is devoted to the derivation of the algebraic quantities, namely the
Riemannian algebraic stiffness matrix and the Riemannian algebraic residual vector. On
this path, the Euclidean algebraic stiffness matrix and the Euclidean algebraic residual

vector are derived as intermediate quantities. But before this, a template for the derivation
of the algebraic quantities is given. This is constructed from deriving the Euclidean weak
form and its linearization. The discretization of the latter quantities is then done by
using the projection-based interpolation scheme. This provides quantities living in a six-
dimensional space per node, which are then projected onto the Ąve-dimensional manifold
R3 × S2. This yields the Riemannian algebraic stiffness matrix and the Riemannian

algebraic residual vector

5.5.1 Euclidean Variation and Linearization of the Continuous

Energy

The total potential energy functional depends on the function of the midsurface position
φ ∈ X(R3) and the function of the director Ąeld t ∈ X(S2), as in Eq. (5.8) on page 93.
Therefore, the functional Π̂ takes values from the non-linear manifold M. The total
potential energy Π̂ :M→ R reads

Π̂(Φ̂) =
∫

B0

ψ̄(E(ξ,ξ3)) dV − Π̂ext(Φ̂). (5.144)

Here, Φ̂ ∈ M = X(M ) is an element of the continuous non-linear conĄguration space.
Furthermore, ψ̄ denotes a generic strain energy volume density functional. Π̂ext indicates
an arbitrary but linear external load functional.

As elaborated below in Section 6.1.3 and in [MB22], it is sufficient to derive all the
quantities in the continuous Euclidean embedding space Ąrst and then obtain the
correct variation and linearization by proper discretization and projection afterward.
Consequently, the embedded version of Φ̂ = [φ̂ t̂]

T
is introduced as

Φ =

[

φ

t

]

. (5.145)

We have Φ ∈ ME = X(ME), where ME = R3 × R3, i.e. a function living in a vector
space. Furthermore, we have the function Π :ME → R, which takes the corresponding
arguments from the embedding space. Formally, this is done using an inclusion map, as
deĄned in Eq. (2.6) on page 18, but this notion is not dragged along here.
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The constitutive relations from the strain energy density ψ̄ resulting from a standard
Coleman-Noll procedure [CN63] read in terms of the Green-Lagrangian strain and second
Piola-Kirchhoff stress

S =
∂ψ̄(E)

∂E
. (5.146)

The Ąrst Euclidean variation of the potential energy reads

δΠ(Φ) =
∂Π(Φ + ϵδΦ)

∂ϵ

∣
∣
∣
∣
∣
∣
ϵ=0

= G(Φ; δΦ) =
∫

BC
0

∂ ˆ̄ψ

∂EAB

δEAB dV =
∫

BC
0

SAB
δEAB dV,

∀δΦ ∈W
l,q
k,p(Ω,ME).

(5.147)

Here, Wl,q
k,p(Ω,ME) denotes a template Sobolev space, depends on the exact deĄnition of

the strain energy density ψ̄, ensuring that the integration in Eq. (5.144) is well-deĄned.
The subscripts and superscripts k, p and l,q are the order of the derivatives and the order
of the integrability of the functions of the midsurface position and the director Ąeld,
respectively.

For the derivation of the weak form above, the Gâteaux derivative of the potential energy
functional was used. In the current notation, the energy Π(Φ), has to be understood as
a continuous functional, taking functions as arguments. The term Euclidean is supposed
to indicate that the function takes arguments from the embedding space ME . Thus,
everything takes place in the function space that is also a vector space, Wl,q

k,p(Ω,ME).
This allows the usage of the vector space deĄnition of the Gâteaux derivative, without
introducing some generalization to non-linear spaces.

The Green-Lagrangian strains in the convective coordinate system are deĄned in Sec-
tion 5.1.4 on page 99, thus the Ąrst variation reads, with these kinematics

G(Φ; δΦ) =
∫

B0

SAB
δEAB dV =

∫

B0

Sαβ
(

δεαβ + 2ξ3
δκαβ + (ξ3)

2
δραβ

)

+ Sα3
δγα dV.

(5.148)
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The variations of the different strain components read

δεαβ =
1

2
(δaα · aβ + aα · δaβ),

δκαβ =
1

2
(δaα · t,β + δt,α · aβ + aα · δt,β + t,α · δaβ),

δραβ =
1

2
(δt,α · t,β + t,α · δt,β),

γα = δa,α · t + a,α · δt.

(5.149)

These quantities can be rearranged according to Voigt notation given for the strains in
Eq. (5.31) on page 100 as

δεV =







δε11

δε22

2ε12






, δκV =







δκ11

δκ22

2δκ12






, δρV =







δρ11

δρ22

2δρ12






, δγV =

[

δγ1

δγ2

]

,

δEV =

[

δεV + 2ξ3
δκV + (ξ3)

2
δρV

δγV

]

.

(5.150)

Introducing the quantities

Bmm =








aT
1

∂
∂ξ1

aT
2

∂
∂ξ2

aT
1

∂
∂ξ2 + aT

2
∂

∂ξ1








3×3

, Bbm =








tT
,1

∂
∂ξ1

tT
,2

∂
∂ξ2

tT
,1

∂
∂ξ2 + tT

,2
∂

∂ξ1








3×3

, (5.151)

Bsm =




tT ∂

∂ξ1

tT ∂
∂ξ2





2×3

, Bsd =




aT

1

aT
2





2×3

, (5.152)

the continuous strain-displacement differential operator of the Euclidean problem is
obtained as

B =





Bmm + ξ3Bbm ξ3(Bmm + ξ3Bbm)

Bsm Bsd





5×6

, (5.153)

or using the base vectors gi of the shellŠs body, yields

Bgm = Bgb =








gT
,1

∂
∂ξ1

gT
,2

∂
∂ξ2

gT
,1

∂
∂ξ2 + gT

,2
∂

∂ξ1








3×3

. (5.154)
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The strain-displacement differential operator of the Euclidean problem can be rewritten
as

B =





Bgm ξ3Bgb

Bsm Bsd





5×6

. (5.155)

The Ąrst superscript denotes the corresponding strain: ŞmŤ for membrane, ŞbŤ for bending,
ŞsŤ for shear, and ŞgŤ, where a mix of membrane and bending strain is at play. The second
superscript denotes the variables for which the variation takes place: ŞmŤ for midsurface
displacement and ŞdŤ for the director. The vector of strain variations is δEV = BδΦ. In
line with this notation, the following notation for the stress is introduced,

SV = [S11 S22 S12 S13 S23]
T
, (5.156)

according to the strain variation deĄnition Eq. (5.150). The Euclidean weak form can be
written, by inserting B and SV into Eq. (5.147), as

G(Φ,δΦ) =
∫

B0

[B(Φ)δΦ] · SV dV

∫

B0

δEV(Φ) · SV dV. (5.157)

Linearization of the Continuous Euclidean Weak Form

Linearization of a weak form living in a vector space is a standard exercise in Ąnite
element analysis. With the Gâteaux derivative, we obtain the following expression for
the Euclidean linearization of the weak form

D∆ΦG(Φ,δΦ) =
∫

B0

[D∆ΦBδΦ]
︸ ︷︷ ︸

geometric part

·SV

+ BδΦ · [D∆ΦSV]
︸ ︷︷ ︸

material part

dV, ∆Φ ∈W
l,q
k,p(Ω,ME).

(5.158)

The two individual contributions resulting from the application of the product rule of dif-
ferentiation represent the classical separation of the tangent stiffness into a geometric and
a material part. In the following derivations, these contributions are treated separately.
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Material Part

The material part can be straightforwardly computed as

[B(Φ)δΦ] ·D∆ΦSV(EV(Φ)) = [B(Φ)δΦ] · ∂SV(EV(Φ + ϵ∆Φ))

∂ϵ

∣
∣
∣
∣
∣
∣
ϵ=0

=

δΦT
1×6BT

6×5C5×5B5×6∆Φ6×1.

(5.159)

The material tangent moduli are deĄned as

C5×5 =
∂SV

∂EV

. (5.160)

Geometric Part

By computing the Gâteaux derivative, the geometric part is obtained as

¶D∆ΦBδΦ♢ · S̃ =

{

∂B(Φ + ϵ∆Φ)

∂ϵ

∣
∣
∣
∣
ϵ=0

δΦ

}

· S̃. (5.161)

which, in turn, can be rewritten as

¶D∆ΦBδΦ♢ · S̃ = δΦT [kg]∆Φ

=

[

∆δε+ 2ξ3
∆δκ+ (ξ3)

2
∆δρ

∆δγ

]

· SV,
(5.162)

to implicitly deĄne kg, which is the integrant of the quantity that will lead to the geometric
stiffness matrix. Furthermore, the linearization of the strain variations are given by

∆δεαβ =
1

2
(δaα · ∆aβ + ∆aα · δaβ),

∆δκαβ =
1

2
(δaα · ∆t,β + δaβ · ∆t,α + ∆aα · δt,β

+ ∆aβ · δt,α + aα · ∆δt,β + aβ · ∆δt,α),

∆δραβ =
1

2
(∆δt,α · t,β + ∆t,α · δt,β + δt,α · ∆t,β + t,α · ∆δt,β),

∆δγα = δaα · ∆t + ∆aα · δt + aα · ∆δt.

(5.163)
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Then, this yields as linearization of the weak form

D∆ΦG(Φ,δΦ) =
∫

BC
0





δφ

δt





T 

BTCB
︸ ︷︷ ︸

material

+ kg
︸︷︷︸

geometric









∆φ

∆t



 dV. (5.164)

By discretization, this quantity would yield the Euclidean algebraic stiffness matrix of
an extensible director formulation living in R3. This would result in a six-parameter
formulation but without any stiffness associated with the thickness stretch, due to the
missing corresponding strain in Eq. (5.29) on page 100. The reduction to a Ąve-parameter
model is done as follows: First, Eqs. (5.157) and (5.164) are discretized and the Euclidean

algebraic Hessian and the Euclidean algebraic residual are extracted. These are then
projected by exploiting the fact that the unit sphere of the nodal directors can be
embedded into R3. This yields at the end of the next section the Riemannian algebraic

stiffness matrix and Riemannian algebraic residual, which can be implemented in a Ąnite
element code.

5.5.2 Discretization

In the previous section, the weak form and its linearization were shown for the continuous
Euclidean energy from Eq. (5.144). In this section, a speciĄc discretization for the non-
linear director Ąeld is introduced, and simultaneously, the canonical discretization for
the midsurface interpolation is presented.

Interpolation, Variation, and Linearization of the Midsurface Position

At Ąrst, we present the quantities of the midsurface interpolation. These can be trivially
obtained by the standard interpolation procedure

φh
0 =

n∑

I=1

N IφI ,0, φ
h
0,α = Ah

α =
n∑

I=1

N I
,αφI ,0,

φh =
n∑

I=1

N IφI , φh
,α = ah

α =
n∑

I=1

N I
,αφI ,

δφh =
n∑

I=1

N I
δφI , δφh

,α = δah
α =

n∑

I=1

N I
,αδφI ,

∆δφh = 0 ∆δφh
,α = ∆δah

α = 0,

(5.165)

where the superscript h denotes discrete quantities, i.e., discrete functions. Here, N I

is the basis function of node I . The linearization of the variation ∆δφh of the Ąeld φh
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5 The Non-linear Reissner-Mindlin Shell Model

vanishes since the variation does not depend on the nodal values φI . This is different for
the director Ąeld t, which will be treated next.

Interpolation, Variation, and Linearization of the Director Field

In contrast to the interpolation of the midsurface position, for the director Ąeld, a
non-linear interpolation scheme to ensure unit length is needed. Here, only the projection-
based version is deĄned, other choices are introduced in Section 6.3 on page 167. The
projection-based interpolation again exploits, in general, an embedding space, since it
interpolates linearly in the embedding space and then projects back onto the unit sphere.
Nevertheless, Ąrst, the ad hoc deĄnition of the nodal reference directors t0,I is introduced.
This initialization step is done according to the algorithm proposed in [Dor13]. Then,
the interpolated reference director Ąeld is deĄned as

th
0 = P0(w

h
0) =

wh
0

♣♣wh
0 ♣♣
, wh

0 =
n∑

I=1

N I t0,I ,

th
0,α =

∂P0(w
h
0)

∂wh
0

∂wh
0

∂ξα
=

I− th
0 ⊗ th

0

♣♣wh
0 ♣♣

n∑

I=1

N I
,αt0,I = P

′
0

n∑

I=1

N I
,αt0,I ,

(5.166)

where P0(w
h
0) denotes the closest point projection onto the unit sphere, which simply

yields the normalized vector wh
0/♣♣wh

0 ♣♣. The derivative of the closest point projection
w.r.t. to its argument reads

∂P0(w
h
0)

∂wh
0

=
∂

wh
0

(wh
0 ·wh

0)
1/2

∂wh
0

=
I

♣♣wh
0 ♣♣
− wh

0 ⊗wh
0

♣♣wh
0 ♣♣3

=
I

♣♣wh
0 ♣♣
− th

0 ⊗ th
0

♣♣wh
0 ♣♣

. (5.167)

Thus, the only remaining potential error for the reference interpolation of the director is
its angle deviation from the surface normal. At this point, it is worth noting, that for
non-interpolatory ŞinterpolationsŤ the nodal directors do in general not have unit length

Ů this is only true for the interpolated director. Projection-based interpolation for the
director is applied. Thus, we introduce the projection-based interpolation for the current
director Ąeld as

wh =
n∑

I=1

N I tI , t
h = P(wh) =

wh

♣♣wh♣♣ ,

th
,α =

I− th ⊗ th

♣♣wh♣♣
n∑

I=1

N I
,αtI = P

′
n∑

I=1

N I
,αtI .

(5.168)

In the following, for a more compact notation, the superscript h, which denotes discretized
quantities, is omitted.
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5.5 Variation, Linearization and Discretization

The following operators are introduced:

P
′ =

I− t⊗ t

♣♣w♣♣ , P
′
0 =

I− t0 ⊗ t0

♣♣w0♣♣
,

Qα =
1

♣♣w♣♣2
[

(t ·w,α) (3t⊗ t− I)− 2 sym(w,α ⊗ t)
]

,

S(v) =
1

♣♣w♣♣2
[

(t · v) (3t⊗ t− I)− 2 sym(v⊗ t)
]

,

W
I
α = QαN I + P

′N I
,α,

X α(v) =
2 sym

♣♣w♣♣3
[

3(t ·w,α)[v⊗ t +
1

2
(v · t)(I− 5t⊗ t)] + 3[

1

2
(v ·w,α)(t⊗ t− 1

3
I)

+ (v · t)w,α ⊗ t]− v⊗w,α

]

,

(5.169)

which are shortcuts to conveniently write the following director derivatives. Consequently,
the variation and linearization of the director quantities can be derived as

δt =
n∑

I=1

∂t

∂tI

δtI = P
′

n∑

I=1

N I
δtI ,

δt,α =
n∑

I=1

∂t,α

∂tI

δtI =
n∑

I=1

W
I
αδtI ,

∆t =
n∑

I=1

∂t

∂tI

∆tI = P
′

n∑

I=1

N I
∆tI ,

∆t,α =
n∑

I=1

∂t,α

∂tI

∆tI =
n∑

I=1

W
I
α∆tI

(5.170)

and the linearization of the variation reads

∆δt =
n∑

I=1

n∑

J=1

∆tJ

∂2t

∂tJ∂tI

δtI = ∆δtkek

=
n∑

J=1

n∑

I=1

δt l
J (P ′′)

k

ljN
JN I

∆t j
I ek ,

∆δt,α =
n∑

I=1

n∑

J=1

∆tJ

∂2t,α

∂tJ∂tI

δtI = (∆δt,α)k
ek

=
n∑

I=1

n∑

J=1

δt l
J [N I N J (P ′′′)

k

lmjw
m
,α + (P ′′)

k

lj(N
I
,αN J + N I N J

,α)]∆t j
I ek .

(5.171)
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5 The Non-linear Reissner-Mindlin Shell Model

The partial derivatives of the projector onto the unit sphere P are summarized in
Appendix A.3 on page 202. Furthermore, in the Ąrst derivative P

′ only the numerator is
a projection matrix, since (P ′)

n
= 1

♣♣w♣♣n
P

′ instead of (P ′)
n

= P
′.

Additionally, the quantities of Eq. (5.171) always occur in a scalar product with aα or
t,α. They can be rewritten using the dummy vector v, that represents aα or t,α, which
yields

v · ∆δt =
n∑

J=1

n∑

I=1

δtJS(v)N JN I
∆tI ,

v · ∆δt,α =
n∑

I=1

n∑

J=1

δtJ [N JN I X α(v) + S(v)(N I
,αN J + N I N J

,α)]∆tI .

(5.172)

5.6 Element Vectors and Matrices

Now, with the interpolations of the midsurface Ąeld and the unit director Ąeld at hand,
the Euclidean continuous weak form and the Euclidean continuous tangent operator from
Eqs. (5.157) and (5.164) can be discretized. This yields the Euclidean algebraic residual
and Euclidean algebraic stiffness matrix, which could be implemented directly. Since the
stiffness matrix still has a non-trivial kernel, due to a missing stiffness in the thickness
direction, these Euclidean quantities are transformed and expressed through a tangent
space basis to obtain the Riemannian Hessian and Riemannian gradient with the correct
dimensionality1. More details on this procedure are discussed in Section 6.1. Thus, Ąrst,
the Euclidean algebraic quantities are presented, and afterward, the base change and the
projections to obtain the Riemannian quantities are applied.

5.6.1 Internal Forces and Material Stiffness Matrix

Using the aforementioned deĄnitions for the interpolation, the Euclidean algebraic strain-
displacement operator Ů resulting from the continuous one from Eq. (5.153) Ů for a

1The Riemannian gradient or Hessian can be used as notational surrogates, even in scenarios where no
energy is present. In such cases, the weak form simpliĄes to a tangent vector Ąeld, and the stiffness
matrix is equivalently described as the Riemannian Jacobian.
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generic node I can be given as

BI =





















gT
1 N I

,1

gT
2 N I

,2

gT
1 N I

,2 + gT
2 N I

,1








ξ3








gT
1 W

I
1

gT
2 W

I
2

gT
1 W

I
2 + gT

2 W
I
1











tTN I

,1

tTN I
,2








aT

1 N I

aT
2 N I



P
′














5×6

. (5.173)

Then with the fundamental lemma of variational calculus, the Euclidean algebraic internal
forces read

Feuk
int,I =

∫

B0

BT
I SV dV (5.174)

and the material part of the Euclidean stiffness matrix is

Keuk
mat,JI =

∫

B0

BT
J CBI dV. (5.175)

5.6.2 Geometric Stiffness Matrix

The Euclidean, continuous geometric stiffness matrix deĄned in Eq. (5.162) depends on
the linearization of the variation of the continuous strain. These are given in Eq. (5.163).
They are discretized by plugging in the midsurface and director discretization from
Section 5.5.2, respectively.

Contribution from Membrane Strain

For the membrane strain, this yields

∆δεV : [S11 S22 S12]
T

=
1

2
(δaα · ∆aβ + ∆aα · δaβ)Sαβ

=
n∑

J=1

n∑

I=1

δφJ [S11N J
,1N I

,1 + S22N J
,2N I

,2

+ S12(N J
,1N I

,2 + N J
,2N I

,1)]I3×3∆φI

=
n∑

J=1

n∑

I=1

δφJN̂
JI
∆φI ,

(5.176)
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using the abbreviation

N̂
JI

= [S11N J
,1N I

,1 + S22N J
,2N I

,2 + S12(N J
,1N I

,2 + N J
,2N I

,1)]I3×3. (5.177)

The membrane contribution to the geometric stiffness matrix is then given by

∆δε : [S11 S22 S12]
T

=
n∑

J=1

n∑

I=1





δφJ

δtJ





T





N̂
JI

03×3

03×3 03×3










∆φI

∆tI



 . (5.178)

Contribution from Curvature

The linearization of the variation of the curvature reads

∆δκ : [S11 S22 S12]
T

=
1

2
(δaα · ∆t,β + δaβ · ∆t,α + ∆aα · δt,β

+ ∆aβ · δt,α + aα · ∆δt,β + aβ · ∆δt,α)Sαβ

=
1

2

n∑

J=1

n∑

I=1

[N J
,αδφJ ·W I

β∆tI + N J
,βδφJ ·W I

α∆tI

+ N J
,α∆φJ ·W I

βδtI + N J
,β∆φJ ·W I

αδtI

+ δtJ [N JN I (X αβ + X βα)

+ Sα(N I
,βN J + N I N J

,β)

+ Sβ(N I
,αN J + N I N J

,α)]∆tI ]Sαβ.

(5.179)

Using the abbreviations

N IJ
1 = N I

,1N
J + N J

,1N I ,

N IJ
2 = N I

,2N
J + N J

,2N I ,

M̂
JI

= N J
,1W

I
1M̃ 11 + N J

,2W
I
2S22 + (N J

,1W
I
2 + N J

,2W
I
1)S12,

M̂
IJ

= W
J
1 N I

,1S
11 + W

J
2 N I

,2S
22 + (WJ

2 N I
,1 + W

J
1 N I

,2)S
12,

M̂
JI

X = N JN I (S11X 1(a1) + S22X 2(a2) + (X 2(a1) + X 1(a2))S
12),

M̂
JI

S = S(a1)N IJ
1 S11 + S(a2)N IJ

2 S22 + [S(a1)N IJ
2 + S(a2)N IJ

1 ]S12,

(5.180)
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the bending moment contribution to the geometric stiffness matrix reads

∆δκ : [S11 S22 S12]
T

=

n∑

J=1

n∑

I=1





δφJ

δtJ





T





03×3 M̂
JI

M̂
IJ

M̂
JI

X + M̂
JI

S










∆φI

∆tI



 .
(5.181)

Contribution from Second-Order Curvature

The linearization of the variation of the second-order curvature, reads

∆δρ : [S11 S22 S12]
T

=
1

2
(∆δt,α · t,β + ∆t,α · δt,β + δt,α · ∆t,β + t,α · ∆δt,β)Sαβ

=
1

2
(

n∑

I=1

n∑

J=1

δtJ [N JN I X α(t,β) + S(t,β)(N I
,αN J + N I N J

,α)]∆tI

+
n∑

I=1

W
I
α∆tI ·

n∑

J=1

W
J
βδtJ +

n∑

J=1

W
J
αδtJ ·

n∑

I=1

W
I
β∆tI

+
n∑

I=1

n∑

J=1

δtJ [N JN I X β(t,α) + S(t,α)(N I
,βN J + N I N J

,β)]∆tI )Sαβ,

(5.182)

∆δρ : [S11 S22 S12]
T

=
1

2
(∆δt,α · t,β + ∆t,α · δt,β + δt,α · ∆t,β + t,α · ∆δt,β)Sαβ

=
1

2
(

n∑

I=1

n∑

J=1

δtJ [N JN I X α(t,β) + S(t,β)(N I
,αN J + N I N J

,α) + (WJ
β)

T
W

I
α + (WJ

α)
T

W
I
β

+ [N JN I X β(t,α) + S(t,α)(N I
,βN J + N I N J

,β)]]∆tI )Sαβ.

(5.183)

Using the abbreviations

M̂
JI

X ρ
= N JN I (X 1(t,1)S

11 + X 2(t,2)S
22 + (X 1(t,2) + X 2(t,1))S

21),

M̂
JI

W = (WJ
1 )

T
W

I
1S11 + (WJ

2 )
T

W
I
2S22 + ((WJ

1 )
T

W
I
2 + (WJ

2 )
T

W
I
1)S12,

M̂
JI

Sρ
= S(t,1)N IJ

1 S11 + S(t,2)N IJ
2 S22 + (S(t,2)N IJ

1 + S(t,1)N IJ
2 )S12,

(5.184)
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the second-order bending contribution to the geometric stiffness matrix reads

∆δρ : [S11 S22 S12]
T

=

n∑

J=1

n∑

I=1





δφJ

δtJ





T





03×3 03×3

03×3 M̂
JI

X ρ
+ M̂

JI

W + M̂
JI

Sρ










∆φI

∆tI



 .
(5.185)

Contribution from Transverse Shear

Similarly, the contribution from transverse shear reads

∆δρ :: [S13 S23]
T

= [δaα · ∆t + ∆aα · δt + aα · ∆δt]Sα3

=
n∑

J=1

n∑

I=1

[N J
,αδφJ ·P ′N I

∆tI + N I
,α∆φI ·P ′N J

δtJ + δtJ (Sα)∆tI ]Sα3,

=
n∑

J=1

n∑

I=1

δφJ ·P ′(N J
,1N I S13 + N J

,2N I S23)∆tI + ∆φI ·P ′(N I
,1N

JS13 + N I
,2N

JS23)δtJ ,

+ δtJN J (S(a1)S
13 + S(a2)S

23)N I
∆tI .

(5.186)

This can be rearranged using the following shortcuts

Q̂
JI

= P
′N I (N J

,1S13 + N J
,2S23),

Q̂
IJ

= P
′N J (N I

,1S
13 + N I

,2S
23),

Q̂
JI

S = N JN I (S1S
13 + S2S

23).

(5.187)

The corresponding contribution to the geometric stiffness matrix is

∆δρ : Q =
n∑

J=1

n∑

I=1





δφJ

δtJ





T





03×3 Q̂
JI

Q̂
IJ

Q̂
JI

S










∆φI

∆tI



 . (5.188)

Finally, the Euclidean geometric stiffness contribution for a pair of nodes I and J is
given by

Keuk
geo,JI =

∫

BC
0






N̂
JI

Q̂
JI

+ ξ3M̂
JI

Q̂
IJ

+ ξ3M̂
IJ

Q̂
JI

S + ξ3(M̂
JI

X + M̂
JI

S ) + (ξ3)
2
(M̂

JI

X ρ
+ M̂

JI

W + M̂
JI

Sρ
)




 dV.

(5.189)
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This results in the total Euclidean algebraic stiffness matrix, which is the sum of the
material stiffness matrix from Eq. (5.175) and the geometric stiffness matrix from
Eq. (5.189) as

Keuk
JI = Keuk

mat,JI + Keuk
geo,JI . (5.190)

Projecting the Euclidean Residual and Hessian

As stated at the beginning of this section, the Euclidean residual force vector and the
Euclidean stiffness matrix are not the Ąnal results, since they still need to be projected
onto the tangent space of the manifold of the conĄguration space. More formal reasoning
for this procedure is given in Section 6.1.3 on page 153. For the internal forces, which are
in this case the Riemann gradient, Eq. (2.83) on page 40, is applied with a subsequent
tangent basis transformation, which cancels the projection matrix from Eq. (2.83) on
page 40. The procedure for the correct stiffness matrix is similar, which is the Riemannian
Hessian, where the results of Example 12 on page 66 can be applied to the node pair I

and J . The residual force vector does depend on the internal forces from Eq. (5.174) and
the external forces Fext. Nevertheless, assuming the external load as Feuk

ext , and inserting
the Euclidean internal forces from Eq. (5.174), the residual vector is obtained as

Reuk
I = gradI Π̄(Φ) =

[

F
euk,φI

int

F
euk,tI

int

]

−
[

F
euk,φI
ext

F
euk,tI
ext

]

. (5.191)

Since the external moment load vector lies in the tangent space of tJ (for conservative
loading), this results in

tT
J

∂Π̄

∂tJ

= tT
J (Feuk,tJ

int − F
euk,tJ
ext ) = tT

J F
euk,tJ

int , (5.192)

since tT
J F

tJ
ext = 0. The stiffness matrix thus further simpliĄes, because it is now independent

of the external loads.

The following tangent space base matrix,

ΛΦI =





I3×3 03×2

03×3 ΛI





6×5

. (5.193)

is introduced, which consists of the tangent base of R3, which is the identity, and the
tangent base of S2 at node I , which is ΛI . With Eqs. (5.175), (5.189) and (5.191) to (5.193)
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5 The Non-linear Reissner-Mindlin Shell Model

the reduced Riemannian stiffness matrix, can Ąnally be written as

K
JI ,riem
5×5 = (ΛT

ΦJ )5×6

∫

B0

[BTCB]6×6 dVΛΦI 6×5

︸ ︷︷ ︸

KJI,eu,riem

+ (ΛT
ΦJ )5×6

∫

B0






N̂
JI

Q̂
JI

+ ξ3M̂
JI

Q̂
IJ

+ ξ3M̂
IJ

Q̂
JI

S + ξ3M̂
JI

1,tt + (ξ3)
2
M̂

JI

2,tt






6×6

dV ΛΦI 6×5

︸ ︷︷ ︸

KJI,g,riem

−




03×3 03×2

02×3 tT
J F

euk,tJ

int I2×2δIJ





︸ ︷︷ ︸

KJI,g2,riem

,

(5.194)

where the following shortcuts were used:

M̂
JI

1,tt = M̂
JI

X + M̂
JI

S , and M̂
JI

2,tt = M̂
JI

X ρ
+ M̂

JI

W + M̂
JI

Sρ
. (5.195)

With the reduced discrete Riemannian strain-displacement operator of node I

Briem
I = BI ΛΦI

=





















gT
1 N I

,1

gT
2 N I

,2

gT
1 N I

,2 + aT
2 N I

,1







ξ3








gT
1 W

I
1

gT
2 W

I
2

gT
1 W

I
2 + gT

2 W
I
1








ΛI




tTN I

,1

tTN I
,2








aT

1 N I

aT
2 N I



P
′ΛI














5×5

(5.196)

the stiffness matrix reads

K
JI ,riem
5×5 =

∫

B0

B
riem,T
J CBriem

I

+






N̂
JI

(M̂
JI

+ Q̂
JI

)ΛI

ΛT
J (M̂

IJ
+ Q̂

IJ
) ΛT

J (Q̂
JI

S + ξ3M̂
JI

1,tt + (ξ3)
2
M̂

JI

2,tt)ΛI − tT
J F

euk,tJ

int I2×2δIJ




 dV.

(5.197)

The contribution tT
J F

euk,tJ

int I2×2δIJ is not included in similar formulations found in the
literature, except for [Sim90a], where it can be found as the Ąnal term in Equation (B.5)
and Chapter C.2.4 (v) Geometric-diagonal. It is important to emphasize that this
contribution does not vanish at equilibrium, as only the tangential part of the residual
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5.6 Element Vectors and Matrices

disappears. Consequently, neglecting this term would lead to incorrect results when
performing eigenvalue analysis to study stability issues. For reference, it stems from
the Weingarten contribution of the Riemannian Hessian, see Eq. (3.39) on page 66.
Furthermore, it remains non-zero even with mesh reĄnement. It is given by

K
g2,riem
5n×5n = − diag[(M̄ 1 + Q̄1)H5×5, . . . ,

(M̄ n + Q̄n)H5×5],
(5.198)

with

M̄ I = tI ·
∫

B0

ξ3[W I
1g1S

11 + W
I
2g2S

22

+ (W I
2g1 + W

I
1g2)S

12] dV,

Q̄I = tI ·
∫

B0

P
′(a1S

13 + a2S
23)N I dV,

H5×5 =

[

03×3 03×2

02×3 I2×2

]

.

(5.199)

The interested reader is referred to [MB22] for a geometric and physical interpretation of
Kg2,riem.

Furthermore, with Eqs. (5.191) and (5.193) the Ąnal Riemannian gradient or residual in
the tangent space representation reads

Rriem
J ,5×1 = gradJ Π(Φ) = ΛT

ΦJ
PΦJ

gradJ Π̄(Φ)

=





∂Π̄
∂φJ

ΛT
tJ

∂Π̄
∂tJ



 =

[

F
euk,φJ

int

ΛT
tJ

F
euk,tJ

int

]

−
[

F
euk,φJ
ext

ΛT
tJ

F
euk,tJ
ext

]

,
(5.200)

where ΛT
ΦJ

PΦJ
= ΛT

ΦJ
has been used.

Now, with Eqs. (5.197) and (5.200) the algebraic problem is deĄned and can be solved
for the unknowns ∆Φ. The solution algorithm needs to be still aware of the manifold
structure of the problem since retractions need to be used to properly update the nodal
directors in each step.
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6
Idiosyncrasies of Finite Elements for

Non-linear Fields

This chapter deals with several uncommon problems that arise in the context of developing
Ąnite element formulation for non-linear conĄguration spaces, which naturally come into
play, when large rotations are involved. Thus, the results of this chapter do not only apply
to Reissner-Mindlin shell formulations but also to beam formulations, solid formulations of
Cosserat-type and shell formulations, which include drilling rotations and other manifold-
valued conĄguration spaces.

In particular, this chapter investigates the following problems: The Ąrst section discusses
the general solution process from the continuous problem to the discrete problem to
the algebraic problem, solved with NewtonŠs method on a computer. Therein, also the
correct linearization procedure is discussed, which includes the correct deĄnition of the
tangent operator.

In the second section, this very same tangent operator and its symmetry are discussed
for the case of large rotations.

The third section deals with the discretization and interpolation of the functions mapping
onto a manifold, e.g., onto the unit sphere.

6.1 From Functional Analysis to System Matrices

This section deals with several complications of functional analysis on manifolds up to
the deĄnition of the system vectors and system matrices. This section deals with this
scenario from an engineering perspective. First, the historical context is given. Then,
the linear case is revisited and after that, the peculiarities of the non-linear case are
investigated.
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6 Idiosyncrasies of Finite Elements for Non-linear Fields

6.1.1 Historical Overview and Remarks

Variation and linearization of a functional depending on quantities living in continuous

vector spaces is a well-understood topic in the context of solving PDEs in such spaces. In
the case of quantities living in non-linear spaces, the situation becomes more difficult.
The engineering literature for Ąnite element formulations including large rotations, often
doesnŠt bother about the implications, when using values from non-linear manifolds in
terms of proper deĄnitions of inĄnite dimensional spaces, where the PDE or weak form
is deĄned. Thus, this leads to several ambiguities and errors in derivations therein.

Nevertheless, Ąnite element methods for the discretization of PDEs on manifolds have
been studied in the literature for a long time. This is especially true for the physical Ąelds,
where the underlying manifold is of importance for a consistent underlying theory. In the
context of the geometrically non-linear Reissner Mindlin shell, a proposed formulation
dates back at least to Ramm [Ram76]. The historical context of the Reissner-Mindlin
shell will be discussed in more detail in Section 6.3.1 and is not treated here. The
theoretical derivations before usually deal with the geometrically linear case or even only
plates, such as Mindlin [Min51]. Thus, therein no non-linear manifold is present. Another
prominent example, where the manifold nature does date back earlier is in the context of
micromagnetics, where the seminal work of Landau and Lifshitz [LL35], which dates back
to the 1930s, is of importance. These are then followed by the work of Brown [Bro66],
who laid the basis of the theory of micromagnetics using variational principles in the
1960s. In this context, the quantity living on a manifold is the magnetization vector Ąeld,
which is a vector Ąeld on the unit sphere. These works from physics yield a large bouquet
of methods treating the large rotations of the problem.

Unrelated to physics and unrelated to Ąnite elements, in the context of algebraic opti-
mization, the works of Luenberger [Lue72; Lue73] are early contributions. The authors
state, that the optimization on geodesic curves (on manifolds), would be appropriate
but is not reasonable from a computational point of view, which is to some extent not
true anymore. This is especially due to the book from Absil et al. [Abs08], where the
foundations of algebraic optimization on manifolds were collected from mathematical
literature. This seems to be the go-to book for the topic of optimization on manifolds.
It cleans up the situation and provides a good overview of the topic and consequently,
yields a nice way how to deal with Riemannian quantities. This is especially true for
the case of the Riemannian gradient and the Riemannian Hessian, which are the main
ingredients for the optimization on manifolds. These can simply be obtained by exploiting
the embedding space of a Riemannian submanifold as discussed in detail in Chapters 2
and 3. Furthermore, the notation of retractions was also a key discovery to replace the
exponential map, which is not always available or expensive. This notion of retractions
goes back to Adler et al. [Adl02].
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In the context of Ąnite elements for manifolds, thus dealing with functions and not
with discrete points on a manifold, luckily, the works of Sander [San10] and subsequent
papers [San12; San15; San16a; Gro15; Gro11; Gro19] cleaned up the situation for PDEs
and weak forms living in non-linear spaces. For a theoretical treatment of these discrete
and continuous non-linear function spaces, we refer to [Har18; HS20; Har15; Gro15]. At
the time of writing, the mathematical investigations in this area are not yet Ąnished
in contrast to the linear theory. These works additionally deal, e.g., with the correct
development of interpolation schemes, which are not trivial in the non-linear case since a
naïve application of results from the linear theory does not always yield correct results.

This section states the basic results, hopefully, digestible for the reader unfamiliar with
functional analysis on manifolds.

6.1.2 The Linear Case

Creating approximate solutions of PDEs in linear vector spaces using Ąnite elements
is nowadays a well-understood topic. For more details concerning boundary conditions
and detailed deĄnitions, the reader is referred to Braess [Bra07] and Brenner and Scott
[BS07]. As a prototype of a PDE, PoissonŠs equation is considered. It is deĄned on a
linear continuous vector space, i.e. in the function space D(Ω,R), where D(Ω,R) denotes
the space of functions deĄned on Ω that map onto R. Consequently, as prototype PDE,
PoissonŠs equation is given as

−∆u = f on Ω, (6.1)

where f ∈ L2(Ω) and L2 denotes the square-integrable functions on Ω. ∆ is the Laplace
operator, which is the divergence of the gradient. These PDEs are called strong forms
in the context of Ąnite element schemes. Their solution returns the unknown function
u, which lives in a subset of D(Ω,R), namely C 2(Ω,R), the space of twice differentiable
functions. By using, e.g., GalerkinŠs method of weighted residuals [Gal15], the smoothness
requirements of these continuous solutions can be relaxed, since derivatives can be shifted
to the functions δu and the PDE only needs to be fulĄlled in an integral sense. This is
done by multiplying the PDE with a test function δu ∈ D(Ω,R) and integrating over the
domain Ω. Then integration by parts shifts the derivatives from u to δu. The arising
boundary term is neglected to simplifying the subsequent statements. The weak form of
Eq. (6.1), reads

G(u,δu) =
∫

Ω

∇u∇δu dx =
∫

Ω

f δu dx ∀δu ∈ H 1(Ω). (6.2)
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6 Idiosyncrasies of Finite Elements for Non-linear Fields

The function u and the test function δu both stem from the same function space H 1(Ω),
where H 1(Ω) is the space of scalar L2 functions with Ąrst-order weak derivative also in
L2(Ω).

The problem can also be formulated as a minimization problem, where the minimizers
are the solutions of Eq. (6.2). This reads

Π̂ : H 1(Ω)→ R, Π(u) =
∫

Ω

1

2
∇u∇u − fu dx . (6.3)

Here, the Ąrst order optimality condition Ů the weak form Ů is recovered, by using a
Gâteaux directional derivative deĄned in the inĄnite-dimensional function space. The
result is the Ąrst variation of Π̂. This results in

δΠ̂ = G(u,δu) =
∂Π(u + ϵδu)

∂ϵ

∣
∣
∣
∣
ϵ=0

=
∫

Ω

∇u∇δu − f δu dx = 0 ∀δu ∈ H 1(Ω). (6.4)

Thus, δu can be interpreted as a perturbation vector based at u and as the direction of
the directional derivative. From this inĄnite dimensional vector space H 1(Ω), where the
solution lives, the Ąnite element method introduces discrete Ąnite element function spaces,
such that Vh(Ω) ⊂ H 1(Ω). For the deĄnition of a single Ąnite element, we follow Ciarlet
[Cia02]. Consequently, a Ąnite element is deĄned by its domain, a Ąnite set of functions
N i , and a coefficient vector of nodal variables di ∈ Rd . The functions are usually called
ansatz functions1, and the nodal variables are called degrees of freedom. These Ąnite
elements are used to construct a global function, that is constructed piecewise by the
local Ąnite element functions. This space is Ąnite-dimensional since Vh(Ω) is assumed to
have a Ąnite number of basis functions, the union of all element ansatz functions. Then,
the discrete solution and discrete test function uh,δuh ∈ Vh(Ω) can be constructed by

uh =
k∑

i=1

N idi and δuh =
k∑

i=1

N iδdi . (6.5)

If this is inserted into Eq. (6.4), the weak form in the discrete function space reads

∫

Ω

∇uh∇δuh − f δuh dx = 0 ∀δuh ∈ Vh(Ω), (6.6)

1No consistent naming can be derived from literature here, often they are called ansatz functions or
simply basis functions depending on the context or author. Nevertheless, these functions form a basis
of the ansatz space Vh(Ω)
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and the corresponding algebraic problem reads

∫

Ω

k∑

i=1

k∑

j=1

∇N idi∇N jδdj − f
k∑

i=1

N iδdi dx = 0 ∀δd ∈ (Rd)
n
, (6.7)

which is the representation that can be solved using a computer, where d is the collection
of all nodal vectors di . This is done using the fundamental lemma of calculus of variations.
The Ąnal equation can be obtained as

R(d) = Kd− fext = 0, (6.8)

with the stiffness matrix K and the load vector fext, where the subscript underlines
the external nature of this quantity since it is applied from the outside as a load. The
quantities K and fext are deĄned by

Kij =
∫

Ω

∇N i∇N j dx , fi =
∫

Ω

fN i dx , (6.9)

where the integrals are evaluated using numerical quadrature rules and where a notion
of assembly operations is neglected for simplicity. If the problem at hand is non-linear in
u or d, respectively, the solution for d can be obtained using a Newton-Raphson method.
This method can be expressed as

∂R(d)

∂d

∣
∣
∣
∣
d=di

∆d = −R(di), di+1 = di + ∆d. (6.10)

For a given set of Ąnite elements, there is a one-to-one correspondence between the set of
coefficients di and the constructed function uh. Therefore, the Ąnite element method can
be used to translate a PDE into a problem of Ąnding the correct vector in (Rd)

n
, where n

denotes the number of nodes on the grid of Ąnite elements. Thus, the solution procedure
now lives in an algebraic space and is a function of the coefficient vector of nodal values.
For the understanding of different developments, it is crucial to differentiate between
methods that apply to the algebraic space (Rd)

n
, or the discrete function space Vh(Ω) or

the continuous function space H 1(Ω).

6.1.3 The Non-linear Case

For the non-linear case, we describe the problem by following Fig. 6.1. Understanding
the distinction between continuous, discrete, and algebraic representations of potentials
and weak forms is crucial when dealing with non-linear cases. For simplicity, assume
again PoissonŠs equation but now on a manifold M . Thus, the equations from the linear
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page 154, this situation corresponds to going from the left PDE box to the continuous
weak form Ĝ, which is done, e.g., using GalerkinŠs method of weighted residuals. Similar
to the case before, the same problem can also be stated as a minimization problem, with
the potential

Π̂ : H 1(Ω,M )→ R, Π(u) =
∫

Ω

1

2
⟨∇u,∇u⟩ − ⟨f , u⟩ dx . (6.13)

The Ąrst variation of this continuous potential then yields the weak form Eq. (6.12), which
corresponds to going downward in the left column in Fig. 6.1. The continuous weak form
also needs to be linearized and therefore a connection onM has to be introduced to arrive
at the linearized continuous weak form, which means going another step downward in
Fig. 6.1. The discretization of the linearized continuous weak form may or may not result
in a consistent formulation if one moves from there to the right by discretization, since
discretization is a more delicate issue on manifolds in contrast to the linear case, which is
discussed now. How this variation and subsequent linearization should be performed was
also a controversial topic in the literature. Especially, the Gâteaux directional derivative
used in Eq. (6.4) is not well-deĄned in the manifold context. This special case will be
revisited in Section 6.2. At least it is error-prone and can lead, in the best case, to missing
terms in the resulting tangent operator. Due to similar reasons, but a bit more involved,
the missing terms in the tangent operator of Ramm [Ram76; Ram77] can be explained.

To obtain a problem in the discrete function space V M
h (Ω) ⊂ H 1(Ω,M ), u and the test

function δu have to be discretized to move from a continuous potential or a continuous
weak form to the right in Fig. 6.1. This can be done using geodesic interpolation or
projection-based interpolation, which will be described in Section 6.3 and which was also
investigated numerically for the Reissner-Mindlin shell in [MB22]. Nevertheless, a generic
interpolation function for a single Ąnite element can be stated as Υ : M k × Ωe → M ,
where Ωe is the Ąnite elementŠs domain as a subset of Ω and k is the number of nodes of
the given element. M k denotes the product space of all nodal algebraic quantities. Thus,
we have a generic interpolation

uh(x) = Υ(d1, . . . ,dk ; x), (6.14)

where it is apparent that in the case of Ąnite element interpolation functions, the function
uh is possibly a non-linear function of the nodal coefficient vectors di , which is in strong
contrast to the linear interpolation formulas of the linear case given in Eq. (6.5). Similar,
but a bit more involved, is the consistent construction of the test functions from the
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given interpolation as

δuh(x) =
k∑

i=1

Dδdi
Υ(d1, . . . ,dk ; x), (6.15)

where the nodal algebraic test vectors are δdi ∈ Tdi
M . This derivative also has to be

understood as a covariant derivative on a manifold, since di ∈ M . This construction is
given in Sander [San16a].

Remark 7. The underlying method can still be considered as a Bubnov-Galerkin method,
even, if the ansatzes for the solution Ąeld and the test Ąeld do not coincide. For the Bubnov-
Galerkin method, it is often sloppily stated, that for the linear case the ansatz function for
the test Ąeld and the solution Ąeld are the same in contrast to PetrovŰGalerkin methods,
where this is not necessarily the case. Nevertheless, for the manifold case, where only
the BubnovŰGalerkin method is considered here, the test functions can be constructed
from the solution Ąelds, see Eq. (6.15). Thus, they are still entangled and not separately
chosen as in a PetrovŰGalerkin method.

Then, δuh is an element of TuV M
h (Ω). Therefore, the test function depends on the solution

u itself due to the dependence of di in the interpolation scheme, in contrast to the linear
case in Eq. (6.5). The weak form represented in the discrete function space reads

Gh(uh, δuh) =
∫

Ω

⟨∇uh,∇δuh⟩ − ⟨f , δuh⟩ dx = 0 ∀δuh ∈ Tuh
V M

h (Ω), (6.16)

with u ∈ V M
h (Ω) and similarly the discrete potential reads

Πh : V M
h (Ω)→ R, Πh(uh) =

∫

Ω

1

2
⟨∇uh,∇uh⟩ − ⟨f , uh⟩ dx , (6.17)

which Ąnalized the move from the left columnŠs potential or weak form to the center
columnŠs potential and weak form.

The algebraic equivalent is also more involved in the linear case. To construct it, Ąrst,
we need the nodal extractor operator

E : V M
h (Ω)→ M k , (6.18)

which extracts from a given Ąnite element function uh the nodal quantities ui living on
the manifold M . Additionally, from the test functions δuh ∈ Tuh

V M
h a similar function is

157



6 Idiosyncrasies of Finite Elements for Non-linear Fields

needed to extract the algebraic nodal test function vectors. This function can be deĄned
for a single element as

T : Tuh
V M

h (Ω)→ (Td1M , . . . ,Tdk
M ). (6.19)

These operators now allow the formal statement of the weak form and the potential in
the algebraic setting. Namely, we have for the algebraic potential.

Π : M n → R, Π(d) = Π̂(E−1(d)), (6.20)

and for the algebraic weak form G : M n × (Td1M , . . . ,Tdn
M )→ R, we have

G(d, δd) = Ĝ(E−1(d), T −1(δd)) = 0, ∀δd ∈ (Td1M , . . . ,Tdn
M ). (6.21)

Thus, for the potential, we can move in Fig. 6.1 from the discrete potential Πh to the
algebraic potential Π. The last step to move from the weak form to the algebraic residual
equation namely the fundamental lemma of calculus of variations is missing. It allows
us to get rid of the algebraic tangent vector at each node due to their arbitrariness
(within the tangent space) in Eq. (6.21). The rest of the equation has to vanish within
the tangent space. Then, the algebraic residual equation reads

R :







M n → (Td1M , . . . ,Tdn
M ),

R(d) = grad Π(d) = 0,
(6.22)

which is intrinsically non-linear in the coefficients di , since the interpolation given by
Eq. (6.14) and the test functions in Eq. (6.15) is intrinsically non-linear w.r.t. the
coefficients di , even if the PDE seems to be linear in u. If a potential is at hand, the
residual can be conveniently obtained using Eq. (2.83) on page 40 as the Riemannian
gradient of Eq. (6.20). Namely, as stated before by computing the Euclidean derivative
in the embedding space with a subsequent projection onto the tangent space. Thus, the
nonlinearity is encoded in the space, where the PDE should be solved, Namely, in the
tangent bundle TH 1(Ω,M ). Nevertheless, we now ended up at the algebraic residual
equations on the right column in Fig. 6.1. From there, Eq. (6.22) can be solved, e.g.,
with a manifold-aware Newton method as described in Algorithm 1. For this, another
derivative information is needed. Thus, we need to take the Ąrst-order derivative of
Eq. (6.22). If a potential is at hand, this would be equivalently the second derivative, i.e.,
the Riemannian Hessian. Thus, the tangent operator or stiffness matrix reads

K :







M n → (Td1M , . . . ,Tdn
M )× (Td1M , . . . ,Tdn

M ),

K(d) = Hess Π(d).
(6.23)
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Algorithm 1: Riemannian Newton-Raphson using tangent base representation

Goal : Find stationary point of Π(d), i.e. Ąnd d such that Rred(d) = 0.

input : Initial iterate d0

output : Converged solution: d∗

while ♣♣Rred(dk)♣♣ > tol do

Kred(dk)∆dk = −Rred(dk) /* Solve system in tangent space basis */

∆dk
E = Λdk∆dk /* Reconstruct representation in embed. space ∆dk

E */

dk+1
E = Rdk

E
(∆dk

E) /* Update using retraction, Section 2.6 */

Λk+1
I /* Update/Construct new tangent basis, see [MB22] */

k ← k + 1
end

page 158, such that

Rred,i = ΛT
i Ri . (6.25)

These quantities can now be used to solve the non-linear system Eq. (6.22) without any
singularities and without parameterizing the underlying manifold, which could otherwise
lead to singularities. Furthermore, the tangent basis change allows us to write the
optimization problem with the correct dimensions, i.e., the correct number of degrees of
freedom. In literature, this is not the case since often Lagrange multipliers are used to
enforce a constant length of the director, which would yield for the case of S2 four degrees
of freedom (three for the director in the embedding space and one for the Lagrange
multiplier). Similarly, methods using a penalty approach to penalize length change also
suffer from the same problem since these need to use three degrees of freedom (for the
director in the embedding space). In the method indicated here the director change is
deĄned in the two-dimensional tangent space basis, which yields an optimization problem
with two degrees of freedom (for the director change in the tangent space basis). The
overall algebraic Newton-Raphson method is given in Algorithm 1, where the system is
solved in the tangent space basis, and the solution is transformed back to the embedding
space, which is then forwarded to a retraction to correctly update the quantity on the
manifold Thus, we can solve the non-linear minimization problem iteratively, ending up
at the bottom right of Fig. 6.1.
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6.2 Symmetry of the Tangent Operator

6.2.1 Historical Overview and Remarks

The symmetry of the tangent operator is subject to a controversial discussion in the
context of non-linear Ąnite element formulations. Especially, in the context of three-
dimensional beam formulations, after the contribution by Simo and Vu-Quoc [SV86]
a discussion started if the tangent operator should be symmetric in general or only at
equilibrium. Therein, the authors claim that the geometric stiffness is non-symmetric
away from equilibrium and similarly Argyris [Arg82] derived this lack of symmetry as
correct and inherited from the manifold structure. These faulty claims came from the
wrong extension of the Gâteaux derivative to the non-linear manifold case, which is only
valid for vector spaces. This missing symmetry was then Ąxed using an ad hoc procedure,
which is simply the symmetrization of the tangent operator. Simo recovered from these
ad hoc claims with the work in Simo [Sim92a], where he made the distinction between
the second variation (using the Gateaux derivative) and the Riemannian Hessian precise.
Therein, he concludes that under the assumption of a manifold, which is a compact
Lie group, the symmetric part of the second variation is equal to the Riemannian
Hessian, which is symmetric by deĄnition for a torsion-free connection, as discussed in
Chapter 3 on page 51. This result is not useful for the unit sphere, since it is indeed
compact but not a Lie group. For an overview of SimoŠs results, the reader is referred to
Makowski and Stumpf [MS95]. Nevertheless, from these results, several misconceptions
and confusion about the correct tangent operator persist today. For reference in literature,
the problems can be seen for shells with drilling rotations [Sue03; SW03], the Reissner-
Mindlin shell [Dor16] and the three-dimensional beam literature [Mei19; Bau16; CG88;
Arg78; Cri90]. These misconceptions often lead to very involved and arguably inefficient
formulations with a symmetric or unsymmetric tangent operator. For more details on
the historical contributions in the context of Reissner-Mindlin shells, we refer to Müller
and Bischoff [MB22].

At equilibrium, the tangent operator should be symmetric, due to physical reasons,
namely the Maxwell-Betti reciprocal work theorem. This theorem asserts that in an elastic
structure, the work done by a force at point A, causing displacements at point B due to a
force at point B, is equal to the work done by the force at point B, causing displacements
at point A.

The tangent operator or more speciĄcally the stiffness matrix is not only a tool to solve
non-linear equations but also has an importance in physical insight into the problem at
hand. Vanishing eigenvalues and other properties of linear algebra can be translated to
enable the interpretation of the behavior of the structure. Thus, it is not only crucial to
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6 Idiosyncrasies of Finite Elements for Non-linear Fields

have the correct operator in terms of the numerical efficiency of some solution procedure
but also to gain insight into the underlying problem. Consequently, this chapter guides
the derivation of the correct tangent operator, and especially its symmetry, not only for
the case of the Reissner-Mindlin shell, but also for a more general energy (or weak form)
deĄned for a non-linear conĄguration space.

The following chapter explores the result of Simo [Sim92a] for compact Lie groups and
derives the correct tangent operator for the case of the unit sphere.

6.2.2 Point of Departure

For the subsequent derivations, we assume the existence of a potential Π :M→ R. This
is without a loss of generality, but merely for notation convenience and identiĄcation
purposes.M can be thought of as, e.g., a product manifold M n, where n are the number
of Lagrangian nodes of a Lagrangian basis deĄned on some grid and M is a single discrete
manifold. Indeed M will be here usually S2, the two-dimensional unit sphere or the
special orthogonal manifold SO(3). Thus, the given quantities are not functionals but
merely functions, i.e. they only depend on discrete nodal quantities and not on some
(continuous) function. From the potential Π, a discrete weak form G :M× TxM→ R

can be derived as

G(x,ηx) = ⟨grad Π(x),ηx⟩, (6.26)

where ⟨·, ·⟩ is the inner product as given in the Riemannian metric deĄnition, DeĄnition 15
on page 35. The tangent vector ηx is the variation of the quantity x. Recall that the
notation ηx indicates a vector at x and η is a tangent vector Ąeld. For notational
convenience, ηx indicates the direction of variation δx. In several places in literature, the
tangent operator is deĄned via an iterated directional derivative as linearization of the
weak form. This introduced confusion in the non-linear manifold case, since in Eq. (6.26)
not only the gradient is a function of x but also the variation ηx depends on x.

In the following, the iterated directional derivative will be called second variation. The
second variation of Π is

∇ξx
⟨grad Π(x),ηx⟩

︸ ︷︷ ︸

second variation

= ⟨∇ξx
grad Π(x)

︸ ︷︷ ︸

Hessian

,ηx⟩+ ⟨grad Π(x),∇ξx
ηx⟩, (6.27)

where the Riemannian Hessian in this expression can be identiĄed by comparing with
Eqs. (3.22) and (3.23) on pages 61 and 62. Note, that this expression assumes that the
given connection ∇ is invariant w.r.t. the metric as deĄned in DeĄnition 18 on page 54.
The confusion starts by investigating the second part. By the product rule, there is also
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the covariant derivative of the variation in the direction of linearization. Since we are in
the fully discrete algebraic setting, this does not make much sense, since the discrete
nodal vector is not a function but only a vector deĄned at a speciĄc position, but it still
depends on the position since the very deĄnition of tangent space is position-dependent.
For now, we simply assume some functional dependence of the variation on the position.
This will be discussed in more detail later. But this arbitrariness is the reason why the
second variation is not uniquely deĄned. Therefore, e.g., Dornisch et al. [Dor16] and Simo
and Vu-Quoc [SV86] simply create some ad hoc dependency by deĄning the variation
through the manifold extension of their Gâteaux derivative. This expression can be
found in [SV86, Ch. 3.1] and in [SV86, Ch. 3.2] the corresponding linearization. The
authors in [SV86] do this derivation for the continuous case, where the quantities are
not algebraic nodal quantities. Thus, the variation is a function of the space, i.e. the
curvilinear coordinate of the centroid of the beam formulation in the given reference.
This is similar to extending the Gâteaux derivative to function spaces on manifolds,
which is not straightforwardly correctly possible. Nevertheless, they use the exponential
map by an ad hoc procedure, which is their generalization of the Gâteaux derivative. The
notation D(•) in the following denotes the space of function Ąelds on the given manifold
and (•) is the space of vector Ąelds on the given manifold. They used for a rotation
matrix function R ∈ D(SO(3)) and its tangent vector Ąeld increment Θ ∈ TR(SO(3))

the following deĄnition, for a function f : D(SO(3))→ R,

∂

∂ϵ
f (R exp(ϵΘ))

∣
∣
∣
∣
∣
∣
ϵ=0

= ⟨grad f ,Θ⟩R. (6.28)

It resembles the usual deĄnition of the Gâteaux derivative, which is for a function
f : D(Rn)→ R and a tangent vector Ąeld v ∈ (R)

∂

∂ϵ
f (x + ϵv)

∣
∣
∣
∣
∣
∣
ϵ=0

= grad f · v. (6.29)

They extended this algebraic deĄnition to functionals on non-linear spaces, which is at
least to the authorŠs knowledge not well-deĄned. Hence, the utilization of derivatives under
speciĄc assumptions within particular spaces remains highly ambiguous and error-prone,
leading to discrepancies among various authorsŠ approaches.

Ad hoc procedures are not introduced here, as the focus remains on the algebraic setting
and the correct operators from differential geometry. Within this algebraic space, the
utilization of the exponential map or more general retractions adheres to well-deĄned
procedures.
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6.2.3 Compact Lie Groups

In [Sim92a] it is shown that the symmetrization of the second variation yields the
Riemannian Hessian if the manifold allows a bi-invariant metric. This result is studied in
the following with a detailed derivation. The following will only be valid for compact Lie
groups, e.g. SO(n),S3,O(n) and not SL(n),GL(n). Let x ∈ M be a compact Lie group
and ξx,ηx ∈ TxM . We have as symmetric part of Eq. (6.27) on page 162

sym[∇ξx
⟨grad Π(x),ηx⟩] =

1

2
(∇ξx

⟨grad Π(x),ηx⟩+∇ηx
⟨grad Π(x), ξx⟩)

=
1

2
(⟨∇ξx

grad Π(x),ηx⟩+ ⟨grad Π(x),∇ξx
ηx⟩

+ ⟨∇ηx
grad Π(x), ξx⟩+ ⟨grad Π(x),∇ηx

ξx⟩)

(6.30)

Inserting the deĄnition of the Lie Bracket of the Levi-Civita connection, see Section 3.1
on page 53, we, have with ∇ηx

ξx = −[ξx,ηx] +∇ξηx,

sym[∇ξx
⟨grad Π(x),ηx⟩] =

1

2
(⟨∇ξx

grad Π(x),ηx⟩+ ⟨grad Π(x),∇ξx
ηx⟩

+ ⟨∇ηx
grad Π(x), ξx⟩+ ⟨grad Π(x),−[ξx,ηx] +∇ξx

ηx⟩)
= ⟨∇ξx

grad Π(x),ηx⟩+ ⟨grad Π(x),∇ξx
ηx⟩

+
1

2
⟨grad Π(x),−[ξx,ηx]⟩

(6.31)

SinceM = G is an arbitrary compact Lie group, we can also identify the tangent vectors
ξx,ηx as elements of g = TG, i.e., ξx,ηx ∈ g, where g denotes the corresponding Lie
Algebra of the Lie group G. The guarantee of the existence of a bi-invariant metric is
coupled to the properties of compactness of a Lie group, and therefore we only consider
this case [Gal90, Sec. 2.9, 2.47]. For this special case, the covariant derivative can be
stated as

∇ξx
ηx =

1

2
[ξx,ηx], (6.32)

where the formula for the covariant derivative for two left-invariant Ąelds ξx,ηx can be
written purely in terms of the Lie Bracket. This result can also be found in [Gal90, Ch. 2].
For a derivation refer to Appendix A.4 on page 202. With this result, Eq. (6.31) can be
revisited, and we have

sym[∇ξx
⟨grad Π(x),ηx⟩] = ⟨∇ξx

grad Π(x),ηx⟩+ ⟨grad Π(x),∇ξx
ηx⟩

+
1

2
⟨grad Π(x),−[ξx,ηx]⟩,

(6.33)
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which results with Eq. (6.32) in

sym[∇ξx
⟨grad Π(x),ηx⟩] = ⟨∇ξx

grad Π(x),ηx⟩, (6.34)

which resembles the result of Simo [Sim92a]. The constructions found in the literature on
three-dimensional beams [Mei19; CG88; Cri90; RA02] differ in one way or another from
those in [Sim85], but they still adopted SimoŠs ad hoc construction with the Gâteaux
derivative. However, it is important to note that this choice is not unique, therefore
the second variation can be error-prone since it depends on an artiĄcial selection of the
functional dependency for obtaining its linearization. As a result, the skew-symmetric
part of the second variation can be arbitrarily inĆuenced by the choice of functional
dependency for the variation. This sometimes even requires fewer iterations, as investigated
in Ibrahimbegović et al. [Ibr95]. Nevertheless, the authors therein attributed this result
to non-conservative loading. Due to the lack of a well-deĄned second variation, it is
recommended to derive the Riemannian Hessian directly, which is directly well-deĄned
and also a simpler procedure. Refer to the steps outlined in Section 3.5 on page 64 to
achieve this.

6.2.4 The Unit Sphere

In the following, a similar connection between the Riemannian Hessian and the second
variation of a potential Π, which takes values from the manifold S2, is explored. The
unit sphere S2 is compact but not a Lie group therefore the stated derivation does not
hold in this case. Let x ∈ S2 and ξx,ηx ∈ TxS2.

⟨∇ξx
grad Π(x)

︸ ︷︷ ︸

Hessian

,ηx⟩ = ∇ξx
⟨grad Π(x),ηx⟩

︸ ︷︷ ︸

second variation

−⟨grad Π(x),∇ξx
ηx⟩ (6.35)

Here the focus lies again at the last part ⟨grad Π(x),∇ξx
ηx⟩, i.e., ∇ξx

ηx, which is the
directional derivative of the variation in the direction of the linearization.

The variation ηx is a tangent vector of a geodesic curve γ at position x, i.e., ηx = γ ′(0).
Therefore, to investigate a functional dependency of ∇ξx

ηx, we need to construct a vector
Ąeld from ηx that can be derived in the direction ξx. A canonical choice would be to
simply create this functional dependency by parallel transporting ηx along the geodesic
γ in the direction of ξx. This is done by introducing parallel transported quantity ηx(t)

in the direction of ξx by

ηx(t) =
∂

∂t
expx(sηx(0) + tξx)

∣
∣
∣
∣
∣
∣
s=0

. (6.36)
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Now ηx(t) is a vector Ąeld along some geodesic curve realized by the exponential map.
Therefore, ηx(t) is constructed explicitly in that way that it is parallel transported along
the geodesic γ in the direction of ξx.2 By construction, the tangential part of ∇ξx

ηx is
zero and Eq. (6.35) simpliĄes to

⟨∇ξx
grad Π(x)

︸ ︷︷ ︸

Hessian

,ηx⟩ = ∇ξx
⟨grad Π(x),ηx⟩

︸ ︷︷ ︸

second variation

. (6.37)

This implies that the second variation directly yields the Riemannian Hessian as a
tangent operator. But again the chosen functional dependency of the variation direction
ηx and linearization direction ξx is arbitrary and for different choices, different results
are obtained.

This further emphasizes the impracticality of utilizing the second variation as a tangent
operator. Given its lack of a well-deĄned nature, it does not serve as a valuable can-
didate for an iterative solution scheme or as a quantity to assess stability through its
eigenvalues.

6.2.5 Conclusion

In conclusion, the study reveals, that the functional dependency of the variation ηx on x

is crucial to obtain a symmetric or unsymmetric result. Simo introduced in [Sim85] a
functional dependency by using the exponential map ηx and constructing a generalized
Gâteaux derivative, which yields an unsymmetric tangent operator. This ad hoc construc-
tion led to the subsequent derivation of the Riemannian Hessian by symmetrizing the
second variation in Simo [Sim92a]. However, the ad hoc construction of the functional
dependency of the variation ηx on x, is arbitrary and leads to different results for different
choices of this functional dependency of the variation. Especially, the skew-symmetric
part of the second variation is not well-deĄned and depends on the choice of the functional
dependency of the variation direction ηx. This makes the second variation error-prone due
to the artiĄcial selection of functional dependency for its linearization. It was also shown
that a special choice for functional dependency of the variation ηx for the case of the
unit sphere, directly yields the equivalence of the second variation and the Riemannian
Hessian.

Consequently, relying on the second variation as a tangent operator is impractical. Its
lack of well-deĄned nature renders it unsuitable for iterative solution schemes or for
stability assessment through eigenvalues. In light of these limitations, it seems reasonable

2If the evaluation at s = 0 would be neglected, the resulting quantity η∥(s,t) would be a Jacobi Ąeld
along the geodesic γ in the direction of ξx. Jacobi Ąelds are the displacement Ąeld of two inĄnitesimally
close geodesics, see [Gal90, Ch. 3].
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to directly use the Riemannian Hessian. This approach can be easily derived by following
the procedure outlined in Section 3.5 on page 64. Utilizing the Riemannian Hessian
directly proves to be more effective, and computationally feasible, and avoids the need
to derive the second variation and subsequently make corrections.

6.3 Discretization and Interpolation

In the following, several choices for the interpolation of the director Ąeld for the Reissner-
Mindlin shell formulation are discussed. Options from the literature are presented and
discussed and after that suitable interpolations used in this work are presented.

6.3.1 Historical Overview and Remarks

This chapter discusses interpolation schemes for the director Ąeld in the context of the
non-linear Reissner-Mindlin shell model. Nevertheless, the references and conclusions
are also applicable to other models, such as Cosserat shells or beams, which need the
interpolation in SO(3) or on the unit quaternions H1. Numerous methods exist in the
literature for interpolating the director in the non-linear Reissner-Mindlin model. Each
has its distinct advantages and disadvantages. The most straightforward choice is to
directly obtain a parametrization of the unit sphere. To obtain such a parameterization
of quantities residing on the unit sphere, it is tempting to merely deĄne the angle pair
α,β. According to the Şhairy ball theoremŤ, this inevitably leads to singularities in the
derivatives. These drawbacks can be found in the works [Ram76; Mün07; OO84; WG93;
Gru89]. It appears straightforward to identify these angles as degrees of freedom and
apply standard interpolation, such that α =

∑n
I=1 N IαI ,β =

∑n
I=1 N IβI , see [WG93, Eq.

54] and [Gru89, Eq 5.1]. Then, the director can be constructed using the formula

t = R(α,β)t0. (6.38)

Unfortunately, using an additive update, such that αk+1
I = αk

I + ∆αI , results in a non-
objective formulation because rigid body rotations do not cancel in strain measurements.
Furthermore, the parameterization contains singularities, which are not only a theoretical
problem but also a practical one, since in the vicinity of the singularities, the stiffness ma-
trix becomes ill-conditioned. Similar disadvantages can be found in the works Gruttmann
et al. [Gru00] and Sansour and Wagner [SW03], where an incremental rotation vector
∆θ is interpolated. All of these incremental quantities, however, reside in a linear space,
for which standard interpolation techniques are applicable. In this case, the disadvan-
tage is more severe than the advantage of a simple interpolation, as the construction
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is non-objective because it contradicts the inherently non-linear nature of the problem.
The drawbacks of these formulations are also discussed shortly in Sander [San10]. The
article by CrisĄeld and Jelenić [CJ99] also points out the artiĄcial path-dependence and
non-objectivity of these approaches. Instead of employing rotation increments as degrees
of freedom, one can construct nodal directors as tI = RI tI

0, and directly interpolate them,
t =

∑n
I=1 N I RI t0, instead of the interpolating (rotational) degrees of freedom. The nodal

rotation matrix R can also be updated multiplicatively as Rk+1
I = ∆R(∆αI ,∆βI )Rk

I . This
formulation uses incremental degrees of freedom ∆αI ,∆βI , see [EM00]. Consequently,
the relationship between the director at the interpolation point and the nodal degrees of
freedom is

t =
n∑

I=1

N I
∆R(∆αI ,∆βI )RI t0. (6.39)

Thus, Eq. (6.39) illustrates the complicated dependency of the interpolation scheme on
the degrees of freedom ∆αI ,∆βI .

The formulation is objective, and the singularity caused by parameterizing the unit sphere
is generally insigniĄcant because iterative changes in the angles ∆αI ,∆βI are typically
small.

However, the procedure results in a non-compact formulation and requires costly trigono-
metric function evaluations. Moreover, the interpolation does not preserve the directorŠs
length. This is not an important problem for low-order Ąnite elements and Ąne meshes,
but for higher-order elements, which are typically larger, the effect is not only more
pronounced but also results in a degeneration of the convergence order. This dramatic
consequence, which is rarely discussed in the literature, is examined in depth in Müller
and Bischoff [MB22, Sec. 10.2] and will also be discussed in Chapter 7. The director t

can be normalized to eliminate this issue. However, as a result, expressions become even
more complex. Rather than preserving the director length within the domain, several
formulations introduce the director tGP as a history Ąeld at each Gauss point, see [Sim90a;
Dor16; Bet96]. Subsequently, in these formulations, only the increment ∆t is interpolated
from the nodes ∆tGP =

∑n
I=1 N I (ξ1,ξ2)∆tI . The Riemannian exponential map of the

unit sphere, see Section 3.4 on page 60, is then used to update the directors at each
Gauss point. This yields,

tk+1
GP = exptk

GP
(∆tGP)

= cos(♣♣∆tGP ♣♣)tk
GP +

sin ♣♣∆tGP ♣♣
♣♣∆tGP ♣♣

∆tGP

(6.40)
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or

tk+1
GP = ∆R(

n∑

I=1

N I
∆θI )Rk

GPe3. (6.41)

with ∆θI = ∆tI × tI and e3 = [0,0,1]T , where the latter can be chosen arbitrarily.
The resulting scheme exhibits a non-objective and path-dependent nature, as formally
demonstrated by CrisĄeld and Jelenić in their work on the objectivity of strain [CJ99].
Additionally, it should be noted that the interpolated increment ∆tGP is not automatically
in the tangent space of tGP , which can also lead to undesired consequences. The entire
procedure seems to be error-prone in terms of singularities, non-objectivity, and path
dependence. Moreover, the evaluation and linearization can be expensive due to the
involved interpolation schemes.

To overcome these limitations, a seemingly appealing approach is to eliminate the need
for parameterizing the unit sphere and the need to introduce rotation matrices altogether.
This can be achieved by exploiting the relationships between submanifolds and their
embeddings, as proposed in [Abs08] and described in Section 2.7.4 at an abstract level,
independent of Ąnite elements. In the book by Absil et al. [Abs08] mainly the optimization
algorithms on manifolds are presented. Nonetheless, exploiting this embedding space is
also beneĄcial for developing a path-independent and objective interpolation.

Fortunately, the research conducted by Sander [San10] and subsequent papers [San12;
San15; San16a; Gro15; Gro11; Gro19] has greatly improved the situation regarding
interpolation for Ąnite elements in non-linear spaces. However, it is important to note
that this Ąeld of research is still ongoing, and there are multiple viable choices to
consider.

While some interpolation options can be found in the literature on the Reissner-Mindlin
shell model or three-dimensional beam models, the works of Sander [San10] and subsequent
publications stand out for their thorough exploration of the design space for proper
interpolation schemes. These schemes fulĄll crucial requirements, such as objectivity,
path independence, and invariance to node numbering. In the subsequent section, we will
describe several interpolation options speciĄcally designed for the unit sphere/Reissner-
Mindlin shell scenario.

6.3.2 Interpolation on Manifolds

In the subsequent discussion, we examine three different versions that utilize the director
vectors as objects existing in the embedding space, speciĄcally R3. Importantly, all of
these approaches satisfy the conditions of being path-independent and objective.
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Nodal Finite Elements (NFE): The Ąrst option is the nodal approach (NFE), where
the directors have unit length at the nodes only, thus, violating the constraint in the
domain.

tN =
n∑

I=1

N I tI . (6.42)

This interpolation scheme corresponds to the approaches used in several works, including
those by Hughes and Liu [HL81], Belytschko et al. [Bel92], Simo et al. [Sim92b], Ramm
[Ram76], and Benson et al. [Ben10]. The interpolation schemes used in the given references
differ in their deĄnitions of degrees of freedom and stiffness matrices. Therefore, it may not
be possible to make a direct comparison between the NFE approach described here and
the references cited. The NFE residual and stiffness matrix can be constructed from the
PBFE (projection-based Ąnite element) approach, described in Section 5.6 on page 140 by
omitting the normalization of the director and by replacing P

′ = I,Qα = X α = S = 0

in all relevant quantities. This results in a simpler formulation compared to the PBFE
approach.

In the following, two approaches are discussed, that satisfy the unit length condition in
the domain. They are deduced from general constructions found in the mathematical
literature but the second one (PBFE) can also be found in the engineering literature.

Geodesic Finite Elements (GFE): The Ąrst approach is based on the works of
Sander [San10; San15] and Grohs [Gro11] to generalize the concept of interpolation from
vector spaces to manifolds. If such an interpolation is used, the resulting Ąnite elements
are called geodesic Ąnite elements (GFE). The interpolation scheme reads

tGFE = arg min
t∈S2

n∑

I=1

N I dist2
S2(tI , t)

= arg min
t∈S2

n∑

I=1

N I arccos2(tI · t),

(6.43)

taken from [San12, Eq. 29]. Solving the local minimization problem Eq. (6.43) at each
integration point is documented in Appendix A.10 on page 207. These Ąnite elements
automatically inherit objectivity and path independence of the continuous formulation.
This is because the interpolation scheme is constructed from a weighted (geodesic)
distance measure on the corresponding manifold. This generalized distance measure
is minimized and is related to the Karcher mean of the manifold. Since distances are
invariant to rotations by deĄnition, objectivity follows directly. Furthermore, due to
the intrinsic nature, the interpolation always stays on the manifold and therefore this
approach preserves the unit length of the director in the domain. The major drawback
is the implicit deĄnition of the interpolation, which involves a non-linear minimization
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problem3 at each integration point. To the authorŠs knowledge, this interpolation scheme
is applied on the Reissner-Mindlin shell for the Ąrst time in this work.

Projection-Based Finite Elements (PBFE): The third approach is projection-based

interpolation, based on the works of Sprecher [Spr16] and subsequent papers, e.g. Grohs et
al. [Gro19], which presents a framework for Ąnite elements that interpolate on manifolds by
closest point projection from an embedding space onto the manifold. The Ąnite elements
are constructed as in the nodal approach and then projected onto the corresponding
manifold. The interpolation formula for the unit sphere reads

tPB =

∑n
I=1 N I tI

♣♣∑n
I=1 N I tI ♣♣

. (6.44)

Luckily, the closest point projection of a vector in R3 onto S2 has a closed form, namely
the trivial normalization of the vector. This interpolation, where the vector in the
embedding space is projected onto S2, was also used in [Sim89], but only for the reference
director Ąeld. Furthermore, in the context of rods and SO(3) the same procedure was
discussed in Romero [Rom04, Ch. 4.4], which can also be interpreted as a projection-based
interpolation, since it interpolates the rotation matrices in the embedding space R3×3

and then projects them back onto SO(3). A more involved version of this approach can
be found in the work El-Abbasi and Meguid [EM00]. The resulting Ąnite elements are
denoted by the name Projection-based Ąnite elements (PBFE).

Projection-based Ąnite elements can be regarded as a special case of geodesic Ąnite
elements, where the distance measure for the interpolation is the one of the embedding
space. For example, for the interpolation on S2 the distance measure is the Euclidean
distance from R3. Due to the construction of the interpolation as a distance measure,
objectivity and path independence are inherited from geodesic Ąnite elements.

Additionally, geodesic Ąnite elements and projection-based Ąnite elements are summarized
as the group of geometric Ąnite elements. Both interpolations (geodesic and projection-
based) yield a path independent and objective discrete problem. The corresponding proofs
can be found in [Gro19, Ch. 1.3] and [San12, Ch. 2.4, Lemma 2.5, 2.6].

Similar to the GFE deĄnition, the nodal and the projection-based approach can be
reformulated as closed-form solutions of a minimization problem. The three approaches

3For some problems, e.g. Cosserat rods, the solution of the minimization can be stated analytically.
Therefore, in [San10] Sander deduced the same interpolation as CrisĄeld and Jelenić [CJ99] proposed
for these rods for Ąrst-order ansatz functions.
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NFE PBFE GFE

S2 S2 S2

t1 t1 t1

t2 t2 t2

t
t t

Figure 6.4: Graphical comparison of interpolation between two nodal directors t1,t2, using
the schemes of Eq. (6.45). The blue line indicates the used distance measure
and the red dashed line indicates the space in which the minimization problem
is formulated, i.e. where the interpolated director lives in.

can thus be represented as

tNFE =
n∑

I=1

N I tI = arg min
t∈R3

n∑

I=1

N I dist2
R3(tI , t) = arg min

t∈R3

n∑

I=1

N I ♣♣tI − t♣♣2,

tPBFE =

∑n
I=1 N I tI

♣♣∑n
I=1 N I tI ♣♣

= arg min
t∈S2

n∑

I=1

N I dist2
R3(tI , t) = arg min

t∈S2

n∑

I=1

N I ♣♣tI − t♣♣2,

tGFE = arg min
t∈S2

n∑

I=1

N I dist2
S2(tI , t) = arg min

t∈S2

n∑

I=1

N I arccos2(tI · t).

(6.45)

These abstract deĄnitions can be interpreted geometrically as shown in Fig. 6.4. One
can see that the nodal approach in the domain violates the condition of unit length.
This constraint is precisely satisĄed for GFE and PBFE, because minimization occurs
on the manifold. Since GFE and PBFE both precisely satisfy this constraint, they both
suffer from the following issue: Consider two directors whose directions are opposite of
each other. Their connecting geodesic is not unique, and the interpolation is ambiguous.
This issue only occurs with extremely coarse meshes, and even then we consider it to
be uncommon. Therefore, this is an interesting but theoretical issue. For the interested
reader, refer to Chapter 4 of [San10]. Furthermore, GFE also uses the distance measure
of the manifold and therefore it is fully intrinsic since it does not depend on a particular
embedding. The hybrid nature of the projection-based approach becomes obvious, as
it relies on the distance measure of the embedding space but the minimization is solved
for values on the manifold. In particular, loosely speaking, PBFE inherits the simplicity
of NFE and the accuracy of GFE. In contrast to nodal interpolation, projection-based
interpolation, and geodesic interpolation are not exactly integrated by Gauss quadrature
even for the simple case of N I (ξ1,ξ2) being Lagrange polynomials. This is the case since
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the interpolation formula of PBFE involves irrational fractions of the ansatz functions,
whereas for GFE the dependence of ξ1,ξ2 on the director t cannot even be expressed in
closed form. Nevertheless, Gauss-Legendre quadrature is used, which Ąts the order of the
used ansatz function spaces and numerical studies reveal that increasing the number of
quadrature points leaves the results practically unchanged.

In Grohs et al. [Gro19] numerical evidence is given that for the case of the unit sphere
geodesic Ąnite elements are superior to the projection-based formulation in terms of
h-convergence. However, in [Gro19, Ch. 5.1] they also mention that the projection-based
approach is 10 times as fast and therefore an overall superiority of PBFE can be deduced
in terms of computational efficiency. As already mentioned, this is due to the implicit
deĄnition of the geodesic interpolation, which leads to a small minimization problem
at each integration point, see [San15], whereas for projection-based Ąnite elements, an
explicit formula is available for the unit sphere. The implicit deĄnition of GFE also leads
to the need to use automatic differentiation for the derivatives which explains the major
speed difference. This was also reported similarly in [MB22].

These interpolation rules were studied in detail in the context of the Reissner-Mindlin
shell by Müller and Bischoff [MB22]. In the following, these will also be studied in the
context of locking prevention techniques.
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7
Numerical Experiments

The following chapter discusses the proposed algorithm for enforcing the zero normal
stress condition in the context of the Reissner-Mindlin shell model from Section 5.4.
Furthermore, the numerical experiments of Müller and Bischoff [MB22] are extended by
investigating the inĆuence of the choice of director interpolation on locking prevention.

7.1 Point of Departure

In Müller and Bischoff [MB22], comparisons are made between three types of director
interpolation: nodal-based (NFE), projection-based (PBFE), and geodesic (GFE). The
results demonstrate that all three interpolation methods predict the bending behavior
of the beam with varying degrees of computational efficiency. The NFE scheme is
computationally efficient but less precise than the PBFE and GFE schemes, whereas
the GFE scheme is more precise but computationally more expensive than PBFE.
Furthermore, for higher-polynomial order, the NFE showed a deterioration in convergence
order, whereas the PBFE and GFE schemes did not show such a deterioration. The
authors concluded that the PBFE scheme is the most efficient and accurate scheme
for the given examples. The following chapter extends and consolidates the results of
Müller and Bischoff [MB22]. Therefore, the numerical experiments are not repeated but
selected topics are revisited. Especially, the objectivity of the formulation is investigated
in elaborate detail in Müller and Bischoff [MB22] and is therefore not investigated further
in this work. Additionally, the efficiency, the robustness of the formulation, and its
capability to predict complicated buckling scenarios are not investigated further, since
the results of Müller and Bischoff [MB22] are sufficient to verify these claims. In Müller
and Bischoff [MB22] it was also shown, that the radial return normalization of Eq. (2.57)
for the unit sphere provides the best results in terms of needed load steps and outperforms
the exponential map.
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In contrast to the formulation from Müller and Bischoff [MB22], the formulation derived
in Chapter 5 on page 91 is stress-based. Furthermore, in Müller and Bischoff [MB22]
locking phenomena are excluded from the discussion. Thus, the following investigation
incorporates locking prevention techniques.

The stress resultants, namely the membrane forces, moments, and shear forces, are calcu-
lated in the following by integrating the stresses through the thickness as a post-processing
step. Additionally, the shown membrane strain, bending moments, and transverse shear
energy fractions are calculated by the formulas given in Appendix A.9. Since the for-
mulation at hand is stress-based, the zero normal stress condition needs to be enforced
on-the-Ćy iteratively. The different results of using the method proposed in Section 5.4 on
page 124 are investigated in the following, using an example with Ąnite strain plasticity.

All the following numerical examples use non-uniform rational B-splines (NURBS) as
ansatz functions. For linear ansatz functions, this degenerates to the usual deĄnition of
linear Lagrangian ansatz functions. Consequently, the following simulations can be inter-
preted as examples of isogeometric analysis (IGA) [Hug05]. For the used nomenclature,
the reader is referred to Piegl and Tiller [PT95] and Hughes et al. [Hug05]. These ansatz
functions are rational functions and they are deĄned by the control point weights and the
knot vector. For weights equal to one, the rational functions degenerate to polynomials.
At the element boundaries, the continuity of the ansatz functions is controlled by the
knot vector. In the examples, the following shortcut describes the used ansatz functions:
Ansatz functions of order p with inter-element continuity C k are denoted by PpCk, which
yields for example P2C1 for quadratic ansatz functions with C 1 continuity.

7.2 Plastic Deformation of a Free-Form Surface

The Ąrst example is a free-form shell using a large strain plastic material model. It serves
as a test for the numerical algorithms to enforce the zero normal stress condition from
Section 5.4 on page 124. The large strain plastic material model is a perfect J2-plasticity
with YoungŠs modulus E = 6.9e4 N mm−2, PoissonŠs ratio ν = 0.3 and yield stress
σy = 248 N mm−2. The material routines are used from the material library MUESLI
[Por17]. The geometry data is taken from Dornisch et al. [Dor16]. The system and
boundary conditions are presented in Fig. 7.1. The problem is solved using the arc-length
method. The bottom edge is simply supported and all other edges are free. At the top
edge, a line load pY = λ(t)40 N mm−1 in the global Y-direction is prescribed. The shell
thickness is h = 0.5 mm. The load is applied with the load factor function given in Fig. 7.2.
For a pseudo time 199 < t < 201, the load factor function λ(t) is regularized, to help the
underlying arc-length method to converge at the kink at t = 200. This kink represents the
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is slightly better than the exponential map, but the difference is small. Table 7.1 also
includes the results for a reĄned grid with 18× 18 elements, underlining this trend.

These results may appear insigniĄcant at Ąrst, but taking into account the vast number
of integration points, these slight improvements can signiĄcantly reduce the total compu-
tation time. This reduction is particularly crucial for large-scale simulations that employ
explicit time integration schemes, where the evaluation of residual forces and material
routines dominates the solution time.

The increased numerical effort for the evaluation of the complex update formulas (see
Eqs. (5.136) and (5.137) on page 128) are negligible compared to performing an additional
evaluation of stresses and tangent moduli. The latter, in itself, may require multiple
iterations, such as a return mapping onto a yield surface, if a complex plastic material
law is used. Consequently, it is better to use a complex update formula to reduce the
number of iterations needed to ensure the zero normal stress constraint.

Therefore, the proposed improvements for the numerical enforcement of the vanishing
normal stress constraint in the Reissner-Mindlin shell model offer signiĄcant advantages,
as demonstrated by the results above. By utilizing these advancements, existing routines
can be enhanced, leading to more efficient computations and reduced overall computation
time. Especially, the improvements in terms of iteration counts achieved through the
second-order retraction and exponential map provide beneĄts for implementing the zero
normal stress constraint. By incorporating these advancements, both academic research
codes and industry codes can enhance their computational procedures.

7.3 Pure Bending of Straight Beam

To compare the three director interpolation schemes denoted by the identiĄers NFE
(nodal Ąnite elements), PBFE (projection-based Ąnite elements), and GFE (geodesic
Ąnite elements), consider the example of pure bending of a straight beam. The straight
beam is clamped at one end and a moment load is applied at the opposite free end,
see Fig. 7.4. The moment that is needed to coil the beam to a full circle is obtained
as follows: Since the deformed conĄguration is a full circle, the geometry of the Ąnal
deformed conĄguration is known. Consider a Saint Venant-Kirchhoff material law with
the energy density

ψ(E) =
λ

2
tr (E : G−1)

2
+ µ tr(E : E♯), (7.1)
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• Fewer load steps are needed in comparison to formulations found in the literature.
The radial return normalization from Eq. (2.57) was shown to be superior to the
exponential map from Eq. (3.21). It is possible to compute the pure bending example
in a single load step, with 16 iterations (cf. [MB22]). This is in drastic contrast to
the literature, where an early contribution needs 40 load steps [Ram76] or a recent
contribution needs 7 load steps with 51 iterations in total [Zou20].

In summary, the discussion highlights the superiority of PBFE in terms of overall efficiency
and accuracy, particularly for higher-order interpolation, while NFE shows limitations in
convergence and accuracy.

7.3.1 Analytical Solution

The boundary conditions and load are chosen such that the beam is in pure bending.
The stresses can be integrated through the thickness to obtain the stress resultants,
using Eq. (5.65) in a local coordinate reference frame. The local coordinate system is
chosen such that the Ąrst direction is tangential and the second direction is in global
Y-direction. The third direction is chosen such that it is orthogonal to the Ąrst two
directions, namely in the direction of the circleŠs normal. Therefore, the normal force and
the transverse shear force must be identically zero. From these constraints, the correct
bending moment load can be derived as follows: The analytical solution has only one
non-trivial deformation gradient component F 1

1 = 2π(R + ξ3)/L in terms of the unknown
radius R of the deformed beam. The Green-Lagrangian strain is then given by

E11 =
1

2
(F 2

11 − 1) =
2π2(R + ξ3)

2

L2
− 1

2
, (7.3)

and the second Piola-Kirchhoff stress by

S11 = 2µE11 = EE11 =
2π2(R + ξ3)

2

L2
− 1

2
, (7.4)

where E is YoungŠs modulus. In this one-dimensional scenario, the transformation to the
Cauchy stresses σ = 1/ det F · F · S · FT simpliĄes to σ11 = F 1

1S
11. This single Cauchy

stress component is a polynomial function of the position ξ3, namely

σ11 =
E(4π2R2 + 8π2Rξ3 + 4π2(ξ3)

2 − L2)π(R + ξ3)

L3
, (7.5)
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which is cubic in ξ3. The stress resultants obtained from through-the-thickness integration,
deĄned in Eq. (5.65), of the Cauchy stress are given by

n11 =

h+
∫

h−

σ11 dξ3 =
EπRh(4π2R2 + π2h2 − L2)

L3
,

m11 =

h+
∫

h−

ξ3σ11 dξ3 =
EIπ(60π2R2 + 3π2h2 − 5L2)

5L3
,

(7.6)

with EI = Eh3/12 being the bending stiffness of the shell. As stated before, from
equilibrium it can be derived that n11 = 0, which allows the derivation of the radius R

as

R =

√
L2 − π2h2

2π
. (7.7)

The radius of the Ąnal circle is shorter than L/(2π), since the Saint Venant-Kirchhoff
material law, coupled with the Green-Lagrange strain, is stiffer in tension than in
compression. This yields higher stress at the outer surface at h+ in comparison to the
inner surface at h−. Therefore, the neutral axis is shifted towards the tension side. This
yields compression at the midsurface and therefore a smaller radius.

If the derived radius from Eq. (7.7) is inserted into the bending moment m11, the analytical
result is,

m11
ex =

2EIπ

L

(

1− 6

5

h2π2

L2

)

= M lin(1− 6

5

h2π2

L2
), (7.8)

which is the bending moment that is needed to coil the shell to a full circle. The subscript
ŞexŤ denotes the exact solution. Here, M lin denotes the bending moment that is needed
to coil a beam with a linear material law to a full circle. Here, the factor 6/5 takes into
account the non-linearity of the Green-Lagrangian strain. Since the integrand of the
bending moment is of fourth order in the thickness coordinate ξ3, the element residual
and element stiffness matrices for the simulation need to be integrated with at least
three-point Gauss quadrature to capture all terms. Consider the case of a very thin beam,
i.e., h → 0, in this case, the bending moment load converges to M lin and the radius R

of the deformed beam converges to L/(2π), which recovers the solution with a linear
material law. Furthermore, we point out that this is in line with the value M lin = 2πEI/L

found in the literature [Sim90a; Büc92; Ram76].
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From Eq. (7.7), the displacement and the deformed conĄguration can be derived as

X(ξi) =







ξ1

ξ2

−ξ3







EI , x(ξi) =







sin
(

2πξ1

L

)

(R + ξ3)

ξ2

(−R − ξ3) cos
(

2πξ1

L

)

+ R







EI . (7.9)

Here, ξ1 ∈ [0,L], ξ2 ∈ [0, b] and ξ3 ∈ [−h/2, h/2], where the midsurface deformation φ
can be obtained by setting ξ3 in u(ξi) to zero.

Furthermore, the analytical solution for the potential energy from Eq. (7.1), which
contains only bending energy, is given by

Πex =

L∫

0

b∫

0

h+
∫

h−

ψ(E) dξ3 dξ2 dξ1

= Ebh
L4 − π2L2(8R2 + 2

3
h2) + (16R4 + 8R2h2 + 1

5
h4)π4

8L3
.

(7.10)

For completeness, the missing analytic results are given as

q1
ex = 0, n11

ex = 0, φex(ξ1,ξ2) = R







sin
(

2πξ1

L

)

− ξ1

R

ξ2

1− cos
(

2πξ1

L

)







EI , (7.11)

where the last equation is the midsurface deformation.

7.3.2 Exemplary Finite Element Solution

The given analytical results are used to validate and compare the interpolation schemes
NFE, PBFE, and GFE from Section 6.3. Thus, now the numerical results are presented
and compared to the analytical solution for the example of the pure bending of a straight
beam. Furthermore, locking prevention techniques are considered, namely assumed
natural strains (ANS) from Appendix A.11. This is done in the following, but for a better
understanding of the situation, several discrete solutions are Ąrst shown. Fig. 7.5 does
not only show the midsurface but shows the three-dimensional shell body. Therefore, the
thickness for these graphical purposes was chosen as h = 1 cm.

The only non-zero Cauchy stress components are σ11 and σ13, where the former is non-
zero, as in the analytical solution, but the latter is also non-zero but oscillates around
the analytical solution (around zero). This can be attributed to transverse shear locking.
Refer to Braess [Bra07] for a discussion of this phenomenon. This can be seen in Fig. 7.5,
where the stresses are plotted on the deformed conĄguration. The simulation was done

183





7.3 Pure Bending of Straight Beam

฀push0 g 0 G

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 2 4 6 8 10 12

m
1
1

−
m

1
1

e
x

in
k
N

c
m

c
m

−
1

ξ1
−coordinate in cm

(a) Error in bending moment. ฀push0 g 0 G

-5e-06

-4e-06

-3e-06

-2e-06

-1e-06

0

1e-06

2e-06

3e-06

4e-06

5e-06

0 2 4 6 8 10 12

ϕ
X

−
ϕ

e
x

,
X

in
c
m

ξ1
−coordinate in cm

(b) Error in displacements.

฀push0 g 0 G

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12

n
1
1

in
k
N

c
m

−
1

ξ1
−coordinate in cm

(c) Membrane force. ฀push0 g 0 G

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 2 4 6 8 10 12

q
1

in
k
N

c
m

−
1

ξ1
−coordinate in cm

(d) Transverse shear force.

Figure 7.6: Stress resultants and displacement error for the pure bending with a thickness
of h = 1 cm. The analytical solutions of the stress resultants are m11

ex =
40.0445 kN cm cm−1,n11 = 0 kN cm−1, and q1 = 0 kN cm−1. The analytic
solution for the displacement is given by Eq. (7.11). The results are obtained
with 32 elements with P3C2 and projection-based interpolation (PBFE).

of 0.08 % for the bending moment. The maximum displacement of the beam occurs
at its tip with a value of exactly utip = 12 cm = L. The maximum relative error of
the displacement in X-direction is max(φX −φex,X)/12 = 1.6e−5 %. Consequently, the
formulation is capable of reaching the analytical solution with high precision.

7.3.3 Q1 Elements with Assumed Natural Strain

As stated at the beginning of this section, PBFE showed superior performance in com-
parison to NFE and GFE for higher-order elements, in Müller and Bischoff [MB22]. For
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the Q1 element, all three formulations showed very similar results. Therefore, it was
concluded that the Q1 element does not beneĄt from the additional numerical effort of
PBFE. This conclusion was made with standard Q1 elements, which suffer from transverse
shear locking. If locking is eliminated, the elements show more bending, and therefore,
the element directors differ more within one element. In contrast to this, when locking
is present, the element directors are almost parallel, which makes the results almost
independent of the chosen director interpolation scheme. Thus, the study is repeated and
transverse shear locking is eliminated using the assumed natural strain (ANS) method
for transverse shear. Refer to Appendix A.11 for a short description of the method. No
membrane locking is present since the elementŠs midsurface is Ćat.

To trigger moderate locking, the thickness is set to h = 0.1 cm, resulting in a slenderness
of L/h = 120. For this study, the L2 errors of the displacement and the stress resultants
are considered. In Fig. 7.7, the L2 errors of the displacement and the bending moment
are shown as functions of the element size h, which should not be confused with the
thickness h. Therein, in black the standard formulation of the Q1 element using NFE,
PBFE, and GFE, is shown, which yields all the locking behavior and only reaches the
correct convergence order after an initial plateau. This is the case for the displacement
on the left and the bending moment on the right. In contrast to this, the versions using
ANS show an earlier convergence but are accompanied by an initially unstable regime,
where the iterative solution scheme does not converge or to a wrong minimizer. After this
initial regime, the displacement and the bending moment converge and GFE shows the
best convergence behavior for the displacement error and bending moment error. PBFE
and NFE are similar but PBFE shows a slightly better convergence behavior for the
bending moment in Fig. 7.7(b). The GFE formulation with ANS in comparison to the
formulations without ANS shows partially more than three orders of magnitude smaller
errors.

A similar conclusion can be drawn by investigating the errors in transverse shear forces
error and membrane forces, respectively. In Fig. 7.8 the resulting errors are shown and
are accompanied by the ratio of the transverse shear and the total numerical energy. The
standard formulation of the Q1 element using NFE, PBFE, and GFE, in black, shows
severe locking and only reaches convergence after a long initial plateau. This is even
more pronounced in comparison to the displacement and the bending moment since
the transverse shear error and the membrane error Ąrst increase signiĄcantly. The ANS
versions show a better convergence behavior, except for the initial regime.

The NFE formulation in combination with ANS shows practically no error for the shear
forces in Fig. 7.8(a) or membrane forces in Fig. 7.8(b) after this initial regime. Thus, it
directly reproduces the analytical solution of a pure bending problem in terms of these
stress-resultants. Interestingly, PBFE and GFE with ANS show the same behavior as
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Figure 7.7: Illustration of displacement error (left) and bending moment error (right) for
varying element sizes h. The analytical solutions m11 = 40.0445 kN cm cm−1

and the analytic displacement is given by Eq. (7.11).

NFE, but only for the transverse shear forces in Fig. 7.8(a). The membrane forces errors
for PBFE and GFE in Fig. 7.8(b) show in contrast to NFE a more typical convergence
behavior, and converge to the analytical solution but do not reproduce it directly as
NFE with ANS. The energy fractions are computed as stated in Appendix A.9. The
bad convergence behavior of the variants without ANS is also visible in the ratio of the
transverse shear energy and the total numerical energy in Fig. 7.8(c). The ratio is almost
constant at one, which means that all the energy is in transverse shear. This is wrong
since the analytical solution has a transverse shear energy of zero. Interestingly, the
standard formulations show some slight Şmembrane locking behaviorŤ, which is visible in
Fig. 7.8(d) as the black line shows some increase for mesh reĄnement. Q1 elements are
free from membrane locking, due to missing midsurface curvature and since this effect is
only of magnitude 10−4, it could be an aftereffect of transverse shear locking. After an
initially unstable area, the formulations with ANS show a ratio, where the transverse
shear energy is zero and therefore reproduce the exact result directly. Considering, that
PBFE and GFE exhibit non-zero errors for the membrane forces, we observe similar
outcomes for the ratio of membrane energy to total energy, as depicted in Fig. 7.8(d).
The convergence order of the membrane energy to total energy ratio aligns with that of
the membrane error, both displaying a second-order behavior. In contrast to this, the
transverse shear energy fraction in Fig. 7.8(c) shows a convergence order of two, whereas
the shear error shows a convergence order of one.

These Ąndings lead to the following conclusion, that NFE in combination with ANS
exactly predicts the zero shear forces and zero membrane forces after an initially unstable
area. GFE and PBFE predict the overall displacement and the bending moment similarly
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Figure 7.8: Illustration of the shear forces error (a), the membrane forces error (b), and
the corresponding energies as a fraction of the total energy (c, d) for varying
element sizes h. The thickness is h = 0.1 cm.

or slightly better. They are not able to reproduce a constant bending mode since they
are not capable of providing constant curvature. This can be seen in Fig. 7.9, where
a single linear element in bending is shown with NFE and PBFE/GFE as director
interpolation, respectively. NFE provides a constant curvature on the left-hand side, since
the director derivatives t,1 are constant. In contrast to this, GFE and PBFE are not
capable of providing a constant curvature, since the director derivatives t,1 are forced to
be tangential to the interpolated director, as shown on the right-hand side of Fig. 7.9.
Thus, the curvature is given by κ11 = a1 · t,1, which is only constant for NFE, and
non-constant for PBFE and GFE. The same deformation pattern can be seen in the
actual computation in Fig. 7.10. Therein, projection-based Ąnite elements are used. The
slight non-linearity of the bulk deformation can be seen by comparing the top and bottom
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Figure 7.11: Illustration of displacement error (a) and bending moment error (b) for
varying element sizes h. The analytical solutions m11 = 40.0445 kN cm cm−1

and the analytic displacement is given by Eq. (7.11). The used ansatz
functions are P3C2.

7.3.4 Higher-order NURBS Elements

In the following, the different interpolation schemes are investigated for higher-order
NURBS ansatz functions. Since for curved elements, transverse shear locking and also
membrane locking is present, the situation gets more complicated.

For the following investigations, the same setup as in the previous section is used. The
ansatz functions are not the ones from a linear Q1 element, but they are cubic NURBS
ansatz functions with C 2-continuity. Therefore, they are referred to as P3C2 elements.

The displacement error and the error of the bending moment stress resultants are shown
in Fig. 7.11. The missing data points for GFE are due to numerical instabilities, for the
evaluation of the geodesic interpolation. In Fig. 7.11, the different behaviors compared
to linear ansatz functions become clear. As already elaborated on in Müller and Bischoff
[MB22], the NFE approach suffers from a deterioration of the convergence order as seen in
both Figs. 7.11(a) and 7.11(b). The error is dominated by the error of the wrong director
interpolation and stays at a quadratic convergence rate. The GFE and PBFE approaches
the exact solution with a convergence order between six and four for the displacement
and three for the bending moment. In Fig. 7.11(b) all three director interpolations show a
convergence for the bending moment between second order and fourth order. Nevertheless,
NFE has a signiĄcantly higher error than the other two approaches. Furthermore, GFE
provides a higher convergence order than PBFE, which is in contrast to the displacement
error. The error of the shear forces and the membrane forces are shown in Figs. 7.12(a)
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and 7.12(b), respectively. Additionally, the energy fractions of the shear energy and
membrane energy of the total energy are shown in Figs. 7.12(c) and 7.12(d). The NFE
approach is able to converge with the same order as PBFE and GFE for the shear
forces and the membrane forces. This is in contrast to the bending moment and the
displacement, where the convergence order deteriorates. Therefore, the wrong director
interpolation only inĆuences the convergence order of the bending moment and the
displacement. This is at least the case for the scenario at hand, where the shear forces
and membrane forces should converge to zero, respectively. The convergence order is
approximately three for the shear forces and four for the membrane forces. All three
approaches show both transverse shear locking and membrane locking in the energy
fractions, Figs. 7.12(c) and 7.12(d). This is in contrast to the linear case, where only
transverse shear locking was present, due to the plane linear Ąnite elements. The locking
effect is not severe, since the energy fraction of the shear energy and membrane energy
is below 0.01 % of the total energy with 16 elements. This corresponds to an element size
h = 0.75 cm in Figs. 7.12(c) and 7.12(d). The energy fraction in these spurious energies
decreases with order six and order eight, respectively, which explains the rapid overall
convergence.

InĆuence of the Slenderness

To further investigate locking elimination techniques and the behavior of the energy
fractions, the PBFE approach is solely used in the following. Consider a Ąxed discretization
with 32 elements but now a varying thickness. The varying thickness is used to study
the inĆuence of the slenderness on the locking behavior. To circumvent numerical issues
due to too small numbers YoungŠs modulus is set to 1e7 kN cm−2. The slenderness is
deĄned as the ratio of the length of the beam to the thickness of the beam, i.e., L/h. To
test the inĆuence of transverse shear locking, the director Ąeld is discretized with ansatz
functions one or two orders lower than the midsurface displacements. This is usually done
to circumvent transverse shear locking since it balances the mismatch of the displacement
Ąeld and the director Ąeld, see Braess [Bra07, Ch. VI ğ3., p. 311] Therefore, the midsurface
displacement Ąeld is discretized with P3C2 ansatz functions, and the director Ąeld is
discretized with P2C1, P2C0, or P1C0 ansatz functions, respectively. For a geometrically
linear Timoshenko beam, a P2C0 discretization of the midsurface displacement Ąeld
and a linear (P1C0) discretization of the director Ąeld yields a formulation free from
transverse shear locking (cf. [Bra07]). In the following, the midsurface displacement is
always discretized with P3C2 ansatz functions. Thus, due to the introduced geometric
non-linearity and the continuity of the NURBS ansatz function, a complicated scenario
is introduced and the locking behavior is not as clear as in the case of the geometrically
linear Timoshenko beam.
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Figure 7.12: The shear forces error (a), membrane forces error (b), and the corresponding
energies are shown as a fraction of the total energy (c, d) for varying element
sizes h. The thickness is h = 0.1 cm. The used ansatz functions are P3C2.

In Fig. 7.13, the displacement error and the bending moment error are shown. Unfortu-
nately, the last data point for a director interpolation P2C0 is missing, since the numerical
solver did not converge, even for small load step sizes. Since the curves almost coincide
this is not visible in the Ągure. The curves denote a midsurface displacement Ąeld that
is discretized with P3C2 ansatz functions, only the varying polynomial order of the
projection-based (PBFE) director discretization is indicated in the Ągure legend. Now,
instead of the element length, the slenderness is varied. This introduces an increasing
locking effect for a Ąxed number of elements. This can be seen in Fig. 7.13(a), where the
displacement error increases signiĄcantly with increasing slenderness. The magnitude of
the error for the slenderness of 1e6 is almost in the range of bringing the beam back to
the original state of a straight beam. Thus, a severe locking effect can be observed. This
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Figure 7.13: Error in displacements (left) and error in the bending moment (right) are
shown for varying slenderness. The used ansatz functions are P3C2 for the
midsurface displacements and for varying ansatz functions for the PBFE
director interpolation.

is independent of the polynomial order of the director Ąeld. Nevertheless, the version
where the director Ąeld is discretized with P2C1 ansatz functions shows the best results.
This is true for the displacement error and for the bending moment error.

Again, the shear energy and membrane energy fractions are shown in Fig. 7.14, where also
the slenderness is varied. In Fig. 7.14(a) it becomes clear that transverse shear locking can
not be eliminated by interpolating the director Ąeld with lower order ansatz functions. All
variants increase their energy fraction with increasing slenderness. If Fig. 7.14(b) is also
considered simultaneously, it becomes clear that the membrane energy always increases
for equal-order interpolation in purple (P3C2), but at some point, the lower-order variants
decrease their energy fraction. Thus, for very slender structures, the total energy gets
dominated by the shear energy, despite the lower-order interpolation of the director Ąeld.
As a consequence, due to its signiĄcant contribution to the total energy, it dominates
the bending energy, hindering the correct displacement. This can be seen in Fig. 7.14(c),
where the ratio of membrane energy to shear energy is depicted. Thus, if the ratio
exceeds one, the membrane energy dominates the shear energy. For increasing slenderness,
this only happens for equal-order interpolation (P3C2), for lower-order interpolation,
the ratio decreases. Therefore, interpolating the director Ąeld with lower-order ansatz
functions does not eliminate spurious transverse shear energy contributions but it moves
the dominating energy fraction from membrane energy to transverse shear energy for
highly slender structures.
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(c) Membrane energy as a fraction of the shear
energy.

Figure 7.14: Shear and membrane energies fractions.

7.3.5 Conclusion

The results given in this section accommodate the result from Müller and Bischoff [MB22].
It was shown that eliminating transverse shear locking for Q1 elements does provide
similar beneĄts for all introduced director interpolations. Especially, NFE provided
the most accurate and efficient combination, since it is the only interpolation method
that is capable of representing a state of constant bending. This conclusion can be
used in the future to develop a more efficient formulation for Q1 elements, it could be
beneĄcial to use NFE for the bending part, namely for the gradient of the director Ąeld,
and PBFE for the shear part, namely for the director Ąeld itself, which then combines
both advantages. Furthermore, it was shown that for higher-order elements, the overall
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performance deteriorates, if the NFE approach is chosen. This manifests itself in a higher
error for the displacement and the bending moment, but interestingly, the errors in
transverse shear forces and membrane forces are not affected. Lower-order ansatzes were
investigated for the director Ąeld to discuss the energy fractions between the competing
locking phenomena, namely transverse shear locking and membrane locking. It was shown
that for very slender structures, the membrane energy fraction decreases if the director
Ąeld is interpolated with lower-order ansatz functions. This renders transverse shear
locking the prevalent locking phenomenon in this particular example, although this may
not be the case for other deformations with less symmetry.
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8
Summary and Outlook

The objective of this research was to improve the accuracy, efficiency, and reliability of
simulation-based predictions of the mechanical behavior of thin-walled structures. In
particular, existing gaps regarding Reissner-Mindlin shell formulations in the literature
were Ąlled and both theoretical and numerical aspects were improved. This progress
represents an advance for the geometrically non-linear Reissner-Mindlin shell model and
its formulation and contributes to the general progress in structural mechanics.

This work covers a wide range of topics. Theoretical parts are the accurate derivation of
the stress resultants, balance laws for the shell, and the Reissner-Mindlin assumptions,
which are studied to gain a deeper understanding of their implications. In addition, the
study examines the importance of correct linearization procedures for a consistent and
symmetric stiffness matrix. Due to the non-linear conĄguration spaces of the Reissner-
Mindlin shell model, this is often controversially discussed in the literature. The properties
of suitable director interpolation methods are also analyzed in detail. In addition, the
inĆuence of locking phenomena is investigated, which can signiĄcantly affect numerical
performance. Functional analysis in non-linear functional spaces is examined, providing
insights into their peculiarities from an engineering point of view. By addressing these
different aspects, the research contributes to a better understanding of Ąnite elements for
non-linear Ąelds. The consistent and symmetric stiffness matrix is derived by applying
optimization techniques on manifolds, surpassing classical approaches that consider the
unit length as a constraint through methods like introducing a Lagrange multiplier or a
penalty term. This new derivation naturally leads to a Ąve-parameter shell formulation,
where Ąve is the smallest possible number of parameters for the Reissner-Mindlin shell
model.

Furthermore, the present work delves into the area of differential geometry and provides a
solid mathematical basis for the shell formulation. This aspect is of particular importance

197



8 Summary and Outlook

since the Reissner-Mindlin shell model is based on the unit length constraint for the direc-
tor Ąeld, which has led to problems in the past. This unit length constraint is thoroughly
addressed in this work, and the extensive mathematical analysis of its implications can
serve as a cornerstone for future studies in the Ąeld of non-linear dynamics, particu-
larly in the study of a non-constant, conĄguration-dependent, potentially unsymmetric
mass matrix. Similar conclusions can be drawn for the static or dynamic analysis of
three-dimensional beams, where the conĄguration also depends on the directional Ąelds.
Therefore, the research paves the way for further investigations in the Ąeld of structural
mechanics.

A new and promising approach for the numerical implementation of the vanishing normal
stress assumption has been proposed, which outperforms existing methods. This approach,
which is also based on the concept of optimization on manifolds, not only leads to a more
robust and efficient numerical method but can also be extended to other models with zero
stress constraints. Both, a small model problem and a fully geometrically and materially
non-linear shell simulation were used to validate and demonstrate the effectiveness of
this approach.

Interpolation on manifolds was used to discretize the director Ąeld of the shell model in
order to formulate a Ąnite element method. Contrary to interpolation on vector spaces, for
which there is a canonical option, interpolation on manifolds provides multiple alternatives.
This study compared and analyzed various interpolation schemes in terms of their
convergence rates and impact on locking phenomena. Linear Lagrangian interpolation and
higher-order NURBS interpolation were studied by examining their Ąnite element solutions
and comparing them to an analytical solution. For linear Lagrangian interpolation, it was
observed that by comparing these interpolation schemes for the director Ąeld, the standard
approach, which interpolates in the embedding space, provides a superior ratio of accuracy
to computational cost for the director interpolation. It has been demonstrated that, for
higher-order B-spline ansatz functions, the standard approach negatively inĆuences the
convergence rate of the error of the Ąnite element method. In contrast, it has been
demonstrated that projection-based interpolation and geodesic interpolation for the
director Ąeld do not show this degraded convergence rate for higher-order B-spline ansatz
functions, making it the optimal choice for these ansatz spaces. This was conĄrmed
by examining the displacement error and the bending moment error, but the standard
method did not reveal any deterioration in the convergence rate for the membrane
force error and the transverse shear force error. Therefore, it could be investigated in
the future to use different interpolation schemes for different director quantities. For
instance, the director Ąeld itself, which is required for transverse shear forces, can be
interpolated using the standard interpolation, whereas the gradient of the director Ąeld,
which is used for bending moments, can be discretized using the gradient resulting from
the projection-based interpolation. Consequently, this would beneĄt from the precision
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of projection-based interpolation and the reduced computational cost of the standard
method in the appropriate locations.

The symmetry of the stiffness matrix was thoroughly investigated, leading to two impor-
tant results. First, a consistent linearization process was derived for the Reissner-Mindlin
shell formulation, leading to an unconditionally symmetric stiffness matrix. This is in con-
trast to existing approaches in the literature, where the stiffness matrix is symmetrized ad
hoc or is symmetric only at equilibrium. Second, it has been shown that the symmetry of
the stiffness matrix is directly derived from the use of the symmetric Riemannian Hessian,
which is a more reliable alternative to the error-prone and potentially unsymmetrical
second variation, which is still used in the literature. These Ąndings also go beyond a
Reissner-Mindlin shell formulation and apply to other structural models involving degrees
of freedom on manifolds. Due to the consistent linearization of the tangential stiffness
matrix, the derived shell formulation signiĄcantly reduces the number of required load
steps in comparison to existing formulations.

The study of consistent linearization, the optimal director interpolation scheme, and the
assumption of vanishing normal stress have led to the development of a novel Reissner-
Mindlin shell formulation. This formulation exhibits potential improvements even for
the simple case of linear Q1 elements commonly used in commercial Ąnite element
software. However, the real advantages of the proposed formulation become apparent for
higher-order elements and exceed the capabilities of existing formulations.

All these Ąndings yield a static shell formulation, where several desirable properties
have been achieved. These include objectivity, the ability to accommodate unbounded
magnitudes of total rotations, the satisfaction of the unit length constraint for interpolated
directors, path-independent director interpolation, and avoiding any singularities due to
director rotations. Moreover, the shell formulation achieves optimal convergence order,
which provides superior performance compared to approaches found in the literature.

In summary, the present work addresses and deals with open issues of the non-linear
Reissner-Mindlin shell model. It provides a comprehensive analysis and suggests advance-
ments. The detailed discussions that are provided in this thesis not only provide a basis
for the Reissner-Mindlin shell model but are also relevant to other structural models.
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A.1 Transformation Rule of Christoffel Symbols

Consider a Riemannian manifold (M,g) with a given Levi-Civita connection ∇ and
metric components gij . The corresponding Christoffel symbols Γ, which are deĄned in
Eq. (3.11) on page 55, transform according to

gjnΓk
ijgkq = gjn 1

2
gkl(gil,i + gil,j − gij,l)gkq

= gjn 1

2
δl

q(gil,i + gil,j − gij,l)

= gjn 1

2
(giq,i + giq,j − giq,l) = −Γn

iq.

(A.1)

Thus, we have gjnΓk
ijgkq = −Γn

iq.

A.2 Divergence of a Tensor

Consider a vector Ąeld ξ. The divergence of this vector Ąeld reads in coordinates θi ,

ξi
♣i =

1
√

det([gjk ])

∂

∂θi
(
√

det([gjk ])ξi), (A.2)

which can be derived from the contraction identity of the Christoffel symbols Γk
kj =

∂
∂θi ln

√
gjk , see also [MH94, Sec 4.27].

201



A Appendix

A.3 Derivatives of the Projector

These derivatives are only needed for the derivation of the quantities Qα,S(v) and X α(v).
They do not explicitly appear in the implementation.

tk = Pk(w) =
wk

♣♣w♣♣ , w ∈ R3,

(P ′)
k

l (w) =
∂Pk

∂w l
=

δk
l

♣♣w♣♣ −
wkwl

♣♣w♣♣3 ,

=
I

♣♣w♣♣ −
w⊗w

♣♣w♣♣3 =
I− t⊗ t

♣♣w♣♣ ,

(P ′′)
k

lm =
∂(P ′)k

l

∂wm
,

=
1

♣♣w♣♣2
[

−δk
l tm − δk

mtl − δlmtk + 3tktltm

]

,

(P ′′′)
k

lmj =
∂(P ′′)k

lm

∂wj
=

1

♣♣w♣♣3 [−δk
l δmj − δk

mδlj − δlmδ
k
j ,

+ 3(δk
l tmtj + δk

mtltj + δlmtktj ,

+ δk
j tmtl + tkδmjtl + tktmδlj)− 15tktmtltj ].

A.4 Covariant Derivative for Compact Lie Groups

Let x ∈ SO(n) and ξx,ηx ∈ TxSO(n) or another compact Lie group, respectively.

With this at hand, we can state the properties of a left-invariant metric

⟨ξx,ηx⟩x = ⟨x−1ξx,x
−1ηx⟩I (A.3)

where x ∈ G and ⟨(◦), (◦)⟩(◦̂) denotes the metric at the position (◦̂) or respectively I,x.
For a right-invariant metric, it needs to hold similar

⟨ξx,ηx⟩x = ⟨ξxx−1,ηxx−1⟩I (A.4)

and Ąnally, for a bi-invariant metric, it has to hold that

⟨ξxx−1,ηxx−1⟩I = ⟨x−1ξx,x
−1ηx⟩I (A.5)
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multiplying from the right by x gives

⟨ξx,ηx⟩I = ⟨x−1ξxx,x−1ηxx⟩I (A.6)

a modiĄed condition for a bi-invariant metric.

To obtain an expression suitable to us in the Koszul formula, refer to Eq. (3.10) on
page 54 for a deĄnition, we have to take the derivative of the last expression. For this we
choose with the exponential map exp : g→ G, the group element x(t) = exptζx where
ζx ∈ g.

⟨ξx,ηx⟩I = ⟨exp−tζx ξx exptζx , exp−tζx ηx exptζx⟩I (A.7)

Taking the derivative on both sides w.r.t. t and t = 0 we have

0 = ⟨−ζxξx + ξxζx,ηx⟩I + ⟨ξx,−ζxηx + ηxζx⟩I (A.8)

This gives the result in terms of the Lie bracket

0 = ⟨[ξx,ζx],ηx⟩+ ⟨ξx, [ηx, ζx]⟩ (A.9)

where I was neglected for a more compact notation.

Inserting this in the Koszul formula Eq. (3.10) on page 54 we get

2⟨∇ξηx,ζx⟩ = ⟨[ξx,ηx],ζx⟩
+ Dξx

⟨ηx,ζx⟩+ Dηx
⟨ξx,ζx⟩ −Dζx

⟨ξx,ηx⟩
(A.10)

where the second and third terms are canceled due to Eq. (A.9). Additionally, all direc-
tional derivatives vanish since the metric is left invariant and therefore ⟨ηx, ζx⟩,⟨ξx, ζx⟩
and ⟨ξx,ηx⟩ are constant and their derivatives vanish. With this we get

2⟨∇ξx
ηx,ζx⟩ = ⟨[ξx,ηx],ζx⟩ (A.11)

A.5 The Inextensible Director Derivatives

The derivation is done using the quantities from the current shell conĄguration From the
director t : Ω→ S2 the partial derivatives are denoted by t,α. For the derivation of t,α

in terms of the midsurface basis aα, we make the ansatz

t,α = bµ
αaµ + Γ3

3αt, (A.12)
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with bβα = t,β · aα and bµ
α = aµβbβα. Here, aµβ denotes the coefficients of the metric

inverse of the midsurface, such that aµβ = aα · aβ. From the inextensibility conditions
♣♣t♣♣ = 1 and t,α · t = 0, it follows

t,α · t = bµ
αaµ · t + Γ3

3α = 0, (A.13)

which results in

Γ3
3α = −bµ

αγµ, (A.14)

with γµ = aµ · t. Thus, Eq. (A.12) reads

t,α = bµ
αaµ − bµ

αγµt,

= bµ
α(aµ − γµt).

(A.15)

A.6 The Shifter Tensor Components in the Midsurface

Basis

The shell shifter from Eq. (5.21) on page 96 for the current conĄguration is deĄned as

z = δi
jgi ⊗ aj = gi ⊗ ai . (A.16)

The components of this shifter are derived in the basis ai ⊗ aj , which yields a convenient
geometric interpretation. The deĄnition of the base vectors gα = aα + ξ3t,α and g3 =

a3 = t is plugged in Eq. (A.16). This yields

z = gi ⊗ ai ,

= (aα + ξ3t,α)⊗ aα + t⊗ a3,

= aα ⊗ aα + ξ3t,α ⊗ aα + t⊗ a3,
(A.17)

using the deĄnition of the director derivatives from Appendix A.5, yields

z = aα ⊗ aα + ξ3(bµ
αaµ − bµ

αγµt)⊗ aα + t⊗ a3,

= aα ⊗ aα + ξ3bµ
αaµ ⊗ aα − ξ3bµ

αγµt⊗ aα + t⊗ a3,

= (δµ
α + ξ3bµ

α)aµ ⊗ aα − ξ3bµ
αγµt⊗ aα + t⊗ a3,

(A.18)
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which deĄnes the unsymmetric shell shifter tensor components of the current conĄguration
with bβα = t,β · aα and bµ

α = aµβbβα. Here, aµβ denotes the coefficients of the metric
inverse of the midsurface, such that aµβ = aα · aβ. There are several special cases, Ąrst if
the director is orthogonal to the midsurface, we have γα = 0 and end up with

z = (δµ
α + ξ3bµ

α)aµ ⊗ aα + t⊗ a3, (A.19)

which is symmetric since for this case t and a3 are collinear and bαβ = t,α · aβ = bβα =

t,β · aα, whereas the latter is a usual consequence of surface differential geometry. The
base vector a3 can be simply derived as a3 = (a1 × a2)/(t · (a1 × a2)) as similarly stated
in Eq. (2.104) on page 46.

The other special case is, where the curvature is zero, namely bµ
α = 0. In this case, we

have

z = δµ
αaµ ⊗ aα + t⊗ a3 = ai ⊗ ai , (A.20)

which is simply the identity.

A.7 The Determinant of the Shifter Tensor

From the deĄnition of the determinant for mixed tensors Eq. (2.101) on page 45, it
results that the determinant of the shifter tensor det z is merely the determinant of its
component matrix det([zµ

α]).

In matrix notation, we have

zµ
α =







1 + ξ3b1
1 ξ3b2

1 0

ξ3b1
2 1 + ξ3b2

2 0

−ξ3(b1
1γ1 + b2

1γ2) −ξ3(b1
2γ1 + b2

2γ2) 1






, (A.21)

therefore the determinant reads

det([zµ
α]) = 1− 2ξ3H + (ξ3)

2
K , (A.22)

where we deĄned the shortcuts K = det([bµ
α]) and H = −(b1

1 + b2
2)/2. Note that, K

and H , for the case where t is the midsurface normal, exactly boil down to the usual
surface deĄnitions of Gaussian curvature and mean curvature.
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A.8 Derivation of Local Shell Angular Momentum From

Local Three-Dimensional Angular Momentum

Following Simo and Fox [SF89], the three-dimensional angular momentum σT = σ can
also be investigated to derive an alternative version of the angular momentum for the
shell. First the angular momentum condition implies σ : ε = jσijεijkgk = σijgi × gj =

(σgj) × gj = 0, where ε is the Levi-Civita tensor from Eq. (2.92) on page 43 and the
identity from Eq. (2.104) on page 46 was used. Then using gα = aα + ξ3t,α, g3 = t and
integration through the thickness of σgj × gj yields

h+
∫

h−

zσgj × gj dξ3 =

h+
∫

h−

zσgα × (aα + ξ3t,α) + zσg3 × t dξ3 = 0

=

h+
∫

h−

zσgα × aα + zξ3σgα × ξ3t,α + zσg3 × t dξ3 = 0

= nα × aα + m̂× t,α + l× t = 0

(A.23)

where the deĄnition of the stress resultants from Eqs. (5.39), (5.41) and (5.42) on page 103
where inserted. If we

aα × (nβαaβ + qαt) + t,α × (m̂βαaβ + m̂3αt) + t× l = 0,

aα × (nβαaβ + qαt) + (bµ
α(aµ − γµt))× (m̂βαaβ + m̂3αt) + t× l = 0,

aα × (nβαaβ + qαt) + (bµ
α(aµ − γµt))× (m̂βαaβ + m̂3αt) + t× l = 0,

nβαaα × aβ + (qαaα − γµbµ
αm̂βαt)× aβ + m̂βαbµ

αaµ × aβ + m̂3αbµ
αaµ × t + t× l = 0,

nβαaα × aβ + (qαaα − γµbµ
αm̂βαt)× aβ − m̂βαbµ

αaβ × aµ + m̂3αbµ
αaµ × t + t× l = 0,

nβαaα × aβ + (qαaα − γµbµ
αm̂βαt)× aβ − m̂αµbβ

µaα × aβ + m̂3αbµ
αaµ × t + t× l = 0,

(nβα − m̂αµbβ
µ)aα × aβ + qαaα × t− γµbµ

αm̂βαt× aβ + m̂3αbµ
αaµ × t + t× l = 0,

(nβα − m̂αµbβ
µ)aα × aβ + t× (−qαaα − γµbµ

αm̂βαaβ − m̂3αbµ
αaµ + l) = 0,

(nβα − m̂αµbβ
µ)aα × aβ + t× (−qαaα − γµbµ

βm̂αβaα − m̂3µbα
µaα + l) = 0,

(nβα − m̂αµbβ
µ)aα × aβ + t× (l− (qα + γµbµ

βm̂αβ + m̂3µbα
µ)aα) = 0.

(A.24)

Using the deĄnition of the effective stress resultants Eq. (5.52) on page 106 yields

ñβαaα × aβ + t× (l− (q̃α + m̂3µbα
µ)aα) = 0, (A.25)
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and using the deĄnition of the components of l from Table 5.2 on page 109, we have

ñβαaα × aβ + t× [(lα − (q̃α + m̂3µbα
µ))aα + l3t] = 0

ñβαaα × aβ + t× [(̃lα − q̃α)aα + l3t] = 0

ñβαaα × aβ + t× aα(̃lα − q̃α) + l3t× t = 0

(A.26)

A.9 The Potential Energy Given by Midsurface

Quantities

Following Başar and Krätzig [BK13, Eq. 3.5.5], the total energy can be given in terms of
the midsurface quantities. This reads

Πmembrane
int =

1

2

∫

BC
0

J̄

det F̄
nαβεαβ da,

Πbending
int =

1

2

∫

BC
0

J̄

det F̄

(

mαβκαβ + kαβραβ

)

da,

Πshear
int =

1

2

∫

BC
0

J̄

det F̄
qαγα da,

(A.27)

where k = kαβaα⊗aβ =
∫ h+

h− z(ξ3)
2
t×σ ·gα dξ3 are the additional second-order moments

not given in Başar and Krätzig [BK13, Eq. 3.5.5]. The other stress resultants are given
in Eqs. (5.48) and (5.51) and the kinematic quantities in Eq. (5.30), where the given
components need to be interpreted as deĄned in the midsurface basis. The sum of these
quantities returns the total potential energy

Πint = Πmembrane
int + Πbending

int + Πshear
int , (A.28)

which is not necessarily the same energy as given in Eq. (5.144), since Eq. (A.27) assumes
that the energies can be decoupled from each other in the derivation process of a potential
energy deĄned through a material law in midsurface quantities. For a more detailed
reasoning, see Başar and Krätzig [BK13, Sec. 3.4.3].

A.10 Solving the Local GFE Minimization Problem

For the geodesic Ąnite element implementation the interpolation minimization problem
of Eq. (6.43) on page 170 has to be solved at every integration point. Therefore, we
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reformulate Eq. (6.43) on page 170 as

tGFE = arg min
t∈S2

f (t),

f (t) =
n∑

I=1

N I (ξα) arccos2(tI · t)

=
n∑

I=1

N I (ξα)α2(tI · t),

(A.29)

where we introduced the function α(x) = arccos2(x) for a compact notation, similar
to [San12; San16b]. For the solution of Eq. (A.29), we use a Riemannian Newton-Raphson
scheme as proposed in [Abs08, Table 4.1, Chapter 6.2, Chapter 6.4.1] and we use a base
transformation into the tangent space using stereographic projection.

For the construction of the Riemannian gradient and Riemannian Hessian [Abs08; Abs13]
we need the Euclidean gradient and Euclidean Hessian, which can be straightforwardly
constructed as

grad f̄ (t) =
∂ f̄ (t)

∂t
=

n∑

I=1

N I (ξ)α′(tI · t) tI , (A.30)

Hess f̄ (t) =
∂2f̄ (t)

∂ti∂tj

=
n∑

I=1

N I (ξ)α′′(tI · t) tI ⊗ tI . (A.31)

(A.32)

Here, f̄ : R3 → R is the Euclidean extension of the function f : S2 → R. The derivatives
of α(x) are

α′(x) =
−2 arccos(x)√

1− x2
, (A.33)

α′′(x) =
2

1− x2
− 2x arccos(x)

(1− x2)3/2
. (A.34)

Near x = 1 these expressions are unstable, and the Taylor expansions

α′(x) = −2 +
2

3
(x − 1) +O((x − 1)2), (A.35)

α′′(x) =
2

3
− 8

15
(x − 1) +O((x − 1)2), (A.36)

are used instead. We took a tolerance of 1E− 8 to switch between the expansion and
the exact formula. In this region, the error of both Taylor expansions is within machine
precision.

208



A.10 Solving the Local GFE Minimization Problem

These Euclidean quantities are then projected onto the tangent space Λ of the director t.
This matrix corresponds to the tangent space of the director at the integration point, in
contrast to, e.g., Section 5.6 on page 140, where the tangent space corresponds to the
nodal directors. We end up with the following equations

grad f (t)2×1 = ΛT grad f̄ (t),

Hess f (t)2×2 = ΛT Hess f̄ (t)Λ− tT grad f̄ (t)I2×2.
(A.37)

These can then be used for the Riemannian Newton-Raphson scheme

∆Tk = −Hess f (tk)
−1

grad f (tk),

∆tk = Λk
∆Tk ,

tk+1 = Rtk (∆tk),

(A.38)

where Rtk (∆tk) is again one of the retractions deĄned in Section 2.6 on page 33. As a
predictor of the GFE director, we set the projection-based director, since these interpola-
tions are close to each other if the difference between the nodal directors is small. More
formally, if the nodal directors tI are contained in a ball of radius h ≪ 1, the distance of
the projection-based and GFE-based director can be bounded by h3, as done in [Spr16,
Chapter 1.4.3]. Therefore, we set the Ąrst iterate in Eq. (A.38) to

t0 =

∑n
I=1 N I tI

♣♣∑n
I=1 N I tI ♣♣

. (A.39)

Moreover, for the strains we need the partial derivatives of the director w.r.t ξα for the
curvature terms. Following a similar reasoning as in [San12], we can recast the gradient
function in Eq. (A.37), evaluated at the converged state as

Φ(tI ; ξα,tGFE(tI ; ξα)) := grad f (t)

∣
∣
∣
∣
∣
∣
t=tGFE

= 0. (A.40)

Taking the total derivative, we get

d

dξα
Φ(tI ; ξα,tGFE(tI ; ξα)) =

∂Φ(tI ; ξα,tGFE)

∂ξα

+
∂Φ(tI ; ξα,tGFE)

∂tGFE

∂tGFE

∂ξα
= 0.

(A.41)
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Here, we can identify several quantities and end up with

∂Φ(tI ; ξα,tGFE)

∂ξα
= ΛT

n∑

I=1

N I
,α(ξα)α′(tI · tGFE) tI , (A.42)

∂Φ(tI ; ξα,tGFE)

∂tGFE

= Hess f (tGFE). (A.43)

This can then be summarized as

Hess f (tGFE) tGFE,α =

−ΛT
n∑

I=1

N I
,α(ξα)α′(tI · tGFE) tI .

(A.44)

This 2×2 linear system of equations can be solved for tGFE,α. Note, that tGFE,α has only
two components in the Λ base, and therefore we need to reconstruct the three-dimensional
representation with Λ.

A.11 Assumed Natural Strain for Transverse Shear

The usage of the assumed natural strain method (ANS) for the alleviation of locking
phenomena is well-established in the literature. For the alleviation of transverse shear
locking in plates and shells, the origins can be found in the works of Bathe and Dvorkin
[BD85a; BD85b; BD86]. The described method therein is restricted to bi-linear Q1
elements. Extensions to bi-quadratic Q2 elements or for improving the membrane strains
can be found in [HH84; HH86; PS86] whereas Park and Stanley [PS86] have coined the
term assumed natural strains. The method can be also used for other locking phenomena,
such as curvature-thickness-locking, which was done in [BR97].

Nevertheless, the following is restricted to the alleviation of transverse shear locking.
The basic idea of the ANS method is to assume strains, which do not contain spurious

strains, that would lead to locking. For transverse shear, the construction used for the
assumed transverse shear strain is as follows.

1. Evaluate the transverse shear strains γα at the mid-points of the element edges.

2. Interpolate the transverse shear strains γαwith ansatz functions N , which yield a
linear strain in one direction and constant in the other.

3. Replace the transverse shear strains γα with the assumed transverse shear strains
γ̂α in all quantities.
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Dedicated to simulating thin-walled structures using the finite element method, this thesis

focuses on a consistent Reissner-Mindlin shell formulation through theoretical and

numerical investigations.

Emphasizing a robust mathematical foundation, particularly in differential geometry, the

work explores aspects such as the derivation of stress resultants, consistent linearization,

and properties of director interpolation. A pivotal outcome is a finite element formulation

that outperforms existing ones, exhibiting key features like objectivity, adherence to unit

length constraints, avoidance of path dependence, singularity prevention, and optimal

convergence orders. Notably, the study of the consistent linearization process yields the

correct tangent operator, identified as the symmetric Riemannian Hessian, serving as the

stiffness matrix. This, combined with the study of the correct update of the nodal directors,

contributes to the superior convergence behavior of a Newton-Raphson scheme

compared to existing formulations.

Addressing the assumption of zero transverse normal stress, the thesis proposes a novel

numerical treatment, using optimization on manifolds, applicable to arbitrary material

models. This method shows potential applicability to other models with stress constraints.

The claim of a physically and algorithmically sound Reissner-Mindlin shell formulation is

supported by results from numerical investigations. Beyond contributing to the algorithmic

treatment of the Reissner-Mindlin shell model, the proposed procedures may have

implications for improving the accuracy, efficiency, and reliability of numerical treatments

of other structural models.
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