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Abstract

Neural machine translation has emerged as a powerful tool, yet its performance
heavily relies on training data. In a fast-changing world, dealing with out-of-domain
data remains a challenge, prompting the need for adaptable translation systems.
While fine-tuning is a proven effective adaptation method, it is not always feasible
due to data availability, memory, and computational constraints.

This thesis introduces a dynamic plug-and-play method inspired by controllable
text generation to enhance machine translation across various domains without fine-
tuning. This method, called Plug-and-Play Neural Machine Translation (PPNMT),
uses a mono-lingual domain-specific bag-of-words to push the hidden state of the
decoder through backrpopogation, making the output more in-domain.

The method is tested on two types of domains: formality, gender (where the
source language does not make a distinction between these aspects, but the target
language does), and fine-grained technical domains (which are more based on topic
inherent in the text on both the source and target sides).

The method performs reasonably well for adapting the translation to different
formality levels and, to a lesser extent, grammatical genders, even with an incredibly
simple bag-of-words. However, it struggles with adapting the model to technical
domains, and a fine-tuning baseline outperforms the proposed method in anything
but very low few-shot settings in all tried domains.

Despite that, the method shows some interesting behaviour, adapting to the
formality on a level that goes beyond just using formal pronouns.
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1 Introduction

Machine translation (MT) is bringing the world closer together. Although neural
approaches have achieved excellent performance for specific language pairs, it highly
depends on the amount of available training data (Fadaee et al., 2017). This is
especially evident when dealing with texts outside the distribution of the training
data that the MT model has seen in training (Koehn and Knowles, 2017), or put
more succinctly when dealing with out-of-domain data.

This thesis explores a new method for improving machine translation perfor-
mance on various domains with a dynamic plug-and-play approach that requires no
fine-tuning.

1.1 Motivation

Human translators are masters of context. They use cues from various sources,
modalities, and outside knowledge to pick the most appropriate translation for any
given sentence. While MT systems have come a long way, they usually lack these
context cues since end-users often interact with them through short, out-of-context
sentences from websites, social media, or text chats (Vieira et al., 2023). Because of
this, MT systems can make wrong guesses about the appropriate formality level to
use or how to translate terms that have different meanings across different domains
due to a lack of context.

While the most common MT use-case is translating whole documents at once
(as reported by around 68% of users in the study by Vieira et al. (2023)), even with
this context, the translation quality is dependent on whether the model has seen
examples from this particular domain when training.

It is, therefore, necessary to adapt machine translation systems to new domains
in a flexible way that is, ideally, adjustable by the end-users themselves since they
usually possess the required context.
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1.2 Problems with Domain Adaptation of Machine Transla-
tion Output

Various domain adaptation methods can be used to improve machine translation
performance on specific domains. The most straightforward is fine-tuning the model
on in-domain data (Luong and Manning, 2015; Xu et al., 2019). While this generally
does achieve a good result, this approach has some issues.

1. Fine-tuning is very data dependent (Koehn and Knowles, 2017). For
many language pairs (outside of the most common ones, e.g. English-French),
the performance of machine translation models is constrained by the amount of
available parallel data, with much effort put towards increasing available train-
ing data through data augmentation and unsupervised data mining (NLLB
Team et al., 2022). Adding the extra constraint of the parallel data having to
be of a certain domain only exacerbates the issue.

2. It requires fine-tuning of the usually large MT model. While fine-
tuning is much less expensive than training the model from scratch, it is
considerably more expensive than using methods that perform the domain
adaptation at inference, such as the methods by Hasler et al. (2018) and Mi-
chon et al. (2020), which enforce terminology constraints during decoding.

3. Fine-tuning can lead to catastrophic forgetting, where the model forgets
how to translate texts that are not within the domain of the data used in fine-
tuning (Li et al., 2022). This can especially be an issue in a multi-domain
setting (Saunders, 2022).

4. Fine-tuning is not flexible. When a user wishes to translate a domain-
specific text, if the model has not already been fine-tuned on that domain, it
is impossible to adapt to the user’s needs quickly.

Some examples of MT applications that might require domain adaptation are
translating scientific texts or technical specifications due to the specific language
and terminology used in such texts differing from the average.
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1.3 Style Control of Machine Translation Output

A related problem is controlling the style of the MT output. Some examples of style
relevant to machine translation could be spoken language, formal/informal text, or
detoxified text, with a particularly tricky example being poetry (Genzel et al., 2010)
due to having to translate the rhyming scheme.

In contrast to domain adaptation, changing the style from the input to the output
can be useful. For example, detoxifying the translation or changing the formality
level while still keeping the core meaning of the translation intact. When translating
from a language without different polite/impolite pronouns (such as English, which
has the pronoun ”you”) into a language with different pronouns (such as German,
which has the pronouns ”Sie” and ”du”), it is helpful to be able to control the
desired formality level. This is the task of formality-sensitive machine translation,
introduced by Niu et al. (2017).

1.4 Domain Adaptation and Style Control as a Combined
Task

Domain and style are terms that are often used in different contexts. However,
the two concepts are fundamentally linked. For instance, scientific text (domain) is
usually formal (style). Because of this, this thesis will consider domain adaptation
and style control as a single task, using the same method for both. All aspects that
make some text have a different probability distribution than the training data will
be referred to simply as ”domain”. Mino et al. (2020) gives credence to this kind of
loose definition for practical purposes by including aspects such as data noisiness as
one of the domains being adapted to.

Nevertheless, there is a useful distinction to make; in some cases, the source
text is in a particular domain, and through domain adaptation, we wish to preserve
the characteristics of this domain through the translation process. The domain is
intrinsic to the meaning of the text. This is relevant for domains that deal more with
the topic of the text (e.g. biomedical, engineering, finance), where we would want to
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translate technical terms differently depending on the field they stem from. However,
in other cases, we might wish to add some domain characteristics to the translation
output that were not already present in the source text. The domain is extrinsic to
the text. This is relevant for domains that deal more with style and register and
linguistic features that differ between the source and target languages (e.g. choosing
whether to translate an English sentence into formal or informal German).

While both cases are tackled with a single method in this thesis, they require
slightly different approaches.

1.5 Proposed Method: Plug-and-Play Domain Adaptation

This thesis proposes a novel approach to this combined domain adaptation and style
control task for MT. Instead of fine-tuning, a pre-trained neural translation model is
used as-is, without any weight changes, and adapted to a specific domain in the de-
coding step through a small domain discriminator that guides the decoding process.
In essence, the domain discriminator is used during the decoding step to nudge the
pre-trained neural machine translation model’s output closer to the desired domain.

This approach is inspired by controllable text generation methods, especially
Dathathri et al. (2020), allowing greater control over the output since the domain
discriminators can be switched out, combined, and weighted in a dynamic plug-and-
play way. To keep it adjustable by the end user, we focus on straightforward domain
models that define a domain with a bag-of-words and no trainable parameters.

This approach also circumvents the four aforementioned issues of fine-tuning.
It does not require much data to create a domain discriminator, with the user be-
ing able to create the bag-of-words either manually or with minimal example data
through methods such as tf-idf, nor does this data need to be parallel (since the
adaptation happens purely during decoding, within the target language). Further-
more, since no fine-tuning is involved, catastrophic forgetting is avoided.
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1.6 Research Questions

The key research questions build upon each other in a complementary manner. They
are as follows:

• Can the proposed plug-and-play method improve machine transla-
tion output on specific domains?

First, the efficacy of the proposed domain adaptation method must be estab-
lished for different domains. This will be verified via automatic MT evaluation
metrics and domain-specific approaches where viable.

• How does the performance of this kind of plug-and-play domain
adaptation method compare to traditional fine-tuning methods?

Second, the efficacy of the proposed method will be compared to a fine-tuning
baseline, in which the same base model used for the plug-and-play adaptation
will be fine-tuned on the available in-domain examples.

• How does this method compare to fine-tuning when dealing with
complex topic domains like technical literature?

While it is expected for the proposed method to work reasonably well on
domains which deal more with style, it might struggle with complex topic-
based domains, which could be hard to define with a bag-of-words effectively.
The limitations of the proposed method will be investigated.

• How does it compare to fine-tuning in low-data settings?

It is known that more training data leads to better fine-tuning performance.
The proposed method, however, should be much less sensitive to the amount
of training data. It will be evaluated at what amount of training data the
fine-tuning approach starts outperforming the proposed method.
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2 Background

This section lays the groundwork necessary to understand the task and methods used
in this thesis. The more specific research this thesis builds upon, and the research
directly adjacent to it can be found in section 3.

Modelling language is at the core of natural language processing (NLP). In fact, it
is the implicit end goal of NLP because, with a good enough model of language, any
NLP task that a human can do could be accomplished computationally. Because of
this, this section begins with an overview of language models, starting from simple
statistical methods to cutting-edge neural models. Their general architecture and
specific use cases are discussed.

Next, the various methods of generating text from language models are consid-
ered, focusing especially on ways in which the output can be controlled to exhibit
some desired characteristics, both in terms of the topic of the text and the style.

Lastly, machine translation is considered, starting from early rule-based methods
and ending with neural models, which are commonly modelled similarly to language
models. This thesis leverages this similarity between machine translation models and
language models and uses methods created for controlling language model output
to control the output of a translation model.

2.1 Language Models

Language models are a fundamental component in the field of NLP. They are used in
various tasks ranging from text generation and machine translation to speech recog-
nition. There are many different approaches to building language models, ranging
from simple statistical methods to sophisticated neural approaches. Despite this, a
language model at its core simply predicts the probability of a given sequence of
tokens appearing in natural language.

This section starts by establishing what exactly they model, then explaining
various types of simple mathematical models used for modelling language.
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2.1.1 The Task of Language Modelling

Language models play a crucial role in NLP. Modelling the intricacies of how humans
communicate through language is challenging since it involves many layers, such as
morphology, syntax, semantics and pragmatics. Instead of trying to model all of
these things explicitly, the task of language modelling is usually expressed as simply
estimating the likelihood of the next word in a sentence (Jurafsky and Martin, 2023):

(1) P (wt|w1, w2, ..., wt−1)

This can be expressed slightly differently to estimating the likelihood of a complete
sentence appearing in natural language:

(2) P (w1, w2, ..., wt)

Both of these definitions are effectively equivalent. Which one to use is more of
a question of framing. For example, the first definition is more appropriate when
generating text word-by-word. However, the second one is more appropriate when
re-ranking possible translations from a statistical machine translation model.

While this simple definition does not truly capture the intricacies of human
language, it is shown to be practical for many use cases such as machine translation
(Brants et al., 2007) and speech recognition (Jelinek, 1985) among others.

2.1.2 Tokens

Language models work with discreet units of language called tokens. There are
different ways of splitting up text into tokens with different advantages and disad-
vantages.
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Whole words as tokens In the simplest case, one token could equal one full
word. This approach is straightforward, but it has some drawbacks.

• There needs to be a token for each variation of a word. This is especially
inefficient for highly agglutinative languages, where many variations of the
same root word exist.

• The model does not know anything about words that are not in the vocabulary,
even if they are derived from words that it does know.

• Rare words can be under-represented in the data from which the model is
created, leading to imprecise probability estimations for sequences with these
rare words.

• For languages with no spaces between words, it can be hard to determine
what to count as a whole word. One example is Chinese, for which many
segmentation systems have been developed even recently (Huang et al., 2020;
Ma et al., 2018; Tian et al., 2020).

Single characters as tokens On the other extreme of the spectrum, each sepa-
rate character could be counted as a token.

This approach has some advantages:

• The vocabulary is much smaller (since there are orders of magnitude more
words in a language than characters)

• Out-of-vocabulary words are practically impossible (besides text where special
symbols are used or there is code-switching to a language which uses a different
writing system). Even misspellings are handled.

However, there are some critical disadvantages:

• Sequence length explodes even for short sentences. This can pose a problem
for keeping long-term consistency in the output.
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• Each token usually does not carry enough meaning on its own. This compli-
cates text generation because the model needs more foresight to predict the
meaning of a longer sequence of tokens.

Despite this, there are languages where a character-based tokenization scheme is
effective. For example, Chinese has thousands of different characters, each carrying
much meaning on its own.

Sub-word units as tokens While whole-word and single-character tokenization
approaches have their merits, they can fall short in capturing the nuances of lan-
guages with complex morphologies or when dealing with out-of-vocabulary words. A
common approach is sub-word tokenization, which breaks words down into smaller
units, offering a more granular representation that strikes a balance between word
and character-level information.

There are many ways in which a word may be split into sub-word units. Expert
linguistic knowledge may be used. For example, prefixes and suffixes could be split
off as their own sub-word units. Compound words can be split into separate word
roots. Words could be split into morphemes.

More commonly, however, a data-driven approach is used. This introduces the
concept of open-vocabulary compared to closed-vocabulary. Closed-vocabulary sys-
tems rely on expert-defined word lists, limiting the model’s ability to handle out-
of-vocabulary words effectively. In contrast, open-vocabulary approaches are data-
driven, allowing the model to create subword units dynamically based on the training
data, thereby accommodating a more comprehensive range of words and expressions.

However, the choice between larger and smaller vocabulary sizes involves a trade-
off. A more extensive vocabulary enhances the model’s capacity to represent a diverse
range of words and handle variations as well as misspellings. However, it comes at
the cost of increased computational complexity and memory requirements. In con-
trast, a smaller vocabulary simplifies computations but may struggle with handling
infrequent or out-of-vocabulary words. Striking the right balance between vocabu-
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lary size and computational efficiency is a crucial consideration in designing effective
language models (Xu et al., 2021).

One popular technique for subword tokenization is Byte Pair Encoding (BPE).
It is a compression algorithm (Gage, 1994) that was first applied to text tokeniza-
tion by Sennrich et al. (2016c). BPE operates on the principle of iteratively merging
the most frequent character pairs in a corpus to create new subword units. Initially,
each character in the vocabulary is treated as a subword unit. Through a process
of successive mergers, the most frequent character pairs are combined, forming new
subword units that can represent frequently occurring sequences of characters. This
can be repeated until a desired vocabulary size is reached. This method effectively
captures both common words and the constituents of longer words, making it ideal
for languages with agglutinative structures or complex morphologies. Instead of re-
lying on linguistic knowledge, the algorithm is able to capture linguistic patterns
from the data.

A similar technique is WordPiece tokenization (Schuster and Nakajima, 2012),
which, instead of merging the most frequent token pairs, only merges two tokens if
doing so would increase the likelihood of the training data.

Both of these methods have a drawback, however. They require that the text
is split into words beforehand, making them not applicable to languages such as
Chinese. SentencePiece (Kudo and Richardson, 2018) solves this with a fully end-
to-end system which treats the input as a continuous stream of characters with no
pre-tokenization step required. It is universally applicable to all languages, making
it a popular choice for tokenization in the context of NLP.

2.1.3 Statistical Language Models

While language models made with hand-crafted rules do exist, they are generally
confined to specialized use cases (speech recognition (Kaufmann, 2009), spoken di-
alogue systems (Williams et al., 2010)) and not general language modelling, since
natural language is too complex and too creative for such a limited approach to be
practical for general language modelling. As an alternative, a significant proportion
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of language models are constructed using statistical approaches, leveraging massive
text corpora for training.

Early models took a pragmatic approach by employing a Markov assumption,
which assumes that the probability of a word solely depends on a limited number of
preceding words. This assumption simplifies the task and makes it computationally
feasible. However, it comes at the cost of ignoring long-range dependencies that are
crucial in capturing the intricacies of language.

While later neural approaches are also statistical at their core, this section deals
only with the early methods. Due to the importance of neural methods, a separate
section is devoted to them.

N-gram models The simplest language models are n-gram models. They are a
class of statistical language models that are based on token occurrence. While any
of the tokenization schemes discussed in the preceding section could be used, for
simplicity, all examples will assume that one token is equal to one word. The ”n”
in n-gram refers to the number of words in a sequence that the model considers,
and the model calculates the probability of encountering a particular word given
the previous (n-1) words.

The simplest case with n=1 is a unigram model, which looks at the probabilities
of individual tokens. It assumes that each word is entirely independent of the context,
thereby neglecting any information carried by the words that precede or follow it.
This model is rudimentary yet forms a foundation for more complex n-gram models.
The probability of a sequence of tokens would then be the multiplication of the
probabilities of each separate token.

(3) P (W1,W2...Wk) ≈
k∏

i=1

P (Wi)

The probability of each token can be approximated by using word occurrence
counts through a maximum likelihood estimate. If a text corpus has N words in
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total, then to determine the unigram probability of some word w, we just need to
divide the count of times w appears by the total word count N :

(4) P (W ) =
C(w)

N

This has the obvious drawback of completely ignoring word order. It would give
the same probability to the sentences ”the fox jumped over the dog” and ”jumped
dog the over fox the”.

With n=2, a bigram model is formed, which takes into account one preceding
word. The probability of a sequence of words is then approximated as follows:

(5) P (W1,W2...Wk) ≈
k∏

i=2

P (Wi|Wi−1)

This definition can be extended to any n. The more preceding words are taken
into account, the more accurate the probability estimate becomes. However, the size
of the corpus needed to extract a meaningful amount of n-gram counts increases
exponentially the higher n is. The largest n-gram dataset is the Google Web 1T 5-
gram (Web1T5) corpus from Brants and Franz (2006) created from a trillion tokens
of web content and containing over a billion five-grams. However, even that is not
enough to cover all reasonable five-grams that could conceivably appear in natural
language.

Skip-gram Language Models Skip-gram language models are an extension of
n-gram models built to deal with data sparsity. Instead of assuming that all n-
grams must be contiguous tokens, it allows some distance between the words. More
specifically, a k-skip-n-gram model would work with sequences of length n where the
tokens can be at most k tokens away from each other.

Dealing with unseen n-grams When faced with n-grams that do not appear in
the corpus used to construct the model, a basic n-gram model assigns a probability
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of 0. This is not desirable behaviour; since the probability of the whole sequence is
defined as the multiplication of the probabilities of each separate n-gram, if one n-
gram gets assigned a probability of 0, the probability of the whole sequence becomes
0. Different strategies exist to deal with this.

A common technique employed in n-gram models to address this is smoothing.
Generally speaking, smoothing methods shift some of the probability mass from
common n-grams to unseen n-grams, ensuring all n-grams get assigned a non-zero
probability. These methods increase the overall robustness and reliability of n-gram
language models, enabling them to handle more varied ranges of sequences.

The simplest smoothing method is Laplace (add-one) smoothing, which adds
a constant value (usually 1) to all n-gram counts, making sure that every n-gram is
seen at least once. To ensure a valid probability distribution, this constant is also
added to the denominator multiplied by the n-ram vocabulary size V :

(6) PLaplace(w) =
C(w) + 1

N + V

To tackle the issue of unseen n-grams, several widely used smoothing techniques
have been developed. Laplace (add-one) smoothing involves adding a constant value
(usually 1) to both the numerator and denominator of the n-gram probabilities.
This ensures that each n-gram has a non-zero probability, albeit at the cost of
redistributing probability mass from observed n-grams.

The generalization of Laplace smoothing, which adds some other small value to
the n-gram counts, is called add-k smoothing. This provides more flexibility, as
the degree of smoothing can be adjusted by changing k.

These kinds of smoothing methods are blunt tools that significantly shift the
probability distribution. Kneser-Ney smoothing (Kneser and Ney, 1995) is a
more sophisticated approach, which considers the context in which n-grams occur.
It involves calculating a discounting factor that accounts for the frequency of the
context in which an n-gram appears. This discounting factor adjusts the proba-
bility estimates for unseen n-grams based on the prevalence of their contexts. By

27



incorporating contextual information, Kneser-Ney smoothing achieves more accu-
rate probability estimates and captures more nuanced language patterns.

Another type of smoothing method is to combine multiple different n-gram mod-
els. For instance, a Katz back-off model (Katz, 1987) backs off to a lower-order
n-gram model if a particular n-gram is unseen. For example, if a trigram is unseen, it
would use the bigram probability instead, and if the bigram is unseen, the unigram
probability.

A similar approach, interpolation smoothing, always uses all different n-gram
models to calculate a weighted average of probabilities from lower and higher-order
n-grams. Both of these methods ensure that all n-grams are given a non-zero proba-
bility because, in the worst case, the unigram probability will be used. With a closed
vocabulary, all unigrams have some non-zero count (and with an open vocabulary,
unseen words can be replaced with some special ”⟨unknown⟩” token).

2.2 Neural Language Models

The advent of deep neural networks has revolutionized many different fields, includ-
ing NLP. While the concept of neural networks, which was based on a rudimentary
model of human neuronal function, originated in 1943 (McCulloch and Pitts, 1943),
it has held the attention of researchers only intermittently, falling in and out of
popularity. Recently, the method has had a massive resurgence with the advances
in parallel computation hardware, allowing for the training of deep neural networks
with many layers.

This section will explain the basics of neural networks, how they can be struc-
tured and how they are trained. Then, their various usages in language modelling
will be explained.

2.2.1 Neural Network Basics

The basic unit at the core of all neural networks is a single ”neuron” which takes
some inputs x in the form of a vector, calculates the dot product with a weight
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vector w, adds a scalar bias b and transforms the output via the use of a non-linear
activation function f .

(7) y = f(x · w + b)

Layers of Neurons These neurons are usually grouped and arranged in distinct
layers, each passing on their outputs to the next layer as inputs. The specifics of how
the layers are connected change depending on the type of architecture being used.
However, there is always some entry point into which the initial input is fed and an
ultimate output. In a sense, this process can be likened to the way human perceptions
about the world are processed by the brain. The first layer receives input from the
sense organs. Each subsequent layer refines the initial input, gradually extracting
more abstract and complex features. Finally, the output of the last layer encapsulates
the network’s understanding and transformation of the input, yielding task-specific
results.

Input and Output The input and output are numerical due to the nature of the
underlying operations the neural network performs. This means that some feature
engineering is required to extract numerical features from data of different modali-
ties. Depending on the data, different kinds of input features could be used: hand-
crafted features, RGB values of the pixels in an image, samples from a waveform,
etc. Similarly, the output will also vary based on the nature of the task. For regres-
sion tasks, the output might be a continuous value, predicting quantities like stock
prices or temperature. For classification tasks, the output could be a probability
distribution over each of the possible classes, indicating the likelihood of the input
belonging to each class. In sequence-to-sequence tasks, such as machine translation
or text generation, the output could be a sequence of words. The power of neural
networks lies in their capacity to automatically learn how to map from the input
to the output. Through training, these networks learn to extract relevant features
and patterns from the data, eliminating the need for explicit feature engineering and
allowing them to generalize to unseen examples.
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Activation Function The non-linear activation function is a critical component.
Without it, neural networks would only be able to calculate linear operations, and
a network with multiple layers would have the same expressive power as a single-
layered network. There exist many activation functions. Some of the more popular
ones are sigmoid, tanh, and ReLU (rectified linear unit). The non-linearity they
introduce allows the network to learn arbitrarily complex functions, making them a
universal approximator. (Cybenko, 1989)

Trainable Parameters The weights and bias are the part of each neuron that
gets adjusted during training, thereby representing the model’s learned knowledge.
Generally speaking, the more trainable parameters the model has, the more complex
knowledge it is able to capture. On the other hand, more parameters also mean more
effort is required to train the model.

Training Neural Networks The knowledge of neural networks is hidden in the
weights of the individual neurons. These weights are extrapolated from data through
a training process. The goal of training at its simplest is, given pairs of input and
expected output, to minimize the difference between the expected output and what
the model actually outputs given the input. The observed difference is used to nudge
the weights in a direction which minimizes the difference. This process is called
supervised learning.

This is accomplished via a loss function, which quantifies the difference between
the expected and actual output, or in other words, the error. This error is back-
propagated (Rumelhart et al., 1986) to the weights via partial derivatives to calculate
the gradient of each weight with regard to the loss function. Effectively, the gradient
of each weight quantifies how large of an impact that particular weight had on the
final loss. The weights are then updated using the gradient. This process is repeated
until the loss converges.
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2.2.2 Embeddings

In the previous section, the concept of input features was introduced. The data that
NLP deals with is almost entirely textual, so in order to be used in a neural network,
it needs to be converted into numerical values in some way. Going back to the concept
of tokens introduced in section 2.1.2, one possibility is to assign an integer value to
each token. However, representing words merely as integers does not capture any
of the inherent semantic relationships. Two synonyms, while interchangeable in the
input sentence, would have different integers assigned to them, so the model would
process them as entirely different words.

This limitation can be solved via embeddings. Embeddings are a way to represent
words in a continuous vector space, where semantically related words are positioned
closer to each other. A model using these embeddings as input would then have
more semantically meaningful features readily available to them and would see two
synonyms as very similar due to their similar embeddings.

The vector spaces used for embedding are high-dimensional, often reaching hun-
dreds or even over a thousand dimensions. Conceptually, each dimension is its own
input feature, which could be interpreted as some semantic property of the word,
for example, how ”male” or ”female” something is. The words ”king” and ”queen”
would then have very similar representations, differing only in this one dimension.
In practice, embeddings are usually learned from data computationally, so these
dimensions are not so easily interpretable. Nevertheless, some interesting operations
are possible in these vector spaces (Ethayarajh et al., 2019). A famous example is
the following:

(8) ⃗king − m⃗an+ ⃗woman ≈ ⃗queen

There are different approaches to creating word embeddings, which will be looked
at in more detail in the following paragraphs.
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Embeddings Through Global Matrix Factorization An early approach by
Deerwester et al. (1990) uses singular-value decomposition to produce a semantic
space where terms and documents that are closely associated are placed near one
another. Broadly speaking, this kind of method starts with a term/document in-
cidence matrix and decomposes it into three separate matrices, which produce the
original incidence matrix when multiplied together. One of these matrices contains
the calculated word embeddings.

The authors use this method to improve information retrieval performance by
allowing users to find documents by querying for semantically similar terms that do
not appear in the document.

Distributional Word Embeddings Distributional semantics is at the core of
many word embedding approaches. It is the idea that words that appear in similar
contexts have similar meanings. Using this idea, it is possible to extract semantically
meaningful embeddings purely based on what other words appear within a limited
context window around words. With a large enough corpus of text, meaningful
embeddings may be extracted. With this approach, words that appear in similar
contexts have similar embeddings in vector space.

Bengio et al. (2003) propose having an embedding layer in their feedforward
language model (discussed in section 2.2.3), which learns how to represent each
word as a vector jointly with the task of language modelling.

One of the more well-known later attempts at creating distributional word em-
beddings through machine learning is Word2Vec, proposed by Mikolov et al. (2013).
They propose two different architectures that work with a limited context window:
a continuous bag-of-words model, which takes one word as input and learns to pre-
dict what words might appear around it in the window, and a continuous skip-gram
model, which takes the context words as input and learns to predict the word that
might appear in that context. This approach is computationally effective enough
to allow the authors to train the embeddings on a substantial amount of text, at
the time achieving state-of-the-art performance on a syntactic and semantic word
similarity task.
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A later approach by Pennington et al. (2014), instead of using a limited con-
text window, uses global word co-occurrence. This increased context size helps the
embeddings capture more complicated dependencies.

The weights learned for each word by these models can be extracted as word
embeddings and re-used in many different NLP tasks. This frees up task-specific
models from having to learn their own word embeddings and allows them to focus
on just the specific task at hand.

Contextual Word Embeddings The previously mentioned embedding methods
have a crucial flaw. They all give a single embedding vector for each word, mixing
together all the possible senses and contexts in which the same word might be used
differently.

Contextual word embedding models such as Elmo (Peters et al., 2018), Flair (Ak-
bik et al., 2018), and context2vec (Melamud et al., 2016) all employ bi-directional
recurrent models in different ways, taking in the entire sentence as input and re-
turning embeddings for words in that specific context. The later transformer-based
(discussed in section 2.2.8) embedding model by Devlin et al. (2019) represents a
state-of-the-art method for embedding language that is still used today.

These kinds of embeddings prove to be more effective for various downstream
tasks. Moreover, as noted by Smith (2020), in hindsight, calculating contextual em-
beddings is also a more straightforward task because we no longer need to capture
all possible contexts in which a word might appear.

2.2.3 Feed-Forward Neural Networks

The most basic arrangement is a feedforward network where all neurons from one
layer are connected to all the neurons on the next layer. The first and the last layers
are called the input and output layers, respectively, with the intermediate layers
referred to as hidden layers. In a feedforward network, information flows unidirec-
tionally from the input layer to the output layer.
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Feed-Forward Language Models The simplest way to use neural networks for
language modelling is inspired directly by n-gram models. Feedforward language
models take the preceding n − 1 tokens as input and calculate the probabilities of
each of the tokens in the vocabulary to be the next one in the sequence. (Bengio
et al., 2003)

Just like n-gram models, these neural models use minimal context to calculate
the next word. As the name implies, they are built with feedforward networks and
do not use any sort of recurrence. They are, however, an improvement over simple n-
gram models as they work with word embeddings, and so handle out-of-vocabulary
words and semantically related words much more effectively.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network especially
well-suited for tasks with grid-like data, such as computer vision. CNNs, unlike
feedforward networks, do not connect all neurons of one layer to all neurons of the
next layer. Instead, a smaller two-dimensional kernel with shared weights is used
to calculate the output over localized areas of the input data. This kernel’s sliding
window operation, also known as convolution, captures local patterns and features
with significantly fewer parameters than feedforward networks (LeCun et al., 1995).

Convolutional Language Models Although CNNs are primarily used in com-
puter vision, they have shown some promise for NLP as well, especially in tasks
which only require a limited contextual window. In these models, the convolution
operation is often applied not on two-dimensional input but on a one-dimensional
sequence of tokens. The shared weights in the convolutional kernels allow the model
to efficiently learn and recognize patterns across different parts of the input sequence
using fewer parameters compared to traditional feedforward neural networks.

Collobert and Weston (2008) create a CNN which outputs many different lan-
guage processing predictions such as part-of-speech tags, chunks, named entity tags,
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semantic roles, semantically similar words and the likelihood that the sentence makes
sense (language modelling).

A notable advantage of convolutional language models is their ability to capture
hierarchical features at different scales. By stacking convolutional layers with varying
kernel sizes, the model can look both at fine-grained details and broader contextual
information, allowing different layers to focus on different aspects of language (Pham
et al., 2016).

Furthermore, in comparison to recurrent approaches (which are introduced in
the next section), CNN-based language models are more parallelizable and so are
faster to train Gehring et al. (2017).

Time-Delay Neural Networks An even earlier approach, which came before
CNN’s but shares striking similarities with the way they use convolutions to have
different layers look at different time scales, is time-delay neural networks by Waibel
et al. (1989). They use this method for phoneme recognition, where some surround-
ing context is helpful for disambiguation, but no long history is required.

2.2.5 Recurrent Neural Networks

Both of the previously mentioned network types are not well suited for dealing with
time-series data. This is because they lack a crucial element: memory of past inputs.
In many real-world tasks, including natural language processing, the sequence of
events is vital to interpreting the data correctly. This memory can be implemented
through recurrence. There are different approaches to achieving this.

Base Recurrent Neural Networks Recurrent neural networks (RNNs) are
specifically designed for sequential data. While the concept has earlier roots in neu-
rology, in the context of neural networks, recurrence as we know it was first proposed
by Jordan (1997). Unlike feedforward networks and convolutional networks, RNNs
have a loop in their architecture. Each input is passed sequentially, with the hid-
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den layer also incorporating the hidden state from the previous time step, thereby
allowing the model to keep some internal memory.

This memory, however, is limited by various factors. Firstly, the size of the vector,
which keeps the internal state, has a finite size. Secondly, when these models are
trained through backpropagation in time, they are unrolled into what are essentially
deep neural networks, with the earlier time steps being deeper layers. Deep networks
exhibit what is known as a vanishing gradient problem, where the gradients used to
adjust the model’s weights get smaller and smaller the deeper you go. Because of
this, it is difficult to learn from distant past inputs and, hence, to model long-term
dependencies. (Werbos, 1990)

Long Short-Term Memory Networks Long short-term memory (LSTM) mod-
els are a type of recurrent neural network designed to deal with the vanishing gra-
dient problem. Instead of indiscriminately passing the hidden state from one time
step to the next, they introduce a memory vector that is selectively adjusted at each
time step according to a forget gate (which clears values in the vector, forgetting
unnecessary information) and an input gate (which adds values, remembering new
information). An output is then generated using the current input and the memory
vector through an output gate. (Hochreiter and Schmidhuber, 1997)

While this approach helps deal with vanishing gradients, LSTMs have more
trainable parameters (each of the gates requiring its own set of weights), making
them more time-consuming to train. Furthermore, their ability to model long-term
dependencies is still limited by the size of the vector used as the memory.

Gated Recurrent Unit Gated recurrent units (GRUs) proposed by Cho et al.
(2014a) simplify the LSTM mechanism. It has fewer parameters as it drops the
output gate. This means that the output at each time step is the same as the
hidden state, which imposes some limitations on this architecture.

Recurrent Language Models RNNs can be used for language modelling, gener-
ally outperforming even the largest statistical models (Mikolov et al., 2010). Unlike

36



feedforward language models and convolutional language models, recurrent ones
have an unlimited context window. One of the main limitations of simpler RNN
models is that the output size is tied to the input size. This is solved through more
sophisticated architectures, such as the encoder-decoder, described in the following
section.

2.2.6 Encoder-Decoder Architecture

The recurrent language models mentioned in the previous section have a limitation.
For each input token, it outputs exactly one output. This is workable for tasks where
the input and output are the same size, for example, for token classification tasks
such as named entity recognition, part of speech tagging and so on, where exactly
one label is output for each token. For most NLP tasks, the size of the output
needs to be decoupled from the size of the input. In such sequence-to-sequence tasks
like text summarization and question answering, this is obvious; however, even for
machine translation, a single token on the source side may often require multiple
tokens to express on the target side.

Encoder-decoder architecture is a solution proposed by Cho et al. (2014b) for
machine translation, which decouples the input from the output. Instead of having
one recurrent network that processes each input token and produces a corresponding
output token, an encoder-decoder model is split into two separate RNN models: an
encoder and a decoder. The encoder first processes all of the input tokens without
outputting anything. This is done to calculate the hidden state vector, which, in a
way, encodes the input sentence. This hidden state vector is then used to initialize
the hidden state of the decoder model, which outputs tokens until a particular end
token is output, signifying that the decoder is done outputting. As the first input,
the decoder receives a special start token and takes its own output from the previous
time step as its input at each subsequent step.

Conceptually, the encoder can be seen as a model producing sentence embed-
dings. The embedding space is jointly learned to capture the aspects of the input
that are relevant to the task at hand and then decode from this embedding space
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into an output.

This approach has a very simple limitation: the size of the hidden state vector is
finite. As shown by Conneau et al. (2018), how much and what kind of information
this vector captures is highly dependent on the model architecture, among other
factors. This means that there is a bottleneck through which the input, no matter
how long, has to be pushed through. A solution for this bottleneck, namely attention,
is proposed in the following section.

2.2.7 Attention

The concept of attention finds its roots in word alignment in machine translation.
Word alignment, explained in more detail in section 2.5.2, is a mapping between
words in the input sequence and words in the output sequence, which indicates
which words in the source sentence are the most important for translating the word
in the target sentence.

This concept is not only relevant for machine translation. In any sequence-to-
sequence task, we might want to focus on different parts of the input when generating
different parts of the output in a dynamic way. This dynamic focus is akin to a
spotlight, with the decoder paying various degrees of attention to different tokens
in the source sequence, emphasizing their importance and lessening the importance
of the other tokens.

Attention as we know it today first emerged as an augmentation to an RNN-based
translation model by Bahdanau et al. (2014), which learned the word alignment
and translation jointly. In their model, the encoder stores all of the hidden states
at each time step, and then the decoder at each time step calculates a context
vector by getting a weighted sum of the hidden encoder states. This context vector
is concatenated to the hidden state of the decoder. By using different weights at
each time step, the model can have a different context for each output token. The
weights are calculated by a feedforward alignment model that is learned jointly with
the translation model.

38



Attention mechanisms help bypass the bottleneck of the finite hidden state vec-
tor. It allows the model to have fresh information from the relevant parts of the input
without having to fully ”remember” the entire input at all times. Intuitively, this also
aligns better with how humans would perform sequence-to-sequence tasks. Transla-
tors, instead of memorizing the entire source sentence and then writing the complete
translation in one shot, often refer back to the source sentence mid-translation to
make sure they capture all the details.

2.2.8 Transformer models

The Transformer model, introduced by Vaswani et al. (2017) in their paper titled
”Attention is all you need”, represents a groundbreaking advancement in the field of
NLP, which is still at the core of most state-of-the-art models. The name of the paper
hints at the primary mechanism used in transformer models, namely attention.

Transformer models change the conventional sequence-to-sequence architecture
by eliminating the need for a hidden state vector passed between the encoder and
decoder. Instead, they rely exclusively on an extended attention mechanism for
information transfer from the encoder to the decoder. Furthermore, they introduce a
novel encoder and decoder architecture. In contrast to traditional models, which use
recurrent layers to process sequences incrementally while maintaining a hidden state
vector for self-reference, transformer models embrace a self-attention mechanism.
This self-attention calculates context at each time step by performing a weighted
sum over other decoder hidden states. This allows the training of transformer models
to be parallelized to a much higher degree as they no longer have strict recurrence.

Key components of the Transformer architecture include:

1. Cross-attention: Instead of passing a hidden state vector from the encoder
to the decoder once, thereby creating a bottleneck, a transformer calculates a
new context vector at each step by calculating a weighted sum over the hidden
states of the encoder.
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2. Self-attention: Instead of keeping a single internal state vector that gets
incrementally updated as the sequence gets processed token-by-token, both the
encoder and decoder calculate the context at each step from the other outputs.
The encoder attends to all outputs from the previous layer bidirectionally,
whereas the decoder only attends to the outputs of the previous layer for
tokens that came before the current token to preserve the auto-regressiveness
of the model.

3. Multi-Head attention: Instead of having just one attention model that cal-
culates a single context vector, transformer models use multi-head attention,
which calculates multiple context vectors, each based on a different set of
tokens. This allows the model to simultaneously capture different long-range
dependencies.

4. Positional encoding: Transformers lack any inherent notion of sequential
order since they do away with regression. Because of this, a positional encoding
is added to the input embeddings, which provides the model information about
the position of tokens in the sequence.

The Transformer’s ability to model long-range dependencies and its parallel pro-
cessing capabilities have made it the foundation for various state-of-the-art models,
including BERT (Devlin et al., 2019) for language understanding and GPT (Genera-
tive Pre-trained Transformer) for text generation (Radford and Narasimhan, 2018).

2.2.9 Large Pre-Trained Language Models

A notable recent development in the field of NLP is the creation of large language
models (usually based on the transformer architecture) that are trained on a massive
amount of unlabeled text. These models are trained on one or a combination of
different objectives, which are meant to teach the model language nuances and are
applicable to large text corpora without needing any kind of human annotation.

One early example is BERT (Devlin et al., 2019), which was trained using a
masked language modelling objective (predicting one or more masked tokens in a
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text) together with a next sentence prediction objective (determining whether two
sentences were taken consecutively from a text). Many variations of this kind of
model have been created (Liu et al., 2019; Lan et al., 2020; Yang et al., 2019).

2.3 Generating Text With Language Models

Language models calculate the probability of a sequence of tokens appearing in
natural language. This can be used to generate new text by using various methods.
This section provides an insight into the way text can be generated with a language
model. It starts with basic principles and unconditioned generation, then explains
various methods of controlling the output to make it more useful for various tasks.

2.3.1 Practical Applications

Besides generating free-form text, language models find use in various NLP subtasks.
In this section, a non-exhaustive list will be given to give an insight into the wide
range of tasks that these models might be used for.

For speech recognition, a language model might be employed to differentiate
ambiguous phoneme sequences (Jelinek, 1985; Derouault and Merialdo, 1986).

For statistical machine translation, a language model is used as a part of the
scoring function for translation hypotheses. It has been shown that larger and better
language models increase the translation accuracy (Brants et al., 2007).

Many different types of classifiers can be built on top of pre-trained language
models through transfer learning, e.g. for sentiment classification, entailment clas-
sification, and emotion classification (Houlsby et al., 2019).

For more text generation-oriented applications, one need not look much further
than the recent explosion in popularity of AI-powered chatbots such as OpenAI’s
ChatGPT 2 and earlier dialogue systems (Williams et al., 2010; Wen et al., 2015).
These systems may be used for a wide variety of tasks, including dialogue systems

2https://openai.com/blog/chatgpt
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built for specific use cases and domains, as well as free-form chatbots. In fact, Brown
et al. (2020) show that large language models are able to perform a wide variety of
tasks in a zero-shot way, that is, without being explicitly trained on it, if they are
just prompted to do so through text.

2.3.2 Sampling Methods

A language model is able to provide the probabilities of the next token given an
incomplete sentence. To generate text from these probabilities, one needs to sample
from the model. This can be done in different ways.

Naive approach to generating text The impractical, naive method for gener-
ating text from a language model is to just generate completely random sequences
of tokens, evaluate their probabilities with the language model, and take the text
with the highest probability. In theory, if this process is repeated long enough, it
will result in coherent and novel text eventually. In practice, however, it is obvi-
ously grossly inefficient since a random sequence of tokens is much more likely to be
nonsensical.

Greedy sampling An already much more efficient method is sampling one token
at a time based on the current unfinished sentence, starting from an empty sentence.
However, this method will favour sentences that consist of the most common tokens,
resulting in uninteresting text. Furthermore, if the probability the model assigns to
a piece of text is stable (i.e. there is no random element, so the same text always
gets assigned the same probability), the same sequence will be generated every time
given the same prefix.

Top-K sampling An improvement to this method is instead of taking the most
likely next token to randomly choose one of the k most likely tokens, either assigning
each of them the same chance of being picked or using their actual probabilities to
weigh them. This is called top-k sampling.
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Beam decoding In contrast to greedy decoding, beam decoding is a more so-
phisticated approach to generating text with language models. It addresses the lim-
itations of greedy decoding by considering a set of alternative tokens at each step,
known as the ”beam”. Instead of just using a single best token, the best n hypotheses
are kept and expanded where n is the beam width. This method allows the model
to explore multiple possible continuations simultaneously, mitigating the issue of
getting stuck in suboptimal paths. Beam decoding allows the model to choose words
that greedy decoding would find suboptimal in the short term in the hopes of finding
a better overall output. Beam decoding is a widely used technique in natural lan-
guage processing and machine translation tasks due to its ability to produce more
contextually coherent and higher-quality outputs.

Top-P (nucleus) sampling Instead of truncating the search space by taking only
a fixed number of the most likely tokens, a more reliable approach is to truncate
based on some probability threshold, like done by Holtzman et al. (2020). This
removes the unreliable part of the probability distribution and instead samples only
from a dynamic ”nucleus” of tokens which have the vast majority of the probability
mass. The authors note that this approach helps prevent the model output from
degenerating and becoming repetitive.

The role of decoding in neural language models All of the aforementioned
sampling methods are applicable to all types of language models, from simple n-gram
models to sophisticated neural models. However, while a good decoding method is
crucial for simple models with limited contexts, it is less critical for neural models,
which can use a lot more of the previous context when outputting the likelihoods of
the following tokens.

Nevertheless, sampling from neural language models can still be a tricky task,
with the same model being able to generate both fluent and varied text, as well
as repetitive text purely based on the selected decoding method (Holtzman et al.,
2020).
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2.4 Controlling Language Model Output

Pre-trained language models are good at generating fluent text. They are, however,
hard to control due to their black-box nature. Controllable text generation methods
address the question of how to make sure the output conforms to the required
constraints while still retaining its fluency. In almost all use cases of text generation,
it is necessary to control the output in some way, be it making the model output
about a specific topic or forcing it to contain specific information. This section
provides a look into some of the methods for doing that.

The survey by Prabhumoye et al. (2020) provides a framework for how control-
lable text generation can be approached. They identify five parts in text generation
that can be targeted: the external input, or how the model is initialized; the sequen-
tial input, or what is passed into the model as input at each time step; the generator
module, or what calculations are performed on the inputs; the output module, or
how the output of the model is turned into natural language; and the training ob-
jective, or how the generator is trained. Parts of this section are loosely based on
the classification provided in their survey.

2.4.1 Prompting and In-Context Learning

The simplest way to have a measure of control over what the language model gen-
erates is to just start it off with some human-written text and let it generate what
follows next. This is often called priming, referencing the concept of the same name
in psychology, where previous stimuli ”prime” the individual to respond to future
stimuli in a certain way. In language models, priming involves providing an initial
input, which influences subsequent outputs, aligning them with the context or di-
rection established by the priming text. Another term interchangeably used for this
is prompting.

Practically speaking, prompting involves giving the model either incomplete text
to finish or instructions on what to output, with the latter being especially relevant
for LLMs who have been trained for human interaction via a chat-like interface.
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This technique is gaining traction, particularly with the rise of publicly accessible
large language models such as ChatGPT3.

Despite the apparent simplicity of this method, the way the prompts are con-
structed can have a substantial effect on the quality of the output. This has led
to a deluge of articles on how to construct good prompts 4 in order to unlock the
knowledge inherent in these models.

Closely related to prompting is in-context learning, where a large language
model is prompted by providing some examples of the desired output. This capability
has been shown in models such as GPT (Brown et al., 2020). Garg et al. (2022) show
that ”..transformers can encode complex learning algorithms that utilize in-context
examples in a far-from-trivial manner.”.

2.4.2 Fine-tuning Pre-trained Language Models

Before large pre-trained language models, the typical approach to creating a model
for any language-related task was to train one from scratch, as can be seen in the
survey by De Mulder et al. (2015). This is a time-consuming process wherein the
model ends up first needing to learn a lot of general knowledge about language.

A much more effective method is to first train a general language model as a
base and then fine-tune it for the specific task (Dai and Le, 2015; Radford and
Narasimhan, 2018; Howard and Ruder, 2018). While the pre-trained language mod-
els are not task-specific, Lewis et al. (2020) show that, especially for text-generation
tasks, the type of pre-training matters. They show that a model trained to recon-
struct corrupted text (where instead of single tokens being masked like in a masked-
language modelling pre-training objective, whole sequences of words are removed
at a time, with the model also having to determine how many words are missing)
performs better when fine-tuned for text generation tasks.

3https://openai.com/blog/chatgpt
4For instance: https://www.plannthat.com/good-vs-bad-ai-prompts/
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2.4.3 Decoder Initialization

In encoder-decoder architectures (which include transformers), the hidden state of
the decoder is usually initialized with the hidden state of the encoder. However, it
is possible to control the model’s output by adding a control vector to the model
either via concatenation or other linear operations. This corresponds to the external
input module from the survey of Prabhumoye et al. (2020).

These kinds of approaches can be found in information-driven dialogue systems
such as the ones by Dinan et al. (2019), Zhou et al. (2018), and Ghazvininejad et al.
(2018). They all do a variation of concatenating a knowledge vector independently
encoded from relevant documents to the hidden state before decoding. These pas-
sages are retrieved via different kinds of information retrieval systems beforehand
from Wikipedia, Amazon reviews or other factual sources.

Other methods (Liu and Lapata, 2018; Balachandran et al., 2021) instead train
the encoder in such a way that its output is decomposed into separate subspace,
e.g. the first half responsible for the semantic content of the text, the second half
responsible for the structure and form of the text. With a representation encoded
in such a way, it is possible to switch out just the part responsible for the content
or the part responsible for the form in order to control the output. This decomposi-
tion can be achieved in different ways. Liu and Lapata (2018); Balachandran et al.
(2021) complement the encoder with a separate structure encoding model, whereas
Romanov et al. (2019) and Wang et al. (2019) use adversarial approaches, with a
discriminator controlling the latent space of the encoder.

2.4.4 Extra Input to the Decoder

The decoder receives inputs at each time step, often through an attention mechanism
from the encoder. This corresponds to the sequential input model of the survey by
Prabhumoye et al. (2020). Similarly to the previously mentioned approach of adding
a vector containing external information to the initial hidden state of the decoder,
this vector may be added at each time step to what the decoder receives from
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the encoder. This kind of method has been tried for definition modelling (Noraset
et al., 2017), dialogue systems (Zhou et al., 2018), and Wikipedia passage generation
(Prabhumoye et al., 2019) with some limited success.

2.4.5 Controllable Model Architectures

The generator is defined by Prabhumoye et al. (2020) as the set of computations
that the text generation pipeline performs on the input at each time step. In the case
of neural models, this is the base unit of the model architecture, e.g. the transformer
block or a recurrent neural network. There are various changes to these architectures
that have been proposed to allow better control over their output.

Gan et al. (2017) modify an LSTM by factoring the usual weight matrix respon-
sible for processing the input into three separate matrices and training the model to
capture stylistic information in one of the matrices. They use this model to generate
stylistically different image captions by swapping out the weight matrix responsible
for the style.

Kiddon et al. (2016) augment a GRU-based language model with an extra input:
an agenda with a checklist, which the model is trained to incorporate into its output
through extra weight matrices which determine when to generate from the model
and when to generate using one of the checklist items. They show the effectiveness of
this method by generating task-specific dialogues and generating recipes. Similarly,
Wen et al. (2015) add another sentence planning gate to the LSTM cell, which
controls the overall semantic information contained in the output, with the usual
LSTM components taking care of the fluency and language modelling aspects.

2.4.6 Guided Decoding

Neural language models output token probabilities at each time step. To generate
text, this output needs to be used together with some decoding algorithm such as
greedy search or beam search (looked at in more detail in section 2.3.2). This proves
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to be an avenue for controlling the output of a language model that often requires
no changes to the underlying pre-trained model.

A simple example of this kind of approach is to generate multiple outputs with
a decoding method that generates varied output, then re-ranking them according
to some extra criteria. Yi et al. (2019) train a model to re-rank the outputs for a
dialogue system to favour interesting responses over generic all-purpose ones. Sim-
ilarly, Krishna et al. (2022) train an output re-ranking model which evaluates the
quality of generated text given a human written prefix, evaluating how good of a
continuation the generated text is to the prefix.

Instead of re-ranking fully generated outputs, it is possible to use auxiliary eval-
uation criteria to re-rank hypotheses during decoding. Hu et al. (2019a), Anderson
et al. (2017), and Hokamp and Liu (2017) use variations of beam-search with lexical
constraints, which make sure that specific tokens appear in the output, either in any
order in a strict sequence.

2.5 Machine Translation

At its core, machine translation is the task of finding the most likely translation into
some target language given some sentence in the source language: argmaxe P (e|f).
This definition is an instance of a generic conditioned language model whose task is
to find the most likely text e given some arbitrary attributes f .

This section starts with historical approaches to MT, such as rule-based and
statistical models, going into modern neural approaches, showing the similarities in
their architecture with that of neural language models. Finally, this section goes into
some of the usual domain-adaptation methods and the commonly seen specific task
of formality-sensitive machine translation.

2.5.1 Rule-based Machine Translation

The earliest methods for machine translation relied on hand-crafted rules on how to
replace certain words in the source sentence with target language words and were
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brittle and highly specific. The first such effort was a collaboration between George-
town University and IBM, which demonstrated a rudimentary Russian-English ma-
chine translation system in 1954 5. While this was a limited proof of concept, it
provided an impetus for further work on the tricky problem of automatic transla-
tion.

2.5.2 Statistical Machine Translation

The advent of statistical machine translation (SMT) marked a paradigm shift in
the approach and mindset to language processing. Instead of relying on rules hand-
crafted by expert linguists, one could learn the intricacies of language automatically
through statistical means. In this paradigm, data is king. The more high-quality data
there is, the better the end result will be. The core idea behind SMT systems is to
model the translation process as a statistical problem, estimating the probability
of a source language sentence generating a target language sentence. (Brown et al.,
1990)

This task was usually factored into different parts, each accomplished by a sep-
arate model. Initially, this was the translation model, ensuring the adequacy of the
translation and making sure it captures the meaning as fully as possible, and a
language model, ensuring the fluency and naturalness of the translation. This was
expressed by Brown et al. (1993) as the fundamental equation of machine transla-
tion, where e is the target translation, f is the source sentence, P (e) is the language
model, and P (e|f) is the translation model:

(9) ê = argmax
e

P (e)P (e|f)

One of the pioneering SMT systems is the IBM Model 1 (Brown et al., 1993),
which introduced the concept of word alignment probabilities that could be learned
automatically from a parallel corpus that is only aligned on a sentence level. This was

5https://www.ibm.com/ibm/history/exhibits/701/701_translator.html
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done through an iterative algorithm called expectation maximization. Their subse-
quent models, IBM Model 2 through 5, introduced more components and more so-
phisticated concepts. IBM Model 2 introduced a more sophisticated word alignment
probability model that was also conditioned on the lengths of both sequences. IBM
Model 3 introduced the concept of fertility, where one word could now be translated
into a variable number of words. IBM Model 4 added a re-ordering model, allowing
for changing word order between source and target sentences. IBM Model 5 fixed
some deficiencies in the alignment algorithm.

Statistical machine translation achieved notable success in the late 1990s and
early 2000s (Nießen et al., 1998; Vogel et al., 2000), demonstrating the feasibility of
automated translation on a larger scale. However, it still faced challenges in handling
idiomatic expressions, long-distance dependencies, and rare or out-of-vocabulary
words.

2.5.3 Phrase-based Machine Translation

Word-level translation methods such as the IBM models work well with similar
languages, where the grammar and the way ideas are expressed are similar. With
more syntactically different languages, these simplistic alignment models tend to
struggle. A more sophisticated idea first originated by Och et al. (1999) is to align
whole phrases instead of individual words, capturing idiomatic expressions much
more accurately. This led to steady improvements in translation model capability
with various authors experimenting with different ways to extract phrase alignment,
different ways to decode the final translation (Koehn et al., 2003; 2007; Li et al.,
2009), and making the extracted phrases hierarchical and composeable (Chiang,
2005; Vilar et al., 2010).

Crucially, these models improve over word-based SMT models trained on the
same data, showing an improvement that is attributable to the model architecture,
not simply using more data. Despite this, the main factor determining the quality of
the resulting model is still the amount of training data, leading to the development
of more and more efficient methods (Gu et al., 2018; Och and Ney, 2000; Gao and
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Vogel, 2008; Brants et al., 2007) to utilize the large corpora available with the advent
of the Internet.

2.5.4 Neural Machine Translation

While SMT laid the groundwork for machine translation research, introducing con-
cepts such as attention, neural machine translation (NMT) has revolutionized it.
This transition from SMT to NMT exemplifies the broader shift in NLP towards
deep learning and end-to-end approaches, where instead of factoring the task into
separate smaller tasks (such as alignment, lexical or phrase translation, language
modelling), a single model is able to accomplish the entire task in one pass.

The first NMT models were proposed by Bahdanau et al. (2014) and Sutskever
et al. (2014), both of which use a recurrent encoder-decoder architecture. The model
from Sutskever et al. (2014) is based on a multi-layered LSTM with the input to
the encoder reversed so that the last token that the decoder sees is the start of the
sentence, allowing the decoder to handle longer sequences without ”forgetting” the
beginning of the sentence.

In contrast to that, Bahdanau et al. (2014) solve the long sequence problem
differently. They augment their RNN encoder-decoder with an attention mechanism,
allowing the model to learn which parts of the input to focus on at each time step.
This is very similar to the concept of word alignment, however, it is improved due
to being a soft alignment, allowing the model to attend to multiple source tokens
with different weights.

Larger models and models trained on more data soon followed, such as Google’s
encoder-decoder model (Wu et al., 2016) made up of deep LSTM layers and the
numerous even more recent efforts based on the transformer architecture (Vaswani
et al., 2017; Bawden et al., 2020), achieving state-of-the-art performance and domi-
nating most leader-boards of conferences and workshops focusing on machine trans-
lation from 2016 onwards (Bojar et al., 2016). Since then, NMT models have ar-
guably achieved parity with human translators in some language pairs and some
domains, such as Chinese to English translation of news texts (Hassan et al., 2018).
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More recently, the focus of machine translation research has shifted to other
aspects, such as improving performance on low-resource languages (NLLB Team
et al., 2022), multi-lingual translation models capable of translating between many
different language pairs at once (Eriguchi et al., 2022) and end-to-end translation
of speech (Radford et al., 2023). With large amounts of data available, the more
interesting questions seem to be about how to use the available data most effectively.

2.5.5 Domain Adaptation for Machine Translation

While translation models have achieved parity with human translators on some
language pairs and domains, many domains remain unexplored either due to insuf-
ficient interest or insufficient available data. Furthermore, existing domains change
over time, with a striking example being news texts, which, right after the start of
the COVID-19 pandemic, were dominated by topics related to the pandemic (Anas-
tasopoulos et al., 2020).

The overview by (Saunders, 2022) divides MT domain adaptation techniques into
those revolving around data selection or generation, model architecture, parameter
adaptation procedure, and inference procedure. Different types of domain adaptation
methods will be looked at more in-depth in this section.

Fine-tuning The most common baseline approach for domain adaptation is to
fine-tune the model on in-domain data. Luong and Manning (2015) were among
the first to apply this method for neural machine translation. While this approach
generally achieves good results, it has some limitations, the main one being that a
suitable dataset for training does not always exist.

Data selection Domain adaptation through fine-tuning requires an in-domain
dataset. If one does not exist, it may be created through various methods, either
through selectively filtering existing data or generating new synthetic data.

One approach is to take large existing general-domain corpora and filter out sen-
tences which match the desired domain. This can be done via retrieval methods and
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comparisons against a small number of given in-domain examples, such as looking
for sentences with an n-gram overlap (Farajian et al., 2017) or using a more fuzzy
matching mechanism (Xu et al., 2019) or using sentence embeddings to find sen-
tences which are similar to a small number of available in-domain sentences (Wang
et al., 2017).

Data synthesis If a monolingual in-domain dataset is available, it can translated
from the target language back to the source language with some other MT model in
order to obtain a parallel corpus (Sennrich et al., 2017). Despite this kind of back-
translation producing more noisy texts than human written texts, Sennrich et al.
(2016b) show that training on such data can still improve a model’s performance.
Surprisingly, Currey et al. (2017) show that it is not even necessary to translate the
sentences to achieve some improvement in in-domain performance because it teaches
the model to produce in-domain vocabulary.

If the monolingual dataset is in the source language, forward translation can be
used instead, where the text is translated using machine translation. If the same
model that is being fine-tuned is used for this, then this can be seen as a form of
self-learning, where the model uses its own output to learn. Chinea-Ríos et al. (2017)
employ this for low-resource machine translation. Alternatively, a stronger teacher
model may be used for this in order to train a strong yet small domain-specific
translation model (Gordon and Duh, 2020).

Whenever a lexicon of domain-specific term translations is available, they may be
used to improve synthetic data. For example, Hu et al. (2019b) use a word-by-word
back-translation that uses the lexicon for translating domain-specific terms.

An existing in-domain dataset may be extended by generating extra synthetic
data through various noising methods. Vaibhav et al. (2019) synthetically intro-
duce such noise as spelling mistakes, grammar mistakes, emoticons, and profanity.
Karpukhin et al. (2019) show that this kind of noise improves MT model robustness.

Domain tagging One way to accomplish domain adaptation is to teach the model
to use a separate domain embedding as part of its input. The way this input is
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structured may differ from approach to approach. Sennrich et al. (2016a) pass it in
a domain marker as an artificial token at the end of the sentence. Kobus et al. (2017)
and Tars and Fishel (2018) instead add extra dimensions to the word embeddings
into which the domain information is encoded inline. They both find this kind of
extra feature approach to slightly outperform the discrete token approach. Britz
et al. (2017) adds this domain tag to the start of the target sentence instead.

A complication arises from the inherently mixed and ambiguous nature of do-
mains. A single sentence may be said to belong to many different domains depending
on the granularity of the domain labels, so a single tag may not always be possible.
Stergiadis et al. (2021) solve this by tagging each sentence with multiple domains
and teaching the model to effectively use a mixture of them. Mino et al. (2020)
extend this idea by also tagging sentences for other aspects, such as how noisy they
are. This gives credence to a more loose definition of domain for practical purposes.

Extending network architecture Domain adaptation can be achieved through
changes in the model architecture. These methods usually add trainable parameters
to the model, and rather than adapting an already pre-trained model, they usually
are trained from scratch to have control over the domain. Saunders (2022) notes,
however, that a lot of these kinds of methods could, in principle, be applied to
pre-trained models without having to fully retrain them, but they are trained from
scratch to simplify the technical implementation.

Parts of the network could be duplicated, training each instance for a specific
domain. Pham et al. (2019) add a domain-specific part to the embedding layer,
which creates domain-specific lexical embeddings. Zeng et al. (2018) have separate
encoders generating a domain-specific sentence encoding and a generic, non-specific
encoding. Jiang et al. (2020) train separate attention modules for each domain. Gu
et al. (2019) go a step further and train wholly separate encoders and decoders for
each domain, which are used together with a domain-agnostic encoder-decoder.

Instead of duplicating existing parts of the model, new ones may be added and
trained separately by fine-tuning the model with only the new parameters unfrozen.
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Bapna and Firat (2019) add small domain-specific adapter layers on top of the
encoder and decoder. Pham et al. (2020) train a separate domain discriminator to
determine which of the adapters to use. This approach has gained popularity due to
its relative simplicity and because it avoids catastrophic forgetting by not changing
any of the pre-trained model’s weights.

Training schemes Fine-tuning a translation model on new domains can lead to
forgetting previous domains. The methods described in this section change how the
model is trained in order to help it better adapt to new domains and to avoid the
usual fine-tuning pitfalls such as catastrophic forgetting and overfitting.

The approaches that extend the network architecture all generally avoid catas-
trophic forgetting by simply freezing the pre-trained model weights and only training
their added parameters (Jiang et al., 2020; Gu et al., 2019; Bapna and Firat, 2019;
Pham et al., 2020). Furthermore, adapter modules (Bapna and Firat, 2019; Pham
et al., 2020) can have a residual connection, allowing the model to bypass it entirely.
Liang et al. (2021) go even deeper into the model and selectively freeze only sets
of parameters that they show are responsible for most of the model’s capability,
fine-tuning the under-utilized parts of the network to specific domains.

The order in which the training examples are shown to the model can have an
impact on the resulting performance. This was suggested by Bengio et al. (2009),
who start the model off with more straightforward examples and end with tricky
examples. For domain adaptation, this idea may be used to, for example, start the
model with more generic examples and end with more in-domain ones. Saunders
(2022) notes that simple fine-tuning is already a type of curriculum learning. Zhang
et al. (2019) and van der Wees et al. (2017) do curriculum learning to improve model
performance on some specific domain identified as a subset of the general training
corpus.

Instead of changing the order in which the model sees training instances, they
may instead be weighted differently. Different methods for determining how to weigh
each specific instance may be used (Foster et al., 2010; Joty et al., 2015), including
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training a separate domain discriminator (Chen et al., 2017). The effect of this is
effectively the same as curriculum learning since both methods emphasize which
instances the model should pay more attention to while learning.

Inference schemes The domain may be adapted to during inference time. These
kinds of methods generally avoid having to fine-tune the translation model at all.
Since the adaptation method proposed in this thesis falls under this category, these
methods will be looked at in section 3.1 under related work.
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3 Related Work

This section focuses on the research that this thesis builds directly on top of and
methods that are directly adjacent to this research. It starts with some domain-
specific datasets and translation models upon which this thesis builds. Then it dives
into some inference-time domain adaptation methods for machine translations (since
they generally do not fine-tune the translation model or change it in a way which
would require re-training), then looks at domain adaptation approaches tried for the
task of formality-sensitive machine translation and finally ends with a quick look
at the controllable text generation methods which this thesis adapts for machine
translation.

3.1 Machine Translation Domain Adaption at Inference Time

If one wishes to adapt an existing translation model to a new domain without fine-
tuning it, the adaptation must happen at inference time.

A simple scheme is to use multiple translation models that are trained on dif-
ferent domains in an ensemble. Their predictions may be combined in various ways.
Freitag and Al-Onaizan (2016) achieve reasonable performance on unknown do-
mains with uniform weights, Sajjad et al. (2017) do better on known domains by
determining static weights from a development set. Liu et al. (2020a) determine the
weights right before inference by comparing how similar the input sentence is to
each domain-specific model’s training data. While this kind of method is simple, it
requires training multiple translation models, which means the memory and time re-
quirements scale linearly with the number of domains the system supports directly.
However, given a set of domains with minimal overlap, Saunders et al. (2019) find
that ensembling methods can also work on unseen domains.

A less resource-intensive ensembling method is proposed by Khandelwal et al.
(2021) and later extended by Zheng et al. (2021) who use a k-nearest-neighbour
retrieval model which retrieves potential in-domain translations for NMT decoder
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states. These kinds of methods have been shown to improve in-domain performance
without requiring additional NMT models.

A single translation model may be used in combination with domain-specific
models that re-score translation hypotheses from a generic NMT model based on
how in-domain they are (Dou et al., 2019). Zhang et al. (2018) perform this re-
scoring based on how much the hypothesis overlaps with a similar retrieved in-
domain sentence. These kinds of methods, however, are somewhat limited by the
capabilities of the underlying translation model as they do not steer the actual
inference process. The model might not have a good in-domain translation within
the top hypotheses on unseen or rare domains.

This drawback may be solved through constrained inference methods. Khayrallah
et al. (2017) constrain the NMT model with the output from a domain-specific
phrase-based statistical machine translation model. This smaller statistical model
provides domain-specific adequacy while the NMT fills the gaps to ensure fluency.
Hokamp and Liu (2017) and Hasler et al. (2018) propose constraining the beam-
search with lexical constraints. This can be used, for instance, to ensure specific
term translations are used if an in-domain dictionary is available.

A similar idea to using lexical constraints during decoding to ensure correct
domain terminology translations is to use these constraints in pre-editing or post-
editing. A simple approach by (Song et al., 2019) is to replace terms on the source
side with the correct translation from a domain-specific dictionary, encouraging the
translation model to simply copy over the term. Dinu et al. (2019) experiment with
different approaches to inserting the domain terminology. While these kinds of ap-
proaches do require the model to be trained to use these inserted terms, the models
are not required to generate in-domain terms themselves, making them adaptable
to unseen domains at inference. However, they need an exhaustive domain-specific
term dictionary to work well.
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3.2 Formality-sensitive Machine Translation

A single source sentence may have many valid target language translations. This is
especially evident for language pairs with linguistic differences in aspects such as
formality; for example, when translating from English to German, most sentences
could be translated into either formal or informal registers. Niu et al. (2017) con-
sider this aspect and introduce the task of formality sensitive-machine translation.
Nadejde et al. (2022) later introduce the CoCoA-MT dataset for this task consisting
of 6 language pairs with English as the source language for all of them in 3 differ-
ent domains. They also include a reference-based evaluation metric, which gives the
formality accuracy. Together with usual MT evaluation metrics such as BLEU, this
can be used to compare the performance of different models on this task.

Different approaches have been tried for this task. The originators of the task
(Niu et al., 2017) re-rank the outputs of an NMT system based on their formality.
The authors of the CoCoA-MT dataset (Nadejde et al., 2022) try a straight-forward
fine-tuning approach and introduce a synthetic token on the source side, which
determines the desired formality, achieving an average of 81.8% formality accuracy
in-domain and 72.6% out of domain.

Zhang et al. (2022) train a post-editing model which can rewrite the translation
into either formal or informal forms and use it together with a fine-tuned mBART
(Liu et al., 2020b) model that does the translations. They focus on the English-
Hindi and English-Japanese language pairs and achieve a perfect formality accuracy
score when including augmented data in the fine-tuning step. Lee et al. (2023)
perform fine-tuning with synthetic data generated by large language models through
prompting.

3.3 Controllable Text Generation

The main inspiration for this proposal is the plug-and-play language models of
Dathathri et al. (2020). They control the attributes of the text they generate by
using a pre-trained transformer language model as-is and augmenting the decoding
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process with a comparatively tiny attribute model that steers the output in the
desired direction.

A similar approach by Pascual et al. (2021) makes a simplification by directly
shifting the output distribution towards the semantic space of a guide word or a
bag of words. Because they modify the probabilities directly and do not have to do
back-propagation, their attribute model does not need to be differentiable, allowing
them to adjust the weighting at each inference step to ensure that the required words
appear in a specific order.

These methods are powerful and expressive, but a part of their expressiveness
comes from the fact that the output is usually not too constrained. Applying these in
a translation context has the additional constraint of keeping the translation correct.
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4 Methods

The proposed method uses a pre-trained translation model in a plug-and-play man-
ner, without changing its learned weights or architecture, together with a bag-of-
words scoring model that determines adherence to the specific domain in a plug-and-
play manner. It is based on the controllable text generation method by Dathathri
et al. (2020) that they call Plug-and-Play Language Models. The proposed method
will, therefore, be called Plug-and-Play Neural Machine Translation (PPNMT). The
code is available on GitHub6.

This section more formally describes PPNMT as well as the types of in-domain
datasets and translation models that will be used and how the results will be eval-
uated.

4.1 Datasets

This thesis uses two kinds of parallel datasets with slightly different characteristics
regarding the domain they cover.

1. Intrinsic domain: These datasets contain parallel examples where both the
source and target sentences are in the same domain (e.g. scientific text). It is
something intrinsic to the ideas expressed in the text and cannot be separated
from it. While translating this kind of data, the goal is to preserve the domain
characteristics. These domains mainly deal more with the semantic meaning
of the text and the topic.

A sound translation system should keep this semantic meaning intact.

2. Extrinsic domain: In these datasets, the target text contains characteristics
not present in the source sentence, often due to linguistic differences between
the two languages. Two examples of this are formality level, which can be
indicated by lexical or grammatical markers in one language, but be absent in

6https://github.com/EmilsKadikis/PPNMT
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another language (e.g. German and English), and gender, which can similarly
be expressed as inflections on verbs (e.g. in Arabic, where the gender of the
speaker and the person being spoken to can be seen from inflections).

When translating this kind of data, the goal is to add these characteristics,
ideally in a controllable way.

4.2 Similarity Between Language Models and Neural Trans-
lation Models

This thesis extends a controllable text generation method for neural machine trans-
lation. Therefore, this method’s applicability to NMT hinges on the conceptual and
architectural similarities between language models and neural translation models.
This section defines both and shows where the similarities lie.

Language model definition A language model is given a sequence of tokens
X = {x0, ..., xn} and calculates the probability of the sequence appearing in natural
language p(X). Or, expressed slightly differently, it gives the probability of the next
token given the rest of the sequence:

(10) p(xn+1|X)

Sequence-to-sequence model A sequence-to-sequence model is essentially a
language model that is conditioned on some sequence beforehand. That is, given
some input sequence X ′ = {x′

0, ..., x
′
m} of length m it gives the probability of an

output sequence X = {x0, ..., xn} of length n. Or, expressed in the same token-by-
token manner, it calculates the probability of the next token given an input sequence
and the output sequence so far:

(11) p(xn+1|X,X ′)
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In practice, this is usually implemented with two separate models: an encoder
and a decoder. The encoder processes the input X ′, outputting some latent rep-
resentation. The decoder then takes this output as conditioning and generates the
target sequence token by token.

Neural machine translation model definition An NMT model takes as input
a sequence of tokens in one language (the source language) and outputs a sequence
of tokens in another language (the target language) that is a likely translation. For
historical reasons, the source text is often denoted by f and the target translation
by e (meaning French and English). This gives the following definition for an end-
to-end translation model, which is just an instantiation of a sequence-to-sequence
model:

(12) p(e|f)

This definition can be similarly restated to a token-by-token version by intro-
ducing a target sequence E = {e0, ..., en} and a source sequence F = {f0, ..., fm},
which gives the following definition that is very similar to the conditioned language
model definition in equation 11:

(13) p(en+1|E,F )

In practice, this is also often implemented through an encoder-decoder architec-
ture such as a transformer model.

Transformer model definition A transformer model uses an attention mech-
anism to model dependencies in sequences. The recursive definition provided by
Dathathri et al. (2020) will be considered. The language model LM takes the pre-
vious output that it produced xt and the hidden state of the previous time-step Ht
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(which for a transformer model represents the key-value pairs of all the attention
heads at each layer) as input and outputs the new hidden state Ht+1 and logits ot+1:

(14) ot+1, Ht+1 = LM(xt, Ht)

The next token xt+1 is then sampled from a projection of the output logits ot+1 onto
the vocabulary of the model by multiplying them with a weight matrix W .

(15) xt+1 ∼ pt+1 = Softmax(Wot+1)

In an encoder-decoder transformer architecture (such as the one used by NMT
models), the hidden state could be split into two parts corresponding to the key-
value pairs of the self-attention Hself

t that the decoder has to its previous outputs,
and key-value pairs of the cross-attention Hcross

t that the decoder has to the outputs
of the encoder:

(16) ot+1, H
self
t+1 , H

cross
t+1 = LM(xt, H

self
t , Hcross

t )

While the encoder is its own transformer model with its own self-attention, for
the purpose of this thesis, it can be ignored since the cross-attention will not be
changed. Only the decoder will be controlled, treating it essentially like a language
model.

Compared to the previously given definition of a sequence-to-sequence model,
the conditioning of the model on the input sequence is captured through the cross-
attention mechanism, and the conditioning on its own previous output is captured
through the self-attention mechanism. Neural machine translation is commonly im-
plemented with this kind of model.
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4.3 Proposed Method: Plug-and-Play Neural Machine Trans-
lation

This thesis extends the controllable text generation method proposed by Dathathri
et al. (2020) for machine translation by exploiting the architectural similarity of
modern NMT models to language models. This section describes the domain adap-
tation method by first explaining the original controllable text generation method
and then emphasizing the considerations needed to apply it to a translation model.
Lastly, various additions to improve the performance of the base method are con-
sidered.

4.3.1 High Level Overview

On a high level, this method takes the recursive transformer model definition intro-
duced earlier and, before using the hidden state of the self-attention head, runs it
through a perturbation function:

(17) H ′
t = perturb(Ht, a(x1:t))

This function nudges the hidden state in a way that enforces some domain-
specific attributes defined by a domain classifier a.

When applied to the translation model, only the self-attention is perturbed.

(18) H ′self
t = perturb(Hself

t , a(x1:t))

(19) ot+1, H
self
t+1 , H

cross
t+1 = LM(xt, H

′self
t , Hcross

t )

Conceptually, this could be seen as pushing the model’s hidden state as if it had
already been outputting an in-domain translation, prompting it to keep outputting
within the same domain.
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The original method by Dathathri et al. (2020) is applied on a GPT-2 model
(Radford et al., 2019), which has only a self-attention mechanism and no cross-
attention. Although the translation models used in this thesis have both, only the
self-attention is perturbed to preserve the alignments the model has learned (which
should, in principle, not be affected by the domain of the texts).

4.3.2 Capturing Domain Attributes

The definition of the perturbation function given in equation 17 contains a domain
attribute model a. This is a discriminator that takes the model’s output up until
the current time step and gives a numerical score on how well the output conforms
to the domain. Notably, it is orders of magnitude smaller and more straightforward
than the translation model.

Dathathri et al. (2020) define two kinds of attribute models: small feedforward
models trained to classify the decoder’s hidden state on how well it adheres to
the given domain and even more straightforward bag-of-word classifiers, which base
their score on the probability the model gives to the tokens contained in the bag-of-
words. This thesis focuses on the bag-of-words models due to their simplicity and
interpretability.

The bag-of-words attribute model defines a domain simply by a collection of
words in the target language that are likely to appear in a domain text or are
related to the domain in some way. Given a bag-of-words {w1, ..., wk} and an output
distribution p which contains the logits of the next token, Dathathri et al. (2020)
define the model like so:

(20) log p(a|x) = log
k∑
i

p[wi]

A few additions have been made in this thesis. To improve performance for con-
trasting domains (such as formal/informal), two bags-of-words are used: a positive
set {w+

1 , ..., w
+
k } which contains words from the target domain, and an opposing
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negative set {w−
1 , ..., w

−
j } which contains words from the contrasting domain. The

model subtracts the log-likelihoods of the negative words from the log-likelihoods of
the positive words:

(21) log p(a|x) = log
k∑
i

p[w+
i ]− log

j∑
i

p[w−
i ]

Crucially, this does not simply push the model towards outputting the tokens
in the bag-of-words. Dathathri et al. (2020) note that related words not explicitly
contained in the bag are generated. The same is observed for NMT as well.

4.3.3 Procedural Overview

This perturbation process is better understood through a step-by-step procedural
explanation. The source language text is first processed by the encoder like usual,
and then the decoder generates a translation token-by-token with the following steps:

1. Forward pass: The model generates the probabilities of the next token.

2. Domain evaluation: The model output is passed into a domain attribute
model, which scores how well the output adheres to the domain.

3. Backward pass: gradients are calculated from the domain attribute model
with regard to the hidden state of the model (not with regard to the parame-
ters, like would be done during fine-tuning)

4. Hidden state update: The hidden states of the model are updated using the
gradient from the previous step. These three steps may be repeated multiple
times.

5. New forward pass: A new forward pass is performed using the perturbed
hidden state. A slightly different probability distribution over tokens is output,
from which the next token is sampled.
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These five steps are repeated until the model finally outputs its end token, sig-
nifying that the whole input has been translated.

Forward pass This step is performed to get the unperturbed model output (in the
form of logits that form the probability distribution of the next token). Typically, this
probability distribution would be used directly to sample the next token. Instead,
it is used in the perturbation process.

Domain evaluation The output logits are evaluated for their domain adherence.
With the bag-of-words model defined in equation 21, this effectively means summing
up all the logits for the tokens in the positive bag-of-words, summing up the logits
for the tokens in the negative bag-of-words and calculating the difference between
the logs of these sums.

Backward pass All of the calculations described in the previous paragraph are
differentiable, which means we can calculate the gradients from the domain score
with regard to the current self-attention key-value pairs. This effectively determines
which values in the hidden state were responsible for making the positive tokens
more likely and the negative tokens less likely.

However, using only the gradients from the simplistic attribute model makes the
output non-fluent and repetitive. Because of this, another gradient is used, calculated
through Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) to minimize
the divergence between the output distributions of the original and perturbed trans-
lation models. This allows the model to stay fluent despite the perturbations.

Hidden state update In this step, similar to fine-tuning, step-size, a hyper-
parameter akin to a learning rate, is used to update the hidden state according to
the gradients. Crucially, this is not fine-tuning, and none of the trainable model
parameters are affected.
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Dathathri et al. (2020) make further considerations here. Firstly, only the hidden
states from a limited number of previous time steps may be perturbed for computa-
tional efficiency, as defined by a window size parameter. This is because the more
distant hidden states affect the next token less, so they may be ignored. Furthermore,
linear decay is used to smooth the boundary between perturbed and unperturbed
hidden states. Secondly, the gradients for each layer are normalized by the largest
gradient observed on it. This normalization is scaled by a hyperparameter gamma.

New forward pass After the previous has been performed several times (con-
trolled by a parameter iteration count, with this thesis using 6) and the gradient
has been accumulated, the final forward pass is performed with the perturbed hid-
den state. This results in a probability distribution. However, it is not sampled
directly. First, it is fused together with the unperturbed probability distribution
from the initial forward pass via post-norm geometric mean fusion, which mixes the
two probability distributions according to a weight γgm:

(22) xt+1 ∼ p̃
γgm
t+1 p

1−γgm
t+1

Here p̃t+1 is the perturbed probability distribution and pt+1 is the original dis-
tribution. Combining them ties the generated text to the unconditioned translation
model’s distribution and ensures that the text keeps fluency. If γgm = 1, the token
is sampled just from the perturbed distribution, but if γgm = 0, the original unper-
turbed distribution is. Dathathri et al. (2020) find that values in the range 0.8−0.95

work well for text generation, with 0.95 being used in this thesis.

4.3.4 Extensions to the method

The core of the method is unchanged from Dathathri et al. (2020). Some extensions
have been made to address specific issues for translation. These will be listed here
for completeness.

70



Warm-up steps As applied to text generation, the original method usually starts
with a prefix. This means that as soon as perturbations start, there are some past
hidden states which may be perturbed. For translation, however, there is no prefix
or past hidden states to start with. This poses a problem if the first word in the
translation must be adapted to the domain.

This is solved by doing a few warm-up steps at the start, effectively forcing the
model to output the padding token so that there would be some past hidden states
to perturb.

Negative bag-of-words To adapt to contrastive domains, a positively weighted
bag-of-words from the target domain is used in conjunction with a negatively weighted
bag-of-words from the distractor domain. This helps the method better capture the
most essential aspect of the domain to which the model is being adapted.

4.4 Baseline domain adaptation approach

For the baseline adaptation approach, the pre-trained model will be fine-tuned on
available in-domain examples. This approach generally performs well in a single-
domain setting but worsens in a multi-domain adaptation setting due to catastrophic
forgetting. While methods exist for mitigating this, vanilla fine-tuning will be used
strictly in a single-domain setting for simplicity.

4.5 Stronger perturbation

Dathathri et al. (2020) achieve a controlled text generation with a light touch,
using a rather small perturbation step size across many time steps. Translation as
a task is different. Not only is the choice of each next token informed by a language
modelling objective, depending on which tokens have already been output, but the
text in the source language must also be kept in mind. Overcoming this second
constraint requires a stronger push in the form of a larger perturbation step size.
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However, over a shorter time span, or else the translation might be pushed too far
into incoherence.

4.6 Evaluation

Human evaluation is the most valuable because it directly evaluates the model’s fit
for purpose. Human evaluation is, however, expensive and time-consuming to carry
out. Because of the logistical constraints caused by looking at translations between
many different language pairs, human evaluation will not be used in this thesis, and
instead, automatic metrics that have been shown to correlate with human judgment
will be used.

There are many automatic evaluation methods for machine translation, a lot
of which overlap in terms of their inner workings or purpose. For this thesis, the
following three will be used:

• BLEU (Papineni et al., 2002)

• chrF (Popović, 2015)

• BERTScore (Zhang* et al., 2020)

Short descriptions of these methods and the reasoning behind using these and
not others will now be given.

4.6.1 BLEU

BLEU score (Papineni et al., 2002) is based on n-gram precision, i.e. how many
unigrams, bigrams, trigrams, and 4-grams from the reference translations appear
in the target translation that is being evaluated. This precision is modified to not
count n-grams which appear more often in the target translation than in the ref-
erence translations. These four separate precision scores are then averaged with a
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geometric mean. Furthermore, a brevity penalty is applied to combat short trans-
lations achieving better precision scores if the translation is much shorter than the
reference translations.

Due to the nature of n-gram overlap and the limited number of reference trans-
lations compared to all possible good translations, this metric is not meaningful for
single translations. Instead, it must be applied over a whole corpus and averaged.
For similar reasons, the scores are also not comparable between different datasets
(which will have different reference translations) and even different languages (which
might have different ways of tokenizing the texts).

Possible BLEU scores are from 0 to 1, with 0 meaning no overlap with the ref-
erence translations and 1 meaning perfect overlap. The scores are often reported as
percentage points of 0 to 100. This is how the BLEU scores will also be reported in
this thesis. In practice, scores over 30 indicate good translations and scores over 50
indicate very high-quality translations, sometimes even better than human transla-
tions 7.

This metric has been shown to correlate with human judgements despite only
looking at the surface level and not considering the actual meanings of the trans-
lations. Because of this, it is one of the de-facto machine translation evaluation
methods, which is why it is used in this thesis.

4.6.2 chrF

chrF (Popović, 2015) is a character-level n-gram F-score that has gained popularity
due to its wide applicability in languages for which tokenization is not simple due
to non-existent word boundaries. It is generally defined as follows:

(23) chrF = (1 + β)
chrP · chrR

β · chrP + chrR

Here, the chrP and chrR are character n-gram precision and recall, respectively
(arithmetically averaged over all n-grams), and β is a weighing factor determining

7https://cloud.google.com/translate/automl/docs/evaluate#interpretation
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how much importance is assigned to precision over recall. The metric authors deter-
mined that an n of 6 correlates best with human judgments. Minor variations exist
with different precision/recall weighting and whether or not to treat whitespace as
characters.

When interpreting chrF scores, it is essential to note that they are not comparable
across datasets and languages. Like with BLEU scores, they are too dependent on
the specific reference translations and typographical differences between languages.

This method was chosen due to its universal applicability to all languages regard-
less of the presence of word separators such as Chinese. While metrics like BLEU
are usable in Chinese, their score is highly dependent on the tokenization scheme,
which is a non-trivial problem for Chinese.

4.6.3 BERTScore

Both of the previously mentioned evaluation methods work on a surface level without
considering the translations’ actual meaning. BERTScore (Zhang* et al., 2020) offers
an alternative which uses a BERT model to embed the translation and reference
translations, then do a pairwise cosine similarity comparison. This allows the metric
to better deal with synonyms and alternate ways of expressing the same idea.

BERTScore was the third chosen evaluation method to cover the drawbacks of
the other two. For datasets with an intrinsic domain especially, we want to ensure
that the translation’s semantic meaning gets preserved. BERTScore indicates how
well this was accomplished.
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5 Experimental Setup

The proposed method is not domain or language-specific and, as such, could be
applied to any domain and language pair. This section explains the specific datasets,
hyperparameters, pre-trained models, and experimental settings.

Two baselines are required to answer the proposed research questions. Namely, a
pre-trained model baseline establishes the un-adapted performance that the model
has, and a fine-tuned model establishes how effective the usual adaptation method
would be on the same model. These are then compared against the PPNMT method.

5.1 Datasets

In section 4.1, two kinds of datasets were defined: ones with an intrinsic domain
and ones with an extrinsic domain. Three different datasets are used in this thesis,
two with extrinsic domains and one with an intrinsic domain. These datasets, the
language pairs, and the domains they cover are explained further.

5.1.1 Formality: CoCoA-MT

The Contrastive Controlled MT by AWS dataset (CoCoA-MT) (Nadejde et al.,
2022) is a multilingual dataset that contains English sentences that native speakers
have translated into a formal version and an informal version into German, French,
Italian, Spanish, Hindi, and Japanese.

For each language pair, there are texts in three domains: topical chat, telephony,
and call centre. The training set comprises 200 instances in the topical chat domain,
and 200 instances in the telephony domain, and the test set contains 200 instances
from each of the three domains, with the call centre domain not appearing in the
training data.

The translations are annotated, marking the words responsible for the formal-
ity/informality in each sentence. These annotations are the basis of a simple formal-
ity accuracy measure included with the dataset, which tries to predict the formality
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of the translation by looking for the marked formality phrases in the translations.
The result is a formality accuracy score from 0 to 1. It is important to note that this
is a crude measure that does not measure the quality of the translation and can be
easily gamed by just repeatedly outputting the formality phrase. Because of this, it
is used in conjunction with traditional MT evaluation methods.

This dataset contains instances that are made up of multiple sentences. However,
translation models are usually trained on single sentences. The chosen models would
sometimes not translate parts of the other sentences. Because of this, the data was
first split into sentences.

5.1.2 Gendered language: The Arabic Parallel Gender Corpus 2.0

The Arabic Parallel Gender Corpus 2.0 (Alhafni et al., 2022) (APGC v2.0) is an
expanded version of the APGC v1.0 dataset containing 590K words. Arabic is a
morphologically rich language with two grammatical genders indicated by gender
markers for both the first and second person. The dataset explores all possible
combinations of the first person and second person being male, female, or ambiguous
over three splits.

While this dataset was created to explore gender bias, this thesis aims to bias
the translation in a desired direction, either translating the first and second person
as being both male or both female. Because of this, only the instances labelled as
both being male or both being female were used.

5.1.3 Fine-grained domains: FGraDA

The Fine-Grained Domain Adaptation corpus (FGraDA) (Zhu et al., 2022) is a
Chinese-English dataset consisting of 800 development instances and 3967 test in-
stances from four technology-related domains, namely autonomous vehicles, AI edu-
cation, real-time networks, and smartphone. They also include domain-specific dic-
tionaries with around 300 different domain-specific terms and their translations and
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a large number of extracted wiki pages for each domain, which cover the terms in
the dictionaries.

In their baselines, Zhu et al. (2022) discover that the NMT model often mis-
translates domain-specific words and common words with a domain-specific mean-
ing. They try to remedy this by using the extracted domain term dictionaries with
methods such as grid beam decoding (Hokamp and Liu, 2017)

5.2 Translation Models

As the pre-trained translation models, the Opus-MT models (Tiedemann and Thot-
tingal, 2020) trained with the Marian framework (Junczys-Dowmunt et al., 2018)
are used. They are modestly sized transformer encoder-decoder models with six lay-
ers in each and eight attention heads for each layer trained on the OPUS dataset
(Tiedemann, 2012) for a vast number of language pairs. In total, they have made
available 1069 bilingual models and 56 multilingual models, supporting a total of
1739 different language pairs8.

These models have limitations, as listed on their GitHub page9. Firstly, the
authors note that most models were trained on a maximum of 72 training hours on
1 to 4 GPUs and that not all converged before hitting this time limit. Secondly, no
data augmentation or filtering methods were used. Lastly, the validation data used
for early stopping was often taken from Tatoeba, which mainly features short and
simple sentences. Because of these limitations, instances in the CoCoA-MT dataset
had to first split into single sentences (otherwise, the model would sometimes miss
translating parts of the text entirely), and any data with Japanese as the source or
target language had to be dropped due to the Japanese models not functioning well
enough.

The specific models used are listed in table 1 with their checkpoints from the
Huggingface Hub10.

8https://opus.nlpl.eu/Opus-MT/
9https://github.com/Helsinki-NLP/Opus-MT#known-issues

10https://huggingface.co/Helsinki-NLP
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Language pair Model checkpoint
English-German Helsinki-NLP/opus-mt-en-de
English-Spanish Helsinki-NLP/opus-mt-en-es
English-Italian Helsinki-NLP/opus-mt-en-it
English-French Helsinki-NLP/opus-mt-en-fr
English-Hindi Helsinki-NLP/opus-mt-en-hi
English-Arabic Helsinki-NLP/opus-mt-en-ar
English-Chinese Helsinki-NLP/opus-mt-en-zh
Chinese-English Helsinki-NLP/opus-mt-zh-en
English-Japanese Helsinki-NLP/opus-mt-en-jap

Table 1: The translation models that were used in the thesis. The English-Japanese
model was found to severely underperform, outputting an empty translation around
half the time, so the English-Japanese data was not used.

5.3 Domain Attribute Models

The domain attributes were captured in a bag-of-words containing domain-relevant
tokens. Multiple ways of constructing these were tried, both manually using linguistic
knowledge and automatically from the training data.

1. Manual: It can be doable to define a small set of tokens manually for certain
domains.

2. Contrastive: The texts from the contrasting domains (two or more) are to-
kenized, and token counts are calculated. Any tokens that appear in multiple
domains are discarded, and the top k unique tokens from each domain are
picked. The tokens from the target domain form the positive bag-of-words,
while those from all the other domains form a negative bag-of-words. This
works best for contrasting domains where a single source sentence has multi-
ple translations, which only differ in the domain-specific aspect.

3. tf-idf: The words salient to a domain may be identified through tf-idf or
similar measures. Unique domain-specific keywords can be collected if words
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that overlap between the domains are removed.

The first two methods were tried for the extrinsic domains (formality and gen-
der), and the manual and tf-idf methods were tried for the fine-grained tech domains,
where the contrastive method was not reliable enough due to the non-overlapping
texts contained in the four separate domains. For the manual bag-of-words for for-
mality, the formal and informal pronouns for ”you” were used, and for the fine-
grained tech domains, the terms in the provided domain dictionaries were used.

5.4 First Baseline: Unchanged Pre-Trained Translation Model

The pre-trained models listed in section 5.2 were first evaluated on the three datasets
listed in section 5.1 without any fine-tuning or domain adaptation. BLEU, chrF and
BERTScore were used, as well as the formality accuracy measure provided with the
CoCoA-MT dataset. This provides the baseline performance, which the proposed
method attempts to improve.

Some concessions were made for a more direct comparison. Due to technical
and time constraints, the proposed adaptation method was implemented just for
greedy search. Because of this, the baseline models were also evaluated using greedy
decoding. This accounts for a decrease of around 2 for the BLEU score. Despite this,
the method is, in principle, also applicable to beam decoding.

5.5 Second Baseline: Fine-Tuned Translation Model

The pre-trained models were also fine-tuned on the in-domain data separately for
each domain. Since the formality and fine-grained technology domain datasets have
limited examples, five-fold cross-validation was used to discover the optimal amount
of epochs to fine-tune for (which turned out to be 2). Beyond that, the default hyper-
parameter values provided by the Seq2SeqTrainer from Huggingface’s Transformers
library were used with no specific considerations for either domains or datasets.
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5.6 Proposed Domain Adaptation Method: PPNMT

See section 4.3.3 for a step-by-step overview of the method. It uses multiple hyperpa-
rameters that may be used to tune the perturbation process, which will be explained
in more detail in this section. The formality domain for English-German was used
to determine the best hyperparameters due to the author’s familiarity with the
language. Different considerations needed to be taken into account for translation
compared to free-form text generation.

5.6.1 Additional Considerations for Translation

When the method is applied to text generation, a long passage is usually generated
starting from a short prefix. This length allows the model some time to generate a
long enough history to perturb. For translation, however, there is no initial prefix
or history. This poses a problem if the first word of the translation has to be in-
domain (e.g. when translating ”You are late.”) as perturbations are not possible yet.
To resolve this, the model is allowed to do a few warm-up steps before translating
(which is effectively just adding padding tokens as the prefix).

Furthermore, it was discovered that the decoder needs to be pushed more than
an unconditioned language model. This is controlled by the iteration count (i.e. how
many times backpropagation is done to accumulate the gradient) and the stepsize
parameter (i.e. how much the history is perturbed at each step). That also means,
however, that it is easier for the model to hit some unknown threshold and start pro-
ducing adversarial and repetitive text. This is countered by performing perturbations
only for a certain number of time steps since, especially for domains like formality,
the translation model is likely to keep the same formality level if a formality-bearing
word has been output.

5.7 Zero-Shot and Few-Shot Setting

It is possible to use the proposed method zero-shot by constructing the bag-of-words
manually. This is tested for the English-German language pair for formality, using
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the formal and informal first-person pronouns: ”Sie” and ”du” as the positive and
negative bag-of-words, respectively. The performance of this was compared to fine-
tuning at various few-shot settings. Furthermore, the pre-trained baseline can be
considered a zero-shot adaptation method for this comparison.

The CoCoA-MT dataset also contains sentences with no formality markers in
them. These were filtered out before selecting instances for the few-shot setting.
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6 Results

The adaptation results are shown separately on the three used datasets, followed by
the results of the zero-shot and few-shot adaptation experiments.

6.1 Formality Adaptation

The results of formality adaptation can be seen in table 2. As expected, the baseline
fine-tuning approach significantly improves all metrics over the pre-trained base-
line, increasing the formality accuracy to close to 100% for all language pairs. For
PPNMT, a smaller improvement over the pre-trained baseline is seen, although for
Hindi, the BLEU score decreases slightly, but formality accuracy still increases.

In a full-data setting, fine-tuning vastly outperforms the proposed method. A
part of the improvement in the BLEU score, chrF and BERTScore is attributable
to the model additionally adapting to the spoken domain inherent to the dataset
examples. In contrast, the proposed method only targets the formality level. How-
ever, the high formality accuracies that the fine-tuned baseline achieves speak to the
power of fine-tuning as a domain adaptation method.

Notably, there are only small or insignificant changes in the BERTScores between
the pre-trained baseline and the PPNMT model. That could indicate that there are
no significant changes in the meaning of the translation unless the model is fine-
tuned.

6.2 Gender Adaptation

The results of the gender adaptation can be seen in table 3. The pre-trained model
achieves very low scores on the dataset. Judging by the higher score for the male
texts, it can be assumed that the pre-trained model is more biased towards out-
putting in this gender. Although there is no automatic domain evaluation metric,
we can judge the improvement in BLEU score, chrF and BERTScore. The proposed
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Language Method
Formal Informal

BLEU chrF BERTScore Acc. BLEU chrF BERTScore Acc.

EN-DE
pre-trained 33.5 57.1 0.874 0.519 33.0 56.9 0.877 0.481
fine-tuned 43.9 64.6 0.903 0.998 42.4 63.4 0.901 0.974
PPNMT 37.2 59.9 0.881 0.915 36.1 59.1 0.881 0.846

EN-ES
pre-trained 38.8 63.8 0.887 0.200 44.9 66.3 0.897 0.800
fine-tuned 48.3 68.1 0.904 0.995 48.1 68.2 0.904 0.972
PPNMT 40.9 65.1 0.889 0.746 43.9 65.5 0.894 0.938

EN-IT
pre-trained 36.4 63.0 0.874 0.048 44.5 66.3 0.892 0.952
fine-tuned 51.2 69.5 0.910 0.984 51.9 70.0 0.912 0.987
PPNMT 37.3 63.3 0.877 0.230 43.8 65.6 0.885 0.968

EN-FR
pre-trained 37.6 58.9 0.876 0.724 33.8 56.6 0.871 0.276
fine-tuned 43.7 63.9 0.893 1.000 42.8 62.5 0.891 0.931
PPNMT 40.7 61.8 0.881 0.993 37.0 58.5 0.874 0.749

EN-HI
pre-trained 17.1 38.6 0.835 0.785 15.1 36.4 0.828 0.215
fine-tuned 25.7 46.1 0.864 0.992 24.8 47.2 0.865 0.988
PPNMT 16.4 39.6 0.836 0.906 14.3 37.8 0.828 0.442

Table 2: Formality adaptation results for the two baselines and the proposed method
(PPNMT) in a full-data setting. The fine-tuned baseline outperforms the proposed
method.

Target Gender Method
EN-AR

BLEU chrF BERTScore

Female
pre-trained 6.5 34.2 0.804
fine-tuned 14.5 42.1 0.832
PPNMT 6.8 35.3 0.796

Male
pre-trained 10.1 39.6 0.821
fine-tuned 16.9 42.3 0.835
PPNMT 9.1 39.3 0.806

Table 3: Arabic grammatical gender adaptation results for the two baselines and the
proposed method (PPNMT) in a full-data setting. The target gender is pushed for
both first and second person.
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method helps the model output more female-leaning texts, but when adapting to
male texts, it slightly hurts performance.

Fine-tuning, as expected, greatly improves the results and vastly outperforms
the proposed method.

Domain Method
ZH-EN EN-ZH

BLEU chrF BERTScore BLEU chrF BERTScore

Autonomous Vehicles
pre-trained 27.9 55.9 0.939 - 25.8 0.831
fine-tuned 29.4 57.6 0.942 - 32.1 0.855
PPNMT 25.1 55.5 0.936 - 24.5 0.819

AI Education
pre-trained 31.0 58.3 0.943 - 28.2 0.839
fine-tuned 33.3 59.4 0.945 - 34.4 0.859
PPNMT 28.7 58.4 0.941 - 26.9 0.825

Real-Time Networks
pre-trained 14.3 43.4 0.912 - 17.2 0.770
fine-tuned 15.8 44.9 0.916 - 19.6 0.788
PPNMT 13.0 44.1 0.909 - 16.7 0.760

Smart Phone
pre-trained 19.5 48.3 0.931 - 22.1 0.797
fine-tuned 22.3 50.6 0.934 - 27.3 0.825
PPNMT 19.6 48.6 0.929 - 21.2 0.785

Table 4: Fine-grained tech domain adaptation results for the two baselines and the
proposed method (PPNMT) in a full-data setting. The BLEU score was not used
for evaluating English-Chinese translations because of its unsuitability for Chinese.

6.3 Technical Domain Adaptation

The results of the domain adaptation on the fine-grained tech domains included
in the FGraDA dataset can be seen in table 4. The pre-trained baseline performs
poorly, especially with the Real-Time Networks and Smart Phone domains. Fine-
tuning the model on the domain data achieves a moderate improvement for all
domains. However, PPNMT almost universally hurts the performance, except for a
negligible increase in the smartphone domain for Chinese-English translation.

Since no domain-specific evaluation is available and the domains are so similar
to each other, it is impossible to judge if the adapted translations adhere better to
the domain.
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Method
Formal

BLEU chrF BERTScore Acc.

pre-trained 33.5 57.1 0.874 0.519
PPNMT0 36.7 59.4 0.879 0.905
fine-tuned1 35.8 58.7 0.879 0.664
fine-tuned3 37.1 59.5 0.882 0.767
fine-tuned5 37.6 59.9 0.882 0.835
fine-tuned10 38.0 60.1 0.883 0.886
fine-tuned20 39.1 61.1 0.886 0.933
fine-tuned50 40.1 62.3 0.890 0.983
fine-tunedfull 43.9 64.6 0.903 0.998

Table 5: Few-shot and zero-shot formality adaptation results. The PPNMT model
here uses a very simple, manually defined bag-of-words; therefore, it is a zero-shot
approach, not requiring any training data. The fine-tuned models were trained on
an increasing amount of training examples.

6.4 Zero-Shot and Few-Shot Adaptation

The results for zero-shot and few-shot domain adaptation for formality can be seen
in table 5. Few-shot fine-tuning achieves parity with the proposed method (using the
very simple ”Sie” and ”du” as the positive and negative bags-of-words) very quickly
in terms of BLEU score, chrF and BERTScore at only three training instances,
although still lagging slightly behind with the formality accuracy. The formality
accuracy then is surpassed with 20 training examples.
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7 Discussion

Fine-tuning outperforms the proposed method in a full-data setting. This is un-
surprising because fine-tuning is known to be a very effective domain-adaptation
method. The proposed method, however, shows some interesting qualities.

7.1 Adapting to Extrinsic Domains vs Intrinsic Domains

The results support PPNMT being better at adapting to extrinsic domains (formal-
ity and to a lesser extent gender) rather than intrinsic domains (fine-grained tech
domains), possibly due to their properties being easier to capture with something
as simple as a bag-of-words.

Despite having extensive domain term dictionaries for the fine-grained tech do-
mains (which, in theory, is the perfect bag-of-words for the domain, especially when
contrasting it to the dictionaries of the other domains), PPNMT hurts all of the
quality metrics. This could be partially explained by FGraDA being a challenging
dataset, with all four domains being too close to each other for the method to be
able to make a meaningful difference.

7.2 PPNMT does not Give the Model New Knowledge

Interestingly, for formality, the language pair with the worst performing pre-trained
model (English-Hindi) has a slight decrease in BLEU, chrF, and BERTScore for
PPNMT while still increasing the formality accuracy. That could indicate that the
method is better at controlling more fluent models. This could be explained as
the perturbation method not imbuing the model with any new knowledge (like
fine-tuning would) but instead just channelling the pre-existing knowledge that it
already has from pre-training in a different direction. A more performant model
could, therefore, be easier to push without hurting the performance because the
model already has the capabilities for outputting perfectly fluent formal or informal
versions of a sentence.
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A similar result can be seen with the gender adaptation, where the initial pre-
trained model performs poorly (also seemingly biased towards using the male inflec-
tions due to the higher scores for the fine-tuned baseline in male texts). Pushing it
toward male translations does not do anything meaningful; it just slightly hurts the
performance, which could be caused by the noise that the perturbation method in-
troduces that the model’s meagre language modelling capabilities cannot overcome.
However, pushing toward female translations slightly improves the results, which
could be due to the perturbations helping overcome the inherent male bias that the
model has.

The poor performance on the FGraDA dataset could also be explained by the
used pre-trained Chinese-English and English-Chinese models not being fluent enough
by themselves (as can be seen by the low chrF scores for Chinese-English and low
BLEU scores for two of the domains for English-Chinese translation). If the models
do not already know the domain-specific term translations, then it is possible that
no amount of pushing in the decoder could make it output that translation.

The fact that the BERTScores do not change significantly from the pre-trained
baseline to the PPNMT model also supports this: just using different surface-level
word choices does not meaningfully affect the semantic meanings of the translations
and does not give the model translation capability that it did not already possess.

7.3 Zero-shot formality adaptation

The proposed method has an edge in a zero-shot setting for formality adaptation.
This edge, however, is relatively small. Even at quite low few-shot settings with
20 training instances, fine-tuning starts outperforming PPNMT in terms of domain
accuracy.

The fine-tuned model adapts first to the inherent domain that is present in the
CoCoA-MT dataset, namely, spoken dialogue (which is common to all three of the
included subdomains of telephony, call centre and topical chat), since the BLEU
score, chrF and BERTScore improve on that of the proposed method before the
actual formality accuracy. This is likely because the bag-of-words attribute model
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captures a very narrow and focused type of domain compared to the fine-tuning pro-
cedure, which is good at capturing all patterns in the data, including ones unrelated
to formality.

However, even if this adaptation to the inherent domain is ignored, fine-tuning
achieves much better domain accuracy with only a few examples. The proposed
method’s main advantage is that the model did not need to be fine-tuned, saving
the space that storing domain-specific versions of the model would require.

7.4 Qualitative Analysis

Despite the simplicity of the bag-of-word models, quite sophisticated adaptation is
achieved in some translations. Dathathri et al. (2020) already note that the bag-
of-word attribute models also push the model to generate words related to words
in the bag, not just the terms contained within it. The same effect is also seen in
machine translation. In the zero-shot setting, even with a bag-of-words as simple as
”Sie” (as the positive bag-of-words) and ”du” (as the negative bag-of-words), the
model correctly translates other inflections of these pronouns, as can be seen in table
6, with the model correctly translating the possessive pronoun. Since none of the
words in the sentence and the bag-of-words share tokens, the model must have been
pushed indirectly.

Source: Who is your favorite Baseball team?

Unadapted: Wer ist dein Lieblings-Baseball-Team?

PPNMT: Wer ist Ihr Lieblings-Baseball-Team?

Table 6: ”dein” is changed to ”Ihr”, despite the bag-of-words containing neither
”dein” nor ”Ihr”

The instances in the CoCoA-MT dataset focus only on changing the formality
through pronouns (and the resulting grammar changes), and there are no instances
where the root verb is changed. This is a result of the way the dataset was created.
However, formality is more than just using the formal or informal pronouns. Different
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verbs can mean the same thing but have slightly different formalities, e.g. more
indirect and passive verbs tend to be more formal than their direct counterparts.
In table 7 and table 8, two examples are shown where the PPNMT method also
changes the verb into a more passive version, whereas the fine-tuned baseline only
changes the pronoun.

Source: Now, it’s easier to get your money back, but back then it was a
whole big thing and you know.

Unadapted: Es ist einfacher, dein Geld zurückzuholen, aber damals war es eine
große Sache und du weißt schon.

PPNMT: Es ist einfacher, Ihr Geld zurück zu bekommen, aber damals war
es eine große Sache und Sie wissen schon

Fine-tuned: Also, es ist einfacher, Ihr Geld zurückzuholen, aber damals war es
eine ganz große Sache und wissen Sie,

Table 7: The more active ”zurückzuholen” (take back) is replaced by a more polite
passive ”zurück zu bekommen” (receive back). The fine-tuned baseline only changes
the pronoun.

Source: What do I like about my work?

Unadapted: Was mag ich an meiner Arbeit?

PPNMT: Was gefällt mir an meiner Arbeit?

Fine-tuned: Was mag ich an meiner Arbeit?

Table 8: The more passive ”gefällt mir” (is appealing to me) is used instead of the
more active ”mag ich” (I like), which is slightly more formal. The fine-tuned baseline
does not make such a change.

These cases, however, are the exception rather than the rule. The fine-tuned
baseline performs admirably when it comes to using the correct pronouns, whereas
the proposed method sometimes fails to change the sentence at all from an informal
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translation. This could be a question of adjusting the hyperparameters. However,
it is also possible to push too far in some instances and make the model output
nonsense.

7.5 Controllability of the Method

Many hyperparameters may be adjusted to change how hard the model is pushed
toward a domain, such as the step size or iteration count and the weighting for post-
norm fusion. Despite this, it is hard to tune the method. If the perturbations are too
weak, the translations often remain unchanged. However, if the perturbations are
too strong, the quality suddenly degrades, and the output becomes repetitive. Due
to the categorical nature of text (either a word is translated one way or another),
finding a good middle ground is challenging, and it may be impossible to have a
one-size-fits-all solution.

Some things might be done to mitigate this. With a good domain classifier, the
step size might be dynamically increased until some threshold is reached and the
domain changes. Furthermore, if repetition is detected, the step size might be tuned
back and the translation retried.
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8 Conclusion and Future Work

This section summarizes the key insights from this thesis.

In summary, the proposed method can only channel knowledge that the model
already has (because, unlike fine-tuning, it does not expose the model to any new
unseen examples). This means that it would be expected to perform much better at
adapting to linguistic aspects (formality, gender, and so on) since a model trained
on a sufficiently large corpus would necessarily have seen many examples of different
formality and different gendered inflections. This is observed for formality and on a
smaller scale for gender.

This could be extrapolated to say that a large enough model has seen enough
instances from different intrinsic domains, so a larger and better English-Chinese
translation model might work better with the proposed method. However, with the
used model, PPNMT only introduces noise and hurts performance.

While this method is reasonably good in a zero-shot setting, fine-tuning starts
outperforming it with very few training instances. Despite this, the proposed method
with formality adaptation shows some interesting emergent behaviour, sometimes
changing the translation’s formality on a deeper level that goes beyond pronouns.

Lastly, despite all the levers it gives the user to control the perturbation process,
it is not easy to tune this method for translation. In the text-generation task, the
model has a lot more time to be pushed towards a specific domain slowly. How-
ever, for translation (especially when translating individual sentences at a time),
the model needs to get there much faster and be pushed more strongly.

Research questions Four research questions were put forward in this thesis. They
will be restated and answered here.

• Can the proposed plug-and-play method improve machine transla-
tion output on specific domains?

The results indicate that the answer to this is yes, PPNMT can improve in-
domain performance over the pre-trained model, as was shown for formality.
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• How does the performance of this kind of plug-and-play domain
adaptation method compare to traditional fine-tuning methods?

Traditional fine-tuning significantly outperforms the proposed method in terms
of raw performance.

• How does this method compare to fine-tuning when dealing with
complex topic domains like technical literature?

The proposed method does not seem suitable for complex topic domains, at
least for the dataset and model used, whereas fine-tuning shows some moderate
improvements.

• How does it compare to fine-tuning in low-data settings?

The zero-shot performance is one of the few aspects where PPNMT has an
advantage, allowing even a very simple manually constructed domain model
to show some improvement over the baseline.

Future work In future work, it would be useful to consolidate the method by
reducing the number of hyperparameters to a smaller set and doing a more thor-
ough hyperparameter search. Secondly, it would be interesting to investigate this
method on larger and better translation models to see if the assumption that the
method only channels what the model already knows holds. This could be tested by
fine-tuning a model on multiple domains and then applying PPNMT on the same
domains plus a similar unseen domain. Lastly, only bag-of-words attribute models
were considered. It would be interesting to see how well this method performs with
small neural networks as domain classifiers. It is possible that this approach would
improve performance in domains that are not easy to capture with keywords.
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A Domain-Specific Bags-of-Words

This appendix contains the bags-of-words that were used for the experiments.

A.1 Formality

The formality experiments used a contrastive method to identify a set of 30 formal
and 30 informal tokens which were used as the positive and negative bags.

Formal German : [”Ihr”, ”Ihnen”, ”wissen”, ”haben”, ”Haben”, ”Ihrem”, ”Ihren”,
”Ihrer”, ”sich”, ”müssen”, ”sind”, ”n”, ”können”, ”Möge”, ”denken”, ”würden”,
”könnten”, ”mögen”, ”sollten”, ”Wissen”, ”Ihres”, ”kaufen”, ”en”, ”schauen”, ”wer-
den”, ”brauchen”, ”waren”, ”wollen”, ”lassen”, ”benutzen”]

Informal German : [”du”, ”deine”, ”dein”, ”st”, ”dir”, ”weißt”, ”hast”, ”Du”,
”deinem”, ”Hast”, ”dich”, ”deinen”, ”deiner”, ”musst”, ”bist”, ”kannst”, ”Mag”,
”denkst”, ”würdest”, ”könntest”, ”magst”, ”solltest”, ”Hab”, ”Weißt”, ”deines”, ”kauf”,
”schau”, ”brauchst”, ”warst”, ”willst”]

Formal Italian :[”Lei”, ”sua”, ”suoi”, ”può”, ”Le”, ”deve”, ”è”, ”rsi”, ”sue”,
”vuole”, ”potrebbe”, ”r”, ”La”, ”È”, ”rebbe”, ”va”, ”dice”, ”La”, ”sé”, ”conosce”,
”vada”, ”Mi”, ”tras”, ”corre”, ”rà”, ”lo”, ”lasci”, ”potesse”, ”capisce”, ”ricorda”]

Informal Italian : [”tuo”, ”tua”, ”tu”, ”tuoi”, ”te”, ”ti”, ”o”, ”pu”, ”de”, ”rti”,
”Ti”, ”sti”, ”sei”, ”Tu”, ”vuoi”, ”tue”, ”rai”, ”Se”, ”potre”, ”sci”, ”ci”, ”po”, ”ri”,
”tene”, ”mi”, ”tra”, ”sco”, ”rri”, ”mmi”, ”dai”]

Formal Spanish : [”le”, ”tiene”, ”se”, ”ha”, ”puede”, ”Le”, ”se”, ”Ha”, ”piensa”,
”quiere”, ”Su”, ”tenga”, ”compra”, ”está”, ”Cree”, ”va”, ”era”, ”debe”, ”ve”, ”Usted”,
”Sabe”, ”Tiene”, ”Cu”, ”podría”, ”Se”, ”necesita”, ”suyo”, ”entiende”, ”quedarse”,
”Podría”]
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Informal Spanish :[”tu”, ”s”, ”sabes”, ”te”, ”tus”, ”tú”, ”tienes”, ”Te”, ”has”,
”contigo”, ”puedes”, ”ti”, ”Has”, ”ste”, ”piensas”, ”quieres”, ”Tu”, ”tengas”, ”com-
pras”, ”estás”, ”Crees”, ”vas”, ”eras”, ”tuyo”, ”debes”, ”ves”, ”Tú”, ”Sabes”, ”Tienes”,
”podrías”]

Formal French : [”vous”, ”votre”, ”vous”, ”avez”, ”vos”, ”Vous”, ”Avez”, ”voyez”,
”savez”, ”pensez”, ”pouvez”, ”z”, ”iez”, ”ez”, ”aimez”, ”devez”, ”faites”, ”passez”,
”vôtre”, ”Votre”, ”êtes”, ”voulez”, ”étiez”, ”allez”, ”Profitez”, ”devriez”, ”pourriez”,
”A”, ”im”, ”Êtes”]

Informal French :[”tu”, ”ton”, ”tu”, ”ta”, ”toi”, ”tes”, ”Tu”, ”As”, ”vois”, ”te”,
”penses”, ”t”, ”peux”, ”aimes”, ”dois”, ”fais”, ”ais”, ”passe”, ”es”, ”e”, ”veux”,
”étais”, ”vas”, ”Profit”, ”devrais”, ”Ta”, ”pourrais”, ”Ai”, ”mes”, ”Es”]

Formal Hindi : [”आपको”, ”हैं”, ”आपका”, ”आपक ”, ”आपने”, ”आपसे”, ”जाइए”,
”करें”, ”करेंगे”, ”दें”, ”डालें”, ”लें”, ”बताइए”, ”रहें”, ”च लए”, ” ज”, ”एँ”, ”सोचें”, ”सु-
िनए”, ”क जए”, ”आज़माएँ”, ”होंगे”, ”रुकें ”, ”रुिकए”, ”पाएँगे”, ”जोड़ें”, ”बताएँ”, ”जाएँ”,
”करवाए”, ”रखें”]

Informal Hindi : [”तुम्हें”, ”तुम”, ”हो”, ”तुम्हार”े, ”तुम्हारा”, ”तुम्हारी”, ”तुमने”, ”तु-
मसे”, ”करो”, ”जाओ”, ”बताओ”, ”करोगे”, ”दो”, ”डालो”, ”लो”, ”ओ”, ”चलो”, ”रुको”,
” जयो”, ”तुम्”, ”सोचो”, ”सुनो”, ”आज़मा”, ”रहो”, ”होगे”, ”हार”े, ”पाओगे”, ”जोड़ो”, ”हें”,
”करवा”]

A.2 Gender

Male Arabic : [ ”آسف”, ”سيدي”, ”متأكد”, ”كم” ,”سيد”, ”تعرف”, ”عزيزي”, ”أبي”, ”رجل”, ”واثق”,
”اسف”, ”أيها”, ”ذاهب”, ”قادم”, ”مسرور”, ”أسف” ,”ترى”, ”خائف”, ”تدعو”, ”أنظر”, ”فتى”, ”سعيدا”, ”تكون”,
”تظن”, ”تعتقد”, ”حبيبي”, ”جاد”, ”معجب”, ”انظر”, ”قلقا” ]
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Female Arabic : [ ”آسفة”, ”سعيدة”, ”سيدتي”, ”متأكدة”, ”كن”, ”يني” ,”سيدة”, ”أمي”, ”تعرفين”,
”عزيزتي”, ”امرأة”, ”واثقة”, ”فخورة”, ”أيتها”, ”ينني”, ”ذاهبة”, ”تعلمين”, ”مشغولة”, ”قادمة”, ”خائفة”, ”تكوني”,
”تدعي”, ”فتاة”, ”مسرورة”, ”محقة”, ”تظنين”, ”إله”, ”تريدين”, ”تري”, ”تعتقدين” ]

A.3 Fine-grained tech domains

There are four domains contained in the FGraDA dataset: autonomous vehicles,
AI education, real-time networks, and smartphone. For adapting to one of these
domains, its bag-of-words was used to push towards and the other bags-of-words
were used to push away from.

Autonomous vehicles : [”digital world”, ”human intervention”, ”human inter-
vention”, ”human intervention”, ”AIoT”, ”data flow”, ”life cycle analysis”, ”train-
ing data”, ”data science”, ”IDC”, ”environmental factors”, ”distributed factories”,
”data set”, ”fuel”, ”parameters”, ”lifespan”, ”lidar”, ”automotive”, ”anti-shock vi-
bration”, ”electromagnetic interference”, ”high-resolution”, ”vehicle-sharing”, ”de-
tection distance”, ”laser”, ”silicon-based”, ”low-resolution”, ”four-line”, ”function-
alities”, ”adaptive”, ”resolution”, ”target detection”, ”free space detection”, ”tar-
get classification”, ”localization”, ”vertical field”, ”automatic driving”, ”lane signs”,
”tires”, ”vehicle”, ”ultra-high-resolution”, ”ranger”, ”valet parking”, ”IRT”, ”indus-
trial consortium”, ”accuracy”, ”workflow”, ”intelligent system”, ”automated sys-
tems”, ”autonomy level”, ”knowledge base”, ”strain elements”, ”physical agent”,
”components”, ”architecture”, ”critical value”, ”verification method”, ”AI”, ”auto-
motive industry”, ”groceries”, ”traffic vulnerable groups”, ”emerging companies”,
”dynamic range”, ”signal”, ”car symbolize”, ”mobility services”, ”disengagement”,
”intersections”, ”suburban roads”, ”city roads”, ”identification”, ”modeling”, ”func-
tional safety”, ”processor”, ”label”, ”occupancy monitoring”, ”cab”, ”IR”, ”road
signal”, ”traffic lights”, ”solid-state lidar”, ”optical character recognition”, ”sili-
con”, ”service life”, ”automated”, ”operating temperature”, ”reflectance”, ”reflec-
tive”, ”stability”, ”radar”, ”navigation”, ”transportation”, ”interconnection”, ”user
interface”, ”data gateway”, ”sustainable development”, ”standardization”, ”image
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recognition”, ”frameworks”, ”edge computing”, ”energy consumption”, ”IM”, ”man-
ufacturing”, ”manufacturing industry”, ”NGIT”, ”intelligence”, ”assembly line”,
”riveting”, ”interconnection”, ”digital manufacturing”, ”digital infrastructures”, ”in-
vehicle system”, ”brands”, ”collaborative system”, ”millimeter wave radar”, ”do-
main controller”, ”monocular”, ”binocular”, ”redundancy”, ”steering gear”, ”brake”,
”brake”, ”change lanes”, ”computing power”, ”field of view angle”, ”high-precision”,
”inertial navigation”, ”steering”, ”mass production”, ”lane”, ”vehicle-regulation”,
”in-vehicle”, ”navigation”, ”instrument”, ”feedback”, ”noise reduction”, ”lane keep-
ing”, ”multi-sensor”, ”deep learning”, ”computer vision”, ”positioning”, ”wheel speedome-
ter”, ”path”, ”heavy trucks”, ”full load”, ”empty load”, ”orientation”, ”ramp”, ”road
condition”, ”viaduct”, ”cross-validation”, ”real-time”, ”sharp turn”, ”climbing”, ”de-
tection distance”, ”optical flow method”, ”dynamics”, ”simulation”, ”GPS”, ”Li-
DAR”, ”QR code”, ”traffic accident”, ”traffic signal”, ”traffic jam”, ”traffic con-
gestion”, ”traffic data”, ”traffic police”, ”AI”, ”artificial intelligence”, ”face recog-
nition”, ”sensor”, ”sensor fusion”, ”travel efficiency”, ”prototype”, ”OEM”, ”LED”,
”big data”, ”navigator”, ”IMU”, ”steering wheel”, ”unmanned vehicle”, ”unmanned”,
”radio”, ”intelligent transportation”, ”agent”, ”intelligent robot”, ”smart car”, ”in-
telligent facility”, ”intelligent vehicle linkage”, ”intelligent driving”, ”machine learn-
ing”, ”millimeter-wave radar”, ”automotive manufacturing”, ”laser sensor”, ”Li-
DAR”, ”point cloud”, ”IoT”, ”environmental perception”, ”ecosystem”, ”neural net-
work”, ”algorithm”, ”emergency braking”, ”infrared”, ”traffic light”, ”autonomous
system”, ”automatic parking”, ”automation”, ”automatic lane change”, ”self-driving”,
”autonomous driving”, ”autopilot”, ”autonomous vehicle”, ”self-organization”, ”pedes-
trian detection”, ”video frame”, ”ultrasonic radar”, ”path planning”, ”Internet of
vehicles”, ”ESP”, ”automotive operating system”, ”vehicle active system”, ”vehi-
cle control system”, ”vehicle inspection”, ”lane keeping”, ”lane departure”, ”lane
coordination”, ”lane detection”, ”assisted keeping”, ”assisted driving”, ”edge de-
vice”, ”road signal”, ”road condition”, ”road boundary detection”, ”cluster”, ”vali-
dation technology”, ”high resolution”, ”high-precision map”, ”highway”, ”L1”, ”L2”,
”L3”, ”L4”, ”L5”, ”intelligent manufacturing”, ”camera”, ”complexity”, ”Industry
4.0”, ”software”, ”hardware”, ”digitalization”, ”intelligentization”, ”pixel”, ”robot”,
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”chip”, ”semiconductor”, ”manufacturer”, ”patent”, ”electric vehicle”, ”embedded”,
”engine”, ”online car-hailing”, ”circuit board”, ”V2X”, ”DSP”, ”laser rangefinder”,
”cruise control”, ”phased array”, ”bumper”, ”grille”, ”rearview mirror”, ”produc-
tion line”, ”visualization”, ”LTE”, ”mapping”, ”electromagnetic interference”, ”laser
beam”]

AI education : [”robotics”, ”robots”, ”computer”, ”scores”, ”Carnegie”, ”go”,
”conversational systems”, ”education systems”, ”electroencephalography”, ”electrodes”,
”voltage”, ”Virtual reality”, ”granularity”, ”adaptivity”, ”consistency”, ”deferred”,
”humanistic system”, ”hidden layer”, ”vector”, ”frame frequency”, ”adaptability”,
”slide”, ”mutually reinforcing”, ”interrelationships”, ”meta-intelligence”, ”self-motivation”,
”refine”, ”CCTV”, ”dial-up internet”, ”synchronization”, ”interpersonal interaction”,
”metacognition”, ”old-fashioned”, ”decision-making”, ”principal component analy-
sis”, ”linear regression”, ”trainees”, ”mode”, ”multi-modal”, ”data flows”, ”metacog-
nitive”, ”meta-knowledge”, ”meta-subjective”, ”self-regulated learning”, ”learning
science”, ”self-regulation”, ”cognitive ability”, ”virtuous circle”, ”panel discussion”,
”interdisciplinary”, ”non-computer science”, ”dual-degree”, ”hands-on courses”, ”per-
sonalized”, ”meta-concepts”, ”IP issues”, ”automation”, ”knowledge-driven”, ”triple
AI”, ”Moore’s law”, ”going in circles”, ”scalable”, ”scalability”, ”unicorn”, ”au-
tonomous driving”, ”on-demand”, ”blockchain”, ”knowledge portfolio”, ”multidis-
ciplinary”, ”institutional”, ”agnostic”, ”eye-tracking”, ”labor-intensive”, ”leader”,
”psychometric”, ”AI-driven”, ”sharp opinions”, ”white paper”, ”two sigma ques-
tion”, ”therapist”, ”short-circuiting”, ”hippocampus”, ”emoticons”, ”spreadsheets”,
”contextual”, ”ed tech”, ”knowledge point”, ”redesign”, ”composition”, ”multiplier
effects”, ”transformative”, ”autism”, ”substrate”, ”dyad”, ”fine grained”, ”gaze”,
”prosody”, ”credibility”, ”galvanic skin response”, ”word quest”, ”intervention”,
”steering committee”, ”board”, ”Tic Tac Toe Board”, ”affective computing”, ”emo-
tional computing”, ”maker movement”, ”ontology level”, ”offload”, ”quick learner”,
”study slacker”, ”nanoscale”, ”crazy”, ”determine knowledge”, ”Pythagorean theo-
rem”, ”hedge fund”, ”discipline literacy”, ”pan-education”, ”supply-side”, ”demand
side”, ”holographic”, ”principals”, ”externalization”, ”outflow”, ”win-win”, ”digi-
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tal image”, ”parent-child happiness”, ”proverb”, ”unstructured”, ”association anal-
ysis”, ”myopia”, ”cognitive load”, ”teaching oriented”, ”one variable quadratic equa-
tion”, ”customer acquisition cost”, ”curriculum counseling center”, ”M & A”, ”life-
long”, ”strikes a chord”, ”poor and humble families”, ”eagle dad”, ”architect”, ”com-
fort zone”, ”stress zone”, ”stretch zone”, ”personalized teaching”, ”personalized
education”, ”active learning”, ”cloud service platform”, ”Internet Plus”, ”artifi-
cial intelligence”, ”AI”, ”man-machine cooperation”, ”algebra”, ”geometry”, ”chem-
istry”, ”prototype”, ”vector representation”, ”online training”, ”online education”,
”big data”, ”learning efficiency”, ”learning objective”, ”learning trajectory”, ”learn-
ing situation analysis”, ”student interaction”, ”assign homework”, ”reinforcement
learning”, ”EQ”, ”MOOC”, ”TOEFL”, ”critical thinking”, ”instructor”, ”schedule
arrangement”, ”education industrial chain”, ”education model”, ”educational re-
sources”, ”digital education”, ”mathematics”, ”data mining”, ”data science”, ”IQ”,
”smart classroom”, ”intelligent evaluation”, ”intelligent question bank”, ”machine
learning”, ”machine marking”, ”campus guard”, ”campus management”, ”atten-
tion analysis”, ”deep learning”, ”physics”, ”knowledge map”, ”knowledge retrieval”,
”knowledge point”, ”neuroscience”, ”neural network”, ”personal teacher”, ”FAQ”,
”algorithm”, ”accurate matching”, ”essential-qualities-oriented education”, ”prac-
tice feedback”, ”programming”, ”network teaching”, ”online classes”, ”exam re-
sults”, ”chatbot”, ”EEG”, ”automatic grading”, ”automation”, ”self-efficacy”, ”self-
motivation”, ”natural language processing”, ”adaptive learning”, ”adaptive teach-
ing”, ”virtual teaching”, ”virtual reality”, ”VR”, ”virtual teacher”, ”visual track-
ing”, ”problem solving”, ”computer vision”, ”speech recognition”, ”classroom teach-
ing”, ”curriculum”, ”tutoring”, ”causes of mistakes”, ”domain model”, ”higher ed-
ucation”, ”sigma”, ”university”, ”concept”, ”science”, ”professor”, ”subject”, ”accu-
racy”, ”database”, ”questions and answers”, ”PE”, ”educator”, ”simultaneous inter-
pretation”, ”humanity”, ”psychology”, ”sociology”, ”public school”, ”private school”,
”leadership”, ”economics”, ”training class”, ”final exam”, ”human-computer interac-
tion”, ”science experiment”, ”doctor”, ”preschool”, ”knowledge base”, ”learning ma-
terial”, ”dual degree”, ”undergraduate”, ”postgraduate”, ”logical thinking”, ”contin-
uing education”, ”professional training”, ”lesson plan”, ”Chinese”, ”kindergarten”,
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”do exercise”, ”teach students in accordance with their aptitude”, ”textbook”, ”K-
12”]

Real-time networks : [”real time communication”, ”Smart speakers”, ”embed-
ded”, ”AR”, ”VR”, ”sale force”, ”human resources”, ”workflow”, ”partnership”,
”RTC”, ”WebRTC”, ”world wide web”, ”html”, ”web payment”, ”augmented real-
ity”, ”peer to peer connection”, ”nickname”, ”transmission”, ”transit”, ”data chan-
nel”, ”VP eight”, ”ht 64”, ”codex”, ”encryption”, ”encrypted”, ”use cases”, ”specifi-
cation”, ”captioning”, ”status”, ”token”, ”APP”, ”blocking”, ”monetization”, ”gamer”,
”communication stack”, ”session”, ”server”, ”misconfiguration”, ”turn”, ”turn”, ”dealer”,
”UCP”, ”DCP”, ”monitor”, ”signaling”, ”production-based”, ”cellular network”,
”applications”, ”logic of the signaling”, ”security patches”, ”WIFI”, ”IP”, ”log-
ging”, ”use cases”, ”SMS”, ”API”, ”spinning bikes”, ”delay”, ”GitHub”, ”AV1”,
”5G”, ”SIM”, ”URLC”, ”live stream”, ”live broadcast”, ”frame”, ”influencer mar-
keting”, ”live booth”, ”immersion”, ”medium-intensity”, ”complaint rate”, ”renewal
rate”, ”ultra-low latency”, ”tone quality”, ”cooperation of experts and teachers”,
”full-stack”, ”GDPR”, ”fraudulent”, ”damage assessment”, ”industrial compliance”,
”retention rate”, ”stuttering”, ”router”, ”architects”, ”perceptual coding”, ”reso-
lution”, ”image enhancement”, ”Topology”, ”Generative Adversarial Nets”, ”noise
reduction”, ”downlink”, ”ROI”, ”style conversion”, ”segmentation”, ”emotional com-
puting”, ”translation”, ”left-behind children”, ”defense”, ”CPU”, ”GPU”, ”NPU”,
”SDRTN”, ”super resolution algorithm”, ”residual”, ”multiscale”, ”discriminator”,
”gradient-based”, ”regularization”, ”p-relu”, ”convolution”, ”visual aid system”, ”in-
put method”, ”multi-modal”, ”emoji”, ”media convergence”, ”C-terminal”, ”an-
chor”, ”overseas returnee”, ”architecture”, ”near-field”, ”far field”, ”interference”,
”reverberation”, ”recording pen”, ”simultaneous interpretation”, ”retrieval”, ”se-
mantic”, ”TTS”, ”roundtable forum”, ”terminal”, ”product capability”, ”flow”, ”VC”,
”graphic and character community”, ”monetization rate”, ”portal”, ”internet celebrity”,
”web celebrity”, ”bilateral verification”, ”zone log”, ”fault tolerance”, ”usage path”,
”cycle time”, ”Lao Tie”, ”inclusiveness”, ”network effect”, ”ecommerce”, ”e-commerce”,
”data traffic”, ”5G”, ”H264”, ”IP address”, ”TCP”, ”UDP”, ”WebAssembly”, ”We-
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bRTC”, ”WebSocket”, ”packet loss”, ”middleware”, ”QR code”, ”cloud game”, ”in-
ternet”, ”artificial intelligence”, ”AI”, ”human-computer interaction”, ”transport
protocol”, ”transport layer”, ”signal”, ”information flow”, ”channel”, ”shared mem-
ory”, ”compatibility”, ”content creation”, ”function library”, ”instant messaging”,
”handle”, ”mukbang”, ”throughput”, ”AR”, ”multimodal”, ”media resource”, ”real-
time interaction”, ”real-time application”, ”real-time data”, ”real-time communica-
tion”, ”P2P connection”, ”bandwidth”, ”concurrent”, ”latency”, ”congestion”, ”in-
terface”, ”operating system”, ”log”, ”smart speaker”, ”module”, ”streaming media”,
”traffic”, ”browser”, ”deep learning”, ”IoT”, ”picture quality”, ”live streaming”,
”short video”, ”social game”, ”social network”, ”mobile communication”, ”port”,
”algorithm”, ”cache”, ”encode”, ”gateway”, ”online celebrity”, ”NAT”, ”network ap-
plication”, ”network connection”, ”WebRTC”, ”Internet telephony”, ”VR”, ”virtual
reality”, ”virtual gift”, ”video conference”, ”video coding”, ”video communication”,
”decode”, ”ASR”, ”call”, ”super resolution”, ”configuration”, ”firewall”, ”thread”,
”process”, ”SDK”, ”texture”, ”cross-platform”, ”interface”, ”e-commerce”, ”com-
pile”, ”window”, ”extension”, ”plug-in”, ”bit rate”, ”WiFi”, ”link”, ”WebView”,
”monitor”, ”Android”, ”iOS”, ”transcode”, ”hard decoding”, ”soft decoding”, ”APP”,
”search engine”, ”broadcast”, ”machine code”, ”runtime”, ”screen recording”, ”unin-
stall”, ”operation and maintenance”, ”DLL”, ”WWW”, ”container”, ”key”, ”agent”,
”compression ratio”, ”interpolation”, ”source code”, ”registry”, ”Linux”, ”users”,
”status”, ”internet celebrity”, ”social”, ”mislead”, ”startups”, ”circle”, ”content-
production”, ”media”, ”work flow”, ”collaboration”, ”recommendation system”, ”in-
terest exploration”, ”audio and video”, ”trans-platform”, ”framework”, ”mixture
stack”, ”preview”, ”beauty”, ”handler”, ”engine”, ”main thread”, ”across platforms”,
”cross-terminal”, ”cross-platform”, ”online”, ”shooting”, ”screenshot”, ”front end”,
”client”, ”server”, ”evolution”, ”preloaded”, ”standard”, ”exclusive”, ”time delay”,
”latency”, ”lapse”, ”server”, ”small program”, ”third-party”, ”downlink”, ”mobile
terminal”, ”mobile”, ”routing”, ”render”, ”transmission”, ”coverage”, ”weak net-
work”, ”congestion”, ”feedback”, ”network fluctuations”, ”uplink”, ”live show”, ”cus-
tomer service”, ”softphones”, ”application”, ”app”, ”extension”, ”systemic sourc-
ing”, ”backstage”, ”subprocesses”, ”master process”, ”main process”, ”automatic
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upgrade”, ”child window”, ”initialize”, ”message listening”, ”unvarnished transmis-
sion”, ”header file”, ”global”, ”instruction”, ”executable file”, ”integrity”, ”symbol
file”, ”call”, ”low-level”, ”traffic”, ”three-way call”, ”API”, ”cursor”, ”constraint”,
”capture”, ”request”, ”message box”, ”point-to-point”, ”signaling”, ”cluster”, ”de-
ployment”, ”end-to-end”, ”monitor”, ”open source”]

Smartphone : [”resolutions”, ”interfaces”, ”neural network”, ”processing unit”,
”codec”, ”60fps”, ”installation-free”, ”alliance”, ”end side”, ”intelligentization”, ”mid-
dleware”, ”kernel”, ”scheduling mechanism”, ”database”, ”communication mecha-
nism”, ”fragments”, ”stack”, ”I/O”, ”io”, ”virtual machine”, ”tatic compilation”,
”lagging”, ”ecology”, ”underlying”, ”scheduling”, ”power consumption”, ”perfor-
mance”, ”case”, ”hypnotic”, ”water face”, ”haptic”, ”speaker”, ”microphone”, ”ce-
ramic”, ”sapphire”, ”Radio waves”, ”dual-core”, ”fall detection”, ”cellular”, ”altime-
ter”, ”battery life”, ”electrocardiogram”, ”electrodes”, ”music streaming”, ”wide
color”, ”flyovers”, ”split view”, ”touch-sensitive layer”, ”touch-sensitive layer”, ”stereo
field”, ”infrared camera”, ”flood illuminator”, ”proximity sensor”, ”ambient light
sensor”, ”dot projector”, ”facial authentication”, ”fusion system”, ”graphics perfor-
mance”, ”single processor”, ”portrait segmentation”, ”shortcut”, ”render”, ”dual-
camera system”, ”wide camera”, ”optical image stabilization”, ”aperture”, ”lens”,
”exposure”, ”white balance”, ”sets the focus”, ”highlights”, ”panorama”, ”masks”,
”shutter lag”, ”buffer”, ”interframes”, ”bokeh”, ”full-frame”, ”depth”, ”battery life”,
”bands”, ”roaming”, ”cellular”, ”carrier”, ”HD”, ”biogas”, ”biogas fuel cells”, ”LCD”,
”engineering”, ”pixel masking”, ”anti-aliasing”, ”track pad”, ”powerhouse”, ”single
camera system”, ”aperture”, ”tone”, ”background blur”, ”megapixel”, ”arsenic-free”,
”beryllium”, ”structural bands”, ”structural aluminum band”, ”widened”, ”versa-
tile”, ”precision-machined”, ”anodized”, ”machine learning”, ”immersive”, ”finishes”,
”encrypted”, ”fall detection”, ”cellular”, ”band”, ”sport loop”, ”reflective yarn”,
”surgical-grade”, ”chlorinated water”, ”biometric”, ”terabyte”, ”gaming console”,
”Autofocus”, ”auto exposure”, ”aerospace grade”, ”trailers”, ”sneak peeks”, ”desk-
top class browsing”, ”SD”, ”thumb drive”, ”screenshot”, ”always on”, ”polysilicon”,
”complication”, ”titanium”, ”watch face”, ”print”, ”wide camera”, ”ultra-wide cam-
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era”, ”semantic rendering”, ”multiscale”, ”stereoscopic depth”, ”studio”, ”resolu-
tion”, ”zoom wheel”, ”time lapse”, ”quick video”, ”PVD”, ”matte”, ”pro”, ”panel”,
”haptic touch”, ”nits”, ”matrix multiplication”, ”AR”, ”people occlusion”, ”voltage
domains”, ”clock gating domains”, ”fused combination”, ”cinematographer”, ”cali-
brating for color”, ”Telephoto”, ”pro”, ”WiFi”, ”bluetooth”, ”buttery life”, ”cellular
network”, ”wireless”, ”LTE”, ”mobile payment”, ”touchscreen”, ”finger-operated”,
”keyboard”, ”app store”, ”third-party software”, ”digital camera”, ”4k resolution”,
”1080p”, ”facial scanning”, ”Face ID”, ”iPhone”, ”Huawei”, ”Motorola”, ”wireless
charging”, ”water resistant”, ”MicroSD”, ”USB-C”, ”OLED”, ”Samsung Galaxy”,
”waterproof”, ”fingerprint”, ”facial recognition”, ”chip”, ”battery charger”, ”HDR”,
”text messaging”, ”iOS”, ”Android”, ”web browser”, ”cloud storage”, ”smartphone”,
”Nokia”, ”BlackBerry”, ”Leica”, ”triple camera”, ”dual camera”, ”Ultra Wide An-
gle”, ”lens”, ”Kirin”, ”exposure”, ”Curved screen”, ”slow-motion”, ”bokeh”, ”pixel”,
”zoom”, ”distortion”, ”fps”, ”reverse charge”, ”fast charging”, ”mA”, ”plug”, ”front
camera”, ”selfie”, ”LCD”, ”brightness”, ”time-lapse photography”, ”auto focus”,
”anti-shake”, ”delay”, ”film”, ”fingerprint unlock”, ”QR code”, ”app”, ”widget”,
”horizontal screens”, ”vertical screens”, ”SDK”, ”interface”, ”NPU”, ”GPU”, ”CPU”,
”open source”, ”lag”, ”memory”, ”UI”, ”vertical axis”, ”horizontal axis”, ”built-in”,
”volume”, ”watch face”, ”haptic”, ”linear motor”, ”flip”, ”speaker”, ”echo”, ”ce-
ramic”, ”sapphire”, ”in package”, ”dual-core”, ”accelerometer”, ”gyroscope”, ”ECG”,
”altimeter”, ”wearable”, ”stereo”, ”infrared”, ”flood illuminator”, ”transistor”, ”stor-
age”, ”ISP”, ”optical”, ”white balance”, ”shutter”, ”SIM”, ”scroll”, ”PVC”, ”low-
carbon”, ”panorama”, ”diagonal”, ”gigabyte”, ”go dark”, ”aluminum”, ”stainless
steel”, ”cropping”, ”scaling”, ”IC”]
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