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S1 STATE OF THE ART: MATHEMATICAL MODEL OF THE PITUITARY-THYROID
FEEDBACK LOOP

As mentioned in the main part of the paper, we want to present in detail the state of the art of the applied
mathematical model of the pituitary-thyroid feedback loop. The block diagram of the mathematical model
is illustrated in Figure 1.

First, a closer look is taken on the thyroid, which is represented by the grey block in the bottom left
corner. In this block, one sees that the T4 synthesis (bottom left corner of the “Thyroid” block) depends
on TSH , the damping constant of TSH at the thyroid gland (DT ), the maximal secretory capacity of
the thyroid gland (GT ) and the substrate concentrations of thyroglobulin (KT ) and iodide (KI). The T4
synthesis is modeled by means of the well known Michaelis-Menten kinetics. The underlying physiological
process of the T4 synthesis is of course much more complicated, since it additionally depends on, e.g.,
the activity of the thyroid peroxidase and sodium/iodide symporter. Nevertheless, a simplification of the
underlying physiologic process is necessary in order to keep the model compact.

In the right-hand side of the T4 synthesis block, dilution (denoted by αth) and clearance (denoted by βth)
of T4 in thyroid cells take place. Next, the concentration of T4,th is depicted, denoting the T4 concentration
in thyroid cells. One part of T4,th is directly transported out of thyroid cells. Here, we denote the maximal
activity and the Michaelis-Menten constant of this transport process by GMT and KMT , respectively. The
production of T3 in thyroid cells functions through two pathways (3). The first pathway is a conversion
of T4,th into T3 by means of 5’-deiodinase type I (D1) and 5’-deiodinase type II (D2). This process is
modeled via the maximal activities of D1 (GD1), of D2 (GD2) and the dissociation constants KM1, KM2,
respectively. The second path is a direct synthesis of T3 in thyroid cells, a process, again depending on
the concentration of TSH , DT and, additionally, the maximal activity of the T3 synthesis path (GT3). In
order to account for diffusion related delays, we incorporate a dead time (τ03P ) concerning the T3 that is
produced in thyroid cells.
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Figure 1. Block diagram of the pituitary-thyroid feedback loop including membrane transporters, extended
from (1, 2, 3).

The entrance of T4 in the blood stream is modeled as first order lag element, taking into account dilution
(αT ) and clearance (βT ) of T4. Furthermore, a dead time (τ0T ) is consider to account for diffusion processes.
Additionally, the time constant of the first order lag element (τ1T ) is explicitly shown.

Only a small fraction of T4 is available as FT4, since most of it is bound to plasma binding proteins. This
phenomenon is taken into account by considering the concentrations of thyroxine-binding globulin (TBG),
transthyretin (TBPA), and their dissociation constants (K41/K42) as displayed in the bottom right corner.

The peripheral production of T3 can be seen in the middle of Figure 1. The periphery summarizes
the net effects of peripheral organs like the liver or the kidney. This means that we do not explicitly
consider the liver and the kidney in the model. We rather summarize their net effects in the periphery.
An explicit representation would certainly be helpful in several ways, e.g., to investigate whether the low
T4 concentrations of AHDS patients can be explained by an accumulation of T4 in the kidney. However,
an explicit representation would go along with new parameters for which numerical values are needed
and new states that must be considered. This renders the model even more complex and induces more
uncertainty, because the parameters would not necessarily be uniquely identifiable.
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In these peripheral organs, D1 and D2 convert FT4 into FT3, a process which is again modeled by means
of a Michaelis-Menten kinetics with GD1, GD2, KM1 and KM2. This peripheral production is finalized by
considering a first-order lag element, taking into account dilution (α31) and clearance (β31). The binding of
T3 to TBG and the respective dissociation constant (K41) are also visible.

The production of T3 in the pituitary is considered explicitly in the top right-hand corner of Figure 1. It
depends on the maximal activity of D2 (GD2), the respective dissociation constant (KM2), the dilution
(α32), the clearance factor (β32) and the dead time (τ3Z). The central T3 (T3z) mainly serves as a feedback
signal to the pituitary.

Inside the pituitary, which is illustrated in the top of the scheme, many different processes take place. One
part of the T3z binds to the intracellular-binding-substrate (IBS), which does not serve as a feedback signal.
The damping constant DR models the fact that T3 must bind to specific thyroid hormone receptors in order
to influence the concentration of TSH . The remaining constants (GR and LS) stand for the maximum gain
of the pituitary receptors in relation to thyroid hormones and a breaking constant, respectively.

Furthermore, the influence of TRH is illustrated in the top of Figure 1. The receptors for TRH at the
pituitary are taken into account with a damping constant (DH). The ultra-short feedback loop of TSH
on its own secretion (compare (2)) is considered with the respective dilution (αS2) and clearance (βS2)
factors. The maximum secretory capacity of the pituitary (GH) is shown. The entrance of TSH into the
bloodstream is modeled with a first order lag element, with dilution (αS) and clearance (βS).

After having derived the relationships between the different hormone concentrations, one must find the
numerical values of all introduced parameters. The parameter values used within this work are listed in
Section S9 below. Ideally, we would like to use only human parameters. However, this is not possible for
all parameters, consider, e.g., the damping constant of TRH at the pituitary DH , which is not measurable
in humans. Therefore, we partially exploit experimentally determined murine numerical parameter values.
This results in a model which contains human and murine numerical parameter values. Nevertheless, this
approach is meaningful for two reasons: first, there will always be a variation in the exact numerical
parameters even for humans only. Second, when applying the mathematical model, we pursue the objective
to get insight about the mechanisms of the AHDS, which is also possible when using murine and human
numerical parameter values jointly. This is the case since (slightly) different parameter values lead to the
same qualitative behavior of hormone concentrations in our model (compare also the sensitivity analysis in
(3)).

S2 STATE TRANSFORMATION

Before stating the formal problem of the constrained parameter optimization for healthy individuals and
AHDS patients in Sections S3 and S4, respectively, it is useful to introduce the system’s differential
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equations for the Michaelis-Menten modeling of the membrane transporters

dT4,th
dt

(t) =αth

(
GT

TSH(t)

TSH(t) +DT
−GMT

T4,th(t)

KMT + T4,th(t)
−GD1

T4,th(t)
TSH(t)

TSH(t)+kDio

T4,th(t)
TSH(t)

TSH(t)+kDio
+KM1

−GD2

T4,th(t)
TSH(t)

TSH(t)+kDio

T4,th(t)
TSH(t)

TSH(t)+kDio
+KM2

)
− βthT4,th(t) (S1)

dT4
dt

(t) =αTGMT
T4,th(t− τ0T )

KMT + T4,th(t− τ0T )
− βTT4(t) (S2)

dT3p
dt

(t) =α31

(
GD1

FT4(t)

FT4(t) +KM1
+GD2

FT4(t)

FT4(t) +KM2
+GT3

TSH(t− τ03P )

DT + TSH(t− τ03P )

+GD1

T4,th(t− τ03P )
TSH(t−τ03P )

TSH(t−τ03P )+kDio

T4,th(t− τ03P )
TSH(t−τ03P )

TSH(t−τ03P )+kDio
+KM1

+GD2

T4,th(t− τ03P )
TSH(t−τ03P )

TSH(t−τ03P )+kDio

T4,th(t− τ03P )
TSH(t)

TSH(t−τ03P )+kDio
+KM2

)
− β31T3p(t) (S3)

dT3c
dt

(t) =α32GD2
FT4(t− τ03Z)

FT4(t− τ03Z) +KM2
− β32T3c(t) (S4)

dTSH

dt
(t) =

αSGHTRH(t− τ0S)

(TRH(t− τ0S) +DH)(1 + SS
TSHz(t−τ0S)

TSHz(t−τ0S)+DS
)(1 + LSGR

T3N (t−τ0S)
T3N (t−τ0S)+DR

)

− βSTSH(t) (S5)

dTSHz

dt
(t) =

αS2GHTRH(t− τ0S2)

(TRH(t− τ0S2) +DH)(1 + SS
TSHz(t−τ0S2)

TSHz(t−τ0S2)+DS
)(1 + LSGR

T3N (t−τ0S2)
T3N (t−τ0S2)+DR

)

− βS2TSHz(t) (S6)

with the relationships
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FT3 = T3p
1

1 +K30TBG
(S7)

FT4 = T4
1

1 +K41TBG+K42TBPA
(S8)

T3N = T3c
1

1 +K31IBS
(S9)

TRH(t) = TRH0(1 + 0.6cos(2π(t/86400))) (S10)

For the linear modeling of the membrane transporters, one must replace the term

GMT
T4,th

KMT + T4,th
(S11)

in equations (S1) and (S2) by
klT4,th. (S12)

As mentioned in the main part of this paper, we perform a constrained parameter optimization in order
to identify the parameters GT , GD1, GT3 and GMT (or kl). In other words, we are looking for the
configuration of parameters which fits best the given real measured hormone data under the condition that
the (steady-state or dynamic) differential equations (S1) - (S6) are satisfied.

One challenge of this approach is that the order of magnitude of the differential equations is very different.
The value of FT3 is of order 10−12, whereas the order of TSH is 1. In order to obtain a numerically well
conditioned problem, we hence perform the following state transformation

T̃4,th
T̃4
T̃3p
T̃3c

T̃ SH

T̃SHz


= z = Tx = T



T4,th
T4
T3p
T3c
TSH
TSHz

 , (S13)

with

T =



1012 0 0 0 0 0
0 1011 0 0 0 0
0 0 1012 0 0 0
0 0 0 108 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (S14)
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This transformation matrix leads to (transformed) hormone concentrations in the identification (FT3, FT4,
T4,th and TSH) that are in the order of magnitude of 100. The dynamics of the transformed system are

ż = Tẋ = Tf(x) = Tf(T−1z), (S15)

where f(x) denotes the right hand side of the differential equations (S1) - (S6) and x, z as defined in (S13).
When the mentioned values are plugged in, the expression

ż =



1012 0 0 0 0 0
0 1011 0 0 0 0
0 0 1012 0 0 0
0 0 0 108 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 f



10−12T̃4,th
10−11T̃4
10−12T̃3p
10−8T̃3c

T̃ SH

T̃SHz


(S16)
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is obtained. The transformed differential equations are

dT̃4,th
dt

(t) = 1012

(
αth

(
GT

T̃ SH(t)

T̃ SH(t) +DT

− 10−6G̃MT
10−12T̃4,th(t)

KMT + 10−12T̃4,th(t)

− 10−8G̃D1

10−12T̃4,th(t)
T̃ SH(t)

T̃ SH(t)+kDio

10−12T̃4,th(t)
T̃ SH(t)

T̃ SH(t)+kDio

+KM1

−GD2

10−12T̃4,th(t)
T̃ SH(t)

T̃ SH(t)+kDio

10−12T̃4,th(t)
T̃ SH(t)

T̃ SH(t)+kDio

+KM2

)

− βthT4,th(t)

)
(S17)

dT̃4
dt

(t) = 1011
(
αT 10−6G̃MT

10−12T̃4,th(t− τ0T )

KMT + 10−12T̃4,th(t− τ0T )
− βT 10

−11T̃4(t)

)
(S18)

dT̃3p
dt

(t) = 1012

(
α31

(
10−8G̃D1

10−11F̃ T4(t)

10−11F̃ T4(t) +KM1

+GD2
10−11F̃ T4(t)

10−11F̃ T4(t) +KM2

+ 10−8G̃D1

10−12T̃4,th(t− τ03P )
T̃ SH(t−τ03P )

T̃ SH(t−τ03P )+kDio

10−12T̃4,th(t− τ03P )
T̃ SH(t−τ03P )

T̃ SH(t−τ03P )+kDio

+KM1

+GD2

10−12T̃4,th(t− τ03P )
T̃ SH(t−τ03P )

T̃ SH(t−τ03P )+kDio

10−12T̃4,th(t− τ03P )
T̃ SH(t−τ03P )

T̃ SH(t−τ03P )+kDio

+KM2

+ 10−14G̃T3
T̃ SH(t− τ03P )

DT + T̃ SH(t− τ03P )

)
− β3110

−12T̃3p(t)

)
(S19)

dT̃3c
dt

(t) = 108
(
α32GD2

10−11F̃ T4(t− τ03Z)

10−11F̃ T4(t− τ03Z) +KM2

− β3210
−8T̃3c(t)

)
(S20)

dT̃SH

dt
(t) =

αSGHTRH(t− τ0S)

(TRH(t− τ0S) +DH)

(
1 + SS

T̃SHz(t−τ0S)

T̃ SHz(t−τ0S)+DS

)(
1 + LSGR

10−8 ˜T3N (t−τ0S)

10−8T̃3N (t−τ0S)+DR

)
− βST̃ SH(t) (S21)

dT̃SHz

dt
(t) =

αS2GHTRH(t− τ0S2)

(TRH(t− τ0S2) +DH)

(
1 + SS

T̃SHz(t−τ0S2)

T̃ SHz(t−τ0S2)+DS

)(
1 + LSGR

10−8T̃3N (t−τ0S2)

10−8T̃3N (t−τ0S2)+DR

)
− βS2T̃ SHz(t) . (S22)
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Furthermore, the relationships of the hormone concentrations

FT3 = 10−12T̃3p
1

1 +K30TBG
= 10−12F̃ T3 (S23)

F̃ T3 = T̃3p
1

1 +K30TBG
(S24)

FT4 = 10−11T̃4
1

1 +K41 TBG+K42 TBPA
= 10−11F̃ T4 (S25)

F̃ T4 = T̃4
1

1 +K41 TBG+K42 TBPA
(S26)

T3N = 10−8T̃3c
1

1 +K31IBS
= 10−8T̃3N (S27)

T̃3N = T̃3c
1

1 +K31IBS
(S28)

need to be considered. Using this state transformation, all variables are in the same order of magnitude.

S3 PARAMETER ESTIMATION FOR HEALTHY INDIVIDUALS USING DYNAMIC
HORMONE MEASUREMENTS

As mentioned in the main part, we here explain the parameter estimation for healthy individuals using
measured mean dynamic hormone concentrations FT3,meas(t), FT4,meas(t), and TSHmeas(t). To this end,
we use the dynamic hormone concentrations of healthy individuals documented in (4). The concept is
to minimize the normalized quadratic error between measured (dynamic) hormone concentrations and
simulated hormone concentrations. In other words, we want to find the configuration of the GT , GD1,
GT3, and GMT parameters that explains best the given measured (dynamic) hormone concentrations. In
mathematical terms, we minimize the objective function

J(GT , GD1, GT3, GMT ) =
15·24h∑
t=0

(FT3,meas(t)− FT3,model(t)

FT 3,meas

)2
+

15·24h∑
t=0

(FT4,meas(t)− FT4,model(t)

FT 4,meas

)2
+

15·24h∑
t=0

(TSHmeas(t)− TSHmodel(t)

TSHmeas

)2
(S29)

where FT3,model(t), FT4,model(t), and TSHmodel(t) are the (back-transformed) numerical solutions to the
transformed system of differential equations (S17) - (S22)1 with the constraints that GT ≥ 0, GD1 ≥ 0,
GT3 ≥ 0, and GMT ≥ 0. The constants FT 3,meas, FT 4,meas and TSHmeas are the mean hormone
concentrations of all patients and all time points. The cost function sums up the normalized quadratic
difference lasting 15 days. To generate dynamic hormone profiles lasting 15 days, we duplicate the 24
hours profile, see (4), 15 times. This longer hormone profile is necessary to guarantee that the transient and

1 For the estimation, we needed to set the delays of the system of differential equations to zero since Matlab does not provide a solver for stiff and delayed
differential equations. We aimed to solve the system of delayed differential equations with the built-in function dde23. However, the solver needed such a small
step size that takes an extremely long time to solve the system of delayed differential equations. Furthermore, the dead times are rather low (≤ 1 hour) meaning
that these dead times do not influence the dynamics considerably.
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the steady-state behavior is considered in the estimation. This approach implies the assumption that the
measured dynamic hormone concentrations remain unchanged throughout 15 days.

After solving this optimization problem, we observed the following: different initial guesses of the
optimization problem lead to different minima with the same cost. Consequently, there are different
parameter configurations of GT , GD1, GT3 and GMT that all explain equally well the given dynamic
hormone measurements. This problem was also observed, when only steady-state hormone measurements
are used for the identification of parameters of the model, compare (3). To solve this problem, we
incorporate the information into the cost function that 20 % of T3 is produced inside the thyroid gland and
the remaining 80 % in peripheral organs, according to (5, 6)2. This is realized by penalizing the difference
to this relation in the cost function. On the right hand side of (S29), we add 200|0.8− PRperi(t)|2, where
PRperi(t) is defined as the part of T3 which is produced in the periphery, i.e.,

PRperi(t) =
Pperi(t)

Ptotal(t)
(S30)

with

Pperi(t) = GD1
FT4(t)

FT4(t) +KM1
+GD2

FT4(t)

FT4(t) +KM2
(S31)

and

Ptotal(t) =GD1
FT4(t)

FT4(t) +KM1
+GD2

FT4(t)

FT4(t) +KM2
+GD1

T4,th(t− τ03P )
TSH(t−τ03P )

TSH(t−τ03P )+kDio

T4,th(t− τ03P )
TSH(t−τ03P )

TSH(t−τ03P )+kDio
+KM1

(S32)

+GD2

T4,th(t− τ03P )
TSH(t−τ03P )

TSH(t−τ03P )+kDio

T4,th(t− τ03P )
TSH(t−τ03P )

TSH(t−τ03P )+kDio
+KM2

+GT3
TSH(t− τ03P )

DT + TSH(t− τ03P )
.

Hence, the updated cost function is

J(GT , GD1, GT3, GMT ) =
15·24h∑
t=0

(FT3,meas(t)− FT3,model(t)

FT 3,meas

)2
+

15·24h∑
t=0

(FT4,meas(t)− FT4,model(t)

FT 4,meas

)2
+

15·24h∑
t=0

(TSHmeas(t)− TSHmodel(t)

TSHmeas

)2
+

15·24h∑
t=0

200|0.8− PRperi(t)|2.

(S33)

Since the remaining production of T3 will necessarily take place in thyroid cells (compare eq. (S3)), we
do not need to incorporate a term related to the production of T3 in thyroid cells. Using this additional
information, we obtain unique optimal parameter values.

After having determined the unique optimal parameter configuration, we simulate the hormone
concentrations 100 times and artificially corrupt the simulated concentrations by some noise following a
normal distribution with µ = 0 and σ = 0.1. For each dataset, we estimate the parameters applying the
aforementioned procedure. The results are shown in Table 1 of the main part.

2 Note that this relation was also used to calibrate the applied mathematical model in (3).
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Further, to quantify the uncertainty of the parameter estimation by means of individual hormone
measurements, we determine the parameters GT , GD1, GT3 and GMT individually for 27 different
healthy individuals, documented in (4). This individual estimation leads to the results presented in Table S1
and Section S5.

The estimation related to the linear modeling of the membrane transporters works completely analogous.
One must simply replace the GMT

T4,th
KMT+T4,th

term by klT4,th and estimate kl instead of GMT . The results
are presented in Table 2 of the main part and Table S3 (regarding the individual parameter estimation).

S4 PARAMETER ESTIMATION FOR AHDS PATIENTS USING STATIC HORMONE
CONCENTRATIONS

As mentioned in the main part of this paper, we perform a constrained parameter optimization using mean
steady-state hormone concentrations in order to estimate the parameter GMT (or kl) for AHDS patients. In
other words, we are looking for the configuration of parameters which fits best the given real measured
hormone data under the condition that the steady state equations are satisfied. In formal words, the task is
to minimize the objective function

J(GMT ) =

(
FT 3,meas − FT3,model

FT 3,meas

)2

+

(
TSHmeas − TSHmodel

TSHmeas

)2

+

(
FT 4,meas − FT4,model

FT 4,meas

)2

(S34)

subject to the nonlinear equality constraints

0 = αth

(
GT

TSH

TSH +DT
−GMT

T4,th
KMT + T4,th

−GD1

T4,th
TSH

TSH+kDio

T4,th
TSH

TSH+kDio
+KM1

−GD2

T4,th
TSH

TSH+kDio

T4,th
TSH

TSH+kDio
+KM2

)
− βthT4,th (S35)

0 = FT4 −
1

1 +K41 TBG+K42 TBPA

αT

βT
GMT

T4,th
KMT + T4,th

(S36)

0 = FT3 −
1

1 +K30TBG

α31

β31

(
GD1

FT4
FT4 +KM1

+GD2
FT4

FT4 +KM2
+GD1

T4,th
TSH

TSH+kDio

T4,th
TSH

TSH+kDio
+KM1

+GD2

T4,th
TSH

TSH+kDio

T4,th
TSH

TSH+kDio
+KM2

+GT3
TSH

DT + TSH

)
(S37)

0 = TSH2

(
GMT

T4,th
KMT + T4,th

q1 + q2

)
+ TSH

(
GMT

T4,th
KMT + T4,th

q3 + q4 − p9

)

−GMT
T4,th

KMT + T4,th
p10 − p11 (S38)
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Table S1. Statistics of the Parameter estimation

Healthy Individuals AHDS Patients

Parameter
GD1 GT3 GT GMT GMT

in 10−8mol
s in 10−13mol

s in 10−12mol
s in 10−6mol

s in 10−6mol
s

Mean 2.5113 1.7936 3.5698 2.0913 0.1843∗

Median 2.5873 0.2437 3.4418 1.9614 0.2043
Standard deviation 0.5885 3.6397 0.7846 0.5079 0.1234
Coefficient of variation 0.2343 2.0293 0.2198 0.2429 0.6693

The ∗ symbol designates statistical significance.

and the following bounds

GMT ≥ 0 (S39)

FT3 ≥ 0 (S40)

FT4 ≥ 0 (S41)

TSH ≥ 0 (S42)

T4,th ≥ 0. (S43)

The bounds are meaningful given that the parameter GMT as well as the hormone concentrations
physiologically only make sense when they are positive. We only deal with steady-state expressions,
therefore, the time dependence of the variables is neglected. Note that we plugged in the steady state
expressions of the differential equations of T3c and of TSHz into the steady state expression of TSH . This
leads to condition (S38). The detailed steps how to reach (S38), which are cumbersome but straightforward,
are shown in Section S8 for completeness. The results are presented in Table 1 of the main part.

We solve this optimization problem for the mean steady-state hormone concentrations of 13 different
AHDS patients given in (7, 8, 9, 10, 11). This enables us to perform parametric bootstrapping. After having
determined the optimal value of GMT , we simulate the hormone concentrations and corrupt the FT3, FT4
and TSH concentrations by some noise following a normal distribution with µ = 0 and σ = 0.1. In this
way, we generate dynamic hormone concentrations of AHDS patients. Therefore, the optimal parameters
of the generated hormone concentrations are determined by the procedure outlined in Section S3 with the
only difference that we need to estimate only GMT and not additionally GD1, GT , and GT3.

S5 UNCERTAINTY QUANTIFICATION BASED ON INDIVIDUALLY ESTIMATED
PARAMETERS

In this section, we show the results regarding the quantification of the uncertainty of the estimated
parameters when these are estimated individually using the approach explained in Sections S3 and S4.
First, we show the results for the Michaelis-Menten modeling of the membrane transporters and, second,
we show the analogous results for the linear modeling of the membrane transporters.
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Table S2. Associated Steady-State Hormone Concentrations

Healthy Individuals

Hormone Concentration
FT3 FT4 TSH T4,th

in 10−12mol
L in 10−11mol

L in mIU
L in 10−12mol

L

Mean 5.56 1.74 1.85 3.20
Median 5.55 1.68 1.87 3.21
Standard deviation 0.61 0.28 0.16 1.13
Coefficient of variation 0.11 0.16 0.09 0.35

AHDS Patients
Mean 8.27∗ 1.02∗ 2.56∗ 25.46∗

Median 7.53 1.18 2.27 20.61
Standard deviation 1.34 0.31 0.48 9.64
Coefficient of variation 0.16 0.30 0.19 0.38

The ∗ symbol designates statistical significance.

S5.1 Michaelis-Menten Modeling

The results of the uncertainty quantification of the GD1, GT3, GT and GMT are shown in Table S1. In
general, the uncertainty quantification based on individually estimated parameters yields similar results as
the uncertainty quantification based on bootstrapping in the main part. Except for the GT3 parameter, the
numerical values of the parameters are not subject to large uncertainties. Here, we can additionally show
that the difference in the mean of the GMT parameter is significant (based on a two-sample t-test with a
significance level of 5 %).

Next, the computed steady-state hormone concentrations are illustrated in Table S2. One can observe
that the hormone concentrations of healthy individuals and of AHDS patients are not subject to large
variations. All hormone concentrations have a coefficient of variation which is below 40 %. On one side,
we observe the characteristic hormone concentrations of AHDS patients. The mean FT3 concentration is
49 % times higher, the mean FT4 concentration is 41 % lower, and the mean TSH concentration is 38 %
higher for AHDS patients compared to healthy individuals. Interestingly, the mean T4,th concentration is
approximately 800 % higher for AHDS patients compared to healthy individuals. Moreover, the mean
hormone concentrations differ significantly from healthy individuals to AHDS patients (again based on a
two-sample t-test with a significance level of 5 %).

Finally, as in the main part, we simulate the hormone concentrations of healthy individuals and AHDS
patients, as shown in Figure 2, using the mean parameters of Table S1. Since the mean parameters are
similar to the one determined using bootstrapping, the hormone concentrations in Figure 2 are similar to
the ones shown in Figure 3 of the main part.

S5.2 Linear Modeling

In this section, we consider the linear modeling of the membrane transporters. As visible in Table S3, the
uncertainty quantification of the parameters yields once again similar results compared to the application
of bootstrapping, compare Table 2 of the main part. The mean values of the FT3, FT4, TSH and T4,th

Frontiers 12



Wolff et al. Supplementary Material

0 10 20 30

Time in days

1

1.5

2

2.5

3

3.5

0 10 20 30

Time in days

5

6

7

8

0 10 20 30

Time in days

0.5

1

1.5

2

0 10 20 30

Time in days

5

10

15

20

25

Figure 2. Results of the dynamic simulations for the Michaelis-Menten modeling of the membrane
transporters. Most of the numerical parameter values are based on the suggestions of (1, 3), compare
Section S9. The remaining unknown parameters of the model are estimated through a constrained parameter
optimization and shown in Table S1.

Table S3. Statistics of the Parameter estimation

Healthy Individuals AHDS Patients

Parameter
GD1 GT3 GT kl kl

in 10−8mol
s in 10−13mol

s in 10−12mol
s in 1

s in 1
s

Mean 2.4909 1.9371 3.5671 0.4451 0.0392∗

Median 2.5866 0.3865 3.4416 0.4173 0.0434
Standard deviation 0.6135 3.9763 0.7876 0.1083 0.0262
Coefficient of variation 0.2463 2.0527 0.2208 0.2433 0.6692

The ∗ symbol designates statistical significance.

concentrations do not differ considerably from the Michaelis-Menten modeling approach. In Table S4, we
observe once again the characteristic hormone concentrations of AHDS patients, a (46 %) higher FT3 and
a (36 %) higher TSH concentration together with a (40 %) lower FT4 concentration compared to healthy
individuals. The T4,th concentration is approximately 800 % for AHDS patients compared to healthy
individuals. Finally, in Figure 3, the simulation results of the dynamic hormone concentrations are shown.

In conclusion, we want to point out that we applied two different approaches to quantify the uncertainty
(bootstrapping and individual parameter estimation) of the parameters and that both yielded similar results
in terms of how uncertain which parameters are.
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Table S4. Associated Steady-State Hormone Concentrations

Healthy Individuals*

Hormone Concentration
FT3 FT4 TSH T4,th

in 10−12mol
L in 10−11mol

L in mIU
L in 10−12mol

L

Mean 5.56 1.74 1.85 3.20
Median 5.55 1.68 1.87 3.20
Standard deviation 0.61 0.28 0.16 1.13
Coefficient of variation 0.11 0.16 0.09 0.35

AHDS Patients
Mean 8.14∗ 1.05∗ 2.51∗ 24.73∗

Median 7.52 1.18 2.27 20.66
Standard deviation 1.29 0.30 0.45 9.32
Coefficient of variation 0.16 0.28 0.18 0.38

The ∗ symbol designates statistical significance.
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Figure 3. Results of the dynamic simulations of the linear modeling of the membrane transporter. Again,
most of the numerical parameter values are based on (1, 3). The remaining parameters are estimated
through a constrained parameter optimization approach and shown in Table S3.

S6 MCT8-MEDIATED T3 TRANSPORT

As mentioned in the main part, we here consider additionally membrane transporters for T3. To this end,
we proceed similarily as for the membrane transporters for T4. We introduce a new state called T3,th which

Frontiers 14



Wolff et al. Supplementary Material

Figure 4. Block Diagram of the pituitary-thyroid feedback loop if membrane transporters for T3 (illustrated
by means of the green frame) and for T4 (illustrated by means of the blue frame) are considered.

represents the T3 concentration in thyroid cells. Its associated differential equation is

dT3,th
dt

(t) =αth

(
GD1

T4,th(t)
TSH(t)

TSH(t)+kDio

T4,th(t)
TSH(t)

TSH(t)+kDio
+KM1

+GD2

T4,th(t)
TSH(t)

TSH(t)+kDio

T4,th(t)
TSH(t)

TSH(t)+kDio
+KM2

+GT3
TSH(t)

DT + TSH(t)
−GMT,T3

T3,th(t)

T3,th(t) +KMT,T3

)
− βth,T3T3,th(t) (S44)

The production of T3 in thyroid cells depends on (i) the conversion of T4 into T3 in thyroid cells and (ii)
and a direct T3 synthesis based on the TSH concentration. The dilution factor αth is the same as in the
differential equation of T4,th (since we assume that the intrathyroidal T3 has the same volume of distribution
as the intrathyroidal T4). The choice of βth,T3 is more complicated. From (12), we can deduce that the
intrathyroidal half-life of T4 is approximately 44 hours, which is much shorter than the plasma half-life of
T4 corresponding approximately to 7 days. Assuming that the intrathyroidal half-life of T3 is reduced in the
same way (compared to the plasma half life of T3), its half-life would correspond to approximately 6 hours
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and the corresponding clearance rate to βth,T3 = 3.06 · 10−5s−1. Once again, slightly different numerical
parameter values will lead to the same qualitative behavior3.

Next, the differential equation of the peripheral T3 concentration (called T3p) must be adapted. We
now consider positively the part of T3,th which is transported out of the thyroid cells and the peripheral
conversion of T4 into T3, yielding

dT3p
dt

(t) =α31

(
GD1

FT4(t)

FT4(t) +KM1
+GD2

FT4(t)

FT4(t) +KM2
+GMT,T3

T3,th(t− τ03P )

T3,th(t− τ03P ) +KMT,T3

)
− β31T3p(t) (S45)

containing the new parameters GMT,T3 and KMT,T3 . Once again, the value of KMT,T3 has already been
determined experimentally in (13) and its value is applied here (although this is a simplification since
different mutations will lead to different sensitivities). The block diagram in Figure 4 illustrates the
incorporation of membrane transporters for T3 (compare the block with a green frame) and T4 (compare
the block with a blue frame).

The parameter GMT,T3 describing the maximum activity of the T3 transport must be estimated for
healthy individuals. We estimate this parameter by following the same concept, as described in Section S3
(using cost function (S33)) with the only difference that we additionally identify the parameter GMT,T3 .
Subsequent simulations for one healthy individual subject are shown in Figure 5. In this figure, one can see
that the modeled hormone concentrations still fit to the measured hormone concentrations. Additionally,
one can still observe the circadian rhythm of FT3. Hence, our model remains a valid approximation of the
pituitary-thyroid feedback when considering MCT8-mediated T3 transport.

Even though the hormone concentrations for healthy individuals can be accurately represented considering
membrane transporters for T3, the parameters become structurally non-identifiable. In other words,
substantially different (of several orders of magnitude) parameter configurations lead to the same hormone
concentrations. This difference to the estimation results when only membrane transporters for T4 are
considered is due to the additional parameter that we need to estimate, i.e., GMT,T3, while using the same
real hormone concentrations measurements. In other words, we want to estimate an additional parameter
without further data or information.

Therefore, we do not consider membrane transporters for T3 in the main part, although this approach is a
simplification since it has been shown that the MCT8 transports T3 in humans, compare (13). Nevertheless,
this is a meaningful approach, since the T3 export is most likely not harmed in MCT8-deficiency (14).
This intriguing observation could be explained by the existence of further membrane transporters as the
MCT10 (which transports T3 and occurs in the thyroid gland (15)) or the recently discovered SLC17A4
(which also transports T3 (16)).

S7 STABILITY ANALYSIS

As mentioned in the main part of this paper, we performed a local stability analysis. To this end, we
introduce Lyapunov’s indirect method. Then, we document and discuss the results from a physiological
point of view.

3 For example, if we assumed that the intrathyroidal T3 half-life is the same than the plasma T3 half-life, then we would still obtain the same qualitative results
as presented in Figure 5.
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Figure 5. Simulation results for a model which considers explicitly the T3 content in thyroid cells and the
membrane transporters for T3.

Lyapunov’s Indirect Method

Lyapunov’s indirect method can be formulated as follows (17): let x = 0 be an equilibrium point/hormone
concentration for the nonlinear system

ẋ = f(x) (S46)

where f : D 7→ Rn is continuously differentiable and D is a neighborhood of the origin. Let

A =
∂f(x)

∂x

∣∣∣∣
x=0

, (S47)

then

1. the origin is locally exponentially stable if Re λi < 0 for all eigenvalues of A.
2. The origin is unstable if Re λi > 0 for one or more of the eigenvalues of A.

As Lyapunov’s indirect method is only a criterion for local exponential stability, no statement is possible
regarding the region of attraction of the equilibrium point. The region of attraction of an equilibrium point
is the set of all initial states (here: hormone concentrations), for which the solution of the nonlinear system
(S47) asymptotically converges to the equilibrium point.

Results Lyapunov’s Indirect Method

The stability analysis concerns the equilibrium hormone concentrations documented in Tables 1 and 2 of
the main part, which were obtained using a constant concentration of TRH . The application of Lyapunov’s
indirect method leads to the results illustrated in Table S5. One can see that the eigenvalues are negative for
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Table S5. Results of the application of Lyapunov’s indirect method.

M.-M. Modeling of Membrane Transporters Linear Modeling of Membrane Transporters
Eigenvalue Healthy Individuals AHDS Patients Healthy Individuals AHDS Patients

λ1 −8.00 · 10−6 −8.00 · 10−6 −8.00 · 10−6 −8.00 · 10−6

λ2 −2.46 · 102 −2.50 · 102 −2.46 · 102 −2.50 · 102

λ3 −8.30 · 10−4 −8.30 · 10−4 −8.30 · 10−4 −8.30 · 10−4

λ4 −1.46 · 10−6 −1.34 · 10−6 −1.43 · 10−6 −1.33 · 10−6

λ5 −2.30 · 10−4 −2.30 · 10−4 −2.30 · 10−4 −2.30 · 10−4

λ6 −119.35 −18.58 −119.32 −18.50

Annotations: the abbreviation M.M. stands for Michaelis-Menten.

all cases. Consequently, the computed equilibrium hormone concentrations are all locally exponentially
stable.

Discussion Stability Analysis

After having documented these (rather technical) results, we can focus on their medical interpretation.

Local asymptotic stability means that if the hormone concentrations have values different from their
equilibrium hormone concentrations, which are still in the region of attraction, the hormone concentrations
will converge to their equilibrium hormone concentrations. Unfortunately, with the proposed method
it is impossible to state how large the region of attraction is. Hence, it is impossible to quantify the
maximal deviation of the hormone concentrations for which they converge to their equilibrium hormone
concentrations.

This result holds true for healthy individuals and for AHDS patients. This is particularly interesting since
AHDS patients have a highly perturbed pituitary-thyroid feedback loop. From a systems theoretic point of
view, their equilibrium points are still locally asymptotically stable.

In the future, it would be highly valuable to determine the mentioned region of attraction. A possible
method that goes along with a quantification of the region of attraction is Lyapunov’s direct method (17).
However, its application is highly challenging if the differential equations are complex as it is the case here.

The aforementioned results hold for a constant TRH concentration. Since the real TRH concentration
in humans follows a pulsatile course, one might ask how this time-varying TRH concentration impacts the
stability results. To this end, we note the following. As discussed above, the application of Lyapunov’s
indirect method shows that the equilibrium hormone concentrations (with constant TRH input) are locally
exponentially stable. This implies that the (nonlinear) system (S1) - (S9) comprising the pituitary-thyroid
feedback loop is locally input-to-state stable (ISS) (which follows, e.g., by applying Lemma 4.6 of
(17)). This property (ISS), which has become one of the standard methods to quantify a certain notion
of robustness of nonlinear systems, implies that small/bounded (but potentially time-varying) inputs
(or deviations from a constant equilibrium input) result in small/bounded states (or deviations from the
equilibrium state). In other words, small (potentially time-varying) deviations of TRH around a constant
equilibrium value (e.g., a pulsatile course) result in small deviations of the hormone concentrations.
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S8 DERIVATION OF THE STEADY STATE EQUATION OF TSH

Here the step-by-step solution to derive the steady-state equation of TSH in dependence of T4,th is
presented for the Michaelis-Menten modeling of the membrane transporters.

The steady-state equation of T4 is

T4 =
αT

βT
GMT

T4,th
KMT + T4,th

, (S48)

which follows from setting (S2) to zero and solving the equation for T4. This steady-state equation can be
plugged into the relationship of FT4 (S8), thus leading to

FT4 =
αT

βT
GMT

T4,th
KMT + T4,th

1

1 +K41TBG+K42TBPA
. (S49)

With b1 = 1/(1 +K41TBG+K42TBPA), equation (S49) can be written as

FT4 =
αT

βT
GMT

T4,th
KMT + T4,th

b1. (S50)

This can be used for the steady state equation of T3c, which can again be computed by setting (S4) to zero
and solving for T3c. When the relation of FT4 (S50) is plugged into this steady-state equation, one gets

T3c = a3

αT
βT

GMT
T4,th

KMT+T4,th
b1

αT
βT

GMT
T4,th

KMT+T4,th
b1 +KM2

(S51)

with a3 = α32GD2/β32. By defining p1 = αT b1/βT , equation (S51) simplifies to

T3c = a3
p1GMT

T4,th
KMT+T4,th

p1GMT
T4,th

KMT+T4,th
+KM2

. (S52)

Next, the expression of T3N (S9) is used. With b3 = 1/(1 +K31IBS) and expression (S52), T3N is

T3N = b3T3c (S53)

= b3a3
p1GMT

T4,th
KMT+T4,th

p1GMT
T4,th

KMT+T4,th
+KM2

. (S54)

The term GRT3N/(T3N +DR) is needed for the steady-state computation of TSH . With the definition of
p2 = a3b3p1 and p3 = p2 +DRp1, it becomes
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GR
T3N

T3N +DR
= GR

b3a3
p1GMT

T4,th
KMT+T4,th

p1GMT
T4,th

KMT+T4,th
+KM2

b3a3
p1GMT

T4,th
KMT+T4,th

p1GMT
T4,th

KMT+T4,th
+KM2

+DR

(S55)

= GR

b3a3p1GMT
T4,th

KMT+T4,th

b3a3p1GMT
T4,th

KMT+T4,th
+DR(p1GMT

T4,th
KMT+T4,th

+KM2)
(S56)

= GR

p2GMT
T4,th

KMT+T4,th

p3GMT
T4,th

KMT+T4,th
+DRKM2

. (S57)

Now the steady-state value of TSH can be computed, which again follows from setting (S5) to zero and
solving for TSH . With the following relationships

p4 = GH
αS

βS

TRH0

TRH0 +DH
(S58)

g7 =
αS2βS
αSβS2

(S59)

TSHz =
αS2βS
αSβS2

TSH = g7TSH (S60)

the steady-state equation of TSH is

TSH = p4
g7TSH +DS

g7TSH(1 + SS) +DS

1

1 + LSGR
T3N

T3N+DR

. (S61)

With the expression (S57) and the definition of the constants

p5 = g7(1 + SS) (S62)

p6 = p3 + p2LSGR (S63)

p7 = DRKM2 (S64)

p8 = p4g7p3 (S65)

p9 = p4g7DRKM2 (S66)

p10 = p4DSp3 (S67)

p11 = p4DSDRKM2, (S68)
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one gets the following equation

TSH2(GMT
T4,th

KMT + T4,th
p5p6 + p5p7) + TSH

(
GMT

T4,th
KMT + T4,th

(DSp6 − p8)+

DSp7 − p9
)
−GMT

T4,th
KMT + T4,th

p10 − p11 = 0. (S69)

By defining some final constants

q1 = p5p6 (S70)

q2 = p5p7 (S71)

q3 = DSp6 − p8 (S72)

q4 = DSp7, (S73)

one obtains the more compact steady-state equation (S38)

TSH2(GMT
T4,th

KMT + T4,th
q1 + q2) + TSH(GMT

T4,th
KMT + T4,th

q3 + q4 − p9)

−GMT
T4,th

KMT + T4,th
p10 − p11 = 0. (S74)
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S9 NUMERICAL PARAMETER VALUES

Symbol Description Value Origin

TBG Concentration of
thyroxine-binding globulin 300 nmol/L (18)/ well known reference value

TBPA Concentration of Transthyretin 4.5 µmol/L (18)/ well known reference value

IBS
Concentration of intra-cellular

T3-binding substrate 8 µmol/L

Estimated form
TBG-concentration, corrected for

intra-cellular T3-accumulation
(according to values from (19))

TRH0
TRH-concentration in

hypophyseal portal system 6.9 nmol/s (20)

GH
Secretory capacity of the

pituitary 817 mIU/s
Calculated according to (21) and

(22)

DH
Damping constant (EC50) of

TRH at the pituitary 47 nmol/s (23)

αS
Dilution factor for peripheral

TSH 0.4 L−1 Reciprocal value of the volume of
distribution of 2.5 L (1)

βS
Clearance exponent for

peripheral TSH 2.3 · 10−4 s−1 Calculated from plasma half-life of
50 min (24, 25)

LS Brake constant of long feedback 1.68 L/µmol
Calculated from clinical data of

hyperthyroid patients (1)

GT
Secretory capacity of thyroid

gland
Compare main

part Fitted to real measurements

DT
Damping constant (EC50) at the

thyroid gland 2.75mIU/L (26)

αT Dilution factor for T4 0.1 L−1 Reciprocal value of the volume of
distribution (27)

βT Clearance exponent for T4 1.1 · 10−6s−1 Calculated from plasma half-life of
7 days (27, 28)

KM1
Dissociation constant of

5’-deiodinase type I 500 nmol/L (27)

α31 Dilution factor for peripheral T3 2.6 · 10−2 l−1 Reciprocal value of volume of
distribution (27)

β31
Clearance exponent for

peripheral T3 8 · 10−6 s−1 Calculated from plasma half-life of
24 h (1)

GD2
Maximum activity of
5’deiodinase type II 4.3 fmol/s

Calculated form pituitary
T3-concentration (29)

KM2
Dissociation constant of

5’-deiodinase type II 1 nmol/L (30)

α32 Dilution factor for central T3 1.3 · 105 L−1 Calculated from volume of
distribution 7.6 µl (1)
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Symbol Description Value Origin

β32
Clearance exponent for central

T3
8.3 · 10−4 s−1 Calculated from intra-cellular

half-life of 15 min (31, 32)

αS2
Dilution factor for pituitary

TSH 2.6 · 105 l−1 Calculated from volume of
distribution (1) of 3.8µl

βS2
Clearance exponent for pituitary

TSH 140 s−1 Estimated, corresponding to
half-life of 5 ms (1)

DR Damping constant for central T3 100 pmol/L (33)

GR
Maximum gain of
TRβ-receptors 1mol/s

Value unknown, normalized to 1
(magnitude of feedback is

determined by LS) (1)
SS

Brake constant of ultrashort
feedback 100 L/mIU

Determined according to values
from (34)

DS
Damping constant for TSH

inside the pituitary 50mIU/L
Determined according to values

from (34)

K30 Dissociation constant T3-TBG 2 · 109L/mol (25)

K31 Dissociation constant T3-IBS 2 · 109 L/mol
Value unknown, adapted to

extra-cellular dissociation constant
(1)

K41 Dissociation constant T4-TBG 2 · 1010 L/mol (25)

K42 Dissociation constant T4-TBPA 2 · 108L/mol (25)

τ0S Peripheral delay for TSH 120 s Derived from circulation time (1)

τ0S2 Pituitary delay for TSH 3240 s Derived from period of
TSH-pulses (data from (35))

τ0T Delay for T4 300 s Estimated according to circulation
and diffusion times (1)

τ03Z Delay for pituitary T3 3600 s Derived from (36)

τ03P Delay for peripheral T3 300 s Derived from (37)

αth Dilution factor for T4,th 250 L−1 Based on an assumed volume of
distribution of 4 ml

βth Clearance Exponent for T4,th 4.4 · 10−6s−1 Calculated from intrathyroidal
half-life of 44 h (12)

kDio
Stimulation constant of thyroidal

D1 and D2 1 mIU/L (3)

KMT
Michaelis-Menten constant

membrane transporter 4.7 · 10−6 mol/L (38)

GD1
Maximum activity of
5’deiodinase type I

Compare main
part Fitted to real measurements

GT3
Maximum activity of direct T3

synthesis
Compare main

part Fitted to real measurements

GMT
Maximum activity of the
membrane transporters

Compare main
part Fitted to real measurements

kl
Linear approximation constant

membrane transporters
Compare main

part Fitted to real measurements
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9 .Anık A, Kersseboom S, Demir K, Çatlı G, Yiş U, Böber E, et al. Psychomotor retardation caused by a
defective thyroid hormone transporter: report of two families with different mct8 mutations. Hormone
Research in Paediatrics 82 (2014) 261–271.

10 .Rego T, Lado CG, Rodrı́guez PC, Santos FS, Angueira FB, Castro-Feijóo L, et al. Severe neurological
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