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Zusammenfassung

Cloud Computing hat die Art und Weise, wie moderne Anwendungen
entwickelt und betrieben werden, revolutioniert. Anstatt die Infrastruktur
vor Ort beizubehalten, beziehen viele Unternehmen bei der Entwicklung
ihrer Anwendungen verschiedene Cloud-Angebote ein, um die Marktein-
führungszeit zu verkürzen und den erforderlichen Verwaltungsaufwand zu
verringern. Dazu gehört die Nutzung traditioneller Cloud-Service-Modelle
wie Infrastructure-as-a-Service (IaaS) oder Platform-as-a-Service (PaaS)
sowie neuartiger Modelle wie Function-as-a-Service (FaaS), das die Ent-
wicklung von Cloud-Anwendungen durch die Zusammenstellung feingra-
nularer, auf FaaS-Plattformen bereitegestellter Funktionen mit einer Viel-
zahl von anbieterverwalteten Diensten ermöglicht, z. B. Datenpersistenz-
und Messaging-Dienste. Die meisten Verwaltungsaufgaben für die Kom-
ponenten in FaaS-basierten Anwendungen liegen in der Verantwortung
des gewählten Cloud-Anbieters, was jedoch zu einer stärkeren Abhän-
gigkeit von den Produkten des Anbieters und deren Implementierungs-
und Paketierungsanforderungen führt. Daher kann die Entwicklung von
FaaS-basierten Anwendungen von einer stärkeren Fokussierung auf die Ar-
chitektur der Anwendung anstelle von spezifischen Produkten profitieren,
da diese sehr schnell veralten.
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Diese Arbeit konzentriert sich auf verschiedene Aspekte des anbieterun-
abhängigen Designs von FaaS-basierten Anwendungen und ist motiviert
durch die zunehmende Abhängigkeit der Komponenten in solchen An-
wendungen von produktspezifischen Anforderungen. Um eine anbieterun-
abhängige Diskussion über die Anforderungen an die Bereitstellung und
das Management der Komponenten zu ermöglichen, wird in dieser Arbeit
eine Mustersprache eingeführt, die verschiedene Abwägungen für das Hos-
ting von Anwendungskomponenten in der Cloud dokumentiert. Um die
Klassifizierung und Auswahl von Komponenten in FaaS-basierten Anwen-
dungen zu erleichtern, wird in dieser Arbeit ein Klassifizierungsrahmen für
FaaS-Plattformen vorgestellt und ein Metamodell für den Klassifizierungs-
Framework eingeführt, das diese Konzepte für andere Komponententypen
in solchen Anwendungen verallgemeinert. Darüber hinaus stellt diese Ar-
beit einen standardbasierten Modellierungsansatz für die Spezifikation von
Funktionsorchestrationen und deren Transformation in anbieterspezifische
Formate sowie einen automatisierten Ansatz zur Extraktion von Funkti-
onscode und dessen Packetierung für unterschiedliche FaaS-Plattformen,
um die Wiederverwendbarkeit von Funktionen zu erleichtern.

Um diese Beiträge gemeinsam nutzen zu können, wird in dieser Arbeit
auch die GRASP-Methode vorgestellt, die eine schrittweise Modellierung
und Verfeinerung von FaaS-basierten Anwendungen von abstrakten To-
pologien bis hin zu ausführbaren Deploymentmodellen ermöglicht. Die
technologische Unterstützung für den Einsatz der GRASP-Methode wird
durch eine integrierte GRASP-Toolchain ermöglicht. Um die Machbar-
keit der vorgestellten Konzepte zu validieren, wird die GRASP-Toolchain
prototypisch implementiert und in die bestehenden Werkzeuge zur mus-
terbasierten Modellierung und Bereitstellung von Cloud-Anwendungen
integriert.
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Abstract

Cloud computing revolutionized the way modern applications are designed
and operated. Instead of maintaining the on premise infrastructure many
enterprises incorporate various cloud offerings when designing their appli-
cations to decrease time-to-market and reduce the required management
efforts. This includes the use of traditional cloud service models such as
IaaS or PaaS as well as novel models such as FaaS that enables engineering
cloud applications by composing fine-grained functions hosted on FaaS
platforms with a variety of provider-managed services, e.g., data persis-
tence and messaging services. Most management tasks for the components
in FaaS-based applications become a responsibility of the chosen cloud
provider, which, however, results in a stronger dependence on provider
products and their implementation and packaging requirements. Therefore,
engineering of FaaS-based applications can benefit from a stronger focus
on the architectural considerations instead of specific products that often
appear as fast as they become obsolete.

This work focuses on different aspects of provider-agnostic design for
FaaS-based applications and is inspired by the increased dependence of
components in such applications on product-specific requirements. To
enable reasoning on component hosting and management requirements
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in a provider-agnostic manner, this work introduces a pattern language
capturing various trade-offs for hosting application components in the
cloud. Furthermore, to facilitate classification and selection support for
components in FaaS-based applications, this work presents a classification
framework for FaaS platforms and introduces a classification framework
metamodel that generalizes these concepts for other component types in
such applications. Additionally, this work introduces a standards-based
modeling approach for specifying function orchestrations and transform-
ing them into provider-specific formats and an automated function code
extraction and wrapping approach that aims to facilitate reusing functions
for different FaaS platforms.

To enable using these contributions together, this thesis also introduces
the GRASP method that enables gradual modeling and refinement of
FaaS-based applications from abstract topologies to executable deploy-
ment models. The technological support for using the GRASP Method is
enabled by an integrated GRASP toolchain. To validate the feasibility of
the introduced concepts, the GRASP toolchain is implemented prototypi-
cally and integrated with the existing tools for pattern-based modeling and
deployment of cloud applications.
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Typographical Conventions

In this thesis, the following typographical conventions are used:

Italic
Emphasizes important terms or statements.

Bold
Denotes paragraph headings and title elements.

Monospace

Used for listings and to refer to code elements within paragraphs.

Small caps
Highlights unique names, e.g., pattern names.

(Optional Icon) Information Box Title
This element signifies thematic information blocks with the type of
content described in the title and/or by using an optional icon.

The following icons are used throughout this thesis: SEARCH presents an
informal observation and ? outlines a research question.

9





Contents

1 Introduction 15
1.1 Preliminary Research . . . . . . . . . . . . . . . . . . 18
1.2 Vision of the Work and Research Questions . . . . . . 36
1.3 Research Contributions . . . . . . . . . . . . . . . . . 39
1.4 Scientific Publications . . . . . . . . . . . . . . . . . . 44
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . 49

2 Fundamentals and Related Work 51
2.1 Serverless Computing & Function-as-a-Service . . . . . 52
2.2 Architecting Cloud and FaaS-based Applications . . . . 55
2.3 Decision Support for Selecting Cloud Services . . . . . 79
2.4 Patterns and Pattern-based Design . . . . . . . . . . . . 84
2.5 Chapter Summary and Discussion . . . . . . . . . . . . 89

3 Component Hosting and Management Patterns 91
3.1 Authoring Process and Patterns Format . . . . . . . . . 92
3.2 Core Terminology . . . . . . . . . . . . . . . . . . . . 94
3.3 Overview of the Pattern Categories . . . . . . . . . . . 96
3.4 Deployment Stack Management Patterns . . . . . . . . 98
3.5 Scaling Configuration Management Patterns . . . . . . 103

11



Contents

3.6 Component Hosting Patterns . . . . . . . . . . . . . . 108
3.7 Pattern Relations and Their Semantics . . . . . . . . . 120
3.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . 125

4 Classification and Selection of Components for FaaS-based
Applications 127
4.1 Research Method . . . . . . . . . . . . . . . . . . . . 129
4.2 A Framework for Classifying FaaS Platforms . . . . . . 132
4.3 A Generic Metamodel for Technology Classification

Frameworks . . . . . . . . . . . . . . . . . . . . . . . 142
4.4 Architecture for Technology Selection Support . . . . . 156
4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . 157

5 Artifact-level Abstractions 159
5.1 Uniform Modeling of Function Orchestrations . . . . . 160
5.2 Serverless Parachutes for Code Abstraction . . . . . . . 185
5.3 Associating Artifact Abstractions With Components in

Application Models . . . . . . . . . . . . . . . . . . . 190
5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . 192

6 Gradual Refinement of FaaS-based Applications 195
6.1 The GRASP Method . . . . . . . . . . . . . . . . . . . 196
6.2 The GRASP Meta-Model and Language Support . . . . 205
6.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . 209

7 Integrated Architecture and Prototypical Validation 211
7.1 Architecture of the GRASP Toolchain . . . . . . . . . 212
7.2 Prototypical Implementation . . . . . . . . . . . . . . 213
7.3 The GRASP Toolchain by Example . . . . . . . . . . . 222
7.4 Integration with Other Systems . . . . . . . . . . . . . 231

8 Conclusions and Outlook 235
8.1 Summary of Contributions . . . . . . . . . . . . . . . 236
8.2 Research Opportunities . . . . . . . . . . . . . . . . . 238

12



Contents

Bibliography 241

13





C
ha

pt
er 1

Introduction

B efore the advent of cloud computing [MG+11], the general opin-
ion favored traditional ownership of resources. Currently, instead
of dealing with the maintenance of on premises infrastructure

and putting effort in development of non-business-critical components,
many enterprises choose the convenience of cloud offerings that facilitate
decreasing time-to-market via on-demand access to basically any kind and
amount of resources on a pay-per-use basis. The constantly increasing
adoption of the cloud is, for instance, highlighted in the annual State of
the Cloud Report by Flexera [Fle22], which names multi- and hybrid-
cloud solutions as the most popular choices employed by the respondent
companies. Choosing among various cloud service models becomes criti-
cal since cloud enables not only lifting-and-shifting existing applications,
e.g., using IaaS offerings, but also designing and building entire applica-
tions in a cloud-first [BDJ18] fashion as carefully-planned compositions
of various cloud services. Having a well-planned and documented cloud
strategy, therefore, enables enterprises to remain competitive in economies
of speed [Hoh22a].
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1 Introduction

Traditional cloud service models such as IaaS, PaaS, and Software-as-a-
Service (SaaS) [FLR+14] already provided different levels of abstraction
to cloud application developers to enable reducing management efforts to
a desired extent. The search for other abstraction alternatives consequently
resulted in the emergence of FaaS offerings and the serverless computing
paradigm [BCC+17]. Provider-managed FaaS platforms such as Amazon
Web Services (AWS) Lambda [Ama22b] or Azure Functions [Mic22] are
capable of hosting arbitrary code snippets that are automatically scaled out
and in by cloud providers depending on request rates. This style of imple-
menting and hosting business logic components enabled developing cloud
applications as compositions of various provider-managed services [Clo18]
– hence the ambiguous term “serverless” that intends to emphasize the
minimized relevance of “servers”, i.e., traditional compute, network, and
storage resources, to application developers:

“ The winning prize for awkward naming might go
to the term serverless, which describes a run-time
environment that surely relies on servers. ”
Gregor Hohpe, “Cloud Strategy: A Decision-based
Approach to Successful Cloud Migration”, 2022

While often perceived differently by researchers and industry practition-
ers [LWSH19], the term serverless is nevertheless frequently associated
with FaaS-based applications and refers to a novel way of designing and
implementing cloud applications: Typically fine-grained and stateless func-
tions and provider-managed services interacting by means of event-driven
bindings between components [Tai+20] or using function orchestration
services [GSP+18], which execute functions following the control flow
specified via function orchestration models that follow the well-known
concept of workflows [LR00]. Designing serverless, FaaS-based applica-
tions enables developers to avoid tedious management of the underlying
infrastructure by outsourcing most efforts to the chosen cloud provider,
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which, however, comes at a price since developed components become
tightly-coupled with the underlying provider products and their specific
implementation and packaging requirements.

The decisions a software architect needs to consider vary greatly in levels
of technicality [Hoh20; Zim09]. Furthermore, while specific products
often go extinct as fast as they emerge, the architectural considerations
tend to remain relevant for longer times [Hoh22a] making it important to
document them abstractly without getting bound to specific products, so
that future changes are more straightforward and inexpensive [BCK21]. As
components in FaaS-based applications are hosted on services mainly man-
aged by cloud providers, the underlying architectural considerations need
to be expressed independently of particular technologies, e.g., functions
implemented for AWS Lambda and integrated with other AWS services
cannot be directly reused for other cloud providers. At the same time, it is
particularly advantageous to apply reuse in software engineering life cycle
as early as possible, and to enable reuse not only for the code artifacts,
but for entire architectures to facilitate designing systems with similar
requirements [BCK21].

This thesis focuses on the topic of provider-agnostic design of FaaS-based
applications motivated by their increased coupling with provider require-
ments. For example, application designers may benefit from provider-
agnostic mechanisms for expressing hosting and management require-
ments for components in such applications and search for suitable provider-
specific offerings that fulfill them, modeling function orchestrations in-
dependently of provider-specific languages, etc. The main goal of this
thesis is, therefore, to introduce a set of abstractions targeting different
application- and component-level design decisions independently of cloud
providers, and to enable their subsequent translation into provider-specific
representations of these decisions, e.g., concrete, executable deployment
models. The abstraction mechanisms introduced in the scope of this work
aim to facilitate the reuse of single artifacts as well as the designed archi-
tectures for other scenarios with similar requirements.
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1 Introduction

1.1 Preliminary Research

The vision of this thesis and its boundaries were established during the
preliminary research phase focused on the topic of FaaS-based applications.
This section discusses and combines the core findings from two peer-
reviewed publications [YBLM19; YBLW19] to highlight and motivate the
research challenges addressed in this thesis.

1.1.1 Analysis of Existing Research on Engineering
Function-as-a-Service Platforms and Tools

The first preliminary research work systematically analyzes and maps
existing research literature focusing on engineering FaaS platforms and
tools that was published in the period from 2009 to July 2019 to identify
potential research gaps. This subsection briefly discusses the study design
and findings for the main research question: What are the challenges and
drivers for engineering FaaS platforms and tools? While the original
study [YBLW19] also collected statistics such as preferred venues and
industrial participation, these details are omitted for brevity.

Research Design and Data Extraction

The systematic mapping study was designed and conducted following
the well-established guidelines and practices for systematic literature re-
views [BBF+18; DLM19; KB13; PFMM08; PVK15]. Figure 1.1 shows
the steps to collect and analyze the research literature. For initial search
six well-known electronic databases recommended by existing guide-
lines [KB13; PFMM08; PVK15] were used. As FaaS is often associated
with the concept of serverless computing [LWSH19], a generic search
string (serverless OR “Function-as-a-Service” OR FaaS OR “Function
as a Service”) was used to increase the list of candidate papers. The ini-
tial sets of candidate publications for each electronic database were first
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ACM Digital 
Library

arXiv.org

IEEE Xplore

Science Direct

Springer Link

Wiley Online 
Library

Initial 
search

329

88

1269

1070

364

136

64

41

84

8

33

3

Title and 
Abstract

+

Merge &
Deduplication

218

Selection 
criteria 
applied

59

Snowballing

67

TOTAL

Combination

62

21 3 4

5

6

Figure 1.1: A multistep search and selection process

screened based on the titles and abstracts to exclude unrelated papers, and
then merged into a single set and de-duplicated by comparing combinations
of the title, author names, publication year, and venue. The resulting set
was then filtered based on the defined inclusion criteria – specifically, the
study included only publications that (i) introduce novel general-purpose
FaaS platforms and tooling, (ii) focus on architectural solutions, methods,
algorithms, and optimization techniques targeting specific aspects of FaaS
platforms or tools, and (iii) publications that are written in English. Next,
the forward (using Google Scholar) and backward snowballing [Woh14]
were performed to include related works that cite or are cited by the in-
cluded publications, respectively. Finally, all results were combined in a
list of 62 related publications by removing related papers, e.g., original
vs. extended paper versions. To answer the main research question regard-
ing the challenges and drivers for engineering FaaS platforms and tools,
the data were extracted and synthesized from identified publications as
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1 Introduction

follows. Firstly, an initial classification framework for categorizing the
identified publications was systematically developed using the keywording
technique [PFMM08]. This involved randomly choosing and analyzing 10
publications to derive an initial set of keywords that describe challenges
and drivers for engineering FaaS platforms and tools. Afterwards, the
keywords were clustered into the initial version of the framework, which
was gradually refined by analyzing the remaining list of publications.

Analysis of Research Trends and the Observed Research Gap

Table 1.1 shows the identified challenges and how frequently they appear in
the selected publications. The majority of identified challenges were related
to function execution aspects, e.g., how to optimize function scheduling,
support long-running tasks, or ensure secure function execution. Only a
few works addressed such topics as deployment automation and migration
of function code. In the following, the core findings that inspired the vision
of this work are presented.

Challenges related to function execution. Most identified publications
aimed to improve various function execution aspects in FaaS platforms as
shown in Table 1.1. The largest part focused on performance optimization
techniques including such problems as function scheduling and resources
allocation, or function runtime enhancements, e.g., modifications on the
level of Docker containers or language runtimes such as Java Virtual
Machine. Improving security for executing functions, adding support for
long-running tasks and function composition were among other kinds
of challenges related to the function execution aspects. A more general
challenge mentioned in some publications was the need to provide research-
oriented FaaS platforms with publicly-available source code as it can
facilitate further research.

Supporting new deployment environments. Some identified works
proposed new FaaS deployment techniques, e.g., FaaS tools that enable
scheduling functions in multi-cloud environments based on performance or
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1.1 Preliminary Research

Table 1.1: The share of identified challenges with respect to the identified
publications (one publication might address several challenges)

Category Count Total Share

Function execution 36 / 62 58%

• Performance 26 / 36
• Security 5 / 36
• Long-running tasks support 2 / 36
• Fault tolerance mechanisms 1 / 36
• Function composition support 1 / 36
• Language runtime support 1 / 36

Deployment environments support 6 / 62 10%

Testing & observability 5 / 62 8%

Benchmarking 5 / 62 8%
Costs optimization 5 / 62 8%

Programming models 3 / 62 5%

Research-centric platforms 3 / 62 5%

Deployment automation 2 / 62 3%

Migration 2 / 62 3%

CI/CD pipelines 1 / 62 2%

Reference architecture 1 / 62 2%

cost preferences. Other examples aimed to support using FaaS in edge/fog
computing contexts, e.g., to run functions on edge devices for data pre-
processing. This group of challenges also highlights the need to represent
decisions on how an underlying FaaS platform is deployed when designing
FaaS-based applications, e.g., whether it is a self-hosted or a provider-
managed platform.

Testing and observability. A more tooling-related group of challenges
identified in the selected publications targeted testing, debugging, moni-
toring, and logging of FaaS-based applications. For example, prototypes
enabling tracing function dependencies or visualizing logs for FaaS-based
applications were introduced, highlighting the need in tooling supporting
FaaS-based application developers.
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1 Introduction

Benchmarking and costs optimization. Another identified category of
challenges is benchmarking, with related publications focusing on per-
formance and costs of running FaaS functions. For example, one of the
benchmarking approaches focuses on the so-called cold start [BCC+17]
issue and factors that influence it, i.e., how to address the increased startup
time for initial function calls. Additionally, certain identified publications
introduced tools for optimizing costs of running FaaS-based applications.

Programming models. A few identified papers focused on new pro-
gramming models for FaaS, e.g., enabling retroactive programming for
FaaS-based applications such that function execution histories could be
modified and replayed using event sourcing. Other examples include a
serverless programming language for orchestrating function executions
and a visual programming language for FaaS-based applications.

Migration, Deployment automation, and CI/CD. Deployment automation
for FaaS-based applications was considered rarely. Examples included
modeling and deployment of FaaS-based applications using Cloud Mod-
eling Languages (CMLs) such as TOSCA or CAMEL [BBF+18]. Addi-
tionally, one paper investigated how Continuous Integration/Continuous
Delivery (CI/CD) pipelines for such applications can be implemented. The
challenge of migrating legacy functionalities to FaaS was investigated
in two identified papers. The so-called faasification [Spi17; SD17] ap-
proaches aim to enable automated extraction of legacy code and deploying
it as FaaS functions.

While the conducted study showed different potential research directions,
the following research gap inspired the next steps of this work:

SEARCH Determining the Research Scope

The systematic analysis of state-of-the-art research literature focusing
on FaaS showed a strong community focus on designing efficient
FaaS platforms, whereas the research on engineering FaaS-based ap-
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1.1 Preliminary Research

plications was more scattered. In particular, the concepts and tooling
focusing on provider-agnostic design of FaaS-based applications and
mechanisms for transitioning from such models to chosen provider-
specific deployments were underrepresented, which inspired the next
research step, and the resulting vision of this thesis.

1.1.2 Analysis of Portability Challenges in FaaS Applications

FaaS-based applications can support a variety of use-cases, e.g., event-
driven data pipelines, serverless Application Programming Interfaces
(APIs), or advanced function orchestrations [Clo18] can all be implemented
by combining FaaS functions with multiple distinct provider-specific ser-
vices. However, the increased amount of provider-managed services in
resulting application topologies leads to a stronger lock-in as each involved
component relies on different service-specific data formats, APIs, and
custom configuration Domain-specific Languages (DSLs) [OST14]. FaaS-
related components introduce additional provider-specific dependencies,
e.g., event-driven bindings between functions and components or different
function orchestration modeling languages. To further investigate which
architectural considerations are relevant in the context of the identified
research gap, in the second preliminary research study, four common FaaS
use cases were implemented for a baseline cloud provider and manually mi-
grated to another two cloud providers, which enabled identifying relevant
technical vendor lock-in issues and documenting possible solutions aiming
to facilitate adapting to changes of provider-specific requirements.

The use cases were selected based on the analysis of common application
scenarios encountered in academic and gray literature [BCC+17; Clo18;
FIMS17; HFG+18] and designed to comprise heterogeneous components
types, e.g., different storage types. Moreover, the use cases were imple-
mented without optimizing them for portability and interoperability. AWS
was chosen as the baseline provider, whereas Microsoft Azure and IBM
Cloud were chosen as the other two providers.
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1 Introduction

Use Cases Overview

The first use case shown in Figure 1.2 is a common FaaS-based application
for generating image thumbnails. Here, clients can synchronously call the
Persist Image function over HTTP to upload an image in the Images object
storage bucket. After the image is stored, a corresponding “Image Stored”
event is emitted to trigger the Generate Thumbnail function, which creates
a thumbnail and stores it in the Thumbnails bucket. Since a thumbnail
must be generated for every uploaded image, the event connector [MMP00]
represents the mandatory trigger with at least once delivery guarantee.

Persist 
Image

Generate
Thumbnail

ImagesClient Thumbnails

Event 
ConnectorHTTP CallFunction

Object 
Storage 
Bucket

Legend

Data 
Access

“Image Stored” 
Event

Figure 1.2: Use Case 1: Thumbnail Generation

API composition and aggregation [BCC+17] is another common FaaS-
based application use case. Figure 1.3 shows a simple To-do List API
exposed using an API Gateway [Ric18] component, which provides Create-
Retrieve-Update-Delete (CRUD) functionalities for managing a list of to-
be-done tasks persisted in a NoSQL database. In this use case, clients
interact with the REST API via HTTP calls to respective endpoints, e.g., a
POST request with the item information sent to the /items resource to create
a to-do item. The API Gateway component is responsible for forwarding
client requests to the corresponding function that implements the respective
functionality, e.g., the Create Item function for creating to-do items and
storing them in the NoSQL database.
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Figure 1.3: Use Case 2: To-do List API

The third use case depicted in Figure 1.4 is an event-driven application
motivated by Internet of Things (IoT) scenarios in which data from mul-
tiple sensors have to be aggregated for further processing using message
queues and streaming platforms. Here, different event sources, e.g., sen-
sors, publish data to the Incoming Events Topic using the Event API as
shown in Figure 1.4. Similar to the To-do List API use case, an API Gate-

Normalizer 2

Normalizer 3

Incoming 
Events 
Topic

Normalized 
Events 
Queue

Events

Event 
Sources

Event ConnectorHTTP Call

Function

Legend

Data access

Relational Database

Insert
Event

Read Event Store Event
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way component is responsible for forwarding distinct HTTP-based API
requests to the corresponding functions, i.e., Insert Event and Read Event.
Published events are normalized using the corresponding format-specific
normalizer function and sent via the message queue to the Store Event
function that persists them in a Relational Database Management System
(RDBMS). The Store Event function is triggered whenever a published
event is stored in the message queue with at least once delivery guarantee.
This use case employs both publish-subscribe and point-to-point channels
to showcase more provider-specific messaging services.

FaaS platforms often do not support long-running tasks [HFG+18] due to
limited function execution times, which can hinder implementation of more
complex use cases. Employing the workflow technology[LR00] is one
potential solution: large functions can be split into smaller pieces of logic
and composed as function orchestrations [GSP+18] that can be enacted
using FaaS standalone orchestration services such AWS Step Functions or
Microsoft Azure Durable Functions. Thus, as the fourth implemented use
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case is a function orchestration. Figure 1.5 shows an orchestrated matrix
multiplication: a function orchestrator service enacts six FaaS functions
following the control flow defined in the orchestration model. The function
orchestration model in Figure 1.5 is shown in BPMN [OMG11], whereas
in practice it can be defined using general-purpose programming languages
such Python, or provider-specific DSLs such as Amazon States Language
(ASL) [GSP+18].

Use Cases: Implementation and Migration

Each use case application presented in Section 1.1.2 was first implemented
for AWS and then manually migrated to Microsoft Azure and IBM Cloud.
In the following, the implementation and migration details for each cloud
provider are described together with the summary of changes required for
successful migration of the baseline implementation. The main goal of
this study was to identify general categories of problems that could be
encountered when migrating FaaS-based applications instead of focusing
on specific limitations of certain offerings.

Baseline implementation for AWS. Table 1.2 provides an overview of the
use case implementation details for AWS. In all four cases, a different
programming language was used to implement functions for AWS Lambda,
the FaaS offering from Amazon. Provider-specific Software Development

Table 1.2: Baseline implementation details.
Use Case Prog. Lang. AWS Services
1: Thumbnail Generation Java Lambda, S3

2: To-do List API Go Lambda, DynamoDB,
API Gateway

3: Event Processing JavaScript Lambda, SNS, SQS, Aurora,
API Gateway

4: Function Orchestration C# Lambda, Step Functions

27



1 Introduction

Kits (SDKs) were utilized when possible, e.g., a Java library for working
with AWS S3 events or the SDK AWS provides for developing functions
in Go. The overview of used AWS services is also shown in Table 1.2,
e.g., AWS Step Functions service was used to model and enact function
orchestrations. Service types and the corresponding provider-specific
offerings are further discussed after the summary of migration efforts.

Table 1.3: Summary of modifications required for migrating the use cases
to target cloud providers.

Modifications Microsoft Azure IBM Cloud
Implementation language Use Case 21 None
Configurations Use Cases 1-4 Use Cases 1-4
Function code Use Cases 1-4 Use Cases 1-4
Orchestration model Use Case 4 Use Case 4
Architectural changes None Use Case 32

1 All code had to be re-implemented in C# due to unsupported programming language
2 Point-to-point channel had to be replaced with a publish-subscribe channel due to a lack
of compatible service offering

Migration to Microsoft Azure and IBM Cloud. In each use case, certain
modifications in function and/or configuration code were needed to suc-
cessfully migrate to one or both target providers. Table 1.3 summarizes
the changes and affected use cases – while certain modifications were
encountered rarely, others were needed in all cases. For example, function
code and configurations had to be modified in all use cases for all target
cloud providers. Likewise, function orchestration models also required to
be changed for each of the target providers to enable deploying them to
respective function orchestrators. In rare cases, change of programming
language or architectural modifications were needed, e.g., due to missing
support or lack of compatible offerings.

When migrating FaaS-based applications it is also necessary to identify
compatible service alternatives for each component type in the respective
application topology. For example, as shown in Table 1.3, a point-to-point
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Table 1.4: Mappings chosen for provider-specific service types.

Component Amazon Web
Services Microsoft Azure IBM Cloud

Function Lambda Functions Cloud Functions
Object storage S3 Blob Storage Object Storage
NoSQL
database DynamoDB Table Storage Cloudant

API Gateway API Gateway API Management Openwhisk API
Relational
database

Amazon
Aurora

Database for
MySQL

Compose for
MySQL

Messaging:
publish-
subscribe

SNS Service Bus Event Streams

Messaging:
point-to-point SQS Service Bus Event Streams

Function
orchestrator

Step
Functions Durable Functions Composer

channel in the Use Case 3 had to be changed when migrating to IBM Cloud
as no compatible provider-managed service offerings were available at
the time. Table 1.4 shows the cloud service mappings identified and used
for components in the use cases. Most function code and configuration
changes were required in the context of switching from service to service
due to differences in SDKs, APIs, event binding mechanisms, etc.

Lock-in Issues in FaaS-based Applications

To migrate the FaaS-based use cases, the most frequently encountered lock-
in issues were related to distinct application components, e.g., tackling
discrepancies between feature sets of specific service offerings. However,
more global lock-in issues were also present, e.g., changes to application
architecture or employed toolchains might be needed too. Most discussed
lock-in issues are commonly encountered in the context of cloud [Hoh19;
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OST14; SPSP14]. However, FaaS-based applications typically are even
more coupled since the out-of-the-box integration between FaaS platforms
and other provider offerings such as storage, messaging, or logging ser-
vices promote designing applications as compositions of multiple offerings
mainly managed by cloud providers. Thereby, the lock-in categories en-
countered for these FaaS-based use cases are discussed next in the direction
from local, component-level to global, application-level.

Lock-in: Implementation Requirements. Components in FaaS-based
applications are often built following provider- and service-specific imple-
mentation requirements, for example:

• Code implementation and packaging requirements: functions might
need to implement provider-specific interfaces, e.g., Java functions
for AWS Lambda in Use Case 1 (see Figure 1.2). Further, functions
are packaged as defined by providers, e.g., packaging for Azure
Functions is different from AWS Lambda. Function orchestrations
are also modeled as required by function orchestrators, e.g., orches-
tration from Use Case 4 (see Figure 1.5) had to be modeled using
three different languages.

• Format and data type dependencies: events emitted by provider
services such as object storage have different format and are passed
to functions differently, which requires adjusting the event handling
logic in function implementations.

• Library dependencies: to-be-migrated code might require adjust-
ments whenever functions rely on provider-specific libraries for
working with events or provider APIs.

One way to relax the coupling is to extract the business logic as libraries,
hence, separating it from provider-specific code responsible for service in-
teractions or handling inputs and outputs. Usage of provider-agnostic event
formats, e.g., CloudEvents specification [Clo22b], is another mechanism
that can help to abstract away the event processing.
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Lock-in: Configuration Requirements. Components and bindings in
FaaS-based applications must often be configured following provider- and
service-specific requirements. One example of a locked-in configuration
encountered for all use cases from Section 1.1.2 is how event bindings are
configured. For instance, AWS Lambda enables configuring triggers via
Graphical User Interface (GUI) or in AWS-specific deployment models,
whereas Azure supports configuring bindings for certain languages directly
in the source code using annotations. More general provider-specific
configuration examples include security-related settings or naming rules,
e.g., AWS S3 bucket must have globally-unique names, whereas Azure
Object Storage does not impose such requirement.

Lock-in: Features and Limitations of the Underlying Service Offering.
Components in FaaS-based applications are often locked into feature sets
of the respective service offerings chosen to host them, e.g., out-of-the-box
integration with other provider services. Moreover, as discussed previously,
components are often implemented adhering to specific requirements some
of which are dictated by the limitations of the chosen offering, e.g., function
execution time limits imposed by the underlying FaaS platform.

For instance, the event-driven function call via the point-to-point channel
in Use Case 3 (see Figure 1.4) can be implemented using the existing
binding between AWS Lambda and SQS. However, when migrating this
implementation to IBM, no such feature was available for corresponding
service alternatives (IBM MQ and IBM Cloud Functions). Likewise, the
programming language used for the baseline implementation of the Use
Case 2 (see Figure 1.3) was not supported by the corresponding service
alternative from Microsoft Azure.

More general examples include the reliance on GUIs: while function
orchestrations from Use Case 4 (see Figure 1.5) can be visualized in AWS
Step Functions, IBM Composer does not provide such feature. Strong
dependence on specific service features can complicate or even prevent
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finding suitable alternatives from other providers and, hence, requiring non-
straightforward solutions for migrating the component, e.g., re-engineering
or changing certain architectural decisions might be needed.

Lock-in: Architectural Style. Inability to deviate from the chosen archi-
tectural style can also affect the portability of FaaS-based applications.
For example, when a messaging system enabling point-to-point commu-
nication is not available in provider-managed flavor, one of the possible
solutions is to choose a service mainly managed by cloud consumers from
the list of available offerings of the target cloud provider.

A similar issue was encountered when migrating Use Case 3 (see Fig-
ure 1.4): a point-to-point channel was substituted with a publish-subscribe
channel eventually, but the target service was still mainly managed by
the cloud provider. Another option would have been to manually deploy
and integrate an open source messaging system. Likewise, open source
FaaS platforms can be hosted manually using less provider-managed ser-
vices such as managed Kubernetes clusters, which essentially enables
implementing more portable FaaS-based applications. However, setting
up FaaS platforms and integrating them with event emitting components
would require more effort from application developers, shifting towards
more user-managed deployment architecture. Therefore, the decision to
remain more provider-managed or relax the management constraints can
also influence how portable the application is.

Lock-in: Tooling. Tools employed for development, deployment, or ob-
servability of FaaS-based applications can also be a potential lock-in issue.
One example is deployment automation tooling – multiple providers offer
technologies supporting only provider-specific services, e.g., AWS Cloud
Formation or Azure Resource Manager enable automating the deployment
for the respective public clouds. While multi-provider solutions such as
Ansible, Terraform, or Serverless framework enable modeling deployments
for different target infrastructures, the resulting models are still provider-
specific due to configuration of provider services. Similar issues could
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be encountered for provider-specific monitoring and testing solutions or
custom CI/CD pipelines that might need to be adjusted of fully replaced
due to lack of support for new target environments.

Similar to other cases of product lock-in [Hoh19], usage of standards could
help to add more layers of abstraction, e.g., vendor-agnostic cloud modeling
languages such as TOSCA [Lip12]. Such standards-based deployment
models will still eventually have provider-specific parts, however, they
enable modularizing deployment logic using custom type systems which
could enable transitioning between different levels of abstraction.

A Summary of Observed Architectural Considerations

The problems encountered when migrating the use cases presented in Sec-
tion 1.1.2 show that even small-scale FaaS-based applications have high
numbers of provider-specific dependencies. Thus, introducing a generic ap-
proach that facilitates transitioning between general, provider-independent
architectural considerations for FaaS-based applications and product-
specific choices can be advantageous not only for reasoning on to-be-
implemented applications, but also for scenarios when existing applications
need to be migrated to another provider. Despite the constantly changing
landscape of provider offerings, the observed architectural considerations
remain topical and affect both the level of the entire application and single
components, as summarized informally in the following.

SEARCH Modeling of FaaS-based Applications

FaaS-based applications enable various architectural styles. Their
application models comprise fine-grained components mainly
hosted on single-purpose, provider-managed services and directly
resemble deployment architectures.
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FaaS-based applications can serve as enablers for various architectural
styles. For example, Use Cases 1 and 3 are based on Event-driven Ar-
chitectures (EDAs), whereas Use Case 2 realizes a simple Microservice-
based Architecture (MSA). Use Case 4 possesses characteristics of an
orchestration-driven Service-oriented Architecture (SOA) [RF20]. There-
fore, understanding which modeling techniques can represent general ar-
chitectural considerations for such heterogeneous component topologies
and how to enable transitioning to provider-specific decisions can facilitate
reasoning about FaaS-based applications.

SEARCH Component Management Trade-offs

Efforts needed to manage components in FaaS-based applications
depend on hosting options. Selecting more consumer-managed
options affects the “serverlessness” of application models.

Previously, the presented FaaS-based use cases were intentionally not
called serverless. Existing study [LWSH19] shows that this term is per-
ceived differently – from exclusively focusing on FaaS to a more inclusive
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Figure 1.6: Management trade-off examples for FaaS functions hosting.
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notion of applications composed using provider-managed services. FaaS
platforms indeed reduce management efforts since functions can be pro-
vided as code snippets and auto-scaled by the platform, but the way a FaaS
platform is hosted plays an important role too. The examples in Figure 1.6
show different management trade-offs for FaaS-hosted functions, e.g., host-
ing functions on provider-managed FaaS offerings such as AWS Lambda
requires less effort than using self-hosted FaaS platforms on user-managed
Virtual Machines (VMs). Expressing such decisions for components in
FaaS-based applications can help to transition from provider-agnostic mod-
els to specific services that fulfill desired management requirements.

SEARCH Classification and Selection of Components

Selection of hosting options for FaaS functions and other compo-
nents in the application relies on various managerial and technical
decisions that need to be combined and assessed with regard to the
capabilities of available service offerings.

Most migration issues encountered for the use cases were caused by the
baseline implementation decisions, e.g., chosen programming language,
reliance on service-specific features, etc. When aggregated together such
decisions can influence which service offerings can be considered suit-
able. Therefore, understanding how to classify FaaS-specific services and
supporting the selection of suitable service alternatives can facilitate the
decision-making process and transitioning from provider-agnostic archi-
tectural considerations to provider-specific details.

SEARCH Provider-specific FaaS Artifacts

Artifact-specific lock-in issues were encountered in all migrated
FaaS-based application use cases, i.e., function code and function
orchestration models always required re-engineering efforts.
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Although the way functions and their orchestrations have to be imple-
mented depends on the chosen cloud provider, the intended outcome of
executing such functions or orchestrations is often alike, e.g., a specific
data transformation task such as reducing an image to a thumbnail, or an
identical sequence of function executions that can be seen as a generic
workflow [LR00]. While provider-specific dependencies can be separated
using better code modularization, techniques enabling reuse of general-
purpose code, e.g., automated code extraction and wrapping, can simplify
transitioning between providers and reasoning about such code artifacts and
orchestration models in provider-agnostic manner. Therefore, such artifact-
level abstraction techniques can complement application-level abstractions
to postpone making provider-specific decisions.

1.2 Vision of the Work and Research Questions

The research trends and architectural considerations observed during the
preliminary research phase described in Section 1.1 showed the lack of
abstraction mechanisms that could help to postpone provider-specific de-
cisions when designing and implementing FaaS-based applications. The
vision of this work is, therefore, to provide application designers with a
set of abstraction and refinement mechanisms that enable model-driven
specification of FaaS-based application models and FaaS-specific arti-
facts they encompass independently of providers and their translation into
executable, provider-specific deployment models. Figure 1.7 shows the
high-level vision in which FaaS-based applications can be gradually re-
fined from an abstractly specified component topology to an executable,
provider-specific deployment model. This vision and its building blocks
pose several research questions that are discussed in the following.

Firstly, since FaaS-based application models are often tailored for a chosen
provider-specific infrastructure (see Section 1.1.2), to realize the vision of
this work, techniques for provider-agnostic modeling of FaaS-based appli-
cations are needed. This includes specification of components connectivity
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Figure 1.7: Vision: gradual refinement of FaaS-based applications.

information as well as component-specific requirements for FaaS-based ap-
plications independently of providers. Furthermore, modeling of decisions
on component hosting and management trade-offs, e.g., whether a provider
is responsible for autoscaling a component, needs to be supported too. In
addition, to benefit from such abstract application models, refinement mech-
anisms that enable transitioning to concrete, provider-specific variants are
needed. Therefore, the first research question focuses on provider-agnostic
modeling of FaaS-based applications and mechanisms that enable transi-
tioning between such abstract decision specifications to concrete, provider-
specific deployment models as shown in Figure 1.7:

? Research Question 1: Provider-agnostic modeling

How to express application- and component-level decisions for
FaaS-based applications in a provider-agnostic manner and how to
enable refining them into concrete provider-specific models?

When the decisions are abstractly expressed, a task that must precede the
refinement into executable deployment model is the selection of suitable
hosting targets for the components present in the model, which requires
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mechanisms for classifying component-specific services and supporting
the selection process. Despite the focus on FaaS-specific decisions, such
mechanisms have to be generic enough to support other component types
present in FaaS-based applications. Thus, the second research question
focuses on the topic of classification of components and generic ways
of describing component type-specific decision criteria, and using those
specifications to enable searching for component hosting options that fulfill
desired requirements:

? Research Question 2: Component Selection Support

How to classify components in FaaS-based applications and facili-
tate the selection of services based on given decision criteria?

Furthermore, the actual artifacts that implement FaaS-specific components,
i.e., function code and function orchestration models, can benefit from
abstracting provider-specific details as this could enable transitioning from
abstract to concrete decisions on the artifacts level. For example, function
orchestration models defined in a technology-agnostic way could be reused
for other providers. Likewise, code-level abstractions could facilitate
reuse of existing business logic, also on the level of abstract FaaS-based
application models. Hence, the third research question focuses on the
abstractions for FaaS-specific artifacts including function code and function
orchestration models:

? Research Question 3: Artifact-level abstractions

Which techniques can help developers to abstract away provider
details from function orchestration models and function code?

Finally, a toolchain supporting the described concepts is needed to enable
using them in combination, hence facilitating the envisioned translation
of abstract decisions for FaaS-based applications into provider-specific
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deployment models. This includes abstract decision modeling and their
refinement into concrete deployment models that can be enacted by com-
patible deployment automation technologies.

? Research Question 4: Tooling Support

What tooling support is required to enable the envisioned gradual
refinement of FaaS-based applications?

This thesis primarily focuses on cloud-first application design and devel-
opment and while the proposed research contributions can be expanded or
adapted towards migration of existing applications [ASL13], no discussion
is further provided on how the concepts introduced in this work can be
employed for migration scenarios.

1.3 Research Contributions

After presenting the vision of this work and the research questions in focus,
this section provides an overview of the research contributions that address
them. Figure 1.8 shows an overview of five research contributions that
enable the envisioned gradual refinement of FaaS-based applications. Con-
tribution 1 introduces a pattern language that captures various trade-offs
for hosting and managing application components. Next, Contribution 2
describes how components in FaaS-based applications can be classified
and how to support selecting services based on given decision criteria.
Contribution 3 introduces abstraction techniques for function orchestration
modeling and on the level of function code. Contribution 4 presents a
model-driven method for gradual refinement of FaaS-based applications
that combines the previously-introduced contributions using a generic meta-
model for FaaS-based applications. Contribution 5 enables employing the
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Figure 1.8: Overview of research contributions

aforementioned research contributions by means of a method-supporting
toolchain and presents the architecture of the toolchain and the prototypical
validation of the introduced concepts.

1.3.1 Component Hosting and Management Pattern Language

A part of Research Question 1 described in Section 1.2 is related to captur-
ing component hosting and management trade-offs in a provider-agnostic
manner, e.g., whether a FaaS function is hosted on a provider-managed plat-
form or using on-premises infrastructure. These decisions are influenced
not only by the underlying cloud service model such as IaaS or PaaS, but
also by specific features the corresponding services provide. For example,
provider-managed FaaS platforms often support deploying not only the
code snippets, but also container images as deployment artifacts blurring
the boundaries between container-centric services and FaaS platforms.
These variants differ in flexibility since container images enable running
custom dependencies with the function code. Additionally, the ways scaling
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configuration for the component is managed differ too: provider-managed
FaaS platforms auto-scale functions whereas for self-hosted platforms the
underlying boundaries are defined by developers, e.g., a VM quantity or
the size of the Kubernetes cluster. This problem is addressed by relying
on the concept of patterns and Pattern Languages (PLs) [AIS77] as the
well-established way to document and interconnect proven solutions to
problems recurring in specific contexts.

Contribution 1: Component Hosting & Management PL. This
contribution analyzes the existing trade-offs for hosting and manag-
ing application components and captures the common solutions in a
form of the Component Hosting and Management Pattern Language
that interconnects different management trade-offs and can be used to
find suitable hosting options for deploying application components.
The pattern language comprises nine patterns aligned with respect to
two management dimensions: (i) deployment stack and (ii) scaling
configuration management, forming a spectrum of hosting options
ranging from provider- to user-managed variants. Application com-
ponents can then be linked with the patterns to describe hosting and
management decisions in a provider-agnostic manner.

1.3.2 Component Classification and Selection Support

While the pattern language introduced in Contribution 1 can help to link
abstract decisions with provider-specific offerings, identifying suitable
hosting options based on decisions specified for component types such as
FaaS or Object Storage services requires classifying components and sup-
porting selection of suitable services (Research Question 2). While there
exist tools for comparison of specific component types, e.g., PaaS [Kol19],
similar classification mechanisms are needed for FaaS-specific services and
other component types constituting FaaS-based applications. Moreover,
support for searching suitable hosting options is needed for the envisioned
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refinement of abstract topologies into provider-specific deployment models.
Thus, the next contribution focuses on classification and selection support
for FaaS-specific services.

Contribution 2: Component Classification & Selection Support.
This contribution introduces a classification framework for FaaS
platforms derived using a systematic analysis of existing research and
gray literature. The resulting framework is then validated by applying
it to ten existing FaaS platforms (including commercial and open
source options) with the resulting platform data available publicly.
The introduced classification framework metamodel and selection
mechanisms also enable reusing these concepts for other component
types in FaaS-based applications.

1.3.3 Artifact-level Abstraction Techniques

FaaS-specific artifacts depend strongly on platform- or service-specific
requirements and can benefit from additional abstraction mechanisms,
which are necessary to address Research Question 3. Following the idea of
the gradual refinement of FaaS-based applications described in Section 1.2,
artifact-level abstractions belong to the level of single components, e.g.,
function orchestration models deployed to compatible function orchestrator
services, and can facilitate artifacts reuse. Hence, the next contribution
introduces abstraction mechanisms for function orchestration modeling
and conceptualizes how such artifact-level abstractions can be employed
on the level of abstract application models.

Contribution 3: Artifact-level Abstraction Techniques. This
contribution introduces a set of abstractions for FaaS-specific arti-
facts. This includes a concept for modeling function orchestrations
using Business Process Model and Notation (BPMN) [OMG11] and
transforming them into provider-specific formats. Furthermore, this
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contribution presents how abstract function orchestration models
and code extraction and packaging techniques can be employed in
abstract application models to enable their refinement for the chosen
provider-specific deployment models.

1.3.4 GRASP Method

To further address Research Question 1 from Section 1.2 and enable using
all previous contributions together, a way to represent provider-agnostic
decisions for FaaS-based applications and refine them into suitable provider-
specific deployment model variants is needed. To address this challenge,
the next contribution introduces a method inspired by the concept of gra-
dient of abstraction by Floridi [Flo08] that enables exploring a single
system using a set of interconnected Level of Abstractions (LoAs) that
describe this system from different perspectives represented by varying
sets of variables. For example, the wine topic can be discussed from dif-
ferent perspectives: “wine tasting LoA” would be different from “wine
cellaring LoA” as they are described by different sets of variables, e.g.,
“acidity” and “decanter time” for the former and the latter, respectively. The
general idea of the GRASP Method is, thus, to link the abstract decision
modeling for FaaS-based applications with concrete deployment stacks
using a set of different levels of abstraction for FaaS-based applications
introduced in previous contributions that are combined using a provider-
agnostic FaaS-based application metamodel. By transitioning between
different abstractions for FaaS-based applications, application developers
can gradually refine initial architectural considerations and interactively
explore the solution space.

Contribution 4: GRASP Method. This contribution introduces
the Gradual Refinement of Architectures of Serverless Applica-
tions (GRASP) method that enables using Contributions 1-3 together
via a provider-agnostic FaaS-based application metamodel to sup-
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port the envisioned refinement of abstract decisions into concrete
deployment models: Patterns introduced in Contribution 1 are used
to automatically transition from abstract hosting decisions to com-
patible provider-specific deployment stacks, which can then further
be pruned using concepts from Contribution 2. Finally, the artifact-
level abstractions presented in Contribution 3 enable code reuse for
identified concrete models.

1.3.5 Architecture, Implementation, and Validation

To address Research Question 4 and show the practical feasibility of the
research contributions, an architecture and a prototypical implementation
of the toolchain enabling the vision of gradual refinement for FaaS-based
applications is presented.

Contribution 5: Architecture, Implementation, and Validation.
This contribution presents a toolchain architecture and a prototype
that enables the GRASP method and concepts introduced in all other
contributions of this thesis. The introduced toolchain supports graph-
ical, pattern-based modeling of FaaS-based applications, search for
service offerings based on the specified requirements, and interactive
refinement into provider-specific deployment models.

1.4 Scientific Publications

The research efforts that underpin the contributions of this thesis have been
published in various peer-reviewed journals and conference proceedings.
These publications are listed below in reverse chronological order.
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contributed to the results of this work. RADON deliverables are publicly
available on the official website (see https://radon-h2020.eu). Proceed-
ings of the seminar on serverless computing are available via Dagstuhl
Research Online Publication Center:

• C. Abad, I. T. Foster, N. Herbst, and A. Iosup. “Serverless Comput-
ing (Dagstuhl Seminar 21201)”. In: Dagstuhl Reports 11.4 (2021).
Ed. by C. Abad, I. T. Foster, N. Herbst, and A. Iosup, pp. 34–93.
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1.5 Structure of the Thesis

Prior to presenting the contributions, Chapter 2 elaborates on the rele-
vant background concepts and positions the existing related publications
with respect to the research contributions presented in this thesis. The
remainder is structured following the order of contributions presented
in Section 1.3:

Chapter 3 (Contribution 1): introduces a pattern language for hosting and
management application components that enables expressing man-
agement trade-offs for components in a provider-agnostic manner.

Chapter 4 (Contribution 2): presents the classification framework and se-
lection support system for FaaS platforms and generalizes the em-
ployed approach to other component kinds that could constitute
FaaS-based applications.

Chapter 5 (Contribution 3): focuses on two kinds of artifact-level abstrac-
tions, namely (i) abstract modeling and transformation of function
orchestration models and (ii) function code-level abstraction tech-
nique inspired by the idea of faasification.

Chapter 6 (Contribution 4): continues addressing the topic of provider-
agnostic modeling by presenting the GRASP Method for exploring
provider-specific deployment alternatives for abstractly-described
FaaS-based applications.
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Chapter 7 (Contribution 5): introduces the architecture and prototypical
implementation of a toolchain enabling the vision of gradual refine-
ment of FaaS-based applications.

Finally, Chapter 8 concludes this thesis by summarizing the findings, dis-
cussing the advantages and limitations of proposed concepts, and outlining
the potential future research opportunities.
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Fundamentals and
Related Work

E ssential fundamentals are presented in this chapter together
with an analysis of the relevant state-of-the-art research. Sec-
tion 2.1 discusses the concepts of cloud and serverless computing,

and FaaS-based applications. Next, Section 2.2 focuses on relevant as-
pects of engineering applications for the cloud: in particular, it discusses
(i) the general-purpose and FaaS-centric application modeling approaches,
(ii) elaborates on the topic of function orchestration, (iii) analyzes relevant
abstraction mechanisms, and (iv) discusses patterns and pattern-based
design approaches. Finally, Section 2.3 analyzes existing approaches fo-
cusing on classification and decision support for selecting cloud services,
discussing research focusing on FaaS and other component types. FaaS
research was systematically analyzed by repeating the initial search phase
from Section 1.1.1 in September 2022. Relevant publications in more
general domains were collected and analyzed using Google Scholar search
until reaching theoretical saturation [SRF16].
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2.1 Serverless Computing & Function-as-a-Service

The ever-increasing reliance on cloud computing [MG11] can be attributed
to the considerable advantages it brings to application developers includ-
ing rapid elasticity [HKR13] and continuous deployment on a global
scale [IB18]. Compared to on-premises environments, cloud comput-
ing significantly facilitates the management of infrastructure resources,
thus reducing costs and decreasing time-to-market. Furthermore, various
abstraction layers represented by different cloud service models, such as
IaaS, PaaS, or SaaS, enable flexibly balancing infrastructure management
efforts and the preferred characteristics of the development and operations
processes, e.g., building applications using container orchestration engines
or deploying them to more provider-managed PaaS offerings [Kav14].

Serverless computing is a novel paradigm [BCC+17] that continues the
trend of shifting the infrastructure management responsibilities from cloud
consumers to cloud providers. While the term “serverless” can be encoun-
tered in other contexts [FIMS17], e.g., peer-to-peer systems [YKK03] or
RFID protocols [TSL08], in the cloud computing context, this term often
refers to an architectural style focusing on applications developed as com-
positions of components hosted on provider-managed service offerings.
The varying perception of serverless computing and the concepts it encom-
passes is highlighted in existing research [LWSH19]: while typically the
term is associated exclusively with FaaS, other kinds of cloud services that
do not require extensive management efforts are often deemed relevant
too. The white paper on serverless computing by Cloud Native Comput-
ing Foundation (CNCF) [Clo18] also distinguishes two main serverless
variants: Backend-as-a-Service (BaaS) and FaaS.

The term BaaS typically refers to application backends that are engineered
as compositions of provider-managed APIs and do not rely on servers in a
traditional sense. In contrast, FaaS is a cloud service model that enables
developers to host arbitrary and typically short-lived code snippets that
can be executed in an event-driven manner. Depending on the request rate,
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functions are automatically scaled by providers including scaling to zero
instances when no execution is necessary. The programming model behind
FaaS shifts infrastructure management tasks to cloud providers, which
simplifies managing business logic components in FaaS-based applications
and improves their utilization [AC17; BCC+17].

Due to the limited execution time of FaaS-hosted functions [AC17],
the application state is typically externalized to other kinds of provider-
managed services [BGS20] such as AWS S3 [Ama22b] or Azure Cos-
mosDB [Mic22], which also exhibit similar characteristics as FaaS, e.g.,
AWS S3 abstracts away the hosting- and management-related details re-
garding user-created buckets giving an impression of missing servers.
Therefore, FaaS-based applications typically comprise other kinds of com-
ponents such as storage, messaging, logging, or monitoring, which are
often implemented using provider-managed offerings. While proprietary,
provider-managed platforms such as AWS Lambda [Ama22b], Microsoft
Azure Functions [Mic22], or IBM Cloud Functions [IBM21] reduce man-
agement efforts for application developers, open source FaaS platforms
such as Apache Openwhisk [Apa22b] or OpenFaaS [Ope22] offer more
customization options, e.g., they can be installed on container orchestration
engines such as Kubernetes [The22c].

Serverless, FaaS-based architectures grow in popularity due to reduced host-
ing and management efforts as well as high scalability [ESE+21]. Existing
research analyzing characteristics of publicly-available FaaS-based applica-
tions shows that this style does not prioritize any particular application type:
while there are common FaaS-based scenarios such as serverless APIs or
stream processing, FaaS-based applications are also used in other scenarios
including complex data analysis and latency-critical tasks [ESV+21]. The
increasing numbers of research published on the topic [YBLW19] is a
good example of how FaaS is constantly being employed in various novel
domains and contexts, e.g., building chatbots [LMM18; YCCI16], data
processing [AIVP18; GMC19; SVSG18], scientific computing [SMM18],
training and serving machine learning models [FKDH18; IMS18], edge and
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fog computing contexts [BFG17; ILM+20], implementation of web com-
ponents [AG17], processing Operating System (OS) commands [KY17],
disaster management [ARI+18] and many others.

FaaS-based applications can exhibit event-driven behavior and also com-
prise orchestrated components since FaaS platforms can be employed in
different operational styles [EGE+19]: (i) function execution that repre-
sents general function invocation based on the incoming events or direct
calls, and (ii) workflow execution that represents orchestration of FaaS func-
tions using workflow models [LR00] that specify the desired execution
order using common control flow constructs such as sequence or parallel
branching [AHKB03; RTVM06]. Such function orchestration models can
then be enacted using external function orchestrators [GSP+18]. Multiple
cloud providers offer orchestration services, e.g., AWS Step Functions,
Azure Durable Functions, or IBM Composer. Additionally, there exist open
source function orchestration engines that can be combined with installable
FaaS platforms, e.g., Apache Openwhisk Composer can execute function
compositions for Apache Openwhisk [Apa22c]. This kind of function
orchestration technologies typically support only custom modeling formats
that are not compatible with other orchestration engines.

Despite the aforementioned benefits, FaaS-based applications possess some
well-known limitations [HFG+18]. For instance, the topic of stateful func-
tions attracts research interest [BSS+22] since FaaS platforms often re-
strict the function execution time, which requires externalizing application
state to various storage offerings, e.g., object storage or RDBMS. The
so-called cold start problem is another well-known issue of FaaS: the time
required to instantiate functions for processing initial requests is signifi-
cantly longer than for subsequent requests that are processed by already
available function instances [MEHW18]. The lack of standards and the in-
creased dependency on provider-specific services are also among relevant
issues [CIMS19; Hoh22b]. Further, despite the cost reduction [VGO+17],
it was also shown that for certain scenarios the pay-per-use pricing model of
FaaS incurs higher costs than when using traditional cloud service models
such as IaaS [Eiv17].

54



2.2 Architecting Cloud and FaaS-based Applications

Serverless and FaaS-centric research is blooming, with multiple topics
being researched and a strong focus on the performance engineering as-
pects [EIA+18]. One of the recent studies [WCL+21] reinforces the insights
obtained in the preliminary research phase: the challenges related to ap-
plication design, deployment, and environment configuration as well as
the low-code development constitute a substantial portion of questions
asked by practitioners interested in FaaS-based applications. This thesis fo-
cuses on abstractions for engineering FaaS-based applications for existing
offerings rather than on engineering custom FaaS platforms. Thus, the liter-
ature analysis presented next focuses on general-purpose and FaaS-specific
cloud application modeling, model and code abstraction mechanisms, and
service classification and selection.

2.2 Architecting Cloud and FaaS-based Applications

Whether it is migration of legacy applications [ABLS13] or cloud-native
development [Ada17; LBWW17], engineering for the cloud requires deep
understanding of the mechanisms behind various cloud service models and
desirable properties of cloud applications: Lifting and shifting legacy soft-
ware or green-field implementation of IaaS-hosted monoliths could often
nullify the advantages of cloud [LFWW16]. Fehling et al. [FLR+14] iden-
tify the following IDEAL properties of cloud-native applications: (i) Iso-
lation of state, (ii) Distribution, (iii) Elasticity, (iv) Automated Manage-
ment, and (v) Loose coupling. Indeed, the distributed nature of cloud
computing [BCK21] is well-aligned with SOA as it promotes better decou-
pling of components and loose coupling [Var10]. The rising popularity of
MSAs [New15; Ric18] in the cloud reinforces this observation as MSA
can be seen as a descendant of SOA [Zim17].

Works from industry and academia [CLFG15; Var10] highlight that cloud
applications need to be designed for (i) fault tolerance since component
instances are volatile, and (ii) scalability since cloud infrastructure can be
easily scaled on-demand, which also favors parallelism. Due to volatility
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of cloud resources, a special emphasis is put on deployment automation,
which promotes the transparency of infrastructure changes [CLFG15] and
enables CI/CD of cloud applications [HF10]. Further, since component in-
stances might easily fail, the organized collection of logging and monitoring
data becomes mandatory [CLFG15]. In addition to pre-cloud application
security guidelines, all cloud layers must also be secured including protec-
tion of data in transit and at rest, management of credentials and access
permissions, and timely updates of application dependencies [Var10].

A large variety of as-a-service offerings [Sch09] enables flexibly combining
different infrastructure resources and functionalities to implement cloud
applications, e.g., monitoring and load balancing components can be im-
plemented using dedicated provider offerings. Typically, provider-specific
services impose various restrictions [CLFG15] such as the use of cus-
tom technologies and formats. The issue of locking into product-specific
requirements and characteristics is well-known [Gre97] and appears in
many contexts [Hoh19; OST14]. Heterogeneity of cloud offerings and
their distinct requirements becomes an additional obstacle for engineer-
ing cloud applications [HK10]. While designing and implementing for
product-specific requirements is not often perceived as an issue [CLFG15],
provider-agnostic reasoning can simplify making decisions for implement-
ing new and migrating existing applications. Considering how rapidly
provider offerings evolve, the substitution of services can become a neces-
sity, e.g., due to the change of technology, cost optimization, unreliable
Quality of Service (QoS), or legal requirements [Pet11].

In this context, a common recommendation is to employ well-established
standards [Lip12; SRC13]. The complexity of cloud infrastructures and fo-
cus on their automated management for implementing continuous delivery
pipelines [HF10] inspired numerous cloud modeling languages [BBF+18]
as an alternative to more traditional architectural languages and techniques.
In the following subsections, general and FaaS-centric modeling concepts
are discussed together with the analysis of state-of-the-art abstraction
mechanisms for engineering FaaS-based applications.
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2.2.1 General Modeling Approaches

Models are vital for abstracting the reality to reason on the required purpose
and there exist various modeling approaches such as closed-form mathe-
matical representations, conceptual metaphors, or linguistic formalisms
that facilitate describing different phenomena [RWLN89]. Since “all mod-
els are wrong but some are useful” [Box79], the appropriateness of a model
and its abstraction level for a given task is of utmost importance [RWLN89].
Model Driven Engineering (MDE) is a paradigm that employs models as
first-class citizens in software engineering processes [Ken02]. MDE relies
on the concept of Model Driven Architecture (MDA), which separates
the specification of system functionalities from their implementations for
specific target platforms [OMG14]. In MDA, system functionalities are
described using so-called Platform Independent Models (PIMs), which
capture the structure and functionalities without technical details, whereas
Platform Specific Models (PSMs) represent platform-specific implemen-
tation details. Various scenarios become possible using different kinds
of mappings between such models, e.g., refinement of designs (PIM to
PIM), refinement to different targets (PIM to PSMs), or mining abstrac-
tions (PSM to PIM) [Ken02]. MDE is widely-used in the context of cloud
applications with multiple languages and modeling approaches aiming to
facilitate various aspects such as model verification or code generation.

When it comes to architecture models, Bass et al. [BCK21] distinguish
three major categories of structures, namely (i) component and connector,
(ii) module, and (iii) allocation structures. Component and connector struc-
tures focus on interaction among components: typically, this is represented
using Directed Acyclic Graphs (DAGs)-based models in which nodes
represent different types of components at runtime and edges represent
various connector types among them, e.g., synchronous or event-driven
calls [MMP00]. These structures are crucial for assessing runtime charac-
teristics, such as performance, availability, or security. Module structures
capture which modules, e.g., classes and layers, constitute the system
and how they are related. These structures are crucial for reasoning on
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functional responsibility assignments and inter-module dependencies. Al-
location structures capture how software parts are mapped, e.g., to test
and execution environments [BCK21].

Software architectures can be specified using Architecture Desciption
Languages (ADLs) – many domain-specific and general-purpose lan-
guages have been proposed over the past decades [MT00], e.g., Ae-
sop [GAO94], Darwin [MDEK95], or ArchiMate [LPJ10]. Medvidovic
and Tailor [MT00] describe the following core building blocks, which any
ADL must enable specifying explicitly: (i) components, (ii) connectors,
and (iii) architectural configurations. Modeling of interfaces for compo-
nents that constitute an architecture must also be supported since without
this information the architectural model becomes “a mere boxes and lines
diagram” [MT00]. Another important criterion highlighted by Medvidovic
and Tailor is that the usability and usefulness of an ADL is rendered by
maturity of the accompanying toolset.

Architecture interchange languages such as ACME [GMW10] aim to
enable mapping among architectural specifications in different ADLs:
Such interchange between ADLs is achieved in ACME by capturing the
“least common denominator semantics” of existing ADLs, which includes
(i) components, (ii) connectors, (iii) points of communication with com-
ponents (ports) and connectors (roles), (iv) so-called representations for
hierarchical, lower-level descriptions of components or connectors, and
(v) so-called rep-maps for associating internal system representations with
external interface, e.g., associate internal and external ports [GMW10].
Any other information in ACME is modeled as property lists with no
language-specific means to understand their semantics [MT00].

While general architectural approaches can be employed for modeling
cloud applications, often the underlying languages are too coarse-grained
and lack technical details. Perera and Perera [PP18] introduce a rule-based
framework for the automated creation of high-level microservice and FaaS-
based architecture models. System requirements, e.g., intended APIs and
data storage, read/write privileges and expected client applications, are
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collected as inputs to generate high-level architecture models fulfilling
those requirements. The generated component-connector views, however,
lack specifics and require extra effort when used in the context of modeling
FaaS-based applications, e.g., extending component types and connector
semantics, modeling of deployment artifacts, and specification of QoS
requirements. A more comprehensive method by Lehrig et al. [LHB18]
enables efficient creation of architecture models based on reusable archi-
tectural templates that formally capture best practices concerning, e.g.,
architectural styles and patterns. Architecture models can be iteratively re-
fined using suitable templates and used for analyzing the QoS requirements
for resulting architectures.

Unlike more abstract, general-purpose architecture languages, CMLs can
be viewed as DSLs that aim to facilitate specifying applications in het-
erogeneous cloud infrastructures for different scenarios, e.g., cloud-native
development or model verification [BBF+18]. Existing research [BBF+18]
shows that CMLs often differ in scope, which includes (i) their intended
purpose such as modeling architectures or generation of component im-
plementations, and (ii) supported target cloud environments, e.g., specific
cloud providers and service models. Underlying language characteristics of-
ten differ too, e.g., support for extensibility via ontological typing [Küh06],
realization as an internal or external DSL [Fow10], or support for visual
modeling [Moo09]. Moreover, a substantial part of available CMLs focus
on the specification of deployment architectures [BBF+18] – typically
as topologies of underlying components and their relations together with
deployment configuration details for one or more cloud infrastructures.
Additional modeling concerns such as QoS requirements are often spec-
ified using properties, policies (if such constructs are supported by the
underlying language), or annotations.

Various cloud-centric approaches focus on specific subsets of offerings,
e.g., IaaS or PaaS, which makes extensibility a crucial characteristic of the
underlying language. For instance, Liu et al. [LLM11] introduce Cloud
Orchestration Policy Engine (COPE), a framework for modeling VM-based
cloud resources orchestration as a constraint optimization problem, which

59



2 Fundamentals and Related Work

can then be resolved into orchestration commands using the COPE solver.
Di Cosmo et al. [DMZZ14] introduce Aeolus, a VM-centric component
model for cloud environments that enables representing components with
inter-component dependencies and conflicts, and non-functional require-
ments such as load limits. Ábrahám et al. [ÁCJ+16] present Zephyrus2, a
tool for solving deployment optimization problems for VM-based appli-
cations that employ the Aeolus component model. Zhou et al. [ZHS+18]
introduce CloudsStorm, a framework facilitating the deployment and man-
agement of VM-based cloud applications. A YAML-based DSL is used
for modeling deployments and a management engine is used to enact the
deployment and enable the management of deployed applications, e.g.,
auto-scaling or failure recovery. Gesvindr et al. [GGB20] present a model-
driven approach and tooling for performance evaluation of PaaS-based
architectures, which are modeled as collections of one or more compo-
nents, one or more cloud resources, and an optional collection of entities
representing data models. Resulting models are validated and, if valid, are
used for the generation and compilation of a functional prototype. This
prototype is then deployed with automatically generated sample data for
benchmarking the created PaaS-based architecture. While potentially appli-
cable, such approaches require an extra effort for supporting FaaS-specific
modeling on the language and tooling levels.

Several CMLs-based approaches focus on modeling for multi-cloud set-
tings with the underlying languages typically providing extensibility mech-
anisms and corresponding toolchains for the enactment and manage-
ment of deployments. Leymann et al. [LFM+11] introduce the MOCCA
method (MOve to Clouds for Composite Applications) and a toolchain
to facilitate moving applications to cloud infrastructures. In MOCCA,
an architectural model of a given composite application is created and
enriched with additional information such as deployment parameters and
implementation artifact details to enable automated derivation of cloud
distribution models, i.e., placement of components in multi-cloud environ-
ments. The MOCCA method relies on a metamodel that is based on labeled
typed graphs, which enables representing various levels of abstractions,
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e.g., coarse-grained architecture models similar to ACME or more con-
crete models with labels specifying deployment-related details as in CMLs.
The introduced tooling enables graphical modeling of various models and
enacting the deployment using the Cafe tool [MUL09]. The Methodology
for Architecture and Deployment of Cloud Application Topologies (MAD-
CAT) [INS+14] follows similar ideas: using multiple levels of abstraction,
a cloud application model can be refined from coarse-grained component-
connector models to deployment models. In MADCAT, coarse-grained
architecture models are first refined into architectural units that represent
technology-agnostic functional concerns, e.g., storage or computation.
These architectural units can then be refined using decision trees into tech-
nical units, which represent techniques or patterns that can implement
architectural units. Finally, the technical units are refined into deployment
units representing actual, concrete deployments for those units.

Andrikopoulos et al. [AGLW14] introduce a variation of graph-based mod-
eling relying on type graphs with inheritance. This approach enables
flexibly exploring viable application deployment alternatives on different
concrete cloud offerings relying on inheritance relations between abstract
and technology-specific nodes, e.g., Ubuntu and Debian Linux inherit
from an abstract Operating System node. Ferry et al. [FCS+18] present
CloudMF, a framework for multi-cloud deployment of applications that
relies on the CloudML language, which enables modeling multi-cloud
application topologies following the MDE principles by differentiating
between provider-independent and provider-specific models. Furthermore,
the framework is capable of deriving deployment and adaptation plans
based on provided CloudML models to enable the reconfiguration of ap-
plications at runtime.

Cloud Application Modelling and Execution Language (CAMEL) [AKR+19]
is a CML and ecosystem of tools for management of multi-cloud appli-
cations at design time and runtime, which comprises several DSLs to
cover different management aspects, e.g., modeling of requirements, met-
rics, scalability, and deployment modeling based on the metamodel of
CloudML. Models created in these different DSLs are used for generating
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suitable deployment plans for modeled applications, as well as plans for
their reconfiguration and adaptation at runtime. Additionally, there exist
special-purpose approaches focusing on particular quality attributes, e.g.,
Bocci et al. [BGF+22] introduce a declarative, security-centric approach
for modeling cloud applications to enable analyzing whether components
leak sensitive data and partitioning the application to avoid such leaks.

Standardized by OASIS, Topology and Orchestration Specification for
Cloud Applications (TOSCA) [OAS20] is a CML promoting provider-
agnostic modeling of cloud applications [Lip12], which supports onto-
logical typing and is easily extensible for custom purposes. Application
are modeled in TOSCA as so-called Service Templates: Figure 2.1 shows
the structural elements that comprise them. A Topology Template is a
DAG in which nodes represent components of some type and edges de-
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Figure 2.1: Core TOSCA Modeling Constructs [OAS20].
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scribe how they are related, e.g., hosting and connectivity relationships.
In TOSCA terms, the types of components and relationships are defined
as reusable Node Type and Relationship Type definitions that comprise
various type-specific properties, respectively. As multiple components of
the same type can be present in the model, in Topology Templates these
types are instantiated as Node and Relationship Templates that represent
instances of components and their interactions.

To connect various nodes in TOSCA they need to have matching Capabili-
ties and Requirements, e.g., a hosting requirement of an “Apache Tomcat”
can be matched with the capability of an “Ubuntu Linux” node. Both
Node and Relationship Types can specify interfaces that group lifecy-
cle operations such as “create” or “configure” that can be enacted by a
TOSCA-compliant deployment automation engine – actual implementa-
tions of these operations, e.g., in Ansible or Terraform, can be provided as
TOSCA Implementation Artifacts. A deployed application is an instance
of the modeled topology, which is created by running an ordered set of
deployment steps – a Workflow in TOSCA terms. Such workflows can
be derived automatically by the deployment automation engine or spec-
ified explicitly. In addition, non-functional and QoS requirements for a
modeled application can be defined using TOSCA Policies, which are
also specified as reusable Policy Types and can be instantiated as Policy
Templates [OAS20].

Multiple TOSCA-based approaches and toolchains enable representing
cloud applications as TOSCA Service Templates and deploying them to
target infrastructures using compliant deployment orchestration engines.
OpenTOSCA [BBH+13] is a software ecosystem for modeling, deploying,
and managing cloud applications with TOSCA, which supports Extensible
Markup Language (XML) and YAML Ain’t Markup Language (YAML)
versions of the standard. OpenTOSCA includes Eclipse Winery [KBBL13],
a graphical modeling environment for representing application topologies
graphically. Produced application models can be deployed using Open-
TOSCA Container, a deployment orchestration engine, which supports
the automatic generation of imperative deployment models. EU Hori-
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zon 2020 project SODALITE [KQR+22] is a TOSCA-based toolchain for
modeling and deployment of applications to heterogeneous infrastructures
including cloud, edge, and High Performance Computing (HPC) environ-
ments. Bogo et al. [BSNB20] and Brogi et al. [BRS18] introduce distinct
TOSCA-based solutions for deployment of multi-service applications with
the focus on containerized components and without supporting deployment
of component orchestrations. Tsagkaropoulos et al. [TVC+21] propose a
TOSCA-based approach for modeling edge and fog deployments, which
also incorporates constructs for modeling FaaS functions without support
for modeling function orchestrations. DesLauriers et al. [DKA+21] present
MiCADO, a TOSCA-based multi-cloud orchestration framework that fo-
cuses on portable modeling of cloud applications and portable deployments
to IaaS offerings.

In addition, there exist a variety of general-purpose deployment modeling
approaches suitable for modeling FaaS-based applications. As deployment
models can be defined both imperatively and declaratively [EBF+17], dif-
ferent kinds of technologies and underlying languages fit here. Imperative
deployment models describe required deployment control flow explicitly,
e.g., using workflow modeling languages [LR00] such as BPMN [OMG11].
Declarative models enable the programming style “where you say what
you want done, but not how to do it” [AU22] and are commonly used
for deployment modeling [EBF+17], e.g., modeling languages employed
by technologies like Terraform [Has22] or Kubernetes [The22c] hide the
imperative “hows” of the deployment process. The term Infrastructure-
as-Code (IaC) [Mor20] is frequently used in the context of declarative
deployment models: Major cloud providers offer provider-specific deploy-
ment automation services, e.g., AWS CloudFormation [Ama22b] enables
modeling deployments for AWS resources using a custom DSL, Azure
Resource Manager [Mic22] relies on a custom DSL for modeling Azure
deployments, and Google Cloud Deployment Manager [Goo22] has a DSL
for modeling deployments in Google Cloud. General-purpose deploy-
ment automation and infrastructure configuration technologies provide
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custom DSLs too: Terraform [Has22] relies on Hashicorp Configuration
Language (HCL) and Ansible [Red22] uses a YAML-based language for
specifying Ansible playbooks.

Efforts similar to architectural interchange languages exist for CMLs: Gen-
eralized Topology Language (GENTL) [ARSL14] is an example topol-
ogy modeling interchange language and tooling that aim to enable map-
pings between various topology-centric languages via a generic metamodel.
GENTL enables specifying various additional information in the topology
using typed annotations. Moreover, with the intention to capture the core
semantics of deployment modeling languages, Wurster et al. [WBF+19]
introduce the Essential Deployment Metamodel (EDMM) by analyzing
most popular deployment automation technologies and underlying lan-
guages. EDMM captures essential modeling constructs present in analyzed
technologies. Additionally, a toolchain that enables EDMM-compliant
modeling in TOSCA and subsequent transformation of the resulting mod-
els into technology-specific formats, e.g., Kubernetes or Terraform, is
presented [WBB+19; WBH+20b].

Based on the presented analysis of various modeling approaches and the
observations from Section 1.1, several characteristics of a preferred CML
for modeling FaaS-based applications can be highlighted. Firstly, to accom-
modate for heterogeneous component types in multi-cloud settings, the
CML should support multiple cloud service models and cloud providers.
Furthermore, to simplify incorporating novel provider-managed services,
a CML needs to be easily extensible, which makes languages with onto-
logical typing more practical [BBF+18]. In addition, the language should
provide modeling constructs for the specification of various QoS require-
ments. Finally, to support the use of code-level abstractions, the language
should enable explicit modeling of deployment artifacts such as packaged
functions or function orchestration models. TOSCA, CAMEL, and generic
metamodels such as MOCCA or EDMM possess these characteristics,
with TOSCA, CAMEL, or EDMM being more suitable candidates for the
stated task due to the actively-maintained toolchains.
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2.2.2 Approaches for Modeling FaaS-based Applications

The landscape of FaaS- and serverless-oriented tooling is rapidly evolv-
ing, with multiple modeling approaches listed on CNCF Serverless Land-
scape [Clo22a] focusing on deployment modeling. For example, AWS
SAM [Ama22e] is a framework for building serverless applications from
AWS in which the application structure and configurations are described
in a cleaner and more concise way than using AWS CloudFormation,
their general-purpose deployment modeling offering. Another example is
Serverless Framework [Ser22b] is an open source framework for modeling
deployments of FaaS-based applications for different FaaS platforms. This
framework relies on a DSL for specifying the structure and configuration
of FaaS-based applications, but due to significant differences among FaaS
platforms, the modeling constructs and the resulting models are platform-
specific. Often, FaaS platforms provide some mechanisms to facilitate
function deployment, e.g., Apache Openwhisk has a DSL for describing
function deployments and OpenFaaS provides a GUI for deploying func-
tions. However, being developed for specific (and often single) purpose,
the industrial tooling and underlying models are often tailored for particular
infrastructure and lack desirable CML characteristics such as ontological
typing or means to model QoS requirements.

Multiple FaaS-centric research approaches rely on directed graphs, encod-
ing different semantics into nodes and edges depending on the purpose of
the model. Winzinger and Wirtz [WW19] present a graph-based model
in which nodes represent functions/resources and edges describe different
interaction semantics, e.g., direct calls between functions, storage read and
write operations. Various kinds of annotations can be used to represent
additional semantics such as synchronicity of calls or access rights. Lin
and Khazaei [LK21] use DAG-based models for optimizing performance
and costs of FaaS-based applications. Elgamal et al. [ESNA18] intro-
duce concepts for optimizing costs of running FaaS–based applications.
Applications are modeled as DAGs in which nodes represent functions
and edges represent dependencies among them – these models are used
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to derive cost graphs that represent various placement options for those
functions (including cases when some functions are fused together) on
cloud and edge resources. Other kinds of modeling approaches include,
for example, a Petri nets-based model [TCBR21] of FaaS-based applica-
tions to reason about capacity and cost planning for the deployment of
FaaS functions. The model is intended to help exploring various design
and deployment scenarios by experimenting with different configurations
of a FaaS-based applications such as different costs, execution times, or
kinds of resources. Further, Moczurad and Malawski [MM18] present a
visual-textual modeling approach for FaaS-based applications using the
Luna, a functional, statically typed programming language that combines
a textual representation of source code with a graphical view in the form
of dataflow graphs. The approach introduces the extensions to the Luna
toolchain to enable modeling, configuring, and invoking FaaS functions
for AWS Lambda to provide a more intuitive development experience.

Many research works focus on modeling deployment architectures. In ap-
proach by Wurster et al. [WBK+18], FaaS-based applications are modeled
as directed typed graphs with edges encoding dependencies among compo-
nents of the application using TOSCA. For example, hosting relationships
and event bindings can be implemented and automatically configured by
compliant deployment orchestration engines using this approach. Kritikos
et al. [KSMM19] propose extensions to CAMEL, which enable modeling
and deployment of FaaS-based components including functions, event
bindings, and event sources. Samea et al. [SAA+19] present a Unified
Modeling Language (UML) Profile for Multi-Cloud Service Configura-
tion (UMLPMSC) in event-driven serverless applications. This profile
enables modeling functions and resources for different providers and uses
events as first-class citizens in the model; however, it does not consider mod-
eling function orchestrations and code artifacts. Sokolowski et al. [SWS21]
introduce a modeling language and a deployment automation engine to
enable continuous coordinated deployment of serverless applications main-
tained by distributed teams. This approach enables different teams to
model their deployments separately, which are then continuously coor-

67



2 Fundamentals and Related Work

dinated by the deployment engine that verifies and satisfies inter-stack
dependencies. The authors discuss that their approach can be used in
synergy with EDMM-based deployment models [WBF+19] that could
provide a global application view. Pelle et al. [PPSC21] present concepts
and a framework for automated and adaptive deployment of functions to
edge or cloud offerings of AWS. FaaS-based applications are modeled as
directed graphs with nodes representing functions and storage components,
whereas function calls and storage read/write operations are modeled as
edges. Developers provide application structure, deployable function pack-
ages, and QoS requirement specification as an input, and the framework
optimally places functions to cloud or edge offerings from AWS.

Risco et al. [RMNB21] introduce OSCAR, a platform enabling the execu-
tion of FaaS-based data processing applications (functions are provided
as Docker containers) on different infrastructures, e.g., functions can be
executed on OpenFaaS and AWS Lambda. Applications are modeled
using the so-called Functions Definition Language (FDL), a declarative
YAML-based DSL that describes the deployment of containerized func-
tions, storage resources, and links between functions and input/output
storage resources such as object storage buckets. Ferry et al. [FDS22]
present Serverless4IoT, a deployment modeling language for hybrid IoT
(FaaS-based) applications and tooling that enables executing such models.
Tankov et al. [TVGB21] introduce a deployment modeling framework
for FaaS functions developed in Kotlin that enables specifying infrastruc-
ture in-code and automatically deploying specified resources on AWS and
Azure infrastructures. The modeled infrastructure requirements are first
translated into a so-called provider-agnostic schema, which is then used
for the generation of a technology-specific deployment model that can be
automatically enacted by the target deployment automation technology.

EU Horizon 2020 project RADON [CAH+20; DGD+21] proposes a
TOSCA-based framework that aims to facilitate development and opera-
tions for FaaS-based applications. The modeling profile produced over
the course of RADON was shown to be applicable in different contexts,
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e.g., performance engineering [GHZ+20; ZGTC21a], data pipeline model-
ing [DJS+20; DJS+22], autoscaling configuration [CLT20], and continuous
testing [DHY+22].

The analysis of FaaS-specific modeling approaches, underlying languages,
and respective toolchains is aligned with the insights obtained from ana-
lyzing general-purpose modeling approaches: CMLs often provide means
for realizing different abstraction levels and means to transition between
them, e.g., by using type systems to distinguish between PIMs and PSMs.
Among standard-based approaches, TOSCA is encountered most frequently
– in particular, the modeling approach employed in the EU Horizon 2020
project RADON demonstrates that TOSCA enables flexible FaaS-centric
modeling of various quality attribute requirements including performance,
testability, and deployability.

2.2.3 Modeling Function Orchestrations

The concept of service compositions [Pel03] is crucial in the cloud domain
due to the distribution, loose coupling, and finer-granularity of components
that constitute cloud applications. Different approaches can be employed
for modeling service compositions including service orchestrations and
choreographies. Service orchestration models represent the perspective of
a central coordinator [HBLW17] responsible for orchestrating services fol-
lowing the specified control flow to achieve a desired business goal. In the
domain of Business Process Management (BPM), the terms workflow or
process are often used to describe service orchestrations [LR00]. Business
processes spanning typically heterogeneous, non-integrated services can
be specified as workflow models using languages such as BPMN [OMG11]
or Business Process Execution Language (BPEL) [OAS07] and automati-
cally executed by compatible workflow management systems. In contrast,
service choreography models represent a general view on conversations
happening between multiple participants without centralized coordination,
e.g., BPEL4Chor [KLW11] is an example choreography language.
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Figure 2.2: A travel booking process modeled in BPMN [Rue20].

BPMN is a well-established standard for modeling workflows [CT12;
OMG11], which provides a visual notation supporting various control flow
patterns [AHKB03; RTVM06] to represent complex service orchestra-
tions that can be enacted by BPMN engines such as Camunda [Cam22].
Workflows in BPMN are modeled by connecting Activities with Sequence
Flows to express the order of execution. Activities represent units of work
and can be compound (Sub-Processes) or atomic (Tasks). Tasks are mod-
eled as rounded rectangles with labels for task names. Sub-Processes
are modeled (i) as regular tasks with a “+” marker (collapsed) or (ii) as
explicit inner control flow similar to regular processes (expanded). Events
express occurrences of some facts at process execution, e.g., start events
instantiate processes (single-border circles), end events express the end
of process instances (thick-border circles), and intermediate events occur
in-between (double-border circles). Gateways express divergence and
convergence of sequence flows: they are modeled using diamond shapes
with internal markers describing routing behavior, e.g., “+” represents
parallel whereas “X” denotes exclusive gateways to express parallel and
conditional execution, respectively [COZ17]. Figure 2.2 depicts a travel
booking process modeled in BPMN [Rue20]. Upon a booking request,
workflow management system executes the activities for booking a hotel,
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a car, and a flight. In case of a failure, the cancellation of already executed
tasks takes place by following the respective conditional flows. Each task
can, for example, be realized as a microservice processing corresponding
booking requests. Additionally, BPMN extensions can be defined to extend
language capabilities, e.g., modeling and generation of test cases from
BPMN models [LL16; LL17] or modeling of blockchain-aware business
processes [FHBL19]. General-purpose workflow management systems
can be used for orchestrating FaaS functions, e.g., AWS Lambda functions
can be orchestrated using Camunda [Rue20].

Chaining of functions via direct calls is generally not recommended, in-
stead multiple functions can be either merged into one or composed using
workflows [NT20]. In this light, several works introduce languages for
modeling and execution of function compositions as a part of the FaaS
platform. Baldini et al. [BCF+17] introduce the Serverless Trilemma (ST),
which shows how only two out of three constraints can be satisfied when
implementing function compositions using the event-driven paradigm,
namely: (i) double-billing constraint: function calls should be billed once,
(ii) black box constraint: function code should not be assumed available,
and (iii) substitution principle: synchronous function calls are indistin-
guishable from invokation of function compositions. Further, the authors
introduce an ST-safe way to implement sequential compositions in Apache
Openwhisk. Jangda et al. [JPBG19] capture operational semantics of a
FaaS platform in a process-calculus style: the state of a FaaS platform
comprises a collection of running or idle functions, pending requests,
and responses. The introduced formalisms enable reasoning, e.g., on the
safeness of isolated functions. Authors also present the Serverless Com-
position Language (SPL) to model function compositions, and provide
a prototype based on Apache Openwhisk. Giallorenzo et al. [GGL+19;
GLM+20] introduce Serverless Kernel Calculus (SKC) inspired by _−
and c-calculus to enable modeling compositions of serverless functions.
Gerasimov [Ger19] introduces Anzer, a DSL for the type-safe composition
of FaaS functions with a prototype based on Apache Openwhisk for the
functions in Go programming language.
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Due to the heterogeneity of FaaS platforms, function orchestrations can
span different kinds of infrastructures. For example, Bocci et al. [BFFB21]
identify research gaps and opportunities for FaaS orchestrations in fog envi-
ronments by surveying existing works. Particularly, the authors investigate
means to model and execute FaaS orchestrations in fog environments as
well as available techniques and methodologies for securing such orches-
trations. Multiple works focus on orchestrating FaaS functions using novel
orchestration engines that often support more than one target infrastruc-
ture for running functions. Ristov et al. [RPF21a; RPF21b] introduce the
Abstract Function Choreography Language (AFCL) for modeling function
choreographies, which abstracts away function implementation details.
The authors implement a system that can execute AFCL models with
function running on AWS Lambda and IBM Cloud Functions. Arjona et
al. [ALS+21] present TriggerFlow, a trigger-based event-driven architecture
for function orchestration that performs state transitions using event-driven
invocations. Function orchestrations are modeled as finite state machines in
which states are functions, whereas transitions are represented by triggers.
Jiang et al. [JLZ17] introduce DEWE, a workflow management system that
enables executing tasks on different FaaS platforms, such as AWS Lambda
and Google Cloud Functions, and local clusters for running large-scale
scientific workflows. DEWE relies on a custom XML-based DSL for the
specification of workflow models.

Smirnov et al. [SEM+21] present Apollo, a system for orchestrating func-
tions on heterogeneous infrastructures in cloud and edge contexts. Orches-
trations are modeled using a graph-based system model that comprises
two distinct graphs, namely enactment graphs that model interconnections
of compute (functions) and data tasks (produced/consumed data), and re-
source graphs that model interconnections of resources capable of running
such tasks such as FaaS platforms or VMs. These two graphs are intercon-
nected using mapping edges that indicate which tasks can run on which
resources. Daw et al. [DBK20] introduce Xanadu, a just-in-time resource
provisioning function orchestration engine that relies on function profiling
for the mitigation of cascading cold starts. Function orchestrations are

72



2.2 Architecting Cloud and FaaS-based Applications

modeled using a custom JSON-based DSL and functions are executed
by Xanadu’s worker components - either using container- or thread-level
isolation. Burckhardt et al. [BCG+22] present concepts and tooling for
enacting function orchestrations employed by Azure Durable Functions –
function orchestrations are modeled using general-purpose programming
languages such as Python.

John et al. [JAM+19] introduce a workflow engine for executing scien-
tific workflows that also supports running tasks on offerings such as AWS
Lambda and AWS Fargate. Malawski et al. [MGZ+17] experiment with
executing scientific workflows as orchestrations of functions hosted on
AWS Lambda and Google Cloud Functions using the HyperFlow work-
flow engine. HyperFlow relies on a custom JSON-based DSL for defining
workflow models, which was shown to support FaaS function orchestra-
tions and serverless-style containers running on AWS and Google offer-
ings [BPB+21]. Kousouris et al. [KAC+22; KGTS22] orchestrate FaaS
functions on different platforms (with the focus on Apache Openwhisk)
using Node-RED, a framework for event driven applications that enables
visual editing of workflows packaged as functions.

Modeling of workflows can also be supported on the level of CMLs. For
example, Kritikos et al. [KZI+19] present a CAMEL-based approach for
modeling and deploying workflows in multi-cloud settings. The presented
approach enables deploying workflows that comprise activities imple-
mented using SaaS offerings or as components deployed to PaaS or IaaS
offerings. OpenTOSCA [BBH+13] enables modeling application deploy-
ments as workflows, which are supported in TOSCA as the imperative
parts of the deployment model. Additionally, several works investigate
the standards-based execution of function orchestrations. The Cloudstate
project [Clo22c] focuses on standardizing the implementation of general-
purpose applications that comprise stateful services, as well as reactive
and data-intensive components deployed on Kubernetes ecosystem. The
Serverless Workflow Specification [Ser22a] is a standard for modeling
function orchestrations, which includes a DSL, language-specific tools and
SDKs, and a Kubernetes-native orchestration engine.
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The concepts presented in Contribution 3 differ from the aforementioned ap-
proaches since they do not depend on a novel workflow language or engine
– instead an existing standard is used for the technology-agnostic modeling
of function orchestrations, and transformation concepts and toolchain are
provided to enable the uniform generation of different technology-specific
models, e.g., ASL models executed on AWS Step Functions. The concepts
in Contribution 3 can be extended to support more languages including
those introduced in the aforementioned research works.

2.2.4 Abstractions for FaaS-based Applications

An abstraction can be seen as a mechanism for selectively hiding infor-
mation, e.g., software systems can often be modeled on different levels of
abstraction to control the amount of considered information [BEDM98].
Moreover, transitioning between such abstraction layers could enable flexi-
ble refinement of a given system [Flo08]. Cloud offerings are typically not
built with interoperability in mind, meaning that an implemented applica-
tion often cannot run as-is on different cloud providers, which hinders the
portability of developed applications [LKBT11].

The use of standards and standard-compliant tooling is one way to abstract
away the specifics of heterogeneous technologies [BC10]. Standardiza-
tion of interfaces is generally considered to be a priority [Hoh20] and
various standards aim to standardize interfaces. For instance, the Open
Cloud Computing Interface (OCCI) is a standardized resource manage-
ment interface and the Cloud Data Management Interface (CDMI) is a stan-
dard focusing on the interoperability of cloud storage services [LKBT11].
The standardization of specific deployment artifact types such as VMs
or containers is another example: the Open Virtualization Format (OVF)
standard [DMT15] focuses on the packaging of VMs, whereas the Open
Container Initiative (OCI) specifications [The22d] aim to standardize run-
time, packaging, and distribution aspects for containers.
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As a cloud modeling standard example, TOSCA [Lip12; OAS20] enables
hiding provider-specific details via substitution mechanisms. Addition-
ally, TOSCA also enables incorporating multiple deployment automation
technologies using the same interfaces within models that can be enacted
by TOSCA-compliant deployment automation engines, e.g., a TOSCA
deployment automation engine xOpera [CAH+19] relies on Ansible but
also enables modeling invocations of other automation scripts using the
same mechanisms. The CloudEvents specification [Clo22b] introduces
a standard schema for describing heterogeneous events occurring in the
cloud, which can be employed to describe FaaS-specifc events using a
neutral schema. The Serverless Workflow Specification [Ser22a] aims
to enable executing orchestration models on different standard-compliant
function orchestration engines.

In addition to standards, a common path to address interoperability and
portability issues is to introduce new abstraction layers [BC10; LKBT11].
Approaches addressing cloud lock-in issues often rely on abstraction layers
to enable provider-agnostic reasoning and use adapters for interacting be-
tween introduced abstractions and concrete target infrastructures [SRC13].
This can be observed in multiple existing migration approaches [BBSR13;
BBKL14; BLS11; FH11] which tackle the heterogeneity of target offer-
ings by first discovering more abstract models using legacy applications
as an input, then mapping and transforming those models into suitable
technology-specific models for migration.

The increased amount of provider-specific dependencies in FaaS-based
applications inspires multiple approaches that focus on abstraction mecha-
nisms. For example, the need to uniformly execute functions on different
infrastructures is addressed in many approaches via a central entity that
mediates the execution tasks, e.g., a novel FaaS platform or a cloud bro-
ker. Chard et al. [CBL+20] introduce FuncX, a distributed FaaS platform
that enables flexibly executing functions on different target infrastructures,
e.g., clouds and supercomputers. Vandebon et al. [VCL+20] introduce
SLATE, a system for enabling running FaaS functions on heterogeneous in-
frastructure resources, including CPUs and FPGAs. Jindal et al. [JFCG21;
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JGC+21] present the concept of Function Delivery Network (FDN) for
running functions on heterogeneous target infrastructures and introduce
Courier, a system that enables distributing calls to functions deployed
on heterogeneous platforms including AWS Lambda and Google Cloud
Functions. Sheshadri and Lakshmi [SL22] introduce a FaaS platform that
enables executing functions in edge and cloud environments based on user-
specified QoS requirements. Baarzi et al. [BKJS21] envision the concept
of virtual service providers that abstract away various FaaS offerings via
uniform mechanisms for deploying and invoking function code.

Elhabbash et al. [EJBE19] introduce SLO-ML, a JSON-based DSL for
modeling Service Level Objectives (SLOs) that supports a large number of
SLOs for various cloud application kinds. SLOs are described as maps in
which keys represent components and values describe different SLOs, e.g.,
monthly bandwidth cost. Authors also implement a brokerage system proto-
type that enables cloud service selection and generates deployment models
that can be enacted by Terraform using high-level provider-independent
SLO descriptions in SLO-ML as inputs. Rampérez et al. [RSL+] present
a brokerage-based approach, which enables mapping between high-level
SLOs and low-level, metrics-based conditions for cloud applications. To
enable this for multi-cloud settings, the authors introduce a set of vendor-
neutral metrics for various kinds of application components, e.g., PaaS
offerings, object storage, or MySQL RDBMS, as well as mappings for
different service kinds across three cloud providers – AWS, Azure, and
IBM. Spillner [Spi21] proposes a concept of liquid functions that can be
executed on different infrastructures without requiring explicit packaging
and deployment. An initial prototype, however, does not focus on how
functions are deployed on heterogeneous infrastructures.

Several works focus on higher-level programming languages that abstract
away platform-specific details of FaaS functions: Scheuner and Leit-
ner [SL19] envision a code transpilation approach for the automatic gener-
ation of boilerplate code to comply with provider-specific requirements,
hence enabling deploying functions implemented in a provider-agnostic
manner to different FaaS platforms. Cordasco et al. [CDN+21; CDN+20]
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introduce Fly, a DSL and a source-to-source compiler for enabling the
generation of FaaS platform-specific functions, e.g., AWS Lambda and
Azure Functions, in Java, JavaScript, and Python from functions imple-
mented using the Fly language. Function deployment is performed via
provider-specific APIs.

Kehrer et al. [KZSB21] introduce concepts and tooling for parallel cloud
programming using so-called self-tuning serverless skeletons based on
the idea of algorithmic skeletons [Col89] that separate user-provided busi-
ness logic from non-functional execution aspects. While the presented
concept of serverless skeletons is employed strictly in the context of par-
allel computing, it can also be seen as a way to abstract provider-specific
logic for generating function packages for different platforms. Tzouros
et al. [TTK21] introduce a Java-based framework providing Intermediate
Representations (IR) for data analytics scenarios. Similar to classical com-
pilers, IR serves as an abstraction layer for expressing data functions in
platform-independent manner. As a result, function structures specified as
a context-free grammar are used for generating portable containers that
can be deployed to different FaaS platforms such as IBM Cloud Functions
or OpenFaaS. Rodrigues et al. [RFS22] present QuickFaaS, a desktop tool
that provides a platform-agnostic way to implement FaaS functions in Java
and deploy them to multiple cloud providers, thus simplifying the reuse of
FaaS code artifacts.

Sampe et al. [SGS+21] introduce Lithops, a framework that enables run-
ning distributed computations in Python on heterogeneous cloud infrastruc-
tures without requiring to modify the implemented code. The framework
hides the specifics of deploying and running code on FaaS platforms,
hence, providing a uniform development experience suited for parallel
computations that do not require significant inter-process communica-
tion. Son et al. [SMG+22] introduce Splice, a framework for cost- and
performance-aware fusion of IaaS and FaaS offerings. Annotations that
specify desired code transformations, e.g., whether a function should be
placed on a FaaS platform or a VM, are analyzed to automatically generate
the target-compatible code.
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Simplified development experience for heterogeneous FaaS platforms also
inspires various approaches that aim to abstract the provider-specific re-
quirements: Li et al. [LLTY21] introduce a framework that abstracts away
the specifics of FaaS platform SDKs to provide uniform development expe-
rience, e.g., invoking functions or managing event bindings. Cordingly and
Lloyd [CL22] present FaaSET, a framework aiming to abstract the differ-
ences in development and interaction with heterogeneous FaaS platforms.
Chatley and Allerton [CA20] introduce Nimbus, a framework for devel-
oping FaaS-based applications in Java for the AWS services ecosystem.
This approach employs annotations to specify platform-specific configura-
tions such as event bindings and infrastructure components such as object
storage buckets directly in code.

Several approaches focus on the topic of FaaSification, i.e., the automated
extraction and deployment of legacy functions to various FaaS platforms.
Spillner [Spi17] presents Lambada, a tool that enables extracting legacy
Python code as FaaS functions. Further, Spillner et al. [SMM18] discuss
different kinds of FaaSification, e.g., shallow FaaSification focuses on
extracting classes and function collections, whereas deep FaaSification
is related to extracting single instructions as functions. Dorodko and
Spillner [DS19; SD17] present tooling for annotation-based extraction
of Java code as FaaS functions for AWS Lambda. Kaplunovich [Kap19]
presents ToLambda, a tool for extracting Java functions and generating
JavaScript packages for AWS Lambda from them.

Klingler et al. [KTS21] further extend the concept of annotation-based
FaaSification as they present various annotations that enable, e.g., warming
up function instances or configuring tracing. The authors also present
a prototype supporting these annotations for JavaScript code extraction
and transpilation for AWS Lambda. Ristov et al. [RPWF21] introduce
Dependency-Aware FaaSifier (DAF), which enables extracting JavaScript
functions together with their dependencies and packaging them for AWS
Lambda. Pedratscher et al. [PRF22] present M2FaaS, a framework that
enables dependency-aware (code, package, and data dependencies are
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considered) extraction of code blocks from Node.js applications using
annotations and generating deployable packages for the FaaS platforms
provided by AWS and IBM.

The analyzed research works mainly aim to enable running the same code
on different target infrastructures: either by introducing an intermedi-
ary that is responsible for deploying and running functions on different
infrastructures or by providing code abstraction mechanisms such as higher-
level languages or annotation-based libraries that enable the generation of
platform-specific function packages. The contributions presented in Contri-
bution 3 are well-aligned with respect to existing research: The higher-level
modeling abstraction and transformation approach for function orchestra-
tion models can be combined with generative approaches for function code,
e.g., by Cordasco et al. [CDN+21; CDN+20] or Kehrer et al. [KZSB21].
One of the first-authored publications [YBHL19] contributing to this thesis
uses the annotation-based and dependency-aware FaaSification for Java
code similar to the earlier work by Dorodko and Spillner [DS19]. Addi-
tionally, none of these approaches uses the introduced abstractions on the
level of application models.

2.3 Decision Support for Selecting Cloud Services

Increased vendor lock-in in FaaS-based applications [Hoh22b] complicates
reasoning in a provider-agnostic manner. Further, providers typically offer
similar offerings. For example, AWS Lambda and AWS Fargate enable
deploying serverless-style containerized functions. The identification of
suitable services and their mappings from other cloud providers is a reoc-
curring task that can be encountered when implementing, e.g., use case
applications [PLMR19] or solutions that intend to facilitate service selec-
tion [QRD16]. This section discusses and analyzes works focusing on
the classification and selection support for cloud applications including
FaaS-specific research.
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2.3.1 General Selection and Classification Approaches

Ontology engineering is a well-known way to classify and organize domain-
specific knowledge, which is also frequently employed for classifying
cloud services [AVS12]. Numerous research publications introduce tax-
onomies and ontologies focusing on the general classification of cloud
offerings [ABMT17; DT15; GJGN13; HS10; HK11; KSHD13; MAD+11;
RCL09]. Such approaches are often coarse-grained and focus on high-
level business characteristics, and the lack of technical details can be
credited to the significant conceptual differences between cloud service
models [Kol19]. In addition, there exist approaches aiming to refine the
taxonomy of cloud services, e.g., with general finer-grained offerings such
as Hardware-as-a-Service and Framework-as-a-Service [KSHD13], or by
focusing on specific service types such as data hosting solutions [SKLU11].
Indeed, general classifications of cloud services often focuses on the least
common denominator listing high-level properties, e.g., for payment, secu-
rity, cloud deployment models, and licensing. Aligned with these ideas, the
business view of the classification framework for FaaS platforms introduced
in Contribution 2 comprises similar criteria. However, none of the afore-
mentioned approaches considers FaaS, which makes them non-optimal for
FaaS-specific decision-making.

Another classification direction targets cloud service models separately,
e.g., exclusively IaaS or PaaS. An IaaS-specific classification approach
was introduced by Repschlaeger et al. [RWZT12]. The authors derive a
classification framework for IaaS offerings by conducting expert interviews
and analyzing existing literature. The framework captures various business
and technical properties organized in different dimensions, e.g., the Costs
dimension comprises criteria like “price level” and “payment method”, the
Scope & Performance dimension comprises criteria like “instance type”
and “instance capacity”. Dukaric and Juric [DJ13] define a unified taxon-
omy for IaaS service offerings by analyzing existing commercial and open
source technologies. The authors also introduce a layered architectural
framework for IaaS that logically organizes the concepts captured by this
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unified taxonomy. Prodan and Ostermann [PO09] capture various business
and technical aspects for IaaS and PaaS offerings with a stronger focus
on IaaS. Hilley [Hil09] presents a taxonomy covering IaaS and PaaS with
various criteria organized in dimensions like Scaling, Integration, or Inter-
operability. Loutas et al. [LKT11] introduce a semantic interoperability
framework for PaaS capturing business and technical aspects, but without
focusing on automated selection support.

Multiple research works go beyond classification and also focus on
automated service selection based on provided requirements. Sun et
al. [SDH+14] conduct a comprehensive review and categorization of ex-
isting cloud service selection methods. The majority of methods fall
into three categories: (i) Multi-Criteria Decision Making (MCDM)-,
(ii) optimization-, and (iii) logic-based methods. Various MCDM-based
methods can be employed when the number of decision criteria and alter-
natives is finite, e.g., Analytic Hierarchy Process (AHP) for hierarchically-
structured decision elements, simple additive weighting, Multi-Attribute
Utility Theory (MAUT) and others. Optimization-based methods can be ap-
plied to approximate the solution, e.g., dynamic programming and greedy
selection algorithms can be employed when the number of alternatives is
large. Additionally, first-order logic and description logic-based methods
can be applied to filter irrelevant services. Since this thesis does not aim to
introduce novel service selection algorithms, only selected selection sup-
port approaches are described in the following, whereas the aforementioned
study can be accessed for more details on selection algorithms.

Bassiliades et al. [BSG+18; BSM+17] present an ontology-based clas-
sification of PaaS offerings and a selection support system called PaaS-
port. Kolb [Kol19] introduces concepts for classification and selection of
PaaS platforms, and the selection support system called PaaSfinder that
prototypically implements these concepts. Di Martino et al. [DCE14]
present an ontology focusing on PaaS and SaaS offerings. Magoutis et
al. [MPP+15] introduce PaaSage, a social networking platform for devel-
opers and operations engineers that aims to facilitate creating deployment
models and deployment automation scripts, and the reuse of artifacts shared
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by the community. Additionally, PaaSage enables mining statistics and
cost-benefit analyses to provide improvement suggestions. Dastjerdi et
al. [DGRB15] introduce CloudPick, a framework for facilitating multi-
cloud IaaS deployments by optimizing the selection of suitable services
based on specified QoS criteria. Quinton et al. [QRD16] introduce con-
cepts and tooling for the automated identification and configuration of
multi-cloud environments (focusing on IaaS and PaaS) based on given
functional and non-functional requirements. The approach combines on-
tologies and feature models to capture platform- and provider-specific
knowledge in a uniform manner. Spillner et al. [SGBV20] present con-
cepts for rule-based resource matchmaking for application deployments
in the context of osmotic computing [VFD+16], i.e., containerized com-
ponents opportunistically deployed in cloud, edge, and fog environments.
The presented model and algorithms that return deployment plans for
given component-based applications do not consider data dependencies
or workflows. Other classification and selection support examples include
Cloud4SOA [DBC+12] focusing on PaaS, and SeaClouds [BFI+15] and
DrACO [BCS17] targeting IaaS and PaaS. As with general-purpose service
classification approaches, these research works also capture some business
characteristics overlapping with the criteria from the business view in
Contribution 2. None of them, however, presents criteria relevant for the
technical FaaS view. Similar considerations apply to other studies targeting
decision support for cloud-based deployments [DPC+10; JMK+13; MR12;
PZL+09; SSL12].

2.3.2 FaaS-specific Selection and Classification Approaches

Multiple existing works analyze and compare FaaS platforms, both quanti-
tatively and qualitatively. Kritikos and Skrzypek [KS18] assess “serverless
frameworks” using criteria related to application lifecycle phases including
design, development, and deployment. This assessment includes qualita-
tive analysis of open source FaaS platforms such as Fission and Kubeless
that are referred to as provisioning frameworks. Additionally, authors
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analyze “abstraction frameworks”, which abstract one or more platforms,
e.g., Serverless framework [Ser22b] is placed into this category. Lee et
al. [LSF18] evaluate the performance of commercial FaaS platforms in-
cluding FaaS offerings from Amazon, Microsoft, Google, and IBM, and
additionally compare them feature-wise. Lynn et al. [LRLE17] analyze
commercial serverless platforms, such as AWS Lambda, Microsoft Azure
Functions, and Google Cloud Functions, using a set of qualitative criteria.
Mohanty et al. [MPd18] evaluate the performance of four open source
FaaS platforms, namely Kubeless, OpenWhisk, Fission, and OpenFaaS,
and also compare them feature-wise. Werner and Tai [WT21] present a
review of four commercial FaaS platforms, namely AWS Lambda, Azure
Functions, Google Cloud Functions, and IBM Cloud Functions using dif-
ferent quantitative and qualitative criteria related to aspects of deployment,
execution, configuration, and measurement as specified in the official doc-
umentation. Wen et al. [WLC+] analyze characteristics documented in the
official documentation of four FaaS platforms related to the development,
deployment, and runtime aspects and quantitatively analyze the runtime
using benchmarks. López et al. [GSP+18] experimentally evaluate three
commercial function orchestrators, namely AWS Step Functions, IBM
Composer, and Azure Durable Functions. Additionally, these orchestra-
tors are qualitatively analyzed using a set of orchestration-related criteria.
Spillner [Spi19] analyzes specification, storage, and offering of serverless
applications via AWS Serverless Application Repository (SAR). As a part
of a more general discussion on serverless computing, Jonas et al. [JSS+19]
also provide a high-level review of AWS Lambda.

The aforementioned publications [GSP+18; JSS+19; KS18; LSF18;
LRLE17; MPd18; Spi19; WLC+; WT21] as well as the other related qual-
itative FaaS platform reviews [BO19; GFE+20; KS19; Kum19; PKC19;
Raj18; WL21] provide valuable contributions by analyzing different as-
pects of FaaS platforms. However, these works focus on often decoupled
sets of features and classified platforms, which scatters the knowledge
across different publications and hinders its reuse. Instead, Contribution 2
presented in this work (i) introduces a substantially larger set of criteria than
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previously published works (see [YSB+21a] for more details), (ii) proposes
a way to organize criteria (both newly-introduced and already considered in
literature) in a comprehensive classification framework, and (iii) introduces
selection support concepts that facilitate searching for FaaS platforms that
fulfill given requirements. Additionally, the presented metamodel of the
classification framework and selection support system are generalized to
enable selection support for other component types in FaaS-based applica-
tions, e.g., object storage and message queues.

In addition, numerous research publications investigate the topic of bench-
marking FaaS platforms. For example, Wang et al. [WLZ+18] benchmark
the FaaS platforms from Amazon, Microsoft, and Google by implementing
measurement functions that enable discovering hidden architectural details
and gathering performance metrics. Contribution 2 presented in this work
does not focus on benchmarking and instead focuses on the qualitative
analysis of FaaS platforms and concepts for facilitating their selection
support. Similar reasoning as above is applicable to other publications
focusing on benchmarking [BA18; BG21; FGZ+18; KWB+19].

2.4 Patterns and Pattern-based Design

Proven solutions for recurring domain-specific problems are commonly
captured as patterns [AIS77]. Patterns document solutions abstractly to
simplify their reuse for multiple problem instances. The documentation
format is typically well-structured – many existing guidelines document
the best practices for writing patterns [Feh15; WF11]. Pattern languages
organize domain-specific patterns as graphs: related patterns are connected
using typed links that represent, e.g., refinement or combination of patterns,
to enable solving interrelated problems [FBL18].

Numerous pattern languages focus on various architectural aspects and
styles, e.g., object-oriented design [Gam+95], enterprise application ar-
chitectures [Fow02], enterprise integration [HW04a], and microservice
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architectures [Ric18]. Cloud computing patterns are covered in many works
that focus on cloud-native application design [Dav19; Erl+15; FLR+14;
Pah+18]. Taibi et al. [Tai+20] and Zambrano [Zam18] document design pat-
terns for serverless, FaaS-based applications. Hong et al. [Hon+18] present
patterns for enhancing the security of cloud applications using serverless
computing. Among other microservice patterns, Richardson [Ric18] doc-
uments the Serverless Pattern which represents a FaaS-based hosting
of microservices. The Component Hosting and Management pattern lan-
guage presented in this thesis generalizes this notion to other kinds of
components and aligns it with respect to explicit management trade-offs
alongside other component hosting patterns.

Zimmermann et al. [ZLZ+20] document Interface Responsibility Patterns
in which the Computation Function pattern can be implemented as a
FaaS function, hence, enabling using this pattern as a first-class citizen
in abstract application models. Fehling et al. [FLR+13] capture patterns
for migrating service-based applications to the cloud including such pat-
terns as Forklift Migration, Stateless Component Swapping, and
Database Swapping. Jamshidi et al. [Jam+15; Jam+17] document cloud
migration patterns and introduce a method for pattern-based migration.
Morris [Mor20] presents IaC patterns focusing on many facets of deploy-
ment modeling, e.g., stack granularity, build environments, configuration,
and testing. Endres et al. [EBF+17] document two approaches for specify-
ing application deployments as patterns, namely declarative and imperative
application deployment.

The aforementioned works focus on various aspects of design and de-
ployment for cloud applications, whereas the pattern language presented
in Contribution 1 captures different hosting trade-offs. Therefore, the pat-
terns presented in this thesis are complementary to the aforementioned
languages and catalogs: application developers can design applications
following the design patterns and employ the Component Hosting and
Management pattern language to yield the required deployment actions for
application components. Further, the patterns by Morris can be employed
for versioning and testing of the resulting deployment models.
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Patterns also vary in their levels of abstraction [FBB+15], e.g., there exist
coarse-grained patterns documenting general solutions and more finer-
grained that represent their specific variations. Cloud providers docu-
menting technology-specific patterns [Ama22a] is another example of
finer-grained patterns. Hence, it is important to enable navigation through
interconnected pattern languages and concrete solutions linked with cho-
sen patterns. Falkenthal et al. [FBB+14b; FBB+15] discuss how pattern
languages are linked to different concrete implementations for patterns
and how the refinement from patterns to solutions can be achieved, e.g.,
provider-agnostic cloud computing patterns [FLR+14] can be refined into
AWS-specific patterns [Ama22a]. Di Martino et al. [DCE17] present a
pattern-based cloud service exploration approach based on semantic web
concepts in which abstract patterns can be refined into provider-specific
patterns by following semantic annotations such as “equivalent” or “sub-
sumes”. Leymann and Barzen [LB21] introduce an approach and tooling
for storing, categorizing, and navigating through interconnected pattern
languages and catalogs based on the idea of cartography. Weigold et
al. [WBB+20] discuss how patterns from different patterns languages can
be linked using the so-called views to ease the exploration and discovery.
These approaches could facilitate the discovery of patterns introduced
in Contribution 1 and their connections to other languages, and also enable
exploring concrete solutions linked with them.

Multiple research works employ patterns in the context of architecture and
deployment modeling. France et al. [FCSK03] present a pattern-based
refactoring approach focusing on object-oriented design patterns [Gam+95]
and UML models. Patterns in this approach are associated with (i) a prob-
lem UML specification, (ii) a solution UML specification, and (iii) trans-
formation specification that describes how the problem can be transformed
into the solution. Consequently, given design models can be refined with
chosen (and applicable) design patterns following the aforementioned
transformation rules. Arnold et al. [AEK+07] introduce a pattern-based ap-
proach and tooling for modeling SOA deployments. In this work, patterns
refer to partial deployment models capturing the best deployment prac-
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tices that can comprise abstract and concrete components, which can be
iteratively refined by users of the underlying platform to obtain deployable
models. Fehling et al. [FLR+11; FLRS12] introduce an approach in which
(i) patterns are annotated with model fragments representing concrete so-
lutions, e.g., AWS-specific services implementing a NoSQL Database
pattern and (ii) coarse-grained component-connector models are annotated
with patterns to enable manual refinement into technology-specific deploy-
ment models adhering to these patterns. Nowak et al. [NBF+12] employs a
similar annotation approach for TOSCA models: (i) patterns are annotated
by TOSCA Service Templates representing their concrete solutions and
(ii) TOSCA Node Templates are annotated by patterns to highlight their us-
age in implementation of this Node Template. Fahland and Gierds [FG13]
introduce an approach for generating formal, Colored Petri Nets-based
models from informally-designed integration models [HW04a], which can
be used, e.g., for model verification or performance analysis. Ahmad and
Babar [AB14] present a pattern-based architectural adaptation method in
which patterns capturing the architectural evolution over time (so-called
adaptation patterns) are mined from logs and composed into a pattern
language, which can then be employed at runtime to enable self-adaptive
behavior of an application.

Harzenetter et al. [HBF+18; HBF+20] introduce an approach that uses pat-
terns as first-class citizens in deployment models to represent components
and their behavior. These so-called Pattern-Based Deployment Models
(PBDMs) can then be refined into their deployable variants specified using
the so-called Pattern Refinement Models (PRMs). The automated identifi-
cation of how PBDMs can be refined happens via so-called detectors that
specify which pattern-based sub-graphs can be mapped to which PRMs.
Guth and Leymann [GL19] introduce an architecture rewrite approach in
which a component-connector model for a designed application can be
automatically refined based on a provided graph of interconnected patterns
referred to as solution path [FBB+14a]. Park et al. [PKYY20] present a
broker-based approach for the selection and integration of cloud services
that employs patterns similar to the approach by Arnold et al. [AEK+07]:
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patterns refer to partial component-connector models describing specific
solutions, e.g., a video processing application. As a basis, users select
provider-specific patterns, e.g., from AWS [Ama22a], that are mapped
to provider-agnostic representations and can be customized and enriched
with QoS requirements to enable selecting suitable cloud services using
MCDM algorithms. Bibartiu et al. [BDR21] present a modeling approach
that uses patterns for describing applications – it focuses on the modeling
of procedures with sequence diagrams employed to specify components
interaction and refinement to concrete implementations.

The aforementioned pattern-based design and refinement approaches vary
significantly, yet they also share many similarities. For example, all of
them use patterns to introduce higher levels of abstraction and enable rea-
soning about given models (coarser-grained, architectural or finer-grained,
deployment-centric) in a technology- and provider-agnostic manner. This
comes naturally from the very definition of patterns, which capture abstract
solutions. While patterns can be used as explicit modeling constructs or
assumed to be present implicitly in the model, most approaches rely on
mappings between “some form” of a problem and solution definitions,
e.g., both defined as sub-graphs of an application topology graph. Such
approaches require a knowledge base containing the pattern-related defini-
tions and transformation rules, which generally makes them tailored only
for specific domains, e.g., object-oriented patterns. Further, the type of
patterns, e.g., structural or behavioral, influences the way problems and
solutions can be specified and how the mappings between them are imple-
mented. This work focuses on different levels of abstraction for designing
FaaS-based applications and how to enable transitioning between them:
The patterns capturing component hosting and management decisions in-
troduced in (Contribution 1) are used as first-class citizens in application
models (Contribution 4) and the approach by Harzenetter et al. [HBF+18;
HBF+20] is used as a basis to enable the refinement of coarse-grained
component-connector models of FaaS-based applications into concrete,
provider-specific deployment models.
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2.5 Chapter Summary and Discussion

This chapter presented the necessary fundamentals and provided an analysis
and comparison with relevant state-of-art-research. While there exist
approaches for modeling FaaS-based applications at different levels of
abstraction, i.e., from coarse-grained component-connector models to
detailed provider-specific deployment models, often these approaches are
tailored for specific use cases such as cost or performance modeling, and
cannot be easily combined due to the heterogeneity of the languages and
tooling. Further, the existing code abstraction mechanisms and service
selection tools are often built as standalone tools not used in combination.

The analysis of modeling approaches highlighted the need to abstractly
represent hosting decisions for components in FaaS-based applications.
The resulting research effort lead to the pattern language introduced in Con-
tribution 1, which can be used as a standalone language or in pattern-driven
modeling approaches to abstractly model desired hosting decisions for FaaS
functions and other component kinds in application topologies. Moreover,
the analyzed research related to service classification and selection support
showed significant differences among cloud service models. The use of
general-purpose approaches appears to be insufficient since the technical
details of specific offerings such as PaaS or FaaS are missing. Hence,
to enable service selection for FaaS-based applications, (i) flexible stor-
age and organization of qualitative and quantitative criteria for different
component types and (ii) querying components using different selection
algorithms must be supported in a uniform way. Therefore, the two core
tasks addressed in Contribution 2 are the classification of FaaS platforms
and the support for uniform storage and querying of different suitable
component types.

The investigation of function orchestration modeling approaches and avail-
able code abstraction mechanisms showed the lack of abstract orchestration
models as well as the need to support modeling artifact abstractions on
the level of application models. Therefore, Contribution 3 introduces
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(i) concepts for the uniform modeling of function orchestrations using
BPMN and their transformation intro provider-specific formats and (ii) dis-
cusses how to use such artifact abstractions on the level of a CML. To use
the introduced concepts together, Contribution 4 presents a pattern-based
method that enables expressing decisions on the level of coarse-grained ar-
chitecture models and refining them into concrete deployment models with
target-specific artifacts, inspired by the MOCCA [LFM+11] methodology
and the concept of gradient of abstraction [Flo08].

Finally, based on the analysis of existing cloud modeling languages, the
TOSCA standard was employed as a baseline for Contribution 5 due to
several fitting characteristics. Firstly, it enables representing both coarse-
grained and fine-grained application models and transitioning between
them using TOSCA ontological typing and inheritance mechanisms. Fur-
thermore, the applicability of TOSCA for FaaS-based applications was
shown in the context of the EU Horizon 2020 project RADON: the result-
ing modeling approach and toolchain introduced by iterative refinements
from the consortium and use case partners were successfully validated in
three industrial use cases.
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Component Hosting and
Management Patterns

E xisting cloud service models enable various options for hosting
and managing application components: this chapter presents Con-
tribution 1 that captures such trade-offs in a pattern language.

The presented Component Hosting and Management pattern language
is based on two peer-reviewed publications [YBB+22; YSB+21b] and
aims to enable flexibly expressing decisions for hosting components in a
provider-agnostic way with respect to two management dimensions, namely
(i) deployment stack and (ii) scaling configuration management. The for-
mer dimension describes who (cloud provider or cloud consumer) is more
responsible for managing the underlying deployment stack, e.g., deploying
a Java function on a VM requires more effort than deploying it as a Java
Archive (JAR) on a provider-managed FaaS platform. The latter dimension
is, on the other hand, concerned with the responsibilities for managing
scaling configuration, i.e., scaling rules and the infrastructure resources
needed to host a component.
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The main motivation for this pattern language is to document component
hosting alternatives not from the perspective of cloud service models
such as IaaS or PaaS, but based on explicit preferences regarding who
manages deployment stack and scaling configuration – cloud providers
or cloud consumers such as application developers or DevOps engineers.
While IaaS or PaaS (also documented as eponymous cloud computing
patterns [FLR+14]) implicitly express such preferences, specific offerings
often support different options, e.g., AWS Lambda enables hosting both
container images and language-specific packages such as JARs, which
makes the hosting choice less obvious. This contribution, hence addresses
the part of Research Question 1 from Section 1.2 that focuses on expressing
decisions for component hosting in FaaS-based applications in a provider-
agnostic manner. Next sections briefly discuss the patterns authoring
process, documentation format, and basic terminology followed by the
detailed description of the pattern language and patterns it comprises.

3.1 Authoring Process and Patterns Format

The patterns were captured by gathering and analyzing solutions reoc-
curring in existing commercial and open source products and technolo-
gies (product pages, technical documentation, whitepapers and research
papers focusing on component hosting), and following the guidelines for
authoring patterns [FEL+12; RBF+16; WF11], which involved (i) estab-
lishing the naming conventions and basic terminology, (ii) designing the
pattern language and describing the pattern compositions, and (iii) cre-
ating detailed pattern documents. In addition, during the pattern lan-
guage revision phase [FBBL14] the initial references to other patterns
were documented, e.g., deployment modeling [EBF+17] and cloud com-
puting [FLR+14] patterns. To keep the format consistent and simplify the
data comprehensibility [Feh15; Pet95], the best practices used in research
and practice were employed [AIS77; BHS07; Cop96; FLR+14; Gam+95].
Figure 3.1 shows the pattern format, which is discussed next.
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Pattern Name: a name that uniquely identifies the pattern in the scope
of the language. In this language, pattern names are restricted to
noun-phrase names [BHS07] to enable using them as nouns.

Problem: a summary of the domain- and context-specific problem that a
pattern helps solving, formulated in the form of a question.

Icon: a graphical element shaped as a rounded rectangle, which visualizes
the essence of the pattern to simplify its memorability.

Context: the situation in which a pattern is applicable.
Forces: the conflicting factors that characterize the problem.
Solution: the action or structure intended to solve the context-specific

problem and balance the forces. This section also includes a sketch
that abstractly visualizes the solution.

Example: a concrete example of the pattern implementation accompanied
by a sketch that visualizes this particular solution instance.

Result: the context after the pattern is applied discussing the advantages
and potential new requirements caused by applying the pattern.

Known Uses: a description of at least three different real-world occur-
rences [Cop96] of the pattern implementation.

Related Patterns: references to other relevant patterns documented as a
part of the same or other pattern language.

Pattern Name
Problem : A summary of the problem solved with this patternIcon

solution    
& example 
sketches 

Context  :
Forces     :
Solution :

Example :

Result     :

Known Uses :

Related Patterns :

Figure 3.1: The pattern format and graphical layout inspired by cloud
computing patterns [Feh15].
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3.2 Core Terminology

The patterns are documented using a consistent set of terms specific to
the domain of application deployment. Therefore, the core terminology is
briefly summarized before the detailed pattern descriptions.

Application: groups software components to provide a certain business
functionality. The components run on particular infrastructure, i.e.,
processing, storage, and network resources [Mes07], and interact
with each other and external clients [LW07], e.g., via remote proce-
dure calls or messaging [HW04b].

Software Component: a unit of code that provides needed functional-
ities via specified interfaces, can be deployed independently and
composed by third parties [CH01; LW07; SGM02], e.g., a web
server (the former) or Java e-commerce component (the latter).

Hosting Requirements and Capabilities: to be hosted, software compo-
nents might require certain conditions to be fulfilled, e.g., a compat-
ible Java Runtime Environment (JRE) is required to host a Java 11
function. These requirements can be matched with hosting capabili-
ties of other components to create deployment stacks, e.g., a JRE
can be hosted on an operating system but not on a RDBMS.

Deployment Stack: a set of software components and infrastructure re-
sources, e.g., processing, storage, and network resources, that can
host software components with matching requirements. Different
deployment stacks can host the same software components, e.g.,
Figure 3.2 shows hosting examples for a Java 11 function using
AWS offerings. Since JRE 8 cannot host a Java 11 function, one
stack option is incompatible and cannot be used. The Compatible
Stack #1 is based on AWS EC2 (IaaS) – consumers can install the
JRE 11 on the chosen virtual machine. Compatible Stack #2 relies
on the provider-managed container engine and the JRE can be a
part of the container image. Compatible Stack #3 is a predefined
stack supporting Java 11 managed by AWS. Deployment stacks can
comprise provider- and consumer-managed components.
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Figure 3.2: Hosting examples for a Java 11 function using AWS.

Consumer-Managed and Provider-Managed Components: consumer-
managed components in the stack are managed by cloud consumers,
i.e., consumers are responsible for installing, configuring, and man-
aging its dependencies, whereas provider-managed components are
mainly managed by respective cloud providers. For instance, the
JRE in the Compatible Stack #1 from Figure 3.2 is installed on
top of the virtual machine on AWS EC2 – the underlying VM is
provider-managed, whereas the cloud consumer is responsible for
installing and configuring the JRE on top of it. Conversely, the JREs
in PaaS and FaaS are managed by providers since the deployment
stacks are provided as predefined and already configured options
and can simply be selected from the list of available stacks.

Scaling Configuration: a consumer- or provider-managed combination
of horizontal/vertical scaling rules and infrastructure resources re-
quired for hosting a software component. For instance, in the Com-
patible Stack #1 from Figure 3.2, the virtual machine size and scaling
rules are defined by cloud consumers, whereas in the Compatible
Stack #3 the provider is responsible for allocating resources and
scaling the functions.
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3.3 Overview of the Pattern Categories

The Component Management and Hosting pattern language captures host-
ing trade-offs related to two management aspects shown in Figure 3.3 as
two axes. Each axis represents a pattern category documenting consumer-
and provider-managed solutions for (i) deployment stack and (ii) scaling
configuration management aspects. Combinations of these management
patterns can be further refined into component hosting patterns that repre-
sent composite solutions for both management aspects.

The Deployment Stack Management category comprises (1) Fixed De-
ployment Stack and (2) Customizable Deployment Stack patterns,
which describe deployment stack alternatives that are either more provider-
or more consumer-managed, respectively. The former facilitates hosting
components that require no extra modifications on stacks predefined by
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Figure 3.3: Categories of component hosting and management patterns.
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providers, e.g., no installation of custom dependencies is needed. The
latter represents an opposite variant for cases when components require
customization of the underlying environment, e.g., installing custom soft-
ware components on the VM or as a part of the defined container image.

Likewise, the Scaling Configuration Management category comprises
(3) Provider-managed Scaling Configuration and (4) Consumer-
managed Scaling Configuration patterns that describe two variants of
scaling configuration management. When no custom scaling configuration
requirements need to be fulfilled to host a component, provider-managed
hosting options that implement the former pattern can be chosen, e.g.,
when no manual specification of a VM cluster or horizontal scaling rules is
needed. The latter variant represents an alternative for hosting components
with a customized scaling configuration, e.g., using IaaS offerings.

The Component Hosting category comprises five patterns that capture
specific combinations of patterns from the previous two categories, namely
(5) Serverful Hosting, (6) Consumer-managed Container Hosting,
(7) Provider-defined Stack Hosting, (8) Provider-managed Con-
tainer Hosting, and (9) Serverless Hosting patterns. The terms “server-
ful” and “serverless” in pattern names were employed to mark two extremes
that correspond to stronger or weaker management responsibilities for cloud
consumers, i.e., the Serverful Hosting pattern is managed substantially
by consumers since both the deployment stack and scaling configuration are
easier to customize. Conversely, the Serverless Hosting pattern enables
mainly provider-managed deployment stacks and scaling configuration,
e.g., function code deployed as-is to FaaS platforms and scaled out and in
automatically by cloud providers. The hosting patterns located in-between
these extremes, thus capture different combinations of the aforementioned
deployment stack and scaling configuration management variants. The
following subsections present each category and respective patterns in
detail using the format and layout discussed in Section 3.1. Afterwards, the
semantic links among the patterns are discussed and formalized to highlight
how link traversal and pattern combination enable iterative exploration of
component hosting variants.
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3.4 Deployment Stack Management Patterns

This section introduces the Fixed Deployment Stack and Customizable
Deployment Stack patterns focusing on deployment stack customization
trade-offs and is based on the previously published work [YBB+22].

3.4.1 Fixed Deployment Stack

Problem: “How to host a software component when it re-
quires no special underlying infrastructure or customization
of the host environment it is running on?”

Context: A software component needs to be hosted without any special cus-
tomization requirements, e.g., adding, removing, or changing components
in the deployment stack or configuring it in a certain way.

Forces: Cloud service models incur varying management efforts for de-
ployment stacks, e.g., FaaS functions hosted on a provider-managed plat-
form require less management effort than a virtual machine hosted on IaaS
where consumers are responsible for installing patches. Software compo-
nents often require only common dependencies, e.g., a Java function that
has no customization requirements, or a standard relational database.

Solution: Host the software component on a Fixed Deployment Stack
for which all infrastructure, execution environment, and middleware com-
ponents needed to host and execute the given component are set up, con-
figured, and maintained by the cloud provider. For example, PaaS of-
ferings provide predefined deployment stacks for different Java runtime
versions and Database-as-a-Service (DBaaS) offerings may provide dif-
ferent database management system versions without requiring to manage
the hosting components and dependencies. As a result, software compo-
nents are hosted as-is on provider-managed offerings without extra stack
configuration or customization efforts as shown in Figure 3.4a.
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Figure 3.4: Fixed Deployment Stack: solution sketch and examples.

Examples: Examples in Figure 3.4 show the Fixed Deployment Stack
pattern for different component types: The “My Java App” component
in Figure 3.4b is hosted using a provider-defined stack on AWS Lambda
that enables choosing a specific Java runtime version for a given component.
Another example is shown in Figure 3.4c – a NoSQL collection is created
on AWS DynamoDB, a DBaaS offering. In both cases, cloud consumers
directly choose the desired stack from a list of provider-defined options
instead of setting up all required hosting components and dependencies.

Result: When applied, this pattern reduces configuration overhead since
the deployment stack is selected from a list of available options. However,
this also results in a stronger dependence on the provider-specific service,
e.g., the implementation and configuration of software components depend
more on provider requirements such as service-specific libraries, formats,
packaging, and configuration requirements.

Known Uses: The Fixed Deployment Stack pattern can be implemented
using different provider-managed services. For instance, PaaS offerings,
such as AWS Beanstalk [Ama22b] or Azure App Service [Mic22], or FaaS
offerings, such as AWS Lambda [Ama22b] and Azure Functions [Mic22],
enable hosting business logic components on provider-defined stacks. An-
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other example is DBaaS offerings, such as AWS S3 [Ama22b] and IBM
Cloud Databases for Redis [IBM21], that enable hosting other component
types on provider-defined stacks.

Related Patterns:

• Provider-defined Stack Hosting and Serverless Hosting: rep-
resent different refinements of Fixed Deployment Stack pattern.

• Customizable Deployment Stack: this pattern can be used as an
alternative for cases when stack customizations are needed.

• Patterns such as Platform-as-a-Service [FLR+14] and Software-
as-a-Service [FLR+14] enable using fixed deployment stacks.

3.4.2 Customizable Deployment Stack

Problem: “How to host a software component when it re-
quires customization of the underlying infrastructure or the
host environment it is running on?”

Context: A software component needs to be hosted with special customiza-
tion requirements, i.e., cloud consumers can customize its stack by adding,
removing, or changing components or configuring it in a certain way.

Forces: Cloud service models differ with respect to how customizable
the underlying deployment stacks are, e.g., additional software can be in-
stalled on a VM on IaaS offerings, whereas FaaS offerings enable hosting
functions without the need to manage the underlying stacks by selecting
a deployment stack from the list of available options. On the other hand,
customization requirements for component hosting can emerge due to mul-
tiple reasons, e.g., legacy applications might require special dependencies
such as other software components that need to run in the same operating
system. The Side Car pattern [BO16] is another customization example:
an implementation of this pattern can add custom features to the component
and is required to run alongside the component.
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Figure 3.5: Customizable Deployment Stack: solution sketch.

Solution: Host the software component on a Customizable Deployment
Stack for which the infrastructure and software components needed to
host the given software component are set up, configured, and maintained
by cloud consumers. This pattern has two variants: The first variant in Fig-
ure 3.5a enables customizing the physical or virtual machine the component
runs on, e.g., software components can be deployed on a physical machine,
thus enabling customization of the components in the stack. In the cloud
context, however, a more common example for this variant is provisioning
virtual machines and installing software on them with all the necessary
dependencies. Figure 3.5b depicts the second variant that is based on
containers, which can be customized regarding the software and its de-
pendencies that must be installed. The container variant of this pattern is
frequently employed in cloud-native applications to leverage autoscaling
mechanisms of container orchestration engines.

Examples: Examples of the Customizable Deployment Stack pattern
applied for a Java application that requires a custom sidecar implementa-
tion hosted in the same environment are shown in Figure 3.6. Figure 3.6a
shows the deployment using a virtual machine that enables running the
Java application together with the sidecar implementation, whereas in Fig-
ure 3.6b a container is used for running both components. Each of these
examples enable customization on the level of operating system.
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Figure 3.6: Customizable Deployment Stack: examples.

Result: When applied, this pattern enables more customization options
– for the first variant also the physical infrastructure can be customized
if desired. However, in the cloud context, typically virtual machines are
used meaning that VM properties and software components that run on
the operating system are customizable. In case when the second variant is
employed, the customization is possible within the container boundaries.

Known Uses: The Customizable Deployment Stack pattern can be
implemented using different services, e.g., bare metal offerings like IBM
Cloud Bare Metal Servers [IBM21] and IaaS offerings such as AWS
EC2 [Ama22b] or Azure IaaS [Mic22]. Another option is to employ con-
tainer orchestration services such as Azure Kubernetes Service [Mic22]
and AWS Fargate [Ama22b].

Related Patterns:

• Serverful Hosting, Consumer-managed Container Hosting,
and Provider-managed Container Hosting: represent different
refinements of the Customizable Deployment Stack pattern.

• Fixed Deployment Stack: when no stack customizations are
needed, this pattern can be used instead.

• Patterns from other languages such as Infrastructure-as-a-
Service [FLR+14] enable customizing deployment stacks.
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3.5 Scaling Configuration Management Patterns

This section introduces the Provider-managed Scaling Configuration
and Consumer-managed Scaling Configuration patterns focusing on
scaling configuration management trade-offs and is based on the previously
published work [YBB+22].

3.5.1 Provider-Managed Scaling Configuration

Problem: “How to host a software component when it needs
to be scaled horizontally but requires no special scaling
configuration?”

Context: A software component needs to be hosted and scaled without
any special requirements for infrastructure resources or horizontal scaling
behavior, e.g., explicit configuration of a VMs cluster or scaling rules.

Forces: Cloud offerings differ in degree of control over scaling configura-
tion. For instance, multiple offerings require cloud consumers explicitly
managing the scaling configuration by defining the size/amount of virtual
machines and scaling rules, whereas other alternatives abstract away the
required virtual machines and enable specifying infrastructure resources
in virtual memory and CPU units. Further, multiple provider-managed ser-
vices provide default autoscaling mechanisms, e.g., AWS Lambda or AWS
S3 are auto-scaled by default with requiring configuring scaling rules. Cus-
tomization of scaling configuration for components, on the other hand, is
not always required, e.g., for hosting time-triggered functions. In addition,
provider-managed offerings often do not incur extra licensing costs while
providing reduced scaling configuration management, e.g., purchasing a
number of licenses for a messaging middleware is not needed.

Solution: Host a software component on a deployment stack with
Provider-Managed Scaling Configuration, hence shifting the respon-
sibility for specification of the underlying infrastructure resources and
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Figure 3.7: Provider-Managed Scaling Configuration: solution
sketch and examples.

scaling rules to cloud providers. Figure 3.7a depicts the solution sketch: a
component is hosted on a fixed deployment stack with abstractly specified
infrastructure resources and horizontal scaling rules mainly managed by
providers, thus reducing management effort for cloud consumers.

Examples: Figure 3.7 depicts two example AWS-based deployment stacks
enabling this pattern. For both the Java application (Figure 3.7b) and the
object storage bucket (Figure 3.7c) the required infrastructure is abstractly
specified in virtual resource units, whereas the horizontal scaling rules are
completely provider-managed – AWS Lambda functions are automatically
scaled (also to zero instances when execution completes), and AWS S3
buckets also rely on default scaling mechanisms.

Result: When applied, this pattern results in less effort for managing
infrastructure resources and scaling rules, which can be preferable when
no custom scaling behavior is required. Further combination with one of
the deployment stack management patterns from Section 3.4 can help to
find a more compatible hosting variant (see Section 3.7 for more details).

Known Uses: Various offerings support Provider-Managed Scaling
Configuration, e.g., it is supported by various FaaS offerings such as
AWS Lambda [Ama22b] or Azure Functions [Mic22]. Provider-managed
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container services such as Google CloudRun [Goo22] also abstract away
infrastructure resources and autoscale containers based on the rate of in-
coming of requests. Storage services such as AWS DynamoDB [Ama22b]
and Azure Blob Storage [Mic22] support this pattern since no explicit
specification of the infrastructure resources and scaling rules is needed.

Related Patterns:

• Serverless Hosting and Provider-managed Container Hosting:
represent different refinements of the Provider-Managed Scaling
Configuration pattern.

• Consumer-Managed Scaling Configuration: can be used in-
stead if scaling configuration needs to be more customizable.

• Fixed Deployment Stack, Customizable Deployment Stack:
can be used in combination with the Provider-managed Scaling
Configuration pattern.

• Patterns such as Software-as-a-Service [FLR+14] support this
the Provider-Managed Scaling Configuration pattern.

3.5.2 Consumer-managed Scaling Configuration

Problem: “How to host a software component when it needs
to be scaled horizontally but requires a tailored scaling
configuration?”

Context: A software component needs to be hosted with custom require-
ments for the underlying infrastructure resources and horizontal scaling
behavior, i.e., explicit configuration of VMs clusters and scaling rules.

Forces: Cloud service offerings differ in how scaling configuration is
managed, e.g., “serverless-style” offerings aim to abstract away the infra-
structure by specifying underlying resources in virtual memory and CPU
units and often require no specification of scaling rules. In contrast, many
services, such as AWS EC2 or Azure EKS, are more customizable as they
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sketch and example.

require cloud consumers to explicitly manage the scaling configuration
by defining the size/amount of virtual machines and scaling rules. Cus-
tomizable scaling configuration for components might be needed in certain
cases, e.g., if licenses are available for an exact number of instances, or to
enable custom dependencies in the deployment stack.

Solution: Host a software component on a deployment stack with
Consumer-Managed Scaling Configuration, hence enabling cloud
consumers to retain more control over the specification of the infrastruc-
ture resources and horizontal scaling rules. Figure 3.8a shows the solution
sketch: a component is hosted on a deployment stack with explicitly de-
fined infrastructure boundaries and consumer-managed horizontal scaling
rules, thus enabling fulfilling customization requirements.

Examples: Figure 3.8b depicts an AWS Beanstalk [Ama22b] stack sup-
porting the Consumer-Managed Scaling Configuration pattern. Cloud
consumers choose virtual machine images for the Java application and
specify the horizontal scaling rules. Consumer-managed offerings, such
as bare-metal, IaaS, or container orchestration services, typically provide
even more control over the scaling configuration.
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Result: When applied, this pattern results in a consumer-controlled specifi-
cation of infrastructure resources and horizontal scaling rules, which can be
preferable when such customizations are required. Scaling configuration
is performed according to the underlying service requirements, e.g., au-
toscaling rules for container orchestration services might differ from rules
for PaaS offerings. This pattern can be combined with either the Fixed or
the Customizable Deployment Stack patterns to enable flexibly refining
these management decisions into suitable hosting options (see Section 3.7
for more details).

Known Uses: Various offerings support Consumer-Managed Scal-
ing Configuration, e.g., bare-metal and IaaS offerings such as IBM
Cloud Bare Metal Servers [IBM21], AWS EC2 [Ama22b], or Azure
IaaS [Mic22]. Container orchestration offerings, such as Azure Kuber-
netes Service [Mic22] or AWS Elastic Kubernetes Service [Ama22b], also
enable configuring the cluster size and the horizontal scaling rules for
containers. In addition, certain PaaS offerings such as AWS Beanstalk
support the Consumer-managed Scaling Configuration pattern, e.g.,
by allowing cloud consumers to configure specific numbers of instances
and enabling finer-grained configuration of horizontal scaling rules.

Related Patterns:

• Serverful Hosting, Consumer-managed Container Hosting,
Provider-defined Stack Hosting: represent different refinements
of the Consumer-managed Scaling Configuration pattern.

• Provider-managed Scaling Configuration: can be used instead
when no custom scaling configuration is needed.

• Fixed Deployment Stack, Customizable Deployment Stack:
can be used in combination with the Consumer-managed Scaling
Configuration pattern.

• Many patterns from other languages such as Infrastructure-as-
a-Service [FLR+14] support the Consumer-Managed Scaling
Configuration pattern.
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3.6 Component Hosting Patterns

This section introduces five patterns representing different component host-
ing trade-offs and is based on the previously published work [YSB+21b].

3.6.1 Serverful Hosting

Problem: How to host a software component when it re-
quires customization of the underlying deployment stack
and scaling configuration?

Context: A software component needs to be hosted on a custom deploy-
ment stack with multiple required software dependencies such that the
cloud consumer is able to customize the required infrastructure resources
and scaling rules.

Forces: Cloud service models differ in the degree of control cloud con-
sumers have over the underlying infrastructure resources and scaling rules,
which also influences the customizability of the underlying deployment
stack. For instance, multiple services abstract away the infrastructure as
virtual memory and CPU units, and enable selecting predefined stacks
that cannot be customized and have default scaling rules. However, cloud
consumers may require the customization of hosting components, e.g., to
enable specific dependencies in the hosting environment or have custom
scaling configuration. The chosen architectural style could also influence
this decision, e.g., hosting a monolith with various custom requirements
vs. hosting fine-grained functions with no external dependencies.

Solution: Host a software component on a deployment stack that is pri-
marily consumer-managed and, hence enables manually specifying the
underlying infrastructure resources and scaling rules, as well as setting up,
configuring, and maintaining all the required hosting components, e.g.,
using on-premises servers, bare metal or IaaS offerings. Figure 3.9a shows
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Figure 3.9: Serverful Hosting: solution sketch and example.

the solution sketch: a component is hosted on a deployment stack that
enables cloud consumer to manage the infrastructure components and
scaling configuration, thus supporting various customization tasks.

Example: Figure 3.9b shows Serverful Hosting for two components
using the AWS EC2 offering: a Java application and a NoSQL database. In
the shown deployment stacks, most components are managed by cloud con-
sumers. Another variant could rely on bare metal cloud offerings instead,
enabling cloud consumers to also manage the underlying hypervisor.

Result: When applied, this hosting pattern results in the highest cus-
tomizability of the deployment stack and scaling configuration since the
infrastructure resources and components in the deployment stack are set up,
configured, and maintained by cloud consumers. However, due to manual
installation of components in such deployment stacks, cloud consumers are
additionally responsible for ensuring that each component is running and
available, e.g., by providing healthcheck configurations. For instance, AWS
Elastic Load Balancing [Ama22b] supports specification of health check
rules for checking the health status of running AWS EC2 instances.
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Known Uses: Various offerings enable this pattern, e.g., IaaS offerings
such as AWS EC2 [Ama22b], Azure IaaS [Mic22], or Google Compute
Engine [Goo22] enable provisioning VMs to host components and depen-
dencies, and supporting consumer-managed scaling configuration. Further-
more, bare metal offerings such as IBM Cloud Bare Metal Servers [IBM21]
can be used to provision dedicated physical servers, hence enabling cloud
consumers customizing deployment stack components and scaling rules
for to-be-hosted software components.

Related Patterns:

• Customizable Deployment Stack, Consumer-managed Scaling
Configuration: can be refined into this pattern.

• Patterns such as Infrastructure-as-a-Service [FLR+14] or Pri-
vate Cloud [FLR+14] support this pattern.

• Declarative Deployment Model, Imperative Deployment
Model [EBF+17] can specify stacks implementing this pattern.

3.6.2 Consumer-managed Container Hosting

Problem: How to host a software component when it re-
quires customization of the hosting environment it runs on
and a tailored scaling configuration?

Context: A software component needs to be hosted on a deployment stack
with customizable hosting environment such that the cloud consumer is
able to define the infrastructure resources and scaling rules.

Forces: Cloud service models differ in the degree of control cloud con-
sumers have over the underlying deployment stack and scaling config-
uration. While multiple services enable cloud consumers to manually
define VM clusters and scaling rules, this requires technical expertise, e.g.,
network configuration. Provider-managed services simplify such configu-
ration tasks, but often reduce the customizability of the deployment stack
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and example.

and scaling configuration. However, managing only the hosting environ-
ment software components run on and their scaling configuration without
focusing on the infrastructure resources may be needed, e.g., add custom
software libraries and defining scaling rules.

Solution: Host a software component on a deployment stack implemented
using container orchestration services that enable customizing the scaling
configuration. Figure 3.10a shows the solution sketch: a containerized
component is hosted on a provider-managed container engine that sup-
ports consumer-managed scaling configuration. The infrastructure for run-
ning containers is provisioned and managed by cloud providers, whereas
cloud consumers can still customize container images that encompass
components and specify the desired scaling configuration including the
infrastructure resources for container engine and scaling rules.

Example: Figure 3.10b shows Consumer-managed Container Hosting
for two components using the managed Kubernetes [The22c] service from
AWS: a Java application and a NoSQL database. The hosting environment
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is customizable by cloud consumers as a part of the provided container
image. The scaling configuration including infrastructure resources and
scaling rules is also managed by consumers.

Result: When applied, this hosting pattern results in reduced manage-
ment efforts for lower infrastructure layers in the deployment stack that
are provider-managed, whereas cloud consumers can still manage the scal-
ing configuration and customize the hosting environment via container
images. While the degree of control is reduced, cloud consumers still
can introduce various modifications making this pattern a less demanding
variant for hosting components that require customizations for the hosting
environment and scaling rules. Provider-managed container orchestration
offerings may vary in built-in features and integrations with other provider
services. However, since deployment stacks are defined as container im-
ages, such applications are easier to reuse and port to similar environments
from other cloud providers.

Known Uses: Various container orchestration services enable this pattern
including IBM Cloud Kubernetes Service [IBM21], Azure Kubernetes
Service [Mic22], and AWS Elastic Kubernetes Service [Ama22b]. Further-
more, some Container-as-a-Service (CaaS) offerings such as AWS Elastic
Container Service [Ama22b] with the EC2-based pricing mode enable
hosting containers such that consumers can configure the infrastructure
resources for planned containerized components and define the scaling
rules for running container instances.

Related Patterns:

• Customizable Deployment Stack, Consumer-managed Scaling
Configuration: can be refined into this pattern.

• Multiple patterns, e.g., Infrastructure-as-a-Service, Private
Cloud [FLR+14], Software Container [SF15], or Container
Manager [SF17] support this pattern.

• Declarative Deployment Model, Imperative Deployment
Model [EBF+17] can specify stacks implementing this pattern.
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3.6.3 Provider-defined Stack Hosting

Problem: How to host a software component when it re-
quires a tailored scaling configuration but no deployment
stack customization is necessary?

Context: A software component needs to be hosted on a deployment stack
without any customization requirements such that the cloud consumer is
able to define the infrastructure resources and scaling rules.

Forces: Cloud service models differ in how customizable the underlying
deployment stack and scaling configuration are. Many services offer more
control as cloud consumers to manually define VM clusters and scaling
rules, which, however, adds more management overhead and requires
additional technical expertise. On the other hand, software components can
often be hosted on standard platforms without extra customizations, e.g.,
a Java Web Application Archive (WAR) or a relational database schema.
Provisioning VMs and installing dependencies is an unnecessary overhead
for such cases. However, managing scaling configuration may still be
needed for tailored availability requirements, e.g., to manually fine-tune
scaling rules. This is also relevant for products like databases or message
queues for hosting database schemas and topics with consumer-managed
infrastructure resources and scaling rules.

Solution: Host a software component on a deployment stack capable to run
this component without additional customizations, but also enables cloud
consumers to manage the scaling configuration. Figure 3.11a shows the
solution sketch: a component is hosted as-is on a suitable provider-defined
stack that supports consumer-managed scaling configuration. For example,
certain PaaS and DBaaS offerings enable hosting components by selecting
a compatible predefined stack variant, e.g., a Java 8 application running on
a stack with JRE 8 or a RDBMS of specific version, whereas the scaling
configuration can still be managed by cloud consumers, e.g., by specifying
the number of VMs and the scaling rules.
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Figure 3.11: Provider-defined Stack Hosting: solution sketch and ex-
ample.

Example: Figure 3.11b shows Provider-defined Stack Hosting for two
components using AWS Beanstalk and AWS DocumentDB [Ama22b]: a
Java application and a NoSQL database. The compatible deployment stack
is simply selected from a list of options, i.e., the compatible JRE and a
NoSQL document store. However, cloud consumers can still manage the
scaling configuration by defining the desired number and flavor of VMs
and specifying scaling rules.

Result: When applied, this hosting pattern results in reduced efforts for
managing the deployment stack as consumers only select a predefined,
compatible option for the given packaged component. However, since cloud
consumers retain control over scaling configuration, the infrastructure
resources (number and flavor of underlying VMs) and scaling rules can be
customized. Components hosted using this pattern can often benefit from
the built-in integration mechanisms targeting other provider services, but
the degree of lock-in is also increased.

Known Uses: Various PaaS offerings enable this pattern, e.g., AWS Elas-
tic Beanstalk Service [Ama22b] and Azure App Service [Mic22]. The
former enables hosting components packaged for various platforms using
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available and predefined deployment stacks. Infrastructure resources re-
quired to run the components must be specified by developers as AWS EC2
VMs that will host the predefined deployment stacks. Likewise, Azure
App Service enables hosting software components implemented for vari-
ous platforms and control the underlying infrastructure resources. Cloud
service models such as DBaaS, e.g., Amazon DocumentDB [Ama22b]
or Oracle Database Classic Cloud Service [Ora22], enable managing the
infrastructure resources for using predefined deployment stacks providing
different versions of the respective database management systems.

Related Patterns:

• Fixed Deployment Stack, Consumer-managed Scaling Config-
uration: can be refined into this pattern.

• Multiple patterns, e.g., Platform-as-a-Service, Execution Envi-
ronment [FLR+14] support this pattern.

• Declarative Deployment Model, Imperative Deployment
Model [EBF+17] can specify stacks implementing this pattern.

3.6.4 Provider-managed Container Hosting

Problem: How to host a software component when it only
requires customization of the hosting environment it is
runnning on?

Context: A software component needs to be hosted on a deployment stack
with a customizable hosting environment such that cloud consumers are
not required to manage the infrastructure resources and scaling rules.

Forces: Cloud service models vary in how customizable the deployment
stack and scaling configuration are: while many services enable man-
ual specification of VM clusters and scaling rules, others simplify stack
management and provide default autoscaling mechanisms. Managing the
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Figure 3.12: Provider-managed Container Hosting: solution sketch
and example.

infrastructure resources and scaling rules may be an overhead for compo-
nents that need no tailored scaling rules and only require modified hosting
environment, e.g., to install custom libraries.

Solution: Host a software component on a deployment stack implemented
using container orchestration services that do not require managing scaling
configuration by providing default autoscaling mechanisms. Figure 3.12a
shows the solution sketch: a containerized component is hosted on a
provider-managed container engine. Customization of the hosting environ-
ment is possible via container images; however, the scaling configuration is
not required to be managed by cloud consumers. With provider-managed
scaling configuration, infrastructure resources are abstracted away and
providers are responsible for scaling containers in and out based on their
operation mode, e.g., long-running tasks vs. short-lived tasks.

Example: Figure 3.12b shows Provider-managed Container Hosting
for a Java application using AWS Fargate, a serverless container-centric
offering from Amazon. The hosting environment is specified via container
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images, i.e., the compatible Java runtime, whereas the scaling configuration
is provider-managed. The usage of serverless-style container services that
scale components to zero instances for standard products such as databases
may incur unnecessary overhead due to the need to re-instantiate such
components for new requests. Therefore, to fully benefit from reduced
management requirements, the Serverless Hosting can be implemented
for such component types instead (see Section 3.6.5).

Result: When applied, this hosting pattern results in reduced management
efforts for lower infrastructure layers in the deployment stack, and in scaling
configuration that are provider-managed, whereas cloud consumers can
still customize the hosting environment using container images. While
provider is responsible for the majority of tasks, cloud consumers can still
customize the deployment stack, which makes this pattern a customizable,
serverless-style hosting option. Provider-managed container services may
differ in features and available integrations with other provider services;
however, deployment stacks specified as container images can often be
reused for similar environments from other cloud providers.

Known Uses: Various CaaS offerings enable this pattern, e.g., AWS
Fargate [Ama22b], Azure Container Instances [Mic22], or Google
CloudRun [Goo22] enable hosting container images with provider-
managed scaling configuration that often includes scaling containers to
zero instances. Another example is Iron Worker [Iro22] that enables execut-
ing containerized background tasks in a serverless manner. Certain FaaS
offerings, e.g., AWS Lambda [Ama22b], that support container images as
deployment artifacts also enable this pattern.

Related Patterns:

• Customizable Deployment Stack, Provider-managed Scaling
Configuration: can be refined into this pattern.

• Multiple patterns, e.g., Software Container [SF15] or Container
Manager [SF17] support this pattern.

• Declarative Deployment Model, Imperative Deployment
Model [EBF+17] can specify stacks implementing this pattern.
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3.6.5 Serverless Hosting

Problem: How to host a software component when it re-
quires neither customization of the hosting environment it
runs on nor tailored scaling configuration?

Context: A software component needs to be hosted on a deployment stack
without any customizations of its hosting environment and no custom
requirements related to infrastructure resources and scaling rules.

Forces: Cloud service models vary in the degree of control over the
deployment stack and scaling configuration, e.g., many services enable
manual specification of VM clusters and scaling rules, while others sim-
plify deployment stack and scaling configuration management for cloud
consumers. To host components that require no tailored scaling rules
or custom deployment stack, it may be preferable to rely on predefined
stacks and leverage provider-managed scaling configuration, e.g., hosting
small code snippets with no custom dependencies. Tighter coupling with
the underlying provider offering can help leveraging built-in integration
mechanisms with other provider-specific services.

Solution: Host a software component on a deployment stack capable
to run it without additional customizations and without manual scaling
configuration, e.g., by leveraging default autoscaling mechanisms. Fig-
ure 3.13a shows the solution sketch: a software component is hosted on a
provider-defined stack which does not require cloud consumers to manage
scaling configuration. For instance, public FaaS offerings enable hosting
event-driven code snippets that are autoscaled based on incoming requests.
Certain database and message queue offerings also do not require manag-
ing underlying infrastructure resources and scaling rules and are provided
as predefined stacks, e.g., specific database versions with all the required
dependencies. Some SaaS offerings also support this pattern by enabling
using components with minor configuration efforts and abstracted away
deployment stacks, e.g., static web pages can be hosted using GitHub Pages
if the repository is configured in a specific way.
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Figure 3.13: Serverless Hosting: solution sketch and example.

Example: Figure 3.13b shows Serverless Hosting for two components (a
Java application and a NoSQL database) using AWS Lambda and AWS
DynamoDB, serverless FaaS and DBaaS offerings from Amazon. The
compatible deployment stack is chosen from the list of available options,
i.e., the compatible JRE and a NoSQL document database. Moreover,
cloud consumers do not need to manage the scaling configuration as both
services provider default autoscaling mechanisms.

Result: When applied, this hosting pattern results in significantly re-
duced management efforts required from cloud consumers since cloud
providers are responsible for setting up, configuring, and scaling the un-
derlying deployment stacks. Typically, only a packaged component or
even product-specific configuration (in case of certain SaaS offerings) are
to be provided to enable using the component, with the underlying plat-
form also providing default autoscaling mechanisms. This pattern is the
least consumer-managed option, which is suitable for components with no
custom management requirements and enables consumers to focus more
on business logic and integration tasks instead. Additionally, the integra-
tion with other provider-specific services is often simpler due to built-in
integration mechanisms, e.g., built-in event triggers for FaaS functions.
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Known Uses: Various FaaS offerings such as AWS Lambda [Ama22b],
Azure Functions [Mic22], or Google Cloud Functions [Goo22] enable
this pattern. The hosted code snippets are automatically scaled based on
incoming requests and can be integrated with events from other services
due to built-in integration mechanisms. Other examples are object storage
services such as AWS S3 [Ama22b] or IBM Object Storage [IBM21],
or database offerings, e.g., Amazon Aurora Serverless [Ama22b] does
not require scaling configuration management – providers use pricing
models in which consumers are charged based on how computational
power, storage, data transfer, etc. are utilized.

Related Patterns:

• Fixed Deployment Stack, Provider-managed Scaling Configu-
ration: can be refined into this pattern.

• Serverless Deployment Pattern [Ric18]: is a more specialized
variant of this pattern for hosting microservices on FaaS platforms.

• Declarative Deployment Model, Imperative Deployment
Model [EBF+17]: can specify stacks implementing this pattern.

3.7 Pattern Relations and Their Semantics

The introduced patterns capture higher- and lower-level solutions and are
interrelated with each other via typed relationships, thus forming a pattern
language as shown in Figure 3.14. As pattern relationships are often de-
scribed in free text [FBL18] and can be ambiguously interpreted [CFH+02],
this section discusses the semantics of documented relationships among
patterns both informally and formally to clearly explain the patterns inter-
play used for the provider-agnostic modeling of FaaS-based applications
presented in Chapter 6. Since multiple pattern formalisms exist [BZ08;
CFH+02; FBL18; RFL19], the semantics of transitions between patterns
and their combinations using typed relationships is described by building
on top of existing formal approaches.
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The patterns from the Deployment Stack Management and Scaling Config-
uration Management categories discussed in Sections 3.4 and 3.5 capture
higher-level solutions related to particular management problems, i.e.,
customizability of deployment stacks and manageability of scaling con-
figuration by cloud consumers. In the presented pattern language, each
of these categories captures mutually-exclusive solutions for hosting soft-
ware components with respect to specific management aspect, e.g., the
Fixed Deployment Stack pattern can be used when no customizations are
needed for the deployment stack, whereas the Customizable Deployment
Stack is applicable in the opposite case. Therefore, to represent patterns
that cannot be combined together, the relationship of type Conflict [Nob98]
is used in the pattern language as shown in Figure 3.14.

Further, the Deployment Stack Management and Scaling Configuration
Management patterns can be combined to address specific combinations of
these management aspects forming so-called compound patterns [BHS07].
To represent such compound solutions, the relationships of type Combina-
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Figure 3.14: The Component Hosting and Management pattern language.
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tion [Nob98] is used in the pattern language as shown in Figure 3.14. More-
over, single as well as compound patterns can be refined into more concrete
patterns using the relationships of type Refinement [KP10; Nob98]: as seen
in Figure 3.14 abstract patterns related to a specific management dimension
can typically be refined into one of the suitable and more concrete hosting
options. Finally, Generalization is the inverse of the Refinement relation-
ship (not shown explicitly in Figure 3.14) and describes the transitioning
from a more concrete to more abstract pattern [Nob98].

Following the existing definition [RFL19], a pattern can be represented as a
combination of facts describing the problem, context, and solution (the so-
called minimal triangle [GM05]), as well as the facts describing the result-
ing context that can possibly contain new problems:

Definition 3.1 (Pattern, based on [RFL19])
Let � denote the set of all facts, i.e., true or false propositions. A
pattern can then be specified as a tuple p = (Π, f,  , '), where Π

is the problem and f is the solution,  is the context in which the
pattern is applicable, and ' is the resulting context, s.t.: (i)  ⊆ �,
(ii) Π ⊆  \ ∅, (iii) ' ⊆ � \ {Π} ∧ (¬Π ∈ '), (iv) f :  → '. �

For example, the Customizable Deployment Stack pattern can be ap-
plied when a deployment stack requires customizations and the problem
is expressed as the fact “stack is customizable = false”. The solution
provided by the pattern negates this fact, i.e., “stack is customizable =
true”, and results in the new context in which the stack requires additional
management effort from consumers, effectively introducing an opposite
problem “stack is provider-managed = false”. Since not all patterns can
be meaningfully combined due to conflicts between initial and resulting
contexts, the mutually-exclusive patterns can be linked using the Conflict
pattern relationship. Using semantic equivalence for facts is important, e.g.,
“stack is provider-managed = false” is equivalent to “stack is consumer-
managed = true” and both are in conflict with “stack is provider-managed
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= true”. Thus, the Definition 3.2 describes a symmetric relationship: con-
flicting patterns are mutually-exclusive independent of the order they are
applied in.

Definition 3.2 (Pattern Conflict)
Let ?1 = (Π1, f1,  1, '1) and ?2 = (Π2, f2,  2, '2) be two distinct
patterns that resolve problems Π1 and Π2 using solutions f1 and f2,
respectively. The patterns are in conflict (denoted ?1 ⇒⇐ ?2) iff the
following condition holds: (∃d ∈ '1, c ∈ Π2 s.t. d ≡ c) ∧ (∃d′ ∈
'2, c

′ ∈ Π1 s.t. d′ ≡ c′), where ≡ denotes the semantic equivalence
of facts. �

Unidirectional conflicts, i.e., if condition in Definition 3.2 is relaxed to
(∃d ∈ '1, c ∈ Π2 s.t. d ≡ c) ∨ (∃d′ ∈ '2, c

′ ∈ Π1 s.t. d′ ≡ c′),
however, are rather needed for describing the correct (non-conflicting)
order in pattern sequences and not discussed further due to the absence of
such cases in the language. As discussed previously, patterns can also be
combined using the Combination pattern relationship to address problems
specified in each of the involved patterns. Essentially, such a combination of
distinct patterns yields a new, composite pattern that resolves the underlying
combination of problems and is applicable in the context when each of the
combined patterns are applicable. For example, the Fixed Deployment
Stack and Provider-managed Scaling Configuration patterns can be
combined to address the respective problems in both management aspects
and, hence enable a more concrete, composite solution simplifying the
management requirements for cloud consumers.

Definition 3.3 (Pattern Combination)
Let ?1 = (Π1, f1,  1, '1) and ?2 = (Π2, f2,  2, '2) be two dis-
tinct patterns that resolve problems Π1 and Π2 using solutions f1
and f2, respectively. Their combination ?2 exists iff (¬?1 ⇒⇐
?2) ∨ (?1 ⇒⇐ ¬?2), and it can be formally specified as a tuple
?2 = (Π2, f2,  2, '2), where Π2 is the composite problem and f2
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is the combined solution resolving it,  2 is the context in which the
combination is applicable, and '2 is the resulting context, s.t.: (i)
Π2 = Π1 ∪ Π2, (ii)  2 =  1 ∪  2, (iii) '2 = '1 ∪ '2, and (iv)
f2 :  2 → '2. �

Moreover, patterns can be refined into patterns of other granularity to
address a specialization of the respective problems using a similar solution,
which may also deal with additional forces [Nob98]. This behavior is
described using the pattern relationship Refinement, which is also implicitly
related to the opposite Generalization relationship that enables abstracting
away specialized patterns into more general ones by reversing the direction
of Refinement relationship.

Definition 3.4 (Pattern Refinement)
Let ?1 = (Π1, f1,  1, '1) be a pattern that resolves a problem Π1
using a solution f1. Then the pattern ?2 = (Π2, f2,  2, '2) is said to
refine ?1 (denoted as ?2

A↦−→ ?1) when the following conditions hold:
(i) Π1 ∈ Π2, (ii)  2 ⊂  1, (iii) ¬Π1 ∈ '2, and (iv) f2 :  2 → '2. �

Finally, since patterns may potentially have several refinement and/or gen-
eralization variants, this affects the way composite patterns can be refined.
For example, the combination of Fixed Deployment Stack and Provider-
managed Scaling Configuration patterns shown in Figure 3.14 can only
be refined into the Serverless Hosting pattern since this is the only vari-
ant that addresses both respective problems unlike, e.g., Provider-defined
Stack Hosting pattern that only refines one of those patterns. The Refine-
ment of a Pattern Combination can be specified as:

Definition 3.5 (Refinement of a Pattern Combination)
Let ?2 be a combination of = distinct patterns {?1, . . . , ?=}. Then
the pattern ?A = (ΠA , fA ,  A , 'A ) is said to refine % if the following
condition holds: ∀8 ∈{1, …, n}: ?A

A↦−→ ?8 . �
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3.8 Chapter Summary

The discussed semantics of pattern relationships enables different kinds of
transitioning between abstract and concrete decisions, which is used as a
building block in Contribution 4.

3.8 Chapter Summary

This chapter introduces the Component Hosting and Management pattern
language, which categorizes and interconnects higher- and lower-level
solutions focused on hosting application components in the context of
two management aspects: deployment stack and scaling configuration
management. Using the introduced patterns and relationships among them
enables flexibly expressing hosting decisions independently of the target
infrastructure. These patterns can be used independently or in combination
with other pattern languages such as cloud computing patterns [FLR+14]
to decide on FaaS-based as well as any other application deployments.
Moreover, these patterns can also be used in the context of provider-agnostic
modeling of FaaS-based applications, which is addressed by Contribution 4
presented in Chapter 6.

Furthermore, the introduced pattern language has multiple directions to
evolve as it may cover more aspects of modeling application deployments,
e.g., since there already are documented semantic links showing that host-
ing patterns can be modeled imperatively or declaratively [EBF+17], new
patterns documenting how such models can be created or which kinds of
technologies can be employed to enact the deployment can be added in the
future. This could eventually lead to a more generalized pattern language
focusing on deployment modeling and which subsumes the Component
Hosting and Management pattern language as its part.
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R apidly changing feature sets and technical constraints of FaaS
platforms lead to a substantial heterogeneity of existing solu-
tions. Hosting and integration requirements often vary across

different FaaS platforms, even for similar function implementations. For
example, commercial offerings such as AWS Lambda [Ama22b], Azure
Functions [Mic22], or Google Cloud Functions [Goo22] provide various
built-in integration mechanisms, e.g., out-of-the-box event bindings for
provider-specific services, which are often lacking in open source plat-
forms. In contrast, open source platforms, such as OpenFaaS [Ope22]
or Apache OpenWhisk [Apa22b], provide more customization options
as they can be hosted on-premises or using container orchestration en-
gines such as Kubernetes [The22c] while also reducing the dependence on
provider-specific services for hosting FaaS-based applications.
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Finding a suitable platform for a given set of requirements, thus depends on
both higher-level decisions, e.g., available licensing and platform hosting
options, and also on more technical, DevOps-oriented decisions, e.g., sup-
ported language runtimes and integration of event sources, and available
deployment automation support. To address this decision-making prob-
lem and provide means for interactive search of provider-specific hosting
alternatives for FaaS-related components based on given provider-agnostic
requirements, this chapter presents Contribution 2 that introduces a classi-
fication framework and selection support mechanisms for FaaS platforms
and is based on the peer-reviewed journal publication [YSB+21a].

To provide means for a uniform classification of FaaS platforms, a multi-
vocal literature review was conducted, which included a systematic review
of academic literature and an analysis of documentation of ten existing
commercial and open source FaaS platforms. The resulting FaaS platform
classification framework encompasses selection criteria organized into two
disjoint views, namely the business view that groups higher, management-
level criteria and the technical view with more technical criteria relevant
for developers and operators. These two separate views aim to facilitate
finding FaaS platforms suiting the specified provider-agnostic decisions
specified by (i) project managers to first identify FaaS platforms that com-
ply with the project and business requirements, and (ii) development and
operation specialists to select the FaaS platform supporting the required
technical features. To validate this framework, a technology review of ten
FaaS platforms (3 commercial and 8 open source) was conducted. For
brevity, the review data are provided here only for exemplary purposes
when discussing the framework (see [YSB+21a] for more details). In the
following, the research method is briefly described followed by an in detail
discussion of the captured FaaS-specific classification framework. Further,
to enable the classification and interactive search for other component types
in FaaS-based applications, this contribution generalizes the introduced
concepts by presenting a generic classification framework metamodel and
discussing the aspects of data organization and exploration inspired by
existing work on the classification of PaaS offerings [Kol19].

128



4.1 Research Method

4.1 Research Method

This section describes the research process employed to derive the classi-
fication framework for FaaS platforms. Figure 4.1 shows the performed
sequence of five steps. Since the comparison and selection of services is
a well-established research topic, e.g., classification of IaaS [RWZT12]
and PaaS [Kol19] offerings, an analysis of academic literature focusing
on classification and comparison of FaaS platforms was performed first.
Analysis of existing research publications enabled specifying the initial
classification framework that organized the community knowledge on the
topic. Afterwards, the documentation of ten selected FaaS platforms was
analyzed to further improve and refine the classification framework. Each
step of the process is briefly discussed in the following.
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Figure 4.1: The sequence of steps performed to derive the classification
framework for FaaS platforms.

Step 1: Academic Literature Review. Similar to the process described
in Section 1.1.1, the initial set of publications was identified by issuing the
generic search query (serverless OR “Function-as-a-Service” OR FaaS OR
“Function as a Service”) against seven electronic databases, namely ACM
Digital Library, arXiv.org, Google Scholar, IEEE Xplore, Springer Link,
Science Direct and Wiley Online Library. The following inclusion (X) and
exclusion (×) criteria were used to identify relevant publications:

X: Publications written in English that review / evaluate / compare
existing FaaS platforms or function orchestrators.

×: Publications that are not accessible or do not provide enough details,
e.g., extended abstracts, tutorials, demonstration papers.
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The initial set of publications was screened using the adaptive reading depth
technique [PVK15], which resulted in the identification of five relevant
publications [GSP+18; KS18; LSF18; LRLE17; MPd18]. Additionally,
the snowballing technique [Woh14] was applied to increase the number
of relevant publications including (i) forward snowballing using Google
Scholar, to find the research works citing the selected publications, and
(ii) backward snowballing to find the research works cited by the selected
publications. The snowballing enabled finding six more relevant publica-
tions [BO19; GFE+20; KS19; Kum19; PKC19; Raj18], hence increasing
the total amount to eleven relevant papers.

Step 2: Derive Initial Classification Framework. The keywording tech-
nique [PFMM08] was applied to derive an initial classification framework,
which resulted in a set of high-level keywords representing distinct cate-
gories, e.g., “Licensing” and “Installation”, and finer-grained keywords
describing dimensions and concrete criteria. For example, the “Instal-
lation” category comprised the “Type” and “Target Hosts” dimensions
describing installation types and available target hosts. Since the reviewed
publications rely on different terminology, de-duplication was needed to
derive the set of distinct keywords. The initial version of the classification
framework captured the core concepts present in state-of-the-art research;
however, it lacked technical depth and had no clear organization – these
issues were addressed in the next steps of the process.

Step 3: Select Relevant FaaS Platforms. To refine the initial classification
framework, the documentation analysis step was performed next: Firstly, a
list of candidates was populated by combining the platforms referenced in
the reviewed publications with the platforms tracked by CNCF [Clo18].
This list was then pruned to keep only general-purpose platforms, i.e., not
tailored only for specific use cases such as machine learning, and with
actively maintained code repositories. The pruned list was sorted by popu-
larity, based on search engine hits statistics [WBF+19], and the “bounded
effort” stopping criteria [GFM19] was applied by selecting ten platforms.
At the time when review was conducted, the serverless landscape from
CNCF listed 19 provider-managed and 14 open source FaaS platforms. To
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Table 4.1: List of selected FaaS platforms (sorted alphabetically).
Name Documentation Sources
Apache
Openwhisk

https://openwhisk.apache.org,
https://github.com/apache/openwhisk

AWS Lambda https://docs.aws.amazon.com/lambda

Fission https://docs.fission.io,
https://github.com/fission/fission

Fn https://fnproject.io/,
https://github.com/fnproject

Google Cloud
Functions https://cloud.google.com/functions/docs

Knative https://knative.dev/docs,
https://github.com/knative

Kubeless https://kubeless.io/docs,
https://github.com/kubeless

Microsoft Azure
Functions

https://docs.microsoft.com/en-us/azure/azure-functions,
https://github.com/Azure/Azure-Functions

Nuclio https://nuclio.io/docs,
https://github.com/nuclio/nuclio

OpenFaaS https://docs.openfaas.com,
https://github.com/openfaas/faas

better capture possible gaps between commercial and open source plat-
forms, the review covered 50% (7 entries) of open source FaaS platforms,
thus three commercial platforms were selected due to the bounded effort
limit. Three most popular proprietary platforms were chosen by comparing
Google Search hits resulting in AWS Lambda, Microsoft Azure Functions,
and Google Cloud Functions being selected. For open source platforms,
the number of GitHub stars was compared, resulting in OpenFaaS, Apache
Openwhisk, Nuclio, Fission, Fn, Kubeless, and Knative being selected.
Table 4.1 lists the resulting platforms and documentation sources.

Step 4: Analyze Platform Documentation. Only official documenta-
tion sources, e.g., official websites and code repositories, were considered
for the analysis. The initial classification framework with its keywords
was used as a starting point for the analysis, resulting in refinements of
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mappings between high- and lower-level keywords, e.g., “Development”:
(“Function Runtimes”, ...) was extended with the “Runtime Customiza-
tion” criterion since multiple platforms provided extension mechanisms for
enabling unsupported function runtimes. During this step, multiple addi-
tional technical criteria were added, hence requiring a better categorization
and structuring of the framework in the next step.

Step 5: Refine Classification Framework. The final version of the FaaS
platforms classification framework was derived by reviewing and reorga-
nizing the mappings between captured keywords representing categories,
dimensions, and concrete selection criteria, e.g., “Testing” and “Debug-
ging” were combined into one category due to the close relation with each
other. Likewise, the “Observability” category was introduced to com-
bine criteria related to logging and monitoring. Further, certain initially
captured keywords were excluded, e.g., security-related aspects like code
isolation mechanisms, were removed as they required more specialized
analysis beyond the scope of this research work.

4.2 A Framework for Classifying FaaS Platforms

To choose a FaaS platform different requirements must be considered:
more general aspects such as licensing and code availability intertwine
with technical requirements such as native support for particular event
bindings. To address such separation of concerns, the presented FaaS plat-
form classification framework is organized into two views – the business
view intended for non-technical personnel and the technical view targeting
software developers and operators. This section elaborates on both views
and corresponding criteria using examples obtained during the technology
review of the ten FaaS platforms, which was conducted using this classifi-
cation framework [YSB+21a] as discussed in Section 4.1. In addition, the
detailed discussion of the technology review results is omitted and can be
accessed in the original publication [YSB+21a].
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4.2.1 A Business View for Classifying FaaS Platforms

The business view organizes categories, dimensions, and criteria repre-
senting general, project-level requirements including such aspects as the
platform licenses and the possibility of on-premises installation since both
decisions may affect how the software developed in a project can be in-
tegrated with the platform [Lau04]. Figure 4.2 depicts the view with its
dimensions, categories, and criteria, which are explained below.

Licensing. This category comprises licensing-related details: License
specifies the actual license name, whereas Type reflects the corresponding
license type. Figure 4.2 shows example values for names and types of li-
censes under which FaaS platforms are released, e.g., open source [Lau04]
or proprietary options. For instance, multiple non-commercial FaaS plat-
forms such as Apache Openwhisk [Apa22b] or Fission [The22a] are re-
leased under the permissive Apache 2.0 License, and the permissive MIT
License are encountered too (OpenFaaS [Ope22]).

Installation. This category classifies FaaS platforms based on the sup-
ported hosting options including the Type of installation, e.g., as-a-service
and/or installable, as well as on which Target Hosts the platform can
be installed, e.g., operating systems and container orchestration engines
as shown in Figure 4.2. In case a platform is only offered as-a-service,
such as AWS Lambda [Ama22b] or Google Cloud Functions [Goo22],
the Target Hosts remains empty. There exist platforms such as Azure
Functions [Mic22] or Nuclio [Igu22] that are both installable and offered
as-a-service. Open source platforms can be installed on different hosts and
Kubernetes [The22c] is one of the most frequently supported targets.

Source Code. This category helps differentiating platforms based on their
code Availability, i.e., closed source or open source platforms. Open source
platforms can be distinguished based on the Open Source Repository and
main Programming Language in which they are implemented, as shown
in Figure 4.2. Although commercial platforms are mainly closed source,
there exist opposite cases, e.g., the Azure Functions runtime is open source
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and can be installed on-premises. Additionally, open source platforms
are typically available on GitHub – multiple existing open source FaaS
platforms are implemented in Go.

Licensing License Apache 2.0, GNU GPL 3.0, MIT, ...

Type permissive, copyleft, proprietary, ...

Installation Type as-a-service, installable

Target Hosts Kubernetes, Linux, MacOS, ...

Source Code Availability open source, closed source

Open Source Repository BitBucket, GitHub, SourceForge, ...

Programming Language C, Go, Java, JavaScript, Python, ...

Interface Type CLI, API, GUI

Application Management creation, retrieval, update, deletion

Platform Administration
deployment, configuration, enactment, 

termination, undeployment

Community GitHub Stars number

Forks number

Issues number

Commits number

Contributors number

Stackoverflow Questions number

Documentation Functions development, deployment

Platforms
usage, development, deployment, 

architecture

Figure 4.2: The business view of the classification framework: white cells
contain categories, lighter gray cells contain classification
dimensions, dark gray cells list example values [YSB+21a].
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Interface. This category classifies platforms based on the supported in-
terface Types such as Command Line Interface (CLI), API, and/or GUI.
Additionally, it includes Application Management and Platform Adminis-
tration dimensions: the former describes operations a platform provides to
manage applications, whereas the latter indicates whether a FaaS platform
supports deployment, configuration, enactment, termination and unde-
ployment operations for administering the platform itself. While many
platforms provide CLIs and APIs, GUIs are often provided only by commer-
cial platforms. Further, platform administration interfaces typically vary
more among platforms in terms of the supported functionalities compared
to application management interfaces.

Community. Platforms can also be characterized based on the development
community, e.g., size and popularity of open source repositories [GSN+19].
Thus, this category includes quantitative information such as the number of
Stars, Forks, Issues, Commits and Contributors obtained from the GitHub
repository of a platform. Another dimension keeps track of platform-
related Questions on Stackoverflow as an additional indicator of the interest
in platforms. The amount of questions on StackOverflow is generally
significantly larger for commercial FaaS platforms due to the maturity of
the corresponding product. e.g., AWS Lambda questions are significantly
more frequent than questions about the Fission [The22a] platform. Open
source platforms, on the other hand, differ significantly in popularity and
community characteristics: platforms such as OpenFaaS [Ope22], Apache
Openwhisk [Apa22b], and Knative [The22b] demonstrate stronger public
interest compared to other platforms.

Documentation. This category classifies platforms based on the kinds of
documentation available: Functions comprises function development and
deployment documentation. Additionally, the Platform comprises criteria
related to the documentation of platform usage, development, deployment
and architecture. While the documentation on deployment and platform
usage is generally provided by most platforms, not all open source platforms
actually provide architecture and development documentation.
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4.2.2 A Technical View for Classifying FaaS Platforms

Technical, lower-level classification criteria constitute the technical view of
the FaaS platforms classification framework. Using this view, software de-
velopment and operations specialists can identify suitable platforms based
technical requirements, e.g., support for a specific function runtime. Fig-
ure 4.3 and Figure 4.4 present the view with its categories and dimensions,
which are discussed in detail below.

Development. This category organizes criteria related to different aspects
of functions development as shown in Figure 4.3. This includes dimen-
sions that cover supported Function Runtimes, e.g., Java 11 runtime, and
whether the platform provides means for Runtime Customization, e.g., us-
ing customized container images. Java, Node.js, and Python runtimes are
among the most popular function runtimes supported in both commercial
and open source FaaS platforms. Additionally, runtime customization
is often achieved by supporting Docker images. Further, a platform can
offer plugins for IDEs and Text Editors such as IntelliJ IDEA or Visual
Studio Code to enable syntax highlighting or automated code packaging,
and hence, facilitate implementing functions. Likewise, language-specific
Client Libraries can be provided to enable programmatic access to APIs
of the platform. Typically, IDE and text editor plugins are provided by
commercial platforms. While language-specific client libraries are often
also provided for open source platforms, the extensiveness of SDKs and the
number of supported languages is often higher for commercial platforms.
Finally, the Quotas dimension indicates if the Deployment Package Size
or Execution Time are restricted by the platform. Such quotas often exist
in commercial platforms, whereas open source platforms often enable
configuring limits, e.g., to control the resource consumption.

Version Management. The next category shown in Figure 4.3 covers the
Version Management mechanisms offered by the platform, i.e., manag-
ing single Function versions or Application versions grouping multiple
functions and, possibly, the related components that interact with func-
tions. While versions can be encoded implicitly, e.g., a semantic version
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value added as part of a function name or its namespace, the support
for dedicated mechanisms is a more organized way to manage versions.
Open source platforms more frequently support only implicit versioning
opposing to commercial platforms that often provide dedicated versioning
mechanisms. Additionally, versioning of FaaS-based applications in open
source platforms is mainly limited to grouping functions since open source
platforms are standalone products without built-in integration with other
provider-specific services, e.g., databases or message queues.

Event Sources. This category groups criteria related to the support for
different kinds of event sources that can trigger functions as shown in Fig-
ure 4.3. As discussed in Section 1.1.2, exposing a FaaS function as an
Endpoint using API Gateways is a common use case for FaaS-based appli-
cations. Several additional criteria are also relevant for this event source
type, namely the support for (i) Synchronous Call or Asynchronous Call of
functions made via specific protocols such as Hypertext Transfer Protocol
(HTTP), (ii) Endpoint Customization, e.g., to customize the name of the
endpoint, and (iii) TLS Support for the secure triggering of functions using
HTTPS. The support for these aspects may differ among platforms, e.g.,
synchronous, HTTP-based function calls are supported more often than
asynchronous function calls, while FaaS platforms generally support the
customization of endpoints and calls via HTTPS.

The Data Store dimension covers event sources that represent higher-
level storage types [MTB18]. File Level covers object stores like AWS
S3 [Ama22b], whereas Database Mode is concerned with relational and
non-relational databases like Azure CosmosDB [Mic22]. Commercial plat-
forms typically document support for different provider-specific data stores,
whereas open source platforms often provide less built-in integration mech-
anisms with different storage types as they are mainly standalone products
and have no direct relation to any provider-specific service ecosystems.

Next, the Scheduler dimension covers platform support for scheduled func-
tion invocation, which is often implemented as cron jobs. The Message
Queue and Stream Processing Platform dimensions cover the platform
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support for triggering function using messaging and streaming services
such as AWS Simple Notification Service (SNS) [Ama22b] or Apache
Kafka [Apa22a]. Support for scheduled function invocation and messaging-
related even sources is documented by multiple platforms. Services such
as AWS Alexa [Ama22b] or IBM Watson [IBM21] in certain cases can
also serve as event sources – such special cases are covered by the Special-

Development Function Runtime Go, Java, JavaScript, Docker, ...

Runtime Customization supported, not supported

IDEs & Text Editors IntelliJ IDEA, Eclipse, VSCode, …

Client Libraries Go, Java, JavaScript, Python, …

Quotas

Deployment 
Package Size

present, not present

Execution 
Time

present, not present

Version 
Management

Application Versions dedicated mechanisms, implicit versioning

Function Versions dedicated mechanisms, implicit versioning

Event Sources Endpoint Synchronous Call HTTP, gRPC, …

Asynchronous Call HTTP, gRPC, …

Endpoint 

Customization

supported, 

not supported

TLS Support supported, 

not supported

Data Store File Level AWS S3, Min.io, …

Database Mode Azure Cosmos

Scheduler supported, not supported

Message Queue AWS SQS, RabbitMQ, …

Stream Processing Platform AWS Kinesis, Apache Kafka, …

Special-purpose Service AWS Alexa, GitHub, IBM Watson,…

Event Source Integration plugins development, messaging-based 

integration

Figure 4.3: The technical view of the classification framework: white
cells contain categories, lighter gray cells contain dimensions,
dark gray cells list example values [YSB+21a].
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purpose Service dimension. Finally, the Event Source Integration dimen-
sion covers supported ways to enable triggering functions using custom
event sources, e.g., by developing plugins or using webhooks.

Function Orchestration. This category shown in Figure 4.4 groups crite-
ria related to the support for function orchestration. In particular, it covers
platform support for modeling the interactions of multiple functions as
workflows [LR00] that can be executed by compatible function orches-
trators, e.g., functions hosted on AWS Lambda can be composed into
complex orchestrations executed using the AWS Step Functions [Ama22b]
offering. Such function orchestrators are typically standalone products
offered as-a-service, e.g., AWS Step Functions, or complementary parts of
open source platforms, e.g., Apache Openwhisk Composer [Apa22c].

Several dimensions are included as a baseline for the classification of such
function orchestrations. Since the function orchestration modeling ap-
proaches vary for different function orchestrators [GSP+18], the Workflow
Definition dimension indicates both whether function orchestrations are
possible and which modeling approach is supported, e.g., using custom
DSL such as ASL [Ama22b] or general-purpose programming language
such as Python. Next dimension covers the availability of documentation
for supported Control Flow Constructs, e.g., how to model parallel and
sequential function invocations, or how to enable error handling. Similar
to FaaS platforms, function orchestrators can impose certain Quotas, i.e.,
constraints on the Execution Time or the Task Input and Output Size.

Testing and Debugging. The next category shown in Figure 4.4 focuses
on the testing and debugging aspects. For instance, platforms may provide
mechanisms to simplify Functional and Non-functional testing, e.g., by
offering platform-specific libraries or dedicated CLI commands. Like-
wise, mechanisms that facilitate Local and Remote debugging can also
be provided by the platform – for both dimensions this could include
platform-native and third-party tooling. Commercial and open source
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FaaS platforms often provide some mechanisms that facilitate functional
testing and local debugging of functions with commercial platforms often
offering more sophisticated solutions.

Observability. This category groups criteria related to the observability
aspects for FaaS-based applications as shown in Figure 4.4. This includes
the Logging and Monitoring dimensions that indicate supported platform-
native and third-party tools for logging and monitoring, respectively. The
documented means of integrating existing logging and monitoring tools is

Function 

Orchestration

Workflow Definition standard language, custom DSL, 

Control Flow Constructs documented, not documented

Quotas Execution Time present, not present

Task Input and 
Output Size

present, not present

Testing and 

Debugging

Testing Functional
platform-native tooling, 
3rd party tooling

Non-functional
platform-native tooling,
3rd party tooling

Debugging Local
platform-native tooling, 
3rd party tooling

Remote
platform-native tooling, 
3rd party tooling

Observability Logging platform-native tooling, 3rd party tooling

Monitoring platform-native tooling, 3rd party tooling

Tooling Integration push-based, pull-based, plugin development, …

Application 

Delivery

Deployment Automation platform-native tooling, 3rd party tooling

CI/CD Pipelining supported, not supported

Code Reuse Function Marketplace official marketplace, 3rd party marketplaces

Code Sample Repository present, not present

Access 
Management

Authentication built-in, external, …

Access Control functions, resources, …

Figure 4.4: The technical view of the classification framework (contin-
ued): white cells contain categories, lighter gray cells contain
dimensions, dark gray cells list example values [YSB+21a].
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covered by the Tooling Integration dimension, e.g., the platform supports
sending events and logs to an external monitoring component (push-based
integration). As in previous categories, commercial platforms often sup-
port sophisticated provider-specific observability solutions such as AWS
CloudWatch [Ama22b], whereas open source platforms mainly rely on the
integration with third-party tools.

Application Delivery. This category shown in Figure 4.4 groups criteria
related to the delivery of FaaS-based applications. Firstly, the Deployment
Automation dimension covers the documented support for provider-specific
and third-party deployment automation tools, such as AWS Cloud Forma-
tion [Ama22b] and Serverless Framework [Ser22b]. FaaS platforms tend to
support deployment automation tools that rely on declarative deployment
models [EBF+17]. In addition, the CI/CD Pipelining dimension covers
the documented mechanisms for pipelining the DevOps processes: while
commercial platforms often provide native support for CI/CD tooling, open
source platforms rarely document dedicated integration mechanisms.

Code Reuse. The criteria related to code reuse aspects, such as available
repositories of existing applications and code examples, are covered by
this category as shown in Figure 4.4. Firstly, the Function Marketplaces
dimension indicates whether application marketplaces that enable reusing
existing FaaS-based applications are available. Likewise, the Code Sample
Repositories dimension reflects the code example repositories maintained
by cloud providers or open source communities. In general, the availability
of function marketplaces such as AWS SAR [Ama22c] is more limited
than code example repositories that are provided by most platforms.

Access Management. Finally, the supported access management mech-
anisms are covered by this category shown in Figure 4.4. This includes
support for native or third-party Authentication mechanisms as well as
support for Access Control mechanisms that enable defining access rules
for functions, e.g., to prevent the function accessing certain data stores.
Similar to other categories, commercial platforms often provide native
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mechanisms for authentication and access control while open source plat-
forms often rely on the features of the underlying hosting environment, e.g.,
mechanisms provided by the underlying container orchestration engine.

4.3 A Generic Metamodel for Technology
Classification Frameworks

While the introduced classification framework focuses on FaaS platforms,
multiple technologies can be categorized using similar criteria, e.g., licens-
ing of storage components or event-driven invocation of container-based
services. To enable using the same technology classification mechanisms
as discussed previously for other technology types, this section presents a
generic metamodel for technology classification frameworks. The meta-

Classification 
Framework
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Type

BooleanNumber

is organized into

1

1..*Filter 
Specification

1
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Filter Type

is of 1
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…

Mapping
Architectural 

Fact Type

…
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Figure 4.5: A metamodel of the technology classification framework.
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model shown in Figure 4.5 focuses on supporting three major aspects,
namely (i) organization of technology classification data, (ii) interactive
search of technologies, and (iii) generation of search queries from external
architectural fact sources such as application deployment models.

To formally describe the classification framework metamodel, let Σ denote
the set of all ASCII characters, then the set of all possible strings over
Σ is denoted using the Kleene closure, i.e., Σ∗ when the empty string
is included and Σ+ otherwise. Let �� ⊆ Σ+ × Σ+ × (Σ+ ∪ {⊥}) be a
set of all data elements, then 34 = (��, �0C0)H?4,+0;D4) ∈ �� is a
uniquely identifiable data element. The DataType describes the allowed
type of values such as string, integer, or unspecified in case +0;D4 =⊥.
Additionally, to refer to specific tuple elements, a projection operator c 9 is
employed: Let -1, . . . , -= be arbitrary sets and - = -8 × ... × -= be their
Cartesian product representing the set of all =−tuples with 8-th component,
1 ≤ 8 ≤ =, being an element G8 ∈ -8. The projection operator c 9 , 1 ≤
9 ≤ =, is then the mapping c 9 : -1 × ... × -= → - 9 , (G1, . . . , G=) ↦→ G 9
that maps a tuple to its 9-th element. In the following, the metamodel
shown in Figure 4.5 is formally described starting from its central entity,
the Technology Classification Framework:

Definition 4.1 (Classification Framework)
Let the set of all technology classification frameworks be denoted as
Φ and the set of all technology types be denoted asΘ. A classification
framework q\ ∈ Φ describing technologies of type \ ∈ Θ is a tuple:
q\ = ( )q,  q, Γq,Δq,Υq, �)q, �q, �(q, �)q, �q, �(q, �q, "q,

30C0 ) , CH?4 , =4BC43Γ, 30C0�) , CH?4�) �

The metamodel entities constituting the tuple are:

•  )q is the set of all Criterion Types (Definition 4.2),
•  q is the set of all Criterion Entries (Definition 4.3),
• Γq is the set of all Criterion Groupings (Definition 4.4),
• Δq is the set of all Framework Dimensions (Definition 4.5),
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• Υq is the set of all Framework Views (Definition 4.5),
• �)q is the set of all Filter Types (Definition 4.6),
• �q is the set of all Filter Entries (Definition 4.7),
• �(q is the set of all Filter Entries (Definition 4.7),
• �)q is the set of all Architectural Fact Types (Definition 4.8),
• �q is the set of all Architectural Facts (Definition 4.8),
• �(q is the set of all Architectural Fact Extractors (Definition 4.9),
• �q is the set of all partial functions that map data in fact sources to

architectural facts (Definition 4.9),
• "q is the set of all Criterion Mappings (Definition 4.10).

Moreover, the tuple comprises the following maps for associating:

• 30C0 ) : criterion types with allowed data elements (Definition 4.2),
• CH?4 : criterion entries with criterion types (Definition 4.3),
• =4BC43Γ: criterion groupings with nested groupings (Definition 4.4),
• 30C0�) : fact types with allowed data elements (Definition 4.8),
• CH?4�: facts with fact types (Definition 4.8).

In the next subsections, the metamodel entities are discussed in detail
following the same order listed above.

4.3.1 Structure of Classification Frameworks

Classification frameworks allow describing technologies using clearly-
structured, typed classification criteria. This subsection discusses the
structuring of classification frameworks and describes how frameworks
can be visualized. A Classification Criterion Type represents a distinct
characteristic of one or more technology types and defines how the cor-
responding technology classification criterion entries are structured, e.g.,
an integer value or a list of string values. Criterion types specify how the
underlying technology classification data are structured using primitive
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types and compound data structures. For example, the criteria discussed
in Section 4.2 can be atomic boolean and integer values, or lists of strings,
e.g., listing supported installation targets.

Definition 4.2 (Classification Criterion Type)
Let  )q ⊆ Σ+ be the set of technology classification criteria types,
then ^g ∈  )q identifies a distinct classification criterion type. Fur-
ther, the map 30C0 ) :  )q → ℘(��) associates with each criterion
type ^g a set of allowed data elements 30C0 ) (^g) describing the
classification criterion type data. �

As classification frameworks describe one or more technologies of some
type \, multiple Criterion Entries of the same criterion type can exist. For
example, distinct entries about the supported event triggers can exist for
different FaaS platforms. Each criterion entry has a unique identifier that
enables selectively accessing it and a Value ⊆ ℘(��) that describes the
respective technology characteristic, and is constructed according to the
corresponding criterion type ^g ∈  )q with the +0;D4 =⊥ representing
null values. Furthermore, each criterion entry has a TechnologyName
representing concrete technology, e.g., a classification criterion entry (“li-
cense.type”, “AWS Lambda”, “proprietary”) describes the license type for
the AWS Lambda FaaS platform.

Definition 4.3 (Classification Criterion Entry)
Let  q ⊆ Σ+×Σ+× (℘(��) ∪ {⊥}) be the set of technology classifi-
cation criteria entries, then ^ = (ID, TechnologyName, Value) ∈  q
represents a distinct classification criterion entry. Additionally, the
map CH?4 :  q →  )q associates with each criterion entry ^ its
type CH?4 (^). �
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As shown in Figure 4.5, criterion types are organized using the so-called
Groupings, which can also be nested to enable isolating criterion types
into finer-grained subgroups. The concepts of groupings and their nesting
relation are defined as follows:

Definition 4.4 (Criterion Groupings)
Let Γq ⊆ Σ+ × ℘( )q)\∅ be the set of criterion groupings and
W = (ID, CriteriaTypes) ∈ Γq be a distinct grouping that comprises
a unique identifier used for ordering and selective access, and a set
of zero or more CriteriaTypes ⊆  )q referenced in this grouping.
To represent the nesting relation, let ≺ be a strict partial order rela-
tion over Γq s.t. ∀WG ∈ Γq : {WH ∈ Γq : WG ≺ WH}. To access the
nested groupings, let =4BC43Γ : (Γq, ≺) → ℘(Γq) be the map that
associates groupings with their nested groupings. �

The ordered groupings of criteria are organized using the so-called Dimen-
sions that comprise the root-level groupings, which can have zero or more
nested groupings. Finally, the dimensions of a classification framework
constitute one or more non-empty Views, such as managerial or DevOps
view discussed in Section 4.2. These framework elements are shown
in Figure 4.5 and can be defined as follows:

Definition 4.5 (Framework Dimensions and Views)
Let Δq ⊆ Σ+ × ℘(Γq) be the set of framework dimensions and
X = (ID, Groupings) ∈ Δq be a distinct dimension that has a unique
identifier for selective access and a set of one or more groupings.
Then, the set of framework views can be defined asΥq ⊆ Σ+×℘(Δq),
then h = (ID, Dimensions) ∈ Υq represents a distinct framework
view referencing one or more Dimensions. �

The described structures can be used (i) for visualizing the framework
itself, e.g., to present criteria similar to Section 4.2 with example values,
and (ii) for exploring the actual criteria values for different technologies.
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Algorithm 4.1 Generate a visual representation of a framework

Input: Framework views Υq
Output: Printable view representations '

1: function generateFrameworkRepresentation(Υq)
2: ' ← ∅ // Initialize the set of printable view representations
3: for all h ∈ Υq do
4: r←ViewRepresentation() // Initialize view representation
5: for all X ∈ c2(h) do
6: GeneratePrintableRepresentations(X, A)
7: end for
8: R←' ∪ {A}
9: end for

10: return R
11: end function
12: function GeneratePrintableRepresentations(X, A)
13: for all W ∈ c2(X) do
14: // Generate a representation of nested groupings and their criteria
15: r.add(createGroupingRepresentation(c1(X), W));
16: GeneratePrintableRepresentations(=4BC43Γ (W), r);
17: end for
18: end function

Algorithm 4.1 outlines the general flow: for each view, all dimensions are
traversed, and printable representations, e.g., HyperText Markup Language
(HTML) or Markdown snippets, are generated for groupings and their cri-
teria – in case the framework itself is visualized then example values for
each criterion can be printed. Hence, the createGroupingRepresentation
function in Algorithm 4.1 is shown only abstractly, without detailing how
nested criteria groups are intended to be visualized, e.g., using HTML ele-
ments. The next subsection discusses the aspects of interactive technology
data exploration, i.e., how to enable searching for technologies that fulfill
some combination of criteria-specific requirements.
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4.3.2 Technology Data Filtering

To enable flexible specification of which framework-specific requirements
should be available for technology search formulation, the metamodel
shown in Figure 4.5 employs framework-specific Filter Configurations that
group together one or more Filter Entries of specific Filter Type that is
compatible with to-be-filtered Criteria Types.

Definition 4.6 (Filter Type)
Let � =  q × ℘(��) ⇀ {)AD4, �0;B4} be the set of all partial
Boolean functions associated with comparing criteria entries. Then,
�) q ⊆ Σ+ × � be the set of all filter types for classification criteria.
Then 5 C = (��, 2><?0A0C>A) ∈ �) q is a distinct filter type with
a unique identifier, which is compatible with some data type such
as string or integer. A partial Boolean function 2><?0A0C>A ∈ �
represents some comparison of data values. �

Filter types represent different ways of deciding on the inclusion of classi-
fication entries for a given user query, e.g., a set of technology classifica-
tion entries can be filtered based on one or more required license values.
For instance, if technologies licensed under the “Apache2.0” license are
needed, a filter type (“BCA8=6.4@D0;8CH”, 2><?0A0C>ABCA4@) can be used
where 2><?0A0C>ABCA4@ represents the string equality comparison, i.e.,
∀G ∈  q,∀B ∈ ℘(��) : (2><?0A0C>ABCA4@ (G, B) = )AD4 ⇔ c3(G) = B).
Thus, the set of filtered criteria entries  5 will be constructed as  5 =

{G ∈  q : 2><?0A0C>ABCA4@ (G, “�?02ℎ42.0”) = )AD4}. When several
licenses are allowed, e.g., {“Apache2.0”, “MIT”}, the comparison can be
made based on disjunction or conjunction of value comparisons in the list,
i.e., Contains Any and Contains All filter types in Figure 4.5.

While filter types only represent possible kinds of comparisons for tech-
nology classification data, the actual specification of how specific criteria
types can be filtered is provided as Filter Entries that specify how specific
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criteria types are preferred to be compared, e.g., searching for a technol-
ogy with the smallest number of contributors vs. the technologies with
large communities of contributors. A set of specified filter entries for
criteria types constitute the Filter Specification of a classification frame-
work, which enables generating visual filter representations for interactive
exploration of the technology review data.

Definition 4.7 (Filter Entry and Filter Specification)
Let �q ⊆ Σ+×�)q× )q be the set of filter entries of a classification
framework, then 5 = (��, �8;C4A)H?4, �A8C4A8>=)H?4) ∈ �q rep-
resents a distinct association of a filter type to a criterion type. Then,
a filter specification �(q ⊆ �q represents a specific combination
of filter entries that can be used to filter the criteria entries in the
classification framework. �

The filtering-related entities in the metamodel shown in Figure 4.5 enable
flexible configuration of filters for data exploration: by defining filter speci-
fications, the corresponding visual filter representations, e.g., HTML form
elements, for each contained filter entry can be generated as shown in the
simplified Algorithm 4.2. The filter representations generation (shown
with the GenerateFilterRepresentation() method in Algorithm 4.2) is
technology-specific, e.g., different templating engines can be used to gen-
erate the underlying HTML representations, and enable formulating user
queries against desired criteria types, e.g., by entering values in generated
HTML form elements representing respective filter entries. Filter specifica-
tions also enable restricting which data are to be filtered, i.e., only a subset
of criteria types in the framework can be made filterable by users. Using
the generated visual representation of the filter specification, interactive
search for suitable technology options can be performed by combining the
available filter entries. Essentially, each employed filter entry is a sub-query
made with the comparator for the underlying filter type, e.g., a sub-query
made using the 2><?0A0C>ABCA4@ (G, “�?02ℎ42.0”) = )AD4 searches the
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Algorithm 4.2 Generate a visual representation of a filter specification

Input: Framework filter specification �(q
Output: Printable filter representations �%

1: function generateFilterRepresentations(�(q)
2: �%← ∅ // Initialize the set of printable filter representations
3: for all 5 ∈ �(q do
// Generate a type-specific filter representation

4: 5 ?←GenerateFilterRepresentation( 5 )
5: �%←�% ∪ { 5 ?}
6: end for
7: return �%
8: end function

technologies licensed under “Apache2.0”. Thus, a user-defined combina-
tion of sub-queries for the chosen filter entries yields the actual query &
for searching technologies that fulfill the given requirements.

There exist different ways to combine the results for sub-queries and rank
the identified technology alternatives. For example, strict or relaxed match-
ing approach [Kol19] can be used in which the inclusion of a technology as
a suitable alternative is defined as the conjunction of all sub-queries speci-
fied via the filter entries in strict mode and if no results are returned some
criteria (and the corresponding filter entries) can be considered optional to
find partially suitable technologies. Additionally, multi-criteria decision
making algorithms can help to rank the technologies fulfilling the specified
requirements, e.g., Simple Additive Weighting (SAW) [SDH+14] can be
used to calculate the score of an alternative as �8 =

∑
F 9G8 9 with F 9 being

the weight of the criterion 9 and G8 9 being the score of the �8 w.r.t. 9 . As
a simple example of its application, all criteria weights can be considered
equal to one and scores equal to one only if the filter condition is fulfilled,
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which would correspond to the relaxed matching approach [Kol19] since
the identified technology alternatives will be ranked based on the number
of sub-queries they fulfill.

4.3.3 Generation of Technology Search Queries Based on
Extracted Architectural Facts

The classification criteria for FaaS platforms presented in Section 4.2 rep-
resent various kinds of facts for FaaS-specific application components that
may influence specific architectural decisions. Following the ontology
of architectural design decisions by Kruchten [Kru04], such architectural
facts can contribute to making (i) existence decisions, e.g., the presence of
a specific kind of event sources such as timers or databases that trigger a
function, (ii) property decisions such as support for HTTPS for function
calls, and (iii) executive decisions such as programming language require-
ments in which components have to be implemented. While being related
to particular components, e.g., a specific FaaS function, such architectural
facts may, however, be distributed across several components on the level
of architecture models.

For example, consider the technology-agnostic model fragment shown
in Figure 4.6 in which a FaaS function can be triggered by an object stor-
age or a message queue and can store results in a NoSQL database. The
properties related to the FaaS function, and, hence the underlying FaaS
platform, are contained in different entities of the model, e.g., the required
event sources support is represented via the “Triggers” connectors, the
required function runtime is encoded in the component type “Java Func-
tion”, and the availability of a Java SDK is an optional property of a FaaS
platform that could be used to rank equally-suitable alternatives. These
component-specific architectural facts contained in application model frag-
ments can be used to automatically generate search queries for finding
suitable component alternatives when designing FaaS-based applications.
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Figure 4.6: Example architectural facts in an application model.

In this context, architectural facts can be seen as distinct typed values that
reflect, e.g., the presence of a required event trigger or function runtime
for specific component of the application.

Definition 4.8 (Typed Architectural Facts)
Let �)q ⊆ Σ+ be the set of architectural fact types associated
with a classification framework, then Ug ∈ �)q represents a dis-
tinct architectural fact type. The map 30C0�) : �)q → ℘(��)
associates with each fact type Ug a set of allowed data elements
30C0�) (Ug) describing the underlying fact type data. Further, let
�q ⊆ Σ+ × Σ+ × ℘(��) be the set of all architectural facts and
U = (��, �><?>=4=C,+0;D4) ∈ �q be a distinct fact for some ap-
plication component with a value of the corresponding data type such
as string or array of strings. The map CH?4� : �q → �)q associates
with each fact U its type CH?4�(U). �

However, given some fact source such as a deployment model fragment and
a specific component for which the search query should be generated, the
related architectural facts need first to be (i) extracted and (ii) mapped to
the respective framework criteria. As application models can be specified
in different languages, e.g., deployment models specified in TOSCA or
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Terraform, architectural facts contained in those model formats require dif-
ferent fact extractors. While source code or running application instances
can also be considered as fact sources, only deployment models as example
fact sources are assumed in the context of this chapter.

Definition 4.9 (Architectural Fact Extractors)
Let �(q ⊆ Σ+ × Σ+ × ℘(��) be the set of all fact sources and
Uf = (��, (>DA24)H?4,+0;D4) ∈ �(q represents a distinct fact
source of some type that comprises structured data about an applica-
tion relevant for searching a specific technology, e.g., properties of
components and their relationships. Let �q be the set of all partial
functions that map data in fact sources to architectural facts, then
a distinct partial function 4 ∈ �q : �(q ⇀ ℘(�q) is called a fact
extractor capable of extracting facts for application components from
a given fact source. �

Further, mappings between extracted architectural facts and classification
criteria are needed to enable generating search queries from different fact
sources such as application model fragments. Typed architectural facts
are extracted from different fact sources, e.g., deployment or architec-
tural model fragments that comprise some desired parts of the planned
application. Figure 4.7 shows a simplified example of two mappings for
architectural facts discussed previously (see Figure 4.6) related to some
FaaS function “F_1”, namely (1) support for Java runtime and (2) existence
of an object storage trigger, to the corresponding criteria types in the FaaS
classification framework (values of the facts are simplified for brevity).

To enable using this extracted information for searching suitable FaaS
platforms via related classification criteria entries, the facts have to be
mapped to the underlying criteria types and filter types. For instance, if the
respective framework criterion type “dev.runtime” is of type String[], the
correct query generated from that fact would be checking the “Java” string
containment in all classification criteria entries of type “dev.runtime” using
the corresponding 2><?0A0C>A2>=C08=B that can be defined as follows:
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Fact Type: func.runtime: String
Criterion Type: dev.runtime: String[]
Filter type: array.contains

Extracted Fact: (“fn.runtime”, “F_1”,“Java”)
Criteria Entries: 

(1, dev.runtime, ["Java", "Go“])
(2, dev.runtime, ["Go"]) 

Selected: (1, dev.runtime, ["Java", "Go“])

Fact Type: trigger.objtst: Boolean
Criterion Type: es.ds.filelevel: String[]
Filter type: array.nonEmpty

Extracted Fact: (“trg.objtst”, “F_1”, “true”)
Criteria Entries: 

(1, es.ds.filelevel, [ ])
(2, es.ds.filelevel, ["AWS S3", “Min.io”]) 

Selected: 
(2, es.ds.filelevel, ["AWS S3", “Min.io”])

Mapping 1

Ex
am

p
le

s

Mapping 2

Figure 4.7: Example mappings and their use for querying criteria entries.

∀G ∈  q,∀B ∈ Σ+ : 2><?0A0C>A2>=C08=B (G, B) = )AD4 ⇔ B ∈ c3(G).
Therefore, mappings must also prescribe the suitable comparison, e.g.,
value containment in an array, hence enabling to select only criteria entries
compatible with the values of architectural facts. This concept can be
defined as follows:

Definition 4.10 (Classification Criterion Mapping)
Let "q ⊂ Σ+× )q×�)q×�)q be the set of all technology classifi-
cation criteria mappings, then ` = (��, �A8C4A8>=)H?4, �02C)H?4,
�8;C4A)H?4) ∈ "q represents a distinct classification criterion map-
ping that links a specific criterion type with an architectural fact type
and prescribes how to compare criteria entries of this type based on
the specific filter type. �

Technology search queries can then be generated based on the available
mappings that describe how extracted architectural facts are related to
criteria types and which filter types should be used, e.g., the compara-
tors for checking the string equality or containment discussed previously.
Therefore, for each extracted architectural fact relevant for searching some
technology for an application component such as FaaS function, all the

154



4.3 A Generic Metamodel for Technology Classification Frameworks

Algorithm 4.3 Generate a technology search query

Input: Fact source Uf ∈ �(q, component name # , mappings "q

Output: Technology search query &
1: procedure generateQuery(Uf, #, "q)
2: & ← ∅ // Initialize the set of sub-queries
3: �� ← 4(Uf) // Extract facts from a fact source
4: for all U ∈ �� do
5: if # = c2(U) ∧ ∃` ∈ "q : c3(`) = CH?4�(U) then
6: @ ← 64=4A0C4%A43820C4(U, `) // Generate sub-query
7: Q←& ∧ {@}
8: end if
9: end for

10: return Q
11: end procedure

sub-queries need to be combined. In this work, the strict matching ap-
proach [Kol19] is considered to be used for combining the sub-queries,
i.e., the conjunction of all sub-queries.

The general flow for generating a search query as a combination of sub-
queries for each extracted architectural fact is outlined in Algorithm 4.3:
using the suitable mapping, the generic method generatePredicate(U, `)

produces an implementation-specific sub-query representation, i.e., de-
pending on how the data can be queried from the tooling that supports
this metamodel. In the shown algorithm it is assumed that only a sin-
gle mapping for the same architectural fact type exists. For example,
the result of the query generation can be an API query string that com-
prises sub-queries for all extracted facts for which a mapping exists,
e.g., https://my.api?funcRuntime=Java&objectStorageTrigger=true. An-
other example is related to database queries, e.g., an SQL query to return
a list of suitable alternatives for a set of extracted facts can be constructed
and returned. Since interactive filtering is intended to be an iterative,
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GUI-driven exploration of available framework data, use of the generated
queries in this context can be seen rather as a complementary part, e.g.,
the generated query can be used as a starting point for interactive filtering
to further refine the technology search. This can be achieved by using the
generated API query as a starting point for initializing the filter entries of
the generated visual representation of a filter specification, e.g., HTML
form elements, and then iteratively refining the search by incorporating
additional, not yet utilized filter entries.

4.4 Architecture for Technology Selection Support

To support the use of the presented generic technology classification frame-
work metamodel and the concepts it encompasses, the architecture shown
in Figure 4.8 is introduced in the following (the details on its prototyp-
ical implementation are further discussed in Section 7.2.2). Firstly, to
enable exploring the technology data graphically, the architecture provides
a Classification Framework Explorer capable of representing available
classification frameworks for different technologies and managing the clas-
sification framework data, e.g., adding new technologies of specific types
and specifying filter configurations or mappings that are then stored in a
Classification Framework Repository.

To process the technology data exploration requests made via the Technol-
ogy Selection Support API, e.g., using the generated filter specifications,
are processed by the Technology Selection Support Backend that comprises
several subcomponents as depicted in Figure 4.8. The Framework Rep-
resentations Builder subcomponent is responsible for creating the frame-
work representations based on specified criteria groupings, dimensions,
and views as well as generating filter representations based on available
filter specifications. To retrieve and store the frameworks-related data such
as criteria types, mappings, filter specifications, and actual technology
classification entries, the Framework Content Manger subcomponent is
used. Finally, to enable generating search queries based on referenced
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Figure 4.8: Architecture for technology selection support using the generic
technology classification framework metamodel.

fact sources, the Search Query Builder subcomponent is used, which is
responsible for triggering the facts extraction via the Facts Extraction
Processor subcomponent and corresponding Fact Extractors compatible
with specific architectural fact types, e.g., capable of processing TOSCA
Service Template and extracting facts for specific Node Templates in them.
After the extraction is completed, the Facts Mapper subcomponent is used
to provide the corresponding mapping-related details such as how the cri-
teria data are to be filtered, i.e., how the extracted facts are mapped to the
classification criteria types and filter types.

4.5 Chapter Summary

This chapter presented the classification framework for FaaS platforms
aiming to facilitate the selection of FaaS platforms based on a variety of
different classification criteria. To enable using the underlying framework
structure for the classification of other technology types in FaaS-based
applications, a generic technology classification framework metamodel was
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introduced. Finally, this chapter also presents a conceptual architecture for
a selection support system that enables using this metamodel. The concepts
presented in this chapter can be used independently of other contributions
as a way to explore different technology types such as FaaS platforms
interactively. The sets of extracted facts may vary depending on fact source
types, e.g., deployment models, coarse-grained application models, source
code, or running application instances. Since not all classification criteria
can be easily mapped to extracted facts, e.g., documentation-related criteria
or support for specific testing and monitoring tooling can be missing in
deployment models, the search query generation from a referenced fact
source can be used as an initial step and combined with the interactive
exploration using generated filter representations. Additionally, one way
to enhance the coverage of criteria when generating initial search queries
is to combine the information from different fact sources, e.g., deployment
models combined with architectural decision records.
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Artifact-level Abstractions

T he technical requirements for implementing provider-specific func-
tion code and orchestration models often need to be taken into ac-
count. For example, function orchestration engines and underlying

modeling languages vary significantly, e.g., in supported fault handling and
control flow modeling constructs, which makes such technology-specific
models non-reusable for other providers. Likewise, the function code
developed for specific platforms is often not directly reusable, e.g., func-
tions rely on provider-specific libraries, event schemas, and packaging for-
mats. Based on two peer-reviewed, first-authored publications [YBHL19;
YSBL22], this chapter presents Contribution 3 that focuses on artifact-
level abstractions for FaaS-based applications and their usage in application
models. This includes (i) a method and tooling for provider-agnostic mod-
eling of function orchestrations and their transformation into proprietary
formats, and (ii) a FaaSification-based approach for specializing function
code for different platforms. Additionally, this chapter discusses how such
code abstraction mechanisms can be represented in application models.
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5 Artifact-level Abstractions

5.1 Uniform Modeling of Function Orchestrations

To tackle the differences in provider-specific modeling approaches, this sec-
tion presents a model-driven method that relies on BPMN 2.0 [OMG11] to
enable modeling function orchestrations independently of function orches-
tration engines and transforming resulting abstract models into technology-
specific formats. BPMN is chosen because (i) it is a proven workflow
modeling standard specifying a machine-readable language generic enough
to express function orchestration modeling semantics [Rue20], and (ii) it
defines a semantically-transparent [Moo09] visual notation that can sim-
plify readability of produced models to non-technical staff. The presented
concepts are based on the peer-reviewed journal publication [YSBL22].

5.1.1 Overview

The proposed method for uniform modeling of function orchestrations
relies on three major parts, namely (i) analysis of the function orchestration
domain to identify frequently occurring modeling elements, (ii) design
of a BPMN profile to enable modeling function orchestrations indepen-
dently of function orchestrators, and (iii) design and implementation of
a transformation framework that enables generating proprietary function

BPMN 2.0 
Modeling 
Constructs

Generic Function 
Orchestration 

Modeling 
Constructs

Proprietary 
Function 

Orchestration 
Modeling
Constructs 

Uniform Function Orchestration Modeling & Transformation with BPMN 2.0

BPMN for Function Orchestration (BPMN4FO):
Orchestrator-independent Modeling Profile

BPMN4FO Transformation 
Framework

Domain 
Analysis

Figure 5.1: Uniform function orchestration modeling and transformation.
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orchestration models. Figure 5.1 depicts the overall idea: firstly, Generic
Function Orchestration Modeling Constructs (GFOMCs) frequently used
in function orchestration models are captured as a list of generic control
flow modeling elements. Additionally, the mappings (i) between GFOMCs
and BPMN 2.0 modeling constructs are identified to enable the uniform
modeling of function orchestrations, whereas the mappings (ii) between
GFOMCs and orchestrator-specific formats are captured to enable the
transformation of produced uniform models into target formats.

Although the introduced method and tooling can be used for different
transformation directions, e.g., mining provider-agnostic representations
from provider-specific function orchestration models, only the refinement
direction is covered in the following, i.e., the transformation from provider-
agnostic to provider-specific function orchestration models. Note, that
since BPMN has no notion of a profile [OMG11] and BPMN extensions
are in fact used to enrich the capabilities of the language, the term “profile”
is used in this chapter analogous to other MDA profiles for BPMN, e.g.,
Lübke and Lessen introduce a BPMN profile for model-driven testing of
service-based processes [LL17].

5.1.2 Generic Function Orchestration Modeling

The baseline list of generic constructs for modeling function orchestrations
was derived by analyzing existing pattern catalogs focusing on general
workflow modeling [RTVM06] and FaaS function compositions [Tai+20]
that document control flow patterns independently of specific technologies
such as general-purpose workflow management systems and function or-
chestrators. Additionally, since traditional workflow modeling languages
often enable advanced features not common to function orchestrators such
as transaction and compensation scopes [OAS07], the list of GFOMCs was
refined using an analysis of prominent function orchestration engines to
extract the core modeling capabilities relevant for function orchestration.
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Name Description
Task expresses an invocation of a FaaS-hosted function.
Sequence represents an ordered list of FaaS functions that are ex-

ecuted sequentially by a function orchestration engine.
Conditional
Branching

splits orchestration into several branches and exactly
one is chosen based on the branching condition.

Parallel
Branching

diverges the flow into multiple concurrently-executed
branches all of which have to be completed before
proceeding to next construct in the flow.

Fan-out invokes a new function instance for processing each
data element in a given array-like structure. All in-
voked functions must be completed before proceeding
to the next construct in the flow.

Looping represents iterative execution, e.g., of one function or
a sequence of functions, while an associated looping
condition is true similar to the while loop in general-
purpose programming languages.

Delay pauses the execution of the orchestration for a specified
time interval.

Sub-
Workflow

represents a sub-orchestration executed as a part of an
enclosing parent orchestration. For the parent orches-
tration this construct is similar to a regular Task.

Error
Handling

represents fault handling tasks that must be invoked in
the occurrence of errors occurred during the execution.

Table 5.1: Name and description of each considered GFOMC.

Particularly, the languages of three major function orchestrators were
analyzed to identify a suitable subset of GFOMCs: AWS Step Func-
tions [Ama22b] and Azure Durable Functions [Mic22] were included
as function orchestration offerings from currently the two largest cloud
providers based on market revenues [Mli21]. Additionally, an installable
Apache Openwhisk Composer [Apa22c] was included as it can be used on
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premises with Apache Openwhisk and also as a service with IBM Cloud
Functions [IBM21]. Table 5.1 describes the considered generic modeling
constructs including basic workflow elements representing atomic task
calls or sequential execution, and more specific ones such as Fan-out.

Formally, a function orchestration metamodel supporting the identified
GFOMCs can be seen as a specialization of the Process Model Graph (PM-
Graph) model by Leymann and Roller [LR00]. Prior to introducing the
BPMN for Function Orchestration (BPMN4FO) profile, the necessary
concepts are discussed based on the PM-Graph formalism: Let the set
of all function orchestration models be denoted as F. Then, f ∈ F as
a specific function orchestration model is described as a specialization
of the PM-Graph metamodel [LR00] called FO-Graph. Let T� bet the
set of all uniquely identifiable orchestration element types, such as Task,
Parallel Gate, Exclusive Gate, or Fan-Out. Then, all typed orchestration
elements in a FO-Graph f are contained in the node set # , whereas the
edge set � describes all possible partial orders of orchestration elements
in f. FO-Graphs are associated with various data, e.g., inputs and outputs
for orchestration elements [LR00].

Let V denote the set of all data for a function orchestration model f with E ∈
+ being a data element of specific structure that also has a name for selective
access. Based on the Data Element definition in PM-Graphs [LR00],
data elements in FO-Graphs enable flexibly describing data in function
orchestration models as primitive or compound objects built with various
atomic structures:

Definition 5.1 (Data Element)
Let " be a set of names and ( be a set of structures. Then,
1. < ∈ " ∧ B ∈ ( ⇒< <; B >∈ + , i.e., a valid data element is a pair
consisting of a name and an already defined structure.
2. Z1, ..., Z: ∈ ((: ∈ N) where Z1, ..., Z: represent atomic structures,
e.g., INTEGER or STRING.
3. 3 ∈ + ⇒ 3 (:) ∈ ((: ∈ #) where 3 (:) denotes an array of
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k elements over d; that means an array of an already defined data
element is a new valid structure.
4. + ⊆ + ⇒ ×+ ∈ ( where ×+ denotes a tuple over V, i.e., a tuple
over an already defined data elements is a new valid structure, and
|+ | < ∞. �

To complement the array or tuple constructors for data elements, the defini-
tion can also be extended with additional data structures such as sets [LR00].
Having discussed data elements in function orchestrations, the notion of do-
mains prescribes how valid data elements are created based on the Domain
definition in PM-Graphs [LR00]:

Definition 5.2 (Domain of a Data Element)
Each data element E ∈ + has an associated domain DOM(v) that
represents all of its corresponding well-formed values:
1. DOM(< <; Z8 >) := domain(Z8) meaning that the domain of an
atomic element is the set of all valid values of the associated atomic
structure, e.g., domain(FLOAT) are all floating point numbers.
2. DOM(< <′;< <; B > (:) >) := DOM(< <; B >) (:) meaning
that the domain of a data element structured as a k-element array
is the set of all arrays with : values from the domain of the data
element being the base for the array.
3. DOM(<<′;×< <1; B1 >, ..., < <A ; BA >>) := ×

1686A
DOM(<<8; B8>)

meaning that the domain of a tuple-structured data element is the
Cartesian product of the domain of the components of the tuple
constructor. �

Function orchestration models and their orchestration elements represent-
ing units of work rely on input and output data. Moreover, the order
in which orchestration elements are executed in a function orchestration
instance is determined by a set of conditions C, e.g., business rules or
predicates, that are formulated in the context of the data consumed and
produced by orchestration elements. Please, note that only input data are
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relevant for evaluating such conditions since the output of a condition is
always a truth value. To facilitate the reasoning about the input and output
data, both are conveniently grouped in so-called data containers which
represent collections of data elements as discussed in the following.

Let Hf be the set of all function orchestration models and orchestration
elements they encompass, i.e.,Hf = F∪# . Similar to PM-Graphs [LR00],
data containers in FO-Graphs are valuable abstractions for discussing
orchestration elements and control flow connectors and can be seen as data
operators for function orchestration instances:

Definition 5.3 (Data Container)
The map if assigns to each orchestration element, function orchestra-
tion model, and condition its input container: if : Hf ∪ C → ℘(+),
meaning that: ∀h ∈ Hf ∪ C : if (h) ⊆ + with |if (h) | < ∞.

Likewise, the map of assigns to each orchestration element and pro-
cess model its output container: of : Hf → ℘(+). This means
∀h ∈ Hf : of (h) ⊆ + with |of (h) | < ∞. �

Note, that the modeling of data flows in FO-Graphs is omitted in this
work due to the capabilities of the analyzed orchestrator-specific modeling
languages in which data flows are not represented using dedicated con-
structs. This is similar to BPEL [OAS07], in which data flows cannot be
modeled explicitly using dedicated constructs, but can be derived via vari-
ables shared between activities [KKL08]. While FO-Graphs represent the
control flow-related semantics, the definitions can be extended to support
explicit data flows via data objects and data connectors as in PM-Graphs.

Data containers, however, become relevant in the context of transforming
generic orchestration models into proprietary formats: depending on the
underlying orchestrator-specific language data containers might need to
be represented explicitly. For example, in function orchestrators that rely
on general-purpose programming languages, the output of orchestration
elements such as Tasks (see Table 5.1) needs to be collected, e.g., in a local
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variable, to be passed to the subsequent orchestration element. Hence,
orchestration elements in a function orchestration model can be perceived
as abstract operators defining their inputs and outputs. Further, implemen-
tations of an orchestration element, e.g., Java code that implements a Task,
enable producing instances of output data using consumed instances of
input data. Based on the Activity definition in PM-Graphs [LR00], orches-
tration elements are defined as in the following.

Definition 5.4 (Orchestration Element)
Let T� ⊆ Σ+ be the set of all orchestration element types, then
C ∈ T� identifies a distinct type of orchestration element. Let #
be the set of all orchestration elements of a function orchestration
model f ∈ F and each member in F is addressed by its name �. An
orchestration element is then described as an operator � : if (�) →
of (�). In addition, let gf : # → T� be the map that associates with
each orchestration element � its type gf (�), and let 8B�0C4f : # →
{CAD4, 5 0;B4} be the map that identifies whether an orchestration
element is derived from type “Gate”, e.g., “Parallel Gate”. �

Orchestration elements represent specific units of work, e.g., an element
of type Task (see Table 5.1), and their implementations perform certain
work by consuming an instance of the associated input data container and
producing the corresponding output container instance. User-provided
implementations of the same functionality in different programming lan-
guages exemplifies the difference between orchestration elements and their
implementations. Another example is fork and join elements responsible
for divergence and convergence of control flow, which are represented by
the Conditional Branching GFOMC as shown in Table 5.1 – these orches-
tration elements are instead built-in capabilities of function orchestrators.
Based on the Activity Implementation definition in PM-Graphs [LR00],
orchestration element implementations are defined as:
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Definition 5.5 (Orchestration Element Implementation)
Let E be the set of all possible implementations of all orchestration
elements; that means a member of E can be a function or a function
orchestration model. The map Ψ : # → E associates with each
orchestration element A its implementation Ψ(�). An orchestration
element implementation itself is perceived as a map:
Ψ(�) : ×

E∈if (�)
DOM(v)→ ×

E∈of (�)
DOM(v). �

While orchestration elements and their implementations represent action-
able units of work, the order of their execution is defined using conditions
and control flow sequences that connect different orchestration elements.
Orchestration elements can have exit conditions that signify the seman-
tic completion of performed work; this concept is defined based on the
definition of Exit Conditions in PM-Graphs [LR00]:

Definition 5.6 (Exit Condition)
The map Y : # → C assigns to each function orchestration ele-
ment a predicate called exit condition. The exit condition Y(�)
of orchestration element � has its input container if (Y(�)) ⊆ +

such that an exit condition is considered as a Boolean function:
Y(�) : ×

E∈if (Y (�) )
DOM(v)→ {0, 1}. �

In Table 5.1, only the Looping construct requires an explicit exit con-
dition indicating completion of an iteration, i.e., when an orchestration
element implementation Ψ(�) completes, its exit condition Y(�) is evalu-
ated with respect to the instance of its associated input container if (Y(�)).
Hence, the Looping orchestration element is considered to be completed
iff Y(�) (if (Y(�))) = 1. In the context of model-to-model transforma-
tion, such conditions need to be transformed into target formats too. To
accommodate for such format discrepancies, a uniform conditions for-
mat is introduced as a part of the BPMN4FO Transformation Framework
described in Section 5.1.5.

167



5 Artifact-level Abstractions

Orchestration elements in FO-Graphs are interconnected using control flow
connectors, i.e., for an orchestration element � there could be one or more
directed edge connecting it with successor elements �1, ..., �G and the pairs
(�, �1), ..., (�, �G) represent potential paths to the next orchestration ele-
ment. The actual flow, however, is defined based on transition conditions,
i.e., predicates that determine the actual transitioning among potential
paths (�, �1), ..., (�, �G). Therefore, control flow connectors in conjunc-
tion with transition conditions define whether the corresponding transition
from orchestration elements A to B should happen based on the corre-
sponding instance input data, which can be defined based on the Control
Flow Connector definition in PM-Graphs [LR00].

Definition 5.7 (Control Flow Connector)
Let set � ⊆ #×#×C contain all control flow connectors of a function
orchestration model f ∈ F. For a control flow connector (�, �, ?) ∈
� , the predicate ? ∈ C is a transition condition represented as a
Boolean function in its input container if (?) ⊆ + : ? : ×

E∈if (?)
DOM(v)

→ {0, 1}. �

In FO-Graphs, the transition condition needs to be explicitly modeled for
the Conditional Branching GFOMC described in Table 5.1. Therefore, the
transition to the next orchestration element for the diverged control flow is
decided based on the input data container instance and the control is passed
to the branch for which ?(if (?)) = 1. Similar to PM-Graphs [LR00], the
FO-Graph representing a generic function orchestration can be defined
based on the Definitions 5.1 to 5.7 as follows:

Definition 5.8 (Function Orchestration Graph)
A tuple � = (+, if, of, #, gf, 8B�0C4f,Ψ, �, C, Y) is called a function
orchestration model graph, or FO-Graph for short, representing a
function orchestration model f ∈ F. �
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To enable model-to-model transformations, this contribution focuses on
defining control graphs that specify how the execution of functions should
be ordered, whereas the data flow modeling with data connectors and
execution semantics with concepts such as join conditions [LR00] are
omitted in the definition of FO-Graphs. These aspects, however, can be
further added based on the definition of PM-Graphs [LR00].

5.1.3 BPMN4FO Abstract Syntax and Modeling Requirements

The BPMN4FO profile is a realization of the FO-Graph and GFOMCs
it encompasses using BPMN 2.0 to enable modeling function orchestra-
tions with a well-known standard instead of orchestrator-specific modeling
languages. Similar to existing domain-specific BPMN profiles [BSBE14;
LL17; WS07], the metamodel for BPMN4FO is defined using UML. Fig-
ure 5.2 depicts the simplified metamodel in which the added properties are
not shown and only the major BPMN elements used for this extension are
colored in gray: BPMN Process represents a distinct function orchestra-
tion model that encompasses Orchestration Elements (see Definition 5.4)
interconnected by means of Control Flow Connectors (see Definition 5.7).
The former are derived from BPMN Flow Element by defining a subset of
allowed flow constructs, whereas the latter inherit from BPMN Sequence
Flows. As discussed previously, Condition Expressions can be specified
for Conditional Branching and Looping GFOMCs to represent transition
and exit conditions, respectively. For convenience, in BPMN4FO, the
transition condition for conditional branching is specified on the level of
the incoming Exclusive Gateway in the property branches to group to-
gether conditions for each outgoing control flow connector – to uniform
condition format is presented in Section 5.1.5. Additionally, to represent
Looping and Fan-out GFOMCs, the Looping Characteristics need to be
specified for desired kind of Activities as corresponding markers. While
data containers are not explicitly represented in BPMN4FO, Orchestration
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Elements include optional inputSchema and outputSchema properties that
can specify input and output data container formats and used for validating
the compatibility of orchestration elements at transformation time.

Unlike BPMN 2.0 that also defines operational semantics for its ele-
ments [CT12], BPMN4FO only aims to enable model-to-model transfor-
mations and not the execution using BPMN engines. Based on the existing
classification framework for BPMN profiles [BE14], the BPMN4FO profile
is a specialization of BPMN, i.e., a subset of BPMN elements is used with
some constraints and additional properties. BPMN4FO focuses on both
describing the domain of function orchestration modeling and enabling
the execution of produced models using model-to-model transformation.
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Figure 5.2: A simplified metamodel of the BPMN4FO profile.
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Further, BPMN4FO does not introduce changes to the concrete syntax of
BPMN, i.e., standard BPMN elements were specialized for this domain
without introducing new notations as will be shown in Section 5.1.4.

To improve comprehensibility of BPMN4FO models, several restrictions
concerning different elements were introduced. Firstly, to avoid arbitrary
use of control flow connectors when connecting function orchestration
elements, the set � in a function orchestration model f ∈ F must be
unified [LR00] meaning that two function orchestration elements can be
connected with at most one control flow connector. While the standard
BPMN allows modeling uncontrolled flow [OMG11], i.e., multiple incom-
ing Sequence Flows for Activities, the resulting uncontrolled flow of
tokens may result in instantiation of multiple separate Activity instances,
which, in turn hinders the transformation semantics. BPMN also allows
modeling parallel branching implicitly via multiple outgoing Sequence
Flows for Activities [OMG11], which could hinder its readability. To
avoid these ambiguities when transforming BPMN4FO models to target
formats, the cardinality of Sequence Flows for all orchestration elements
except Gates is restricted to exactly one.

As Gates in BPMN4FO (see Figure 5.2) represent divergence and conver-
gence of control flow, effectively, only the orchestration elements that
(i) diverge the flow into more than one branch (called Forks in PM-
Graphs [LR00]) and (ii) converge several branches into one (called Joins in
PM-Graphs [LR00]) can have a cardinality of sequence flows more than one.
Aside from the fact that a valid function orchestration model must have a
converging Gate for each corresponding diverging Gate (see [EB14], for ex-
ample), the number of control flow connectors is restricted in BPMN4FO.
Similar to the definition in Section 4.3, let the projection operator c 9 ,
1 ≤ 9 ≤ = be the mapping c 9 : -1× ...×-= → - 9 , (G1, . . . , G=) ↦→ G 9 that
maps a tuple to its 9-th element. These restrictions are formulated based
on the PM-Graph definitions [LR00] as follows:
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Definition 5.9 (Restrictions on Control Flow Connectors)
Let �←(�) = {4 ∈ � : c2(4) = �} and �→(�) = {4 ∈ � : c1(4) =
�} denote sets of control flow connectors incoming to and outgo-
ing from the orchestration element A, respectively. The following
restrictions are imposed for the fork and join elements:

• an orchestration element �1 is a valid forking element iff
8B�0C4f (�1) = CAD4 ∧ |�←(�1) | = 1 ∧ |�→(�1) | > 1,

• an orchestration element �2 is a valid joining element iff
8B�0C4f (�2) = CAD4 ∧ |�←(�2) | > 1 ∧ |�→(�2) | = 1, and

• gf (�1) = gf (�2).

For any other orchestration element A, these restrictions are imposed:
8B�0C4f (�) = 5 0;B4 ∧ 0 6 |�←(�) | 6 1 ∧ 0 6 |�→(�) | 6 1
∧ |�←(�) | + |�→(�) | > 1. �

To generate orchestrator-specific models unambiguously, restrictions are
also imposed on the quantity of start and end function orchestration el-
ements. The former is modeled using the BPMN Start Event and the
latter is modeled by BPMN End Event (see Figure 5.2). Based on PM-
Graphs [LR00], this restriction is described as follows:

Definition 5.10 (Restrictions on Start and End of Orchestration)
Let �BC0AC = {� : |�←(�) | = 0 ∧ |�→(�) | > 0} and �4=3 =

{� : |�←(�) | = 1 ∧ |�→(�) | = 0} denote the sets comprising
start and end orchestration elements. The function orchestration
model is considered valid only if |�BC0AC | = 1 ∧ |�4=3 | = 1. �

An exception is made for fault handling in which End Events can option-
ally mark the termination of fault handling branches, therefore elements
that close such paths are ignored. Although loops can be modeled by com-
bining BPMN Tasks and BPMN Conditional Gateways, in BPMN4FO,
modeling of loops is restricted to the usage of BPMN Loop Markers
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meaning that the actual iteration is either modeled as a Sub-Workflow
or is a part of the underlying orchestration element implementation. In
PM-Graph terms, this property is called acyclicity [LR00], i.e., no path in
the function orchestration can contain a cycle. For brevity, this definition
is omitted since more details on acyclicity can be found in the original
PM-Graph definition [LR00].

5.1.4 BPMN4FO Concrete Syntax

Having discussed the abstract syntax of BPMN4FO and underlying generic
function orchestration modeling concepts, this section presents the concrete
syntax of the profile by example. Firstly, as mentioned previously, the
BPMN Process is employed as a container construct representing the
function orchestration itself. The BPMN Start Event marks the beginning
of a function orchestration and the BPMN End Event denotes its end.
Other aspects of function orchestrations are modeled as follows:

Modeling Tasks. BPMN Task represents an invocation of a FaaS function.
Since functions in orchestration models must have a name, a mandatory
name attribute is used in a BPMN Task. As discussed previously, exactly
one incoming and one outgoing BPMN Sequence Flow is expected for
each modeled Task.

Modeling Sequential Control Flow. BPMN Sequence Flows enable
connecting various elements such as Tasks together. Hence, the sequential
invocation of FaaS functions is modeled by combining BPMN Tasks using
BPMN Sequence Flows (see Figure 5.3). In such sequences, the outputs
of preceding functions become inputs for the next functions.

Function 1 Function 2

Figure 5.3: Example Sequence modeled in BPMN.
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Modeling Conditional Branching. Conditional flows in function orches-
trations are modeled using BPMN Exclusive Gateways which enable
executing only one branch based on associated conditions (Figure 5.4).
Please, note that to specify conditions in a technology-agnostic fashion,
a uniform syntax for modeling conditions is needed – in Section 5.1.5
such uniform syntax for expressing conditions is defined as a part of the
transformation framework supporting this method.

Initial 
Function

Branch 1 
Condition Branch 1 

Function

Branch 2 
Function

Default 
Function

Final 
Function

Default

Branch 2 
Condition

Figure 5.4: Example Conditional Branching modeled in BPMN.

Modeling Parallel Branching. Parallel execution of several FaaS functions
is modeled using BPMN Parallel Gateways, which enable representing
multiple branches that must be run in parallel (see Figure 5.5). Each

Parallel 
Function 1

Parallel 
Function 2

Parallel 
Function 3

Aggregator 
Function

Figure 5.5: Example Parallel Branching modeled in BPMN.
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parallel branch executes a separate copy of the input data received at the
opening BPMN Parallel Gateway. After all branches are completed,
the results are collected at the closing Parallel Gateway and sent to the
next task in the control flow.

Modeling Fan-outs. The Fan-out (see Table 5.1) can be modeled using
BPMN Multi-Instance Markers that enable specifying parallel execu-
tion of several instances of tasks marked with them (see Figure 5.6). This
element can be used for array-like inputs: a new task instance is executed
for each element in the input and the resulting outputs are returned as an
array after all instances finish processing.

Fan-out
Aggregator 

Function

Figure 5.6: Example Fan-out modeled in BPMN.

Modeling Looping. Modeling of an iterative execution of a task is achieved
using BPMN Loop Markers, which enable marking tasks that must be
repeated until a specified condition is satisfied (see Figure 5.7). In this

Looping

Figure 5.7: Example Looping modeled in BPMN.

element, the original input is used in the first iteration while each next
execution receives the output of the preceding iteration as an input. Af-
ter the condition is fulfilled, the iteration completes and the last output is
passed to the next task in the modeled orchestration. Similar to Conditional
Branching, a condition must be specified in an additional loopCondition
attribute in a standardized manner to enable unambiguous transformation
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into target function orchestrator formats. Such condition format is dis-
cussed in Section 5.1.5 in the context of the transformation framework
supporting this method.

Modeling Delays. Delay in the execution of modeled orchestrations for a
specific time interval is represented using BPMN Timer Intermediate
Catching Events with one incoming and one outgoing BPMN Sequence
Flow (see Figure 5.8). Additionally, the milliseconds attribute in the
BPMN timer event must specify the desired duration of the delay after
which the execution proceeds.

Function 1

Wait 1000 ms

Figure 5.8: Example Delay modeled in BPMN.

Modeling Sub-Workflows. Modeling of sub-workflows within a parent
function orchestration model is achieved using BPMN Sub-Processes,
which enable representing self-contained orchestration models with sep-
arate start and end events (see Figure 5.9). Similar to BPMN Task, the

Sub-Process

Function 
1

Function 
2

Figure 5.9: Example Sub-Workflow modeled in BPMN.

BPMN Sub-Process must have one incoming and one outgoing BPMN
Sequence Flow and a name attribute with the sub-orchestration name. Ad-
ditionally, BPMN Multi-Instance Marker and BPMN Loop Marker
can be used to represent Fan-out and Looping, respectively.
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Modeling Error Handling. To model fault handling flows in function
orchestrations, BPMN Error Boundary Events are used to mark the
error handler for BPMN Tasks or Sub-Processes (Figure 5.10). The
BPMN Error Boundary Event has one outgoing BPMN Sequence
Flow, which is connected to the branch executed when errors occur.

Function 1 Function 2

Handler 
Function

Figure 5.10: Example Error Handling modeled in BPMN.

5.1.5 BPMN4FO Transformation Framework

The BPMN4FO profile is designed based on the analysis of modeling lan-
guages and technical requirements in three prominent (at the time of writ-
ing) function orchestrators and enables modeling function orchestrations in
an orchestrator-agnostic manner. This subsection presents the BPMN4FO
Transformation Framework that enables generating technology-specific
function orchestration models from BPMN4FO models. Orchestrator-
specific realizations of GFOMCs vary significantly due to the different
modeling approaches employed by function orchestrators. While more
details on the analyzed orchestrators can be found in the original pub-
lications [YSB+21a; YSBL22], this subsection only summarizes these
technologies in the context of BPMN4FO model transformation into
technology-specific formats.

AWS Step Functions enables modeling function orchestrations as finite state
machines specified using the Amazon State Language (ASL) [Ama22d],
in which typed states representing different control flow constructs, inputs
and outputs are modeled in JSON. In contrast, Azure Durable Functions

177



5 Artifact-level Abstractions

and Apache Openwhisk Composer rely on general-purpose programming
languages for modeling function orchestrations. The former supports mod-

GFOMC
Name

AWS Step
Functions

Azure Durable
Functions

Openwhisk
Composer

Task ASL Task Activity
Function

composer.action

Sequence Next property Subsequent
synchronous

calls

composer.se-
quence

Conditional
Branching

ASL Choice if-else composer.if

Parallel
Branching

ASL Parallel
Asynchronous
invocation of

sub-workflows
composer.parallel

Fan-out ASL Map
Repeated and
asynchronous
invocation of a
sub-workflow

composer.map

Looping Loops with
ASL Choice
conditions1

while composer.while

Delay ASL Wait Durable Timer Custom delay
functions1

Sub-
Workflow

Call to a AWS
Step Function

workflow

Durable
Function

workflow call

composer.action

Error
Handling

Catch
property

try-catch composer.try

1 Requires custom implementation as no native construct is present.

Table 5.2: Mappings between GFOMCs and analyzed Proprietary Func-
tion Orchestration Modeling Constructs (PFOMCs).
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eling orchestrations in C#, JavaScript, or Python [Mic22], whereas the
latter relies on JavaScript [Apa22c]. With this modeling style, orchestrat-
ing functions represent the desired control flow and are responsible for
executing orchestrated functions in that order. Typically, language-specific
libraries need to be used for representing control flow constructs, e.g.,
combinators in Apache Openwhisk Composer. Despite providing native
support for the majority of GFOMCs, the analyzed function orchestrators
do not always offer exact matches, e.g., modeling of Looping for AWS Step
Functions or Delay for Openwhisk Composer. Table 5.2 lists the identified
mappings between generic and proprietary, orchestrator-specific modeling
constructs. In cases when no exact mapping is possible, workarounds can
be used, e.g., custom delay functions for Apache Openwhisk Composer
instead of native constructs.

A system architecture supporting the use of BPMN4FO profile and the
transformation of resulting orchestrator-agnostic models into proprietary
function orchestration formats using the identified mappings is conceptual-
ized in Figure 5.11. Firstly, to enable the use of the BPMN4FO profile, the
BPMN4FO Transformation Framework in Figure 5.11 comprises a Graph-
ical BPMN Modeler that provides a GUI for modeling with BPMN4FO,

BPMN4FO 
Model 

Validator

Graphical BPMN Modeler

BPMN4FO Framework API

Function Orchestration Transformation Backend

BPMN Models Repository

Target 
Model 

Generator

Technology-specific Plugins

Control 
Flow 

Generator

Condition 
Generator

BPMN4FO 
Model

Traverser

Figure 5.11: Architecture of the BPMN4FO Transformation Framework.

179



5 Artifact-level Abstractions

i.e., the GUI must support the specialized subset of BPMN constructs
allowed by the profile and enable triggering the transformation of created
models into supported target formats if they comply with the modeling
requirements of the profile. Since BPMN4FO does not introduce any cus-
tom syntax and relies on standard BPMN elements, the core functionalities
realized within the Graphical BPMN Modeler are related to the introduced
specializations, e.g., custom element properties and specification of uni-
form conditions. Further, to enable generating target proprietary formats,
models are checked for compliance with the profile modeling requirements
discussed in Section 5.1.3 and the Graphical BPMN Modeler conveys the
errors to modelers. Additionally, the framework relies on a BPMN Models
Repository, such as a file-based repository or a relational database, for
storing created models.

The requests to generate proprietary formats are issued using the BPMN
Graphical Modeler and are processed by the Function Orchestration Trans-
formation Backend via the BPMN4FO Framework API. The transforma-
tion is then performed using the following components in the Function
Orchestration Transformation Backend shown in Figure 5.11: Firstly, the
BPMN4FO Model Validator verifies the provided model for compliance
with the BPMN4FO modeling requirements, e.g., allowed numbers of
input and output BPMN Sequence Flows for activities. Moreover, the
BPMN4FO Model Validator is invoked on each change in the model by
the Graphical BPMN Modeler, which enables warning modelers when the
to-be-transformed BPMN4FO model is no longer compliant with the pro-
file. Next, the BPMN4FO Model Traverser component traverses the valid
BPMN4FO model and constructs an internal representation of the function
orchestration graph. The Target Model Generator component is responsible
for the generation of target function orchestration formats using respective
Technology-specific Plugins, e.g., ASL models for AWS Step Functions.
Each plugin comprises the Control Flow Generator sub-component that
transforms the orchestration elements into the corresponding target format.
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Figure 5.12: The interplay of components when transforming BPMN4FO
models using the BPMN4FO Transformation Framework.

Further, the Condition Generator is called by the Target Model Genera-
tor when conditional control flow constructs are encountered to generate
technology-specific conditions, e.g., for ASL models.

Figure 5.12 shows the described interplay of components when a transfor-
mation request is issued to generate a specific function orchestration format
for a given BPMN4FO model. After the provided BPMN4FO model is
validated and traversed, the generation starts and for every encountered
orchestration element, the corresponding orchestrator-specific plugins are
triggered, e.g., when a condition needs to be transformed the respective
Condition Generator is invoked to produce the condition in the target
format. The actual orchestration elements are transformed based on the
identified mappings to the language-specific constructs shown in Table 5.2.
The orchestrator-specific transformation logic is provided in a pluggable
fashion, i.e., support for more function orchestrators can be added via
additional technology-specific plugins realizing the same structure.
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Figure 5.13: A simplified XSD diagram for the uniform condition format.

As discussed previously, to specify conditions in a uniform manner, an
XML-based format was introduced to represent exit and transition con-
ditions uniformly in BPMN4FO, hence enabling the use of orchestrator-
specific condition generators of the framework. Figure 5.13 shows a sim-
plified diagram visualizing the XML Schema Definition (XSD) of the
introduced condition format. Conditional branching can be described us-
ing the branches element that comprises one or more branch elements, each
comprising condition elements that describe how variables referenced in
the condition should be compared, e.g., equality for numbers or strings.
Further, conditions for Looping can be directly expressed using condition

elements.

Listing 5.1 shows an example condition specified for a branch called “Hap-
pyPath”, which evaluates equality of two variables. More detailed examples
about conditions is provided in Chapter 7 in which the open source imple-
mentation of the BPMN4FO Transformation Framework is discussed in the
context of an integrated architecture supporting the presented concepts.
... <branch name="HappyPath">

<condition>
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<and>

<comparison variable="num">

<NumberEqualTo>42</NumberEqualTo>

</comparison>

<not>

<comparison variable="s">

<StringEqualTo>FML</StringEqualTo>

</comparison>

</not>

</and>

</condition>

</branch> ...

Listing 5.1: Example uniform condition specified for branch “HappyPath”.

5.1.6 Discussion and Limitations of the Approach

In the context of this work, the emphasis was put on the uniform trans-
formations to enable transitioning between different levels of abstractions
for modeled FaaS-based applications. This decision inherently requires
supporting only the subset of features shared by all analyzed function
orchestrators, which required imposing certain modeling restrictions dis-
cussed in Section 5.1.3. A disadvantage of this design decision is that
unique capabilities of certain orchestrators cannot be used due to missing
modeling constructs in BPMN4FO and orchestrator-specifc mappings for
orchestrators without such capabilities. Clearly, uniform modeling is not
necessary when only one specific function orchestrator format is needed
instead. To make the transformation more flexible, the BPMN4FO meta-
model and the BPMN4FO Transformation Framework can additionally
be extended with orchestrator-specific elements and mappings to desired
formats. In addition, the transformation framework can be extended to
support user configurations specifying which orchestrator-specific features
to keep during the transformation, e.g., via GUI or external descriptors.
Generated models can also be refined during a post-processing step to add
extra features manually.
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As discussed in Section 2.2.3, compared to approaches introducing func-
tion orchestration modeling languages relying on custom orchestrators,
BPMN4FO models aim at utilizing existing function orchestrators without
locking into one specific custom solution. Moreover, unlike approaches
without visual notation, BPMN4FO facilitates comprehensibility of the
produced function orchestration models to non-technical staff, thus, simpli-
fying the collaboration between business users and IT users. Furthermore,
the BPMN4FO profile and the underlying transformation framework can
be easily combined with the aforementioned approaches by extending the
metamodel with new constructs and implementing new language plugins,
hence adding the support for transforming models into new formats.

The modeling restrictions introduced in BPMN4FO due to technical re-
quirements of the analyzed function orchestrators affect the expressiveness
of produced models. For example, since BPMN Tasks in BPMN4FO rep-
resent function calls, the modelers are not required to differentiate between
different types of tasks, e.g., Service Tasks in BPMN represent service
calls, whereas Script Tasks represent tasks executed by a business process
engine. Another related example is handling of different fault types: the
modeled fault handling path in BPMN4FO represents a call to a handler
function without differentiating between fault types. Advanced features
such as cancellation or compensation of tasks also cannot be expressed in
BPMN4FO models. To improve the expressiveness of the profile, addi-
tional modeling capabilities and transformation logic can be added, e.g., to
enable representing compensation functions that must be triggered when-
ever there is a need to revert the effects certain successfully completed
tasks in the model.

Another limitation of this approach is related to changes in function or-
chestrations, e.g., the addition or modification of language and orchestrator
features. To accommodate for such scenarios, the corresponding map-
pings might require modifications to reflect the changes in generated target
formats. However, even for such scenarios there are benefits of using
BPMN4FO. For example, existing BPMN4FO models can be reused to
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generate updated versions of the target model formats. Further, only the
orchestrator-specific plugins may require changes in the BPMN4FO Trans-
formation Framework without affecting other parts of the framework.

While the introduced approach facilitates modeling function orchestrations
independently of target technology, another issue is related to function im-
plementations as they often rely on platform-specific libraries and packag-
ing formats. As discussed in Section 2.2.4, this challenge can be addressed
using FaaSification approaches that facilitate porting function implementa-
tions between FaaS platforms. In addition, general-purpose approaches
such as Any2API [WBL15] could be employed to automatically wrap
business logic for chosen FaaS platforms. The next subsection presents a
source code extraction and packaging method that aims to abstract function
implementations and is complementary to the BPMN4FO.

5.2 Serverless Parachutes for Code Abstraction

As an example abstraction technique applicable to function code, this
section presents a FaaSification-based method that facilitates automatic
extraction and packaging of general-purpose function code for different
FaaS platforms. The presented concepts are based on the conference
publication [YBHL19] that introduces the serverless parachutes method,
which aims to use provider-managed FaaS platforms as backup routes for
crucial functionalities. The name serverless parachute was introduced to
emphasize the complementary nature of a duplicated functionality that
can be used in emergency cases. The original work aimed to increase the
availability of desired code snippets using FaaS platforms, even when the
original application is unavailable. In this section, the concept of serverless
parachutes and the underlying framework are discussed in a more general
context, namely how to facilitate the reuse of provider-agnostic code for
different platforms using automated code extraction mechanisms.
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5.2.1 Method Steps

Figure 5.14 depicts the sequence of steps in the serverless parachutes
method with respective step inputs and outputs that begins with the identifi-
cation of a suitable code snippet and ends with a deployable FaaS function
package for a specific platform. Each step is discussed next, showing
how the method can be used for configuration of chosen code snippets for
automated extraction and packaging for different FaaS platforms.

Step 1: Identify Suitable Functionality. The first step in Figure 5.14
is to select functionalities that are intended to be extracted as serverless
parachutes. Generally, not all functionalities are easy to migrate to a
cloud [KT14] and since the functionality is intended for a FaaS deployment,
FaaS-specific requirements must be taken into account. This means that
functionalities should preferably be fine-grained, easy to decouple, and
stateless. As with other FaaSification approaches, functionalities with
many dependencies that require extensive re-engineering efforts are rather
unsuitable for such automated extraction and packaging method.
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Figure 5.14: Steps of the Serverless Parachutes Method.
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Step 2: Specify Parachute Configuration. In the second step, a parachute
configuration for the chosen functionality needs to be specified, which
describes the preferred extraction and packaging aspects. In the original
publication [YBHL19], this configuration was specified directly in-code
using annotations. This, however, requires introducing modifications in
the repository including extra dependencies on annotation libraries, which
could be not desirable or even not possible for third-party repositories. To
make it more flexible, such configurations should be supported as both
in-code annotations or external descriptors that provide the same configura-
tions for a referenced functionality, i.e., the reference to the corresponding
function handler should also be present in such descriptors. Figure 5.15
schematically shows a parachute configuration, which comprises a set of
configuration entries that describe, e.g., a cloud provider and the event
source type such as the API Gateway that should trigger the chosen func-
tionality. The configuration entries could also be more specialized for
specific extraction scenarios, e.g., describing failover behavior [YBHL19].
An example of in-code parachute configuration using Java annotations is
shown in Listing 5.2 – a similar configuration could also be specified as a
standalone YAML-based descriptor with a reference to the repository and
the file containing the myHandler method with the same signature.
@ParachuteMethod(

eventSource = "EventSource.API_Gateway", provider = "Provider.AWS",

endpoint = "/myResourceName", httpMethod = "POST", ...)

public Response myHandler(Request data) {...}

Listing 5.2: Example parachute configuration using Java annotations.
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Step 3: Extract Code Artifacts. In the third step, the respective arti-
facts bundle for the selected functionality is extracted using the specified
parachute configuration, which comprises at least the function code with
the list of required library dependencies. The extracted artifacts bundle
is provider-agnostic and can be reused for generating platform-specific
function packages for different supported targets. For instance, a plain Java
function typically requires adding provider-specific code and configura-
tions, e.g., for processing events from AWS offerings in the function code.
The artifacts bundle extraction requires language- and technology-specific
plugins due to the different characteristics of the underlying languages,
e.g., strong vs. weak typing, and the use of different build tools such
as Maven or npm. Examples of extracted information include (i) input
and output types of the function with their definitions, (ii) class, method,
and variable dependencies, and (iii) library dependencies. The resulting
self-contained artifacts bundle can then be used for the generation and
packaging of platform-specific function packages.

Step 4: Generate Parachute Bundle. In the fourth step, the parachute
bundle with the extracted functionality for a specific platform is generated,
e.g., a deployment package for AWS Lambda. Here, the previously-created
artifacts bundle is used as an input to enrich the extracted function with
platform-specific parts, e.g., adding required import and library call state-
ments in the code. Additionally, platform-specific dependencies may need
to be added in the underlying build script and, if needed, the compila-
tion should be triggered, e.g., to generate a JAR for AWS Lambda. The
parachute bundle can be generated for different scenarios, e.g., (i) to imme-
diately deploy the function package to the target platform or (ii) to use it in
the context of a larger deployment model, e.g., attach it as a Deployment
Artifact to the corresponding Node Template representing a FaaS platform
in a TOSCA model. For the former scenario, a deployment model can be
generated, e.g., an AWS SAM [Ama22e] model, as a part of the parachute
bundle to enable directly executing the deployment. In the latter case,
the parachute bundle does not require generating a deployment model
and only the function package should be provided as an output of this
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step. The distinction between two scenarios can, for example, be imple-
mented as separate generation modes available for selection by users of
the method-enabling tooling.

Steps 5 & 6: Refine, Test, and Deploy. Finally, in the last steps, the
generated parachute bundle can be tested and refined to enable using it for
automated deployments. Depending on the chosen generation mode, i.e.,
whether a deployment model for the extracted function was generated or
not, the refinement may target different parts of the bundle. For example,
the generated deployment model can be enriched with configurations for
additional components intended to be used with the extracted functionality.
In case the extracted functionality will be used in a larger application model
it can be referenced as the respective artifact. For example, the functionality
can be exposed via an endpoint in existing API, hence requiring to attach
the parachute bundle to the deployment model.

5.2.2 Serverless Parachutes Framework Architecture

Figure 5.16 shows a conceptual architecture of the framework enabling
the method discussed in Section 5.2.1. To enable using the framework,
the presentation layer provides a REST API and a GUI. The business
logic layer supports the method steps using the following core components.
Programming Language Annotation Libraries are needed for defining
in-code parachute configurations. Parachute Configuration Processor
enables parsing the descriptor-based parachute configurations. Function
Extraction Manager relies on language-specific plugins to enable static
code analysis and extraction of artifact bundles, and Parachute Deployment
Bundle Generator consumes the extracted platform-independent artifact
bundles as an input for generating platform-specific parachute deployment
bundles utilizing respective generation plugins, e.g., for AWS Lambda
or Microsoft Azure Functions. Finally, the resource layer comprises an
Artifacts Repository that enables persisting the extracted code artifact
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Figure 5.16: Architecture of the Serverless Parachutes Framework.

bundles and generated parachute deployment bundles for future reuse, e.g.,
to simplify generating deployable function packages for different platforms
using already extracted code artifacts.

5.3 Associating Artifact Abstractions With
Components in Application Models

Both introduced artifact abstraction approaches represent different kinds
of FaaS-specific artifacts: function orchestration models and function code.
Several modeling aspects need to be considered to enable associating such
abstract artifacts with the corresponding components in application models,
e.g., components that represent functions in architecture and deployment
models. Clearly, components in application models need to be associated
with different artifact types that can enable representing abstract artifacts
such as BPMN4FO function orchestration models or parachute configura-
tions. This requires that the modeling of typed artifacts is supported in the
corresponding modeling language, e.g., components in TOSCA models
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can be associated with different Artifact Types that can be utilized to rep-
resent function orchestration models created with the BPMN4FO profile.
Additionally, typed artifacts can also be used to express various packaging
formats for the same implementations. For instance, different packaging
may be supported for FaaS functions, e.g., self-contained JARs or Docker
images, since it was shown that archive packages are more beneficial to
use in certain cases for reducing the cold start issues[DKL22].

Secondly, the artifact abstractions associated with components in appli-
cation models need also to be linked with the tooling capable of refining
them. For example, the approaches discussed in Sections 5.1 and 5.2 rely
on transformation systems capable of producing target-specific formats
based on provided abstract artifacts, i.e., transforming BPMN4FO mod-
els into orchestrator-specific models and using parachute configurations
to generate platform-specific function packages. In addition, aside from
generative techniques, artifact abstractions can be refined by selecting
a suitable implementation from a repository of available concrete solu-
tions [FBB+14b]. Therefore, tools that enable selecting available artifact
refinements instead of generating them can be incorporated too.

Furthermore, another modeling aspect to consider is the specification of
when the artifact refinement should be triggered, e.g., at what stage the call
to the corresponding artifact refinement tool responsible for generating
a target function orchestration model should happen. For example, this
refinement process can be triggered at application model packaging time
to generate a deployable application package. Additionally, to enable
switching between abstract and concrete application models for explorative
modeling scenarios, the link to the original artifact abstraction must be
pertained, e.g., using versioning or by caching original abstract artifacts.

Therefore, on the application model level, different artifact abstractions
need to be linked with various types of concrete solution selection
or generation tools as well as refinement modes. Similar to the co-
authored publication on modeling data transformations in service chore-
ographies [HBL+18], the envisioned support for using artifact abstractions
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Figure 5.17: Configuration details needed for modeling abstract artifacts
in application models.

in application models relies on additional configuration details. Figure 5.17
depicts an example of the discussed artifact configuration details for a FaaS
function including the (i) type of the artifact, (ii) the actual artifact im-
plementation such as a parachute configuration or a BPMN4FO model,
(iii) refinement tool type referencing specific tool that will be used for
refining the artifact, (iv) refinement rule specifying how the tool should be
invoked to refine the referenced artifact, and (v) refinement activation mode
that specifies when refinement should happen, e.g., at model export time.
The BPMN4FO Transformation Framework and Serverless Parachutes
Framework presented in this chapter are only two example tools that can be
used for refining specific artifact types, i.e., function orchestration models
and function code. However, the same configuration details can be used
to enable more refinement options such as selecting suitable function im-
plementations from existing repositories as long as the chosen modeling
language provides means for associating typed artifacts with components
in the model.

5.4 Chapter Summary

In this chapter, two artifact abstraction techniques were introduced: one
for technology-agnostic modeling of function orchestrations (Section 5.1)
and another for automated extraction and packaging of function code for
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different FaaS platforms (Section 5.2). Additionally, the required config-
uration details for modeling such abstraction on the level of application
models were discussed.

Similar to previous chapters, the introduced concepts can be used inde-
pendently of previous contributions as specialized artifact abstraction and
refinement techniques. For example, the function orchestration modeling
with BPMN4FO can be used separately to create different target formats
or explore the modeling capabilities of supported function orchestrators
using a clear visual notation. The modeling restrictions aimed at porta-
bility also enable easily identifying the constraints for creating portable
models. The caveat is, however, the portability of function implemen-
tations for such orchestration models. One way to overcome this is to
combine BPMN4FO with function code abstraction techniques including
the Serverless Parachutes method. On the other hand, the disadvantage of
both approaches is their dependence on target technologies and languages,
which requires implementing and maintaining multiple plugins that may
result in an unnecessary overhead for some use cases.

193





C
ha

pt
er 6

Gradual Refinement of
FaaS-based Applications

I nspired by the concept of the gradient of abstraction [Flo08], this
chapter introduces the Gradual Refinement of Architectures of Server-
less aPplications (GRASP) method that aims to simplify transitioning

between different abstractions for FaaS-based applications following the
vision discussed in Section 1.2. To achieve this, the GRASP Method
relies on a multi-layer application metamodel that enables transitioning
between different levels of abstractions for FaaS-based applications. The
presented metamodel and underlying multistep process of modeling and
refinement of FaaS-based application models enable combined use of the
concepts introduced in Chapters 3 to 5. The modeling concepts presented
in this chapter are based on several peer-reviewed publications [WBK+18;
YBB+22; YBKL20; YBK+20]. In the following, a step-wise overview of
the GRASP Method is presented followed by a discussion of the underlying
FaaS-based application metamodel and the gradual refinement process.
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6.1 The GRASP Method

The GRASP Method aims to enable gradual refinement of FaaS-based
application models following the vision presented in Section 1.2, i.e., how
to transition from coarse-grained component-connector models to suitable,
concrete deployment models with artifact implementations compatible
with chosen target providers. This section first provides a general overview
of the GRASP Method and its main actors followed by a more detailed
discussion of each underlying step.

6.1.1 Method Overview

An overview of the method comprising five steps is depicted in Figure 6.1:
Firstly, an abstract FaaS-based topology representing the desired connec-
tivity among components needs to be created in Step 1. This abstract,
provider-agnostic application topology is then used for exploring com-
ponent hosting alternatives in Step 2. In this step, the modeling of stack
hosting requirements is achieved by associating the components in the
topology with the desired combinations of patterns presented in Chapter 3,
and using the resulting pattern-based model fragments for exploring possi-
ble refinements into concrete deployment model fragments. In parallel with
stack hosting alternatives exploration, abstract artifact representations can
be modeled and attached to the respective components in Step 3. After de-
ciding on component hosting, the modeled topology with attached artifact
abstractions is refined into a concrete deployment model in Step 4. Finally,
the obtained concrete deployment model is further tested and executed
using a suitable deployment automation engine in Step 5.

The actors of the method can be separated into two general categories:
(i) method users such as application designers and developers that per-
form the method steps to explore hosting alternatives and obtain concrete
deployment models from coarse-grained descriptions of FaaS-based ap-
plications and (ii) method software maintainers such as domain experts
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responsible for populating method-enabling data repositories and tool de-
velopers that provide and maintain the software toolchain that enables the
method steps. Specifically, the method steps rely on different repositories
that comprise (i) abstract modeling constructs and patterns and (ii) rules
for refining topology fragments. Additionally, classification frameworks
and the respective technology review data, e.g., for FaaS platforms, can
facilitate choosing from the identified hosting alternatives based on various
component-specific requirements, also using the initial technology query
can be generated based on the user-provided abstract topology fragment
as discussed in Chapter 4. Such repositories are intended to be used with
dedicated software that either automates or facilitates using the repository
data. For example, modeling constructs for specifying abstract FaaS-based
component topologies can be used in combination with a graphical mod-
eling tool such as Eclipse Winery [KBBL13]. Therefore, to make the
GRASP Method attractive to the intended user audience, the access to
different domain-specific knowledge corresponding to method steps needs
to be augmented using a dedicated software. In the following, each step,
its required repository dependencies, and the necessary software support
are discussed in more detail.
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Figure 6.1: Overview of the steps of the GRASP Method.
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6.1.2 Step 1: Model Application Topology

To provide an initial, coarse-grained view on the desired FaaS-based appli-
cation structure, the first step of the GRASP Method shown in Figure 6.1 is
concerned with creating an abstract topology of components without any
technology- or provider-specific details. In its minimal form, this includes
the information about (i) abstract component types such as functions and
event sources of a FaaS-based application, (ii) abstract relations among
these components, e.g., to represent event-driven or direct calls [WBK+18],
and (iii) generic properties of components such as function runtime, and
relations, e.g., event type for relations representing event-triggering se-
mantics. Typed components and relations are represented using dedicated
abstract modeling constructs, i.e., a repository of Abstract Modeling Con-
structs is required in this step. TOSCA is a good candidate for implement-
ing such repositories: in this case TOSCA Requirements and Capabilities
can be used to validate the connectivity between components, whereas
TOSCA Node and Relationship Types can be used to flexibly specify ab-
stract component types, their properties, and relations among them. In
addition, existing graphical modeling tools supporting TOSCA can be
employed to manage such repositories of modeling constructs. In the fol-
lowing steps, TOSCA is assumed to be used as the modeling language.
Using the constructs from such repository, method users can, therefore,
specify desired abstract topologies using source code editors or graphical
modeling tools. For example, to specify the desired FaaS function runtime
independently of specific FaaS platforms, an abstract TOSCA Node Type
“FaaS Function” with a property “runtime” can be used.

6.1.3 Step 2: Explore Hosting Alternatives

In this step, the components in the specified abstract FaaS-based topol-
ogy are first enriched with hosting requirements that are represented by
associating components with the patterns (or their combinations) from
the Component Hosting and Management pattern language introduced
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in Contribution 1 (see Chapter 3). For instance, a FaaS Function compo-
nent can be associated with the coarse-grained Fixed Deployment Stack
and Provider-managed Scaling Configuration patterns to represent
the decisions on stack and scaling configuration management. Likewise,
the same FaaS Function component can be associated directly with the
finer-grained Serverless Hosting pattern instead.

Clearly, the expressed component-specific hosting requirements might be
fulfilled by different hosting alternatives, e.g., a FaaS Function can be
hosted on different proprietary and open source FaaS platforms. Therefore,
to identify most suitable candidates for components, possible deployment
stacks are explored following the sub-steps shown in Figure 6.2: after
selecting a component and associating it with desired patterns from the
Component Hosting and Management pattern language (A), the possible
refinements are iteratively explored (B). As will be shown next, this in-
cludes two kinds of refinements, namely (i) pattern refinements that reflect
transitions between patterns in the language as discussed in Chapter 3, and
(ii) technical deployment stack refinements that reflect transitions from
abstract, pattern-based models to concrete deployment model fragments.
The available technical deployment stack refinements can then be option-
ally pruned (C) based on various technology-specific criteria requirements
applied against the technology classification frameworks data as discussed
in Chapter 4, e.g., FaaS platforms that do not support the desired event
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Figure 6.2: A sequence of sub-steps for exploring hosting alternatives that
constitute the Step 2 of the GRASP Method.
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trigger can be excluded from potential refinement options. Finally, the
chosen technical deployment stack is used as a refinement preference (D)
for the concrete deployment model. The same process can then be repeated
for other components in the model.

To illustrate the process of exploration of hosting alternatives, Figure 6.3
illustrates it for different components in an example abstract FaaS-based
topology comprising two functions, an object storage bucket, and a message
queue. For each component in this abstract topology, three different layers
of refinements can be explored, namely (1) Management Requirements
Layer, (2) Component Hosting Requirements Layer, and (3) Technical
Deployment Stack Alternatives Layer. Layers 1&2 represent refinements
based on the relations between patterns introduced in Chapter 3, e.g., pat-
terns representing management requirements can be refined into more
concrete hosting patterns. For example, a Java Application component
in Figure 6.3 requires no customization and is, thus associated with the
Fixed Deployment Stack and Provider-managed Scaling Configu-
ration patterns in Layer 1, which must be refined into the Serverless
Hosting pattern in Layer 2. Finally, Layer 3 represents suitable concrete
technical deployment stack options for a component, e.g., the Serverless
Hosting pattern for the Java Application can be further refined into AWS
Lambda or Azure Functions deployment stacks.

Optionally, the available technical deployment stack refinements can be
pruned as shown in Figure 6.3 using the concepts discussed in Chapter 4.
Classification frameworks for different technology types as well as criteria
mappings and architectural fact extractors compatible with the format of
the abstract FaaS-based topology can be used for querying technologies
complying with the specified requirements. An obvious way to employ
these concepts is to manually search among available technology review
data for the most suitable hosting target based on the available refinement
options by querying the selection support system (see Section 4.4) using
the desired criteria such as function runtime or supported event triggers.
Another option is to employ the search query generation from the given
abstract FaaS topology using the available architectural fact extractors
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ponents in an abstract FaaS-based topology.
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and criteria mappings. The exploration of alternatives is intended to be
semi-automatic and iterative: an initial search query can be extracted from
the provided abstract FaaS-based topology to explore the initial suitable
hosting options for a specific component stack, e.g., FaaS platforms for
a function in an abstract FaaS-based topology. However, the query can
then be manually refined using the GUI of the underlying selection support
system, which could also lead to possible changes in the initial design
decisions and, hence the repetition of the previous steps. As an output of
this step, the hosting preferences for modeled stacks are identified, which
enables method users to refine the abstract component stacks contained
in the abstract FaaS-based topology into concrete technical deployment
model fragments using the identified hosting preferences.

As in Step 1, the Abstract Modeling Constructs repository is also needed for
specifying patterns (as abstract representations of components) and host-
ing relations between patterns and components. For instance, in TOSCA,
such pattern associations can be implemented using custom or normative
Node and Relationship Types with TOSCA, e.g., a normative Relationship
Type “HostedOn” can be used for representing hosting on Serverful
Hosting and Serverless Hosting Node Types that express the respective
patterns. In addition, the associations with hosting patterns that repre-
sent scaling configuration management decisions can be implemented as
TOSCA Policies attached to abstract components. The abstract constructs
in the FaaS-based topology may also cover type-specific and technology-
agnostic characteristics such as required runtimes or event triggers that
can be used for technology query generation as discussed in Chapter 4.
After the abstract FaaS-based topology is specified in Step 1, the property
values can be updated with preferred values in this step, e.g., a decision to
use Java as a runtime for one of the functions in the topology, to facilitate
pruning the available hosting alternatives. Identification and definition
of such abstract properties is the responsibility of domain experts that
populate and maintain the underlying repository. Method users can specify
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stack hosting requirements using source code editors or compatible graph-
ical modeling tools, e.g., abstract TOSCA types can be created with code
editors or modeling tools such as Eclipse Winery [KBBL13].

Additionally, the exploration of technical deployment stacks relies on the
repositories of Refinement Rules and Classification Frameworks, which
are required to be populated and maintained by domain experts. The for-
mer repository is used to explore available stack refinements for a given
component in the abstract FaaS-based topology, whereas the latter enables
pruning those alternatives based on technology-specific classification cri-
teria. The toolchain enabling the GRASP method that was implemented
in the context of this work (see Chapter 7), utilizes the concept of pattern-
based refinement models [HBF+18] to realize a TOSCA-based refinement
models repository, and the concepts from Chapter 4 are employed to create
the classification frameworks repository.

6.1.4 Step 3: Model Refinable Artifacts

After identifying suitable hosting alternatives, the given FaaS-based topol-
ogy needs to be further enriched with the component-specific artifacts
information in Step 3. At this stage, abstract representations for respective
artifacts can be created and attached to the components in the topology. The
concepts for abstract modeling of function orchestrations using BPMN4FO
and functions code abstraction using the serverless parachutes framework
discussed in Chapter 5 are example abstractions that can be used in this
step. In the context of this work, Section 7.3 demonstrates how BPMN4FO
models are used to generate provider-specific function orchestration models
realizing a data processing use case. As was also described in Chapter 5,
such representations can also include other approaches, e.g., FaaSifica-
tion discussed in Section 2.2.4 to abstract away function code. The order
of steps depicted in Figure 6.1 mainly highlights a scenario of creating
reusable FaaS-based application models that are supposed to be refined into
more than one target format, e.g., for AWS and Azure cloud infrastructures.
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However, the GRASP Method might also be considered for scenarios in
which one preferred deployment model is intended to be constructed semi-
automatically, i.e., iterative composition of suitable deployment fragments
based on high-level component hosting requirements. In such cases, Step 3
can be considered optional, since only one target host is needed – artifact
implementations for the chosen targets can, therefore, be attached to the
refined application model before Step 5.

6.1.5 Step 4: Refine Into Technical Deployment Model

After deciding on hosting preferences for the components and attaching
the abstract artifact representations, a suitable technical deployment model
can be obtained in Step 4 by refining these abstract entities into concrete
target-specific representations. For instance, a generic FaaS Function
component triggered by a generic Object Storage Bucket can be refined
into an AWS-based deployment model by composing model fragments for
AWS Lambda and AWS S3, respectively. The attached artifact abstractions
are also refined in this step by invoking the corresponding refinement tools,
e.g., a function can be extracted from an existing repository and packaged
for AWS Lambda using an abstract parachute configuration discussed
in Chapter 5 attached to the FaaS Function component. This step also relies
on a repository of Refinement Rules that describe how to transform generic
stack representations into concrete, technical deployment model fragments.
Note that the relationships between stacks that represent, e.g., event-driven
or direct calls, need to be refined too using the corresponding refinement
rules. For example, the implementation of event bindings between an
AWS Lambda function and an AWS S3 bucket would differ for Azure
offerings. In TOSCA terms, these technology-specific implementations
of event bindings could inherit from a generic “Triggers” Relationship
Type and the corresponding pattern refinement model [HBF+18] would
then describe how to transform it into a technology-specific Relationship
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Type, e.g., “AzureBlobTriggers”. Following the concepts by Harzenetter
et al. [HBF+18; HBF+20], the envisioned refinement of abstract stack
representations happens in a semi-automated fashion.

6.1.6 Step 5: Test and Execute Deployment Model

Finally, the obtained technical deployment model with the refined artifacts
needs to be tested and potentially enriched with execution-related details in
Step 5. Here, existing methods for testing deployment models [DHY+22;
WBKL18] can be utilized to verify the correct execution of obtained models.
Depending on the employed modeling language, the enactment of the
produced technical deployment model could be possible with different
deployment automation engines. For example, in case of TOSCA models,
multiple TOSCA-compliant deployment automation engines can be used.
e.g., OpenTOSCA Container [BBH+13] or xOpera [LSC20]. Additionally,
transformation tooling can be utilized to enable using other deployment
engines, e.g., the TOSCA Lightning [WBH+20a] toolchain can be used to
generate other model formats using TOSCA models as an input.

6.2 The GRASP Meta-Model and Language Support

To support the steps of the GRASP Method discussed previously, this
section introduces a FaaS-based application metamodel that combines
different levels of abstractions for such applications and enables transi-
tioning between them. As seen in Figure 6.4, a coarse-grained GRASP
model represents a set of Component Stacks that may comprise different
Stack Elements, i.e., typed Components and Hosting Patterns used as ab-
stract representations of hosting requirements. These elements can be
interconnected using various typed Connectors, e.g., representing hosting
relationships or event-driven calls. Additionally, some patterns discussed
in Chapter 3, e.g., for scaling configuration management, can be used as
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Figure 6.4: An overview of the GRASP metamodel.

component Annotations to represent management requirements for de-
ployment stack and scaling configuration for a component in the stack –
examples of such pattern-based stacks are depicted in Figure 6.3. Both
Stack Elements and Connectors may include zero or more Properties that
describe technology-agnostic characteristics of the corresponding element
type using primitive and composite data types, and can be used to specify
requirements for modeled FaaS-based applications. Further, to support
modeling artifacts, Components can have typed Artifact attachments. Fi-
nally, to enable refinement into technical deployment model fragments, the
GRASP metamodel comprises Refinement Rules for Component Stacks
and Connectors that describe how these abstract model elements can be
transformed into deployment model fragments. As the definition of a novel
modeling language is not in the scope of this work, in the following, an
application of GRASP Method is discussed in the context of TOSCA.
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As mentioned previously, abstract FaaS-based topologies in GRASP can
leverage pattern-based refinement models in TOSCA [HBF+18; HBF+20]:
pattern-based deployment models enable representing abstract component
topologies with patterns supported as distinct components or component
annotations. In this case, the repository of Abstract Modeling Constructs
discussed in Steps 1&2 would comprise a collection of abstract TOSCA
Types including Node and Relationship Types for modeling generic com-
ponents in FaaS-based applications and relationships among them. Addi-
tionally, TOSCA Policy Types and Artifact Types can be used to represent
pattern-based annotations and component-specific artifact attachments
shown in Figure 6.4, respectively.

The refinement into concrete technical deployment model fragments re-
lies on graph transformation rules that describe how abstract TOSCA
model fragments can be substituted with concrete TOSCA model frag-
ments, hence, implementing the hosting alternatives exploration process
depicted in Figure 6.3. Refinement rules are specified using triple graph
grammars [HBF+18; HBF+20], i.e., the Refinement Rules repository is
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Figure 6.5: Implementation of GRASP refinement rules using different
types of pattern refinement models using the concepts by
Harzenetter et al. [HBF+18; HBF+20].
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populated with the so-called Pattern Refinement Models that define how
an input TOSCA graph is transformed into an output TOSCA graph. Each
Pattern Refinement Model comprises (i) a detector – a deployment model
fragment describing a refinable combination of components and patterns,
and (ii) a refinement structure describing the desired outcome of the re-
finement. An example illustrating the required types of refinement rules
implemented using the concept of Pattern Refinement Models [HBF+18;
HBF+20] is shown in Figure 6.5: two different kinds of pattern refinement
models are implemented to enable pattern refinements (Pattern Refine-
ment Model Type 1) and technical deployment model refinements (Pattern
Refinement Model Type 2). Thus, Type 1 refinements cover the transi-
tions within the categories of the Component Hosting and Management
pattern language, i.e., the transition from the Management Requirements
Layer to the Component Hosting Requirements Layer. Type 2 covers the
refinements into concrete technical deployment stacks corresponding to
the transition from the Component Hosting Requirements Layer to the
Technical Deployment Stack Alternatives Layer as shown in Figure 6.3.
The Pattern Refinement in Figure 6.5 is applicable since it specifies the
modeled combination of a generic Java Application component and the two
patterns as detector. It enables obtaining a more concrete model fragment,
i.e., a Java Application hosted on the Serverless Hosting pattern as it
is a refinement of the modeled pattern combination. Next, the resulting
model is further refined using the Technical Deployment Model Refine-
ment shown in Figure 6.5: its detector matches the current model state
and can be refined into a technical deployment model fragment, i.e., a
Java Application hosted on Azure Functions. In practice, the Technical
Deployment Model Refinement provides a more detailed technical deploy-
ment model fragment with required properties, which are omitted here for
brevity. Furthermore, there could be more available pattern refinement
models with matching detectors, e.g., enabling the refinement into an AWS
Lambda stack.
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6.3 Chapter Summary

6.3 Chapter Summary

In this chapter, the GRASP Method for gradual refinement of FaaS-based
application models was introduced to support transitioning from abstract,
provider-agnostic application models to executable, provider-specific de-
ployment models. The introduced method combines contributions pre-
sented in Chapters 3 to 5 in a five-step process. In the first step, to represent
FaaS-based applications in a provider-agnostic manner, the GRASP method
relies on pattern-based modeling: abstract application topologies are spec-
ified as typed DAGs that contain the patterns from the Component Hosting
and Management pattern language introduced in Chapter 3 as first-class
model elements for representing component hosting and scaling config-
uration management requirements. In the second step, the classification
framework concepts introduced in Chapter 4 are used to facilitate searching
for suitable hosting alternatives. To support provider-agnostic represen-
tation of FaaS-specific artifacts and their refinement into target formats,
the method relies on contributions presented in Chapter 5 in the third step.
To derive provider-specific deployment models, in step four, the produced
abstract application topologies are refined into target-specific deployment
models using the ideas presented in this chapter that rely on pattern-based
refinement models [HBF+18; HBF+20]. Finally, the produced deploy-
ment models are then tested and executed using compatible deployment
automation technologies in step five.
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M odeling concepts and abstractions for FaaS-based applications
introduced in Chapters 3 to 5 can be used as standalone contri-
butions or as the parts of GRASP Method presented in Chap-

ter 6. To enable using the introduced method and underlying concepts
in practical scenarios, this chapter presents Contribution 5 that describes
an architecture of the GRASP Toolchain and elaborates on the prototypi-
cal implementation of the underlying tools. The discussion is structured
as follows. Firstly, an integrated architecture supporting the method is
presented in Section 7.1. As conceptual architectures of some tools were
previously discussed in Chapters 4 and 5, Section 7.2 further elaborates on
their prototypical implementation and use in the context of the integrated
architecture and an example FaaS-based application focusing on a data
analytics scenario. Finally, Section 7.4 discusses the integration with other
existing research concepts outside the context of this work.
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7.1 Architecture of the GRASP Toolchain

Figure 7.1 provides an overview of an integrated architecture of the GRASP
toolchain, which enables using the GRASP Method and the underlying
concepts introduced in Chapters 3 to 5 in practice. Following the dis-
cussion in Chapter 6, the YAML version of TOSCA [OAS20] is used
as a modeling language for specifying both coarse-grained FaaS-based
application models and technical, technology-specific deployment model
fragments. Therefore, for modeling and enactment of produced techni-
cal deployment models, TOSCA-compliant software is used as a basis.
While the creation of GRASP models in TOSCA can also be achieved
using code editors, Eclipse Winery [BEK+16; KBBL13] is utilized as the
core modeling tool as it also supports the refinement of produced models
by processing refinement rules discussed in Chapter 6 and transforming
detected model fragments using the specified refinement structures. To
enable executing the produced TOSCA models packaged as TOSCA Cloud
Service Archives (CSARs) [OAS20], xOpera [LSC20] is employed as a
TOSCA-compliant deployment automation engine. To support the artifact
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Figure 7.1: Integrated architecture of the GRASP toolchain.
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abstraction mechanisms discussed in Chapter 5, Winery enables model-
ing abstract artifacts produced with the prototypical implementations of
(i) BPMN4FO Transformation Framework to enable generating orchestra-
tor specific models from BPMN4FO models and (ii) Serverless Parachutes
Framework to support extraction and packaging of FaaS functions using
parachute configurations. Furthermore, to facilitate the exploration of
technology classification data, the FaaStener prototype implementing the
selection support system architecture discussed in Chapter 4 is integrated
with Winery to enable building search queries from provided TOSCA mod-
els. In addition, to explore and use the patterns introduced in Chapter 3,
an existing tool for exploring patterns and pattern languages called Pattern
Atlas [LB21] is enriched with the patterns from Component Hosting and
Management pattern language. Moreover, since Pattern Atlas is integrated
with Winery, the added patterns are automatically extracted by Winery to
generate TOSCA Node Types and Policy Types representing these patterns,
thus enabling using them for modeling hosting requirements as discussed
in Chapter 6.

7.2 Prototypical Implementation

This section elaborates on the new prototypical implementations and exten-
sions to existing tools for each of the component described in the GRASP
toolchain architecture.

7.2.1 Specification and Execution of GRASP Models

Eclipse Winery1 was extended to enable modeling and refinement of
FaaS-based applications using the GRASP Method. Winery [BEK+16;
KBBL13] is a well-established TOSCA-compliant graphical modeling

1https://github.com/eclipse/winery

213

https://github.com/eclipse/winery
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tool implemented in Java that provides a plethora of advanced features for
deployment modeling of applications including pattern-based deployment
modeling and refinement [HBF+18; HBF+20], application topology split-
ting [SBKL17], or even blockchain-based accountability mechanisms for
collaborative model development scenarios [FBF+18]. Originally, Winery
supported only the XML TOSCA specification. However, over the course
of the EU Horizon 2020 Project RADON [CAH+19] Winery was extended
to support the TOSCA YAML specification. Additionally, Winery was
extended to support the aforementioned pattern refinement modeling con-
cepts [HBF+18; HBF+20] for the YAML version of TOSCA. Figure 7.2
shows a simplified architecture of Eclipse Winery that depicts only compo-
nents relevant in the context of this work. To support the TOSCA YAML
specification [OAS20], Winery was extended to use a Canonical Data
Model that unifies the concepts from both XML and YAML TOSCA
specifications, hence, enabling the same modeling process for different
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Figure 7.2: Simplified architecture of Eclipse Winery.
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specification versions. The transformation between the canonical model
and actual specifications happens transparently for modelers – these modifi-
cations also required extensions of Repository Management functionalities
in Winery. Moreover, to support export and import of CSARs in YAML
format, the Export and Import components were also extended.

Graphical modeling in Winery happens by means of two components imple-
mented in Angular (see Winery documentation2 for more details), namely
(i) the Topology Modeler, which enables creating application topologies
graphically, and (ii) the Management UI, which is responsible for creating
TOSCA modeling constructs such as Node Types or Relationship Types.
Both components interact with the backend via the REST API – all these
components had to be also extended in the context of the EU Horizon
2020 Project RADON [CAH+19] to enable YAML-based modeling. Fig-
ure 7.3 shows an example YAML TOSCA model created graphically in

Figure 7.3: An example YAML TOSCA model created in Winery.

2https://winery.readthedocs.io/en/latest/index.html
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Eclipse Winery that describes a FaaS-based application hosted on AWS
that implements a serverless API use case. In this example, a set of AWS
Lambda functions implementing basic CRUD operations for managing
To-Do items, which are persisted to AWS DynamoDB, are exposed via the
AWS API Gateway.

To support the pattern-based modeling and exploration of patterns, the
repository of the Pattern Atlas [LB21] was enriched with the Compo-
nent Hosting and Management pattern language as shown in Figure 7.4
– the existing integration with Winery also enables using these pattern
descriptions for generating the corresponding Node and Policy Types for
pattern-based modeling. As a TOSCA-compliant deployment automation
engine, xOpera [LSC20] consumes CSARs as an input and is capable
of deriving the required order of operations to enact the deployment of
modeled applications. TOSCA implementation artifacts in xOpera are

Figure 7.4: The patterns from the Component Hosting and Management
pattern language accessible via the Pattern Atlas GUI.
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developed using Ansible [Red22], thus, all required concrete deployment
fragments used in the implemented Pattern Refinement Models rely on An-
sible playbooks. Since xOpera is used as-is, it is not further discussed (see
https://github.com/xlab-si/xopera-opera for more details). The TOSCA
Constructs Repository and Pattern Refinement Models were enriched with
(i) abstract and concrete (deployable) TOSCA types based on the work
conducted in the EU Horizon 2020 project RADON and (ii) pattern refine-
ment models using the concepts by Harzenetter et al. [HBF+18; HBF+20]
as discussed in Chapter 7.

7.2.2 FaaStener: A Technology Selection Support Tool

To support the use of technology classification data for FaaS functions and
other component types in FaaS-based applications, the selection support
tool called FaaStener3 was implemented following the conceptual archi-
tecture presented in Section 4.4. FaaStener comprises two parts, namely
(i) a frontend component implemented in Angular4 using the Angular
Material component library and (ii) a backend component implemented
using the Java Spring Boot framework5. The frontend component is re-
sponsible for the visual exploration of the technology classification data
including visualizing the framework and filter representations discussed
in Section 4.3 and using those filters for executing manual queries against
the data. A demo version of this component with static FaaS platforms
review data is also hosted online6. Figure 7.5 shows a screenshot of a
FaaStener-generated framework representation, in which the dimensions
and categories can be interactively explored by clicking on the corre-
sponding card elements. Likewise, Figure 7.6 shows a screenshot of a
FaaStener-generated filter representation and the data exploration interface,

3https://github.com/faastener
4https://angular.io
5https://spring.io/projects/spring-boot
6https://faastener.github.io

217

https://github.com/xlab-si/xopera-opera
https://github.com/faastener
https://angular.io
https://spring.io/projects/spring-boot
https://faastener.github.io


7 Integrated Architecture and Prototypical Validation

Figure 7.5: Example framework representation generated in FaaStener.

in which FaaS platforms can be search based on user-provided criteria
requirements. The frontend component interacts with the Java backend
via a REST API to retrieve the framework- and technology classification-
related data. The generated OpenAPI specification for the REST API
can be explored using Swagger UI7. Moreover, the backend implements
an example set of fact extractors for TOSCA models to extract architec-
tural facts for FaaS functions and map them to the classification criteria
as discussed in Section 4.3. This enables generating search queries for
specific components in TOSCA models sent to the FaaStener backend via
its REST API. Specifically, search queries are generated in RSQL, a query
language for parametrized filtering of data in REST APIs (see the RSQL

7See https://github.com/faastener/faastener-core for more details.

218

https://github.com/faastener/faastener-core


7.2 Prototypical Implementation

Figure 7.6: Example filter representation generated in FaaStener.

parser documentation https://github.com/jirutka/rsql-parser for more
details). Thus, the required integration between Winery and FaaStener
enables sending a TOSCA topology to the FaaStener backend for explor-
ing suitable hosting alternatives for a selected FaaS function as discussed
in Chapter 6. To show the applicability of the classification framework
metamodel introduced in Section 4.3, in the context of this thesis, FaaS-
tener comprises a framework for selection support of FaaS platforms that
includes data for ten platforms [YSB+21a] presented in Chapter 4.

7.2.3 Uniform Function Orchestrations Models with BPMN4FO

To enable creating technology-agnostic function orchestration models us-
ing the BPMN4FO profile introduced in Section 5.1 and transforming these
models into orchestrator-specific formats, the BPMN4FO Transformation
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Figure 7.7: Example modeling in the BPMN4FO Framework GUI.

Framework8 was implemented following the conceptual architecture de-
scribed in Section 5.1.5. The BPMN4FO Transformation Framework is a
JavaScript-based application that enables (i) graphical modeling of func-
tion orchestrations using the BPMN4FO profile and (ii) transforming these
orchestrator-agnostic models into orchestrator-specific formats such as
ASL [Ama22d]. Figure 7.7 shows a screenshot of the graphical editor
in the BPMN4FO Transformation Framework implemented based on the
open source BPMN 2.0 web modeler by Camunda bpmn-js9. Additionally,
the modeling of artifacts with Eclipse Winery is implemented by means of
the BPMN4FOModel TOSCA Artifact Type as discussed in Section 5.3.

Several modeling restrictions were imposed on the created BPMN4FO
models due to technology-specific requirements of the analyzed function
orchestrators – these restrictions are only needed to enable the uniform
transformation into the analyzed target formats: Firstly, to ensure the
uniform transformation into the analyzed function orchestrator formats,
modeling of fault handling in parallel branches is not allowed, i.e., no

8https://github.com/iaas-splab/matoswo#bpmn4fo
9https://bpmn.io
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BPMN Error Boundary Events can be attached to activities (i) modeled
in parallel branches or (ii) marked with BPMN Multi-Instance Markers.
In addition, BPMN Multi-Instance Marker and BPMN Loop Marker
cannot be used in combination in the same activity to unambiguously
represent the desired GFOMC. Finally, since AWS Step Functions uses
JSON objects as input and output states, the data containers are assumed to
contain elements in JSON format. Assumptions are also made for the struc-
ture of inputs and outputs for Parallel Branching and Fan-out orchestration
elements due to constraints of Openwhisk Composer: inputs/outputs are
assumed to be arrays stored in the value field of a JSON object.

7.2.4 Serverless Parachutes Framework

To enable the automated extraction of code snippets from open source code
repositories and packaging them as FaaS functions using the concept of
serverless parachutes presented in Section 5.1, the Serverless Parachutes
Framework was implemented following the conceptual architecture de-
scribed in Section 5.2. The framework10 is implemented in Java and
supports extracting Java code snippets marked with custom annotations11

and packaging them for AWS Lambda. In terms of trigger support, only
invocation via API Gateways is supported, i.e., the extracted function is
assumed to be capable of processing incoming HTTP request and returning
its result as outputs. The REST API of the framework is realized using
Jersey, an implementation of the JAX-RS specification. In addition, a
web-based visualization of the provided API is available using the Swagger
tools. Similar to the BPMN4FO Transformation Framework, the modeling
in Eclipse Winery is achieved by means of the dedicated TOSCA Artifact
Type ParachuteFunction – artifacts of this type containing a parachute
configuration file can then be attached to TOSCA components and refined
via Winery as discussed in Section 5.3.

10https://github.com/v-yussupov/parachutesmethod-framework
11https://github.com/v-yussupov/parachutesmethod-annotations
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7.3 The GRASP Toolchain by Example

This section discusses how the GRASP Method presented in Chapter 6
can be employed in the context of a FaaS-based use case motivated by
an existing function orchestration scenario [Con20] for processing the
open air quality dataset (see https://registry.opendata.aws/openaq) that
comprises physical air quality data aggregated from public data sources,
e.g., data provided by government, research, and other institutions. The
resulting Extract-Transform-Load (ETL) function orchestration generates
the minimum, maximum, and average ratings for air quality measurements
on a daily basis and store them in a corresponding cloud object storage
bucket. The toolchain presented in Section 7.1 is employed for modeling
and gradual refinement of the FaaS-based application, which results in its
deployment to three public cloud providers, namely AWS, Azure, and IBM
Cloud. For conciseness, only some results are illustrated in the following,
whereas the implementation of the use case business logic and all the
required modeling elements including abstract modeling constructs and
pattern refinement models are available on GitHub (see https://github.

com/v-yussupov/tosca-grasp-modeling).

7.3.1 Use Case: An ETL Orchestration for Air Quality Data

Figure 7.8 shows the aforementioned function orchestration model, which
represents an ETL orchestration for extracting and transforming the
publicly-available air quality data using FaaS functions, and storing the
results in a serverless object storage offering. In the shown model, a func-
tion orchestrator such as AWS Step Functions or Azure Durable Functions
coordinates the execution of four FaaS functions that also need to interact
with object storage buckets. The Get Files function lists the files that
contain air quality data for the previous day, which are stored in a public
object storage bucket Open Air Quality Dataset, and then splits them into
chunks that will be processed in parallel using multiple instances of the
function Transform Data. Here, the files in each chunk are first downloaded
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Figure 7.8: A function orchestration for processing open air quality
data based on the ETL orchestration for AWS Step Func-
tions [Con20].

and then transformed into an intermediary representation that is persisted
to the Intermediate Results bucket. After receiving all intermediary re-
sults, the function Aggregate Data merges the results into a single file
with normalized structure and stores this final result in the Final Results
bucket. Finally, the Clean Up Intermediary Results function removes the
intermediary results.

7.3.2 Modeling Abstract FaaS-based Application Topology

While the described function orchestration can be seen as a standalone
FaaS-based application, it may be necessary to execute it as a part of a
larger application. For example, since the air quality data is processed
only for the previous day, the ETL orchestration can be scheduled using
a timer. Moreover, after the final result is ready, a notification event may
need to be emitted to notify external components that require the final
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Figure 7.9: An abstract FaaS-based application topology of the ETL func-
tion orchestration from Figure 7.8.

result. Following the Step 1 of the GRASP Method, Figure 7.9 shows an
example abstract FaaS-based topology that represents the aforementioned
ETL function orchestration.

Firstly, the shown topology comprises the (i) ETL Orchestration that need
to be modeled for the chosen function orchestrator and (ii) four orchestrated
FaaS functions that need to be implemented for a compatible FaaS platform,
e.g., AWS Step Functions and AWS Lambda. The ETL Orchestration is
triggered using a Timer Rule that can be configured using scheduling
services such as Amazon EventBridge [Ama22b]. The Results Bucket can
be hosted on object storage services such as IBM Cloud Object Storage
and is used to store the final result.

The event emitted by the bucket after the final result is stored triggers
the standalone Notify function, which generates a notification message
and publishes it to a Message Queue, which can be created on a provider-
managed messaging service such as AWS SQS [Ama22b]. External clients
can access the message queue to process generated messages, e.g., a data
analytics application running on-premises. Figure 7.10 shows the same
abstract topology modeled in Winery using abstract constructs such as
“Function” and “Message Queue”. Please, note that the timer rule is
modeled as a property of the ETL Orchestration component, and, thus
is not an explicit part of the topology. This topology can be utilized
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Figure 7.10: An abstract topology for a FaaS-based application of the ETL
function orchestration modeled in Eclipse Winery.

for expressing hosting requirements using the patterns from Component
Hosting and Management pattern language and exploring the available
technology-specific hosting alternatives as discussed next.

7.3.3 Exploring Hosting Alternatives

To express the component hosting requirements, each component in the
topology is associated with a preferred combination of patterns. In this
scenario, the Serverless pattern is used for each component in the model
to reduce the deployment stack and scaling configuration management
overhead as shown in Figure 7.11. Specifically, each abstract component
is associated with this pattern using the normative TOSCA Relationship
Type “HostedOn”.

Clearly, the resulting abstract topology can be refined into different target-
specific variants, e.g., all components can be hosted using offerings from a
single cloud provider such as AWS or Azure. Distinct parts of the topology
could also be distributed across different cloud providers, e.g., based on the
data placement requirements. In this example scenario, only refinements
within a single cloud offering were considered, resulting in three possible
pattern refinement models being explored, namely for AWS, Azure, and
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Figure 7.11: Component hosting requirements for the ETL function or-
chestration modeled with patterns from the Component Host-
ing and Management pattern language in Eclipse Winery.

IBM Cloud. By clicking on the “Refine Patterns” button in Winery as
depicted in Figure 7.12, a list of available refinement options is shown to
modelers that now can visualize each refinement variant.

As mentioned previously, within a single provider context, the modeled
topology can be refined using compatible service offerings. For example,
in AWS, AWS Lambda can host the functions, AWS Step Functions can
host the function orchestration model, while AWS S3 and AWS SQS
can be used as object storage and message queue offerings, respectively.

Figure 7.12: Available refinements for the modeled FaaS-based topology.
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Likewise, for Azure, the functions can be hosted on Azure Functions,
the function orchestration model can be executed using Azure Durable
Functions, whereas Azure Blob Storage and Azure Storage Queue can be
used as object storage and message queue offerings.

Both refinements, i.e., for AWS and Azure, are depicted in Figures 7.13
and 7.14, respectively. Note that the topology refined for Azure differs
in the number of components, which is caused by specific requirements
Azure Functions impose on FaaS-based applications as all functions need
to be grouped in a so-called Function Application, which also needs to be
created during the deployment. Thus, the shown process of refinement from
abstract to concrete models also simplifies obtaining technical, provider-
specific deployment models. Due to space constraints the IBM refinement
option is not further discussed, more detailed on the resulting technology-
specific topology can be found in the published work [YSBL22]. The
refinement option at this stage can also be chosen based on additional
searches against FaaStener, e.g., preferred function runtimes can be not
supported by some shown alternatives, hence deeming them unsuitable.

Clearly, patterns representing other management requirements could be
used instead, leading to other possible refinement options. For example,
Kubernetes-based hosting options could be possible when container-level

Figure 7.13: The modeled FaaS-based topology refined for AWS.
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Figure 7.14: The modeled FaaS-based topology refined for Azure.

customization requirements for deployment stack are needed – in such
cases, open source FaaS platforms that support function orchestrations
such as Fission can be utilized too. Therefore, the exploration process is
intended to be iterative as modelers are always able to update the initial
requirements and explore the updated list of suitable hosting alternatives.

7.3.4 Specify Abstract Artifacts

Complementary to the exploration of hosting alternatives, the ETL func-
tion orchestration was modeled using the BPMN4FO Framework. The
BPMN4FO model shown in Figure 7.15 is a Sequence that begins with
the call to the ListFiles function modeled as a Task to prepare the file

List Files
Transform 

Data
Aggregate

Data
Clean Up

Figure 7.15: A BPMN4FO model representing the ETL function orches-
tration for processing air quality data.
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paths with air quality data for the previous day split in chunks. Next, the
TransformData function is run in parallel for each chunk, which is mod-
eled using the Fan-out construct from the BPMN4FO profile. As a result,
each chunk is mapped to a separate function instances that downloads and
transforms the files in this chunk into an intermediary format. Afterwards,
the AggregateData function modeled as a Task reduces all intermediary
files into one final result. Finally, also modeled as a Task, the CleanUp
function deletes unnecessary files.

Other kinds of abstract artifacts could be modeled at this stage too. For
example, the serverless parachute configuration can be specified to extract
the implementations of the orchestrated functions and package them for
FaaS platforms of choice. Since the functions for this particular example
FaaS-based application were implemented in Python, the prototype dis-
cussed in Section 7.2.4 could not be utilized due to its support for Java. An
example use of the Serverless Parachutes framework for a Java application
and extraction of its functionality for AWS Lambda with an evaluation of
the approach can be found in the original publication [YBHL19].

7.3.5 Refine, Test, and Deploy

After deciding on the target provider, the abstract FaaS-based topology can
be refined into the concrete, technical deployment model. For conciseness,
this subsection covers this process only briefly, whereas a detailed descrip-
tion of the deployment and execution results can be found in the original
publication [YSBL22].

To illustrate the process, consider that AWS was chosen as the target cloud,
hence the abstract topology should be refined into the AWS-specific de-
ployment model shown in Figure 7.13. Thus, the BPMN4FO model shown
in Figure 7.15 was refined for the AWS Step Functions orchestrator, i.e.,
the ASL model that will be deployed to the orchestrator. In addition, since
no function code abstraction mechanisms were used in this example, the
function code needed to be implemented for AWS as the target provider,
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which in this case was not needed since the function code for AWS was
reused from the original repository [Con20]. The refined deployment
model with the attached artifacts and specified component properties can
then be tested and deployed to the target provider. The process of deploy-
ment is shown in Figure 7.16: the TOSCA orchestrator xOpera (i) executes
the implementation artifacts created in Ansible in the correct order derived
based on the relations among components in the model and (ii) reports
about the successful completion of the deployment process. Finally, the
application is triggered using the timer, which results in the execution
of the ETL orchestration as shown in Figure 7.17. More details on the
deployment and execution of this application for all three mentioned cloud
providers can be found in the original publication [YSBL22].

Figure 7.16: Deployment to AWS using xOpera.
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Figure 7.17: Execution of the ETL orchestration for processing air quality
data using AWS Step Functions.

7.4 Integration with Other Systems

The concepts presented in this thesis and their implementations as the
GRASP Toolchain can also be combined with other existing co-authored ap-
proaches. Firstly, the GRASP method can be combined with the approach
that transforms TOSCA models into other deployment model formats using
the TOSCA Light toolchain [WBB+19; WBH+20b]. Additionally, the
TOSCA-based models implementing the GRASP concepts can be com-
bined with the Continuous Testing Tool [DHY+22] implemented in the
context of the EU Horizon 2020 Project RADON.
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7.4.1 TOSCA Light Toolchain

Wurster et al. [WBH+20b] introduce an end-to-end toolchain for transform-
ing TOSCA models into the variety of deployment automation technology-
specific model formats such as Ansible [Red22] or Kubernetes [The22c].
To achieve this, authors rely on the concept of Essential Deployment Meta-
model (EDMM) [WBF+19] – a metamodel that captures the core character-
istics of major deployment automation technologies and their underlying
model formats. As one outcome of this work, the so-called TOSCA Light
profile specifying an EDMM-compliant subset of TOSCA to enable trans-
forming models into formats supported by EDMM is derived. To enable
using the profile in practice, the TOSCA Light toolchain is implemented
that supports graphical specification of deployment models using Eclipse
Winery and transformation of resulting TOSCA models into proprietary
formats using the EDMM Transformation Framework [WBB+19]. Being
based on Winery, the GRASP toolchain is compatible with the aforemen-
tioned format transformations, hence, enabling also using other deployment
automation engines for the refined technical deployment models obtained
by following the GRASP method steps, e.g., Kubernetes deployment spec-
ifications can be generated for FaaS-based applications that are intended
to be hosted on Kubernetes.

7.4.2 Continuous Testing Tool

Düllmann et al. [DHY+22] present the Continuous Testing Tool (CTT) that
facilitates (i) specification of tests, e.g., load tests for modeled FaaS-based
applications, and test infrastructures as well as cloud systems under test
and (ii) automated deployment and execution of such tests against deployed
applications. CTT utilizes TOSCA-based modeling to enable modeling and
execution of tests continuously. As both Eclipse Winery and CTT are parts
of the EU Horizon 2020 Project RADON, the integration between these
tools was implemented in the context of the project. In particular, CTT
is compliant with the format of exported CSARs and TOSCA modeling
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constructs created in Winery, hence, enabling to produce models for both
FaaS-based applications and testing infrastructures as well as desired tests
that are modeled using TOSCA Policy Types. Resulting models produced
following the GRASP method steps can, thus, be combined with the CTT
and the underlying concepts to enable continuous testing of produced
technical deployment models.
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Conclusions and Outlook

E ngineering FaaS-based applications, as any other software, is a
multi-faceted task that requires considering multiple functional
and non-functional aspects. This thesis introduces several research

contributions that aim to facilitate the design and implementation of FaaS-
based applications. The susceptibility to various kinds of vendor lock-in
and the gap in existing research on abstraction mechanisms for FaaS-
based applications identified during the preliminary research phase and
highlighted in Section 1.1 served as the core motivation for this work
that investigated which concepts can facilitate the process of technology-
agnostic design of FaaS-based application models and their refinement
into concrete technical deployment models. A detailed analysis of state-
of-the-art research literature presented in Chapter 2 further reinforced the
identified research questions and the vision of the work (see Section 1.2). To
conclude this thesis, this chapter summarizes each introduced contribution
and discusses them with respect to their limitations. Furthermore, potential
future research directions for engineering FaaS-based applications related
to the presented contributions are discussed.

235



8 Conclusions and Outlook

8.1 Summary of Contributions

The research contributions introduced in the context of this thesis focus on
various aspects of the design and implementation of FaaS-based applica-
tions. As an abstract way to document possible kinds of hosting solutions
for components in FaaS-based applications, Contribution 1 (see Chapter 3)
introduces the Component Hosting and Management pattern language
that documents different component hosting trade-offs in the context of
deployment stack and scaling configuration management, which addresses
one part of the Research Question 1 related to the abstract representation
of component hosting decisions as described in Section 1.2. Single pat-
terns or their combinations can facilitate the selection of specific kinds
of cloud offerings, e.g., provider-managed or self-hosted FaaS platforms.
This pattern language is generic enough to be used for designing general
cloud applications, which makes this contribution usable not only as a
part of the GRASP method, but also as a standalone pattern language that
can be combined with other pattern languages such as Cloud Computing
patterns [FLR+14] and Enterprise Integration patterns [HW04a].

To further facilitate transitioning from abstract component hosting deci-
sions in FaaS-based applications to concrete deployment options, Contri-
bution 2 (see Chapter 4) presents a technology classification framework for
FaaS platforms derived using a systematic analysis of academic literature
and documentation of major existing FaaS platforms. This classification
framework captures various kinds of higher-level, managerial criteria as
well as technical, development and operations criteria. Moreover, as a part
of this contribution, the classification framework metamodel is specified
and discussed in detail together with the conceptual architecture of a se-
lection support tool supporting these concepts to facilitate classification
and selection of other component types in FaaS-based applications, which
addresses the Research Question 2 formulated in Section 1.2. This con-
tribution is also generic-enough to be used on its own, e.g., for selection
of suitable FaaS platforms or implementing selection support tools for
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other kinds of components. However, these concepts are also helpful in
the context of application design and gradual refinement of FaaS-based
application models envisioned in this thesis.

Next, to address the Research Question 3 formulated in Section 1.2, two
distinct function-related abstractions were introduced as a part of the Con-
tribution 3 (see Chapter 5): Firstly, Section 5.1 introduces the BPMN4FO
Profile that enables modeling function orchestrations independently of
specific function orchestrators such as AWS Step Functions. The resulting
BPMN-compliant models can be transformed into target formats using the
BPMN4FO Transformation Framework – a conceptual architecture and the
underlying transformation concepts are introduced in the context of this
abstraction approach too. Secondly, Section 5.2 presents an abstraction
method and a conceptual architecture that enable extracting and packaging
FaaS functions for platforms by annotating the desired code fragments in
open source repositories. In addition, this contribution also discusses how
such abstraction techniques can be used on the level of application models,
hence, enabling using these techniques not only as standalone approaches,
but also as a part of application design processes.

Contribution 4 (see Chapter 6) presents the GRASP Method for gradual
refinement of FaaS-based applications from coarse-grained architectural
models to concrete, technical deployment models that addresses the second
part of the Research Question 1 as discussed in Section 1.2. The GRASP
Method envisioned after conducting the preliminary research phase builds
on top of the introduced GRASP application metamodel for FaaS-based
applications and combines the previously-introduced contributions to en-
able creating abstract application models and refining them into technical
deployment models. Finally, to address the Research Question 4 formu-
lated in Section 1.2, Contribution 5 (see Chapter 7) introduces the GRASP
Toolchain supporting this method using the TOSCA CML. To prove the
practical feasibility of the introduced concepts, the GRASP Toolchain
comprises prototypical implementations for the conceptual architectures
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presented in Sections 4.4, 5.1.5 and 5.2.2 as well as extends/enriches exist-
ing open source tools Eclipse Winery [KBBL13] and Pattern Atlas [LB21]
to enable the envisioned modeling and refinement processes.

8.2 Research Opportunities

The contributions presented in this thesis open multiple future research
directions. Clearly, each distinct contribution presented in this work can
be extended in multiple ways. For example, the Component Hosting and
Management pattern language presented in Chapter 3 can be extended with
more patterns related to component hosting aspects, essentially, resulting
in a more general deployment-centric language. Another direction is to
identify and add pattern links with more existing pattern languages to
make the Pattern-based Decision models in the GRASP Method more
flexible and powerful, i.e., generalizing the pattern usage for decision
support and combining it further with the runtime-related concepts by
Harzenetter et al. [HBB+21; HBKL19]. The pattern-based deployment
modeling in GRASP can also be connected to the topic of architectural
compliance checking [KBF+20], hence, further simplifying the use of
introduced concepts in such architectural scenarios.

The technology classification and selection support concepts introduced
in Chapter 4 can further benefit from reuse of existing taxonomies and
ontologies related to different kinds of component types and service offer-
ings. The introduced framework for classification of FaaS platforms can
also be further refined and enriched with more managerial and technical
criteria and new platform data. Furthermore, the topic of automated data
collection is very important for such classification frameworks since the
technology landscape evolves rapidly, making the collected technology
classification data obsolete very quickly. Additionally, the search for suit-
able component hosting alternatives in this work focuses on semi-automatic
exploration process utilized for distinct components in a given applica-
tion model, whereas follow-up research can extend this task to groups of
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components, i.e., find suitable hosting alternatives for a specific group of
components in a given abstract FaaS-based application topology. Likewise,
the FaaS-related abstraction techniques presented in Chapter 5 may benefit
from various enhancements, e.g., support for additional technologies and
language. The topic of FaaSification is, in general, limited in its applicabil-
ity as the as-is extraction and packaging often limits the ways existing code
can be reused. For example, existing general-purpose functionalities may
need to be wrapped not only in provider-specific code parts, e.g., working
with specific event types in AWS, but also used as a part of larger functions
that include extra business logic. In such cases, parachute annotations
can be extended to enable substitution of annotations in newly-created
functions with the code extracted from other repositories.

Since the presented concepts focus on a minor share of well-known quality
attributes such as deployability and portability, a variety of topics tar-
geting other attributes are possible, e.g., modeling and enforcement of
performance, availability, and security requirements. One straightforward
research direction is further integration of contributions in this work with
research concepts introduced by other groups in the context of the EU
Horizon 2020 Project RADON, e.g., defect prediction in deployment mod-
els [DDPT21] or deployment optimization for FaaS [ZGTC21b]. Finally,
the rapidly increasing capabilities of Large Language Models (LLMs) open
up exciting research opportunities for architectural decision-making. The
use of specialized LLMs can facilitate many of the discussed function-
alities including generation of initial architectures and provider-specific
code based on the user-provided requirements, search for suitable compo-
nent hosting alternatives, or refinement of abstract models into technical
deployment models for the chosen deployment automation engine.
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