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Abstract 
 

The reliable safety assessment of steel components such as pressure vessels, pipe bends and 

shell-nozzle junctions etc. is of prime interest for the safe operation of plants. It is essential 

that the assessment be done in a realistic and not too conservative way in order not to impair 

the economic efficiency too much. 

 

In this context fracture mechanics plays an important role because the load bearing capacity of 

the components under given loading conditions can be assessed. For such analyses, cracks are 

assumed to be present in the highest loaded section of the component in order to define a 

minimum crack length, which must be detected by non-destructive testing methods. However, 

the fracture mechanics parameters, determined from laboratory scale experiments are not 

directly transferable to components and hence additional considerations (like constraint effects 

etc.) need to be taken care of.  

Continuum damage mechanics is able to consider these effects inherently by incorporating the 

features of micro-structural damage evolution into the material models (also called local 

damage models). These types of models have been highly successful in simulating fracture 

resistance behaviour of specimens and components of varying geometries, loading and 

boundary conditions with the same set of material parameters and hence the question of 

transferability of parameters does not arise. This way, these parameters are truly micro-

mechanical properties of the material. However, numerical analyses of ductile fracture process 

(for strain hardening metallic materials) based on local damage models are often found to 

depend on the mesh size used (i.e., size of grid for the numerical method, for example, finite 

element method). Damage tends to localise in only one element layer. As a consequence, 

increasingly finer discretisation grids can lead to earlier crack initiation and faster crack 

growth. The reason behind this non-physical behaviour is the loss of ellipticity (non-

uniqueness of the solution) of the set of partial differential equations, especially when the 

softening due to damage dominates over the plastic hardening. Discontinuities may then arise 

in the displacement solution, which results in a singular damage rate field. Displacement 

discontinuities and damage rate singularities can be avoided by adding a nonlocal damage 

term into the constitutive equation of the material model, which carries the material length 

scale information. With this enhanced continuum description, smooth damage fields are 
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achieved, in which the localisation of damage is limited to a given length (i.e., characteristics 

length of the material). 

 

In this work, the Rousselier’s damage model has been extended to its nonlocal form using 

nonlocal damage parameter d  as an additional degree of freedom in the finite element model. 

The evolution of nodal damage of a particular node is related to the nodal damage and the 

local ductile void volume fraction of the neighbouring nodes (of the finite element model) 

with the help of a diffusion type equation. This diffusion equation is coupled with the standard 

stress equilibrium equation of continuum mechanics. A weak form of these coupled equations 

is developed in order to discretise them in the context of finite element (FE) method. Using 

standard FE shape functions in the variational equation, the coupled partial differential 

equations have been converted into the FE algebraic equations. The consistent tangent moduli 

of the coupled domain have been derived by simultaneously solving the extended material 

yield function along with the rate equations for the internal variables. 

 

The model has been applied to simulate the load-displacement response and fracture resistance 

behaviour of different types of specimens in 2-D and 3-D domain made of the reactor pressure 

vessel steel 22NiMoCr3-7.  

 

In the first part of this work, the deformation and failure behaviour of different types of 

specimens, such as, notched round tensile specimens, flat tensile specimens (with hole at the 

specimen center) of different sizes, standard 1T compact tension (CT) and single edge notched 

bend (SEB) specimens are simulated. The results obtained from the newly developed nonlocal 

model have been compared with those of the local model and the experiments (carried out at 

MPA Universität Stuttgart, Germany). In addition, the size and geometry effects have also 

predicted by the nonlocal model and the results have been compared with those of the 

experiments. All numerical results obtained with the nonlocal damage model developed in this 

work are in good agreement with the experimental results. 

 

A further key aspect of this work is prediction of the fracture resistance curve (fracture 

toughness versus temperature) for the German low alloy pressure vessel steel 22NiMoCr3-7 in 

the whole transition regime. Effects like purely cleavage fracture at the low end of the regime 

and ductile crack growth prior to cleavage fracture in the transition temperature region must be 

taken into account in order to simulate the fracture toughness transition curve accurately. In 
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order to simulate the experimentally observed behaviour, numerous calculations in the 

temperature range from -120 deg. C to -20 deg. C have been carried out for specimens with 

different thickness values and different crack depths. At low temperatures, the stress gradient 

at the crack tip becomes high and hence a very fine mesh is required to simulate it accurately. 

However, in order to simulate the preceding stable crack (often very small in size) before 

cleavage fracture, the mesh independent form of the Rousselier’s damage model is necessary. 

 

For the simulation of fracture resistance behaviour of the different types of fracture mechanics 

specimens in the transition temperature region, the nonlocal mesh independent damage model 

developed in this work has been coupled with Beremin’s model (which enables the prediction 

of the probability of cleavage fracture). Calculations have been done using  

• Beremin’s model along with elasto-plastic material model (in which prediction of 

stable crack growth is not possible) and  

• Beremin’s model along with nonlocal Rousselier’s model (in which prediction of 

stable crack growth is possible), 

assuming constant and temperature independent values for the Weibull parameters (two-

parameter Weibull theory). 

 

It was observed that the model without damage is unable to predict the scatter in the fracture 

behaviour (observed experimentally) especially towards the higher temperature end of the 

transition region, whereas the combined model with nonlocal damage has been able to predict 

the scatter very accurately over the whole temperature range. The effects of specimen type, 

size and geometry on the fracture toughness transition curve have also been captured 

satisfactorily by the new model. 

 

Keywords: nonlocal model; damage mechanics; Rousselier’s model; finite element 

implementation; ductile-brittle transition; master curve; Beremin’s model. 
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Zusammenfassung 

 

Die zuverlässige sicherheitstechnische Bewertung von Komponenten aus Stahl wie Druck-

behälter, Rohre, Abzweige usw.  ist für einen sicheren Betrieb von Anlagen essentiell. Dabei 

ist wichtig, dass die Bewertung realistisch und nicht zu konservativ vorgenommen wird, um 

die Wirtschaftlichkeit nicht zu sehr zu verschlechtern. 

In diesem Zusammenhang spielt die Bruchmechanik eine wichtige Rolle, da mit ihrer Hilfe die 

Tragfähigkeit rissbehafteter Bauteile unter gegebener Betriebsbeanspruchung analysiert 

werden kann. Im Allgemeinen werden für diese Analysen Risse im höchstbeanspruchten 

Querschnitt eines Bauteils postuliert, um eine zerstörungsfrei auffindbare Rissgröße zu 

definieren. Allerdings sind die an Kleinproben ermittelten Bruchmechanikkennwerte nicht 

direkt auf Komponenten übertragbar, sondern es sind weiterführende Analysen erforderlich, 

um z. B. die Mehrachsigkeit des Spannungszustandes mit zu berücksichtigen. 

Mit der Schädigungsmechanik ist es möglich, diese Effekte abzubilden. Dies geschieht durch 

die Berücksichtigung der mikrostrukturellen Schädigungsvorgänge in den Werkstoffmodellen 

– den sogenannten lokalen Schädigungsmodellen. Diese Modelle werden sehr erfolgreich zur 

Simulation der duktilen  Rissentwicklung in Kleinproben und Komponenten mit 

unterschiedlichen Geometrien angewendet. Dabei werden für sämtliche Probenformen und -

größen dieselben Werkstoffparameter verwendet, ohne dass sich die Frage der Übertragbarkeit 

stellt. 

Die Ergebnisse der lokalen Schädigungsmodelle, die zur numerischen Analyse des Zähbruchs 

herangezogen werden, sind von der Netzfeinheit des Finite Elemente Modells abhängig. Die 

Werkstoffschädigung lokalisiert bei den lokalen Schädigungsmodellen in der Regel in einer 

Elementschicht. Dies hat zur Folge, dass mit feiner werdender Vernetzung des Bauteils die 

Rissinitiierung früher berechnet und schnelleres Risswachstum ermittelt wird. 

Der Grund für dieses Verhalten, welches den physikalischen Prozess fehlerhaft wiedergibt, ist 

der Verlust der Elliptizität (Eindeutigkeit der Lösung) der partiellen Differentialgleichungen. 

Dies ist insbesondere der Fall, wenn die Werkstoffentfestigung infolge der 

Werkstoffschädigung die plastische Werkstoffverfestigung übersteigt. Unstetigkeiten im 

Verformungsfeld können die Folge sein was zu einem extremen Anstieg der lokalen 

Schädigung führt. Dies kann vermieden werden, wenn das lokale Schädigungsmodell um 

einen nichtlokalen Term erweitert wird. Mit dieser erweiterten kontinuumsmechanischen 
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Formulierung wird eine kontinuierliche Verteilung der Schädigung erreicht, welche die 

Lokalisierung auf einen vorgegebenen Bereich beschränkt. 

In dieser Arbeit wurde das Schädigungsmodell von Rousselier, durch Einführung des 

nichtlokalen Schädigungsparameter d als zusätzlichen Freiheitsgrad, in eine nichtlokale Form 

überführt. In dieser nichtlokalen Form wird der Einfluss der Schädigung benachbarter Knoten 

auf die lokale Schädigung mit einer Diffusionsgleichung beschrieben. Diese 

Diffusionsgleichung wird mit den Gleichungen zur Beschreibung des mechanischen 

Verhaltens gekoppelt. Für die Kopplung in einem Finite Elemente Programm wurden die 

Gleichungen in ihre 'schwache Form' (beschränkte Differenzierbarkeit) überführt. Unter 

Verwendung der Standard-Formfunktionen der Finiten Elemente Methode wurden die 

Differentialgleichungen in ein Finite Elemente Programm implementiert. Die 

Tangentensteifigkeitsmatrix wurde aus der nichtlokal erweiterten Fließfunktion und den 

Entwicklungsgleichungen für die inneren Variablen abgeleitet.  

Das Modell wurde verwendet, um das Verformungsverhalten und die Bruchzähigkeit 

unterschiedlicher Proben aus dem Werkstoff 22NiMoCr3-7 zwei- und dreidimensional zu 

simulieren. 

In einem ersten Schritt wurde das Verformungsverhalten von gekerbten Rundzugproben, 

unterschiedlich großen Flachzugproben mit Loch, Standard 1T CT-Proben und  SEB-Proben 

berechnet. Die mit dem nichtlokalen Schädigungsmodell erzielten Ergebnisse wurden 

anschließend mit den Ergebnissen des lokalen Schädigungsmodells und Versuchen, die an der 

MPA Universität Stuttgart durchgeführt wurden, verglichen. Zusätzlich wurde der Größen- 

und Geometrieeinfluss mit dem nichtlokalen Modell untersucht. Dabei zeigte sich eine gute 

Übereinstimmung der numerischen Ergebnisse, die mit dem im Rahmen dieser Arbeit 

entwickelten nichtlokalen Modell erzielt wurden, mit den experimentellen Werten. 

Ein weiterer Hauptaspekt dieser Arbeit ist die Vorhersage der Bruchzähigkeitskurve (Bruch-

zähigkeit als Funktion der Temperatur) für den Werkstoff  22NiMoCr3-7 im gesamten 

Übergangsgebiet. 

Um das Streuband der Bruchzähigkeit, welches im unteren Bereich spröde und im Über-

gangsbereich sowohl duktil als auch spröde ist, zu simulieren, wurden zahlreiche 

Berechnungen im Temperaturbereich von -120° C bis -20° C an Proben mit unterschiedlichen 

Ausgangsrisslängen und Dicken durchgeführt. 
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Bei tiefen Temperaturen wird der Spannungsgradient an der Rissspitze sehr steil, wodurch ein 

sehr feines Netz nötig wird, um den Gradienten zu simulieren. 

Um das dem Spaltbruch vorangehende, oft sehr kleine duktile Risswachstum zu simulieren, 

wird zusätzlich die nichtlokale, also die netzunabhängige Formulierung des Rousselier 

Modells benötigt.  

Zur Berechnung der verschiedenen Bruchmechanikproben wurde deshalb das hier entwickelte 

nichtlokale Rousselier Modell mit dem Beremin Modell (das eine Vorhersage der 

Spaltbruchwahrscheinlichkeit ermöglicht) gekoppelt. Für einen Vergleich wurden 

Berechnungen mit einem mit dem Beremin Modell gekoppelten elasto-plastischen 

Materrialmodells (also ohne Brücksichtigung von stabilem Risswachstum) und Berechnungen 

mit einem mit dem Beremin Modell gekoppelten nichtlokalen Rousselier Modell (also mit 

Brücksichtigung von stabilem Risswachstum) durchgeführt. Dabei wurden konstante, 

temperaturunabhängige Weibullparameter (2-parametrige Weibull-Theorie) verwendet. 

Es zeigte sich, dass das Model ohne Berücksichtigung des stabilen Risswachstums nicht in der 

Lage ist, die experimentelle Streuung im Übergangsbereich zu erfassen, insbesondere bei 

höheren Temperaturen im oberen Übergangsbereich. Dagegen war es mit dem nichtlokalen 

schädigungsmechanischen Modell möglich, die Streuung über den gesamten Bereich gut zu 

beschreiben. Ebenso wurden der Geometrie- und Größeneinfluss auf die Bruchzähigkeit mit 

dem nichtlokalen Modell gut zu beschrieben. 
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Chapter 1 
 

Introduction 

 

Prevention of failure of pressurised and high-energy components and systems made of 

metallic materials has been an important issue in design of all types of power and process 

plants. Each individual component of these systems must be dimensioned such that it can 

resist the forces or moments to which it will be subjected during normal service and upset 

conditions. Additionally, these should be safe enough during emergency or unforeseen 

accident conditions such as earthquakes. For standard design purposes, the yield limit is often 

used as a failure criterion, which means that the component will never undergo permanent 

(plastic) deformation under design loads. However, when safety and reliability are critical 

(e.g., in nuclear installations) or when the added weight and cost of over-dimensioning cannot 

be tolerated (e.g., in design of aircrafts), more accurate predictions are needed for the onset of 

failure, as well as of the fracture process itself (crack paths, residual strength, remaining 

service life etc.). These issues have traditionally been addressed using fracture mechanics. For 

example, in nuclear pressure vessels and pipings, the concept of leak before break design uses 

the concept of fracture mechanics to prove that the component leaks (which can be detected so 

that action can be taken for safe shutdown of the plant) before breaking in a catastrophic 

manner (Roos et al. 1989). Starting from the assumption of an idealised, dominant flaw, 

fracture mechanics theory provides conditions for the growth of a crack from this flaw (Roos 

et al. 1991a; Nilsson et al. 1992; Matsubara et al. 2001). Additional criteria have been 

developed for the crack growth direction, growth rates etc. under monotonically increasing 

loads (quasi-static), dynamic loads [Zimmermann et al. 1985], constant loads at high 

temperature (creep), repeated or cyclic loading (fatigue) [Diem et al. 1994] or environmentally 

assisted loading processes (stress corrosion cracking, hydrogen embrittlement etc.). 

 

1.1 Safety analysis using continuum damage mechanics 
 

The advent of faster computers and the associated computational algorithms have greatly 

extended the scope of fracture mechanics. Accurate numerical analyses can nowadays be 

performed for arbitrary geometries and loading conditions. Furthermore, the ability to 

numerically solve complex mathematical problems has inspired extensions of the classical, 
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linear theory with nonlinear material behaviour. Under the influence of these developments, a 

fundamentally different type of modelling has emerged, in which fracture is considered as the 

ultimate consequence of a material degradation process. Instead of separately defining 

constitutive relations and a fracture criterion, the loss of mechanical integrity is accounted for 

in the material constitutive model. Crack initiation and growth then follow naturally 

(implicitly) from the standard continuum mechanics theory. This theory (called continuum 

damage mechanics) introduces a set of field or internal variables (damage variables), which 

explicitly describe the local loss of material integrity or material stress carrying capability. A 

crack is represented by that part of the material domain in which the damage has become 

critical, i.e., where the material cannot sustain stress anymore. Redistribution of stresses 

results in growth of plastic deformation and damage zones in front of the crack tip or the initial 

critical damage zone. 

 

Unlike fracture mechanics, one does not need to have an initial crack in the model in order to 

describe the crack initiation and growth processes. The ductile damage models such as those 

of Rousselier [Rousselier 1987] and Gurson-Tvergaard-Neeedleman [Gurson 1975,1977; 

Needleman and Tvergaard 1984; Tvergaard and Needleman 1984] have been widely used for 

predicting load-deformation and fracture resistance behaviour of different specimens and 

components (of widely different materials) in literature [Tvergaard 1981; Xia et al. 1995; Xia 

and Shih 1995a; Brocks et al. 1995; Gao et al. 1998a; Ruggieri et al. 1996; Seidenfuss 1992; 

Seidenfuss and Roos 2004; Pavankumar et al. 2005]. These coupled models for ductile 

fracture of materials include the micro-mechanical effects of void nucleation, growth and 

coalescence of micro-voids in the constitutive equation used for description of the mechanical 

continuum. 

 

1.2 Evolution of nonlocal damage mechanics models 
 

The models where the evolution of material damage at a point is a function of stress and strain 

field at the same point are called local models. The disadvantage of these local models lies in 

use of a constant finite element size (related to characteristics material length which depends 

upon microstructure and average distance between relevant inclusions and second phase 

particles) in the fracture zone to simulate the crack initiation and crack growth process when 

using the finite element method for solving the boundary value problems [Ortiz et al. 1987, 

Needleman 1988, Needleman and Tvergaard 1994]. There have been efforts by researchers to 
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remove this problem by development of so-called “nonlocal” damage models [Reusch 2003, 

Svendsen 1999, Reusch et. el. 2003a,b, Needleman abd Tvergaard 1998, Brekelmans and de 

Vree 1995, de Vree et al. 1995, Ramaswamy and Aravas 1998a,b]. Numerical analyses based 

on the local damage models depend on the spatial discretisation (i.e., mesh size of the 

numerical method used). The growth of damage tends to localise in the smallest band that can 

be captured by the spatial discretisation. As a consequence, increasingly finer discretisation 

grids can lead to crack initiation earlier in the loading history and to faster crack growth. In the 

limit of an infinitesimally small spatial resolution, the predicted damage band can have a zero 

thickness and hence the crack growth becomes instantaneous. This non-physical behaviour is 

caused by the fact that the localisation of damage in a vanishing volume is no longer 

consistent with the concept of a continuous damage field, which forms the basis of the local 

continuum damage mechanics approach. 

 

The origin of the localisation process of damage has been studied by many researchers 

worldwide (e.g., Needleman 1988, Aifantis 1992, Brekelmans and de Vree 1995, Peerlings et 

al. 2002 among many others) and different reasons have been attributed for this process. First, 

the set of partial differential equations, which govern the rate of deformation, may locally lose 

ellipticity (for statics) and hyperbolicity (for dynamics) at a certain level of accumulated 

damage (especially when the softening due to damage dominates over the plastic hardening). 

Discontinuities may then arise in the displacement solution, which result in a singular damage 

rate. This damage rate singularity in turn leads to the instantaneous initiation of a crack. 

Second, when a crack has been initiated, either prematurely as a result of displacement 

discontinuities or because the damage variable has become critical in a stable manner, the 

damage rate singularity at the crack tip results in instantaneous failure of the material in front 

of the crack tip. Since the damage rate singularity is preserved as the crack propagates, the 

remaining cross section is traversed instantaneously. 

 

Displacement discontinuities and damage rate singularities can be avoided by adding 

nonlocality to the damage model and hence the name nonlocal damage models. In these 

models, spatially averaged quantities (e.g., strain or damage) are used in the constitutive 

equations. The enhanced continuum description which is thus obtained results in smooth 

damage fields, in which the localisation of damage is limited to the length scale introduced by 

the averaging. As a result, too early initiation of cracks and the non-physical faster crack 

growth rates are avoided. The other way is to follow an implicit formulation and to introduce 
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higher order strain or damage gradients into the constitutive equations through another partial 

differential equation (PDE) along with the standard stress equilibrium PDE of continuum 

mechanics. 

 

1.3 Motivation for the present research 
 

The present research has two broad objectives, i.e., (a) to develop a model which can predict 

fracture resistance behaviour of a component without using a constant FE mesh size (this will 

help to simulate large stress gradients where the stress and strain distribution results are of 

better accuracy upon mesh refinement) and (b) to simulate very small amounts of crack 

growth (of the order of 200 micron) when analysing fracture mechanics specimens in the 

transition temperature regime to predict the probability of cleavage fracture. 

 

   
 

Fig. 1.1(a) Experimentally 
observed shear band 
development in a flat 
tensile sheet 

Fig. 1.1(b) Predicted 
shear band width using 
1mm mesh (local damage 
model), plot of contour 
material damage 

Fig. 1.1(c) Predicted shear band 
width using 0.5mm mesh (local 
damage model), plot of contour of 
material damage 

 

In order to understand the problem associated with the local damage mechanics models, we 

consider here the example of shear band development in a flat metallic (austenitic steel) sheet 

loaded in tensile direction. Fig. 1.1(a) shows the shear bands, which develop at local 

imperfections in the tensile sheet, which are inclined at 045± to the tensile axis. It is known 

that the width of shear band depends upon the underlying micro-structural features and hence 

is constant for a given material. In order to simulate the width of shear band using continuum 
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damage mechanics, let us analyse the specimen using 2D plane strain formulation using two 

different finite element (FE) mesh sizes (i.e., square elements of 1mm and 0.5mm of element 

side). Fig. 1.1(b) shows the shear band (zone of contour plot having damage value of 0.5), 

which is confined to one layer of Gauss points in case of 1mm FE mesh. However, as the 

mesh size is refined to 0.5mm, the width of shear band narrows down (still confined to one 

layer of Gauss points). This demonstrates the mesh dependent nature of local damage 

mechanics results. 

 

 

Fig. 1.2 Mesh dependency of load displacement response of the shear band specimen 

 

The above effect is also reflected in the simulation results of the global load-deflection curve 

of the specimen (Fig. 1.2) where the predicted load carrying capability decreases drastically as 

the mesh size is refined (which is unrealistic). Hence, in order to predict the accurate response 

of a specimen or component (when local or conventional damage mechanics approach is 

used), one has to first determine the size of FE mesh to be used in the damaged zone or region 

of crack propagation. The same mesh has to be used for analysis of any component of the 

same material. Hence, the material length scale is incorporated in an explicit way instead of 

going for modification of the material constitutive equations to take into account of the 

characteristics length scale of the material in the simulation. 

 

As discussed earlier, the problem of using constant FE mesh size prohibits simulation of large 

stress gradients where the mesh has to be refined in order to minimise the error associated with 
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FE computation. This is especially important for simulation of stress-strain behaviour ahead of 

crack tip when analysis is done in lower shelf and transition temperature regions of a material. 

As observed from Fig. 1.3, very small amounts of ductile (stable) crack growth were observed 

before cleavage fracture when carrying out experiments [Eisele et al. 2006] on compact 

tension (CT) specimens at various temperatures (between -100 and -20 deg. C). Due to these 

small crack growths, the stress ahead of the crack tip gets redistributed and hence the 

probability of cleavage fracture (which depends upon the stress state ahead of the crack tip) of 

CT specimens are largely dependent upon accurate simulation of the stress field and its 

redistribution due to ductile crack growth. In order to simulate the probability of cleavage 

fracture in specimens and components, Beremin’s model [Beremin 1983] is widely used where 

the probability of cleavage fracture depends upon two material properties (i.e.,  and um σ ). 

 

 

Fig. 1.3 Experimentally measured stable crack growth before cleavage fracture in CT 
specimens 
 
In order to predict the probability of cleavage fracture in the transition region, one needs to 

combine Beremin’s model with that of the ductile damage model (i.e., Rousselier or Gurson-

Tverggard-Needleman) [Ruggieri and Dodds 1996; Xia and Shih 1996; Xia and Cheng 1997]. 

However, the conventional (or local) ductile damage model requires use of a constant mesh 

size (e.g., of the order of 0.2mm), which is too coarse to simulate the stress gradients in the 

transition region. Hence, the combination of Beremin’s model with local damage models 

becomes difficult for simulation in the transition temperature region. 
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Fig. 1.4 Comparison of scatter band prediction of Beremin’s model with experiment 
 
Fig. 1.4 shows the comparison of predicted scatter band in the fracture toughness of a CT 

specimen with those of experiment [Eisele et al. 2006]. The simulation has been done using 

elasto-plastic FE analysis [Seebich 2007], where a very fine mesh of 0.02mm (at the crack tip) 

has been used. Hence, small amounts of crack growth and their corresponding effects on stress 

redistribution cannot be considered in the present analysis. As seen from Fig. 1.4, the 

predicted scatter band is in close agreement with those of experiment upto a temperature of 

approximately -60 deg. C (where the stable crack growth is almost nil). However, the 

difference between the prediction and the experiment widens once stable crack growth sets in 

and as expected, predicted results grossly underestimate the experimental scatter. 

 

The inability of the local damage models to use very fine mesh (and hence to simulate very 

small amounts of crack growth) in the transition regime prevents us from simulating the stress 

gradients correctly ahead of the crack tip. It may be the reason for the discrepancy between the 

simulated and experimental cleavage fracture probabilities of standard fracture mechanics 

specimens when we approach towards the right end of the transition regime. In this work, we 

investigate the possibility of combining the Rousselier’s damage model with the Beremin’s 

model in the transition temperature region, which is the motivation for the present research. In 

the first phase, the task is to develop a mesh independent damage model and later, the new 
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model will be used in combination with Beremin’s model to predict the probability of 

cleavage fracture in the transition temperature region. 

 

1.4 Brief outline of the model developed in this work 
 

In this work, a nonlocal description for the evolution of the damage variable d  has been 

derived using an implicit gradient enhancement formulation, which results in a partial 

differential equation in terms of d  and the ductile void volume fraction f . This additional 

PDE contains diffusion terms with a source term, which depends upon the evolution of the 

void volume fraction f [Reusch 2003, Reusch et al. 2003a], i.e.,  

 2 0lengthd f C d− − ∇ =  (1.1) 

When lengthC  is zero, the nonlocal formulation reduces to that of local formulation. The 

solution of the above PDE (along with the stress equilibrium equation) can be simplified when 

put into the standard finite element (FE) framework and this necessitates the introduction of an 

additional degree of freedom (DOF) d  in addition to the standard deformation DOFs (i.e., 

,  and u v w ). Introduction of an additional damage DOF also necessitates an additional 

boundary condition for d  (often the Neumann boundary condition is used which means that 

damage flux at the free surface is zero). 

 

The new formulation has been used to predict the load-deformation and fracture resistance 

behaviour of several specimens using different mesh sizes and the mesh independence nature 

of the nonlocal solutions have been demonstrated. Later, size and geometry effects on the 

fracture resistance behaviour of specimens are also predicted using nonlocal damage models. 

In addition to simulation in the upper shelf, analysis has also been carried out in the lower 

shelf and transition region to predict the probability of cleavage fracture using different 

specimens (e.g., CT and single edge bend SEB). The effect of specimen size, geometry, 

thickness etc. on the probability of cleavage fracture has also been studied. 

 

1.5 Organisation of the thesis 
 

The thesis is organised into six chapters. The first chapter gives an overview of different 

simulation methods for ductile and cleavage fracture in materials, limitations of continuum 
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damage mechanics models and discusses the motivations for the current research. The second 

chapter provides a comprehensive literature survey of the works carried out by various 

researchers in the fields of constraint based fracture mechanics, continuum damage mechanics 

and nonlocal damage mechanics respectively. The details of the development of a new 

nonlocal damage model along with its FE implementation is described in the third chapter. 

The new FE model has been used to simulate fracture resistance behaviour of different 

specimens in the upper shelf and study size and geometry effects. The results have been 

documented in chapter four. The fifth chapter describes the results of simulation of probability 

of cleavage fracture in the lower shelf and the transition region using various types of 

specimens. The effect of specimen size and geometry is also discussed. The broad conclusions 

from the present research along with the scope for future work, is discussed in chapter six. 
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Chapter 2 

 

Literature Survey and discussions 
 

In this chapter, a detailed review of literature in the field of nonlocal damage mechanics is 

presented. The disadvantages of conventional fracture mechanics approach are described and 

hence the need for continuum damage mechanics models is outlined. The important 

contributions by different researchers in the field of micro-mechanical modelling for ductile 

and cleavage fracture are described along with their major limitations (e.g., dependence of 

solutions on numerical grid size and high computational cost etc.). Different approaches 

(existing in literature) to remove this mesh dependent nature of the solutions are also 

discussed. 

 

2.1 Advantages and limitations of conventional fracture mechanics 
 

The possibility of a fracture of a reactor pressure vessel has always been considered as a 

problem of central concern (Roos et al. 1996, 2006) and has indeed been one of the driving 

forces behind the development of fracture mechanics. Fracture events in other components are 

also of significant interest although less critical than a pressure vessel failure. As nuclear 

reactors age, these concerns may increase due to irradiation embrittlement and the possible 

occurrence of service-induced defects. Although the fracture mechanics methodology has 

experienced tremendous advance during the last two decades (Kussmaul and Roos 1985; Roos 

et al. 1985, 2000a, 2001; Kussmaul et al. 1987), still a number of problems remains to be 

solved. One group of problems falls mainly under the general heading of whether 

transferability can be relied upon (Roos 1983; Kussmaul et al. 1984; Katzenmeier et al. 1990). 

The goal of fracture mechanics is to enable predictions of initiation and propagation or growth 

of existing or postulated cracks of given configurations in structures of arbitrary geometries 

and boundary conditions. It should be possible to base a prediction on results from 

experiments performed on specimens of the same material, but with a geometry that differs 

from the one under consideration (Roos et al. 1991b; Roos and Eisele 1999; Roos and Föhl 

1999). It is here to be understood that the environmental conditions such as for instance 

temperature and the working medium should remain the same. 
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This concept of transferability of fracture mechanics results is central to the success of fracture 

mechanics (Roos 1983; Kussmaul et al. 1984; Katzenmeier et al. 1990; Dlouhý and Chlup 

2000; Kozák and Dlouhý 2001; Dlouhý et al. 2004). If we can rely on the transferability, 

results from experiments conducted on small laboratory specimens can be used to predict the 

fracture behaviour of a large structure for which an assessment is desired. Complicated, 

occasionally impossible, full scale testing is thus avoided. The load carrying material in a 

reactor pressure vessel and in several other components is usually a ferritic steel. It is well 

known that the temperature (in magnitude as well as the gradient form such as thermal shock) 

has important effects on the fracture behaviour of such materials (Kussmaul et al. 1990; Eisele 

et al. 1991; Stumpfrock et al. 1993). At high temperatures (upper shelf), crack growth occurs 

by a ductile mechanism, either through void growth and coalescence or through shear 

localisation. For these mechanisms, continued crack growth requires increasing loads. 

 

At low temperatures (lower shelf), the fracture mode is cleavage, which is a highly unstable 

event. In an intermediate temperature region (the transition region), there may be some amount 

of stable (ductile) crack growth before final fracture by cleavage and hence cleavage and 

ductile fracture processes are the two competing mechanisms in this temperature region. 

Characteristic for the loss of stability due to cleavage is that it cannot be explained within the 

framework of JR-philosophy based on experimentally measured resistance curves on the macro 

level, since a change of micro-mechanism occurs and it is also highly statistical in nature. 

Obviously, both ductile and cleavage micro-mechanisms are operative and competitive. This 

behaviour is more marked in the upper transition region and has been recognised in a large 

variety of experiments over the years. While mechanistic explanations of this type of 

behaviour have been developed, a full understanding of the temperature transition problem is 

still lacking. 

 

2.2 Crack initiation and growth modelling in fracture mechanics 
 

Depending on the type of problem under consideration, different ways of modelling can be 

employed. The state of a loaded crack tip in reality is complicated and a detailed modelling of 

the structure and the processes is in general not possible. Fracture mechanics modelling can be 

divided into different levels. At the highest level, the crack tip is assumed to be a point and no 
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special assumptions of the material behaviour apart from those of the matrix material are 

made. The bulk of current literature in fracture mechanics use the concept of stress intensity 

factor (K) in LEFM (linear elastic fracture mechanics) and J-integral in EPFM (elasto-plastic 

fracture mechanics). There are problems of transferability of the parameter from specimens to 

components when these single parameter approaches are used (Roos et al. 1983, 1987b, 1993, 

2000b; Kussmaul et al. 1984). Also, the crack growth cannot be modelled in an implicit way 

as the material constitutive relations are same as that of a continuum elasto-plastic description. 

However, for transferability of fracture toughness value (corresponding to crack initiation, i.e., 

iJ ) from specimens to components, the stretch zone width concept has been developed and 

successfully used by many researchers (Roos et al. 1987a; Eisele and Roos 1991 etc. among 

others). 

 

If the decohesive processes (crack initiation and growth) are to be modelled explicitly, the 

simplest way is to use the so-called cohesive zone models (Dugdale 1960; Barenblatt 1962; 

Sluys 1992; Sluys and de Borst 1994; Simo et al. 1993; Larsson and Runesson 1994; Oliver 

1996; Sluys and Berends 1998). Here, it is assumed that the crack surfaces start to separate if 

some measure of stress or strain exceeds a critical level. Usually this is taken to be the normal 

stress perpendicular to the prospective crack plane in a mode-I fracture. Behind the front end 

of the zone, tractions are assumed to act across the partly opened crack surfaces. The 

constitutive properties of the zone are embodied in a functional relation between these 

tractions and the crack surface separation. Once this relation has been established, the motion 

of the front and rear ends of the zone can be calculated and no further fracture criterion is 

needed. 

 

In certain situations, even the cohesive zone models are not sufficient to describe the crack tip 

region behaviour (e.g., inability to predict crack growth direction, absence of internal length 

scale, over-simplified fracture criteria, i.e., based on critical normal stress etc.). Decohesive 

processes and other forms of damage may occur out of the crack plane whereby some kind of 

volumetric modelling is necessary. For this purpose, so called damage mechanics constitutive 

laws have to be used. In addition to the normal constitutive laws, these equations contain state 

variables that describe the deterioration of the material. Considerable success in modelling 

ductile fracture processes has been achieved by the use of the two well-known continuum 

damage mechanics models such as Rousselier’s and Gurson-Tvergaard-Needleman’s models 
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[Rousselier 1987, Gurson 1977, Needleman and Tvergaard 1984, Tvergaard and Needleman 

1984]. 

 

2.3 Constraint based fracture mechanics modelling 
 

In fracture mechanics theories, it is assumed that the state of stress at a point of the crack front 

can be described by one or few scalar parameters. In the case of linear elastic material 

behaviour, the fracture mechanics loading of a crack is defined by the stress intensity factor 

IK . In the case of nonlinear ductile material behaviour, the J-integral is used to quantify crack 

tip loading. Both parameters were derived theoretically from a crack in an infinite plane. 

Appropriate adjustments have to be made to experimentally determine the characteristic values 

on small-scale specimens. These adjustments are included in appropriate codes and are taken 

into account with the help of validity limits of the characteristic values determined. For this 

reason, characteristic values can only be applied to assess fracture mechanics behaviour of a 

component if the stress state of the specimen and the component are equal. For general use, 

appropriate criteria need to be determined. This is achieved using an additional parameter 

quantifying the stress state by multiaxiality or some function of it. 

 

2.3.1 Crack tip constraint parameter T  
 

One of such parameters is the T -stress parameter, first proposed by Williams (1957). It 

characterizes the difference between the stress state of a finite specimen and the theoretical 

result of an infinite plate in the case of linear elastic material behaviour and is defined in the 

following expression. 

 ( ) 1 12
I

ij ij i j
K f T

r
σ θ δ δ

π
= +  (2.1) 

where T  is a constant stress parallel to the crack plane. In the case of simple geometries T can 

be calculated from IK  using the biaxiality ratio β . In the case of complex geometries, 

numerical methods have to be used. Sometimes, the parameter T is represented in a non-

dimensional form by dividing it with the material yield stress yσ . The parameter T is however 

limited to linear elastic material behaviour due to its derivation. 
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In the current methodology of non-linear fracture mechanics, the crack tip loading parameter 

is the J -integral, which is complemented by some constraint parameter (e.g.,  and q Q  etc.) 

[Roos et al, 2005]. In numerical evaluation of the J -integral one often employs other 

formulations such as domain integral and virtual crack extension methods instead of the line 

integral. Faleskog and Nordlund (1994) compared the different formulations under both 

proportional and nonproportional loading and found the differences between the methods 

insignificant. 

 

2.3.2 Crack tip constraint parameter Q  
 

The J -integral, for a stationary crack, is directly related to the magnitude of the HRR singular 

field [Hutchinson (1968), Rice and Rosengren (1968)]. Except for large deformation effects in 

the very near tip vicinity, the HRR-singularity prevails in hardening materials. The extent of 

the singularity region is, however, in many cases too small for a pure one-parameter 

description. The observation made by O’Dowd and Shih (1991, 1992, 1994) leads to the 

following approximate and simple form for the stress field ijσ  ahead of a crack tip. 

 ( )ij ij y ijSSY
Qσ σ σ δ= +  (2.2) 

where ( )ij SSY
σ is the stress-field that results from a standard small scale yielding (SSY) 

analysis and is thus directly related to the J -integral, yσ denotes the yield stress and Q  is the 

scaled deviation in hydrostatic stress from the SSY-solution. Thus the parameter Q defines the 

deviation of the current stress state ijσ  from a reference solution, e.g. the HRR-field that 

presumes non-linear elastic material behaviour. The current stress state ijσ  is determined 

using finite element method. The parameter Q is usually determined by the crack opening 

stress component at a position, which is of the order 2 to 5 times yJ σ . This position is 

usually quite near to the crack tip and therefore requires a mesh with very small elements 

around the crack tip. The local evaluation at the position between 2 to 5 yJ σ  in front of the 

crack tip supplies a value representing the behaviour of the component. The evaluation 

position, however, depends on the loading (i.e., J value). Besides the HRR-solution, 

additional numerical reference solutions simulating small-scale yielding could also be used. 

Negative values of T and Q parameters indicate loss of constraint at the crack tip. It has been 

observed by many researchers [Betegon and Hancock (1991), Hancock et al. (1993)] that Q  
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can be practically uniquely related to the T -stress (the second term of elastic crack tip stress 

field expansion, i.e., Eq. (2.1)). 

 

2.3.2 Multiaxiality quotient q as a crack tip parameter 
 

The theoretical background of the multiaxiality quotient q is based on the mechanics concept 

that shear initiates shear fracture and tension initiates cleavage fracture. The representative 

shear stress for shear fracture can be defined as 

 ( )2
1 2 23 3r J J Jτ ′= − = − −  (2.3) 

and the representative tensile stress is the hydrostatic stress defined as 

 1

3m
Jσ =  (2.4) 

where 1 1 2 3J σ σ σ= + +  is the first invariant of the stress tensor, 2 1 2 2 3 3 1J σ σ σ σ σ σ= + +  is the 

second invariant of the stress tensor and 2J ′  is the second invariant of the stress deviator. 

Using rτ  and mσ , the multiaxiality quotient q was first defined by Clausmeyer et al. 1991 and 

it considers the interaction between shear as well as tension initiating shear and cleavage 

fracture. The multiaxiality quotient q  is therefore calculated from the invariants of the stress 

tensor as 

 ( )2
2 1

13 1 3
3

eqr

m hydro

q J J
στ

σ σ
= = − =  (2.5) 

where  andeq hydroσ σ  represent von Mises equivalent stress and mean hydrostatic stress 

respectively. The parameter q  is thus proportional to the ratio of representative shear stress 

and representative tensile stress. The case of a pure hydrostatic stress state where 0rτ =  and 

therefore 0q =  indicates the highest possible degree of multiaxiality or constraint for which 

shear processes are restrained. The quantification of the transition from shear fracture to 

cleavage fracture is one of the major questions in the safety analysis of components and this is 

now possible with the help of q . 

 

To predict the different fracture behaviours of specimens and components, it is necessary to 

determine the change of the multiaxiality quotient in the region ahead of crack tip. The criteria 

for suppression of plastic flow and hence onset of cleavage fracture is usually defined as the 

condition when ( )0.27cq q< =  and the criteria for unlimited plasticity is defined when 
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0.87q =  (Roos et al. 1993). As a result of numerous investigations, a representative range ir  

(distance from the crack tip) for analysis of the stress state was derived by Roos et al. 1993. 

This range is given by either ( )0 0.3ir W a< < − or ( )0 0.87ir r q< < = , whichever is less. The 

extensive investigations by Roos et al. 1993 showed that the analysis region ir  has to be 

transferred from the small specimen to the component in absolute dimensions. Since crack 

growth is significantly controlled by the multiaxiality of the stress state, quantification of 

multiaxiality is performed by integration of the multiaxiality quotient over the above-

mentioned region ir  ahead of the cracked section (Roos and Eisele 1999, Roos et al 2001). A 

quantitative statement about the possibility of cleavage fracture or stable crack growth after 

crack initiation can be expressed as follows. If 
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then brittle fracture can be expected. If 
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then stable crack extension will follow the crack initiation. If 
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( ) ( )
0

0
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 and 1,

specimen

i

i

r

i r

q y dy
J J

q y dy
> ≅

∫

∫
 (2.8) 

then the crack resistance curves of the specimen and the component are comparable. 

Therefore, similar crack growth in the specimen and in the component can be expected at the 

same J-integral value. This provides a fracture mechanics assessment concept for a reliable 

safety analysis of cracked components to be used for all crack sizes. The applicability of the 

above criteria was extensively studied by Roos et al. 2005 with the help of several 

experimental and theoretical examples. 
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For a stationary crack front the J -integral is usually reasonably independent of the integration 

region if the global loading conditions are reasonably near proportional loading. For a growing 

crack tip in a material that behaves according to an incremental plastic constitutive law, the 

loading state is very far from proportional in the crack front region [Nilsson (1992)]. In fact, 

the order of the singularity for a growing crack in such a material is of such an order that an 

integration path taken infinitesimally close to the tip would yield a zero value for the J -

integral. In order to obtain integration region independent values, the integration path must be 

taken so remotely from the tip that proportional loading conditions should prevail. The J-

integral value evaluated in this way is termed FJ  (far-field J ). 

 

A common approach is instead to neglect the non-proportionally deforming region and 

calculate the J -integral assuming the tip has been stationary at its instantaneous position 

during the loading process. The J -integral value so obtained is termed DJ  (deformation 

theory J ). In a numerical investigation by Nilsson (1992) shows that DJ  and FJ  are 

approximately equal for two-dimensional problems. Hence, it can be assumed that crack 

growth along the crack front is governed by 

 ( ) ( ), , ,RJ P a J a Tempβ= Δ  (2.9) 

where P  is measure of applied load, β  is some suitable constraint parameter such as 

,  ,  or q T Q , RJ  is the material resistance which is a function of constraint and the crack 

growth aΔ . In fully three-dimensional cases, it is assumed that Eq. (2.9) holds locally at every 

point along the crack border. The fracture resistance may also depend on the temperature. 

Conventional fracture mechanics theory does not suggest any way of finding this dependence 

except for experimental determination. The criterion is also the same for cleavage as well as 

ductile conditions and hence the distinction between the mechanisms is only given by the 

value of the material fracture resistance (i.e., RJ  curve).  

 

For a propagating crack the constraint factor determination becomes more involved than for 

stationary crack. Whether the fields in the vicinity of a growing crack in a elastic-plastic 

material can be written in a form analogous to Eq. (2.2) is not known and it appears uncertain 

that such an expression should hold. Instead, a constraint parameter Q  corresponding to the 

DJ  concept can be considered, i.e., Q  is calculated for a stationary crack of the current length 

subjected to the same loading history. The same type of arguments as for the crack tip 
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characterising capacity of J -integral was put forward to justify such an approach [Trädegård 

et al. (1998)]. The characterisation of stationary cracks with J and Q  serves reasonably well 

for growing cracks at least at up to moderately high load levels. The ductile crack initiation 

( iJ  value corresponding to the stretched zone width [Roos et al 1987a, Eisele and Roos 1991]) 

is relatively insensitive to the constraint level while the J -levels for continued crack growth 

decrease with increasing Q . It is also not possible to predict the ductile-cleavage transition 

without resorting to micro-mechanical models. The only way within the conventional type of 

modelling is the empirical approach, which is to perform experiments under different 

combinations of J and Q  and observe whether cleavage or ductile crack growth results. It was 

also observed in many experiments carried out by different researchers that the cleavage 

fracture propensity increases with increasing level of Q . 

 

2.4 Micromechanical models for cleavage fracture (lower shelf) 
 

For initiation of cleavage fracture, several micro-mechanical models have been proposed in 

literature. Many of these models share the common feature that no modification of the material 

constitutive laws is performed. It is thus assumed that cleavage fracture occurs before any 

material degradation due to void growth etc. has taken place [true only in pure lower shelf 

region]. When treating problems of transition from ductile to cleavage fracture, combination 

of cleavage and degradation models is necessary. 

 

The micro-mechanical model of Ritchie et al. (1973) [RKR or Ritchie-Knott-Rice’s model] 

predicts transgranular cleavage fracture if the maximum principal stress reaches a critical 

value cσ  at a critical distance cr  ahead of the crack tip. Later, Curry and Knott’s model [Curry 

and Knott (1978,1979)] modified RKR model by stating that cleavage fracture occurs if the 

maximum principal stress reaches a critical value over a characteristics volume ahead of the 

crack tip. A model for the effect of constraint can be obtained by applying the RKR criterion 

to the crack tip stress field according to Eq. (2.2). The ratio between the critical J value in a 

finite body (where Q  is not zero) to the critical J value in an infinite body ( 0J J=  for a fully 

constrained body where 0Q = ) can be written as (Landes 1996, Miranda and Landes 2001) 

 
0

1 y

c

J Q
J

ησ
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.10) 
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where η  is equal to 1n +  ( n  being the hardening exponent in the power hardening law-

Hollomon’s law) describing the true stress-strain behaviour of the material. 

 

The inherently random nature of cleavage fracture has prompted many developments of 

statistical models of fracture. Most of these are based on the so-called weakest link 

assumption, which leads to the following expression for the probability of fracture, i.e., 

 ( )1 exp i
f I

refV

dVP g
V

σ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∫  (2.11) 

where V is the volume of the plastically deformed zone, refV is the reference volume which is 

taken many times as 0.001 3mm . The function ( )i
Ig σ expresses the probability of failure of an 

infinitesimal volume i  (having volume dV ) according to the expression 

 ( )i
f I

ref

dVdP g
V

σ=  (2.12) 

where i
Iσ  is the maximum principal stress acting at a material point i  in the plastically 

deformed region having volume dV . It is shown by Wallin (1984) that under one-parameter 

crack tip control (i.e., when constraint effect is not taken into consideration) in terms of 

K (stress intensity factor) or alternatively J (i.e., J -integral under more widely spread 

plasticity), the fracture probability can be described by 

 
2

0 0

1 expf
B JP
B J

⎛ ⎞⎛ ⎞
⎜ ⎟= − − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.13) 

or in terms of mode-I stress intensity factor IK  as 

 
4

0 0

1 exp I
f

KBP
B K

⎛ ⎞⎛ ⎞
⎜ ⎟= − − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.14) 

These expressions result irrespective of the form of the g -function, provided that the integral 

in Eq. (2.12) exists. 

 

As we obtain the same expressions for the probability of failure (output) even when different 

forms of the g -function are used, it is not possible to determine the parameters (input 

variables) or the form of the function using only a single output. This is equivalent to saying 

that different combinations of input parameters or different input functions lead to the same 

output. Some implications of this fact have been discussed by Gao et al. (1998b, 1999) and 
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they also discuss the problem of estimation of the parameters in the probabilistic assumptions. 

When the single-parameter (  or K J ) dominated crack tip field no longer prevails, Eq. (2.13) 

loses its applicability and the functional form of ( )i
Ig σ  may influence the resulting 

probability. In most studies, the following form for the g-function is used, i.e., 

 ( )
mi

i I
I

u

g σσ
σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.15) 

where uσ  is called Weibull’s scaling parameter and m is called Weibull’s shape parameter or 

Weibull modulus and the theory is called Weibull’s two-parameter theory. Later, many 

researchers argued that there exists a threshold stress thσ , only above which one can expect a 

finite probability of fracture (however small). This is in contradiction to the two-parameter 

theory where a finite probability of cleavage fracture is predicted even if the applied maximum 

principal stress is very small. This new theory expresses the g-function as 

 ( )
mi

i I th
I

u

g σ σσ
σ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 (2.16) 

and this is known as Weibull’s three parameter theory. However, estimating the threshold 

stress is many times cumbersome and often explaining it in terms of actual experimental 

observation is not straightforward. 

 

It should be pointed that there is no fundamental basis for the form of Eq. (2.16). It is simply a 

convenient mathematical expression that can be fitted to the experimental results by varying 

the material constants. A function based on more fundamental principles is of interest to the 

researchers. There is for instance some evidence that plastic deformation should in some way 

influence the propensity for cleavage fracture. Wang (1991) performed calculations for crack 

tip stress fields controlled by IK  and T  stress as the constraint parameter using modified 

boundary layer (MBL) conditions. The trend of the mean value is very similar to the behaviour 

of the RKR-model. Since the effect of constraint (measured as T  or Q ) essentially results in a 

hydrostatic stress field, the plastic zone is not much affected. The effect of the additional 

stresses is nearly the same as shifting the threshold stress and thus the same type of 

distribution as in the one-parameter case results. 

 

A number of investigations show that under one parameter controlled situations, deviations 

from the theoretical result [Eq. (2.14)] occur. These deviations are most noticeable at low 
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fracture toughness levels and therefore a lower limit has been suggested. Thus, for instance, 

Anderson et al. (1994) suggested that 

 
4

min

0 0 min

1 exp I
f

K KBP
B K K

⎛ ⎞⎛ ⎞−⎜ ⎟= − − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 (2.17) 

Here minK is a constant and it has been suggested that it should be assigned the value 20 MPa 

for ferritic steels. Similar expressions have also been suggested by other authors. It may be 

noted that Eq. (2.17) is purely empirical and there is no fundamental theory behind the 

expression. Various explanations have been given as to whether there should exist a definite 

lower limit value of toughness. 

 

One reason for the existence of a minimum value is that a cleavage event initiated at some 

point such as an inclusion does not necessarily lead to a total cleavage fracture. The cleavage 

crack must also be able to propagate through the interface between the inclusion and the 

matrix and grow further into the matrix material. Narström and Isacsson (1999) performed 

experiments in the upper part of the transition region. They observed that the number of 

cleavage initiation sites increase with temperature even though the general character of the 

fracture becomes increasingly ductile, which supports the view that arrest of cleavage attempts 

is a phenomenon that contributes to the transition behaviour. 

 

Gao et al. (1999) applied the concept of weakest link modelling to 3D cases of plates with 

semi-elliptic surface cracks found that their model is able to capture constraint effects 

satisfactorily. In their analysis, they utilised the following version of the weakest link 

approach, i.e., 

 1 exp
m

w th
f

u th

P σ σ
σ σ

⎛ ⎞⎛ ⎞−⎜ ⎟= − −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 (2.18) 

where thσ is the threshold value of Weibull stress which is constant and the Weibull stress is 

evaluated using the expression 

 ( )1 mm i
w I

refV

dV
V V

σ σ= ∫  (2.19) 

where i
Iσ  is the maximum value of principal stress at the material point i  having volume 

dV and uσ corresponds to the value of Weibull stress for 63.2% of failure probability. Under 
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two-dimensional plane strain conditions, these expressions reduce to Eq. (2.17) and are thus 

three-dimensional versions of that expression. 

 

2.4.1 Beremin’s model for Cleavage fracture 

 

The cleavage fracture in a material usually originates from the microcracks, which are formed 

by different mechanisms. The microcracks are formed due to an inhomogeneous distribution 

of plastic deformation within the grains. It is called slip-initiated cleavage [Beremin (1983), 

Mudry (1987)]. In mild steels, the cracked grain boundary carbides also originate the 

microcracks. This occurs when the stress normal to the planes of carbide particles (i.e., 

weakest planes inside the carbide particles which are susceptible for fracture) is sufficiently 

high. This critical stress cσ  required for the separation of cleavage facets, can be related to the 

length 0l  of a microcrack by the relation 

 
( )2

0

2
1c l

γσ
π ν

Ε
=

−
 (2.20) 

Where E  is Young’s modulus of elasticity, ν  is the poisson’s ratio, and γ  is the surface 

energy. The length 0l  is related to the dimensions of the relevant metallurgical features 

associated with stable microcracks. In mild steel, the grain boundary carbide width is 

considered as the relevant metallurgical length.  

 

The probability of finding a microcrack of critical length is a function of the volume of 

material involved. It is very difficult to find out this probability experimentally. In a 

population of microcracks, the fracture will take place at the site of longest microcrack. 

Therefore the knowledge of distribution of microcracks is required for the longer ones. Let us 

assume that the stressed volume can be divided in smaller volumes 0V . This volume 0V  should 

be large enough to the extent that the probability of finding a microcrack of reasonable length 

is not very small and the statistical independence of neighbouring volumes can be assumed. In 

each volume, the probability of finding a crack of length between 0 0 0 and l l dl+ can be written 

as 

 0 0 0
0

( )P l dl dl
l β

α
=  (2.21) 
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where  and α β are material constants for a particular value of 0V . Hence in a given volume 

where the maximum principal stress level is i
Iσ , the probability of failure is expressed as 

 
( ) ( ) ( )

0 0

0 0 1 1
0 0

1 1( ) ( ) . .
1 1c c

i
I c

l l

P P l dl
l lβ β

α ασ
β β

∞∞

− −

⎡ ⎤
= = =⎢ ⎥− −⎣ ⎦

∫  (2.22) 

where 0
cl  is given by Eq. (2.20) as 

 
( )( )0 22

2

1
c

i
I

El γ

π ν σ
=

−
 (2.23) 

Substituting Eq. (2.23) into Eq. (2.22), we obtain 

 ( )
mi

i I
I

u

P σσ
σ

⎛ ⎞
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⎝ ⎠
 (2.24) 

where 2 2m β= −  and ( )( )( )

( )

1

11 2

1 2

. . 1
m
u

β

ββ

β γ
σ

α π ν

−

−−

− Ε
=

−
, uσ  turns out to be a material constant almost 

independent of temperature if it is assumed that γ  does not change with temperature. The 

stressed region of the specimen is divided into n  volumes of iV  each which are subjected to a 

quasi-homogeneous stress state iσ  (the maximum principal stress in the volume i ). This 

implies that the stress variation in iV  is small which is reasonable if iV  is chosen small 

enough. The failure probability of the volume iV  is expressed as ( )
mi

i I
I

u

P σσ
σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. The 

cumulative probability of failure for the entire specimen or component is written as 

 ( )
1

1 1
n

i
R I

i

P P σ
=

⎡ ⎤= − −⎣ ⎦∏  (2.25) 

Since ( )iP σ  is small, one can write the following relation 

 ( ) ( ) ( )
1 1

ln 1 ln 1
n n

i i
R I I

i i
P P Pσ σ

= =

⎡ ⎤− = − ≈ −⎣ ⎦∑ ∑  (2.26) 

In order to determine the failure probability for homogeneously stressed specimens, let us 

assume a constant maximum principal stress Iσ  over the whole volume and hence Eq. (2.26) 

can be written as 

 ( )
0

ln 1
m

I
R

u

VP
V

σ
σ

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠
 (2.27) 
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which is one form of Weibull expression. The average stress at rupture Rσ  can be written as 

 
1

0 1 !
m

R u
V
V m

σ σ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.28) 

It may be noted that and um σ  are the two parameters required for determination of probability 

of failure of the entire specimen or component. However, 0V  must be of the order of ten 

grains, i.e. small enough to neglect stress gradients in 0V  and large enough to assume 

statistical independence of the individual volumes. If very small stress gradients are present in 

the specimen, then 0V  can be arbitrarily chosen. Usually 0V  is chosen as a cubic volume 

containing about 8 grains of the material, i.e. 100x100x100 3μm . 

 

For non-homogeneously stressed specimens, Eq. (2.24) is used for calculating failure 

probability. Substituting Eq. (2.24) into Eq. (2.26), we obtain 

 ( ) ( )
1 1 0

ln 1
m min n

i i wI
R I

i i u u

VP P
V

σσσ
σ σ= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− = − = − = −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑  (2.29) 

where iV  is the volume of the thi element experiencing the maximum principal stress i
Iσ  and 

wσ  is called the Weibull stress. Eq. (2.29) can be rearranged to express the probability of 

failure (  or R fP P ) for the non-homogeneously stressed specimen as 

 1 exp
m

w
f

u

P σ
σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2.30) 

The expression for the Weibull stress wσ  can be obtained from Eq. (2.29) as 

 ( )
1 0

n mi imw I
i

V
V

σ σ
=

= ∑  (2.31) 

 

2.4.2 Maximum Likelihood method for determination of Weibull parameters 

 

 In this approach, the values of the two parameters and um σ  are required to be determined 

such that they are most likely to describe the experimental data [Khalili and Kromp (1991)]. 

The probability that, for an estimated set of Weibull parameters, the experimental results 

would have occurred, should be maximized. This is equal to the probability that all i
Iσ  values 

occur simultaneously which is given by the product of all the fracture probabilities, i.e., 
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( ) ( ) ( )1 2. ...     N
N I I If f f fσ σ σ= . This is defined as the maximum likelihood function LF , 

which can be written as 

 ( )
1

i

N

L w
i

F f σ
=

= ∏  (2.32) 

In order to maximize the likelihood function LF , the partial derivatives of the function with 

respect to  and um σ are set to zero. Since taking the derivatives of a sum is easier than that of a 

product, the derivation is done on ln LF  and it can be written as 
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Using the condition that ln 0L

u

F
σ

∂
=

∂
, we obtain 
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σ σ
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= ∑  (2.34) 

Upon using the other condition, i.e., ln 0LF
m

∂
=

∂
, we obtain 
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Substituting Eq. (2.34) into Eq. (2.35), we obtain 
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 (2.36) 

Equation (2.36) is nonlinear and has to be solved by an iterative process. 

 

2.5 Micromechanical modelling of ductile crack growth (upper shelf) 
 

Ductile crack growth in steels proceeds by one of two mechanisms (i.e., void nucleation, 

growth and coalescence and shear localisation). The first one, which dominates at least in 

modelling, is when the crack grows through void nucleation, growth and subsequent 

coalescence [Xia and Shih 1995b]. The second one is shear localisation of plastic flow as 

observed in deformation of thin metal sheets. The first mechanism is typical for materials with 
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a high degree of hardening, while the latter occurs for high strength materials with a low 

degree of hardening. 

 

The bulk of micro-mechanical modelling approaches deal with the first type of mechanism and 

there is very little concern for modelling the second mechanism of ductile crack growth. The 

shear localisation process is also dependent on void formation in the material but of another 

size scale and in other directions than the void growth and coalescence mechanism (Tvergaard 

1981). When considering crack growth due to the void mechanism it unrealistic to perform full 

calculations with the voids explicitly modelled. Instead, homogenised models, also called 

continuum damage constitutive relations are used. A variety of such laws exist in the 

literature. They do not differ very much and the mostly used models are Rousselier’s and 

Gurson-Tvergaard-Needleman’s (GTN) models [Rousselier (1987), Gurson (1977), 

Needleman and Tvergaard (1984), Tvergaard and Needleman (1984)]. The yield condition for 

the Rousselier model is written as 

 
( ) ( )exp 0

1 1
eq hydro

k eq
k

D f R
f f

σ σ
φ σ ε

σ
⎛ ⎞

= + − =⎜ ⎟⎜ ⎟− −⎝ ⎠
 (2.37) 

where eqσ is the von-Mises equivalent stress, and kD σ are Rousselier’s constants, hydroσ is the 

mean hydrostatic stress, f  is the void volume fraction (which is a measure of ductile damage, 

0f =  corresponds to defect-free material whereas 1f =  corresponds to completely damaged 

material, a crack) and ( )eqR ε is the material stress-strain curve, which is a function of 

equivalent plastic strain eqε . The details of the development of the model from principles of 

thermodynamics are given in Appendix-A. 

 

The yield condition for the GTN model is written as 

 
2

2
* *

1 2 32

32. cosh 1 0
2

eq hydro

m m

q f q q f
σ σ

φ
σ σ
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= + − − =⎜ ⎟

⎝ ⎠
 (2.38) 

where mσ is the true stress in the matrix material which is a function of equivalent plastic 

strain eqε  in the matrix material (i.e., the material stress-strain curve), 1 2 3,   and q q q  are the 

constants introduced by Tvergaard and Needleman (1984) in order to simulate the observed 

experimental fracture behaviour in many different materials more accurately. 
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The function *f , called modified void volume fraction was also introduced by Tvergaard and 

Needleman (1984) and the modified void volume fraction *f is related to the actual void 

volume fraction f through the relationship 

 ( )
* *

if     

if    

c

u c
c c c

f c

f f f
f f ff f f f f

f f

≤⎧
⎪= −⎨ + − >⎪ −⎩

 (2.39) 

where cf  is the critical void volume fraction (signifying void coalescence) and ff  is the 

actual void volume fraction at final fracture and *
uf  is the modified void volume fraction at 

fracture (usually *

1

1
uf q

= ). 

 

These yield functions are also valid for an isotropically strain hardening material when the 

yield stress of the matrix material is replaced by the current flow stress (which is a function of 

equivalent plastic strain). It can also be easily modified to take into account the kinematic 

hardening behaviour as observed in low-cycle fatigue loadings. The constants 1 2 3,   and q q q  

depend upon the material. A calibration method for 1 2 3,   and q q q  for a strain hardening 

material has been developed and described by Faleskog et al. (1998) by comparing the 

response of a GTN-cell with an equivalent cell containing one explicitly modelled void. The 

plastic strain increment follows from the Prandtl-Reuss flow rule and is written as 

 1p
ij kl

ij kl

φ φε σ
κ σ σ

∂ ∂
=

∂ ∂
 (2.40) 

where klσ  is the Jaumann rate of the Cauchy stress and κ  is the hardening parameter. The 

void growth rate is obtained using the plastic incompressibility condition of the matrix 

material as 

 ( )1 p
kkf f ε= −  (2.41) 

The voids quantified by f are either initially present or nucleated by the deformation process. 

In the latter case, some void nucleation law has to be specified. Chu and Needleman (1980) 

proposed the following law for calculating increment of void volume fraction, which tells that 

the increase in void volume fraction f  is due to void growth and void nucleation processes. 

Hence, it includes the growth law, i.e., Eq.(2.41) and a strain controlled void nucleation 

mechanism (also a stress-controlled mechanism if it is favourable in the material) which is 

described as 
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 ( ) ( )1 p p
kk eq eq hydrof f A Bε ε σ σ= − + + +  (2.42) 

where the constants and A B  for strain-controlled nucleation are written as 
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and for stress-controlled nucleation 
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where Nf ε  and Nf σ are the values of void volume fractions of void nucleating particles at mean 

nucleation strain and stresses Nε  and Nσ  respectively. and N Ns sε σ  are standard deviations of 

equivalent plastic strain and sum of equivalent and hydrostatic stress respectively responsible 

for nucleation assuming a Gaussian distribution. The superscripts and ε σ  denote the strain- 

and stress-controlled nucleation respectively. In this way a number of additional constants is 

introduced which increases the possibility of fitting the model to data, but on the other hand 

complicates the parameter identification process. When f is equal to 11 q , the material loses 

its load bearing capacity. 

 

One fundamental problem with the classical or local Rousselier and GTN-law is that the 

damage parameter (at the crack tip) approaches the critical value at any finite load when we 

evaluate the damage parameter very near to the crack tip (i.e., the length of the crack tip finite 

element tending towards zero). This means that crack growth would commence immediately 

upon any load application, however small. The only way to mitigate this problem is to 

introduce a characteristic length in some way. Preferably, this should be done by modification 

of the material constitutive law introducing the characteristic length parameter. However, a far 

more common way is to limit the strain levels by letting the elements in a finite element mesh 

to have a certain size (related to material length scale). The size of the elements in the crack tip 

vicinity is thus equivalent to a constitutive assumption. This fact seems to have escaped some 

of the investigators in this area. 

 

Before applying the local models to simulate crack growth in experiments, the initial task is to 

determine the parameter 0f  (initial volume fraction of relevant inclusions which form voids 

upon onset of plastic deformation either by debonding from the matrix or particle fracture) and 
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cl  (characteristic length parameter which is of the order of mean distance between relevant 

inclusions). The parameters 0f  and cl  are considered as free parameters to be determined from 

optimization of numerical simulation results (e.g., point of drastic load drop before final 

fracture in case of notched tensile specimens or fracture resistance curve in case of fracture 

mechanics specimens) with those of experiment. These parameters are however to be kept 

fixed (once estimated) for further analysis of different cases of a specific material. 

 

Gao et al (1998a) applied this type of analysis to both nominally two-dimensional tests as well 

as to the tests with surface cracks performed by Faleskog et al. 1991, Faleskog 1994, Faleskog 

1995. The crack propagation results in all the considered cases were well predicted by the 

local damage model, however the model was less accurate in predicting the onset of ductile 

crack growth (i.e., crack initiation). Several similar analyses of experiments have been 

performed (e.g., Rousselier 1987, 2001; Bilby et al 1993, Kussmaul et al. 1995; Brocks et al 

1995; Pitard-Bouet et al. 1999). As mentioned earlier, the parameters 0f  and cl  were 

determined from experiments (preferably a fracture mechanics experiment). It may also be 

noted that the computational problems associated with the damage based modelling are not 

trivial. Gullerud et al. (2000) has suggested a number of options in order to obtain reliable 

results. Among other things they derive the requirements on the load step length. 

 

One major advantage of micro-mechanical modelling (or continuum damage mechanics) when 

used for prediction of ductile crack growth is that there is no longer any need to use crack 

growth criteria like Eq. (2.9) and possible constraint effects are automatically accounted for. It 

should, however, be realised that the outlined scheme is still an over-simplified model. Much 

research is currently performed to increase the precision and applicability of the damage 

modelling. It may of course be questioned whether ductile crack growth theory needs to be 

developed much further. The currently used models provide an accuracy that from a safety 

point is probably quite sufficient for the problem of ductile crack growth. 

 

The real challenge to micro-mechanical modelling is to predict the transition phenomenon of 

fracture toughness as discussed below. This rather satisfactory state of affairs for modelling of 

ductile crack growth applies to the mode-I situation. Mixed mode cases have not been 

investigated to same degree of understanding as that of mode-I fracture. Experimental studies 

indicate that the shear localisation mechanism becomes increasingly important, as the amounts 
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of modes other than mode-I are present. It is likely that the micro-mechanical methods 

developed for ductile crack growth of the type described above may also be used with success 

for other crack growth mechanisms. Inter-granular fracture is often regarded as a quasi-brittle 

process. Fracture in these cases develops as decohesion of relatively weak material along the 

grain boundaries [Sluys (1992); Sluys and de Borst (1994); Oliver (1996); Sluys and Berends 

(1998)]. This may be a highly ductile process while the grains themselves experience little 

plastic deformation. In fact, the cohesive zone models or cell models of the type described can 

presumably be used provided that the material behaviour of the grain boundaries is well 

modelled.  

 

2.6 Micro-mechanical modelling in the transition regime 
 

A main feature of ferritic steels is that they exhibit a transition from ductile to cleavage 

behaviour as the environmental temperature is lowered and/or the applied loading rate is 

increased. It has also been realised since long that the transition is also dependent of the 

geometry of the body. In general small specimens have a ductile behaviour while the large 

structure may fracture in a cleavage mode at the same temperature. Thus tests, which usually 

are performed on small specimens, may be misleading. 

 

All models of the transition phenomenon are based on the idea of competing mechanisms of 

ductile and cleavage fracture. Thus both the cleavage and the ductile processes are modelled 

and the critical event is determined by the mechanism that is most favourable under the actual 

conditions. Most success has been achieved about the influence of geometry on the transition 

behaviour at a constant temperature. A simple model can be obtained as follows. Assume that 

ductile initiation occurs when the J -level reaches duct
cJ and that cleavage fracture follows Eq. 

(2.10). Then cleavage is expected to occur if (Landes 1996, Miranda and Landes 2001) 
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J Q
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ησ
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.45) 

In this relation the geometry effect enters through Q  and clearly increasing values of this 

parameter promote cleavage fracture. A more realistic model of the same problem 

(incorporating ductile growth before a possible cleavage fracture) can be obtained by 

combining the continuum damage mechanics models discussed above with the weakest link 

modelling according to Eq. (2.11). This is the topic treated by Xia and Shih (1996) among 
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others. These studies generally show that the probability of cleavage fracture increases with 

crack growth. The quantitative predictions are however difficult to verify by experiments, 

since a large amount of tests is usually needed to support probabilistic statements. 

 

While the geometry effects can be successfully modelled, the effect of temperature is still 

insufficiently understood. The models that are found in literature basically ascribe the problem 

of temperature transition to a decrease of the yield stress (with increasing temperature). This is 

clearly not adequate since the change of yield stress is generally too small to furnish an 

explanation. The temperature transition occurs over a relatively narrow temperature interval. 

Conventional constitutive properties do not change appreciably over this temperature interval 

nor does the structure of material, i.e., grain size, inclusion density etc. It thus remains to 

understand which changes in the material behaviour are responsible for the transition 

behaviour. Since the transition is strain rate sensitive it is likely that these changes are to be 

found in materials response to the loading rate. While purely empirical methods to describe the 

transition through the so-called master curve are successful, insignificant steps have been 

taken in order to understand why there is such a transition behaviour common to most ferritic 

steels. The remarkable fact that it is indeed possible to construct a master curve, should tell us 

a lot about the causes of the transition behaviour. 

 

In the application of fracture mechanics to nuclear technology, there are further problem areas 

in addition to basic ones outlined here. In connection with certain types of accidental 

conditions, the possible benefits of so-called warm pre-stressing (WPS) have received much 

attention in the past. By the term WPS, it is meant that the loading of the cracked structure at a 

high temperature may enhance its fracture properties at a lower temperature to some extent. 

This effect is a consequence of the introduction of residual stresses, crack tip blunting and 

local hardening of the material etc. At the other hand, it can also be envisioned that ductile 

damage can be initiated in the crack tip region at the high warm loading level, which may 

counteract the positive effects of the residual stresses. Micro-mechanical modelling can be 

used here in determining the limits of the WPS argument. Likewise, micro-mechanical 

modelling can be used to assess the probability of a cleavage fracture at the lower temperature. 

Presumably, the methods of micro-mechanical modelling as sketched above can be used for 

this purpose with the additional difficulty to determine the material response at different 

temperatures. 



 32

Repeated load applications up to near critical levels (i.e., initiation level for ductile growth) 

where material damage occurs and accumulates with the load cycles is a topic that has not 

been very much studied. It borders on the research of fatigue problems, but for such high load 

levels the mechanisms are more like those of ductile crack growth than those typical of fatigue 

crack growth. Kaiser (1983) considered crack growth due to cyclic loading in this regime by 

use of conventional non-linear fracture mechanics. Again micro-mechanical modelling could 

be an attractive way of approaching the problems. The main challenge in this respect seems to 

be the formulation of laws for development of plastic deformation and damage under cyclic 

loading. While conventional fracture mechanics is capable of predicting crack growth 

behaviour if sufficient experimental observations are available, micro-mechanical modeling 

can both increase the accuracy of these predictions and model phenomena that are inaccessible 

by the conventional theory such as the ductile-cleavage temperature transition and it may serve 

as a tool by which more simplified engineering methods can be validated. 

 

2.7 Mesh dependency of conventional damage mechanics models and the 

concept of nonlocal damage mechanics 
 

The very fact that damage mechanics models use a continuous representation of cracks renders 

them particularly suitable for numerical simulations. Damage formulations can be fitted into 

nonlinear finite element algorithms and implemented in simulation codes with relative ease 

and they do not rely on the special discretisation and remeshing techniques used in numerical 

fracture mechanics. It is an essential requirement of finite element formulations that the 

approximate solutions provided by them converge to the actual solution of the boundary value 

problem when the discretisation is refined. 

 

In the early 1980s, however, it was found that finite element solutions of softening damage 

[Brekelmans et al. (1992)] and plasticity problems do not seem to converge upon mesh 

refinement [e.g., Pietruszczak and Mróz (1981); Bažant et al. (1984); Schreyer and Chen 

(1986)]. As a matter of fact, they do converge to a solution, but this solution is physically 

meaningless. Accordingly, the mesh sensitivity of the analyses is not caused by the numerical 

methods which are used, but by the fact that the underlying continuum model does not 

properly describe the physical phenomena that take place [Bažant et al. (1984); Triantafyllidis 

and Aifantis (1986); de Borst et al. (1993)]. 
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The failure of continuum damage models in describing the fracture processes can be 

understood if one realises that the concept of a continuous damage variable presumes a certain 

local homogeneity (i.e., at least smoothness of the micro-structural damage distribution). But 

the continuum models based on this concept allow for discontinuous solutions, in which the 

development of damage localises in a surface while the surrounding material remains 

unaffected. This localisation of damage is in contradiction with the supposed smoothness of 

the damage field and thus affects the physical relevance of the model. Two possible ways out 

of this conflict present themselves: either the smoothness requirement must somehow be 

eased, or the continuum formulation must be modified in such a way that a larger degree of 

smoothness is ensured. 

 

The cohesive zone models of Dugdale (1960) and Barenblatt (1962) and the fictitious crack 

model proposed by Hillerborg et al. (1976) can be considered as examples of the first 

category. They assume that the nonlinearity is concentrated in a plane in front of the actual, 

discrete crack. The faces of this fictitious crack can still transfer stresses, with a magnitude, 

which is a function of their separation. More recent studies have shown how such functions 

can be derived from continuum models [Sluys (1992); Sluys and de Borst (1994); Simo et al. 

(1993); Larsson and Runesson (1994); Oliver (1996); Sluys and Berends (1998)]. It may be 

noted that, the above approach is also closely related to nonlinear fracture mechanics, since it 

assumes a discrete crack. 

 

The second strategy concentrates on preventing the so-called pathological localisation of 

damage and deformation. Stability and bifurcation analyses of plasticity and damage 

formulations have provided a reasonable understanding of the origins of the behaviour and the 

conditions under which it occurs [Hill (1962); Rudnicki and Rice (1975); Pijaudier-Cabot and 

Huerta (1991); Pijaudier-Cabot and Benallal (1993); Huerta and Pijaudier-Cabot (1994); 

Wang 1997; Peerlings et al. (1998b)]. A range of extensions to the conventional damage and 

plasticity models have been proposed in order to regularise the localisation of deformation [de 

Borst et al. (1993)]. Among them, the most promising is perhaps the class of nonlocal and 

gradient models. Both approaches introduce spatial interaction terms in the constitutive model, 

either using integral (nonlocal) relations [Bažant et al. (1984); Pijaudier-Cabot and Bažant 

(1987); Tvergaard and Needleman (1995)] or gradients of some constitutive variable [Aifantis 

(1984); Coleman and Hodgdon (1985); Lasry and Belytschko (1988); Mühlhaus and Aifantis 

(1991); de Borst and Mühlhaus (1992); Geers et al. (1998)]. The additional terms have a 
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smoothing effect on the deformation (and damage) fields, and thus preclude localisation in a 

plane. From a physical standpoint, the presence of spatial interactions can be motivated by 

microstructural considerations for some classes of materials [e.g., Aifantis (1984); Bažant 

(1991); Fleck and Hutchinson (1993); Geers (1997)]. Cosserat continua introduce micro-

rotations as degrees of freedom, in addition to the conventional displacements. Gradients of 

these rotations give rise to micro-couples, which appear in the moment of momentum 

equations. The interaction between these rotational balances and the conventional, 

translational balances prevents the concentration of deformations in a surface. However, a 

mode-II component is needed in the deformation field in order to activate this mechanism. As 

a consequence, pathological localization may still occur in problems, which are dominated by 

mode-I loading. 

 

2.8 Nonlocal damage models, state of the art 
 

In recent years intensive research has been performed on the numerical modelling of failure 

phenomena in many engineering materials. One field of interest is the characteristic softening 

response that ductile materials exhibit in shear-dominated forming processes and other 

processes where ductile (stable) crack growth occurs by the microscopic processes of void 

nucleation, growth and coalescence. These processes are often accompanied by the 

localisation of deformation into a narrow zone of material (formation of shear band) or ductile 

damage zones of characteristic length scales. The main focus of this work is the incorporation 

of ductile damage into the material constitutive equations, which falls into the category of 

porous plasticity or material softening models and remove the mesh dependent nature of the 

models through incorporation of the concept of nonlocality. 

 

For material softening (continuum damage mechanics) models, the numerical solution that is 

obtained from finite element analyses employing standard continuum elasto-plasticity (where 

a local description of the softening material is used) reveals a pathological dependence on the 

direction and the fineness of the finite element mesh (Pijaudier-Cabot et al. 1988). For these 

models, the solutions show no convergence to physically meaningful values upon mesh 

refinement. This problem is now well known by researchers worldwide and it has been shown 

that it is not purely of a numerical kind. The mesh-dependence nature of the solutions is due to 

the consequence of the ill-posedness of the underlying mathematical problem, i.e., the partial 
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differential equation (PDE) governing the boundary value problem (BVP) loses ellipticity in 

statics or hyperbolicity in dynamics. At the onset of softening, this change (loss of ellipticity 

or hyperbolicity) allows discontinuities in the strain distribution to appear and all deformation 

tends to localise into a zone of zero width. 

 

2.9 Integral and gradient enhanced formulations 
 

Different types of models, such as enhanced physical or phenomenological models have been 

proposed over the years to overcome the deficiency (i.e., loss of ellipticity of the governing 

PDE), which has led to various numerical solution strategies. An overview of these methods is 

given in de Borst et al. (1993). Among these, the higher-order continuum based models are 

probably best motivated from both the physical and the computational point of view (Aifantis 

1987,1992). A common feature of the higher-order formulations is the incorporation of an 

intrinsic length scale, which is related to the microstructure and the failure mechanisms during 

plastic slip (e.g., granular deformations, inter-granular cleavage, dislocation dynamics, void 

nucleation, growth and coalescence, etc.). Examples of the experimental validation and 

determination of such a length scale for plasticity, crystal plasticity and damage mechanics can 

be found in Stölken and Evans (1998); Shu and Barlow (2000) and Geers et al. (1999) 

respectively. Nonlocal plasticity models [Strömberg and Ristinmaa (1996); Nilsson (1998)] 

incorporate a nonlocal quantity that is defined as the spatially weighted average of the 

corresponding local field quantity over a finite volume surrounding the point under 

consideration. Commonly, the nonlocal quantity is computed with an integral format, in which 

the associated intrinsic length scale influences the weight amplitude in the vicinity of a 

material point. Gradient-enhanced plasticity formulations [e.g., de Borst and Mühlhaus 

(1992)] avoid this integral format by approximating the nonlocal kernel with a Taylor series 

expansion, which yields a differential format. These gradient formulations are in fact higher 

order extensions of the local plasticity theory. 

 

One subclass of the gradient-enhanced formulations is based on the direct use of higher-order 

gradient terms of a local quantity in the constitutive framework. They are therefore referred to 

as explicit formulations. This method involves the use of a plastic yield function (e.g., von-

Mises) to which the Laplacian of an equivalent plastic strain measure is added [Mühlhaus and 

Aifantis (1991); de Borst and Mühlhaus (1992)]. This method has also been analyzed 
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thoroughly from a numerical point of view by Pamin (1994). The proposed method is based on 

a numerically rather expensive 1C -continuous two-field interpolation or a 0C -continuous 

three-field formulation. 

 

With the work of Pamin (1994), considerable progress has been made in restoring the well-

posedness of the BVP. Nevertheless, several problems have still remained. The adopted 

softening relation is only characteristic for the evolution of the local yield stress and the total 

gradient-enhanced yield stress may behave quite differently, which makes it difficult to model 

complete failure in a physically relevant way (i.e., convergence to an infinite strain in the 

presence of material separation). Numerical problems have also been reported when the total 

gradient-enhanced yield strength approaches zero (e.g., in case of porous plasticity models due 

to the evolution of ductile damage or void volume fraction). The most severe inconvenience 

resides in the fact that the gradient-enhanced consistency condition, which is solved as an 

additional partial differential equation (PDE), is only valid in the plastic domain, and no direct 

long-range interactions (i.e. at finite distances) with the elastic region exist. As a consequence, 

the evolving elasto-plastic boundary (EPB) depends on the solution, which complicates the 

numerical calculations considerably. 

 

In order to circumvent the limitations of the existing explicit gradient regularization for 

softening plasticity, Meftah et al. (1998) rephrased the problem. They adopted a differential 

approximation of a nonlocal quantity as an additional PDE. Unlike the consistency condition 

(which is commonly used within the explicit gradient-enhanced formulations), this additional 

PDE is defined throughout the entire body, whereas it implicitly incorporates a similar 

gradient regularization. As a result, this method only requires boundary conditions on the 

external boundary and not on a moving EPB and it benefits from a straightforward 0C -

continuous two-field interpolation. Nevertheless, several inconveniences (e.g., no complete 

failure, numerical instabilities etc.) persisted and the numerical solution strategy required 

rather small loading increments. 

 

A second subclass of the gradient-enhanced methods consists of the so-called implicit 

approaches. These formulations adopt a differential approximation of a nonlocal variable, 

which involves the higher-order derivatives of a nonlocal variable rather than of a local field 

variable, which is the case for the explicit models. Both the explicit and implicit gradient 
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approximations can be easily derived from the nonlocal integral format [Peerlings et al. 

(1996)]. For the implicit case, the resulting relation is a PDE of the Helmholtz type, from 

which the nonlocal quantity is solved in a coupled fashion with the equilibrium equation. 

Similar to the formulation of Meftah et al. (1998), this necessitates only boundary conditions 

on the external boundary and not on the moving EPB. The dependence of the yield function on 

the nonlocal field ensures the gradient regularization in an implicit manner. Moreover, the true 

nonlocal character of the implicit gradient-enhancement enables long-range interactions into 

the elastic region. Although these approaches have already been successfully applied to 

damage mechanics for quasi-brittle materials (Peerlings et al. 1996,1998a), the application to 

elasto-plasticity and ductile damage mechanics has not been satisfactory yet, which is 

precisely the subject of the current research. In this work, the gradient enhancement 

formulation is coupled to the constitutive equation though incorporation of ductile damage as a 

nonlocal variable. The evolution of nonlocal ductile damage is governed by a diffusion type 

PDE and it is in turn dependent on the local ductile damage variable (i.e., void volume 

fraction, which is treated as an internal variable in continuum damage mechanics 

formulations). 

 

2.10 Concept of nonlocality 
 

In order to fully understand the consequences of and the differences between the various 

gradient approximations of the nonlocal kernel, the definition of a nonlocal quantity, 

commonly used in various integral nonlocal formulations [e.g., Pijaudier-Cabot and Bažant 

(1987); Strömberg and Ristinmaa (1996)] is described here in brief. Here, the nonlocal field 

variable is taken as the ductile void volume fraction (i.e., d ) instead of the equivalent plastic 

strain used in literature for nonlocal plasticity models (i.e., without the effect of ductile 

damage on material stiffness). The nonlocal variable in a material point x , i.e. the nonlocal 

void volume fraction d , is mathematically defined as a weighted average of the local void 

volume fraction f in a domain Ω , i.e., 

 ( ) ( ) ( ) ( ) ( )1 ;d x y x f y d y
x Ω

= Ψ Ω
Ψ ∫  (2.46) 

where y is the position vector of the infinitesimally small volume dΩ and ( );y xΨ  is the 

Gaussian weight function given by 
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The length parameter l  determines the size of the volume, which effectively contributes to the 

nonlocal quantity and is related to the scale of the microstructure. The above integral nonlocal 

kernel holds the property that the local continuum is retrieved if 0l → . The nonlocal void 

volume fraction equals the local void volume fraction for homogeneous strain states, since a 

normalising factor ( )xΨ  is used and given as 

 ( ) ( );x y x d
Ω

Ψ = Ψ Ω∫  (2.48) 

 

2.10.1 Explicit gradient approximation for nonlocal damage 

 

From the integral format Equation (2.46), a relation of d  in terms of gradients of f can be 

derived making use of the following Taylor series expansion, i.e., 
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where Einstein’s summation convention applies to the repeated indices. Substitution of 

Eq.(2.49) into Eq.(2.46) yields 

 ( ) ( ) ( ) ( ) ( ) ( )2 4
1 2 ...d x f x c l f x c l f x= + ∇ + ∇ +  (2.50) 

where the Laplacian operator is defined by 
2

2
2 2i

ix
∂

∇ =
∂∑  and ( )2 2 nn∇ = ∇ . The gradient 

parameters ( ) ( )1 2 and c l c l  have the dimensions of length to an even power and that the odd 

derivatives vanish due to the isotropy of the Gaussian weight function of Eq (2.47). The 

importance of the Laplacian term for restoring the well-posedness of the mathematical 

problem in case of localisation has been shown both computationally and analytically by 

Askes (2000) and Wang (1997). Other gradient formulations, on the contrary [e.g., Zbib and 

Aifantis (1992); Aifantis (1999)], are constructed on the basis of first order gradients, which 

may be relevant when dealing with size-effects in hardening plasticity. 
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Finally, it is rather straightforward to approximate the nonlocal kernel by disregarding terms 

of order four and higher, which results in the following explicit gradient approximation 

 ( ) ( ) ( ) ( )2
1d x f x c l f x= + ∇  (2.51) 

The gradient approximation of Eq. (2.51) is considered explicit in the sense that the 

(approximated) nonlocal field ( )d x  can be directly calculated from the local field ( )f x . This 

approximation preserves some of the properties of the integral format, i.e., the local field is 

recovered if either ( )1 0 when 0c l l→ →  or if homogeneous strain fields are considered. 

Although the length parameter ( )1c l  governs the intensity of the spatial interactions, the 

explicit gradient approximation is only weakly nonlocal (interactions limited to an 

infinitesimal neighbourhood), as shown in Peerlings et al. (2001). 

 

2.10.2 Implicit gradient approximation for nonlocal damage 

 

The weakly nonlocal character of the explicit gradient approximation [Eq. (2.51)] can be 

improved by taking into account more higher-order derivatives of the local quantity in Eq. 

(2.50). However, from a computational point of view, this is not favourable. Alternatively, the 

explicit approximation can be improved upon in a different fashion according to Peerlings et 

al. (1996). The Laplacian of Eq. (2.50) can be written as 

 ( ) ( ) ( ) ( )2 2 4
1 ...d x f x c l f x∇ = ∇ + ∇ +  (2.52) 

Substracting Eq. (2.52) from ( )1c l ×Eq. (2.50) results in 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 4
1 2 1 ...d x c l d x f x c l c l f x⎡ ⎤− ∇ = + − ∇ +⎣ ⎦  (2.53) 

If all the coefficients of the higher-order terms on the right-hand side, starting with 

( ) ( )2
2 1c l c l−  are set zero, the following expression is obtained 

 ( ) ( ) ( ) ( )2
1d x c l d x f x− ∇ =  (2.54) 

This relation is the implicit gradient formulation of the nonlocal integral equation [i.e., (2.46)], 

which is a partial differential equation (PDE) in terms of the nonlocal variable ( )d x  of the 

Helmholtz type. It is emphasised that the influence of the higher-order terms on the right-hand 

side of Eq. (2.53) vanishes since the resulting weighting function satisfies the condition 

( ) ( )2
2 1 0c l c l− = . The gradient approximation given by Eq. (2.54), requiring the solution of 

this PDE, still represents a truly nonlocal variable from a mathematical point of view. In fact, 
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the solution of the implicit gradient PDE for an arbitrary local field ( )f x  can be determined 

with the method of Green’s functions, i.e., 

 ( ) ( ) ( );d x G y x f y d
Ω

= Ω∫  (2.55) 

where the Green’s function is given as (the distance between two points is represented as 

x yρ = − ) 

 ( ) 2

1; exp
4   

G y x
l l

ρ
π ρ
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 (2.56) 

Although the above expression adopts the Green’s function ( );G y x  as the weight function 

instead of the common Gauss function, it has the same format as the definition of a nonlocal 

quantity for the integral model [Eq. (2.46)]. Hence, from a mathematical point of view, the 

implicit gradient approximation [Eq. (2.54)] is strongly nonlocal (interactions within a finite 

neighbourhood). For the Green’s weight function, it can be shown that ( ) ( )2
2 1 0c l c l− =  for an 

arbitrary local field ( )f x . Therefore, when equating these coefficients to zero in Eq. (2.53), 

no higher-order terms are neglected when the Green’s function is used as a weight function. 

Furthermore, the implicit gradient approximation preserves other properties of the integral 

format i.e., the local field is recovered if either ( )1 0 when 0c l l→ →  or if homogeneous 

fields are considered (i.e., ( )2 0d x∇ = ). 

 

The implicit gradient approximation of the nonlocal damage variable derived above can be 

represented as 

 ( ) ( ) ( )2
lengthd x c d x f x− ∇ =  (2.57) 

where lengthc is the characteristics length of the material and in this way, it has been 

incorporated into the continuum framework of damage mechanics models. As a result, it is 

possible to model the microstructural influence on the macroscopic level and restore the well-

posedness of the boundary value problem during material softening. 

 

The past decade has provided us with some understanding of the mathematical implications of 

the nonlocal and gradient enhancement, particularly in avoiding pathological localization. But 

fundamental questions still remain. For example, the role of the enhancement in crack growth 

modelling and the associated treatment of boundaries have not yet been fully clarified. 
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Furthermore, nonlocal and gradient models are known to be closely related, but may 

nevertheless behave quite differently. In fact, very similar gradient formulations have been 

observed to lead to remarkably different localization properties. It is therefore believed that 

these and other issues need to be further resolved in order to fully exploit the potential of 

nonlocal and gradient formulations. 
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Chapter 3 

 

Development of a nonlocal damage mechanics model 
 

In this chapter, a nonlocal form of the Rousselier’s continuum damage model is developed by 

coupled solution of the mechanical stress equilibrium equation and the damage equilibrium 

(diffusion) equation. The damage equilibrium equation is derived using the implicit gradient 

formulation of the integral type model as discussed in Section 2.10.2. After a brief description 

of the kinematic and material constitutive relations, the consistent tangent stiffness matrix is 

derived for the continuum where the primary variables have been taken as displacements and 

nonlocal damage. Subsequently, a suitable discretization method (here, finite element method) 

is used to derive the algebraic equations from the weak form of the coupled differential 

equations. 

 

3.1 Coupled equations of equilibrium and diffusion [in terms of ( )d x ] 
 

The following set of governing equations (stress equilibrium equation of mechanical 

continuum and the damage equilibrium equation) is the starting point for implicit gradient 

enhanced damage mechanics models. 

 2

. 0b

length

f

d c d f

σ∇ + =

− ∇ =
 (3.1) 

where σ  is the stress tensor and bf  is the body force vector per unit volume. Eq. (3.1) is a 

combination of stress equilibrium equation of continuum mechanics along with the implicit 

gradient equation for the nonlocal damage variable d . In addition to the standard boundary 

conditions (essential and traction boundary conditions), additional boundary conditions are 

required in order to uniquely compute the solution of the second PDE of Eq. (3.1). The 

corresponding boundary conditions apply to the external boundary of the domain rather than to 

the elasto-plastic boundary (EPB), since for the implicit gradient formulation, the solution d  

is continuous in the entire domain Ω . Hence, the difficulties of applying boundary conditions 

with respect to the moving EPB (as required for the explicit formulation) are no longer 

present. 
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The additional boundary condition specifies either the value of d or its normal derivative, or a 

linear combination of these quantities. A simple homogeneous Neumann boundary condition 

has been used here, i.e., 

 . 0 on external boundary d n∇ = Γ  (3.2) 

where n  is the unit outward normal to the external boundary Γ. This boundary condition is 

consistent with the integral Equation (2.46) in the sense that d  equals f  for homogeneous 

deformations and for the limiting case of a vanishing length scale l . Furthermore, the solution 

of Eq. (3.1) in combination with the Neumann boundary condition [Eq. (3.2)] preserves the 

total amount of damage, i.e., 

 ( ) ( )  d d f d
Ω Ω

Ω = Ω∫ ∫  (3.3) 

Another effect of the Neumann boundary condition is the increased contribution of points to 

the nonlocal damage when approaching the external boundary, which can be explained by the 

increased sensitivity of the material towards formation of surface defects. 

 

3.2 Development of a nonlocal form of Rousselier’s damage model 
 

The yield potential of the nonlocal form of Rousselier’s damage model in terms of the 

nonlocal damage parameter d  (in place of local void volume fraction f ) can be written as 

 
( ) ( )exp 0

1 1
eq hydro

k eq
k

D d R
d d

σ σ
φ σ ε

σ
⎛ ⎞

= + − =⎜ ⎟⎜ ⎟− −⎝ ⎠
 (3.4) 

where eqσ is the von-Mises equivalent stress, and kD σ are Rousselier’s constants, hydroσ is the 

mean hydrostatic stress and ( )eqR ε is the material stress-strain curve, which is a function of 

equivalent plastic strain eqε . The weak form of the governing mechanical equilibrium equation 

and the damage equilibrium equation (3.1) [in incremental form] can be defined for the 

mechanical continuum as 

 
( )

( )2

. . 0

. 0

b

length

u f d

d d f C d d

δ σ

δ
Ω

Ω

∇ + Ω =

− − ∇ Ω =

∫

∫
 (3.5) 

where uδ  represents the variation of the generalized displacement variable, dδ  represents 

variation of the incremental form of nonlocal damage variable, f  is the increment of the local 
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damage variable or void volume fraction. Using the standard displacement based finite 

element (FE) method of discretization of the mechanical continuum and the standard shape 

functions for a finite element, we can derive the FE equations of a single element as 

 
int

int

ˆ
ˆ

ext
uu ud m m

du dd d

uK K f f
K K fd

Δ⎧ ⎫ ⎧ ⎫−⎡ ⎤ ⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥ −Δ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭
 (3.6) 

The element level equations derived so, can be assembled and solved for the global degrees of 

freedom when we specify the required boundary and loading conditions. uuK  is the usual 

element stiffness matrix of the mechanical continuum, ext
mf  is the externally applied 

mechanical force vector (because of body force, surface traction and point forces), int
mf  is the 

internal mechanical resistance (force vector) due to stress, int
df  is the generalized force due to 

damage degree of freedom (internal) whereas externally applied generalized force due to 

damage ext
df  is zero. 

 

It may be noted that the stiffness terms ,   and ud du ddK K K in the element stiffness matrix, are 

contributions of the nonlocal model (because of presence of nonlocal damage as an additional 

primary variable or degree of freedom in the continuum). The details of the procedure for 

derivation of the finite element equations [i.e., Eq. (3.6)] are described in detail in the 

following sections. 

 

3.3 Kinematic and material constitutive relations 
 

In the numerical integration of material constitutive equations, we will use the additive 

decomposition of the strain rate tensor (hypo-elastic formulation), i.e., decomposition of total 

strain increment into elastic eεΔ  and plastic pεΔ parts as 

 e pε ε εΔ = Δ + Δ  (3.7) 

The yield function can be written in terms of mean hydrostatic and deviatoric parts of stress 

tensor and other field variables as 

 ( ), , , 0p q H dαφ =  (3.8) 

where  and p q are the hydrostatic pressure and von Mises equivalent stress respectively and 

are defined as 
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 1 2

1 : ,
3

3 : ,
2

p I

q s s

σ= −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.9) 

H α  is internal state variable such as hardening, I is the Kronecker-Delta or second order 

identity tensor, s  is the deviatoric part of stress tensor σ . The generalized flow rule for the 

increment of plastic strain tensor from time t  to t t+ Δ can be written as (Aravas 1987) 

 1
3

p
p q t tI nε ε ε +ΔΔ = Δ + Δ  (3.10) 

where  and p qε εΔ Δ are the hydrostatic and equivalent parts of plastic strain increment and 

t tn +Δ is defined in terms of the deviatoric part of the elastic predictor stress trs and von Mises 

equivalent stress trq (corresponding to elastic predictor stress trσ ) as 

 3
2

tr

t t tr

sn
q+Δ =  (3.11) 

The terms  and p qε εΔ Δ are related though the equation 

 0p q
g g
q p

ε ε∂ ∂
Δ + Δ =

∂ ∂
 (3.12) 

where g  is the plastic potential and for associated plasticity, g φ= . Hence, to calculate the 

increment in stress tensor, the equations to be solved simultaneously are (3.12), the yield 

function φ , evolution equation for the hydrostatic stress p , von Mises equivalent stress q  and 

the internal variables H α  as described in the next section. 

 

3.4 Derivation of stress increment for the non-local model 
 

The basic equations to be solved simultaneously are (Aravas 1987; Zhang and Niemi 1995) 

 0p q
g g
q p

ε ε∂ ∂
Δ + Δ =

∂ ∂
 (3.13) 

 ( ), , , 0p q H dαφ =  (3.14) 

 tr
pp p K ε= + Δ  (3.15) 

 3tr
qq q G ε= − Δ  (3.16) 

 ( ), , , ,p qH h p q Hα α βε ε= Δ Δ  (3.17) 
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where the quantities with superscript ''tr  refers to ‘trial’ or the elastic predictor part. 

Expanding Eq.(3.13) in Taylor’s series, we get 

 

2 2 2 2

2
1

2 2 2 2

2
1

. .

. . 0

n

p p p p

n

q q q q

g g g g g gp q H d
q p q q q H q q d

g g g g g gp q H d
p p p q p H p p d

α
α

α

α
α

α

ε ε ε ε

ε ε ε ε

=

=

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
Δ + Δ ∂ + ∂ + ∂ + ∂Δ + Δ ∂⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
+Δ + Δ ∂ + ∂ + ∂ + ∂Δ + Δ ∂ =⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

∑

∑
(3.18) 

Differentiating Eq.(3.15) and (3.16), we get 

 pp K ε∂ = ∂Δ  (3.19) 

 3 qq G ε∂ = − ∂Δ  (3.20) 

Differentiating Eq.(3.17) and substituting Eq.(3.19) and (3.20) for qp ∂∂  and , we get 

 

( )

1

1
3

n

p q
p q

n

p q p q
p q

h h h hH c p q
p q

h h h hc K G
p q

β β β β
α

αβ
β

β β β β

αβ
β

ε ε
ε ε

ε ε ε ε
ε ε

=

=

⎡ ⎤∂ ∂ ∂ ∂
∂ = ∂Δ + ∂Δ + ∂ + ∂⎢ ⎥

∂Δ ∂Δ ∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂

= ∂Δ + ∂Δ + ∂Δ + − ∂Δ⎢ ⎥
∂Δ ∂Δ ∂ ∂⎢ ⎥⎣ ⎦

∑

∑
 (3.21) 

where 
1

  and  is the Kronecker Delta function.hc
H

β

αβ αβ αβαδ δ
−

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

 

Inserting Eq. (3.21) for αH∂ in Eq.(3.18), we get: 

 

( )

( )

( )

2 2

2

2

1 1

2

2 2

2

2

. . . 3

3

. . . 3

p q

p p n n

p q p q
p q

p p

p q

q q

g gK G
p q qg

q g h h h hc K G
q H p q

g g d
q q d

g gK G
p p qg

p g
p

β β β β

αβα
α β

ε ε

ε ε
ε ε ε ε

ε ε

ε ε

ε ε

ε ε

= =

⎡ ⎤∂ ∂
∂Δ + − ∂Δ⎢ ⎥∂ ∂ ∂∂ ⎢ ⎥Δ + Δ ⎢ ⎥⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥+ ∂Δ + ∂Δ + ∂Δ + − ∂Δ⎜ ⎟⎜ ⎟∂ ∂ ∂Δ ∂Δ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∂ ∂
+∂Δ + Δ ∂

∂ ∂ ∂

∂ ∂
∂Δ + − ∂Δ

∂ ∂ ∂∂
+Δ + Δ

∂ ∂
+

∂

∑ ∑

( )
1 1

2

3

0

n n

p q p q
p q

q q

h h h hc K G
H p q

g g d
p p d

β β β β

αβα
α β

ε ε ε ε
ε ε

ε ε

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥∂Δ + ∂Δ + ∂Δ + − ∂Δ⎜ ⎟⎜ ⎟∂ ∂Δ ∂Δ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∂ ∂
+∂Δ + Δ ∂ =

∂ ∂ ∂

∑ ∑

  (3.22) 

After collecting the terms of qp εε Δ∂Δ∂  and from Eq. (3.22), we can write them as 

 11 12 1 d1c dp qA A bε ε∂Δ + ∂Δ = + ∂  (3.23) 
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where the coefficients are 

 

2 2

11
1 1

2 2

2
1 1

n n

p
p

n n

q
p

g g g h hA K c K
q p q q H p

g g h hK c K
p p H p

β β

αβα
α β

β β

αβα
α β

ε
ε

ε
ε

= =

= =

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂
= + Δ + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂Δ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
+Δ + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂Δ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑
 (3.24) 

 

2 2

12 2
1 1

2 2

1 1

3 3 .

3 3 .

n n

p
q

n n

q
q

g g g h hA G c G
p q q H q

g g h hG c G
p q p H q

β β

αβα
α β

β β

αβα
α β

ε
ε

ε
ε

= =

= =

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂
= + Δ − + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂Δ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
+Δ − + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂Δ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑
 (3.25) 

 1b p q
g g
q p

ε ε
⎛ ⎞∂ ∂

= − Δ + Δ⎜ ⎟∂ ∂⎝ ⎠
 (3.26) 

 
2 2

1d p q
g gc

q d p d
ε ε

⎛ ⎞∂ ∂
= − Δ + Δ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (3.27) 

Now, expanding Eq.(3.14) in Taylor’s series, we get 

 0p q H d
p q H d

α
α

φ φ φ φφ ∂ ∂ ∂ ∂
+ ∂ + ∂ + ∂ + ∂ =

∂ ∂ ∂ ∂
 (3.28) 

Substituting Eq.(3.19) and (3.20) for qp ∂∂  and and Eq. (3.21) for αH∂ in Eq.(3.28), we get 

 

( )

( )
1

3

3 0

p q

n

p q p q
p q

K G d
p q d

h h h hc K G
H p q

β β β β

αβα
β

φ φ φφ ε ε

φ ε ε ε ε
ε ε=

∂ ∂ ∂
+ ∂Δ + − ∂Δ + ∂

∂ ∂ ∂

⎡ ⎤∂ ∂ ∂ ∂ ∂
+ ∂Δ + ∂Δ + ∂Δ + − ∂Δ =⎢ ⎥

∂ ∂Δ ∂Δ ∂ ∂⎢ ⎥⎣ ⎦
∑

 (3.29) 

After collecting the terms of qp εε Δ∂Δ∂  and from Eq.(3.29), we can write them as 

 21 22 2 d2c dp qA A bε ε∂Δ + ∂Δ = + ∂  (3.30) 

where the coefficients are written as 

 21
1 1

n n

p

h hA K c K
p H p

β β

αβα
α β

φ φ
ε= =

⎛ ⎞∂ ∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂ ∂Δ ∂⎝ ⎠

∑ ∑  (3.31) 

 22
1 1

3 3 .
n n

q

h hA G c G
q H q

β β

αβα
α β

φ φ
ε= =

⎛ ⎞∂ ∂ ∂ ∂
= − + −⎜ ⎟⎜ ⎟∂ ∂ ∂Δ ∂⎝ ⎠

∑ ∑  (3.32) 

 b2 φ= −  (3.33) 

 2dc
d
φ∂

= −
∂

 (3.34) 
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Eqs.(3.23) and (3.30) can be solved simultaneously to get the corrections for qp εε ΔΔ  and (i.e., 

qp εε Δ∂Δ∂  and ) and the solutions for qp εε Δ∂Δ∂  and  are 

 p pa pbm m dε∂Δ = + ∂  (3.35) 

 q qa qbm m dε∂Δ = + ∂  (3.36) 

where qbqapbpa mmmm  and ,, can be written as 

 ( )
( )

( )
( )

1 22 2 12 1 22 2 12

11 22 21 12 11 22 21 12

   and  d d
pa pb

b A b A c A c A
m m

A A A A A A A A
− −

= =
− −

 (3.37) 

 ( )
( )

( )
( )

2 11 1 21 2 11 1 21

11 22 21 12 11 22 21 12

   and  d d
qa qb

b A b A c A c A
m m

A A A A A A A A
− −

= =
− −

 (3.38) 

After evaluating qp εε Δ∂Δ∂  and from Eqs. (3.35) and (3.36), qp εε ΔΔ  and can be updated as 

 p p p

q q q

ε ε ε

ε ε ε

Δ → Δ + ∂Δ

Δ → Δ + ∂Δ
 (3.39) 

This is done iteratively till we get convergence in the values of qp εε ΔΔ  and . These values of 

qp εε ΔΔ  and  are substituted in Eqs. (3.15) and (3.16) to evaluate qp  and . The new stress 

tensor is evaluated as 

 2tr
t t p q t tK I G nσ σ ε ε+Δ +Δ= − Δ − Δ  (3.40) 

where tr

tr

tt q
sn

2
3

=Δ+ , trtrtr s σσ for deviator  stress  theis  and stresspredictor  elastic  theis . 

 

3.5 Evaluation of linearised consistent tangent moduli 
 

If we take the variation of Eq. (3.13), we can write it as 
2 2

2

2

1 1

2

2

.

p p n n

p q
p q

p

q q p q
p q

g gp q
p q qg

q g h h h hc p q
q H p q

g d
q d

g g h h h hc p q
p p H p q

β β β β

αβα
α β

β β β β

αβα
β

ε ε
ε ε

ε ε

ε

ε ε ε ε
ε ε

= =

=

⎡ ⎤∂ ∂
∂ + ∂⎢ ⎥∂ ∂ ∂∂ ⎢ ⎥∂Δ + Δ ⎢ ⎥⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥+ ∂Δ + ∂Δ + ∂ + ∂⎜ ⎟⎜ ⎟∂ ∂ ∂Δ ∂Δ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∂
+Δ ∂

∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+∂Δ + Δ ∂Δ + ∂Δ + ∂ + ∂⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂Δ ∂Δ ∂ ∂⎝ ⎠

∑ ∑

1 1

n n

α =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑
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2 2 2

2 . 0q q
g g gp q d

p p q p d
ε ε

⎡ ⎤∂ ∂ ∂
+Δ ∂ + ∂ + Δ ∂ =⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

 (3.41) 

Similarly, if we take the variation of Eq. (3.14), we can write it as 

 

1

n

p q
p q

p q d
p q d

h h h hc p q
H p q

β β β β

αβα
β

φ φ φ

φ ε ε
ε ε=

∂ ∂ ∂
∂ + ∂ + ∂

∂ ∂ ∂

⎡ ⎤∂ ∂ ∂ ∂ ∂
+ ∂Δ + ∂Δ + ∂ + ∂⎢ ⎥

∂ ∂Δ ∂Δ ∂ ∂⎢ ⎥⎣ ⎦
∑

 (3.42) 

Now, we take variations of qp  and using Eqs. (3.15) and (3.16) and these can be written as 

 :tr
p pp p K KI Kε ε ε∂ = ∂ + ∂Δ = − ∂ + ∂Δ  (3.43) 

 3  2 : 3tr
q qq q G Gn Gε ε ε∂ = ∂ − ∂Δ = ∂ − ∂Δ  (3.44) 

Substituting the expressions for qp ∂∂  and from Eqs. (3.43) and (3.44) into Eqs. (3.41) and 

(3.42), we get 

 ( )* *
11 12 11 12 1:p q dA A B I B n c dε ε ε∂Δ + ∂Δ = + ∂ + ∂  (3.45) 

 ( )* *
21 22 21 22 2:p q dA A B I B n c dε ε ε∂Δ + ∂Δ = + ∂ + ∂  (3.46) 

where the coefficients can be written as 

 

2 2
*
11 2

2 2

1 1

p q

n n

p q
p

g g gA K
q p q p

g g h hc K
q H p H p

β β

αβα α
α β

ε ε

ε ε
ε= =

⎛ ⎞∂ ∂ ∂
= + Δ + Δ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
+ Δ + Δ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂Δ ∂⎝ ⎠ ⎝ ⎠
∑ ∑

 (3.47) 

 

2 2
*
12 2

2 2

1 1

3

3 .

p q

n n

p q
q

g g gA G
p q p q

g g h hc G
q H p H q

β β

αβα α
α β

ε ε

ε ε
ε= =

⎛ ⎞∂ ∂ ∂
= − Δ + Δ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
+ Δ + Δ −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂Δ ∂⎝ ⎠ ⎝ ⎠
∑ ∑

 (3.48) 

 

2 2
*
11 2

2 2

1 1

 p q

n n

p q

g gB K
p q p

g g hK c
q H p H p

β

αβα α
α β

ε ε

ε ε
= =

⎛ ⎞∂ ∂
= Δ + Δ⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ Δ + Δ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑
 (3.49) 

 

2 2
*
12 2

2 2

1 1

 2G

2

p q

n n

p q

g gB
q p q

g g hG c
q H p H q

β

αβα α
α β

ε ε

ε ε
= =

⎛ ⎞∂ ∂
= − Δ + Δ⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− Δ + Δ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑
 (3.50) 
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 *
21

1 1

n n

p

h hA K c K
p H p

β β

αβα
α β

φ φ
ε= =

⎛ ⎞∂ ∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂ ∂Δ ∂⎝ ⎠

∑ ∑  (3.51) 

 *
22

1 1
3 3 .

n n

q

h hA G c G
q H q

β β

αβα
α β

φ φ
ε= =

⎛ ⎞∂ ∂ ∂ ∂
= − + −⎜ ⎟⎜ ⎟∂ ∂ ∂Δ ∂⎝ ⎠

∑ ∑  (3.52) 

 *
21

1 1
 

n n hB K c
p H p

β

αβα
α β

φ φ
= =

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑  (3.53) 

 *
22

1 1
 2G

n n hB c
q H q

β

αβα
α β

φ φ
= =

⎛ ⎞∂ ∂ ∂
= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑  (3.54) 

The coefficients 21  and dd cc are same as those in Eqs. (3.27) and (3.34) respectively. Now, the 

solutions for qp εε Δ∂Δ∂  and  from Eqs. (3.45) and (3.46) can be written as 

 ( ) :p pl pn pdm I m n m dε ε∂Δ = + ∂ + ∂  (3.55) 

 ( ) :q ql qn qdm I m n m dε ε∂Δ = + ∂ + ∂  (3.56) 

where the coefficients qdqnqlpdpnpl mmmmmm  and ,,,, can be written as 

 
( )
( )

( )
( )

( )
( )

* * * *
11 22 21 12 1 22 2 1212 22 22 12
* * * * * * * * * * * *
11 22 21 12 11 22 21 12 11 22 21 12

 ,   and  d d
pl pn pd

B A B A c A c AB A B A
m m m

A A A A A A A A A A A A

− −−
= = =

− − −
 (3.57) 

 
( )
( )

( )
( )

( )
( )

* * * * * *
21 11 11 21 22 11 12 21 2 11 1 21

* * * * * * * * * * * *
11 22 21 12 11 22 21 12 11 22 21 12

,     and  d d
ql qn qd

B A B A B A B A c A c A
m m m

A A A A A A A A A A A A

− − −
= = =

− − −
 (3.58) 

 

Now, taking the variation of Eq. (3.40) for tt Δ+σ , we get 

 '2 : :q q pG J n n K I Iσ ε ε ε ε ε⎡ ⎤ ⎡ ⎤∂ = ∂ − ∂Δ − Δ ∂ + ∂ − ∂Δ⎣ ⎦⎣ ⎦  (3.59) 

where nJ ∂′  and are defined as 

 1
3

J J II′ = −  (3.60) 

 3 2
3tr

Gn J nn
q

⎛ ⎞′∂ = −⎜ ⎟
⎝ ⎠

 (3.61) 

where J is the fourth order unit tensor. Substituting Eqs. (3.55), (3.56), (3.60) and (3.61) in Eq. 

(3.59) and rearranging the terms, we get 

 : :ep edC C dσ ε∂ = ∂ + ∂  (3.62) 

After substituting ( )tr
q qq

G
−−=Δ

3
1ε , we get the consistent tangent stiffness matrices as 
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 ( ) 4 32 1 1 2
3 2ep pl qn ql pntr tr

q qC G J K m II G m nn Gm nI Km In
q q

⎛ ⎞′= + − + − − − −⎜ ⎟
⎝ ⎠

 (3.63) 

 2ed qd pdC Gm n Km I= − −  (3.64) 

3.6 Finite Element formulation for the non-local damage model 
 

The partial differential equations for the mechanical continuum to be solved simultaneously 

are 

 . 0bfσ∇ + =  (3.65) 

 2 0lengthd f C d− − ∇ =  (3.66) 

The associated boundary conditions are 

 .
f

mn fσ
Γ

=  (3.67) 

 0
u

u u
Γ

=  (3.68) 

 . 0
d

d n
Γ

∇ =  (3.69) 

Eq. (3.67) is the traction or force boundary condition, 
f

n
Γ

 is the normal to the boundary fΓ , 

Eq. (3.68) is the geometric or essential displacement boundary condition, Eq. (3.69) is the 

Neumann or force boundary condition for the damage degree of freedom and 
d

n
Γ

is the 

normal to the boundary dΓ  of the domain Ω . The weak forms of the Eqs. (3.65) and (3.66) 

can be written by multiplying it with the weight functions [here, the weight functions are takes 

as the variations of the generalized primary variables, i.e., variations of displacement for 

residue of Eq. (3.65) and variation of nonlocal damage for residue of Eq. (3.66)] and 

integrating the weighted residual over the domain Ω , these can be expressed as 

 ( ). . 0bu f dδ σ
Ω

∇ + Ω =∫  (3.70) 

 ( )2 . 0lengthd d f C d dδ
Ω

− − ∇ Ω =∫  (3.71) 

Using the Gauss’s divergence theorem, Eqs. (3.70) and (3.71) can be simplified as 

 ( ) . . . . .b su d u f d u t dδ σ δ δ
Ω Ω Γ

∇ Ω = Ω + Γ∫ ∫ ∫  (3.72) 

 ( ) ( ) ( )  0 lengthd d d d f d d C d dδ δ δ
Ω Ω Ω

Ω + − Ω + ∇ ∇ Ω =∫ ∫ ∫  (3.73) 

where st is the surface traction and is given as .
f

st nσ
Γ

= (Cauchy’s traction law). 



 52

3.7 Derivation of the expression for f  in terms of and dε∂ ∂  

 

The increase in void volume fraction during plastic deformation in the ductile fracture process 

can be written as 

 ( ) ( )1 p
growth nucleation m mf f f f I Aε ε ε= + = − ∂ +  (3.74) 

where pε∂  is the change in plastic strain tensor pε , I  is the tensor equivalent to Kronecker-

Delta, mε  is the increment of strain in the matrix mε  and A  is void nucleation constant. 

Again, we know that the increase in equivalent plastic strain of the matrix material mε  can be 

written as 

 
( )

:
1

p

m
mf

σ εε
σ

∂
=

−
 (3.75) 

where mσ  is the equivalent stress or current flow stress of the matrix material. We can write 

the increment of plastic strain tensor pε∂ in terms of total strain increment ε∂  and damage 

increment d∂ as 

 ( ) ( )1 :p e
elCε ε ε ε σ−∂ = ∂ − ∂ = ∂ − ∂  (3.76) 

where ε∂  is the increment in total strain, eε∂  is the increment in elastic part of strain, elC is 

the elastic material property matrix. Now, substituting σ∂  from Eq. (3.62) in Eq. (3.76), we 

get 

 

( )

( ) ( )

1

1 1

: : :  

J- :  :  : :  

p e

el ep ed

el ep el ed

C C C d

C C C C d

ε ε ε

ε ε

ε

−

− −

∂ = ∂ − ∂

⎛ ⎞⎡ ⎤= ∂ − ∂ + ∂⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

= ∂ − ∂

 (3.77) 

Substituting Eqs. (3.75) and (3.77) in Eq. (3.74), we get the expression for increment of void 

volume fraction f as 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

1 : J- :  :  1 : : :  

: J- :  :  :  : :  
1 1

 : :

el ep el ed

m el ep m el ed
m m

de dd

f f I C C f I C C d

A C C A C C d
f f

C C d

ε

σ σε ε ε
σ σ

ε

− −

− −

= − ∂ − − ∂

+ ∂ − ∂
− −

= ∂ + ∂

 (3.78) 

where the consistent tangent matrices ddde CC  and are written as 
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 ( ) ( ) ( ) ( ) ( )1 11 : J- : : J- :
1de el ep m el ep

m

C f I C C A C C
f
σε

σ
− −= − +

−
 (3.79) 

 ( ) ( ) ( ) ( ) ( )1 11 : : - :  :
1dd el ed m el ed

m

C f I C C A C C
f
σε

σ
− −= − −

−
 (3.80) 

 

3.8 Discretization of the weak form of the governing differential equations 
 

The generalised displacement and damage vectors at any material point inside the finite 

element is written in terms of the generalized nodal variables ( ˆˆ and u d ) as 

 ˆ ˆ,   u uu N u u B uε= ∇ = =  (3.81) 

 ˆ ˆ,   d dd N d d B d= ∇ =  (3.82) 

where  and u dN N are the shape function matrices for the displacement and nonlocal damage 

variable,  and u dB B  are matrices containing the derivatives of the shape function  and u dN N  

respectively. Substituting the expressions for dduu ∇∇  and ,, from Eqs. (3.81) and (3.82) in 

the incremental form of Eq. (3.72) [using Eq. (3.62) for σ∂ ] and Eq. (3.73) [note that Eq. 

(3.73) is already in incremental form] and substituting expression for f  from Eq. (3.78), we 

get 

 ( ) ˆˆ ˆ. . 0T T T T T
u ep u u ed d u b u su B C B d u B C N d d N f d N t dδ

Ω Ω Ω Γ

⎡ ⎤⎛ ⎞ ⎛ ⎞
Δ Ω Δ + Ω − Ω − Γ =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫  (3.83) 

 

ˆ ˆ. .
ˆ 0

ˆ ˆ. .

T T
d d d de u

T

T T
d dd d d length d

N N d d N C B d u

d

N C N d d B C B d d

δ Ω Ω

Ω Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
Ω − Ω⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢⎝ ⎠ ⎝ ⎠ ⎥ =⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥− Ω + Ω⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫

∫ ∫
 (3.84) 

For arbitrary value of ( )TûΔδ and ˆTdδ , the terms inside the brackets of Eqs. (3.83) and (3.84) 

should be zero and hence these equations reduce to the set of finite element algebraic 

equations, which can be written in convenient (matrix) form as 

 
int

int

ˆ
ˆ

ext
uu ud m m

du dd d

uK K f f
K K fd

Δ⎧ ⎫ ⎧ ⎫−⎡ ⎤ ⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥ −Δ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭
 (3.85) 

where the matrices and the force vectors can be written as 
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int

int

.

.

.

. . .

.

. . .

T
uu u ep u

T
ud u ed d

T
du d de u

T T T
dd d d d dd d d length d

ext T T
m u b u s

T
m u i

T T T
d d i d i d length i

K B C B d

K B C N d

K N C B d

K N N d N C N d B C B d

f N f d N t d

f B d

f N d d N f d B C d d

σ

Ω

Ω

Ω

Ω Ω Ω

Ω Γ

Ω

Ω Ω Ω

= Ω

= Ω

= − Ω

= Ω − Ω + Ω

= Ω + Γ

= Ω

= Ω − Ω + ∇ Ω

∫

∫

∫

∫ ∫ ∫

∫ ∫

∫

∫ ∫ ∫

 (3.86) 

where the subscript ''i refers to the quantities at the end of previous iteration step of the 

incremental nonlinear finite element analysis. It may be observed from the FE Eq. (3.85) that 

the stiffness matrix of the finite element contains coupled terms corresponding to displacement 

and damage degrees of freedom. The matrix uuK  represents the conventional stiffness of the 

finite element where damage degree of freedom is not considered in the analysis and it 

represents the mechanical stiffness, which corresponds to the relationship of the to nodal 

mechanical forces and nodal displacement vectors. Similarly, udK  represents the matrix, which 

produces nodal damage vector corresponding to applied mechanical force vector. The 

matrix duK  produces nodal displacement vector corresponding to applied damage force vector 

and ddK  produces nodal damage vector corresponding to applied damage force vector 

respectively. 

 

3.9 Development of a finite element program DEFINE (Damage Evaluation 

using FINite Elements) 
 

Based on the finite element formulation developed in the previous section, a FE code 

(acronym DEFINE) has been written using fortran 90. It may be noted that Eq. (3.85) and 

hence the global stiffness matrix is in general non-symmetric. Hence, a non-symmetric sparse 

matrix solver has been used in the code. The code incorporates plane strain and axisymmetric 

finite elements in 2D and 3D elements for 3D continuum. Isoparametric elements (4-noded 

and 8-noded quadrilateral in 2D, 8-noded and 20-noded brick elements in 3D) are used for 
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simulation. The shape functions used for the elements can be found in standard FE textbooks 

(e.g. Bathe 1995) and hence are not discussed here. 

 

Updated Lagrangian formulation has been used, where all the variables are referred to the 

configuration at time t , i.e. the updated configuration of the body. In the equilibrium equation, 

the stress (second Piola-Kirchoff stress tensor) and strain (Green-Lagrange strain tensor) 

measures are (as defined in the large strain FE analysis) from the configuration at time t  to the 

configuration at time t t+ Δ  and referred to the configuration at time t . Standard nonlinear 

element stiffness matrices (corresponding to geometric nonlinearity and effect of stress 

stiffening) corresponding to updated Lagrangian formulation has been added to the linear 

stiffness matrix (derived in the previous section) in order to obtain overall stiffness matrix for 

the element (Bathe 1995). Full integration scheme is used for Gaussian quadrature for 

evaluation of stiffness matrices. The code has been verified by solving problems from 

literature and then comparing the results with available solutions. 

 

In the next chapter, numerical results are presented for several problems involving prediction 

of load-deformation and fracture resistance behaviour of different specimens. The aim is to 

demonstrate the mesh independent nature of the solutions obtained using nonlocal damage 

models. Initially, a single element in 2D axisymmetric mode has been analysed to obtain its 

load-displacement response and the change in load-displacement response is studied upon 

subsequent refining of the FE mesh. Once the mesh independency has been demonstrated, 

analysis has been extended to other types of specimens. 
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Chapter 4 

 

Numerical simulation of ductile crack growth in the upper shelf 

region 

 

For safety analysis of engineering components in the upper shelf temperature region of the 

material, ductile fracture resistance curve is an important tool. As has been previously 

discussed, continuum damage mechanics models are able to simulate the ductile crack 

initiation and crack growth processes using only a set of material properties and a critical 

length parameter as FE mesh size. In the newly developed nonlocal form of the Rousselier’s 

damage model, the material characteristics length parameter is incorporated into the material 

constitutive equation. In this chapter, the newly developed model is used to simulate the 

fracture resistance behaviour of different types of specimens at room temperature (using 

different FE mesh sizes to study the mesh independent nature of solutions of the nonlocal 

model). Before describing the numerical results of the specimens for which experiments have 

been conducted by Eisele et al 2006 at MPA Universität Stuttgart, the FE code DEFINE is 

verified by analysis of a cylindrical specimen of 2mm length and 2mm diameter using 2D 

axisymmetric assumption using different FE mesh sizes. 

 

4.1 Simulation of material damage in damage mechanics models 
 

In damage mechanics models for ductile fracture, the damage state of the material is defined in 

terms of the ductile void volume fraction f . As these are coupled (stress and strain affects 

damage accumulation and vice versa) and porous plasticity models, the void volume fraction 

starts accumulating in the material once there is plastic deformation due to loading. 

Theoretically, the state of the material point with 0f =  refers to damage free material and 

1f =  refers to the completely damaged materials and hence a crack (having no stress carrying 

capability). However in actual materials, the void volume fraction f evolves (through 

nucleation of new voids and growth of existing voids) from the initial void volume fraction 0f  

in the material (volume fraction of relevant inclusions or void nucleation sites) with increasing 

plastic strain and at a certain value of void volume fraction (i.e., cf ), the material stress 

carrying capability reduces drastically and this simulates damage of the material point and 
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hence formation of the crack. This parameter cf  (called void volume fraction at coalescence) 

is a material property and is usually determined by comparing the numerical simulation results 

of drastic load drop in a round tensile specimen with that of experiment. For many of the 

engineering materials (e.g., mainly steels), this value is often used as 0.05. The value of initial 

void volume fraction 0f  is material parameter and is usually determined from microscopic 

quantification of relevant inclusions (i.e., manganese sulphides in case of low alloy steels), 

which can lead to void formation with plastic straining of the matrix. Many times, these are 

also determined numerically by fitting numerical simulation results with those of experiments 

(mostly in round tensile specimens). In our work, we have studied the fracture resistance 

behaviour of the German low alloy steel 22NiMOCr3-7 and the initial void volume fraction 

has been taken as 0.0003 (Krieg and Seidenfuss 2003, Seidenfuss and Roos 2005, Seebich 

2007). 

 

In this work, we have also used 0.05cf =  for all our numerical simulations with damage 

mechanics models. In order to simulate the complete loss of stress carrying capability of the 

material point when the void volume fraction reaches cf , the stiffness of the said material 

point (Gauss point in FE simulation) is assigned a small value. However, numerical 

convergence problems usually appear for the FE simulation and the alternate way is to reduce 

the Gauss point stiffness gradually in an indirect manner by accelerating the void volume 

fraction with the help of *f in place of f as described in Eq.(2.39). In the numerical 

simulations carried out in this work, the acceleration factor for both the local and nonlocal 

model has been taken as 3. In nonlocal models, there is an additional material parameter (i.e., 

the characteristics length parameter lengthC ) and it is determined by comparing the 

experimentally measured J-resistance curve of a compact tension specimen with the numerical 

simulation curve. Analysis is carried out with various values of lengthC . The value of lengthC  that 

is selected as the material parameter corresponds to the simulation, which describes the 

experiment satisfactorily. It was also shown by Reusch et al. (2003a) that 
2

4
c

length
lC ≈ where 

cl is the characteristics length for the material and it represents the mean distance between 

relevant inclusions of the material. For the material under consideration here (i.e., 

22NiMoCr3-7), the characteristics length cl  has been determined as 0.4 (Seebich 2007) and 

the lengthC parameter has been chosen as 0.05 as this value of lengthC  simulates the fracture 
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resistance behaviour of the fracture mechanics specimens satisfactorily when compared with 

the experimental fracture resistance curve. 

 

4.2 Demonstration of mesh independency of the results of the new model by 

analysis of a cylindrical specimen with different mesh sizes 
 

To demonstrate that the finite element results converge as the mesh size is reduced in case of 

the new nonlocal formulation, analysis has been carried out for a cylindrical specimen of 2mm 

length and 2mm diameter. Analysis has been done using 2D axisymmetric finite element 

meshes of different sizes. Initially, 1mm x 1mm mesh is used in the analysis and it is 

subsequently refined. The cylindrical specimen along with the loading and symmetric 

boundary conditions is shown in Fig. 4.1(a). 

 

Table-4.1: Parameters of the nonlocal damage model used for analysis of the cylindrical 

specimen (2D axisymmetric model) 

Model 

parameters 

D  kσ   

(MPa) 

0f  cf  ff  lengthC  E 

(GPa) 

ν  

Value 2 445 0.002 0.05 0.3 0.5 210 0.3 

 
 
 

 

 

 

 

 

 
 
 

 
 

 
 
 

 
 

(a) (b) (c) (d) 
Fig. 4.1: (a) Geometry and symmetric boundary conditions for the axisymmetric round tensile 
specimen; (b) 1x1 FE mesh; (c) 2x2 FE mesh; (d) 3x3 FE mesh 
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1m
m

 

 



 59

The parameters of Rousselier damage mechanics model along with the critical length 

parameter lengthC  used in the analysis are shown in Table-4.1. The FE mesh of the single 

element (1x1 mesh) used in the analysis is shown in Figs. 4.1(b). The single element has been 

refined gradually into a 2x2 and 3x3 mesh as shown in Figs. 4.1(c-d). Eight-noded 

isoparametric 2D axisymmetric elements have been used. A little imperfection has been 

provided at the bottom right end in order to simulate necking. The applied displacement (at the 

top loading edge) and diametral contraction (bottom right corner) have been plotted against 

reaction load. The Youngs’s modulus ( E ) of the material is taken as 210Gpa and Poisson’s 

ratio (ν ) as 0.3.  The material stress-strain curve used in the analysis is shown in Fig. 4.2.  
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Fig. 4.2: True stress vs true strain curve of the material used in analysis of the round 
tensile specimen 
 
 

Three different types of analyses have been carried out (i.e., elasto-plastic, local damage 

model, nonlocal damage model) in order to illustrate the differences among these approaches. 

Elasto-plastic analysis ( 0 0f = , 1x1 mesh) doesn’t consider the effect of ductile damage 

f (void volume fraction) on material stress carrying capability and hence it cannot simulate 

the drastic load drop phenomenon before fracture of the tensile specimen [Fig. 4.3, 4.4]. 

However, when the damage mechanics analysis (local model, 0lengthC = ) is used, there is a 
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drastic reduction in load carrying capacity of the specimen when f approaches critical value 

(i.e., cf ) at a Gauss point as shown in the load-displacement and load-diametral contraction 

response of the tensile specimen in Fig. 4.3 and 4.4. Analysis of the same single element (1x1) 

mesh has also been carried out using the newly developed nonlocal model with a 

characteristics length parameter of 0.5lengthC = . For this value of lengthC , the load-displacement 

and load-diametral contraction results of the tensile specimen are nearly the same for both the 

local and nonlocal damage models [Figs. 4.3 and 4.4]. 
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Fig. 4.3: Comparison of load-displacement response of the round tensile specimen 
analyzed using different models (1x1 mesh) 
 

In order to study the effect of mesh size on the load-displacement and the load-diametral 

contraction response of the tensile specimen, the 1x1 mesh has been refined progressively to a 

2x2 and 3x3 mesh. Fig. 4.5 and 4.6 show the comparison of load-displacement and load-

diametral contraction response of the specimen using both local ( 0lengthC = ) and nonlocal 

( 0.5lengthC = ) models for the three different FE mesh sizes. It can be seen that the responses of 

the local model are highly mesh dependent (i.e., load reduces quickly as mesh size is refined) 

whereas the responses of the nonlocal model are mesh independent. This simple example 

demonstrates the mesh independent nature of the newly developed nonlocal Rousselier’s 

model, which has been applied to other types of examples in subsequent sections. 
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Fig. 4.4: Comparison of load-diametral contraction response of the round tensile 
specimen analyzed using different models (1x1 mesh) 
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Fig. 4.5: Comparison of load-displacement response of the round tensile specimen 
analyzed with different mesh sizes 
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Fig. 4.6: Comparison of load-diametral contraction response of the round tensile 
specimen analyzed with different mesh sizes 
 

4.3 Analysis of shear band specimen 
 

We consider the analysis of a shear band specimen (flat tensile specimen of 5mm width and 

10mm length) to study the development of width of shear band. Here, a 2-D plane strain 

analysis (with 8-noded isoparametric quadrilateral elements) has been used. The geometry and 

boundary conditions of the shear band (flat tensile) specimen are shown in Fig. 4.7. An initial 

imperfection (slightly high value of the initial void volume fraction 0f , i.e., 0.005) has been 

used at the marked location in Fig. 4.7 (in order to initiate the shear band at that point). Three 

different mesh sizes (square elements of 1.0mm, 0.5mm and 0.33mm side lengths) have been 

used in the analysis. The material stress-strain curve used in the analysis is shown in Fig. 4.8 

for this elastic-perfectly plastic material. Other material properties are shown in Table-4.2. 

 

Table-4.2: Parameters of the nonlocal damage model used for analysis of the shear band 

specimen 

Model 

parameters 

D  kσ   

(MPa) 

0f  cf  ff  lengthC  E 

(GPa) 

ν  

Value 2 445 0.002 0.05 0.3 0.05 210 0.3 
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The characteristic length parameter used here is 0.05. An interesting feature of this specimen 

is the development of shear band. Because of tensile loading in the flat specimen, we know 

that shear bands (zones of shear localisation where damage accumulation occurs subsequently) 

develop at 045± to the tensile axis and as it is an instability, it can develop anywhere along the 

length of the specimen. In order to study it numerically, a slightly high value of initial void 

volume fraction has been used at the location of imperfection. 

 

 
Fig. 4.7: Schematic figure of the flat tensile specimen used to study shear band formation 
 
It is well known that the width of shear band depends upon the mean distance between 

relevant inclusions and second phase particles and hence it is a material property. Fig. 4.9-11 

show the widths of shear band (the shear band region is represented by the region within the 

contour plot of damage with the value of damage as 0.5) in the FE meshes of three of different 

mesh sizes (1mm, 0.5mm and 0.33mm) predicted by the local damage model of Rousselier. It 

can be observed that shear band localises to one element layer in case of 1mm mesh. However, 

as the mesh size is refined, it still localises in one element layer. In other words, as the element 

size is refined, the actual width of shear band predicted by the local model reduces with mesh 

refinement. This is in contradiction to the observed experimental behaviour, where the width 

of shear band is constant. The above mesh dependent nature of the prediction for width of 

shear band can be removed by the use of nonlocal damage model as discussed in the following 

text. 
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Fig. 4.8: True stress vs true strain curve of the material of the shear band specimen 
 
 

 

 
Fig. 4.9: Shear band development in the flat tensile specimen for 1mm FE mesh size 
(local model), contour plot of damage 
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Fig. 4.10: Shear band development in the flat tensile specimen for 0.5mm FE mesh size 
(local model), contour plot of damage 
 
 
 
 
 

 
Fig. 4.11: Shear band development in the flat tensile specimen for 0.33mm FE mesh size 
(local model), contour plot of damage 
 



 66

 
 
 

 
Fig. 4.12: Shear band development in the flat tensile specimen for 1mm FE mesh size 
(nonlocal model), contour plot of damage 
 
 
 
 
 

 
Fig. 4.13: Shear band development in the flat tensile specimen for 0.5mm FE mesh size 
(nonlocal model), contour plot of damage 
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Fig. 4.14: Shear band development in the flat tensile specimen for 0.33mm FE mesh size 
(nonlocal model), contour plot of damage 
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Fig. 4.15: Load-displacement response of the flat tensile specimen for different mesh 
sizes (local model) 
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Fig. 4.16: Load-displacement response of the flat tensile specimen for different mesh 
sizes (local vs nonlocal model) 
 

Fig. 4.12-14 show the predicted width of shear band of the flat tensile specimen for three 

different mesh sizes (1mm, 0.5mm and 0.33mm) when nonlocal form of the Rousselier model 

is used. It can be observed that the shear band is localised to a single element layer in case of 

1mm mesh, 2-element layers in case of 0.5mm mesh and 3-element layers in case of 0.33 

mesh of the nonlocal model. Hence, the width of the shear band can be evaluated and it comes 

out to be almost constant which again demonstrates the mesh independent nature of solution of 

the nonlocal model. 

 

The effect of development of the width of shear band also gets reflected on the load-response 

behaviour of the shear band specimen. When the shear band narrows down with mesh 

refinement, the load also drops quickly with respect to end displacement. Hence, the local 

model predicts lower and lower load-displacement responses, as the mesh size is refined [Fig. 

4.15] whereas the responses predicted by the nonlocal model are almost mesh-independent 

[Fig. 4.16]. It is because of the constant width of shear band predicted by the nonlocal model. 
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4.4 Analysis of round notched tensile specimens 
 
Round-notched tensile specimens are widely used geometries to study the effect of geometry 

of notch (and hence stress multiaxiality) on the load-response curve of the specimen. In this 

work, such a specimen was simulated in order to study the effect of FE mesh size on the 

results of analysis with both local and nonlocal models. The specimen geometry is shown in 

Fig. 4.17(a). The dimensions of the specimen are given as: 

20mm, 16mm, 2mmd D R= = = and 120mm gauge length. Due to symmetry, half of the 

specimen has been modeled and then axisymmetric modeling is used. 8-noded isoparametric 

quadrilateral elements of 2D axisymmetric formulation has been used in the FE mesh. Fig. 

4.17(b) and (c) show two different meshes of 0.44 and 0.22mm size (near the notch region) 

respectively used in the FE analysis. The material of the specimen is 22NiMoCr3-7 and the 

true stress-strain curve of the material (at room temperature) used in the analysis is shown in 

Fig. 4.18 (taken from Krieg and Seidenfuss 2003). 

 
 

 
  

Fig. 4.17(a): Geometry of the 
round notched tensile 
specimen 

Fig. 4.17(b): FE mesh of 
round notched tensile 
specimen (0.44mm mesh 
near the notched region) 

Fig. 4.17(c): FE mesh of 
round notched tensile 
specimen (0.22mm mesh 
near the notched region) 
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Table-4.3: Parameters of the nonlocal damage model for the material 22NiMoCr3-7 

Model 

parameters 

D  kσ   

(MPa) 

0f  cf  ff  lengthC  E 

(GPa) 

ν  

Value 2 445 0.0003 0.05 0.3 0.05 210 0.3 
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Fig. 4.18: True stress vs true strain curve of the material 22NiMoCr3-7 at room 
temperature 
 
 

Other material parameters are given in Table-4.3. Fig. 4.19 shows the results of analysis using 

two different mesh sizes of 0.44 and 0.22mm (near the notched region where crack initiation 

and propagation occurs). As can be taken from Fig. 4.19, the local model predicts an early 

load drop (due to crack development at the center of the specimen before final rupture) when 

the mesh size is decreased from 0.44mm to 0.22mm. However, the load-diametral contraction 

response of the specimen predicted by the nonlocal model is almost independent of the mesh 

size as can be seen from Fig. 4.19. 
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Fig. 4.19: Load-diametral contraction response of the round notched tensile specimen 
(local vs nonlocal model predictions) 
 
 
4.5 Analysis of the flat tensile specimen with a hole at the center (LISSAC: 
Krieg and Seidenfuss 2003) 
 
 

 
Fig. 4.20: Schematic diagram of the flat tensile specimen with hole at the center 
 
In an effort to establish a limit value of local strain (for failure or crack initiation), which can 

be used for design of different components, a detailed experimental and analytical program 

was undertaken [i.e., LISSAC: Krieg and Seidenfuss 2003]. Here, effect of specimen size, 

type, thickness, crack depth, temperature etc. were varied in order to study the effect of all 
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these parameters on the limiting value of strain. Several experiments were carried under this 

program and one such specimen has been used in this section for analysis with damage 

mechanics models. 

 

The specimen shown in Fig. 4.20 is a flat tensile specimen with a hole at the centre with 

dimensions 02mm, 5 10mm, 12 24mm, thickness T 2 4mmD W D L D D= = = = = = = . This is 

the smallest specimen among a series of specimens with thickness ranging from 4 to 200mm 

(the other dimensions of the specimen are proportional to thickness and the proportions are 

same as that of the specimen with 4mm thickness). Though the specimen thickness is small 

compared to other dimensions of the specimen, 2D plane strain analysis has been carried out 

in order to simulate the load-response behaviour of the specimen using both Rousselier’s local 

and nonlocal damage mechanics models. 

 

 
Fig. 4.21: FE mesh of the flat tensile specimen with hole (one-fourth of the specimen 
with symmetric boundary conditions), mesh size: 0.4mm along the crack path 
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Fig. 4.22: FE mesh of the flat tensile specimen with hole, mesh size: 0.2mm along the 
crack path 
 
 
Due to symmetry, one fourth of the specimen has been analyzed. The FE mesh of one-fourth 

of the specimen along with the boundary and displacement loading conditions are shown in 

Fig. 4.21. Figs. 4.21-23 show FE meshes with three different mesh sizes of 0.4mm, 0.2mm and 

0.1mm near the hole region (and in direction of crack propagation) which has been used in the 

analysis. In order to understand the effect of mesh size on the crack or damage zone 

development in the flat tensile specimen, the damage zones (damage zones within the contour 

plot is represented by damage values of 0.5) have been plotted for the three different mesh 

sizes in Figs. 4.24-26 for the local model. 

 

Fig. 4.24 shows that damage zone (after substantial load drop due to crack growth) is confined 

only to one Gauss point layer (approximately half the element height) at the center of the 

specimen for the 0.4mm mesh, For the 0.2 and 0.1mm meshes also, the damage zone is spread 

over one Gauss point layer or half the element height [Fig. 4.25-26]. However, the element 

sizes are small for 0.2 and 0.1mm FE meshes and hence the actual damage zone height gets 

reduced with mesh refinement for the local model. 

 

When the same FE meshes are used in the nonlocal model, we obtain the damage zone height 

as one Gauss point layer (or half the element height) for 0.4mm mesh, 1 element height for 
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0.2mm mesh and approximately 1.5-element height for 0.1mm mesh [Figs. 4.27-29]. When 

the actual element heights are used for calculation of damage zone height, it turns out to be 

approximately constant for all the three different FE mesh sizes. Hence, the damage zone 

height results predicted by nonlocal models are mesh independent as opposed to local models.  

 

The effect of damage zone height also gets reflected in the load-displacement response of the 

flat tensile specimen. For comparison of responses of different sizes of specimens, the load-

displacement response curve has been normalized and plotted as nominal stress vs %age hole 

opening in Fig. 4.30. The results of the elasto-plastic analysis (no damage) has also been 

plotted in Fig. 4.30 in order to show the effect of rapid load drop in case of damage mechanics 

analysis. It can be observed that local model predicts early load-drop when the mesh size is 

refined from 0.4mm to 0.2mm and 0.1mm, whereas the response curves of the nonlocal model 

are nearly the same for all the three different mesh sizes. This demonstrates the mesh 

independent nature of the nonlocal analysis results. 

 

 
Fig. 4.23: FE mesh of the flat tensile specimen with hole, mesh size: 0.1mm along the 
crack path 
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Fig. 4.24: Damage zone predicted for the flat tensile specimen with hole at center (0.4mm 
mesh, local model), contour plot of damage 
 
 

 
Fig. 4.25: Damage zone predicted for the flat tensile specimen with hole at center (0.2mm 
mesh, local model), contour plot of damage 
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Fig. 4.26: Damage zone predicted for the flat tensile specimen with hole at center (0.1mm 
mesh, local model), contour plot of damage 
 

 
Fig. 4.27: Damage zone predicted for the flat tensile specimen with hole at center (0.4mm 
mesh, nonlocal model), contour plot of damage 
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Fig. 4.28: Damage zone predicted for the flat tensile specimen with hole at center (0.2mm 
mesh, nonlocal model), contour plot of damage 
 
 

 
Fig. 4.29: Damage zone predicted for the flat tensile specimen with hole at center (0.1mm 
mesh, nonlocal model), contour plot of damage 
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Fig. 4.30: Nominal stress vs %age hole opening response of the flat tensile specimen with 
hole at the center (local vs nonlocal model with different mesh sizes) 
 
4.6 Prediction of size effect for the flat tensile specimens (LISSAC 
specimens: Krieg and Seidenfuss 2003) 
 

 

   

Fig. 4.31(a): FE mesh 
for the flat tensile 
specimen with hole 
(40mm hole diameter) 

Fig. 4.31(b): FE 
mesh for the flat 
tensile specimen 
with hole (20mm 
hole diameter) 

Fig. 4.31(c): FE mesh 
for the flat tensile 
specimen with hole 
(10mm hole 
diameter) 

Fig. 4.31(d): FE 
mesh for the flat 
tensile specimen 
with hole (2mm 
hole diameter) 
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In the previous section, the effect of FE mesh size on the normalized load-displacement 

response of the LISSAC flat tensile specimen (with hole at the centre) predicted by both local 

and nonlocal models was studied and it was demonstrated that results are independent of mesh 

sizes when mesh is refined. Hence, one should be able to predict the size effect in these 

specimens using the same mesh design. Hence, a FE mesh was designed for the specimen with 

80mm thickness, 40mm hole diameter and 200 mm width. A mesh size of 0.7mm was used 

near the notch region [Fig. 4.31(a)]. The same mesh was squeezed proportionally to make FE 

mesh for the specimens with 20mm hole diameter (0.35mm mesh in notch region), 10mm hole 

diameter (0.175mm mesh in notch region) and 2mm hole diameter (0.035mm mesh in notch 

region) as shown in Figs. 4.31(b-d). The aim is to predict the %age of hole diameter at which 

rapid load drop occurs due to crack development (from the hole of the specimen) and how 

does it get affected because of specimen size. 
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Fig. 4.32: Effect of specimen size on nominal stress vs %age hole opening behaviour 
(nonlocal model) 
 
Analysis was done using the nonlocal model. 8-noded quadrilateral elements in 2D plane 

strain were used in the analysis. As can be seen from Fig. 4.32, the smallest specimen shows 

the highest %age hole diameter at which rapid load drop occurs and this value becomes 

smaller and smaller from specimens with larger size. The effect is more pronounced between 

the specimen of 2mm and 10mm hole diameter and subsequently, the effect of specimen size 
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on %age hole diameter at failure is less. This is similar to the experimentally observed 

behaviour (Krieg and Seidenfuss 2003) where the dependence of fracture strain on specimen 

size is exponential in nature, i.e., at the lower end of size, the effect is more and when the sizes 

are large, the effect is less. Hence, the mesh independent nonlocal model has been able to 

simulate the size effect in flat tensile specimens using the same mesh design (though the finite 

elements have different sizes for different specimens). 

 
4.7 Analysis of a compact tension specimen 
 

Having studied the mesh independent nature of solutions of the nonlocal Rousselier’s model, 

we proceed to evaluate fracture resistance behaviour of materials using standard fracture 

mechanics specimens and study how FE mesh affects the fracture resistance behaviour. 

Analysis of standard fracture mechanics specimens is of considerable importance to evaluate 

fracture resistance behaviour of different materials. In this context, the damage mechanics 

analysis of a 1T CT specimen [with 20% side groove] is presented. Here, a 2-D plane strain 

analysis (with 8-noded isoparametric quadrilateral elements) has been used. The geometry of 

the specimen is shown in Fig. 4.33. The dimensions are: 

50mm, 25mm, 20mm, Height 60mmnW B B= = = = . The initial crack to width ratio is 

0 0.522a W = . Hence, it is deep cracked specimen according to ASTM standard. Due to 

symmetry, only half of the specimen has been analysed. Experiments on the CT specimen 

have been carried out at MPA Universität Stuttgart, Germany (Eisele et al. 2006) at various 

temperatures starting from -150 deg. C to room temperature (also upto very high temperatures 

for the creep range, but these results are not discussed here). 

 

The material of the CT specimen is a low alloy German pressure vessel steel (22NiMoCr3-7). 

The material stress-strain curve used in this analysis is the same as that of Fig. 4.18. Other 

material properties used in the analysis are given in Table-4.3. The finite element meshes of 

the CT specimen are shown in Figs. 4.34-37(a) along with their enlarged view near the crack 

tip [Figs. 4.34-37(b)] for four different mesh sizes of 0.4mm, 0.2mm, 0.1mm and 0.02mm near 

the crack tip. These four different mesh sizes have been used to study the mesh dependent 

behaviour of both local and nonlocal damage models. 

 

The damage profile at the end of 3mm crack growth simulation is an important parameter to 

observe the difference in the results of the two types of models. Fig. 4.38 shows the damage 
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zone (damage zone is represented by damage value of 0.5 within the contour plot) predicted 

by the local model for the 0.4mm mesh size. The damage zone is along one row of Gauss 

points of the bottom layer of elements ahead of crack tip (initially the crack runs in the top row 

of Gauss points and then switches to the bottom row). As the mesh size is refined, the element 

size becomes smaller and smaller (0.2mm and 0.1mm mesh). In case of local model, the 

damage zone is still confined to the bottom single layer of elements (one Gauss point row) and 

hence the damage zone size predicted becomes narrower as the mesh is refined (Fig. 4.39-40) 

and hence the results are mesh dependent. 

 

The damage zone for the 0.4mm mesh is shown in Fig. 4.41 for the nonlocal simulation. Here, 

nearly one and a half layer of elements is damaged and the damage zone is uniform. When the 

mesh size is refined to 0.2mm, nearly 3mm layer of elements are damaged. For 0.1mm mesh, a 

zone of 6 layers of elements is damaged [Fig. 4.42-43]. Hence, the damage zone spreads over 

a layer, which more or less remains uniform even though we refine the size of FE mesh. 

Analysis has been carried out even for a very small mesh size of 0.02mm near crack tip which 

is required to analyse high stress gradients when the CT specimens are tested at lower 

temperatures in the transitions regime (where stress redistribution becomes difficult because of 

more constraint). For this analysis, the damage is spread over all the elements in the fine mesh 

zone as shown in Fig. 4.44(a-b)]. However, because of extreme small element size and 

damage development, the strain developed in the elements (in the fine mesh region) becomes 

very high and the elements become too much distorted and hence, there is convergence 

problem in the numerical simulation.  

 

The above problem (in the use of extremely small mesh size) may be removed by either the 

use of large strain formulations of Eterovic and Bathe (1990) [i.e., Upadated Lagragian 

Hencky formulation] where a multiplicative decomposition of deformation gradient is used 

[instead of additive decomposition of strain tensor] or by Arbitrary Lagrangian Eulerian 

(ALE) formulation or by the use of element extinction techniques, which is a scope of future 

research. Nevertheless, the load-displacement response and fracture resistance behaviour of 

the CT specimen has been studied upto a crack growth of 0.7mm (for the FE mesh with 

0.02mm element size) and the mesh independent nature of the solutions have been 

demonstrated as will be seen in the following discussion. 
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This important characteristic of the nonlocal model (i.e., damage zone width is independent of 

mesh size) also helps it to predict the global load-displacement response and J-resistance 

behaviour of the CT specimen, which become independent of mesh size. Fig. 4.45 shows load-

CMOD (crack mouth opening displacement) results of the CT specimen obtained using the 

local model for 3 different mesh sizes (i.e., 0.4, 0.2 and 0.1mm respectively). The load-CMOD 

response for the 0.4mm mesh compares well with that of experimental result (the maximum 

load of analysis is slightly higher as the analysis is with 2D plane strain assumption). 

However, as the mesh size is refined, the local model predicts faster crack growth and hence 

lower load-CMOD response. The same trend is observed in the J-resistance behaviour also 

(Fig. 4.47). It may be noted that the experimental results referred here are taken from Eisele et 

al. 2006. 

 
 

Fig. 4.33: Geometry of the compact tension specimen with loading configuration 
 
 

 

Fig. 4.34(a): FE mesh of CT specimen (0.4mm 
mesh near crack tip) 

Fig. 4.34(b): Enlarged view Fig. 4.34(a) 
near crack tip 
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Fig. 4.35(a): FE mesh of CT specimen (0.2mm 
mesh near crack tip) 

Fig. 4.35(b): Enlarged view Fig. 4.35(a) 
near crack tip 

 
 

 

Fig. 4.36(a): FE mesh of CT specimen (0.1mm 
mesh near crack tip) 

Fig. 4.36(b): Enlarged view Fig. 4.36(a) 
near crack tip 

 
 

 

Fig. 4.37(a): FE mesh of CT specimen (0.02mm 
mesh near crack tip) 

Fig. 4.37(b): Enlarged view Fig. 4.36(a) 
near crack tip 
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Fig. 4.38: Damage zone near crack tip for CT specimen with 0.4mm mesh (local model), 
contour plot of damage 
 
 

 
Fig. 4.39: Damage zone near crack tip for CT specimen with 0.2mm mesh (local model), 
contour plot of damage 
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Fig. 4.40: Damage zone near crack tip for CT specimen with 0.1mm mesh (local model), 
contour plot of damage 
 
 
 
 

 
Fig. 4.41: Damage zone near crack tip for CT specimen with 0.4mm mesh (nonlocal 
model), contour plot of damage 
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Fig. 4.42: Damage zone near crack tip for CT specimen with 0.2mm mesh (nonlocal 
model), contour plot of damage 
 
 

 
Fig. 4.43: Damage zone near crack tip for CT specimen with 0.1mm mesh (nonlocal 
model), contour plot of damage 
 
 
In case of the nonlocal model, the load-CMOD and the J-resistance curves match very well 

with those of experiment for the three different mesh sizes (Figs. 4.46 and 4.48) and there is 

very little difference among the results of different mesh sizes (i.e., 0.4, 0.2, 0.1 and 0.02mm). 

Hence, the mesh independent nature of the nonlocal model is demonstrated for the fracture 

mechanics specimen. It may be noted that the J-integral has been calculated from the area 

under the load-displacement curve using ASTM and η γ  factors as followed for the standard 

CT specimen test during the experimental J-resistance curve evaluation. For calculating the 
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crack growth during numerical simulation, a crack growth of one-third (as 3x3 or full Gauss 

point integration scheme has been used here) of the element size is assumed when a Gauss 

point is completely damaged due to growth of local void volume fraction f . By summing the 

crack growth of all the elements ahead of crack tip (with increase of CMOD), the total crack 

extension at any time during loading of CT specimen is calculated. 

 
 

  
Fig. 4.44(a): Damage zone near crack tip 
for CT specimen with 0.02mm mesh 
(nonlocal model), contour plot of damage 

Fig. 4.44(b): Enlarged view of Fig. 44(a) 
near crack tip, contour plot of damage 
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Fig. 4.45: Load-CMOD response of the 1T CT specimen for different FE mesh sizes 
(local model) 
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Fig. 4.46: Load-CMOD response of the 1T CT specimen for different FE mesh sizes 
(nonlocal model) 
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Fig. 4.47: J-resistance behaviour of the 1T CT specimen with crack growth for different 
FE mesh sizes (local model) 
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Fig. 4.48: J-resistance behaviour of the 1T CT specimen with crack growth for different 
FE mesh sizes (nonlocal model) 
 
4.8 Analysis of a single edge notched bend (SEB) specimen 
 

Having demonstrated the mesh independent nature of the load-CMOD and fracture resistance 

behaviour of the 1T compact tension specimen with the help of nonlocal models, we need to 

see if the same observation holds for other types of specimens where geometry and loading 

conditions are different. It may be noted that a dominant tensile mode of loading occurs ahead 

of crack tip for the CT specimen whereas bending mode is dominant in case of SEB (Single 

edge notched bend) specimen when loaded in three-point bending as shown in Fig. 4.49. 

Hence, the standard 1T SEB specimen was chosen for analysis using nonlocal models to 

determine the load-CMOD and J-resistance behaviour. 

 
Fig. 4.49: Geometry of the single edge (notched) bend SEB specimen 
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Fig. 4.50(a): FE mesh of the 1T 
SEB specimen (0.4mm mesh 
near crack tip) 

Fig. 4.50(b): Enlarged view of Fig. 4.50(a) near the crack 
tip 

 
 
 

 

 

Fig. 4.51(a): FE mesh of the 1T 
SEB specimen (0.2mm mesh 
near crack tip) 

Fig. 4.51(b): Enlarged view of Fig. 4.51(a) near the crack 
tip 
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Fig. 4.52(a): FE mesh of the 1T 
SEB specimen (0.1mm mesh 
near crack tip) 

Fig. 4.52(b): Enlarged view of Fig. 4.52(a) near the crack 
tip 
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Fig. 4.53: Load-CMOD behaviour of 1T SEB specimen for different FE mesh sizes (local 
model) 
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Fig. 4.54: Load-CMOD behaviour of 1T SEB specimen for different FE mesh sizes 
(nonlocal model) 
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Fig. 4.55: J-resistance behaviour of the 1T SEB specimen with crack growth for different 
FE mesh sizes (local model) 
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Fig. 4.56: J-resistance behaviour of the 1T SEB specimen with crack growth for different 
FE mesh sizes (nonlocal model) 
 

The geometry of the specimen with loading arrangement is shown in Fig. 4.49. The 

dimensions of the specimen are: 50mm, 4 200mm, thickness 25mmW L W= = = = with an 

initial crack depth to width ratio as 0 0.522a W =  and it is 20% side-grooved. Similar to the 

1T CT specimen, a 2D plane strain analysis has been done for this SEB specimen and 8-noded 

quadrilateral elements have been used. Due to symmetry, only half of the specimen has been 

analyzed. Three different mesh sizes (0.4, 0.2 and 0.1mm respectively near the crack tip) have 

been used in the analysis in order to study the mesh independent behaviour of local and 

nonlocal models. The FE meshes along with their enlarged views near the crack tip are shown 

in Figs. 4.50-52 for 0.4, 0.2 and 0.1mm meshes respectively. The results of local and nonlocal 

analysis (with different mesh sizes near the crack tip) have also been compared with those of 

experiment (experimental results are taken from Eisele et al. 2006). 

 

It may be noted that the method of crack growth and J-integral calculation is same as that 

followed for the CT specimen except the fact that different values of andη γ  factors (suitable 

for SEB specimen according to ASTM standard) are used. The load-CMOD results of the local 

analysis using three different mesh sizes are shown in Fig. 4.53. It is evident that the local 

model predicts faster crack growth when the mesh size is refined and hence the load goes 



 94

down quickly with CMOD for smaller mesh sizes. However, for the nonlocal model, the load-

CMOD results converge to a solution when mesh size is refined [Fig. 4.54]. The above effect 

is also reflected in the J-resistance curve where the results of local model [Fig. 4.55] are highly 

mesh dependent, whereas the J-resistance curves predicted by nonlocal analysis almost remain 

same with respect to mesh size. 

 

4.9 Analysis of 2T CT specimen 
 

In this section, the effect of specimen size on the fracture resistance behaviour of the CT 

specimen has been studied. For this purpose, analysis has been done for the 2T CT specimen 

(all the dimensions are twice those of 1T CT) in 2D plane strain. The element types and 

material properties remain unchanged. Experiments have been conducted at MPA, Stuttgart 

and the results of analysis have been compared with those of experiment. Fig. 4.57 shows the 

comparison of load-CMOD response of the 2T CT specimen for three different mesh sizes 

(0.4, 0.2 and 0.1mm respectively near the crack tip) when the local model is used. Fig. 4.58 

shows the same response for analysis using nonlocal model. Again, the load-CMOD responses 

of the 2T specimen have been proved to be mesh independent in case of nonlocal model 

whereas the local model results are mesh-dependent as expected. 
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Fig. 4.57: Load-CMOD behaviour of 2T CT specimen for different FE mesh sizes (local 
model) 
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Fig. 4.58: Load-CMOD behaviour of 2T CT specimen for different FE mesh sizes 
(nonlocal model) 
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Fig. 4.59: J-resistance behaviour of the 2T CT specimen with crack growth for different 
FE mesh sizes (local model) 
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Similar observations hold true for the J-resistance behavior also [Figs. 4.59 for local model, 

4.60 for nonlocal model]. It may be noted that the predicted load-CMOD results are higher 

because of 2D plane strain assumption (3D analysis will be able to predict accurate load 

carrying capacity of the specimen). However, the predicted J-resistance curve is very close to 

that of experiment. 
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Fig. 4.60: J-resistance behaviour of the 2T CT specimen with crack growth for different 
FE mesh sizes (nonlocal model) 
 
 
4.10 Analysis of 4T CT specimen 
 
 
In this section, the effect of specimen size on the fracture resistance behaviour of the CT 

specimen has been studied with the help of 4T CT specimen (all the dimensions are four-times 

those of 1T CT) in 2D plane strain. The element types and material properties remain 

unchanged. Fig. 4.61 shows the comparison of load-CMOD response of the 4T CT specimen 

for three different mesh sizes (0.4, 0.2 and 0.1mm respectively near the crack tip) when the 

local model is used. Fig. 4.62 shows the same response for analysis using nonlocal model. 

Again, the load-CMOD responses of the 4T specimen have been proved to be mesh 

independent in case of nonlocal model whereas the local model results are mesh dependent as 



 97

expected. Similar observations hold true for the J-resistance behavior also [Figs. 4.63 for local 

model, 4.64 for nonlocal model]. 
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Fig. 4.61: Load-CMOD behaviour of 4T CT specimen for different FE mesh sizes (local 
model) 
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Fig. 4.62: Load-CMOD behaviour of 4T CT specimen for different FE mesh sizes 
(nonlocal model) 
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Fig. 4.63: J-resistance behaviour of the 4T CT specimen with crack growth for different 
FE mesh sizes (local model) 
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Fig. 4.64: J-resistance behaviour of the 4T CT specimen with crack growth for different 
FE mesh sizes (nonlocal model) 
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Comparison of the effects of specimen size on the load-CMOD and fracture resistance 

behaviour of the CT specimen will be presented in the next section where only the results of 

the nonlocal (mesh independent) model are presented for all CT specimens (meshed with 

0.1mm of element size). 

 
4.11 Prediction of geometry effect (effect of specimen size) 
 

As was discussed in the previous section, the aim here is to see whether nonlocal models will 

be able to successfully predict the size effects as observed in the experiments. For this 

purpose, the simulation results of the nonlocal model with 0.1mm mesh (near crack tip) for all 

the specimens (i.e., 1T, 2T and 4T) has been compared along with the experimental results 

wherever available. Fig. 4.65 shows the simulated load-CMOD response of all the specimens 

along with those of experiment. As expected, the load carrying capability of the larger size CT 

specimens will be higher compared to smaller size specimens [Fig. 4.65]. 
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Fig. 4.65: Prediction of geometry effect (effect of specimen size) on load-CMOD 
response of CT specimen with the help of nonlocal model 
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Fig. 4.66: Prediction of geometry effect (effect of specimen size) on J-resistance 
behaviour of CT specimen with the help of nonlocal model 
 
However, in the J-resistance behaviour prediction, this size effect gets normalized as the J-

integral is a measure of energy release rate ahead of crack tip per unit un-cracked ligament 

area. Instead, the predicted resistance of the larger specimens to crack propagation becomes 

slightly lower compared to 1T CT specimen [Fig. 4.66]. This effect also gets reflected in the 

experimental data [Fig. 4.66]. Hence, it can be concluded that the nonlocal models have been 

able to predict the size effect on the fracture resistance behaviour of specimens in addition to 

their mesh-independent nature. 

 
4.12 Prediction of geometry effect (effect of specimen type) 
 

In this section, the effect of specimen type on the load-CMOD and fracture resistance 

behaviour of different types of specimens has been studied with the help of nonlocal models. 

Similar to the study of size effect, results of two different specimens (i.e., 1T CT and 1T SEB) 

have been compared when simulated using 2D nonlocal plane strain formulation. The results 

of analysis using 0.1mm mesh near crack tip have been presented here for comparison. 
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Fig. 4.67: Prediction of geometry effect (effect of specimen type) on load-CMOD 
response of different specimens with the help of nonlocal model 
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Fig. 4.68: Prediction of geometry effect (effect of specimen type) on J-resistance 
behaviour of different specimens with the help of nonlocal model 
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Fig. 4.67 shows the comparison of load-CMOD responses of 1T CT and 1T SEB specimen. As 

expected, 1T SEB specimen shows a lower load-CMOD behavior as it is loaded dominantly in 

bending compared to the CT specimen, which is loaded dominantly in tension. The above 

effect of state of stress ahead of crack tip for the two specimens also gets reflected in their 

fracture resistance behaviour. Fig. 4.68 shows that the predicted fracture resistance behaviour 

of the 1T SEB specimen is slightly lower than that of the 1T CT specimen because of 

dominant bending (and hence more constraint). Similar trend is also observed in case of 

experimental results. 

 

4.13 Prediction of geometry effect (effect of crack depth) 
 

In this section, the effect of crack depth on the load-CMOD and fracture resistance behaviour 

of a 1T SEB specimen has been studied with the help of nonlocal models. Two different 

values of crack sizes have been used (i.e., a deep cracked specimen of 0 0.522a W =  and a 

shallow cracked specimen of 0 0.13a W = ) in the analysis. The FE mesh of the shallow 

cracked specimen is shown in Fig. 4.69 (a) along with its enlarged view near the crack tip. Fig. 

4.70 shows the comparison of predicted load-CMOD responses of deep and shallow cracked 

1T SEB specimen along with the experimental results. 

 
 
 

 

Fig. 4.69(a): FE mesh of the shallow 
cracked SEB specimen ( 0.13a w = ) 

Fig. 4.69(b): Enlarged view of Fig. 4.69(a) near 
the crack tip 
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Fig. 4.70: Prediction of effect of crack depth on load-CMOD response of 1T SEB 
specimen with the help of nonlocal model 
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Fig. 4.71: Prediction of effect of crack depth on load-CMOD response of 1T SEB 
specimen with the help of nonlocal model 
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The evaluation of η  factor is different for deep and shallow cracked specimens. For shallow 

cracked specimens, the η  factor formula of Sreenivasan and Mannan (2000) has been used, 

whereas for the deep cracked SEB specimen, ASTM formula for η  factor is used. The η  

factor of the shallow cracked SEB specimen is significantly lower than that of the deep 

cracked SEB specimen and this takes care of the constraint effect in the J-resistance behaviour. 

As can be seen from Fig. 4.70, the load-response is higher for the shallow cracked specimen 

compared to the deep specimen. It is because the un-cracked ligament (load-carrying) area is 

high in case of shallow cracked specimen. However, the fracture resistance behaviour is 

slightly lower for the shallow cracked specimen compared to the deep cracked specimen and 

similar trend is observed in the experimental result [Fig. 4.71]. 

 

4.14 Effect of material symmetry in modelling 
 

In this section, the effect of symmetric boundary condition on crack path and hence load-

displacement response of a flat tensile specimen has been analyzed. As is commonly known, 

considerations of symmetric conditions existing in geometry, material property, loading and 

boundary conditions are always exploited in the FE analysis in order to reduce number of 

degrees of freedom of the model and hence the solution time. However, such approaches can 

create problems especially when crack growth modeling is considered using local damage 

model. This problem is discussed here by using the example of the same flat tensile specimen 

(with hole at the center) as discussed earlier. Exploiting symmetry, we can either use one-half 

of the specimen as a FE model [Fig. 4.72(a)] or one-fourth of the specimen as a FE model 

[Fig. 4.72(b)]. 

 

The difference between the two models is that crack can initiate and traverse along a path 

(depending upon the stress and strain distribution during loading) inside the material in case of 

4.72(a) whereas crack initiates and propagates along the symmetric plane (bottom layer) in 

case of 4.72(b). 4.72(b) is the model which is used popularly because of less computational 

effort. However, crack initiation and propagation can be modeled realistically considering 

4.72(a), which has been used for the present study. Also, as will be observed subsequently, 

one can come across another inconsistency of the local damage model (in addition to the mesh 

dependent nature) when the mesh shown in Fig. 4.72(a) is used for analysis. 
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Fig. 4.72(a): FE mesh of half of the flat 
tensile specimen with hole at the centre 

Fig. 4.72(b): FE mesh of one-fourth of the flat 
tensile specimen with hole at the centre 
(symmetric boundary condition has been used) 

 
 
 

 
Fig. 4.73(a): Crack 
propagation in the flat 
tensile specimen (local 
model), contour plot 
damage 

Fig. 4.73(b): Enlarged view of Fig. 4.73(a) near the hole 
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Fig. 4.74(a): Crack 
propagation in the flat 
tensile specimen 
(nonlocal model), 
contour plot of damage 

Fig. 4.74(b): Enlarged view of Fig. 4.74(a) near the hole 
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Fig. 4.75: Nominal stress vs %age hole opening behaviour of the flat tensile specimen 
with hole at centre (effect of symmetric modeling with local and nonlocal models) 
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For the analysis, the mesh size of 0.2mm has been used for modeling the flat tensile specimen. 

The damage zone path (it is represented by damage value of 0.5 in the contour plot) is shown 

in Fig. 4.73(a) [with its enlarged view in Fig. 4.73(b)] for the local model. It can be observed 

from Fig. 4.73 that though crack initiation occurs on both sides (top and bottom) of the central 

position of hole, the damage zone finally runs along the bottom element layer in case of the 

local model. This is a problem of localization of the damage zone where damage is restricted 

to one element layer. However, the problem is purely symmetric and hence the damage zone 

should propagate equally on top and bottom layers around the central line of the specimen and 

this is exactly what happens in case of Fig. 4.74. Hence, nonlocal models not only produce 

mesh-independent results, they can also model the symmetry condition accurately. This is 

because of preservance of the elliptical nature of the PDEs by the nonlocal model with mesh 

refinement, which is not the case for local models. 

 

The effect of preservance of symmetric nature of the solution by the nonlocal models also gets 

reflected in the nominal stress vs %age hole opening behaviour of the flat tensile specimen. 

Fig. 4.75 compares the results of analysis of the flat tensile specimen with mesh designs of 

4.72(a) [half model] and 4.72(b) [one-fourth model]. As expected the results of nonlocal 

analysis for the two mesh designs are exactly same whereas the local analysis results depend 

upon mesh design. Hence, symmetric boundary conditions cannot be properly modeled in 

local damage mechanics and so one needs to use nonlocal models in order to remove the 

above inconsistency. 

 

4.15 Effect of material stress-strain curve  
 

In this section, the effect of material stress-strain curve on the load-response and fracture 

resistance behaviour of a specimen will be discussed. The discussion on the effect of material 

stress-strain curve stems from the fact that many times the true stress-strain curve beyond the 

true strain at UTS is obtained by extrapolating the curve before UTS. The extrapolation curve 

depends upon the number of points (before UTS) that one uses for this purpose and hence 

many times the effect of multiaxiality is not properly corrected for the true stress-strain curve 

beyond UTS. The aim is to study the effect of the error in the extrapolated curve on the 

fracture resistance prediction using nonlocal damage models. For this purpose, two slightly 

different true stress-strain curves have been used in the analysis as shown in Fig. 4.76. Curve-

1 stands for the actual material stress-strain curve for the material 22NiMoCr3-7 that has been 
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used till now in all the analyses. Curve-2 is the slightly modified true stress-strain curve, 

which is exactly same upto the UTS and slightly lower (true stress for the modified curve is 

10% lower than the true stress of the actual curve for the same value of true plastic strain) than 

the Curve-1 beyond UTS which reflects the effect of extrapolation on the stress-strain curve. 

 

With these two stress-strain curves in our hand, we have analyzed a 1T CT specimen using 

nonlocal damage model. The mesh size used near crack tip is 0.1mm. Fig. 4.77 shows the 

load-CMOD response of the CT specimen for the two stress-strain curves and Fig. 4.78 

compares the predicted J-resistance curves. As can be seen from Figs. 4.77 and 4.78, the load-

CMOD and J-resistance responses of the CT specimens are almost same for the two stress-

strain curves. Hence, it can be concluded that though there can be some uncertainty in the 

extrapolation method to determine the true stress-strain curve beyond UTS, its effect on the 

facture resistance behaviour (at room temperature) is minimal. However, as will be observed 

for analysis in the ductile to brittle transition temperature region, the probability of brittle 

fracture can get significantly affected because of slight error in the stress-strain extrapolation 

especially towards the higher temperature side of the transition temperature region. 
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Fig. 4.76: True stress-strain curve f the material 22NiMoCr3-7: curve 1 (actual), curve 2 
(modified) 
 



 109

0 1 2 3 4 5
0

10000

20000

30000

40000

50000

60000
lo

ad
 / 

N

CMOD / mm

 stress-strain curve 1
 stress-strain curve 2

 
Fig. 4.77: Effect of material stress-strain curve on load-displacement response of the 1T 
CT specimen (nonlocal model) 
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Fig. 4.78: Effect of material stress-strain curve on J-resistance behaviour of the 1T CT 
specimen (nonlocal model) 
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4.16 Effect of critical length parameter 
 

As discussed in Chapter-3, introduction of the concept of nonlocality into the material 

constitutive relation is through the characteristics length parameter lengthC . Theoretically, The 

results of the nonlocal model reduces to that of the local model when 0lengthC → . The 

characteristics length parameter lengthC  is used to regularize the development of damage in 

nonlocal models. If this length cannot be uniquely determined from the microstructure of the 

material, it must be fitted from experimental results. This can be done indirectly, by relating 

the internal length scale to the difference between homogeneous and heterogeneous responses 

[Bažant and Pijaudier-Cabot (1989)] or to size effects [Pijaudier-Cabot (1995), Carmeliet 

(1996)]. But a more direct and probably more reliable method is to measure the extent of 

material damage in experiments, for instance by optical deformation measurements [Geers 

(1997)]. Reusch 2003, Reusch et al. (2003a,b) and Peerlings et al. (2001, 2002) have shown 

that the characteristics length parameter lengthC is proportional to 2 4cl  where cl  is the critical or 

characteristics length of the material (which is of the order of the mean distance between 

relevant inclusions from which voids can be nucleated and grow further).  
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Fig. 4.79: Effect of critical length parameter on load-displacement response of the 1T CT 
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Fig. 4.80: Effect of critical length parameter on J-resistance behaviour of the 1T CT 
specimen (nonlocal model) 
 
The characteristics length parameter cl  for the material under consideration (i.e., 22NiMoCr3-

7), has been determined by Seidenfuss and Roos (2004) as approximately 0.4mm. In order to 

study the effect of lengthC on the load-CMOD and fracture resistance behaviour of the 1T CT 

specimen, analysis has been carried using nonlocal model with different values of lengthC  (i.e., 

0, 1.0e-5, 1.0e.4 and 0.05). The FE mesh size of 0.1mm near the crack tip has been used. The 

predicted load-CMOD response and the J-resistance curve of the CT specimen for different 

values of lengthC  have been compared with experiments [Fig. 4.79 and 4.80]. As expected, the 

model predicts faster crack growth with lower values of lengthC (more towards local behaviour) 

and hence lower load-CMOD curves. For the lengthC value of 0.05, the predicted J-resistance 

curve compares very well with that of experiment and hence it has been selected at the 

lengthC value for all the analyses carried out in this work. This value of lengthC also compares 

favourably well with the theoretical derivations of Reusch et al. (2003a,b) and Peerlings et al. 

(2001, 2002) [i.e., 
2

4
c

length
lC ≈ ]. 
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In this chapter, the ductile crack growth in various components was simulated by the use of 

both local and nonlocal models. The results of the nonlocal model were proved to be mesh-

independent. Having predicted the behaviour of specimens in the upper shelf region 

successfully, we proceed for simulation of probability of cleavage fracture of fracture 

mechanics specimens in the lower shelf and transition region in the next chapter. 
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Chapter 5 

 

Numerical simulation of probability of failure in lower shelf and 

transition region 

 
In this chapter, the cleavage fracture process in fracture mechanics specimens is modeled 

using Beremin’s model, which uses Weibull statistics and weakest link theory of fracture. The 

two-parameter Weibull’s model with parameters and um σ is considered in this work. The 

theory for Beremin’s model is described in the second chapter along with the maximum 

likelihood method for determination of the Weibull parameters from combined numerical 

simulation and experiment. The same material (i.e., 22NiMoCr3-7) as studied in fourth 

chapter is also considered here for numerical simulation in the ductile to brittle transition 

region. All the referred experiments have been carried out at MPA Universität Stuttgart using 

different types of fracture mechanics specimens (such as CT and SEB) for the whole transition 

temperature region (Eisele et al. 2006). A number of specimens were tested at the same 

temperature (e.g., -100, -60, -20 deg. C etc.) in order to capture the statistical scatter in the 

cleavage fracture process. 

 

Ductile and cleavage fracture processes are two competing mechanisms in the ductile to brittle 

transition temperature region of a material. It was experimentally observed that [Fig. 1.3], in 

the temperature ranges of -100 to -60 deg. C, there is virtually no remarkable stable crack 

growth in the fracture mechanics specimens before final fracture by cleavage and hence the 

fracture is nearly pure cleavage. However, at temperature beyond -60 deg. C, there is onset of 

plastic deformation and hence some stable crack growth, which is of the order of 200 micron 

at -20 deg. C. The ductile crack growth alters the stress and strain distribution ahead of the 

crack tip (Eisele et al. 2006) in the specimens and hence it can significantly affect their 

probability of cleavage fracture in the specimens. 

 

To take into the account of the effect of ductile crack growth and stress redistribution, one 

needs to combine the ductile damage model with Beremin’s model. In this work, Rousselier’s 

model has been combined with Beremin’s model to simulate fracture process in the transition 

region. As discussed earlier, the FE mesh required for local Rousselier’s model is too coarse to 
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capture the large stress gradient ahead of the crack tip at low temperatures and to simulate 

small amounts of crack growth. In order to circumvent the above problems, the nonlocal form 

of the Rousselier model has been used here in combination with the Beremin’s model as the 

nonlocal model has the advantage of predicting the ductile crack growth process even if very 

fine mesh is used. Simulations have been carried out in both 2D and 3D domains and the 

effects of specimen size and geometry on the ductile to brittle transition curve (for fracture 

toughness) of the material has been studied. 

 

5.1 Prediction of probability of cleavage fracture in the transition regime 

using compact tension specimens (2D plane strain analysis) 
 

In this section, we discuss the results of analysis in the transition region using 1T CT 

specimens (with initial crack to width ratio 0 0.522a W = ). 2D plane strain analysis is used 

for the simulation. 
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Fig. 5.1: True stress-strain curves of the material 22NiMoCr3-7 at three different temperatures 
in the transition regime 
 
 
 
 



 115

 
 

0.0 0.4 0.8 1.2
0

10000

20000

30000

40000

50000

60000

 experiment
 simulation

lo
ad

 / 
N

CMOD / mm  
Fig. 5.2: Load-CMOD curve of the 1T CT specimen at -20 deg. C (2D plane strain 
analysis) 
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Fig. 5.3: Load-CMOD curve of the 1T CT specimen at -60 deg. C (2D plane strain 
analysis) 
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Fig. 5.4: Load-CMOD curve of the 1T CT specimen at -100 deg. C (2D plane strain 
analysis) 
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The material stress-strain curves used in the analysis at three different temperatures (i.e., -100, 

-60 and -20 deg. C) are shown in Fig. 5.1. The FE mesh size used for the CT specimens is 

0.02mm ahead of crack tip [Fig. 4.37]. Figs. 5.2-4 show the comparison of load-CMOD results 

of numerical simulation with those of experiment. The numerical simulation results slightly 

over-predict the experimental results especially for the temperatures of -20 and -60 deg. C. It 

is because of the use of plane strain formulation and as will be seen later, the 3D simulation 

results compare very well with the experimental load-CMOD response of the specimens. 

 

Experiments were conducted on CT specimens and the experimental points of fracture 

toughness ( JCK , which has been calculated from the critical value of J -integral at unstable 

fracture, i.e., cJ  by using the conversion formula ( ) 1 22. 1K J E ν⎡ ⎤= −⎣ ⎦ ) at which final fracture 

(by instability) occurred are plotted with respect to temperature (-100 to -20 deg. C) in Fig. 5.5 

(open circles denote experimental points). It can be seen from Fig. 5.5 that the scatter in the 

experimental fracture toughness is large at -20 deg. C compared to the scatter at -100 deg. C. 

In order to calculate the probability of cleavage fracture, elasto-plastic analysis was performed 

initially using CT specimens with a mesh size of 0.02mm at the crack tip [Seebich 2007]. 

Obviously, crack growth is not simulated in this analysis and hence the predicted probability 

of cleavage fracture fP  of the Beremin’s model (without damage) could not capture the 

experimental scatter as shown in Fig. 5.5. The solid line in Fig. 5.5 represents the 50% 

probability of failure ( 0.50fP = ) curve for fracture toughness with respect to temperature. 

The dashed curve represents 5% probability of cleavage fracture ( 0.05fP = ) and the dotted 

curve correspond to 95% of cleavage fracture probability ( 0.95fP = ). 

 

The Weibull parameters  and um σ used in determination of probability of cleavage fracture 

(using the data of Weibull stress with respect to applied loading) have been taken as 34.8 and 

1968 MPa respectively (Seebich 2007) and these are kept constant for the whole temperature 

range of consideration in the present simulation (i.e., temperature independent Weibull 

parameters). Fig. 5.5 also shows the prediction of the cleavage fracture probabilities 

( 0.05 and 0.95fP = ) by a simple empirical model of Wallin (1984), popularly known as 

master curve concept. Master curve is a very popular and simple tool widely used by 

researchers and designers to design components (against failure by the catastrophic brittle 
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process) and it has also been incorporated in ASME code as ASME master curve. The master 

curve equation requires a reference temperature 0T  (signifying ductile to brittle transition 

temperature) for predicting different probabilities of cleavage fracture and it has been taken 

here as –68 deg. C (Seebich 2007). 
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Fig. 5.6: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [2D plane strain analysis of 1T CT] 
 
It can be observed (Fig. 5.5) that the master curves for 5% and 95% probabilities of cleavage 

fracture are able to predict the experimental trend (scatter) very satisfactorily. It may be noted 

that the Beremin’s model (without consideration of material damage) is able to predict very 

well the scatter in cleavage fracture toughness from -100 to -60 deg. C. It is because, there is 

actually no significant stable crack growth observed in experiments in this temperature range 

and hence the stress state ahead of the crack tip (and also the Weibull stress and the probability 

of cleavage fracture) can be very well described by the elasto-plastic analysis. However, the 

model grossly underestimates the experimental scatter band towards upper end of the 

transition region (e.g., -20 deg. C). The reason for the inability of the numerical simulation 

results in predicting experimental scatter satisfactorily is due to non-consideration of the effect 

of ductile damage on the stress-strain distribution ahead of the crack tip of the fracture 

mechanics specimen and hence the aim of the present work is to improve the correspondence 
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of the simulation results with experiment by consideration of the effect of ductile damage on 

the Weibull stress. 

 

The above discrepancy (of probability of cleavage fracture) between simulation and 

experiment has been removed by the use of the nonlocal form of the Rousselier’s damage 

model for calculating stress-strain distribution in the finite element mesh (which is used 

subsequently to determine the probability of cleavage fracture). Fig. 5.6 shows the comparison 

of predicted cleavage fracture probability (for fracture toughness) curves (with and without 

consideration of ductile damage or stable crack growth) with experimental scatter bands of the 

CT specimen when analysis is done using 2D plane strain assumption. The lines (solid for 

50%, dashed for 5% and dotted for 95% probability of cleavage fracture corresponding to 

fracture toughness) represent simulation results of combined elasto-plastic analysis and 

Beremin’s model (without modeling of stable crack growth) and the dots (open dots for 5%, 

semi-open dots for 50% and closed dots for 95% probability of cleavage fracture) represent 

the simulation results using combined nonlocal damage mechanics analysis and Beremin’s 

model. The value of lengthC parameter for the material has been taken as 0.05 and other model 

parameters are same as those used in the analysis of fracture resistance behaviour in the upper 

shelf region. The Weibull parameters and um σ used in the determination of probability of 

cleavage fracture in the combined nonlocal Rousselier and Beremin’s model have been taken 

as 34.6 and 2005 MPa respectively and these are kept constant for the whole temperature 

range. 

 

It can be observed from Fig. 5.6 that predicted fracture toughness values (corresponding to 

5%, 50% and 95% probability of failure) match very well with those of experimental data 

except the fracture toughness corresponding to 5% probability of failure at -20 deg. C 

(simulation value is slightly less than that of experiment). The above discrepancy may be due 

to insufficiency of the modeling process (i.e., use of 2D plane strain assumption in the FE 

analysis instead of the actual 3D simulation) or may lie in use of improper extrapolated stress-

strain curve (beyond UTS of the material). Both these aspects will be discussed in subsequent 

sections. The master curve has also been plotted in Fig. 5.6 for 5% and 95% probabilities of 

fracture and the simulation results correspond very well with the scatter band predicted by the 

master curve except little discrepancy for prediction of 5% probability of fracture at the upper 

end of the transition region. 
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Fig. 5.7: Contour plot of damage at instability near the crack tip of the 1T CT specimen at  
-100 deg. C (as the critical value of damage is not reached, there is no stable crack growth at 
instability) 
 
 

 
Fig. 5.8: Contour plot of damage at instability near the crack tip of the 1T CT specimen at -60 
deg. C (it shows 40 micron of stable crack growth before instability) 
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As discussed in the previous paragraphs, the predicted probability of cleavage fracture (of the 

CT specimen) by the combined nonlocal Rousselier and Beremin’s model (in the transition 

region) correspond very well with the experimental fracture probabilities (when compared to 

the results of the earlier Beremin’s model coupled with elasto-plastic analysis, Fig. 5.6) and 

this is due to the ability of the nonlocal model to simulate small amount of stable crack 

growth. It may be noticed that, for experiments at -100 deg. C (i.e., lower end of the transition 

region), there is no stable crack growth observed in the CT specimen before the instability and 

hence the fracture is purely cleavage. The above fact is also observed in the simulation results 

of the CT specimen at -100 deg. C with the new combined nonlocal Rousselier and Beremin’s 

model.  

 

 
Fig. 5.9: Contour plot of damage at instability near the crack tip of the 1T CT specimen at -20 
deg. C (it shows 240 micron of stable crack growth before instability) 
 

Fig. 5.7 shows the contour damage distribution ahead of the crack tip of the CT specimen at -

100 deg. C and it can be observed that damage has not reached the critical value of 0.05 and 

hence there is no stable crack growth before the final unstable fracture by cleavage. However, 

some amounts of stable crack growth were observed in the simulations of the CT specimen at -

60 and -20 deg. C by the new model (Fig. 5.8-9). Fig. 5.8 shows the contour of damage ahead 

of the crack tip for the simulation of the CT specimen at -60 deg. C and a stable crack growth 

of approximately 40 micron was calculated (as represented by the zone with damage value of 
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0.5 in the contour plot) before the instability. The stable crack growth calculated at -20 deg. C 

by the new model is approximately 240 micron (Fig. 5.9). 
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Fig. 5.10: Comparison of calculated and experimental observed stable crack growth at 
instability of the 1T CT specimen at various temperatures 
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Fig. 5.11: Simulated vales of fracture toughness at stable crack initiation of the 1T CT 
specimen at various temperatures 
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Fig. 5.10 shows the variation stable crack growth (before instability) with temperature in the 

transition region for both experiment and simulation. It can be observed that the new 

combined model is able to simulate the experimentally observed stable crack growth before 

instability in the whole transition region very satisfactorily. Fig. 5.11 shows the variation of 

calculated JiK  values (fracture toughness at stable crack initiation converted from iJ  values) 

with temperature. It may be observed that there is no stable crack initiation at -100 deg. C 

whereas the JiK  values are nearly the same at both the temperatures of -60 and -20 deg. C 

respectively ( 149.8 MPaJiK = at -60 deg. C and 148.7 MPaJiK =  at -20 deg. C). 

 
5.2 Prediction of probability of cleavage fracture in the transition regime 

using compact tension specimens (3D analysis) 
 

As discussed in the previous section, we are able to predict the variation of fracture toughness 

with respect to temperature in the transition region (-100 to -20 deg. C) of material 

satisfactorily using 2D plane strain analysis of the CT specimen and a set of temperature 

independent Weibull material parameters, where the nonlocal damage mechanics model was 

combined with the Beremin’s model to predict the probability of cleavage fracture. However, 

there were some discrepancies of the results of simulation at the higher end of temperature 

scale (i.e., -20 deg. C) especially for the 5% fracture probability ( fP ) prediction. The effect of 

modeling on the cleavage fracture probability is investigated here by conducting a 3D analysis 

of the CT specimen with initial crack to width ratio 0 0.522a W =  (instead of the earlier 2D 

plane strain analysis). 

 

The FE mesh of the CT specimen along with the enlarged view near the crack tip is shown in 

Fig. 5.12. Due to symmetry, one-fourth of the CT specimen in 3D domain has been 

considered. The mesh size ahead of crack tip is 0.05mm x 0.05mm x 1mm (1mm in thickness 

direction). We have used a coarse mesh of 1mm size in the thickness direction in order to 

reduce the computational time associated with the 3D simulations. Also, the mesh size is little 

coarser (0.05mm) in the plane compared to 0.02mm in 2D plane strain analysis. However, it is 

obvious that the predictions will be better if one can use very small mesh sizes in all the three 

directions ahead of crack tip. 
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Fig. 5.12(a): 3D FE mesh of the 1T CT 
specimen 

Fig. 5.12(b): Enlarged view of Fig. 5.12(a) 
near crack tip 

 
Fig. 5.13-15 show the comparison of the predicted load-CMOD responses of the CT specimen 

with the experimental responses for the three temperatures (i.e., -20, -60 and -100 deg. C 

respectively). As expected, the 3D simulation results compare very well with those of 

experiment and hence it is also expected that the predicted fracture toughness vs temperature 

results (corresponding to different fracture probabilities) will be better for 3D analysis 

compared to 2D analysis. 

 

Fig. 5.16 shows the variation of fracture toughness (open dots for 5%, semi-open dots for 50% 

and closed dots for 95% probability of cleavage fracture) with respect to temperature for the 

1T CT specimen using nonlocal 3D damage mechanics analysis and it has been compared with 

the experimental scatter band as well as the results of the elasto-plastic analysis. The Weibull 

parameters  and um σ used in the calculation of probability of cleavage fracture in this 3D 

analysis have been taken as 38 and 2003 MPa respectively. It can be observed that the 3D 

numerical simulation predict the experimental scatter very well for the whole transition 

temperature region using a single set of temperature independent Weibull parameters and the 

results are better when compared to 2D plane strain results [Fig. 5.6]. Master curves 

corresponding to 5% and 95% failure probabilities are also presented in Fig. 5.16 and it can be 

observed that the numerical simulations results compare very well with those of master curve 

predictions (of the fracture toughness scatter band of the specimen) over the whole transition 

temperature region. It may be noted that though the actual CT specimen (used in the 

experiments) were side-grooved, we do not model the side-groove in this analysis. Hence, the 

predicted results may further improve by modeling the side groove as well as the use of a fine 

mesh in all the directions ahead of the crack tip of the CT specimen. 
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Fig. 5.13: Load-CMOD curve of the 1T CT specimen at -20 deg. C (3D analysis) 
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Fig. 5.14: Load-CMOD curve of the 1T CT specimen at -60 deg. C (3D analysis) 
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Fig. 5.15: Load-CMOD curve of the 1T CT specimen at -100 deg. C (3D analysis) 
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Fig. 5.16: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [3D analysis of 1T CT] 
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5.3 Prediction of probability of cleavage fracture in the transition regime 

using SEB specimens (3D analysis) 
 

Having used the 1T compact tension specimen for simulation of the ductile to brittle transition 

curve (fracture toughness vs temperature), we proceed to investigate the effect of specimen 

geometry and size on the variation of ductile to brittle transition curve of the material. In this 

section, the standard single edge notched bend (SEB) specimen with initial crack size to width 

ratio 0 0.522a W =  is used for simulation of the transition curve for fracture toughness. 3D 

analysis was used with the FE mesh shown in Fig. 5.17(a-b). The size of the elements ahead of 

the crack tip used here is the same as that used for the CT specimen simulation (i.e., 0.05mm x 

0.05 mm x 1mm) and one-fourth of the specimen is simulated taking the symmetry into 

account. 

 

 
 

Fig. 5.17(a): 3D FE mesh of the 1T SEB 
specimen 

Fig. 5.17(b): Enlarged view of Fig. 
5.17(a) near crack tip 

 
Figs. 5.18-19 show the predicted load-CMOD results of the SEB specimen at -20 and -100 

deg. C respectively and their comparison with respect to experimental response. It can be 

observed that the predicted load-CMOD results match very well with those of experiment. Fig. 

5.20 shows the variation of predicted fracture toughness of the SEB specimen with respect to 

temperature corresponding to 5% (open diamond), 50% (semi-open diamond) and 95% 

(closed diamond) probabilities of cleavage fracture. The experimental points are also plotted 

as open dots at various temperatures. It can be observed that numerical simulation results are 

able to successfully predict the observed experimental scatter for the whole transition 

temperature region of the material. 
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Fig. 5.18: Load-CMOD curve of the 1T SEB specimen at –20 deg. C (3D analysis) 
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Fig. 5.19: Load-CMOD curve of the 1T SEB specimen at –100 deg. C (3D analysis) 
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Fig. 5.20: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [3D analysis of 1T SEB] 
 
Master curves corresponding to 5% and 95% failure probabilities are also presented in Fig. 

5.20 and it can be observed that the numerical simulations results compare very well with 

those of master curve predictions (of the fracture toughness scatter band of the specimen) over 

the whole transition temperature region. Having demonstrated the ability of the combined 

nonlocal damage and Beremin’s model to simulate fracture toughness variation with respect to 

temperature in the whole transition region using CT and SEB specimens, we investigate the 

ability of the above combined model to predict the effect of specimen size and geometry on 

the ductile to brittle fracture toughness transition curve. 

 

5.4 Effect of specimen geometry on prediction of probability of cleavage 

fracture (CT vs SEB specimen) 
 

In this section, the effect of specimen geometry on the fracture toughness vs temperature curve 

is studied. Fig. 5.21 shows the predicted fracture toughness values (corresponding to different 

failure probabilities fP ) vs temperature for both 1T CT and 1T SEB specimens (3D analysis). 

It can be observed that fracture toughness results for SEB specimen are slightly higher 

compared to CT specimen and the effect is more pronounced in the higher end of temperature. 
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This may be explained from the fact that the SEB is a low constraint geometry compared to 

CT because of dominant bending loading and hence the fracture toughness corresponding to 

different probabilities of cleavage fracture are little higher compared to CT specimen. 

 

 

Fig. 5.21: Effect of specimen type on probability of cleavage fracture in the transition 
temperature region [1T CT vs 1T SEB] 
 
 
5.5 Effect of crack depth on prediction of probability of cleavage fracture 

(deep vs shallow cracked SEB specimens) 
 

In this section, the effect of initial crack depth on the fracture toughness vs temperature curve 

is studied. Two types of specimens (i.e., deep cracked SEB specimen with 0 0.522a W =  and 

shallow cracked SEB specimen with 0 0.13a W = ) have been used in experiment and their 3D 

numerical simulations have been done using the combined nonlocal damage and Beremin’s 

model. Fig. 5.22 shows the 3D FE mesh of the shallow cracked SEB specimen. The same 

mesh size and material parameters as discussed earlier for the deep cracked SEB specimen, are 

also used here. 

 

Figs. 5.23-25 show the comparisons of predicted load-CMOD results of the shallow cracked 

SEB specimen with respect to experimental results at three different temperatures of -10, -60 

and -100 deg. C respectively. It can be observed that the simulated results compare very well 
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with respect to those of experiment. Fig. 5.26 shows the predicted fracture toughness 

(corresponding to different failure probabilities fP ) vs temperature results for the shallow 

cracked SEB specimen. The experimental scatter is also plotted in Fig. 5.26 and the simulated 

fracture toughness variation (with respect to temperature) compares well with the experimental 

scatter. Master curves corresponding to 5% and 95% failure probabilities are also presented in 

Fig. 5.26 and it can be observed that the numerical simulations results compare very well with 

those of master curve predictions (of the fracture toughness scatter band of the specimen) over 

the whole transition temperature region. It may be noted that the η  factor formula of 

Sreenivasan and Mannan et al. (2000) for the shallow cracked SEB specimen has been used 

here for calculation of J -integral which has been later converted to the fracture toughness 

parameter ( JCK ).  

 

Fig. 5.27 shows comparison of the predicted fracture toughness vs temperature curves 

(corresponding to different fP ) between deep and shallow cracked SEB specimens. It can be 

observed that the fracture toughness results for the shallow cracked SEB specimen are much 

higher compared to the deep cracked SEB specimen and this effect is more pronounced in the 

higher end of the temperature of the transition region. This is because of the fact that the 

shallow cracked SEB specimen has a low constraint field compared to the deep cracked 

specimen and hence the fracture toughness corresponding to different probabilities of cleavage 

fracture are higher for the shallow cracked specimen. 

 

 
 

Fig. 5.22(a): 3D FE mesh of the 1T 
SEB (shallow cracked) specimen 

Fig. 5.22(b): Enlarged view of Fig. 5.22(a) near 
crack tip 
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Fig. 5.23: Load-CMOD curve of the 1T SEB (shallow cracked) specimen at –10 deg. C 
(3D analysis) 
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Fig. 5.24: Load-CMOD curve of the 1T SEB (shallow cracked) specimen at –60 deg. C 
(3D analysis) 
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Fig. 5.25: Load-CMOD curve of the 1T SEB (shallow cracked) specimen at –100 deg. C 
(3D analysis) 
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Fig. 5.26: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [3D analysis of 1T SEB (shallow crack)] 
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Fig. 5.27: Effect of crack depth on probability of cleavage fracture in the transition 
temperature region [1T SEB, deep vs shallow crack, 3D analysis] 
 
 
5.6 Effect of specimen size on prediction of probability of cleavage fracture 

(1T, 2T and 4T CT specimens) 
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Fig. 5.28: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [3D analysis of 2T CT], * stands for the 
value of JCK  which is not corrected for specimen size effect 
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In this section, the effect of specimen size on the fracture toughness vs temperature curve of 

the CT specimen is studied. For this purpose, three different CT specimens (1T, 2T and 4T as 

discussed in the fourth chapter) have been analyzed in the 3D domain. The results of 1T CT 

specimen are already presented in section 5.2. In this section, the comparison of simulated 

scatter in fracture toughness with respect to experiment for the 2T and 4T CT specimen is 

presented followed by the comparison among themselves. 
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Fig. 5.29: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [3D analysis of 4T CT], * stands for the 
value of JCK  which is not corrected for specimen size effect 
 
 
Fig. 5.28 and 5.29 compare the predicted fracture toughness (here the fracture toughness at 

instability has not been corrected for the specimen size and hence is denoted as *
JCK  instead of 

JCK  for the standard 1T CT fracture mechanics specimen) vs temperature curves 

(corresponding to different probabilities of failure fP ) for the 2T and 4T CT specimen 

respectively and it can be observed from the above figures that the predicted results are able to 

capture the experimental scatter satisfactorily. Master curves corresponding to 5% and 95% 

failure probabilities are also presented in Fig. 5.28 and 29 respectively for 2T CT and 4T CT 

specimens and it can be observed that the numerical simulations results compare very well 

with those of master curve predictions (of the fracture toughness scatter band of the specimen) 
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over the whole transition temperature region for both the specimens. Having compared the 

individual results of fracture toughness variation (with temperature for different probabilities 

of fracture) with experimental data, we proceed to study the effect of specimen size on the 

fracture toughness vs temperature curve (for different fracture probabilities) in the ductile to 

brittle transition temperature region. 

 
Fig. 5.30 shows the predicted fracture toughness (corresponding to different failure 

probabilities fP ) vs temperature for 1T, 2T and 4T CT specimens respectively. It can be 

observed that fracture toughness results for the larger specimens are smaller compared to the 

smaller specimens over the whole transition temperature range. This may be explained from 

the fact that larger specimens have more constraint at the crack tip and hence they show the 

greater tendency towards cleavage fracture at the same value of applied stress intensity factor 

compared to smaller specimens. 

 
 

Fig. 5.30: Effect of specimen size on probability of cleavage fracture in the transition 
temperature region [1T vs 2T vs 4T CT, 3D analysis] 
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In this section, the effect of specimen thickness on the fracture toughness vs temperature curve 
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thickness values of 10, 25 and 50mm (common width of 50mm) have been analyzed in 3D 

domain. The results of standard 1T SEB specimen (25mm thickness) are already presented in 

section 5.3. In this section, the comparisons of simulated scatter in fracture toughness with 

respect to experiment for the SEB specimens with 10 and 50mm thickness are presented 

followed by the comparison among the same SEB specimens of different thickness values. 
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Fig. 5.31: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [3D analysis of SEB with 10mm 
thickness and 50mm width], * stands for the value of JCK  which is not corrected for the 
specimen thickness 
 
Fig. 5.31 and 5.32 compare the predicted fracture toughness ( *

JCK  represents fracture 

toughness at instability not corrected for specimen thickness) vs temperature curves 

(corresponding to different fP ) for the SEB specimens with 10 and 50mm thickness values 

respectively and it can be observed from the above figures that the predicted results are able to 

capture the experimental scatter satisfactorily. Master curves corresponding to 5% and 95% 

failure probabilities for both the SEB specimens are also presented in Fig. 5.31 and 5.32 

respectively and it can be observed that the numerical simulations results compare very well 

with those of master curve predictions (of the fracture toughness scatter band of the specimen) 

over the whole transition temperature region for both the specimens. Having compared the 

individual results of fracture toughness variation with experimental data, we proceed to study 
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the effect of specimen thickness on the fracture toughness vs temperature curve in the 

transition region. 
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Fig. 5.32: Comparison of simulated (nonlocal damage) scatter of fracture toughness with 
experiment in the transition temperature region [3D analysis of SEB with 50mm 
thickness and 50mm width], * stands for the value of JCK  which is not corrected for the 
specimen thickness 
 
 

Fig. 5.33: Effect of specimen thickness on probability of cleavage fracture in the 
transition temperature region [SEB specimen with 10, 25 and 50mm thickness, 50mm 
width, 3D analysis] 
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Fig. 5.33 shows the predicted fracture toughness (corresponding to different failure 

probabilities fP ) vs temperature results for the three SEB specimens with same width, but of 

different thickness values. It can be observed that fracture toughness results for thicker 

specimens are smaller compared to thinner specimen over the whole temperature range. This 

may be explained from the fact that thicker specimens have more constraint at the crack tip 

(more plane strain condition) and hence they show the greater tendency towards cleavage 

fracture at same value of applied load compared to smaller specimens (plane strain region gets 

reduced because of free surfaces on both sides of the thickness which is small compared to 

other dimensions of the specimen). This effect is more pronounced towards higher end of the 

temperature scale in the ductile to brittle transition temperature region. 

 
5.8 Effect of material stress-strain curve on prediction of probability of 

cleavage fracture 
 

In this section, the effect of error in the extrapolated region of the material stress-strain curve 

on the fracture toughness vs temperature curve of the 1T CT specimen is studied. As discussed 

in section 4.15, we can have relative uncertainty during extrapolation of the true stress-strain 

curve from the experimental data points, which exist upto the ultimate tensile stress (UTS). As 

being discussed earlier, this error in extrapolation has a limited effect on the prediction of the 

fracture resistance curve of a material in the upper shelf region. However, we know that the 

stress-strain distribution gets modified due to the ductile damage development and this may 

affect the calculation of Weibull stress significantly. The aim of this study is to investigate the 

effect of slight change in the material stress-strain curve on the probability of cleavage fracture 

prediction in the transition region. Again, we know that at the lower shelf region, the plastic 

strains are low and they hardly exceed the strain at UTS and hence they may not affect the 

Weibull stress calculation for these low temperatures where there is large tendency to cleavage 

fracture at fairly low value of applied stress intensity factor JK . However, the same may not 

be true for the higher end of temperature in the transition region. 

 

For this purpose, the material stress-strain curves were slightly modified for their extrapolation 

beyond UTS for all the three temperatures (i.e., -20, -60 and -100 deg. C). The modification 

was done in such a way that the modified and the original stress strain curves coincide with 

each other upto UTS. After UTS, the true stress values of the modified curve is 10% less than 
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the true stress of the original curve for the same value of true plastic strain. The modified 

stress-strain curves along with the original curves for the material 22NiMoCr3-7 at these 

temperatures are shown in Fig. 5.34. 
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Fig. 5.34: Actual and modified true stress-strain curve of the material 22NiMoCr3-7 at three 
different temperatures in the transition region 
 
 

Fig. 5.35: Effect of material stress-strain curve on probability of cleavage fracture in the 
transition temperature region [1T CT with actual and modified stress-strain curve, 3D 
analysis] 
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Fig. 5.35 shows the predicted fracture toughness (corresponding to different failure 

probabilities fP ) vs temperature for the 1T CT specimen corresponding to the use of two 

different stress-strain curves (actual and modified). The fracture toughness results for both the 

stress-strain curves are almost same except those at -20 deg. C where the fracture toughness 

corresponding to 95% of probability of cleavage fracture shows a higher value for the analysis 

using modified stress-strain curve. It is because of the fact the modified stress-strain curve is 

slightly lower compared to the actual stress-strain curve especially for plastic strains beyond 

approximately 15%. Hence, the analysis using the modified stress-strain curve favours more 

plastic deformation and hence the probability of cleavage fracture reduces for the same value 

of applied fracture parameter JK  compared to the analysis using the original stress-strain 

curve. This is not prominent in the lower temperatures of -100 and -60 deg. C because the 

extent of plastic deformation is less for these temperatures. 

 
5.9 Effect of crack tip modelling on prediction of probability of cleavage 

fracture 
 

In this section, the effect of crack tip mesh design on the fracture toughness vs temperature 

curve of the 1T CT specimen is studied using 2D plane strain formulation. In this analysis, we 

usually use the rectangular mesh near the crack tip for analysis of crack growth simulations as 

well as prediction of fracture probability in the transition region. The rectangular mesh near 

the crack tip of the CT specimen is shown in Fig. 5.36. 

 

 

Fig. 5.36(a): Rectangular mesh near the crack tip 
for 1T CT specimen 

Fig. 5.36(b): Enlarged view of Fig. 
5.36(a) near crack tip 

 
In this crack tip modeling method, the crack is modeled by use of boundary conditions, i.e., by 

constraining some nodes along bottom line of the mesh (to prevent motion in vertical direction 



 142

only) and in this way, we can simulate an infinitely sharp crack. However, we know that 

cracks have always some finite tip radius and our effort here is to understand the effect of the 

crack tip radius on the fracture toughness variation (with respect to temperature) in the 

transition region. For this purpose, a spider mesh has been used for analysis as shown in Fig. 

5.37 with a crack tip radius of 20 micron. The results of analysis of both the crack tip 

modeling methods have been compared here. 

 

 

Fig. 5.37(a): Spider mesh near the crack tip for 1T 
CT specimen 

Fig. 5.37(b): Enlarged view of Fig. 
5.37(a) near crack tip 

 
 

Fig. 5.38: Effect of crack tip modeling on probability of cleavage fracture in the transition 
temperature region [1T CT, 2D plane strain analysis] 
 
Fig. 5.38 shows the predicted fracture toughness (corresponding to different failure 

probabilities fP ) vs temperature for the 1T CT specimen corresponding to the use of two 

different crack tip meshes (rectangular and spider). It can be observed that fracture toughness 
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results for both the mesh designs are almost same for the whole temperature regime (a little 

higher value of fracture toughness for the spider mesh compared to the rectangular mesh). It 

may also be noted that 2D plane strain analysis has been used here, as modeling the crack tip 

radius in 3D is more complicated and time consuming. 

 
5.10 Effect of characteristics length on prediction of probability of cleavage 

fracture 
 

In this section, the effect of characteristics length (of the nonlocal Rouseliier’s model) on the 

fracture toughness vs temperature curve of the 1T CT specimen is studied. As discussed in 

section 4.16, the value of characteristics length parameter lengthC  of the nonlocal model is a 

constant for a material and is determined by comparing the simulated J -resistance curve of a 

fracture mechanics specimen with that of experiment. We have used the value of lengthC as 0.05 

for all the analyses. The purpose of this section is to study the effect of lengthC on fracture 

toughness vs temperature curve and hence two different values of lengthC (i.e., 0.05 and 1.0e-5) 

have been used here for comparison. 

 
 

Fig. 5.39: Effect of characteristics length on probability of cleavage fracture in the 
ransition temperature region [1T CT, 3D analysis] 
 
Fig. 5.39 shows the predicted fracture toughness (corresponding to different failure 

probabilities fP ) vs temperature for the 1T CT specimen corresponding to the use of two 
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different values of lengthC . It can be observed that the fracture toughness results for the analysis 

using lengthC as 1.0e-5 shows higher values for same probabilities of cleavage fracture 

compared to the analysis where lengthC value of 0.05 is used. The reason for the above 

differences can be explained from the fact that with lower values of lengthC , the damage zone 

gets localized and hence the stress-strain distributions are modified in such a way that the 

Weibull stress gets reduced for the same value of applied load and hence less probability of 

cleavage fracture for the same value of applied JK . Hence, it may be concluded that the use of 

correct value of lengthC is required for accurate predictions of probability of cleavage fracture in 

the transition region of the material. 

 

In this chapter, simulations were carried out using combined nonlocal form of Rousselier’s 

model and the Beremin’s model to simulate the ductile to brittle transition curve of the 

material. It was observed that due to mesh independent nature of the nonlocal solutions, very 

small mesh sizes could be used ahead of crack tip and we were able to model small amounts of 

stable crack growth before the specimen fails by cleavage fracture process, which was not 

possible in case of local models. For this reason, the cleavage fracture probabilities in the 

transition region could be simulated well using a single set of Weibull parameter, which are 

temperature independent. Later, the effects of specimen size and geometry on the ductile to 

brittle transition curve were also successfully predicted. Hence, it is demonstrated that 

nonlocal models are very useful not only for mesh independent results in the upper shelf, but 

also for predicting the cleavage fracture probabilities in the transition temperature region of 

the material. 
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Chapter 6 

 

Conclusions, recommendations and scope of future research 

 

It is known that local damage mechanics models depend upon the use of a particular mesh size 

in order to predict the crack initiation and growth realistically in different specimens and 

hence the material parameters can be transferred to any component of the same material only 

if the same mesh size is used in the damage initiation and propagation zone. However, it 

looses the convergence property of the numerical solutions techniques (i.e., convergence of the 

solution with mesh refinement) because of loss of ellipticity of the governing PDEs. The 

purpose of the current research has been to develop a mesh independent form of the 

Rousselier’s damage model by incorporating the characteristic length parameter into the 

material constitutive equation. 

 

The above purpose has been achieved by deriving a characteristics diffusion type equation for 

the evolution of the nonlocal damage variable as a function of the local void volume fraction. 

The additional PDE has been solved along with the stress equilibrium equation of the 

mechanical continuum with the help of finite element discretisation. The nonlocal damage has 

been used as an additional degree of freedom in the FE model in addition to the three basic 

displacement degrees of freedom. The Neumann boundary condition has been used for the 

nonlocal damage degree of freedom. 

 

The consistent tangent stiffness matrices for the coupled displacement-damage domain has 

been derived and implemented in a finite element program DEFINE. The above program has 

been used to predict the load-displacement response and fracture resistance behaviour of 

different kinds of specimens with different mesh sizes. The work has two broad aims, i.e., 

demonstration of mesh-independent nature of nonlocal solutions and predictions of ductile-to-

brittle transition curve (by simulation of small amounts of crack growth realistically), which 

have been met with success. 

 

6.1 Conclusions 
 

The following broad conclusions can be drawn from the current work. 
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• The mesh dependency of local damage mechanics models has been removed by 

development of a new nonlocal formulation, which incorporates the material 

characteristic length parameter into the constitutive equations. 

• The main feature of the new nonlocal model is that the nonlocal damage variable is 

used as an extra DOF in the finite element model. The evolution of nonlocal damage 

variable is related to the local void volume fraction through a diffusion equation. 

Hence, the governing partial differential equation of equilibrium of the mechanical 

continuum is solved alongwith the damage diffusion equation with the necessary 

boundary conditions. 

• The new formulation has been used for numerical simulation of shear band 

development in a flat tensile specimen and the width of shear band is demostrated to be 

independent of FE mesh size. 

• In case of numerical simulation of a flat tensile specimen (with hole at the center), the 

normalised stress vs percentage of hole opening curve is demonstrated to be 

independent of mesh size. The size effect (larger specimens having lesser ductility and 

vice versa) is also successfully predicted. 

• In case of simulation of a standard fracture mechanics specimen (e.g., 1T Compact 

tension specimen), the load-CMOD and J-R curves are demonstrated to be mesh 

independent. The ductile to brittle transition curve (for fracture toughness) is also 

better predicted over the transition regime with prediction of small amounts of stable 

(ductile) crack growth before final fracture by cleavage. 

• The ductile to brittle transition curve (for fracture toughness) is also better predicted 

over the transition regime with prediction of small amounts of stable (ductile) crack 

growth before final fracture by cleavage. 

• For the 1T Single edge bend (SEB) specimen, the load-CMOD and J-R curves are 

demonstrated to be mesh independent. The ductile to brittle transition curve (for 

fracture toughness) is also better predicted over the transition regime with prediction of 

small amounts of ductile crack growth. 

• Geometry and size effect (effect of specimen type, crack depth, thickness and 

specimen size etc.) of the different fracture mechanics specimens on the J-resistance 

curve are satisfactorily modeled. 
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• The problem with symmetric boundary conditions could be modeled accurately by the 

nonlocal model whereas the local model shows different results for the symmetric 

model and the full model (without use of symmetric boundary conditions). This is an 

important advantage of nonlocal simulation. 

• Geometry and size effect of the specimens on the ductile to brittle fracture toughness 

transition curve are satisfactorily modeled. 

• For FE mesh with very fine elements (of the order of 10 to 20 micron or less), the 

deformation is very high and this creates convergence problem for FE simulation of 

large amounts of crack growth. One needs to incorporate the hyper-elastic formulation 

based on the multiplicative decomposition of deformation gradient or Arbitrary 

Lagrangian Eulerian (ALE) methods in order to proceed further. 

• For simulation of ductile to brittle transition curve for fracture toughness of the 

materials, 3D simulation results are better than those of 2D plane strain simulation, 

however these are computationally expensive. 

• In this work, 3D simulation of probability of cleavage fracture of CT and SEB 

specimens has been carried out without modeling the side groove in the specimens 

(which can increase the number of degrees of freedom of the FE model significantly). 

However, it is expected that better prediction of the ductile to brittle transition curve 

for fracture toughness may be achieved with the use of FE mesh with side-groove for 

the fracture mechanics specimens. 

 

6.2 Recommendations 
 

Based on the above work, the following points can be recommended for successful simulation 

of load response and fracture behaviour of engineering components for their safe operation in 

the upper shelf, lower shelf and the transition regions of temperature. 

 

• For simulation of crack growth in components with very high stress gradients, one 

needs to go for fine mesh in order to simulate the stress gradients satisfactorily. If there 

is need to predict the load response of the components considering material damage, 

then one cannot use the local damage mechanics models (which require a mesh size of 

a particular characteristics length which can be too coarse for the steep stress gradient) 

and hence one should resort to nonlocal models for such cases. 
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• The characteristics length parameter lengthC for the material needs to be determined (by 

comparing simulated results with experimental fracture resistance curve of a standard 

fracture mechanics specimen) before one proceeds for nonlocal simulation of an actual 

component. 

 

• If computational resource is available, it is advisable to model the component in 3D 

with fine mesh (in all direction) in the crack propagation zone. This is especially 

helpful to predict the probability of cleavage fracture in the transition region. If 

possible, one may use the adaptive mesh refinement techniques or the Arbitrary 

Lagrangian Eulerian (ALE) formulation. 

 

6.3 Scope for future research 
 

The work carried out in this thesis can be extended in several ways as described below. 

 

• Incorporation of hyper-elastic based formulations in the FE model to simulate very 

large strain. 

 

• Development of a damage mechanics model to simulate crack growth with cyclic 

loading, i.e., for low cycle fatigue crack growth simulations. 

 

• Simulation of bimetallic welded joints for studying the effects of material properties on 

the path of crack propagation. 

 

• Development of mesh free methods for simulations of ductile crack growth where one 

can use very high order interpolation functions (to take care of crack tip singularity) 

and less number of nodes in the domain so that crack growth in engineering 

components (dimensions of several meters) can be realistically simulated with 

available computational resource. 
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Appendix A 
 
Rousselier’s model 
 

This model for the yield potential considering the effcet of porosity was developed by 

Rousselier (1980) using thermodynamic principles considering isotropic hardening and cavity 

growth inside a ductile material. There is also some damage coupling with elasticity through 

the density ( ρ ) change of the material. From the thermodynamics principle of maximum 

plastic disspation in a material (plastic work is a function of stress ijσ  and plastic strain p
ijε  

fields, equivalent stress and strain of the matrix material, hardening variable r and the ductile 

void voulme fraction f ), we can write 

 1 0p
ij ij Rr Ffσ ε

ρ
− + ≥  (A.1) 

where F is the associated thermodynamic force conjugate to f  and R  is the material 

resistance (true stress-strain curve) correspodning and conjugate to the equivalent plastic strain 

 or p
eq pε  in the material matrix. The density in the undamaged state is taken as 1 and hence 

after evolution of void voulme fraction f , density can be calculated as 1 fρ = − . Assuming 

additivity, one can separate the one-to-one dependence of ( )R R r= and ( )1F h f−= . The 

existence of a plastic potential is postulated as the sum of two terms, using the first and second 

stress invariants (i.e., hydroσ  coupled with F and eqσ  coupled with R ), hence one can write 

 1 2, ,eq hydroR F
σ σ

φ
ρ ρ

⎛ ⎞ ⎛ ⎞
= Φ + Φ⎜ ⎟ ⎜ ⎟
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 (A.2) 

Rousselier (1980) assumed the simplest forms for 1 2and Φ Φ  as 

 
( )

1

2

eq

hydro

R

g h F

σ
ρ

σ
ρ

Φ = −
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 (A.3) 

Again, the normality conditions for plastic flow can be written as 

 
( )

1

21 1
3 3

p
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hydrop
hydro

hydro
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ε λ λ
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 (A.4) 



 163

where  and p p
ij hydroε ε′  are the increments in deviatoric and hysdrostatic parts of plastic strain 

tensor respectively. λ  is the proportionality constant or the plastic multiplier and it can be 

shown to be equal to the incerement in von-Mises equivalent plastic strain, i.e., p . Similarly, 

the normality rules for evolution of isotropic hardening variable r and the void volume 

fraction f can be written as 

 
( )hydro

r p
R

f g h F p
F

λ λ

σ
λ

ρ

∂Φ
= − = =

∂
⎛ ⎞∂Φ ′= = ⎜ ⎟∂ ⎝ ⎠

 (A.5) 

The matrix material is postulated to be incompressible (neglecting the volumetric part of 

elastic strain) and hence the density can be written as (considering initial void volume fraction 

as 0f ) 

 ( )
( )0

1
1

f
f

ρ
−

=
−

 (A.6) 

The increase in void volume fraction (due to hydrostatic part of plastic strain tesnor) can be 

written as 

 ( )3 1 p
hydrof f ε= −  (A.7) 

Rousselier (1987) demonstrated that the functions and g F can be shown to be 

 

0

exp
 

ln
1

hydro hydro
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g D

fF F
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σ σ
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σ
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 (A.8) 

where 0,   and kD Fσ constants of the Rousselier’s model. The initial void volume fraction 0f  

is also another parameter of the Rousselier’s model. Using Eqs. (A.3) and (A.8), Eq. (A.2) can 

be written as 
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From Eq. (A.8), the increment in deviatoric and hydrostatic part of plastic strain tensors can be 

written as 
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where ijσ ′  is the deviatoric part of stress tensor. It may be noted that choosing a positive value 

for 0F  (i.e., 0
0

0

ln
1k

fF
f

σ
⎛ ⎞

= − ⎜ ⎟−⎝ ⎠
) will lead always to a positive value of F and F will also be 

a increasing function with respect to f . This conditions satisfies the thermodynamic condition 

for positive plastic dissipation. Taking into account the effect of nucleation is also possible by 

adding a term (i.e., ( ) or 1Ap A f p− ) to the increase in void volume fraction f . This can also 

satisfy the condition of positive plastic dissipation. In order to describe the process of void 

coalescence and subsequent ductile fracture in Rousselier’s model, it may be useful to 

accelerate the void volume fraction f when it exceeds the critical void volume fraction cf  for 

coalescence. 
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