

LCA and External Costs in Comparative Assessment of Electricity Chains. Decision Support for Sustainable Electricity Provision?

Prof Dr Ing Alfred Voss Institute of Energy Economics and the Rational Use of Energy University of Stuttgart

IEA Conference - Energy Policy and Externalties: The Life Cycle Analysis Approach

15-16 November 2001

Characterisation of the reference electricity production technologies

	Technology	Power installed	Efficiency	Life
Coal	Pulverised Fuel Firing	600 MW	43,0 %	35 a
Lignite	Pulverised Fuel Firing	800 MW	40,1 %	35 a
Gas Combined- cycle	Combined-cycle	777.5 MW	57,6 %	35 a
Nuclear (PWR)	actual PWR	1375 MW	34,0 %	40 a
PV (poly) PV (amorphous)	poly-crystalline amorphous	5 kW 5 kW	9,5 % ¹⁾ 4,5 % ¹⁾	25 a 25 a
Wind	5.5 m/s ²⁾	1.5 MW	-	20 a
Hydro	Run-of-River	3.1 MW	90 % ³⁾	60 a
 System-efficiency Average windspeed p.a. Efficiency of turbines 				

Universität Stuttgart

Cumulative energy requirements and energy payback periods

		(without fuel)	EPP
		[kWh _{Prim} / kWh _{el.}]	[months]
Coal ((43 %)	0.3	3.6
Lignite (40 %)	0.17	2.7
Gas CC (57.6 %)	0.17	0.8
Nuclear (PWR)		0.07	2.9
PV (poly) PV (amorph)		1.24 0.67	141 76
Wind (5.5 m/s)	0.07	6.4
Hydro ((3.1 MW)	0.04	10.9

Total life cycle raw material requirements

		lron [kg / GWh _{el.}]	Copper [kg / GWh _{el.}]	Bauxite [kg / GWh _{el.}]
Coal	(43 %)	2310	2	20
Lignite	(40 %)	2100	8	19
Gas CC	(57.6 %)	1207	3	28
Nuclear (PWR)		420 - 445	6	27
PV (poly) / PV (amorph)		5350 – 7300	240 - 330	2040 - 2750
Wind	(5.5 m/s)	3700	50	32
Hydro	(3.1 MW)	2400	5	4

Universität Stuttgart

Universität Stuttgart

FR

External costs from different electricity generation technologies operated in Germany

Acidification/Eutrofication: Valuation based on marginal abatement costs required to achieve the EU "50%- Gap Closure" target to reduce acidification in Europe

Global warming: Valuation based on marginal CO₂-abatement costs required to reduce CO₂-emissions in Germany by 25% in 2010 (19 Euro/tCO₂) 16.12001

ER

LCA and external costs for policy support

- Assessment of technologies to identify deficiencies and potentials for improvement and corresponding research issues
- Cost-benefit-analysis of environmental policy measures
- Comparison of current and future energy supply options with respect to health and environmental impacts, resource requirements and sustainable energy provision.
- Internalising externalities by means of technologyspecific price adders has some drawbacks
 → pollutant-specific damage costs

<u>Specific damage costs in € per tonne of pollutant emitted in Germany</u> (reference year 1998)

	€ per tonne emitted
SO ₂	5650
NO _x	5030
PM ₁₀	8700
NMVOC	1770