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Summary 
 
 
The functionality of the intracellular reaction network in a Corynebacterium glutamicum 
valine production strain was investigated with special focus on the valine / leucine 
biosynthesis pathway. The aim was to gain a quantitative understanding of the behaviour of 
the reaction network. The methods required to do so were developed, and enzyme targets for 
the further optimisation of the investigated strain were identified.  

The intracellular metabolite concentrations were observed during a transient state by 
performing a glucose stimulus experiment. A mathematical model describing the in vivo 
reaction dynamics of the valine / leucine pathway was developed and a metabolic control 
analysis was performed based on the data from the stimulus experiment and the dynamic 
model. The thermodynamic driving forces in the valine / leucine pathway were analysed. 

The optimal procedure for the stimulus experiment with respect to obtaining a useful data 
set for the modelling and analysis was identified. Samples were taken at sub-second intervals 
and the concentrations of 26 metabolites from the valine / leucine pathway and the central 
metabolism were measured. A very fast response to the stimulus was observed in most 
intracellular metabolites with for example a 3-fold increase in the pyruvate concentration 
within one second. The connectivities of the metabolites around the ketoisovalerate 
branchpoint were investigated using a time series analysis. The difference in metabolite levels 
and stimulus reaction at two different physiological states was demonstrated.  

The kinetic model consisted of a system of differential equations defined by setting up 
material balances on the metabolites. Splines were used to represent the unbalanced 
metabolites in the reaction system and the reaction rate equations were defined using linlog 
kinetics. The model can simulate the concentrations and fluxes in the valine and leucine 
pathway accurately during the transient state. The implementation of a model selection 
criterion based on the second law of thermodynamics was demonstrated to be essential for the 
identification of realistic and unique models. Large differences between the enzyme 
properties determined in vitro and those determined in vivo by the model were observed with 
the in vivo maximal rates being almost an order of magnitude larger than the in vitro maximal 
rates. The transamination of ketoisovalerate to valine is carried out mainly by the 
Transaminase B enzyme with the Transaminase C enzyme playing a minor role. The 
availability of the cofactors NADP and NADPH has only modest influence on the flux 
through the valine pathway while the influence of NAD and NADH on the flux through the 
leucine pathway is negligible.  

Other, alternative methods of setting up a kinetic model were also investigated. The 
alternative models included a mechanistic model of the valine / leucine pathway and a large 
linlog model of the whole metabolism of the strain. The mechanistic model was not capable 
of simulating the measured concentrations due to the limitations of its elasticities. The 
instability of the whole cell model made it inappropriate for a metabolic control analysis and 
further interpretation. However, the simulation of the whole metabolism of the strain provides 
a proof of concept for the whole cell modelling approach and shows in which direction 
metabolic modelling will develop in the future.  

Both data driven and model based methods were used to analyse the control hierarchy in 
the valine / leucine pathway. In addition, predictions of the effect of changes in the enzyme 
levels were made based on the model. In an optimisation study the enzyme levels were 
optimised with respect to the valine flux. Based on the acquired understanding of the 
behaviour of the reaction network the following targets for further strain development were 
identified:  

 
 



 viii 

1. Overexpression of the valine translocase 
2. Implementation of an inhibition resistant AHAS enzyme and possibly further 

overexpression. 
3. Removal of the overexpression of the gene coding for DHAD on the plasmid to 

save the cell the burden of overproducing this enzyme which has negligible 
influence on the valine flux. 

4. Modification of the central carbon metabolism to increase pyruvate availability. 
 
The identification of the targets for strain development demonstrates the usefulness of a 
kinetic model in metabolic engineering and in the general understanding of metabolic control. 

The concentration data and the kinetic model were used to analyse the thermodynamic 
driving force, i.e. the reaction affinity, in the valine / leucine pathway. The concept of a 
reaction resistance was introduced to relate the driving force to reaction rate in analogy with 
Ohm’s law. This provides a new angle of analysing metabolic networks. A correlation 
between enzyme level and reaction resistance was found, but a number of other factors also 
influence the resistance. The linear relation between reaction rate and affinity which apply for 
uni-uni reactions can not be assumed to be valid for bi-bi reactions operating far from 
equilibrium. This is demonstrated through theoretical considerations and confirmed by 
experimental observations. Thus the assumption of linearity can not be used to analyse 
metabolic systems. The reaction resistance must therefore be considered a system variable. 
The theory of metabolic control analysis was extended to include also the reaction potential 
and the reaction resistance. Reactions far from equilibrium are controlled almost entirely 
through the changes in the resistance while reactions closer to equilibrium are also affected by 
changes in the affinity. The reaction system is kept stable through a high degree of self-
organisation.      
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1 Introduction 1

1 Introduction 

1.1 The Cellular Reaction System 

From an engineering point of view a biological cell has many similarities with a Continuous 
Stirred Tank Reactor (CSTR). Both the cell and the CSTR are open systems where chemical 
reactions take place within a confined space. In a CSTR feed is entering the reaction space 
continuously and is converted through chemical reactions to a product which is leaving the 
reactor continuously. This is no different from a biological cell used for the industrial 
production of a chemical. A carbon source such as glucose and a nitrogen source such as 
ammonia enter the cell and a product such as an amino acid is excreted as is illustrated in 
Figure 1-1.  
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Figure 1–1: The cell as a chemical reactor. The central part of the metabolic reaction network of a 
valine producing Corynebacterium glutamicum strain is shown. Glucose is taken up from the medium 
and transformed to the amino acid valine in a series of chemical reactions (depicted with a grey 
frame). 
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The difference between a cell and a CSTR lies first of all in the complexity of the reaction 
system. A bacterial cell contains several hundred different chemical species (metabolites) that 
react with each other through a reaction network where each metabolite may take part in 
many different reactions. Each reaction is catalysed by an enzyme which is specific to that 
reaction. The activity of the enzymes, and therefore the reaction rates, are regulated through 
allosteric effects so also metabolites that are not reaction partners in a reaction can influence 
the reaction rate. It is therefore not so useful to think of metabolism as a number of 
independent reactions, rather it is a highly interconnected reaction network of metabolites that 
interact in a complex manner. The complexity, in combination with the often poor 
observability of the intracellular concentrations, sets additional requirements to the analysis of 
a cellular reaction system. However, within applications in industrial biotechnology the cell 
can be thought of as a complex chemical reactor.  

In order to understand the reaction network that constitutes cellular metabolism, it must be 
analysed as a system. Detailed knowledge of the individual parts of the metabolic system is in 
itself not enough, the information must also be integrated to explain the behaviour of the 
system since all parts interact with each other. This line of thought has gained increasing 
recognition in recent years and has led to the birth of Systems Biology. Systems Biology is a 
new scientific field which attempts to utilise all available data on genes, proteins and 
biochemical reactions in order to unravel the logic that underlie cellular processes.  Leroy 
Hood, the president of the Institute of Systems Biology in Seattle has defined Systems 
Biology as “... the science of discovering, modelling, understanding and ultimately 
engineering at the molecular level the dynamic relationship between the biological molecules 
that define living organisms” (www.systemsbiology.org). Systems Biology takes a holistic 
approach rather than the reductionist approach often taken in molecular biology. The idea of 
holistic thinking can be applied to all fields of science and goes back to Aristotle who, in his 
work Metaphysics, states that “the whole is more than the sum of its parts”. The fundamental 
idea in Systems Biology is that “the cell is more than the sum of its genes, enzymes and 
metabolites”.  

Understanding the reaction systems in cells is important not only in providing insight into 
the biology of cells in general, but is also central in the field of Metabolic Engineering. This 
discipline deals with the improvement of cellular activities by manipulation of enzymatic, 
transport and regulatory functions of the cell with the use of recombinant DNA technology 
(Bailey, 1991). The methods of Metabolic Engineering are often applied in order to increase 
the productivity of industrial production strains or to introduce new pathways in 
microorganisms with the aim of producing novel metabolites. Manipulation of metabolic 
systems was traditionally achieved through random mutation and selection and in this way the 
productivity of for instance the Penicillium chrysogenum strains used for penicillin 
production was increased more than 500 times from that of the original strains (Nielsen, 
1998). While this approach of trial and error has proved to be fruitful, it is relatively labour 
intensive and slow, and may lead to an accumulation of unwanted mutations. With the rapid 
development of recombinant DNA technology, it became possible to introduce specific, 
targeted changes to the genome and the discipline of Metabolic Engineering emerged. 
However, given the high degree of complexity in metabolic systems it is seldom intuitively 
clear which genetic alterations will provide the desired change in phenotype. Thus there is a 
need for rigorous methods in order to obtain the detailed understanding required.  

In the presented work a recombinant Corynebacterium glutamicum strain for the production 
of valine is used as a model organism. Corynebacterium glutamicum is an aerobic gram-
positive bacterium widely used for the industrial production of amino acids, especially 
glutamate and lysine (Eggeling and Sahm, 1999; de Graaf, 2000). Its metabolism has 
therefore been the subject of extensive research (Sahm et al., 2000) and its complete genome 
has been sequenced (Kalinowski et al., 2003). Besides glutamate and lysine, valine also 
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represents a commercially interesting product with applications in the cosmetic and 
pharmaceutical industry. The annual world production of valine in 2001 was about 500 tons 
(Eggeling et al., 2001). 

 

1.2 Metabolomics 

The importance of metabolomics in the quantitative understanding of biological systems has 
gained increasing recognition in recent years and metabolomics is now acknowledged as a 
key technology in Systems Biology (Weckwerth, 2003). Since the intracellular concentrations 
are the variables of biological reaction networks, accurate measurements of these 
concentrations are essential. In particular, the observation of how the intracellular 
concentrations change in response to changes in the extracellular environment can provide an 
understanding of the reaction system and give insight into the functionality of the enzymes in 
the cell. Such data may be interpreted directly using statistical methods, or they may form the 
experimental basis of a mathematical model of the metabolism.  

With the continuous improvement of accurate analytical devices such as mass 
spectrometers, the field of metabolomics has developed rapidly. Even so, metabolomics is 
still in its early phase of development. Only a relatively small proportion of the 600 – 700 
metabolites present in a Corynebacterium glutamicum cell grown on minimal medium can be 
quantified with reasonable accuracy (Strelkov et al. 2004). The pentose phosphate pathway 
intermediate erythrose-4-phosphate (E4P), for instance, is the precursor of the aromatic amino 
acids and is therefore a central metabolite in the metabolism, but to date this metabolite 
proves difficult to measure due to its chemical instability (Williams et al., 1980; Ruijter and 
Visser, 1999). A method for measuring this metabolite was developed at the Research Centre 
Jülich recently. However, the limited number of metabolites that can be accurately measured 
is a restricting factor in setting up kinetic models.  

A technique referred to as a stimulus-response experiment (Oldiges and Takors, 2005) or a 
pulse experiment (Theobald et al., 1993 and 1997; Weuster-Botz, 1997) provides data 
particularly useful for the identification of kinetic models of the metabolism (Oldiges and 
Takors, 2005). The concentration of an extracellular metabolite, typically glucose, is rapidly 
increased in the culture and the response in the cells is measured by collecting samples using 
a rapid sampling technique with immediate quenching of the metabolism and subsequent 
extraction and chemical analysis of the intracellular metabolite concentrations. In this way the 
metabolism in the cell is shifted away from its steady state, and time series of the intracellular 
metabolite concentrations during the transient state are obtained. The quality and usefulness 
of the data depends on the state of the bacterial culture at the time of the glucose addition and 
thus on the fermentation preceding the experiment.  

The valine / leucine pathway is particularly suitable for this type of investigations because 
it can be expected that the glucose stimulus will have a strong effect on the valine / leucine 
pathway leading to large changes in the concentrations of the pathway intermediates. Glucose 
is taken up by the phosphotransferase system which converts one molecule of phosphoenol-
pyruvat to pyruvate for every glucose molecule that passes the membrane. The glucose 
stimulus will therefore have a direct effect on the pyruvate concentration. Since the valine / 
leucine pathway starts with two pyruvate molecules condensing to form one acetolactate 
molecule, the first intermediate in the pathway, acetolactate should be particularly sensitive to 
changes in the pyruvate concentration and thus to the glucose stimulus.  
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1.3 Modelling and Simulation 

Given the complexity of metabolic reaction networks a mathematical model is clearly an 
essential tool in order to understand the network as a system (Bailey, 1998; Wiechert, 2002). 
Once a model describing the reaction kinetics and the intracellular metabolite concentrations 
of the metabolic network is established, the complexity becomes manageable and the network 
can be understood at a new level. An adequate kinetic model can be used not only to analyse 
the control hierarchy in the reaction system at the enzyme level, but can also give quantitative 
predictions of the change in fluxes and concentrations following a change in an enzyme 
activity. Thus mathematical modelling has become one of the most important techniques in 
Metabolic Engineering (Nielsen, 1998).  

Several structured kinetic models of in-vivo metabolic networks describing the metabolite 
dynamics at the enzyme level have been developed during the last decade. These studies 
include the penicillin pathway in Penicillium chrysogenum (Pissara et al., 1996), glycolysis 
and the pentose phosphate pathway in Saccharomyces cerevisiae (Rizzi et al., 1997 and 
Vaseghi et al., 1999), the lysine pathway in Corynebacterium glutamicum  (Yang et al., 
1999), the central carbon metabolism in Escherichia coli (Chassagnole et al., 2002) and many 
others (Olivier and Snoep, 2004).  

Although many enzymes have undergone extensive investigation in-vitro, there is little data 
available in literature on the in-vivo kinetic properties since the exact in-vivo conditions are 
difficult or even impossible to reproduce in-vitro. Kinetic constants such as Michaelis - 
Menten constants found in-vitro for instance can not be assumed to be valid for the in-vivo 
conditions (Wright and Kelly, 1981; Teusink et al., 2000), because they are normally 
measured at different a pH, different ion concentrations, and without the influence of the 
many other species present in the cytosol. Therefore, model-based analysis is an appropriate 
way to extract mechanistic understanding of experimental observations of the intracellular 
metabolite concentrations ultimately aiming at the understanding of the in-vivo kinetics. 
Kinetic modelling can be seen as a complex in-vivo enzyme study where many enzymes are 
investigated simultaneously and where their function as parts of a reaction system is analysed.  

In a kinetic model each modelled reaction rate must be assigned a rate equation. These are 
most commonly based on the enzyme reaction mechanism. Recently a non-mechanistic rate 
equation, the so-called linlog kinetic equation, was suggested used for metabolic modelling 
(Hatzimanikatis et al., 1996 and 1998; Hatzimanikatis and Bailey, 1997; Visser and Heijnen, 
2003). This type of kinetic equation is based only on the stoichiometry and the allosteric 
regulation of the enzyme so the information about the order at which the substrates and 
products bind to and leave from the enzyme is lost. However, it was demonstrated that this 
type of kinetics was able to describe the dynamics of metabolic pathways well, and that it was 
also suitable for design. (Visser et al., 2004a). An advantage of the linlog approach is that 
fewer parameters are required in the model, and that the parameters are easy to interpret. 

A kinetic model should be set up according to the experimental data available for model 
identification. One could argue that a model should not contain any metabolites or reactions 
for which there are no experimental data available to verify the simulated concentrations or to 
fit the parameters of the reaction rates. Also, including metabolites that have not been 
measured increases the parameter space of the model without increasing the empirical basis, 
which can result in a loss of accuracy and predictive power. However, excluding central 
metabolites means that one misses feedforward or feedback effects resulting from the 
stoichiometry and the regulatory structure of the network. The modeller is therefore forced to 
make a compromise and must build the model he considers most relevant taking the network 
under study, the available measurements and the intended purpose of the model into account.  
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1.4 Metabolic Control Analysis 

The cell controls its intracellular metabolite concentrations and fluxes by regulating the rates 
of the reactions in the cell. The activities of the enzymes catalysing the reactions in the 
network are controlled at the metabolome level through inhibition and activation effects. In 
addition the transcription and translation of the genome for the synthesis of new enzymes is 
controlled through various regulation mechanisms. These intricate control mechanisms make 
it possible for the cell for example to adapt its metabolism to a wide range of extracellular 
conditions, to grow on different energy sources, to coordinate the synthesis of all 20 amino 
acids as required for protein assembly and to avoid an uncontrolled rise or fall of intracellular 
metabolite concentrations which would be damaging to the cell. The theoretical framework 
that is used to analyse this control structure in a quantitative manner is referred to as 
Metabolic Control Analysis (MCA). Through MCA an understanding of the control of the 
system as a whole can be obtained, something which can not be achieved by analysing the 
system components separately. Since the enzymes with the highest control of a flux will be 
the target enzymes in a metabolic engineering project, MCA is one of the most important 
techniques in the analytical part of metabolic engineering.  

The theory of MCA was developed by Kacser and Burns (1973) and Heinrich and Rapoport 
(1974). Later, a common nomenclature was agreed on which has been the standard since then 
(Burns et al., 1985). By using sensitivity analysis MCA provides a measure for the extent of 
control that the system parameters have on the fluxes and metabolite concentrations in the 
network. In this way the level of control that a specific enzyme activity has on the flux 
through the entire pathway can be obtained. The strength of MCA lies in its ability to analyse 
the global properties of the reaction system. Furthermore, the conclusions of MCA are 
quantitative, i.e. rather than the qualitative conclusions typically reached by more intuitive 
approaches, MCA gives a quantitative description of how the control is distributed on the 
various system components and parameters. 

The analysis of an intracellular reaction network requires information on the in-vivo 
functionality of the participating enzymes. Some knowledge, on for example reaction 
mechanisms, can be obtained by in-vitro enzyme studies, but in general some type of in-vivo 
experimental data must be available.   

 

1.5 Thermodynamic Analysis 

The simplicity and fundamental nature of thermodynamics makes it a universally applicable 
theory with a great power of explaining physical phenomena. This was recognised for 
example by Albert Einstein who referred to thermodynamics as “… the only physical theory 
of universal content concerning which I am convinced that, within the framework of 
applicability of its basic concepts, it will never be overthrown” (Einstein, 1949). 
Thermodynamics therefore has a great potential as a method of analysing cellular reaction 
networks which are both complex and difficult to observe. In particular, thermodynamics can 
contribute to the understanding of how a metabolic network functions as a system. As such, 
thermodynamics becomes an important tool for metabolic engineering.  

A biological cell is a prime example of an open thermodynamic system where mass and 
energy can flow over the system boundary. The branch of thermodynamics dealing with open 
systems is called non-equilibrium thermodynamics since such systems will contain non-zero 
thermodynamic forces and will therefore not be at equilibrium. Non-equilibrium 
thermodynamics was developed from classical thermodynamics and focuses primarily on the 
entropy production in irreversible processes. The first step in developing the theory of non-
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equilibrium thermodynamics was taken by Lars Onsager when he published his reciprocal 
relations in irreversible processes (Onsager, 1930 and 1931). Later the theory was developed 
further by Ilya Prigogine with the analysis of dissipative structures (Prigogine and Lefever, 
1968). Both Onsager and Prigogine received the Nobel Prize in chemistry for their 
contributions (Onsager in 1968 and Prigogine in 1977).  

In some of the more recent publications various aspects of metabolic networks are 
investigated by applying thermodynamic principles. Examples include the feasibility analysis 
of biochemical pathways based on the Gibbs free energy of the reactions (Mavrovouniotis 
1993 and 1996), the combination of an energy balance with the traditional material balances 
in a metabolic flux analysis (Beard et al., 2002 and 2004), the inclusion of thermodynamic 
considerations in metabolic network analysis (Schilling et al., 2000; Holzhütter 2004; 
Hatzimanikatis et al., 2005), metabolic control analysis based on a thermokinetic description 
of the reaction rates (Nielsen 1997) and the inclusion of thermodynamic constraints in the 
development of kinetic models (Magnus et al., 2006). Qian and Beard also suggested a link 
between the level of gene expression and the ratio of flux to Gibbs free energy of reaction 
(Qian et al., 2003) and provided a more general thermodynamic formalism for the study of 
biochemical reaction networks (Qian and Beard 2005). Thermodynamic principles were 
applied in the investigation of real systems such as the pathways for penicillin production in 
Penicillium chrysogenum (de Noronha Pissarra and Nielsen 1997), the complete E. coli 
metabolism (Beard et al., 2002) and the regulation and control structure in hepatocyte 
metabolism (Beard and Qian 2005).  
 

1.6 Objective 

In the presented thesis the intracellular reaction network of the valine synthesis pathway in a 
recombinant Corynebacterium glutamicum is analysed and modelled. Special focus is set on 
the valine / leucine biosynthesis pathway. The overall aim is to gain a systemic understanding 
of the dynamic behaviour of this reaction system and to develop the general methods required 
for such investigations. In this respect the investigation follows the holistic philosophy of 
Systems Biology. The investigation also aims to use the acquired understanding to identify 
the target enzymes for further strain optimisation and therefore constitutes the analytical part 
of a metabolic engineering project of this strain. It is the first time that such an investigation 
has been carried out for the valine / leucine pathway. 

It should be noted that the investigation analyses the reaction system on the metabolome 
level. The analysis of the genome, the transcriptome and the proteome is not part of the 
investigation presented here.  

More specifically the part aims are formulated as follows: 
 
Metabolomics: 
 

- To establish the optimal experimental procedure for a glucose stimulus experiment 
with respect to obtaining a useful data set for the modelling and further analysis.  

- To monitor the intracellular concentrations in the valine / leucine pathway and the 
central metabolism during the transient state following a glucose stimulus experiment.  

- To investigate the applicability of a statistical method (a time series analysis) to 
analyse the connectivities of the metabolites in the network based on the measured 
metabolite time courses.  

- To compare the effect of a glucose stimulus on the cell at two different physiological 
states. 
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Modelling and simulation: 
 

- To establish a kinetic model that describes the reaction dynamics of the valine / 
leucine pathway.  

- To develop further methods for dynamic modelling of metabolic reaction networks. 
- To test the applicability of mechanistic and linlog reaction rate equations for dynamic 

models. 
- To develop a whole cell model of the Corynebacterium glutamicum strain and test the 

whole cell modelling approach with the metabolome data.  
 
Metabolic Control Analysis: 
 

- To investigate the control hierarchy in the valine / leucine pathway and obtain 
quantitative measures for control by using the classical theory of MCA as well as 
other data driven and model based methods.  

- To identify the target enzymes for the further strain optimisation.  
 

Thermodynamic analysis: 
 

- To analyse the role of the thermodynamic forces in metabolic reaction networks and to 
establish the required methods based on the principles of non-equilibrium 
thermodynamics. 

 
 

Metabolomics

Quantitative description of metabolism and flux control

Identification of targets for strain optimisation

Thermodynamic
analysis

Metabolic Control
Analysis

Modelling and
simulation

1. Observation

2. Interpretation

3. Understanding

4. Application

 
 
Figure 1–2: General procedure of the investigation. The first step in the investigation is to observe the 
system which is investigated. In practise this means to measure the intracellular metabolite 
concentrations and to monitor how they change under transient conditions (metabolomics). In the 
second step three different methods are used to interpret the data. The development of a kinetic 
model permits a quantitative simulation of the reactions and metabolite concentrations in the network. 
The data and the established model can then be used to analyse the control structure of the reaction 
network using the framework of Metabolic Control Analysis and to analyse the thermodynamic 
properties using the theory of classical and non-equilibrium thermodynamics. This will provide a 
deeper understanding of the metabolism and how the fluxes in the cell are controlled at the enzyme 
level. Finally one may apply the acquired understanding to identify targets for strain optimisation.  
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1.7 Structure of the Thesis 

There are four central topics in this study. These are: Metabolomics, Modelling and 
Simulation, Metabolic Control Analysis and Thermodynamic Analysis. Methods from these 
disciplines are used to achieve the overall aim of the thesis as explained in Figure 1-2. Each of 
the four disciplines builds on each other and is part of an integrated study.  

In Chapter 2 the materials used in the investigation are described. Chapter 3 and 4 present 
the experimental and theoretical methods and also describe how these methods were used 
within the investigation. Chapters 5, 6, 7 and 8 then presents the results achieved within 
Metabolomics, Modelling and Simulation, Metabolic Control Analysis and Thermodynamic 
Analysis respectively.  

During the course of the investigation several modelling strategies were used for the 
development of the model. The optimal model with respect to the overall aim turned out to be 
a linlog model of the valine and leucine synthesis pathways. This model is presented as the 
main result in the modelling and simulation part in Chapter 6. In Chapter 9 two other models, 
namely a mechanistic model of the valine / leucine pathways and a model of the whole 
metabolism of Corynebacterium glutamicum, are presented.  

Each of the chapters 5 – 9 present the results and also give a discussion of these within each 
of the sub topics. In Chapter 10 a general, overall discussion and conclusion of the results is 
given as well as an outlook on what results can be achieved in the future. 
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2 Materials 

2.1 Strain 

The recombinant valine production strain Corynebacterium glutamicum ATCC 13032 
∆panBC∆ilvA pJC1ilvBNCD (Radmacher et al., 2002) was used as a model organism. The 
strain is isoleucine auxotroph due to the deletion of the threonine dehydratase gene ilvA, and 
pantothenic acid auxotroph due to the deletion of the panBC genes. The genes corresponding 
to the first three enzymes in the valine pathway, acetohydroxyacid synthase (ilvBN), 
acetohydroxyacid isomerase (ilvC) and dihydroxyacid dehydratase (ilvD), are overexpressed 
on a plasmid to increase valine production (See Figure 2-1). A kanamycine resistance gene on 
the plasmid applies the necessary selection pressure to avoid loss of plasmid during the 
fermentation.  

 

 
 

Figure 2–1: The genetic modifications in the isoleucine, valine and pantothenic acid pathways applied 
in the Corynebacterium glutamicum strain. Deletion is signified by a cross and the overexpressed 
genes have been given black frames. Note that the reactions in the isoleucine and valine pathways 
are catalysed by the same enzymes. The deletion of the threonine dehydratase inactivates the whole 
isoleucine pathway so that the enzymes common to both pathways are fully available to catalyse the 
reactions in the valine pathway. The deletion of the pantothenic acid pathway ensures that no flux is 
diverted away from valine at the ketoisovalerate branchpoint. Leucine is also derived from 
ketoisovalerate, but since the leucine pathway is well regulated at the transcriptome level there was no 
need to make any changes to the leucine pathway.  
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2.2 Cultivation medium  

A complex medium based on yeast extract (LB-medium) was used for the precultures. For the 
main fermentations the mineral medium CGXII (Keilhauer et al., 1993) was used. 
Supplementary trace elements were added according to Weuster-Botz et al. (1997). In 
addition, the medium contained 0.24 mg/l pantothenic acid, 0.144 g/l isoleucine and 25 mg/l 
of the antibiotic kanamycine. The exact composition of the different media is listed in Table 
A1 and A2 in Appendix A. Antifoam S289 from Sigma was used to control foam formation. 
 

2.3 Rapid sampling apparatus 

The bioreactor system specially designed for performing stimulus experiments with rapid 
sampling was developed at the Research Centre Jülich and has been described in detail by 
Schäfer et al. (1999), Buchhholz et al.(2002), Buchholz (2002) and Oldiges (2004).  

 
 

 
Figure 2–2: Picture of the stimulus and rapid sampling apparatus. 

 
 
The system consists of a 20 litre bioreactor from Infors (Switzerland) with an external tank of 
500 ml used to store a concentrated glucose solution, as well as an automated sampling device 
(Figure 2.2). The external glucose tank is connected to the bioreactor through two injection 
needles with their points situated directly under the Rushton turbine impeller in the reactor. 
By applying a pressure of 4 bar gauge to the external tank the glucose solution is rapidly 
injected into the bioreactor. The rapid injection and the location of the injection needles in a 
region of high local velocities result in a very short mixing time and thus a rapid change in 
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glucose concentration in the bioreactor. In the experiments described in this thesis the 
working volume was 7 litres and 50 ml of a 500 g/l glucose solution was injected to stimulate 
the metabolism. Under these conditions the 90 % mixing time in the bioreactor was 650 ms 
(Buchholz et al. 2002) and an increase in glucose concentration of 3.5 g/l was achieved. 

Samples of 5 ml can be taken at a rate of one sample every 220 ms. The samples are 
quenched directly in the sampling tubes by mixing them with 15 ml of 60 % methanol at -50 
°C. An overpressure of 0.23 bar in the bioreactor causes the sample volume to be sprayed into 
the cold methanol resulting in a rapid freezing of the cells. The reactions in the cells are 
therefore stopped instantaneously and a “picture” of the metabolite levels is obtained. The 
sampling tubes are transported on a conveyor belt passing the sample valve to collect the 
samples (Figure 2-3). Some samples will be taken before the glucose solution is added. The 
sampling will then continue during and after the addition to analyse how the cells respond to 
the stimulus. Up to 160 samples can be taken in total. 

 
 

 
 

Figure 2–3: The procedure of a stimulus experiment with rapid sampling (Figure taken from Buchholz 
et al. 2002). 

 

2.4 Analytical devices 

2.4.1 Analysis of the fermentation broth 

The concentration of glucose in the bioreactor broth was measured with an Accutrend sensor 
(Roche Diagnostics, Germany). The optical density was measured with a Shimadzu UV – 160 
photometer at 560 nm. The biomass concentration was measured by filtrating the 
fermentation broth. Oxygen and carbon dioxide concentrations in the exhaust gas were 
measured continuously using a Binos100 2M gas analyser (Rosemount, Germany).  

The concentration of the amino acids valine, alanine, leucine and isoleucine were measured 
according to the method published by Brik Ternbach et al. (2005). A Sycam HPLC with a 
reversed phase Lichrospher 100 RP 18-5 column from Merck, and a Shimadzu RF-535 
fluorescence detector was used. The amino acids were derivatised with OPA (o-
phtaldialdehyde) before they entered the column (Lindroth and Mopper, 1979). An isocratic 
elution with 5 mM PO4 buffer at pH 7.2, with 35 % v/v methanol and 15 % v/v acetonitrile 
was used. A detailed description of the HPLC method is given by Schmidt (2005).  
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The organic acids lactate, acetate, a-ketoglutarate and ketoisovalerate were measured using 
an Aminex HPX-87H column (Biorad, Germany) eluted at 40°C with 0.2 M H2SO4 with 
detection by UV adsorption at 215 nm.  
 

2.4.2 Mass spectrometry  

Ion trap MS   The apparatus consisted of an HPLC connected to a single quadrupole ion trap 
mass spectrometer. The MS part consisted of a LCQ Thermoquest mass spectrometer with an 
electrospray ionisation (ESI) ion source. The HPLC apparatus was from Gynkotek/Dionex 
and consisted of an ASI100-T Dionex programmable autosampler, an M480 Gynkotek 
gradient/elution pump run at 25°C and a UVD Dionex diode array detector capable of UV 
measurements at wavelengths between 200 and 595 nm. The software Chromeleon 6.4 
(Dionex) and Excalibur 1.3 (ThermoFinnigan) were used for controlling, data acquisition and 
data evaluation for the HPLC and the MS parts respectively. A syringe connected to the MS 
allowed manual direct injection of sample when this was required. 

The apparatus was run according to a method developed by Buchholz (Buchholz et al., 
2001; Buchholz, 2002). The sample flow rate entering the MS was 40 µl/min. Additional 
methanol was added directly to the ionisation chamber using a separate HPLC pump at a rate 
of 25 µl/min. Nitrogen was provided by a 2000-40 Jun-Air oil free air compressor with an 
ECO-Inert ESP2 DWT membrane filtration unit and used as sheath and auxiliary gas in the 
mass spectrometer. Helium was used as collision gas in the ion trap.  

 
Triple quadrupole MS from ThermoFinnigan   An Agilent 1100 HPLC from Agilent 
Technologies was used in connection with the triple quadrupole TSQ Quantum mass 
spectrometer with ESI ionisation source from ThermoFinnigan. The HPLC device had a 
programmable HTC Pal autosampler from CTC Analytics. The software Excalibur 
(ThermoFinnigan) was used for controlling, data acquisition and data evaluation. 

The sample flow rate was 100 µl/min. Nitrogen was provided by the same type of 
equipment as for the ion trap MS and used as sheath and auxiliary gas. The temperature of the 
capillary was 375°C and the voltage used in the ionisation was 4.0 kV. The collision gas was 
Argon. 

 
Triple quadrupole MS from Applied Bioscience   The system consisted of an Agilent 1100 
HPLC system including a programmable autosampler from Agilent Technologies in 
connection with the 4000 Q Trap triple quadropole mass spectrometer from Applied 
Biosystems. The software Analyst (Applied Biosystems) was used for controlling, data 
aquisition and data evaluation.  

The sample flow rate was 200 µl/min. Nitrogen was used as curtain and collision gas. Air 
was used as auxiliary gas. The temperature of the capillary was 600 °C and the ionisation 
voltage was 4.5 kV.  
 
A Short Discussion of the Principles of Mass Spectrometry   A brief description of the 
most central parts of the mass spectrometers used in this thesis is given in the following. A 
more thorough treatment of these subjects is given by Buchholz (2002) and Oldiges (2005).  

The first step in the mass spectrometer is the ionisation of the analytes. Electrospray 
ionisation (ESI) was used for all mass spectrometers. The principle of ESI is shown in Figure 
2-4. The solution containing the analytes enters the ionisation chamber through a needle of 
about 0.1 mm diameter. It is then sprayed into the electrical field in the ionisation chamber 
and fine droplets are formed. The droplets contain the analytes as positive or negative ions 
according to the direction of the electrical field. As the solvent in the droplets evaporate, the 
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droplets decrease in size. Eventually the repulsive electrostatic forces in the droplet become 
higher than the surface tension and the droplets “explode” and smaller droplets are formed. 
This process continues until the ionised analytes are released as free ions in the gas phase. A 
coaxial flow of inert gas, referred to as a sheath gas (or drying gas), contributes to the ion 
formation and the evaporation of the solvent. An advantage of the ESI method is that the 
ionisation energy is much lower than the bonding energy of the analytes so that hardly any 
fragmentation occurs in the ionisation chamber.  

 

 
 

Figure 2–4: The principle of electrospray ionisation. (Illustration from 
www.colorado.edu/chemistry/chem5181). 

 
The ionised analytes accelerate towards the electrode of opposite charge (see Figure 2-4) 

and enters a heated capillary tube that transfers the ions to the first mass filtration step. Here 
the ions pass through an electromagnetic field where only the ions with the selected m/z ratio 
can pass through. All other ions are filtered out.  

The next step differs for the different types of mass spectrometers used. In an ion trap MS 
the ions enter an ion trap where they are kept for a few milliseconds in which they lose their 
kinetic energy due to collisions with an inert collision gas such as helium. By using a variable 
electrical field the ions are sequentially led to the ion detector according to their m/z ratio. In 
this way the intensity of ions with a certain m/z ratio can be determined and correlated to the 
concentration of that substance in the sample.  

The ion trap is also capable of fragmenting the ions before they are detected. In this case 
the ion trap is first emptied of all ions that do not have the m/z ratio of the substance to be 
measured. By applying an electrical field the ions are then accelerated until the kinetic energy 
is so high that the collisions with the helium atoms result in the breaking of chemical bonds of 
the analyte. In this way the analyte is fragmented and the fragments can be detected as 
described above. The advantage of performing a fragmentation is that the signal to noise ratio 
is improved.  

The triple quadrupole mass spectrometers do not contain an ion trap, instead they have 
three quadrupoles. The first quadrupole (Q1) is used to filter out the ions with the m/z ratio of 
interest. The second quadrupole (Q2) is used as a collision cell where the ions collide at high 
speed with a collision gas to produce the fragments. The third quadrupole is used to filter the 
fragments so that only one fragment with a specific m/z ratio passes through. In this way the 
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analyte is “filtered” twice which gives a very high signal / noise ratio. This technique is 
referred to as MS-MS or MS2. The triple quadrupole mass spectrometer is only capable of 
MS2 while the ion trap device can in principle do arbitrarily many fragmentations (MSn).  
However, the triple quadrupole MS is typically one to two orders of magnitude more sensitive 
than the ion trap MS for the substances measured here. Figure 2-5 shows the structure of the 
triple quadrupole mass spectrometer. 

 

 
 

Figure 2–5: The triple quadrupole mass spectrometer. The sample consists of several chemical 
species in solution. The species are ionised in the ionisation chamber and the ions with a specific m/z 
ratio are selected in the first quadrupole before they are fragmented in the second quadrupole. One of 
the fragments is selected in the third quadrupole before the intensity is measured in the detector.  

 
The measurement of an intracellular metabolite is significantly complicated by the presence 
of the cell matrix, i.e. all the other substances present in the cell. The techniques described 
above are particularly suitable for measuring such samples since they can effectively filter 
away the substances that would otherwise cause noise in the measured signal. The ionisation 
chamber can also be designed to minimise the negative effects of the cell matrix by changing 
the angle at which the sample enters the chamber. In the ion trap device the sample is sprayed 
directly towards the transfer capillary tube. In the newer triple quadrupole devices the sample 
is sprayed into the ionisation chamber at a 90 degrees angle to the transfer capillary. In this 
way the accumulation of dirt in the ionisation chamber is minimised and the sensitivity of the 
measurements is improved.  
 
HPLC for the LC-MS measurements of the intracellular metabolites   Two different 
chromatography columns were used. The Nucleodex β-OH column from Macharey-Nagel had 
a length of 250 mm, an internal diameter of 4.6 mm and a particle size of 5 µm. The structure 
of the β−cyclodextrin used in the Nucleodex column is depicted in Figure 2.6.  

The phenomenex column (SYNERGI-Polar-RP) had a length of 150 mm, an internal 
diameter of 2 mm and a particle size of 4 µm.  It has an ether-linked phenyl phase with 
proprietary hydrophilic endcapping designed to maximise retention and selectivity for polar 
and aromatic analytes. The selectivity can be further enhanced by adding methanol to the 
mobile phase. This feature allows for improved polar retention that complements the more 
conventional column chemistries as well as providing improved peak shapes and an 
alternative selectivity compared to other polar phases. For the measurements with the 
Nucleodex column two columns were connected in series, while the measurements with the 
Phenomenex column were performed with a single column. In both cases a precolumn of the 
same material was used to protect the columns.  

The elution methods used for the two columns are given in Table 2-1 and Table 2-2.    
 

Q0 Q1 Q2 Q3Ionisation 
chamber 

Q1                Q2                Q3 DetectorSample 
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Figure 2–6: The structure of the β-cyclodextrin columns. 

 

 

 

Table 2–1: HPLC gradient with 12 mM ammoniumacetate and methanol used for the Nucleodex β-OH 
column. 

 

Eluent A:  12mM Ammoniumacetate 
Eluent B:  20 % ( v/ v ) Eluent A + 80 % ( v/ v ) Methanol 
  
Time [ min ] Eluent Composition 

0-14  2 % A and 98 % B 

15-29 linear increase of A until 100 % A 
30-44 100 % A 
45-46 linear decrease of A until 2 % A 

47-60 2 % A 
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Table 2–2: HPLC gradient with 10 mM tributylamin + acidic acid (pH = 7) and methanol used for the 
phenomenex column. 

 

Eluent A:  10mM Tributylamin + Acidic acid pH = 7 
Eluent B:  100 % Methanol 
  

Time [ min ] Eluent Composition 
0-4 0 % A, 100 % B 

5-34 linear increase of A until 50 % A 

35-39 50 % A 

40-44  linear increase of A until 90 % A 

45-50 linear decrease of A until 10 % A 

 

 

2.5  Modelling Software 

2.5.1 Metabolic Modelling Tool 2 (MMT2) 

MMT2 (Hurlebaus, 2002; Haunschild, 2005) is a program for the development and analysis 
of dynamic metabolic models. The model is specified in a text document using the XML 
dialect M3L (Metabolic Modelling Markup Language). The M3L document contains all 
information that is needed to simulate the reaction network. This includes the stoichiometry 
and the kinetic rate equations of the reactions as well as the kinetic parameters of the rate 
equations and the compartments of the network. In addition the concentration measurements 
and the definitions of the splines can be included. The splines are used to give a continuous 
mathematical representation of metabolites which are not simulated by the model, but which 
participates in the reactions. Different model variants can also be specified in the M3L 
document. Figure 2-7 shows the structure of the M3L document.  

The M3L dialect can be seen as an extension to the established SBML dialect (Systems 
Biology Markup Language, Hucka et al., 2003). M3L contains essentially the same functions 
as SBML and in addition allows for the specification of measurements and splines. The M3L 
document can be set up using a normal text editor such as GNU Emacs 
(www.gnu.org/software/emacs) or by using an XML editor such as Xerlin (www.xerlin.org).  

Once the model is defined MMT2 can read the M3L document and generate a simulation 
module. The simulation module simulates the concentrations and fluxes of the network and 
can be used to fit the parameters of the model so that the simulation agrees with the measured 
concentrations. The program uses the LSODA integration algorithm (Hindmarsh, 1980), an 
algorithm which can automatically switch method for stiff and nonstiff systems of ODEs, and 
a Nelder-Mead Simplex based optimisation algorithm called Subplex (Rowan, 1990) to fit the 
parameters. 

MMT2 calculates the sensitivities of the concentrations towards the parameters by 
automatic differentiation. The package ADOL-C (Griewank et al., 1996) is used for this 
purpose. The sensitivities can be calculated at any time point over a simulation run and thus 
allows for the calculation of the parameter standard deviations as will be explained in Chapter 
4.   



2.5 Modelling Software 17

 
 
Figure 2–7: The skeleton of the M3L document showing the main elements. M3L defines the model 
by specifying 7 lists of the main components of a model. These are: Compartment, Species, Kinetic 
Laws, Reactions, Model Parameters, Measurements and Splines.   

 
 

2.5.2 Gepasi 

Like MMT2, Gepasi is used to model and simulate the dynamics of metabolic systems. The 
program has a graphical user interface where the reaction stoichiometry, rate equations etc 
can be entered to define the model. Gepasi can be used for parameter fitting, but as opposed 
to MMT2 it is not possible to represent independent metabolites by a spline or any other 
mathematical function. In other words, all model variables must be balanced so the strategy of 
predefining some metabolite time courses is not possible with Gepasi. One of the strengths of 
Gepasi is that it contains in total 12 different optimisation algorithms including both 
stochastic and local algorithms. These can be used for parameter fitting or to optimise any 
objective function defined by the user. Constraints on the variables or functions of these may 
be set by the user in an optimisation study. This makes Gepasi a valuable tool for design 
studies where a flux is optimised under certain constraints (see section 4.3.2 on the 
optimisation of enzyme levels). Gepasi can perform a complete metabolic control analysis of 
the steady state of the model and can also carry out linear stability analysis. It should be noted 
that during the testing of Gepasi it was discovered that there is an error in the calculation of 
the Jacobian matrix. Thus the linear stability function in Gepasi will not provide a correct 
analysis. The developers of Gepasi are aware of this problem and in the successor of Gepasi, 
named Copasi, this error has been rectified (the first version of Copasi became available in the 
beginning of 2006).  

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE m3l SYSTEM 
"/usr/share/mmt2/models/m3l_1.6.dtd"> 
<m3l> 
    <Model name="Valine_Leucine_Model"> 
        <listOfCompartments> 
            ... 
        </listOfCompartments> 
        <listOfSpecies> 
            ... 
        </listOfSpecies> 
        <listOfKineticLaws> 

... 
        </listOfKineticLaws> 
        <listOfReactions> 
            ... 
        </listOfReactions> 
        <listOfModelParameters> 
            ... 
        </listOfModelParameters> 
        <listOfMeasurements> 
            ... 
        </listOfMeasurements> 
        <listOfSplines> 
            ... 
        </listOfSplines> 
    </Model> 
</m3l> 
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2.5.3 Jarnac 

Jarnac is another simulation tool for metabolic models. Jarnac differs from Gepasi and MMT2 
in that it supports a scripting language which allows users to directly interact with the 
computational engine. This makes Jarnac a very flexible tool which can be adapted to suit the 
needs of the user. The Jarnac language is similar to the Basic language and supports typical 
constructs such as for loops, conditionals, while/do and repeat/until. Jarnac has several built 
in functions such as dynamic simulation, steady state analysis, stability analysis, operators for 
matrix algebra as well as a full metabolic control analysis. Jarnac has no optimisation 
algorithms implemented and can not perform parameter fitting.  

2.5.4 In-Silico Discovery 

In-Silico Discovery is a graphically oriented program for developing and interpreting 
metabolic models. It is designed to be a general metabolic engineering tool and integrates 
many of the techniques used in the analytical part of metabolic engineering. It provides 
methods for model set up, topological analysis, metabolic flux analysis and dynamic 
simulation. The dynamic model is generated automatically from the stoichiometry of the 
reactions defined by the user. The dynamic model is set up using linlog equations for all 
reactions. It is not possible for the user to define the rate equations himself, thus only linlog 
models can be modelled with In-Silico Discovery. The program is intended to handle large 
models, i.e. models with more than 100 reactions. It uses evolutionary algorithms from the 
package JavaEvA (www-ra.informatik.uni-tuebingen.de/software/JavaEvA) and parallel 
computing for the parameter fitting.  

The main advantage of In-Silico Discovery is its many tools for organising, structuring and 
validating the information in a model. This makes it particularly suitable for large scale 
modelling. A screen shot of the graphical user interface is given in Figure 2-8.  

 

2.5.5 Comparison of the modelling software 

MMT2, Gepasi and Jarnac were used for the development and interpretation of the model of 
the valine / leucine pathway. In general one can say that MMT2 is the optimal tool for model 
development and error analysis while Gepasi and Jarnac are better for the interpretation of the 
developed model. Gepasi is ideal for enzyme optimisation studies while Jarnac can be used 
for stability analysis and for calculating quantities which are not standard in systems biology 
such as the control coefficients of the thermodynamic properties which are introduced in 
Chapter 8. Both Gepasi and Jarnac can be used for classical metabolic control analysis. In-
Silico Discovery is the most suitable program for large metabolic models and contains the 
most functions for the analysis and interpretation of developed models.  
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Figure 2–8: The graphical user interface of In-Silico Discovery. The model development is done 
directly on the GUI. The reactions can be typed in manually or can be added from a database. The 
panel in the upper left corner shows the list of reactions in the reaction database while the lower panel 
on the left hand side shows the reactions already included in the model. The main frame gives a 
graphical representation of the reaction network.  
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3 Experimental Methods 
The glucose stimulus experiments were the central part of the experimental work. The aim 
was to obtain a data set of time series of intracellular metabolite concentrations which would 
be useful for the identification of the kinetic model and for the further data driven analysis. 
Some preliminary experiments were required to establish the growth pattern of the strain, the 
different disruption methods and the quenching method. In total three complete stimulus 
experiments were then performed under different experimental conditions. This was necessary 
in order to find the procedure that would yield the optimal data set.  
 

3.1 Cultivation 

The preculture for the fermentation was done in two steps. In the first step the strain was 
grown on complex medium based on yeast extract. The second preculture was performed on 
mineral medium and inoculated with 2 % of the first preculture. The main fermentation, also 
on mineral medium, was inoculated with 10 % of the second preculture. The strain was then 
grown in batch fermentation mode in the 20 l bioreactor with a working volume of 7 l. The 
correlation between growth and isoleucine consumption had been established in the 
preliminary fermentations with this strain. Thus, isoleucine depletion could be avoided by 
injecting further isoleucine at three different time points according to the biomass in the 
bioreactor. The culture was therefore never at isoleucine limitation. The airflow to the 
bioreactor was kept at 2 l/min and the pH was controlled at 7.6 by addition of 25 % ammonia. 
The partial pressure of oxygen was kept at 30 % of the saturation pressure by regulating the 
stirrer speed. Small amounts of antifoam were added during the fermentation. Oxygen and 
carbon dioxide concentrations in the exhaust gas were measured continuously. Samples of the 
fermentation broth were analysed for glucose and biomass concentration as well as the 
concentrations of the amino acids valine, isoleucine, leucine and alanine. 
 

3.2 Glucose stimulus experiment 

The glucose concentration and the partial pressure of dissolved oxygen in the bioreactor (pO2) 
were monitored closely to determine the exact point of glucose depletion, i.e. the point where 
the glucose concentration in the bioreactor reaches zero. This enabled the experimenter to 
time the addition of the glucose stimulus to the glucose depletion. Three stimulus experiments 
were carried out with different fermentation strategies. The identification of the optimal 
strategy is one of the significant experimental results and is reported in Chapter 5. 

The rapid sampling apparatus described in the materials section was used to perform the 
stimulus experiment. 50 ml of a 500 g/l glucose solution was rapidly injected into the 
bioreactor by applying a pressure of 4 bar gauge. The glucose concentration in the bioreactor 
increased from 0 to 3.5 g/l which is far above most of the half saturation constants for the pts 
system reported in literature (Lengeler et a. 1999, Ferenci 1996, Postma et al. 1993). 47 
samples of the fermentation broth were taken at a rate of 2.3 samples per second. The 
sampling was started 4 seconds before the glucose addition in order to analyse both the 
concentrations before the glucose addition as well as under the transient concentrations after 
the stimulus. The high frequency of the sampling was necessary to observe the rapid changes 
in the intracellular metabolite concentrations which are known to have turnover rates in the 
sub second range (de Koning and van Dam, 1992).  
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5 ml of sample volume was taken for each of the 47 samples. The samples were 
immediately quenched during the sampling process by mixing them directly with 15 ml of a 
60% methanol solution at –50°C. It has been demonstrated that this quenching method does 
not lead to any leaking of intracellular metabolites for the Corynebacterium glutamicum 
13032 strain (Moritz et al., 2000). However, a recent study concluded that some leaking might 
occur after all when Corynebacterium glutamicum is quenched with cold methanol (Wittmann 
et al., 2004). A potential leaking problem was dealt with in the model by defining the 
metabolite concentrations relative to the steady state values measured immediately before the 
glucose stimulus. It is reasonable to assume that the percentage of intracellular metabolites 
lost during quenching is equal for all samples throughout the sampling sequence so the scaled 
concentrations will be the same regardless of the amount lost. The performance of the model 
is therefore not affected by the possible leaking during quenching. 

The biomass concentration in the culture was 15.3 g DW / l at the time of the glucose 
addition. 

 

3.3 Cell disruption and metabolite extraction 

From the moment of sampling the temperature of the samples was kept at –20°C or lower 
throughout the metabolite extraction procedure to avoid any further reactions between the 
metabolites. After centrifugation the cells were resuspended in 0.5 ml of 50% methanol. Cell 
disruption was performed by adding 2 ml of a 0.3 M KOH solution, leaving the sample for 10 
minutes and then neutralising with 97% acetic acid. The cell debris was removed by 
centrifugation and the supernatant was filtered through a 5000 Dalton ultrafiltration unit 
(Vivascience, Hannover Germany) to remove any remaining enzymes. 

Some preliminary experiments had been carried out prior to the stimulus experiments in 
order to identify the best disruption method. In addition to the KOH disruption method, a 
method using perchloric acid and a mechanical disruption method had been investigated.  

The method using perchloric acid was carried out as described by Buchholtz et al. (2001). 
The mechanical disruption device consisted of a rotor / stator homogeniser (PT-1600E, 
Kinematica, Switzerland) and a tank with a cooling jacket. The tank was filled with a 70 % 
ethanol solution which was kept at -30°C by using a recirculation chiller (Thermo Haake, 
USA). The tubes containing the samples were kept in the ethanol solution during the 
disruption and in this way the temperature of the sample was kept below -20°C at all times.   

Mechanical disruption methods have the advantage over chemical disruption methods that 
no reactive chemicals need to be added to the sample. However, it is often difficult to keep 
the sample at the required -20°C in a mechanical disruption device. For this reason devices 
such as a bead mill or a French press could not be used. 

 

3.4 Chemical Analysis of the Intracellular Metabolites 

Quantification of the intracellular metabolite concentrations was achieved by using High 
Pressure Liquid Chromatography with subsequent tandem Mass Spectrometry (HPLC-
MS/MS). Some preliminary investigations were performed on the ion trap mass spectrometer 
in order to establish the fragmentation pattern and get an estimate for the optimal parameters 
of the mass spectrometer. The actual measurements were carried out on the more sensitive 
triple quadrupole mass spectrometers. From the three experiments, two sample sets were 
measured on the mass spectrometer from ThermoFinnigan and one set was measured on the 
mass spectrometer from Applied Bioscience. The sample set that was used for model 
identification later was measured on the ThermoFinnigan mass spectrometer.  



3.4 Chemical Analysis of the Intracellular Metabolites 23

For the measurements on the ThermoFinnigan mass spectrometer the β-cyclodextrin 
(Nucleodex) chromatography column was used. The sample set measured on the mass 
spectrometer from Applied Bioscience was measured twice, once with the β-cyclodextrin 
column and once with the ether-linked phenyl phase (Phenomenex) column. The columns and 
the gradient methods used with them were described in section 2.4.2. Typical chromatograms 
are given in Figure 3-1 and 3-2.  

For the measurements on the ThermoFinnigan mass spectrometer the method specific 
parameters were set according to a previously developed method for the analysis of the 
central metabolites and the intermediates in the aromatic amino acid metabolism (Oldiges, 
2004). The method specific parameters for the measurements on the mass spectrometer from 
Applied Bioscience were determined by optimising the measured signal. These parameters are 
reported in Table 3-1.  

The parameters specific to the metabolites are reported in Table 3-2 and 3-3 along with the 
retention times of the substances (that is, the times at which the substances enter the mass 
spectrometer). For the measurements on the ThermoFinnigan mass spectrometer using the β-
cyclodextrin column the parameters for the metabolites in the glycolysis, the pentose 
phosphate pathway and for the nucleotides and cofactors had been determined by Oldiges 
(2004). The parameters specific to the valine / leucine intermediates, the amino acids and the 
metabolites in the TCA cycle were determined by optimising the measured signal. For the 
measurements on the mass spectrometer form Applied Bioscience with the phenyl phase 
column all metabolite specific parameters were determined by optimising the measured 
signal.  
 
Table 3–1; The method specific parameters for the measurements on the triple quadrupole mass 
spectrometer from ThermoFinnigan and from Applied Bioscience. 

 

 ThermoFinnigan Applied Bioscience 
Flow rate to MS 100 µl / min 200 µl / min 
Sheat gas Nitrogen Nitrogen 
Auxiliary gas Nitrogen Air 
Capillary Voltage 4.0 kV 4.5 kV 
Capillary Temp. 375 °C 600 °C 
Ionisation mode negative negative 
Q2 collision gas Argon 1.5 mTorr Nitrogen 

 
 
Given the large number of samples and metabolites to be measured, it was desired to 

measure all metabolites in the same ionisation mode to save time. The organic acid 
metabolites can only be ionised and detected in negative ionisation mode, whereas most of the 
amino acids can be quantified more accurately in positive ionisation mode (Petritis et al. 
2000; Piraud et al., 2003). However, the concentration of the amino acids valine, glutamate, 
leucine and alanine were high enough to allow an accurate quantification also in negative 
ionisation mode. Hence, negative ionisation was chosen.  

Some of the isomers in the sample could not be separated on the chromatography column 
and also had similar fragmentation patterns. Thus only the sum of the concentrations of these 
metabolites could be measured. This was the case for the pairs G6P / F6P, DHAP / GAP as 
well as 2-PG and 3-PG. In addition the pentose sugar phosphates were measured as a sum. 

The Standard Addition Method (Bader, 1980) was used to relate the measured MS-signals 
to the concentrations in the samples. The sample matrix was spiked with standard solutions of 
the substances in different concentrations and measured to yield the calibration curve. In this 
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way the effect of the sample matrix (that is, all the other substances present in the sample) 
was accounted for in the calculation of the calibration curve.  

A standard deviation of about 10 % in the measurements were determined as part of the 
preliminary investigations. This includes the errors originating from the sampling as well as 
the measurements on the HPLC-MS. The standard deviations were calculated by measuring 
several identical samples. 

Standards for ketoisovalerate, isopropylmalate and ketoisocaproate were obtained from 
Aldrich (Germany). Dihydroxyisovalerate was obtained from Synthelor (Nancy, France) and 
valine and leucine were obtained from Sigma (Germany). A method for synthesising 
dihydroxyisovalerate is given by Cioffi et al. (1980). Acetolactate was synthesised chemically 
according to Leyval et al. (2003). The procedure for the synthesis of acetolactate is given in 
Appendix B. A specific intracellular volume of 2 µl/mg DCW (Gutmann et al., 1992) was 
used to calculate the intracellular concentrations.  

 
 

Table 3–2: The measured metabolites with their parent and product ions in MS/MS mode and the 
applied collision energy for fragmentation as measured on the ThermoFinnigan mass spectrometer 
with the β-cyclodextrin chromatography column. The retention times obtained with the chromatography 
method are also displayed. The abbreviations are explained in the nomenclature. 

 

  Metabolite Parent ion Product ion Collison energy Retention time
   m/z m/z eV min 
Glycolysis G6P / F6P 259 97 17 6.19 
 FBP 339 97 20 5.55 
 GAP / DHAP 169 97 10 6.17 
 2- / 3- PG 185 79 35 6.1 
 PEP 167 79 13 5.61 
 Pyr 87 43 10 7.34 
Pentose phosphate 6PG 275 97 17 5.79 
pathway P5P 229 97 15 6.34 
TCA cycle AKG 145 101 10 6.08 
  Citrate 191 111 15 7.95 
Valine / leucine AcLac 131 87 10 8.82 
intermediates DHIV 133 75 13 10.75 
 IPM 175 115 17 8.35 
 KIC 129 85 10 32.19 
 KIV 115 71 10 15.17 
 KPan 145 116 10 21.00 
Amino acids Ala 88 88 7 7.9 
 Val 116 116 8 8.48 
 Glut 146 127 12 6.65 
 Leu 130 84 8 10.6 
 Isoleu 130 84 8 9.45 
Co-factors and NAD 662 540 17 9.59 
nucleotides NADP 742 620 17 6.8 
 ATP 506 159 33 7.97 
 ADP 426 134 25 8.21 
  AMP 346 79 35 9.58 
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Table 3–3: The measured metabolites with their parent and product ions in MS/MS mode and the 
applied collision energy for fragmentation as measured on the Applied Bioscience mass spectrometer 
with the phenyl phase chromatography column. The retention times obtained with the chromatography 
are also displayed. The abbreviations are explained in the nomenclature. 

 

  Metabolite Parent ion Product ion Collison energy Retention time 
    m/z m/z eV min 
Glycolysis G6P 259 97 86 20.0 
 F6P 259 97 86 20.9 
 FBP 339 97 30 39.0 
 GAP / DHAP 169 97 12 23.0 
 2-PG 185 79 42 32.2 
 3-PG 185 79 42 33.0 
 PEP 167 79 16 36.3 
 Pyr 87 43 12 15.5 
Pentose phosphate 6PG 275 97 24 33.9 
pathway P5P 229 97 20 19.6 
TCA cycle AKG 145 101 12 28.8 
 Citrate 191 87 24 38.0 
 Isocitrate 191 87 30 38.4 
 Succinate 117 73 18 26.3 
 Fumarate 115 71 18 26.6 
  Malate 133 115 16 26.5 
Valine / leucine DHIV 133 75 18 16.3 
intermediates KIV 115 71 12 24.0 
 KIC 129 85 12 33.8 
  IPM 175 115 22 34.0 
Co-factors and NAD 662 540 24 20.7 
nucleotides NADP 742 620 26 39.0 
 ATP 506 79 112 40.8 
 ADP 426 79 78 38.7 
  AMP 346 79 64 29.4 
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Figure 3–1: The chromatogram for the measurements on the ThermoFinnigan mass spectrometer. 
The chromatogram shows the total ion concentration signal detected by the mass spectrometer. (The 
software used with the ThermoFinnigan mass spectrometer is not capable of displaying the signal 
from the different masses separately). The retention times of the metabolites is given in the diagram.  
 

 
 
Figure 3–2: The chromatogram for the measurements on the mass spectrometer from Applied 
Bioscience. The peaks of the different masses are shown in different colours.  
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4 Theoretical methods 

4.1 Time series analysis 

The connectivity between the metabolites in a reaction network can be investigated by 
analysing the time series of the measured concentrations during a transient state. The method 
used here will be referred to as “time-lagged correlation analysis” and is described in the 
following. The method was inspired by a method developed by Arkin and Ross (Arkin and 
Ross 1995; Arkin et al. 1997; Vance et al. 2002) which they named “Correlation Metric 
Construction” (CMC). The time-lagged correlation analysis corresponds to the first part of 
this method. It should be noted that the method is a purely statistical method based only on 
the time series data. The method reaches conclusions on the causal connectivity of a reaction 
system without the need to specify the reaction sequence, the stoichiometry of the system or 
the reaction kinetics.  

The validity of the CMC method was investigated by Degenring (2004) based on model 
generated, “ideal” data and on real data obtained from a stimulus experiment with E. coli. It 
was concluded that while the method works well for data from a simple computer model 
containing no noise, it does not give a satisfactory analysis of the real data from the much 
more complex real system. The discussion given by Degenring motivated the choice taken in 
this work to use only the first part of the CMC method. In addition, the method will only be 
applied to the metabolites around the ketoisovalerate branchpoint in the valine / leucine 
pathway rather than to the complete data set. By restricting the analysis to include only 
closely related metabolites the method can provide useful insight into the causal 
connectivities of the network. 

The idea behind the time-lagged correlation analysis is to move two time series with respect 
to each other step by step and calculate the correlation between them for each time-lag. This is 
illustrated in Figure 4-1. 
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Figure 4–1: Illustration of the time-lagged correlation analysis method. Consider two time series xi and 
xj which are defined on the same time interval. One starts by calculating the correlation between xi and 
xj. The two curves are then moved with respect to each other step by step and the correlation is 
calculated for each step, i.e. for each time lag. Note that it is not arbitrary in which direction the curves 
are moved. Moving xi to the right with respect to xj is not the same as moving xi to the left with respect 
to xj. Thus the direction of the time shift must be specified. Positive time lags (τ > 0) are defined to 
mean that xi is moved to the right with respect xj. If the time lag is negative (τ < 0) xi is moved to the 
left with respect to xj.  

 
 
The covariance between two species xi and xj is defined as: 
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here the time series of xi and xj have n discrete time points. ix  is the time average of xi.  

When one starts to move the time series with respect to each other one can only calculate 
the covariance of the part of the time series that overlap in time (the blue frames in Figure 4-
1). Thus the covariance of subsets of the time series is calculated. As explained in the text to 
Figure 4-1 the direction in which the time series are shifted must be specified. The notation 
used here is that xi(τ) is the subset of xi that is obtained by moving xi τ time steps to the right. 
In practice this means that the vector xi(τ) contains the (n – τ) first entries in xi. Similarly xj(τ) 
denotes the subset of xj obtained by moving xj τ time steps to the left, i.e. it contains the (n – 
τ) last entries in xj. With these definitions the time lagged covariance can be defined as: 
 

( )( )∑
−

=

−−
−−

=
τ

ττττ
τ

τ
n

k

jj
k

ii
kji xxxx

n 1
, )()()()(

1
1)(cov     ( 4-2 ) 

 
Here τ  denotes the absolute value of τ. Eq. (4-2) is valid for both positive and negative time 
lags.  

The time-lagged correlation coefficient, ri,j(τ), is now defined as: 
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the indices i and j range over all metabolites considered in the analysis. The three dimensional 
time lagged correlation matrix R(τ) = [ri,j(τ)] can be set up by calculating all correlations at all 
time lags for – n < τ < n.  

The connectivities of the reaction network can be analysed by inspecting the time lagged 
correlation matrix. A high correlation between two metabolites signifies a high degree of 
connectivity. The time lag at maximum correlation between two metabolites can be 
interpreted as the difference in time for the effect of the pulse to reach the respective 
metabolite pools.  

The time lagged correlation analysis method was programmed in Java. The source code for 
the program is given in Appendix D. 

 

4.2 Kinetic modelling 

This section describes the methods used to develop the dynamic model of the valine / leucine 
pathway with the use of linlog kinetics. This is the modelling strategy that proved to be the 
most useful for the further investigation.  

4.2.1 Model Set Up 

A kinetic model describes the concentrations and the reaction rates of a metabolic system by 
defining a set of differential equations. Here the modelled system is the valine and leucine 
synthesis pathways starting from the precursor pyruvate. The reaction system is depicted in 
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Figure 4-2 and the equations defining the stoichiometry of the reactions are listed in Table 4-
1. The isopropylmalate isomerase reaction transforming 2-IPM to 3-IPM has been omitted in 
the model as it can be treated as a fast near equilibrium reaction.  
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Figure 4–2: The reaction network of the valine and leucine anabolic pathways.The abbreviations are 
explained in the nomenclature. Valine is synthesised in four reaction steps from pyruvate (PYR). 
Some of the flux bifurcates towards leucine at the ketoisovalerate (KIV) branchpoint. The balanced 
metabolites are depicted with a black frame and the independent metabolites (i.e. the non-balanced 
ones) with a grey frame. The broken lines show the allosteric regulation (feedback inhibition) by valine 
and leucine. In the leucine pathway IPM represents the sum of the isomers 2-IPM and 3-IPM. Enzyme 
names are written in italic. 

 

Table 4–1: The reactions in the valine and leucine pathway and the inhibitors included in the model as 
well as the standard Gibbs free energy of reaction (aqueous) at the biological standard state (∆Gr

°’).  

 

Enzyme Reaction Inhibitor ∆Gr
°' (kJ/mol) 

AHAS 2Pyr = AcLac + CO2 Val -53.4 
AHAIR AcLac + NADPH + H = DHIV + NADP Val -13.6 
DHAD DHIV = KIV + H2O Val -42.3 
BCAAT_ValB KIV + Glut = Val + AKG  0 
BCAAT_ValC KIV + Ala = Val + Pyr  0 
Trans_Val Val = Valext Leu  
IPMS KIV + AcCoA = IPM + CoA Leu -223 
IPMDH IPM + NAD = KIC + NADH + H + CO2  -37.7 
BCAAT_LeuB KIC + Glut = Leu + AKG  0 
Trans_Leu Leu = Leuext Val  

 
It will be differentiated between balanced metabolites and independent metabolites. Only 

the intermediates in the valine and leucine pathway are balanced. These metabolites are 
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therefore the dependent variables which are described by the system of differential equations. 
Other metabolites that take part in the reactions in these pathways such as NADP and 
glutamate (the independent metabolites in Figure 4-2) are predefined and are not simulated. 
For these metabolites piecewise polynomial splines are defined to represent the time courses 
of the metabolites by a mathematical function. The splines were fitted to the concentration 
measurements, but were smoothed in order to filter out some of the measurement error. The 
theory of spline approximation and the calculation of the splines are described in section 
4.2.7.  

The balancing of the intermediates in the valine / leucine pathway yields a differential 
equation for each metabolite of the form: 
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Here x1 to xm are the m balanced metabolites, i.e. the dependent variables and c1 to cq are the q 
independent metabolites. p1 to pl represent the l parameters. Note that the independent 
metabolites c are predefined functions of time. As such they represent the part of fi directly 
dependent on time. They might be regarded as “time dependent parameters”.  

When balance equations are defined for all xi the resulting system of differential equations 
can be written in vector notation as: 
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The function f is given by the kinetic rate equations multiplied by the appropriate 
stoichiometric coefficients. Thus Eq. (4-5) can be written: 
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where N is the stoichiometric matrix and r is the vector of rate equations. Eq. (4-6) has been 
written out in Table 4-2 for easy reference. 

It was not possible to measure the reduced co-metabolites NADH and NADPH with 
reasonable accuracy. To account for these in the model it was assumed that the sum of NAD 
and NADH as well as the sum of NADP and NADPH stayed constant during the 25 seconds 
of simulation. In a similar glucose stimulus experiment it was observed that this assumption is 
valid for Saccharomyces cerevisiae during a time span of 120 seconds (Vaseghi et al., 1999). 
The assumption is further motivated by the fact that Corynebacterium glutamicum lacks the 
transhydrogenase enzyme1. The trajectories of NADH and NADPH were calculated from the 
trajectories of their oxidised counterpart, where the sum of NADH and NAD was set equal to 
0.8 mM and the sum of NADPH and NADP was set equal to 0.04 mM. These sums will give 
ratios of reduced to oxidised cofactors, which correspond to the ratios reported for 
Corynebacterium glutamicum in literature (Dominguez et al., 1998; Gourdon and Lindley 
1999; Moritz et al., 2000 and 2002). 
 

                                                 
1 It has been suggested by Petersen et al. (2000) that Corynebacterium glutamicum can generate NADPH from 
NADH and ATP by cyclic flux through the reactions pyruvate carboxylase, malate dehydrogenase and malic 
enzyme. This would make up for the lack of a transhydrogenase enzyme. 
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Table 4–2: The mass balance equations for the linlog model of the valine / leucine pathway according 
to the stoichiometry given in Table 4-1. 

 

 
 

Large errors were also associated with the measurement of AcCoA and CoA as a result of 
the instability of the large CoA molecule. It was, however, clear that these metabolites did not 
respond much to the glucose stimulus. Rather than including noisy data in the model, which 
would not have had a significant influence anyway, these metabolites were excluded from the 
IPMS reaction rate in the model.  

 

4.2.2 Reaction rate expressions 

The non-mechanistic linlog kinetics (Hatzimanikatis et al 1997; Visser and Heijnen, 2003) 
was used to define the reaction rate expressions in the model. The formulation of the linlog 
kinetics was inspired by the idea that the rate of reaction is proportional to the thermodynamic 
driving force. It is defined as a sum of logarithms of the participating reactants scaled with 
respect to a reference state. For a reaction A + B = P + Q, allosterically regulated by a 
modulator M, the rate equation takes the following form: 
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where r is the reaction rate, e the enzyme level, εi the elasticity of the reaction with respect to 
metabolite i and xi the concentration of metabolite i. The superscripts 0 refer to the variables 
values at the reference state. 
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The elasticity of a reaction is a property often discussed within the framework of 
Biochemical Systems Theory (BST) and Metabolic Control Analysis (MCA). The theory of 
MCA is described in more detail in Chapter 4.3. Since the elasticity of a reaction is one of the 
parameters of the linlog equation its definition is introduced here. It is defined as the scaled 
local partial derivative of the reaction rate with respect to a metabolite: 
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An advantage of formulating the linlog kinetic with respect to a reference state as in Eq. (4-
7) is that the parameters equal the enzyme elasticities at the reference state which makes a 
direct interpretation of the parameters possible. (The reader who needs to be convinced of this 
may differentiate Eq. (4-7) with respect to xA. By multiplying the result with the scaling factor 

00 vxA and setting e and Ax  equal to their reference values e0 and 0
Ax  the answer should be 

0
Aε .) 
For the parameter fitting of the model it is useful to apply the formulation:  
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Eq. (4-9) is identical to Eq. (4-7) except that r0 has been multiplied into the parenthesis. As a 
result the parameters are now the semi-scaled elasticities evaluated at the reference state: 
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It is most convenient to choose the steady state as the reference state so that the r0 and x0 

parameters are the steady state flux and concentrations respectively. The advantage is that 
information about the steady state can then be included in the model. In a reaction sequence 
the r0 parameter for each reaction will depend on each other according to the stoichiometry of 
the reactions. Thus in the reaction network presented here only the steady state excretion rates 
of valine and leucine are needed to determine the r0 parameters for all the reactions. In the 
general case, the steady state fluxes can be determined by a flux analysis. This leaves only the 
parameters a, b, p, q and m to be determined through parameter fitting. Notice also that by 
scaling the metabolite concentrations by the steady state concentrations, the influence on the 
model of a possible leaking problem during quenching of the samples has been eliminated as 
discussed under Experimental Methods in section 3-2. 

The enzyme level e is assumed to be constant during the 25 seconds that are simulated so 
the ratio e/e0 = 1. This is a fundamental assumption in modelling the reaction dynamics at the 
enzyme level since one otherwise would have to include gene transcription in the model as 
well.  

Inhibitors were included in the rate equations according to published enzyme studies 
(Leyval et al., 2003). Valine and leucine are actively transported over the cell membrane by 
the same protein (Kennerknecht et al., 2002) and are thus competing substrates for this 
protein. This effect can be included in a linlog model by defining leucine as an inhibitor to the 
valine transport rate and valine as an inhibitor to the leucine transport rate. The inhibitors are 
listed in Table 4-1. 
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4.2.3 Parameter Fitting 

The program MMT2 (Hurlebaus, 2002; Haunschild, 2005) was used to simulate the 
concentrations and fluxes and to fit the parameters of the model. The parameters were fitted to 
minimise the relative distance between the simulated curves and the measured concentrations.  

MMT2 uses the Subplex algorithm which is a modification of the Nelder – Mead Simplex 
algorithm. The Subplex algorithm is a direct-search, local optimisation algorithm. The model 
contained 28 parameters and with such a large number of parameters to be varied a local 
optimisation algorithm will in general not be able to find the global optimum. The strategy 
that was used in order to find the global optimum was to first estimate “good” starting values 
for the parameters before the final optimisation was started. In this way the algorithm would 
start from a point believed to be close to the global optimum and would then converge to the 
global optimum. This strategy was implemented by dividing the system into smaller 
subsystems and estimate the parameters of the subsystems first to obtain starting values for 
the estimation of the complete system. The system was first divided in two with one part 
being the valine pathway and the other part the leucine pathway (see Figure 4-2). The valine 
and leucine pathways are only connected at the ketoisovalerate branchpoint, so for the leucine 
pathway ketoisovalerate had to be represented by a spline in order to detach the two 
pathways. The leucine and valine pathways were then further divided into smaller subsystems 
with each subsystem consisting of only one metabolite. The adjoining metabolites were 
temporarily represented by splines. The starting values for the parameters in the small 
subsystems were set so that the elasticities would lie between 0 and 1 which is the range in 
which elasticities normally lie. It was however often necessary to allow elasticities to obtain 
values significantly higher than 1 in order to fit the data. Once the parameters of the small 
subsystems had been fitted, these parameters were used as starting values to optimise the 
valine and leucine pathways separately. The resulting parameters for these pathways were 
then used as starting values for the final fitting of all the parameters in the complete system.  
 

4.2.4 Estimation of the Parameter Covariance Matrix 

The calculation of the parameter covariance matrix is based on the sensitivities of the 
simulated concentrations towards the parameters of the model and on the variances and 
covariances of the measurement points (Clifford, 1973).  

Dynamic sensitivity analysis was carried out by using either the method of automatic 
differentiation or the method of finite differences, both methods being implemented in 
MMT2. In this way the time dependent sensitivity matrix Si giving the sensitivities of the m 
metabolites towards the k parameters at each time point ti was obtained:  
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where the subscript (ti) signifies that the matrix elements are evaluated at time point i.  

The time dependent measurement variance – covariance matrix was defined as: 
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where the subscript (ti) signifies that the matrix elements are evaluated at time point i.  

The Fisher Information Matrix at time point ti, FIMi, can now be calculated as: 
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where the superscripts T and -1 signifies matrix transpose and inversion respectively. Summing 
the FIMi for all time points gives the total Fisher information matrix, FIM, which can be 
inverted to yield the parameter covariance matrix. 
 

1−= FIMMp            ( 4-14 ) 

 
In the study presented here the intracellular concentrations were observed at 47 different time 
points. 

The model parameters must be independent in order to calculate the parameter covariance 
matrix. Linear dependencies between parameters, which may be caused either by linear model 
dependencies or by significant parameter inaccuracies, e.g. as a consequence of parameter 
redundancy, will make the corresponding columns in the sensitivity matrix linearly 
dependent. This, in turn, leads to a singular Fisher information matrix, in which case the 
parameter covariance matrix can not be calculated directly using Eqs. (4-11) to (4-14).  

The parameter covariance matrix provides the standard deviations of the parameters and is 
therefore an important quantity in investigating how the errors in the measurements propagate 
onto the parameters and to determine the accuracy of the parameters. The parameter standard 
deviations are just the square root of the parameter variances which are found on the main 
diagonal of the parameter covariance matrix. The correlation matrix is easily calculated from 
the covariance matrix by using the definition of the correlation coefficient:  
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It is thus possible to analyse the correlation between the parameters. 

The FIM can be used to investigate the information richness in a data set (Kresnowati et 
al., 2005). In the investigation presented here the information richness, and thus the accuracy 
of the estimated parameters, depends on the actual course of the time series measurements as 
well as the accuracy and the number of data points that are taken. 

 

4.2.5 The Thermodynamic Model Constraint 

The driving force for chemical reactions is the Gibbs free energy of reaction defined as: 
 

QTRGG grr ln' +∆=∆ °          ( 4-16 ) 
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where ∆rG°’ is the Gibbs energy of reaction at the biological standard state. The biological 
standard state is the same as the standard state normally defined for chemical reactions 
(atmospheric pressure, temperature at 25 °C) except that the reference pH value is 7. The 
standard concentrations are 1 M for all reactants except for H2O which has a standard 
concentration of 55.5 M (that of pure water) and for H+ and OH- which have standard 
concentrations of 10-7 M. Rg is the universal gas constant, T is the temperature in Kelvin and 
the reaction quotient, Q, is defined as the activities of the products divided by the activities of 
the substrates. It is assumed here that all activity coefficients equal 1, so Q is calculated as the 
concentrations of products divided by the concentrations of substrates. So far no intracellular 
metabolite activity measurements have been carried out, so there is no information on the 
activity coefficients in literature. Setting these to 1 is probably a reasonable approximation 
since the concentrations of the metabolites are relatively low and the activity coefficients 
approach 1 as the concentration approach 0. 

The direction of spontaneous change at constant temperature and pressure is towards lower 
values of the Gibbs energy so ∆rG must always be negative. ∆rG is a function of the 
concentrations of the metabolites so it will change throughout a simulation, however, the 
following constraint must always apply: 
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Including this criterion in the model identification process ensures that all the simulated 
reaction rates always go in the direction towards lower Gibbs energy which is an important 
consideration in establishing realistic models. The constraint applies to all reaction rates ri at 
all time points and it thus greatly reduces the parameter space in which the optimal 
parameters are sought.  

The Gibbs free energy of formation of the relevant metabolites at the biological standard 
state was calculated by the group contribution method according to Mavrovouniotis 
(Mavrovoniotis, 1990; 1991). The standard Gibbs energy of reaction (reported in Table 4-1) 
can then be calculated from the Gibbs energies of formation.  

 

4.2.6 Stability Analysis  

The analysis of the stability of the steady state is an important aspect for the further 
interpretation of dynamic models. Only if the model has a stable steady state can a sensitivity 
analysis of its variables be performed. Thus a model must be stable in order to be used for 
metabolic control analysis.  
 
The stability criterion   The stability of a system is analysed by examining the Jacobian 
matrix. For a system of ODEs as defined in Eq. (4-5) the Jacobian is the matrix of partial 
derivatives of f: 
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A general criterion for the stability of a state was formulated by Lyapunov (Kondepudi and 
Prigogine, 1998). Using Lyapunov’s theory in combination with linear stability analysis gives 
the criterion for stability:  
 
Theorem: Stability criterion 

 
Thus, the stability is evaluated by calculating the eigenvalues of the Jacobian of the system of 
ODEs. The issue of stability of mathematical models is common in all engineering disciplines 
and the theorem above is well known. The derivation of the stability criterion and the 
description of Lyapunov’s theory have therefore been put in Appendix G.  

A conjugate pair of complex eigenvalues2 signifies that the system is able to oscillate. If a 
zero eigenvalue is found, the test gives no conclusion on the stability. 

 

4.2.7  Spline approximation 

A time series of discrete data points can be interpolated by fitting a polynomial or some other 
mathematical function to the data. However, in many cases one single function defined over 
the whole time interval will not give an adequate representation of the data. Different 
strategies have therefore been developed to obtain an accurate continuous mathematical 
representation of discrete data. Piecewise polynomial splines (pp-splines) represent one of the 
most common interpolation methods. Rather than defining one polynomial over the entire 
time interval this method defines different polynomials on subintervals resulting in a much 
more flexible mathematical form. 

Consider a time series of n discrete data points g(t1), g(t2), … , g(tn) defined on a time 
interval [a, b] with a = t1 < t2 < ... < tn = b. [a, b] is divided into subintervals where, in the case 
of pp-splines, each subinterval is the distance between two consecutive time points. 
Polynomials are then defined on each subinterval. The division of [a, b] in subintervals is 
referred to as the mesh of the spline. Thus on the ith subinterval [ti, ti+1] the polynomial has 
the form:  
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where k is the degree of the polynomial and Ci,j is the polynomial coefficient corresponding to 
the term of degree j. The spline σ(x) is defined as: 
 

                                                 
2 A complex number z is a number on the form z = a + ib where a is the real part of z and ib is the imaginary part 
with i being the imaginary number 1− . In the case where b equals 0, z is just a real number. Complex numbers 
occur in the general solution of algebraic equations. A polynomial of degree n has exactly n roots where some of 
the roots may be complex numbers. This theorem is know as the fundamental theorem of algebra and was proved 
by the german mathematician Carl Friedrich Gauss in 1799. In the solution of algebraic equations the complex 
roots will occur as conjugated pairs, i.e. if a + ib is a solution to the equation then a - ib will also be a solution 
(Lindstrøm, 1995). Since the calculation of the eigenvalues of a matrix is essentially the solution of an algebraic 
equation, a square matrix of dimension n will have n eigenvalues where the complex eigenvalues occur as 
conjugated pairs. 

A steady state is stable if, and only if, the eigenvalues of the associated Jacobian matrix 
all have negative real parts. 
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the coefficients Ci,j are set so that the polynomial pi(x) satisfies the conditions: 
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In other words, at its end points, pi(x) agrees with the data points g(t) and the first k-1 

derivatives equal the derivatives of the adjacent polynomials at the mesh nodes. Thus the 
spline σ (x) of degree k is (k – 1) times continuously differentiable in all time points. For a 
spline of degree 3 for instance (a cubic spline) this means that the first and second derivatives 
are continuous at the mesh nodes. 

The polynomial coefficients Ci,j are determined by solving a system of linear equations 
which are set up from the conditions stated in Eq. (4-21). A detailed description of this 
procedure will not be given here, but can be found for example in the book by de Boor 
(1978). It should however be noted that a spline of degree k has in total (k+1)*n coefficients. 
The conditions in Eq. (4-21) result in (k+1)*n – k + 1 equations so one must set (k – 1) 
additional conditions in order to obtain a unique solution for the polynomial coefficients. This 
is done by specifying the conditions at the end points of the spline. For a cubic spline (k = 3) 
two boundary conditions must be set. It is common to set 0)()( ''

1
'' == ntt σσ . In this case the 

spline is referred to as a natural spline.  
For measurement data containing noise the spline representation does not necessarily have 

to go exactly through each data point since these might contain errors. Rather, the spline 
should be an approximating curve representing the complete set of data. Thus, instead of 
having an interpolating spline a “smooth” spline going near the measurement points can be 
calculated. This is done by constructing a spline that minimises the following expression:  
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where wi is the weight of data point i and a is the smoothing factor. Minimisation of (4-22) 
establishes a compromise between the desire to stay close to the data and the desire to obtain 
a smooth curve. By assigning weights to the data points one may allow a stronger deviation 
from the data points where a large error is suspected. The weights wi should be set equal to 
the variances of the data points. The condition that (4-22) is minimised now replaces the 
condition that the spline goes through every data point. The implementation of this criterion is 
described by de Boor (1978).  

It should be noted that pp-splines are not the only type of splines that can be used. Another 
common type is the B-spline which has some numerical advantages over pp-splines (Hayes, 
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1974). Since the program MMT2 requires splines on the form of pp-splines this was the spline 
of choice in this dissertation.  
 
Calculation of the splines    A Java program was developed to calculate and visualise partial 
polynomial splines from time series of metabolite concentration data. The program was 
named JMSpline (Java Metabolite Spline) and combines the Java library JSpline++ (Excelsior, 
Novosibirsk, Russia) and the open source package JMat (http://jmat.sourceforge.net). 
JSpline++ contains the methods to calculate pp-splines of any degree while JMat provides 
general methods for engineering and scientific computation. The visualisation classes 
included in JMat were modified to yield a graphical user interface where the splines could be 
calculated and visualised. When the program is started a window is opened where the 
concentration data can be plotted. The program reads the concentration data from an ASCII 
file. The file has three columns separated by empty spaces where the time points are given in 
the first column, the data values in the second column and the data weights (i.e. the variances) 
in the third column. Splines of different degrees and different smoothing factors can then be 
added to the plot by the user (see Figure 4-4). The program also prints out the spline 
coefficients on XML format as required by MMT2 every time a new spline is calculated (see 
Figure 4-3).  
 

 
 

Figure 4–3: Example of the spline coefficients on XML format as printed out by the spline program. 
Only the coefficients for the first two polynomials of the spline are given. 

 
The source code that was written in order to combine JSpline++ with JMat is given in 

Appendix F. The JBuilder integrated development environment from Borland was used to 
develop JMSpline.  
 

<spline name="Glut" t0="-3.894"> 
<break degree="3" tr="-3.429"> 
<coef c="0" value="39.056885587148166"/> 
<coef c="1" value="-9.058939755393562"/> 
<coef c="2" value="0.0"/> 
<coef c="3" value="9.319099092826692"/> 
</break> 
<break degree="3" tr="-2.964"> 
<coef c="0" value="35.78146394165028"/> 
<coef c="1" value="-3.0138732991671295"/>
<coef c="2" value="13.000143075554607"/> 
<coef c="3" value="-4.350335925304043"/> 
</break> 
M   
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Figure 4–4: The graphical user interface of the spline program. In the field “Data” the path to the file 
containing the concentration data can be specified. In the text fields “Degree” and “Smooth” the 
degree and smoothness factor of the splines can be specified. The red line shows a spline with a large 
smoothing factor and the green line a spline with a smaller smoothing factor. The blue points are the 
concentration data from which the splines are calculated. 

 

4.3 Metabolic Control Analysis 

4.3.1 Data Driven Analysis 

Comparison to literature values of the kinetic constants    By comparing the intracellular 
metabolite concentrations at steady state to the Michaelis Menten constants and the inhibition 
constants for the respective enzymes, a picture of the level of substrate saturation and 
inhibition of the enzymes in-vivo can be obtained. These constants were recently determined 
for the enzymes in the valine pathway (Leyval et al., 2003). In that report the enzymes were 
isolated from the valine producer Corynebacterium glutamicum ATCC 13032 ∆ilvA 
pJC1ilvBNCD, a strain very similar to the one investigated here, and were characterised in-
vitro. Michaelis Menten and inhibition constants determined from in-vitro experiments might 
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not be valid for the in-vivo conditions (Wright and Kelly, 1981; Teusink et al., 2000). 
However, when there are orders of magnitude of difference between the in-vitro constants and 
the respective concentration levels, one can draw some general conclusions. 
 
The Pool Efflux Capacity    The Pool Efflux Capacity (PEC) is a measure of an enzyme’s 
capacity to turn substrates into products at a given system state. The criterion was defined and 
applied to the aromatic amino acid pathway by Oldiges et al. (2004). The calculation 
procedure is purely data driven and aims to shed light on the control structure of the 
investigated pathway without the need to develop complex kinetic models. Time series of 
metabolite concentrations form the basis of this method. Scaled metabolite pool exchange 
rates are calculated as: 
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where xi,SS is the concentration of metabolite i at steady state. The Pool Efflux Capacity is 
defined as the maximal relative efflux rate of a pool, i.e. the largest negative value of vi in Eq. 
(4-23) over a certain time period. In a linear reaction sequence the PEC value of a metabolite 
pool gives a measure of how fast the enzyme directly downstream of the pool is able to 
convert the substrates into products. Strictly, only net conversion rates of the metabolite pools 
are analysed so the method qualifies as an easy-to-apply quantitative guess giving 
approximations to the level of control in a linear pathway. A high capacity suggests that the 
enzyme has little control of the flux through the pathway since the enzyme will then be able 
to restore the system to steady state quickly. A low capacity signifies a high level of control. 
The PEC values are related to the enzyme elasticities defined in Eq. 4-8, in that an enzyme 
with high elasticities will in general have a high PEC and vice versa.   

It should be noted that the PEC values do not necessarily sum up to 1 unless they have been 
scaled. As many PEC-values can be calculated as metabolite pools that are observed 
experimentally. Both characteristics differ from typical MCA approaches as will be 
demonstrated in the following chapters.  

 

4.3.2 Model Based Control Analysis  

The theoretical framework of MCA    MCA uses sensitivity analysis to quantify the level of 
control that a system parameter (such as an enzyme level) has on a variable (such as a flux). 
The global and local coefficients used in MCA are defined here (Burns et al., 1985). A 
complete description of the theory can be found in the original papers (Kacser and Burns, 
1973; Heinrich and Rapoport, 1974) or in one of the more recent reviews (Fell, 1992; Liao 
and Delgado, 1993; Visser and Heijnen, 2002). 

The control coefficients are total derivatives which describe the global scaled sensitivity of 
a variable Vi towards a system parameter, pj: 
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Control coefficients give a measure for the control that a parameter has on a certain variable 
at the system state considered.  
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The response coefficients, here denoted with the letter Q, are also global coefficients. They 
describe the effect of an external parameter on a system variable. In this study the relevant 
external parameters are the external concentrations, cj, so the response coefficient of a 
variable Vi, is defined as: 
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Note that the response coefficients are nothing else than a special case of the control 
coefficients. The reason why they have an own name is that it is often useful to differentiate 
between the influence of internal and external parameters. In the past control coefficients have 
often been interpreted as only referring to the internal parameters. However, it is more useful 
to define them for any parameter, external or internal, as in Eq. (4-24), and consider response 
coefficients as special cases of the control coefficients. 

The local sensitivity coefficients are referred to as elasticities. The elasticity of a reaction 
was introduced in Eq. (4-8). In the general case the elasticity is defined as the scaled partial 
derivatives of a variable towards a metabolite xj with the other variables held fixed:  
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It is sometimes useful also to consider the local influence of a parameter. Thus the π-

elasticity (Kacser et al., 1990) has been defined as:  
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The variables traditionally considered in a metabolic control analysis are the concentrations 

and fluxes. Later the theory of MCA will be expanded to include also other variables (Chapter 
8.4.1). For now the concentration control coefficient, CC, and the flux control coefficient, CF

, 
are defined according to Eq. (4-24) as: 
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It is seen that the concentration and flux control coefficients are just the relative change of a 
concentration, xi, or a reaction rate, ri, with relative change in an internal parameter pj.    

The concentration response coefficient, QC, and the flux response coefficient, QF, are 
defined according to Eq. (4-25) as: 
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Similarly 2 elasticity coefficients and 2 π-elasticities can be defined to assess the local 

control of the concentrations and the reaction rates. The elasticity of a reaction rate was 
introduced in Section 4.2.2, Eq. (4-8) and is repeated here for easy reference: 
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The π-elasticity of a reaction rate is defined as: 
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Since the concentrations and the fluxes are correlated through the reaction system, there 

will also be correlations between the sensitivities. The concentrations are normally considered 
the basic variables when dealing with metabolic networks. It is therefore useful to express the 
flux control coefficients in terms of the concentration control coefficients.  

If one considers reaction i with rate ( )px;fri =  where x is the vector of the m metabolite 
concentrations and p is the vector of parameters one can apply the chain rule of differentiation 
to get an expression for the derivative of ri with respect to parameter pj: 
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By multiplying with the scaling factor ij rp  one gets: 
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which, according to the definitions in Eqs. (4-28), (4-29), (4-32) and (4-33), is just: 
 

∑
=

+=
m

k

C
jk

F
ki

F
ji

F
ji

1
,,,, CεπC          ( 4-36 ) 

 
Thus, if all the concentration control coefficients and the flux elasticities are known, all the 

flux control coefficients can be calculated as well. Eq. (4-36) is the most fundamental 
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equation in MCA because it is a general formulation of the summation and connectivity 
theorems (Stephanopoulos et al. 1998). The flux summation theorem says that with respect to 
the enzyme levels the flux control coefficients for a specific flux must sum up to 1:  
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The flux control connectivity theorem expresses the relationship between the flux control 
coefficients and the elasticities: 
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It is important to recognise that the control and response coefficients are total differentials, 

which means that the global effect of the parameter change taking all system variables into 
account is evaluated. Both coefficients are dependent on the state of the system and do not in 
general change linearly with parameter. The control coefficients calculated at one system state 
can therefore not be used to predict the change in flux resulting from a finite change in 
parameter. However, the control coefficients are useful to elucidate the control hierarchy in 
the reaction system at a specific state and also give a good indication of which enzymes 
should be considered for manipulation.  

The flux control coefficients with respect to the enzyme levels are normally the most 
important coefficients in a metabolic engineering study since the enzyme levels are the 
parameters which can be changed by the use of DNA technology. In some cases it is 
interesting to also calculate control coefficients to evaluate the influence of the substrate 
affinity, the product affinity and inhibitor affinity. For a mechanistic model this could be 
achieved by calculating the flux control coefficients with respect to the Michaelis Menten 
constants, Km, and the inhibition constants, Ki. For a linlog model these constants are not part 
of the model parameters and such an analysis is therefore not possible with a linlog model. 
However, this is only a minor drawback to the linlog approach since changes to the Km and 
the Ki constants are difficult to implement in practice anyway.  

For the purpose of finding the target enzymes for a further optimisation of the strain all 
coefficients will be calculated with respect to the valine excretion rate in order to analyse the 
influence and control that the different system parameters have on the strains ability to 
produce valine. By comparing the flux control coefficients to each other the distribution of 
control of the enzymes in the pathway is evaluated. The response coefficients are calculated 
for all external metabolites to investigate how the availability of the different co-metabolites 
affects the valine excretion rate. The metabolic network simulation programs Jarnac (Sauro et 
al., 2003) and Gepasi (Mendes 1993; 1997) were used to calculate flux and response 
coefficients at steady state.  
 
Model Prediction The model is further used to predict the changes in valine flux 
resulting from some of the possible genetic alterations suggested by the MCA. By doing these 
in-silico changes an estimate of how the strain would be affected in a real experiment can be 
obtained and the applicability of MCA in the identification of target enzymes can be 
investigated. Only changes which realistically can be implemented in the real cell are 
considered. Jarnac (Sauro et al., 2003) and Gepasi (Mendes, 1993; 1997) were used to 
calculate the model predictions of the change in valine excretion rate.  
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Optimisation of Enzyme Levels In an optimisation study, the enzyme activities in the 
valine / leucine pathway were optimised to obtain the maximum valine excretion rate. The 
external metabolites in the system were fixed at their steady state levels during the 
optimisation. The simulated annealing optimisation algorithm (Kirkpatrick et al., 1983) as 
implemented in Gepasi (Mendes et al., 1998) was used. This algorithm is slow, but gives a 
higher probability of finding the global optimum than most other optimisation algorithms. In 
the system optimised here only 7 system parameters were varied so the computation time was 
acceptable also with this algorithm.   

4 constraints were set for the parameter optimisation. The first ensures that the total enzyme 
concentration is kept at a constant level. This is formulated as: 
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where e/e0 is the enzyme activity relative to the reference state and n is the number of 
enzymes considered.  

The second constraint allows only modest changes in the metabolite levels in order to avoid 
influence on the gene expression and other secondary effects. This homeostatic constraint is 
formulated as: 
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where m is the number of metabolites and xi is the concentration of metabolite i and the 
superscript 0 refers to the reference state. The constraint ensures that the average change in 
metabolite level is less than 10 %. These first two constraints were applied by Mauch et al. 
(2001) to optimise the ethanol production in yeast, by Visser et al. (2004a) in a design study 
of the primary metabolism of Escherichia coli and by Schmid et al. (2004) in the optimisation 
of tryptophan production in Escherichia coli. Their importance in the design of metabolic 
system was discussed in more detail in the respective publications. The homeostasis 
constraint was first suggested by Kacser and Acerenza (1993) and also discussed by Thomas 
and Fell (1996) and applied by Stephanopoulos and Simpson (1997) in a theoretical study. 

The third constraint ensures that the second law of thermodynamics is not violated. This 
constraint is identical to the thermodynamic constraint used for the model development and is 
described in more detail in Section 4.2.5. The optimised fluxes are not allowed to conflict 
with Eq. (4-17). 

The fourth constraint sets the essential requirement that the optimal enzyme levels result in 
a stable steady state. The steady state is stable if and only if all the eigenvalues of the 
associated Jacobian matrix have negative real parts (Kondepudi and Prigogine 1998). In the 
model investigated here this constraint did not significantly limit the search for the optimal 
parameters as the model structure ensures stability for most choices of enzyme levels. 
However, in the general case the stability constraint is important since it is not given that 
dynamic models are stable.  

Finally it is not desired to have a strain that consumes leucine so negative fluxes of leucine 
excretion were not allowed.  
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4.4 Thermodynamic Analysis 

4.4.1 Introduction to the thermodynamic analysis of metabolic networks  

As stated in the introduction, the role of the thermodynamic driving forces for the reactions in 
metabolic networks will be analysed. The driving force for a chemical reaction is referred to 
as the reaction affinity, A, and was defined by De Donder (De Donder 1927; De Donder and 
van Rysselberghe 1936): 
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Here νi is the stoichiometric coefficient of substance i, defined to be positive for products and 
negative for reactants and µi is the chemical potential of component i. Thus the affinity is just 
the negative difference in chemical potential of the reactants and products i.e. the negative of 
Gibbs free energy of reaction, ∆Gr. There is, however, a conceptual difference between A and 
 ∆Gr; Gibbs free energy is used in the context of equilibrium states whereas the affinity is 
central in non-equilibrium thermodynamics. 

Since A is just the negative of ∆Gr it can be calculated in the same manner that ∆Gr is 
calculated (see Section 4.2.5 Eq. (4-16)). Thus, for a reaction with m reacting species A is 
given by: 
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Here A°’ is the standard affinity at the biological standard state where the reference pH is 7 
(see Section 4.2.5 for the definition of the thermodynamic biological standard state). xk is the 
concentration of metabolite k participating in the reaction and the stoichiometric coefficients 
νk are defined positive for products and negative for reactants. As noted earlier the activities 
should be used instead of the concentrations, but setting the activity coefficients equal to 1 is 
probably a good approximation for the dilute concentrations in the cell. Rg is the universal gas 
constant and T the temperature in Kelvin. 

A°’ is calculated from the standard chemical potentials, µ °’ according to the definition in Eq. 
(4-41): 
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The chemical potential of a substance is just the molar Gibbs energy and it is common in 
practical calculations to set the standard chemical potentials, µ °’, equal to the Gibbs energy of 
formation, ∆Gf

°’. A°’ can therefore be calculated directly from Eq. (4-43) by using literature 
values for ∆Gf

°’.  
Furthermore, the chemical potential, µι , of a species i in a mixture at any concentration can 

be calculated from:  
 

( )igii xTR ln' += °µµ          ( 4-44 ) 



4 Theoretical methods 46 

 
This equation is found in textbooks on physical chemistry, for example in the book by Atkins 
(1998). xi is the concentration of metabolite i measured in mole/l. 

At equilibrium the affinity is zero so it follows from Eq. (4-42) that 
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where Keq is the equilibrium constant. When A°’ is known, Keq is easily calculated by rewriting 
Eq. (4-45) as: 
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Cellular metabolism is an open system which continuously exchanges matter and energy 

with the surroundings. The reactions in the cells are therefore never at equilibrium, instead a 
non-equilibrium steady state is reached where the fluxes and concentrations do not change 
with time. Classical thermodynamics deals primarily with equilibrium situations and has 
therefore been extended to the non-equilibrium state by the work of Onsager (1931), 
Prigogine (1961) and others to deal with the many non-equilibrium real systems as described 
in the Introduction.  

Here it will be differentiated between near-equilibrium states and far-from-equilibrium 
states according to a criterion stated by Caplan (1971). A reaction is near equilibrium when 
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Here Rg is the universal gas constant and T the temperature in Kelvin.  

For near-equilibrium reactions the flux is proportional to the forces driving it, i.e. the 
phenomenological relations are valid. A flux Jk is then given by: 
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where Lk,j are the phenomenological coefficients and Aj are the different forces driving it. Eq. 
(4-48) is analogous to other common relations between flow and force such as Fick’s law of 
diffusion, Poisseseuile’s law for fluid flow, Fourier’s law of heat conduction and Ohm’s law 
for flow of electric current.  

Biochemical reactions can generally not be assumed to be near equilibrium so the 
phenomenological relations can not be assumed to be valid. However, a linear relation 
between force and flux has often been observed experimentally for example for the processes 
of oxidative phosphorylation (Rottenberg 1973 and 1979; Stucki 1980). Rottenberg (1973) 
and van der Meer et al. (1980) suggested that this was due to the mechanism of enzyme 
catalysed reactions and demonstrated that the mechanism of the uni-uni Michaelis Menten 
kinetics implies a near linear relation between rate and affinity within a certain affinity range. 
This was also discussed by Westerhoff and van Dam (1987). 
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A further investigation of the relationship between rate and affinity is important in 
establishing a theoretical basis for the application of thermodynamic analysis to biochemical 
systems. If the phenomenological relations can be demonstrated to hold also at states far from 
equilibrium it will significantly simplify the analysis. Onsager’s reciprocal relations (Onsager 
1931) would then be valid and could be used for example to investigate the degree of 
coupling between the reactions. Furthermore, it would promote the use of network 
thermodynamics (Mikulecky 2001) where the reaction network is analysed in the same way 
that electrical circuits are analysed, the advantage being that the entire body of electrical 
network theory can be applied. The analogy between biochemical networks and electrical 
circuits is fairly obvious. Kirchhoff’s first and second laws for electrical circuits, for example, 
correspond to the material and energy balances used in metabolic flux analysis.  

Far-from-equilibrium systems may be unstable (Prigogine and Lefever, 1968), i.e. they may 
not have a uniquely defined steady state and may display chaotic behaviour such as 
concentration oscillations or propagating waves. It is therefore not obvious that metabolic 
networks are stable even under constant extracellular conditions. However, living cells are 
clearly stable systems, as they can maintain their function also under varying extracellular 
conditions. When the phenomenological relations apply, the system will always have a stable 
state (Kondepudi and Prigogine 1998). The investigation of the linearity between rate and 
force in biochemical reaction networks will therefore provide a deeper insight into the 
stability of these systems. 

When analysing the behaviour of complex dynamic systems one often distinguishes 
between central control and self-organising of the system. Examples of this are found in 
many real systems. In an ecosystem the population of rabbits and foxes will adjust themselves 
to each other through self-organising. When a certain number of foxes and rabbits are hunted 
each year (by humans), this is central control. A business company functions according to 
how the workers perform and how they interact and cooperate (self-organisation), but also 
according to the decisions that are made by the board of directors (central control). 

In a cell, the division of the control of the metabolism into central control and self-
organising is obvious. Central control is achieved through the transcription of the different 
genes and translation of the corresponding mRNAs. The cell regulates its fluxes by adjusting 
the enzyme levels. Self-organisation (or post-translational control) results from the 
interactions of the metabolites in the network with the enzymes catalysing the reactions. The 
steady state reached by the system depends on the complex reaction mechanisms of enzymes 
where allosteric effects from metabolites not participating in the reaction may play a role. 
Feedback inhibition is an important part of the self-organising of metabolic networks. The 
observed fluxes in a cell are the result of the combination of central control and self-
organisation. 

Using the framework of metabolic control analysis one can assess the level of central 
control and self-organising. This is particularly useful in analysing the role of the 
thermodynamic forces in the control of metabolic networks. It will be shown in Chapter 8 
how the theoretical framework of MCA can be extended to include also the thermodynamic 
properties. In this way quantitative measures of control can be obtained for the 
thermodynamic properties in the same way that is done for the fluxes and concentrations.   
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5 Metabolomics 
As pointed out in the introduction, accurate data of the concentrations of the intracellular 
metabolites was the starting point for the analysis of the metabolic network reported in this 
work. The glucose stimulus experiment was performed to obtain concentration time series of 
the metabolites during a transient state. These formed the experimental basis of the kinetic 
model as well as of the metabolic control analysis and the thermodynamic analysis. The 
experimental results are reported in this chapter with the focus set on the experiment which 
yielded the optimal data set for the further modelling and analysis.  
 

5.1 The glucose stimulus experiment 

5.1.1 The establishment of the extraction method 

The most suitable method of cell disruption and metabolite extraction was established prior to 
the stimulus experiments. Two chemical extraction methods using either KOH or perchloric 
acid (HClO4) as well as a mechanical disruption method using the rotor / stator homogenisator 
described in Section 3.3 were tested. The extraction efficiency of the three different methods 
was evaluated by performing repetitive extraction cycles on the same sample and measuring 
the amount of intracellular metabolites that could be extracted for each cycle. In this way it 
was established that from the total amount of an intracellular metabolite present in the cell, 92 
% could be extracted with the KOH method after one extraction cycle. The perchloric acid 
disruption method, which has frequently been used in similar investigations (Buchholz et al., 
2001), could extract 88 % of the amount of the metabolites, but led to larger standard 
deviations in the analytical measurements. The KOH disruption also had the advantage that 
acid sensitive metabolites would not be affected by the disruption procedure. The levels of 
NAD and NADP were equal within measurement error for the two chemical disruption 
methods whereas NADH and NADPH could not be quantified with either method.  

The mechanical disruption method using the rotor / stator homogeniser could only extract 
42 % of the metabolites when operated at -20 °C and this method was therefore not 
investigated further. Other mechanical disruption devices such as bead mills or french presses 
could not be operated at -20 °C and were therefore not interesting for these experiments. 
 

5.1.2 Criteria for the fermentation 

The fermentation and the stimulus-response experiment must be carefully designed to yield a 
useful data set. Large changes in the metabolite concentrations are desired to provide a good 
experimental basis for the fitting of the model parameters and to obtain a wide range of 
validity of the model. Thus, the following two criteria for the setup of the fermentation were 
formulated: The physiological state of the culture at the time of the stimulus-response 
experiment should be chosen such that, (i) the results are readily transferable to the 
production conditions and (ii) the stimulus has a strong effect on the intracellular pools 
resulting in large deflections in the concentrations.  

Criterion (ii) ensures that an information-rich data set is obtained.  
The biomass specific valine excretion rate of this strain is at its highest during the 

exponential growth phase, so according to criterion (i), the investigation should be relevant to 
this state. However, the cells must be limited in their glucose supply immediately before the 
glucose addition to ensure sufficient glucose input stimulation, so the exponential growth 
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phase is not the preferred observation state. The glucose concentration must be so low that the 
pts system responsible for glucose uptake is not saturated with glucose. The pts system is 
often sensitive to the glucose concentration, with apparent Km values in the micro-molar range 
(values of 3 to 10 µM have been reported (Postma et al. 1993)), so when a batch fermentation 
is performed, the glucose stimulus can in practice first be performed when the glucose has 
been completely depleted. By adding the glucose stimulus just after the exponential growth 
phase has ended, restricting the limitation phase to an absolute minimum, it can be assumed 
that the enzyme levels in the cells are similar to the enzyme levels during exponential growth. 
This strategy is also in agreement with criterion (ii). The high activity of the enzymes in the 
central metabolism ensures that the effect of the increase in extracellular glucose will 
propagate rapidly through the reaction network and have a strong influence on the metabolite 
concentrations.  

Another method which has often been applied in the past (Oldiges et al. 2004, Visser et al. 
2004b) is to use a fed batch fermentation where the bioreactor is run at glucose limiting 
conditions for a certain period before the glucose stimulus is added.  

As pointed out in the Introduction, it was expected that the sudden increase of glucose 
uptake would result in an increase in the pyruvate pool and thus positively stimulate the flux 
into the valine biosynthetic pathway. 
 

5.1.3 Identification of the optimal procedure for the experiment 

As it is impossible to predict exactly how the cells will respond to a glucose stimulus, 
different experimental procedures had to be tested in order to find the optimal one. Two 
preliminary experiments were performed. In experiment 1 the stimulus was applied 
immediately after glucose depletion. In experiment 2 a fed-batch strategy was used to keep 
the cells at glucose limitation for 3 hours before the stimulus. In this period glucose was 
added at a constant rate equal to 1/3 of the uptake rate at exponential growth. The pyruvate 
time courses of the two preliminary stimulus-response experiments are depicted in Figure 5-1.  
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Figure 5–1: The intracellular pyruvate time course in the two preliminary experiments used to 
establish the experimental procedure. In experiment 1 (left) batch fermentation was performed and the 
stimulation was applied directly after glucose depletion. In experiment 2 (right) the stimulation was 
applied after 3 hours of fed-batch fermentation under glucose limitation. The pyruvate time courses for 
experiment 1 and 2 can be compared to the pyruvate time course for the optimal experiment in Figure 
5-4.   

 
In experiment 1 there is a clear response in the pyruvate concentration, but large 

fluctuations during the first 10 seconds after the stimulus is seen. These fluctuations could be 
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due to an overlay of effects. When the culture enters the state of glucose limitation this shift 
will result in a perturbation of the metabolite concentrations. The glucose stimulus, added 
immediately after that, will provide further perturbations, but these will then be superimposed 
on the oscillations resulting from the glucose depletion. Thus the obtained data set is not well 
defined and it was therefore not used for the model development.  

In the second experiment, keeping the cells at glucose limitation for a longer period of time 
before the glucose addition led to a much lower level of pyruvate (see Figure 5-1) and a 
hardly noticeable response to the glucose stimulus. This is most probably a result of a lower 
activity of the glucose uptake system or of the enzymes in the glycolysis. The fed-batch 
strategy was therefore conflicting with both criteria set up for the fermentation strategy and 
was therefore ruled out. A weak response to a glucose stimulus after a fed-batch fermentation 
was also observed by Oldiges et al. (2004).  

In the optimal experiment (Experiment 3) used for model identification, a 10-minute time 
delay between glucose depletion and glucose stimulus was included. This was long enough to 
avoid an overlay of effects, and short enough to avoid any significant changes in enzyme 
levels as a result of transcriptional regulation. The pyruvate time course for this experiment is 
given in Figure 5-4.  

The biomass and glucose concentrations, the valine and leucine concentrations and the CO2 
excretion- and O2 uptake rates in the bioreactor during the fermentation in experiment 3 are 
given in Figure 5-2. 
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Figure 5–2: The fermentation run for the optimal experiment. Left: The biomass and glucose 
concentration in the bioreactor. Middle: The valine and leucine concentrations. Right: The CO2 
excretion rate and the O2 uptake rate in the bioreactor. Note that the respiration coefficient (CO2 
excretion rate / O2 uptake rate) is close to 1 during the whole fermentation. The stimulus was added at 
process time 13.2 hours (the broken line in the diagrams).  

 

5.2 The intracellular response to the stimulus 

The response to the stimulus in the intracellular metabolites obtained in the optimal 
experiment is now analysed. The time courses for the metabolites in the glycolysis during the 
transient state are given in Figure 5.3. Figure 5.4 depicts the response in the valine pathway. It 
is the first time that the intermediates in the valine / leucine pathway have been observed 
during a transient state. The complete set of measurement data obtained from this experiment 
is given in Appendix C.  
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Figure 5–3: The reaction sequence in the glycolysis and the response to the glucose stimulus in the 
EMP pathway.The glucose stimulus was added at time = 0.  The dots are the measurement points. 
The line is a smoothed representation of the data showing the trend of the time series. The Fast 
Fourier Transformation (FFT) algorithm was used to smooth the data (Origin, OriginLab, USA). The 
last diagram compares the time courses of the metabolites with concentrations in the same range to 
each other.  

 
There is a clear response in all the metabolites in the glycolysis. Fructose-1,6-bisphosphate, 

the DHAP/GAP pool, the 2-/3-PG pool as well as the phosphoenolpyruvate (PEP) pool all 
respond immediately to the stimulus with a 6 – 8 fold increase in concentration within about 1 
second. This demonstrates the very fast reaction rates that can be obtained under in-vivo 
conditions. Interestingly, the first metabolites in the reaction sequence, the G6P/F6P pool, 
have a much slower increase in concentration than the metabolites further downstream. This 
is partly due to the much higher concentration of the G6P/F6P pool. However, given the 
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complexity of the reaction network and the regulatory network, there are also a number of 
other possible explanations to this observation. The glycolysis interacts with other pathways 
such as the pentose phosphate pathway, and the regulation of the glycolysis at the enzyme 
level is intricate with especially the phosphofructokinase enzyme being under detailed 
allosteric regulation. The levels of other metabolites such as ATP, ADP and AMP also play 
an important role in the regulation of the glycolysis. Thus it is not possible to obtain a deeper 
understanding of the observations based solely on intuition and knowledge of the 
biochemistry. A more systematic approach, such as the development of a mathematical model 
is required in order to explain the observed concentrations. 

It is commonly accepted that Corynebacterium glutamicum assimilates glucose mainly 
through the phosphotransferase system (Malin and Bourd, 1991). In this transport reaction 
one molecule of PEP is transformed to pyruvate while the phosphate group is being 
transferred to the glucose molecule to form intracellular G6P:  

 

PEP + Glucoseextracellular  Pyruvate + G6P     ( 5-1 ) 

 
However, it has been demonstrated that Corynebacterium glutamicum might also have a 
permease through which it can take up glucose directly. Cocaign-Bousquet et al. (1996) 
suggested that about 15 % of the glucose uptake at high growth rates proceeds through a 
permease system. Furthermore, Park et al. (2000) demonstrated the existence of a gene coding 
for a glucose kinase in Corynebacterium glutamicum, and showed that the deficiency of this 
enzyme would lead to a slower growth rate when glucose was used as the sole carbon source. 
Glucose kinase is needed by the cell to metabolise disaccharides such as maltose or trehalose, 
but when glucose is used as the sole carbon source, a deficiency of glucose kinase will only 
have influence if some of the glucose is taken up by a permease. Thus the findings of Park et 
al. support the existence of a permease in Corynebacterium glutamicum.  

The measurements of PEP presented here further strengthen the permease hypothesis. Since 
PEP is consumed in the pts reaction (Eq. 5-1) one should expect the PEP concentration to 
decrease immediately after the glucose stimulus. It is seen from Figure 5-3 that there is no 
sign of a decrease in PEP concentration, instead there is a rapid increase. If the glucose uptake 
directly after the stimulus proceed through a permease it can enter the glycolytic pathway 
without the consumption of PEP, because the phosphorylation of glucose would then be 
carried out by the glucose kinase which uses ATP as a phosphate donor and not PEP. The 
observed time course of PEP therefore suggests the existence of a permease. It should, 
however, be noted that the PEP time course by no means proves the existence of a permease. 
Other theories can also explain the PEP time course. If PEP can be formed from pyruvate 
either through the phosphoenolpyruvate synthase reaction or through a series of reactions, e.g. 
pyruvate carboxylase, malate dehydrogenase and phosphoenol carboxykinase, and these 
reactions are fast compared to the pts reaction, the glucose could be taken up by the pts 
reaction without a noticeable decrease in PEP concentration. The same would be the case if 
the reactions in the glycolysis were much faster than the pts reaction. The two PEP molecules 
formed for each glucose molecule would then rapidly make up for the loss of one PEP 
molecule in the pts reaction. However, the permease hypothesis seems the most likely 
explanation for the observed PEP time course.  

Since PEP can be formed from pyruvate in only one reaction step, by the addition of a 
phosphate group, it is thinkable that systematic errors can occur during the LC-MS 
measurements either by reaction of pyruvate to PEP or by the reaction of PEP to pyruvate. 
This could for example happen in the heated capillary in the massspectrometer, which has a 
temperature of 375 °C, or in the ionisation chamber where there is an electrical field of 4 kV. 
In the measurements presented here this was clearly not a problem since the peaks of pyruvate 
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and PEP were detected at different times during the sample measurement. The difference in 
retention time between pyruvate and PEP was about 1 minute and 20 seconds as stated in 
Table 3-2. Thus, a potential chemical reaction would have had to happen prior to the sample 
entering the chromatography column. However, the sample was kept at a temperature below -
20°C at all times before the injection into the chromatography column. At 20°C below zero it 
is highly unlikely that pyruate can be transformed into PEP or PEP into pyruvate. 
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Figure 5–4: The reaction sequence in the valine pathway and the response to the glucose stimulus. 
The last diagram compares the time courses of the metabolites with concentrations in the same range 
to each other.   

 
The glucose stimulation led to large changes also in the valine and leucine pathways within 

few seconds and thus provided a useful data set for the modelling of these pathways (see 
Figure 5-4 and 5-5). The concentrations in the valine pathway were typically constant before 

PYR ACLAC DHIV KIV VALPYR ACLAC DHIV KIV VAL
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the glucose addition, and then increased almost immediately after the stimulus before they 
settled towards a new steady state after about 15 – 20 seconds. An exception to this behaviour 
was shown by Ketoisovalerate (KIV) which had a clear decrease in concentration before 
glucose addition. This shows that the KIV concentration had not reached a steady state before 
the stimulus. The concentrations in the leucine pathway were in general lower than the 
concentrations in the valine pathway. The flux in the leucine pathway is only 4 % of the flux 
in the valine pathway and the lower concentrations are a typical sign of a lower flux. 
Isopropylmalate (IPM) and ketoisocaproate (KIC) are more affected by fluctuations than the 
other metabolites which is a result of the low concentrations.  

Pyruvate, the starting metabolite in the valine / leucine reaction sequence, had a 3 fold 
increase in concentration within less than a second demonstrating the fast dynamics of 
metabolic reaction networks. The strong and definite input signal from pyruvate led to the 
very clear changes in the other pathway intermediates, which is optimal for the analysis of the 
in-vivo enzyme kinetics. The close connection of the valine / leucine pathway to the central 
metabolism makes it particularly applicable to method development studies in dynamic 
modelling based on glucose stimulus experiments. Other biosynthetic pathways, which are 
not as closely connected to the central metabolism or originates from more than one 
precursor, may experience an overlay of effects resulting in stronger oscillations or a buffered, 
i.e. reduced, stimulation as has been observed in the aromatic amino acid pathway (Oldiges et 
al., 2004). 
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Figure 5–5: The reaction sequence in the leucine pathway and the response to the glucose stimulus. 
The last diagram compares the time courses of the metabolite concentrations to each other. 
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5.3 The response in the pantothenate pathway 

In the description of the strain in Section 2.1 it was pointed out that the strain is pantothenate 
auxotroph due to the deletion of the panB and panC genes (see Figure 2-1). In order to find 
out if the pantothenate pathway had been completely inactivated, the intermediate 
ketopantoate (KPan) was measured during the stimulus experiment. The result is given in 
Figure 5-6.  
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Figure 5–6: The time course of Ketopantoate.The concentration is two to three orders of magnitude 
lower than for the other measured metabolites (note that the concentration is given in µM).   

 
It is seen in Figure 5-6 that the concentration of KPan is practically zero before the stimulus 
as expected. However, as soon as the stimulus is added, there is a clear increase in the KPan 
concentration. Two hypotheses to explain the unexpected reaction in the KPan pool to the 
stimulus can be set up. Either some activity of the ketopantoate hydroxymethyl transferase 
enzyme was present in the cell despite the deletion of the panB gene, or KPan was produced 
through an alternative pathway.  

This was further elucidated by performing a time-lagged correlation analysis (see theory in 
Section 4.1) for the metabolites around the KIV branchpoint (Figure 5-7). This method is a 
purely statistical method which aims to analyse the causal connectivity of a metabolic 
network. It is based only on time series of the metabolites and does not require any prior 
knowledge of the reaction sequence, the stoichiometry or the reaction kinetics of the systems.  
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Figure 5–7: The KIV branch point. Valine is produced in one transamination step from KIV. The 
leucine pathway starts with the formation of 2-isopropylmalate (2-IPM) from KIV. The pantothenate 
pathway also bifurcates off from the KIV branchpoint with the formation of KPan. In the investigated 
strain the panB gene coding for ketopantoate hydroxymethyl transferase has been deleted and the 
reaction forming KPan should therefore not take place.  

 
The time courses of valine, 2-IPM and KPan were compared to the time course of KIV. The 

data were smoothed before the analysis using the Fast Fourier Transformation filter (FFT) in 
order to eliminate noise from the data. The time-lagged correlations are plotted in Figure 5-8. 
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Figure 5–8: The correlations of valine, KPan and 2-IPM with KIV at different time lags. The correlation 
of KIV with itself is also displayed. 

 
Table 5–1: The correlation maxima of valine, 2-IPM and KPan with KIV and the time-lags at which 
they occur. 

 
 Time Lag Correlation 
Val 1.94 0.70 
KPan -1.09 0.93 
2-IPM 2.75 0.42 

 
 

It is seen from Figure 5-8 and Table 5-1 that valine and 2-IPM have their maximum 
correlation with KIV at positive time lags. This means that the effect of the pulse is seen later 
in the valine and 2-IPM pools than in the KIV pool which is expected since valine and 2-IPM 
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are downstream of KIV in the reaction sequence. The time lag of the transaminase reaction 
forming valine from ketoisovalerate (KIV) was about 2 seconds showing that the pulse effect 
is transferred relatively slowly from KIV to valine. This could be an effect of the high 
intracellular concentration of valine of about 30 – 40 mM. 2-IPM had a low maximum 
correlation with KIV which suggests that the IPM-synthase reaction has little control over the 
IPM concentration.  

Ketopantoate (KPan) had a maximum correlation at a negative time lag. This means that 
the effect of the stimulus reaches the KPan pool before it reaches the KIV pool. It is therefore 
very unlikely that the ketopantoate hydroxymethyl transferase enzyme is active. If this 
enzyme would have been active, the effect of the stimulus would have been transferred from 
KIV to KPan and would thus have given a positive time lag for KPan. It can therefore be 
concluded that KPan is formed from an alternative reaction sequence which in some way is 
linked to the central metabolism. This alternative reaction sequence may involve enzymes 
from other pathways with a by-activity for the ketopantoate forming reactions, or may 
constitute a separate synthesis pathway for KPan. In any case, given the very low 
concentration of KPan at steady state, this route is probably not very active under normal 
conditions. It should also be noted that the strain can grow without the addition of pantothenic 
acid to the medium (Brik Ternbach, 2005). This also suggests that there is an alternative 
reaction sequence that forms pantothenic acid.  

As demonstrated in the paragraphs above the time lagged correlation method is useful in 
analysing small networks containing closely connected metabolites. When the method was 
tested with a larger set of metabolite data it proved to be incapable of reaching any 
conclusions with significant accuracy. The reason for this lies in the high connectivity of 
metabolic networks and the relatively long relaxation times of the metabolite concentrations. 
It can be seen from the measured metabolite concentrations that the relaxation time is around 
20 seconds for most metabolites. When the network is disturbed, for example by a glucose 
stimulus, all concentrations in the network will be affected. A metabolite pool will therefore 
receive impulses from many different nodes in the network and the intervals between these 
impulses will be much shorter than 20 seconds. Thus the effect of the stimulus on a 
metabolite pool becomes very complex and the idea that the connectivities in a large network 
can be analysed based only on the correlation extrema does not hold.  
 

5.4 Comparison of two different physiological states 

Stimulus experiment 2 and 3 were performed with cultures at two different physiological 
states. In experiment 2 the cells had been kept at glucose limitation for 3 hours with a glucose 
feed of 1/3 of the glucose uptake rate at exponential growth. In experiment 3 the cells were at 
the end of the exponential growth phase as described in Section 5.1.3. Some interesting 
differences were seen in the response to the glucose stimulus (see Figure 5-9). 

In experiment 2 the levels of the intermediates in the glycolysis were in general lower and 
there was hardly any response to the stimulus at all. This is particularly clear when looking at 
the G6P / F6P concentration. In experiment 2 the concentration of G6P / F6P was about 1 – 2 
mM, while in experiment 3 this concentration was more than ten times higher than that. A 
similar observation was made for pyruvate. The concentration was very low in experiment 2 
and there was hardly any reaction to the stimulus. In experiment 3 pyruvate reacted very 
strongly to the stimulus. It is apparent that the glucose limitation in experiment 2 had led to a 
low activity of the glucose uptake system and the enzymes in the glycolysis, while in 
experiment 3 the glycolysis is very active.  

An interesting effect is seen in the PEP concentration. In experiment 2 this concentration 
decreased after the stimulus. As discussed in Section 5.2 this is what one would intuitively 
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expect since PEP is consumed in the pts reaction. In experiment 2 the activity of the 
glycolysis was low enough for the decrease in PEP to occur. Later, at about 10 seconds after 
the stimulus, an increase in PEP concentration is seen. In experiment 3, on the other hand, 
there is a rapid increase in PEP concentration immediately after the stimulus. It was suggested 
in section 5.2 that the PEP increase at exponential growth was due to the existence of a 
glucose permease. The PEP time course in experiment 2 clearly shows that the permease is 
not active at glucose limiting conditions and that the pts system is the dominating glucose 
uptake system at this condition. If Corynebacterium glutamicum has a glucose permease it is 
only active when there is a good availability of glucose.   

The concentration of AMP was higher in experiment 2 signifying a lower energy level of 
the cell due to the glucose limitation. The qualitative reaction in the AMP pool was similar for 
both experiments. 
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Figure 5–9: Comparison of the response to the glucose stimulus for a culture adapted to growth under 
glucose limitation (Experiment 2, left), and for a culture at the end of the exponential growth phase 
(Experiment 3, right). In Experiment 2 the stimulus was performed after 3 hours of glucose limiting fed-
batch fermentation with a glucose feed of 1/3 of the glucose consumption rate at unlimited conditions. 
In Experiment 3 the stimulus was performed after 10 minutes of glucose limitation.  
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6 Modelling and Simulation 
The metabolome data from Experiment 3 described in the previous chapter is now used to 
identify and validate a kinetic model. From the different modelling approaches that were 
taken, a linlog model of the valine / leucine pathway turned out to be the most useful one as a 
basis for the further investigation of the valine / leucine pathway. This model and its 
simulation results are described in this chapter. The definition of the model and the method of 
fitting the model parameters were described in Section 4.2. The modelled system is depicted 
in Figure 4-2 and the stoichiometry of the reactions is given in Table 4-1.  

Two other models developed with alternative modelling approaches are described in 
Chapter 9.   
 

6.1 Model performance 

The model simulates the concentrations and fluxes of the valine and leucine pathway during 
the transient state and also reproduces the steady state concentrations, as well as the steady 
state excretion rates of 0.23 mM/s and 0.0026 mM/s for valine and leucine respectively 
(concentrations are given with respect to the intracellular volume). The curves of the 7 
simulated metabolites were fitted to a total of 316 data points. The spline representations of 
the 6 independent metabolites were based on 279 data points so the total experimental basis of 
the model was 595 data points. The 9 simulated reaction rates contained in total 28 
parameters. The concentrations of the metabolites at the reference state used in the model are 
given in Table 6-1.  
 
Table 6–1: The metabolite concentrations at the reference state.  

 
Metabolite Reference concentration
  mM 
AcLac 0.236 
AKG 5.12 
Ala 1.05 
DHIV 0.132 
Glut 38.7 
IPM 0.0227 
KIC 0.0741 
KIV 7.84 
Leu 0.209 
NAD 0.528 
NADP 0.0175 
Pyr 0.689 
Val 29.4 

 
 

Figure 6-1 and 6-2 show the fitting of the model to the data. The input signals from the 
independent variables (see Figure 6-3) led to the changes in the simulated concentrations 
where especially pyruvate gave a strong input signal directly after the stimulus. Both the 
period before and after the stimulus could be fitted. The measurements have a standard 
deviation of about 10 % so the simulated curves need not necessarily go through every 
measurement point, but should represent the general trend of the time course. Most of the 
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metabolite time series could be fitted accurately to the data, including the steep decline and 
sharp rise of the KIV concentration, but the model was not capable of reproducing the two 
peaks observed in the DHIV metabolite. These peaks are not observed in the up- and  
downstream metabolites next to DHIV, namely, AcLac and KIV, whose metabolite dynamics 
are well-described by the model. It is worth noticing that the KIV concentrations are up to 50 
times higher than those of its precursor DHIV. Hence, DHIV pool turnover is much faster 
than KIV, resulting in high pool sensitivities with respect to the estimated flux dynamics. 
However, flux estimations are numerically dominated by the fluctuations in the large KIV 
(and valine) pool, thus giving DHIV dynamics only a minor significance. Mechanistically, 
DHIV dynamics might have been caused by varying NADP/H ratios, which, as already 
described, could only be estimated by the experimental approach chosen. 

 
 

 
 

Figure 6–1: The simulation of the intracellular metabolites in the valine pathway (lines) and the 
measurements that were used to fit the parameters in the model (dots). The glucose stimulus was 
added at time 0.  

 
The large changes in the simulated fluxes demonstrate the highly dynamic behaviour of 

metabolic networks (see Figure 6-4). Most notable is the rapid increase in the acetohydroxy 
acid synthase (AHAS) rate, the starting reaction in the sequence, which increases to a value of 
almost 6 mM/s directly after glucose addition. This is about 25 times the steady state flux 
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which shows the strong stimulus of the valine pathway that was achieved with the established 
experimental strategy. The reaction rates in the system responded very quickly to the
alterations in the metabolite concentrations and the fluxes changed so that the impact of the 
rapid change in pyruvate concentration was damped by the system. In this way the cell rapidly 
adjusted its metabolism to the changing extracellular conditions and avoided very large 
changes in the metabolite levels which would have been damaging for the cell. The cell needs 
a very flexible and responsive set of enzymes in order to achieve this, which demonstrates the 
need for a complex regulation structure at the enzyme level in metabolic networks. Substrate 
saturation of the enzymes was not present to a significant degree, as this would have prevent 
the rapid changes in the reaction rates. Note also that the cell managed to control its fluxes 
despite the high level of the inhibitor valine present in the cell. The enzymes AHAS and 
AHAIR are strongly inhibited at valine concentrations of more than 20 mM (Leyval et al., 
2003), but a complete inhibition does not take place. This phenomenon has also been 
observed by Elisakova et al. (2005) who found that the AHAS enzyme keeps 43% of its 
activity at saturating valine concentrations.  
 

 
 

Figure 6–2: The simulation of the intracellular metabolites in the leucine pathway (lines) and the 
measurements that were used to fit the parameters in the model (dots). 

 
The simulation of the intracellular fluxes further demonstrates the difference between the in 

vivo and in vitro properties of the enzymes. The maximal rate of the AHAS enzyme from this 
strain determined in-vitro in cell extracts diluted 1 to 10 at pH 7.4 is 175 nmol/min mg total 
protein (Leyval et al., 2003). Using a specific intracellular volume of 2 ml/g DCW (Gutmann 
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et al., 1992) and assuming that the dry cell weight is 52 % protein (Cocaign-Bousquet et al., 
1996) this corresponds to an intracellular maximal rate of 0.76 mM/s. During the transient 
state the AHAS reaction reaches a value of almost 6 mM/s so the enzyme is clearly much 
more active in the cytosol than in a test tube.  
 

 

 

 
 

Figure 6–3: The spline representation of the independent metabolites (lines) and the measurements 
from which the splines were calculated (dots). Smoothed 3rd order piecewise polynomial splines were 
used for all metabolites except for pyruvate where a 2nd order pp-spline was used. 
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Figure 6–4: The time course of the simulated fluxes in the valine and leucine pathway. In the valine 
pathway the first reaction transforming pyruvate to acetolactate (AHAS) is displayed as well as the 
transaminase (BCAAT) and the transport (Trans) reaction. The second and third reaction steps 
(AHAIR and DHAD) are omitted in the plot as they have very similar time courses to AHAS due to the 
relatively low concentrations of the first three metabolites in this pathway. In the leucine pathway the 
time course of the IPMDH reaction is similar to the IPMS reaction.  

 

6.2 Model parameters 

The identified model parameters and their standard deviations are given in Table 6-2. Five 
parameters initially included in the model obtained the value 0 and could be deleted from the 
model. The parameters corresponding to NAD and NADH in the isopropylmalate 
dehydrogenase (IPMDH) reaction were among the parameters that could be deleted, which 
demonstrates that although NAD and NADH are reaction partners of the IPMDH reaction 
they did not have significant influence on the reaction rate in the modelled concentration 
range.  

The fast dynamics of the intracellular reactions is further illustrated by the enzyme 
elasticities listed in Table 6-2. As explained in Section 4.2.2 the enzyme elasticities are scaled 
partial derivatives that give a measure for the rate of change of a reaction with change in a 
metabolite concentration. In other words, the elasticities show how an enzyme responds to 
changes in substrate / product or inhibitor concentration. The large elasticities obtained by 
some of the enzymes indicate the high responsiveness towards changes in the metabolite 
concentrations. The large values, which enable the fast changes in reaction rates, are 
necessary in order to explain the observed concentrations. Theoretical studies based on 
mechanistic reaction equations suggest that enzyme elasticities are in general lower than most 
of the elasticities reported here. It can for example be shown that a uni-uni Michaelis Menten 
reaction has elasticities equal to or smaller than 1 (Kacser and Burns 1973). The large 
elasticities reported here illustrate that reactions taking place in-vivo are more complicated 
than what can be explained by simple theoretical considerations or in-vitro enzyme analysis. 
Large in-vivo-elasticities were also observed by Visser et al. (2004a) in their analysis of the 
E. coli model reported by Chassagnole et al. (2002).  

The magnitude of the elasticities can often be related to the level of saturation of an enzyme 
by the different reactants and modulators. If an enzyme is saturated with for instance a 
substrate it will have a small elasticity towards that substrate since changes in the substrate 



6 Modelling and Simulation 66 

concentration will have little effect on the reaction rate. The large elasticities found here 
demonstrate that the enzymes in the valine / leucine pathway in this strain are seldom in a 
saturated state. This is true even for valine, which had a very high intracellular concentration. 
The three first enzymes in the reaction sequence (AHAS, AHAIR and DHAD) all have large 
elasticities towards the inhibitor valine, which shows the high influence of valine on these 
reaction rates. This demonstrates the high level of regulation on the enzyme level of this 
pathway present under the in-vivo conditions. One of the few elasticities which obtained a 
small value is found for the AHAIR enzyme which has a low elasticity towards NADPH. 
Although NADPH is a substrate of this reaction, it has little influence on the reaction rate.  
 
 
Table 6–2: The values of the model parameters. The parameters are listed according to the reaction 
rates and metabolites that they correspond to (see Eq. 4-10 for the definition of the parameters). The 
parameter standard deviations are also reported, as well as the elasticities of the enzymes for the 
various reactants. A large elasticity means that the reaction rate changes fast with changes in the 
respective substrate / product or inhibitor concentration. 

 

Enzyme Metabolite Parameter value Standard deviation Elasticity 
AHAS Pyr 6.08 2.4 25.9 
 AcLac -4.35 12 -18.5 
  Val -2.83 20 -12.1 
AHAIR AcLac 34.7 81 148 
 NADPH 0.00215 26 0.00917 
 DHIV -3.31 66 -14.1 
 NADP -2.59 20 -11.0 
  Val -53.5 30 -228 
DHAD DHIV 26.1 9.7 111 
 KIV -0.00319 1.8 -0.0136 
  Val -62.8 24 -267 
BCAAT_Val KIV 3.82 0.62 16.4 
 Glut 1.40 0.79 6.01 
 Ala 0.0283 1.1 0.122 
  AKG -0.00275 1.3 -0.0119 
Trans_Val Val 9.99 3.3 42.5 
  Leu -3.32 1.5 -14.1 
IPMS KIV 0.220 0.075 83.4 
 IPM -0.267 0.17 -101 
  Leu -0.0203 0.43 -7.70 
IPMDH IPM 5.00 16 1897 
  KIC -1.87 6.0 -712 
BCAAT_Leu KIC 0.602 0.29 229 
 Glut 0.692 0.35 263 
 Leu -0.359 0.50 -136 
  AKG -0.335 0.18 -127 
Trans_Leu Leu 0.150 0.42 56.9 
  Val -0.0608 0.10 -23.1 

 
 

The leucine pathway on the other hand is mainly controlled at the transcriptome level. The 
enzymes specific to the leucine pathway are the product of a single genetic functional unit or 
operon (Burns et al., 1966) and the synthesis of these enzymes is controlled by the end 
product leucine (Patek et al., 1994, Inagaki et al., 1990, Parsons et al., 1969). This control is 
strong enough to prevent the strain from producing significant amounts of leucine. The 
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excretion rate of leucine is two orders of magnitude smaller than the valine excretion rate both 
at transient and steady state.  

The accuracy of the parameters in metabolic models is an important issue, which has often 
been neglected in the past. In the presented work much effort has been made to make the 
parameters as accurate as possible by designing the stimulus experiment to yield an 
information rich data set, by taking a large number of samples to obtain many data points for 
the fitting of the model, and by reducing the number of parameters in the model to a 
minimum. Even so, many of the parameters obtained large standard deviations as reported in 
Table 6-2. This demonstrates the importance of having a broad data basis for the 
identification of the model parameters. The absolute minimum requirement is that one has at 
least as many measurement points as parameters. When a linlog model is used one should 
always lie well above that since the structure of the linlog model, with its linear combination 
of parameters, and where equal logarithmic terms may occur in several different differential 
equations, to a certain degree amplifies the errors in the measurements onto the parameters. In 
order to improve the accuracy of the parameters in this model further, the accuracy of the 
intracellular measurements must be improved. To the author’s knowledge it is the first time 
that the standard deviations of the parameters in a kinetic model have been published. The 
difficulty of obtaining accurate parameters is a challenge in the development of kinetic 
models.   

The correlations between the parameters were in general low, with 97 % of the parameter 
correlations being smaller than 0.9 in absolute value (see Figure 6-5), signifying an 
independent parameter set.  An exception to this is seen in the AHAS reaction where all three 
parameters are strongly correlated (see Table 6-3). The metabolites involved in this reaction, 
Pyr, AcLac and Val, all have relatively similar time courses and since AHAS is the starting 
reaction in the sequence this reaction only occurs in one differential equation namely the one 
corresponding to the material balance of AcLac. The parameters, which are the coefficients of 
the logarithmic terms of the Pyr, AcLac and Val metabolites, therefore affect the system in a 
similar manner and are thus highly correlated. The full correlation matrix is given in 
Appendix E. 
 
 
Table 6–3: The correlations between the parameters corresponding to the different reactants and 
effectors in the AHAS and AHAIR reaction (Extract of the full correlation matrix found in Appendix E). 
The correlation matrix is symmetric with respect to its main diagonal.  

 
 
    AHAS     AHAIR         
    Pyr AcLac Val AcLac NADPH DHIV NADP Val 
AHAS Pyr 1        
 AcLac -0.97 1       
 Val 0.96 -0.99 1      
AHAIR AcLac 0.0017 0.059 -0.059 1         
 NADPH 0.067 -0.067 0.055 0.45 1    
 DHIV -0.019 -0.036 0.040 -0.99 -0.48 1   
 NADP 0.093 -0.11 0.090 0.21 0.96 -0.26 1  
  Val 0.13 -0.11 0.10 0.55 0.44 -0.67 0.34 1 
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Figure 6–5: The cumulative frequency distribution of the parameter correlations. The curve is used to 
determine the percentage of the correlations that lie below a certain value. It can for example be seen 
that about 80 % of the correlations are less than 0.3 in absolute value.  

 

6.3 The thermodynamic modelling constraint 

The simulated fluxes complied with the thermodynamic constraint 92 % of the time. It was 
necessary to allow a certain deviation from the thermodynamic constraint in order to obtain a 
model that could simulate both the concentrations before and after the glucose addition, as 
well as reproduce the correct steady state fluxes. A model of an intracellular reaction network 
is necessarily a simplification of the real system. The assumption that the cytosol is perfectly 
mixed for instance, an assumption made in all deterministic kinetic models, might not be 
entirely correct (Rao and Arkin, 2003). The reason why a 100 % agreement with the 
thermodynamic constraints could not be achieved lies mainly in the structure of the kinetic 
rate equations. The linlog rate equations were not quite capable of reproducing the kinetics of 
the enzymes at their in-vivo condition. This could be due to unknown factors affecting the 
enzyme in-vivo or to limitations of the linlog approach. Some errors might occur as a result of 
the assumption that the activity coefficients equal 1, but this probably plays a minor role. The 
assumption that the sum of NAD and NADH and the sum of NADP and NADPH stay 
constant does also not contribute significantly to errors, as the model is relatively insensitive 
towards these cofactors. In those instances where the direction of the flux conflicts with the 
sign of ∆Gr, the absolute value of the flux is small, so in total the deviations from the 
thermodynamic constraint must be regarded as minor. Even if a full agreement with the 
thermodynamic constraint could not be achieved the constraint was still very useful in fitting 
the 28 parameters. Parameter sets that strongly disagreed with the thermodynamic constraint 
could be rejected and the constraint therefore reduced the parameter search space and made 
the search for a global optimum easier. Reducing the parameter space also reduces the 
computation time.  

Thermodynamic considerations can also shed light on the functionality of the network, as 
was the case for the transaminase reaction of KIV to valine. Corynebacterium glutamicum 
possesses both a Transaminase B and a Transaminase C enzyme (Leyval et al, 2003) so the 
amino group can be donated either by glutamate or by alanine in this reaction. A model 
having Transaminase C as the dominating enzyme will inevitably lead to a strong conflict 
with the thermodynamic constraint. This is illustrated by looking at a model where the 
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transaminase reaction is catalysed mainly by Transaminase C (Figure 6-6). The fitting of the 
simulated concentrations to the measured data is just as good in this model as in the final one 
(compare the fitting of valine in Figure 6-6 to the fitting of valine given in Figure 6-1), and 
the model can also reproduce the steady state concentrations and the steady state fluxes. 
However, during the transient state the fluxes agree with the thermodynamic constraint in 
only 41 % of the simulated time and the model must therefore be rejected. This shows the 
importance of considering the thermodynamics when developing realistic models. The 
thermodynamic constraint makes it possible to arrive at the conclusion that Transaminase B is 
the dominating enzyme. This confirms the findings of previous investigations based on 
enzyme studies of this strain (Eggeling et al., 1987; Radmacher et al., 2002; Leyval et al., 
2003).  

As discussed above several “optimal” parameter sets may exist for a complex kinetic 
model, i.e. there is not always a unique solution when only the fit to the measured data is 
considered. In order to identify a unique parameter set additional constraints must be 
included. In this context the thermodynamic constraint is an essential tool for the 
identification of realistic and unique kinetic models.  

When including the thermodynamic constraint in the fitting, the same optimal parameter set 
was always found when starting from different random initial parameters. It can therefore be 
concluded that the identified parameter set is unique and that the model is as realistic as it is 
possible to achieve with the method used.  
 

 
 
Figure 6–6: The simulations of a model where Transaminase C is the dominating enzyme in the 
transamination reaction. The fluxes (left) comply with the thermodynamic constraint in only 41 % of the 
time during the transient state. The model is therefore rejected despite the fact that the simulated 
concentrations fit the measurements well as illustrated by the valine simulation (right).  

 

6.4 The stability of the linlog model 

An important criterion for the establishment of a useful model is that it is stable. The stability 
of a model can be investigated by analysing the Jacobian matrix of the system of ODEs. The 
Jacobian for the system presented here was fully ranked, so all eigenvalues were non-zero. 
The Jacobian is given in Eq. (6-1) and the corresponding eigenvalues are λ1 = −269.2541, 
λ2 = −206.4190, λ3 = −105.5035, λ4 = −10.6383, λ5 = −1.084, λ6 = −0.3242 −0.4780i, 
λ7 = −0.3242 + 0.4780i. As was demonstrated in Section 4.2.6 and in Appendix G the system 
is stable if, and only if, all the eigenvalues of the Jacobian have negative real parts. Since this 
was the case here one can conclude that the system will always return to the steady state after 
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a small perturbation in the concentrations. Such small perturbations are known to occur in 
industrial scale fermentations (Mauch et al. 1997). Furthermore, a conjugate pair of complex 
eigenvalues was found (λ6 and λ7) signifying that the system is able to oscillate. The ability of 
real systems to oscillate has been observed experimentally e.g. by Schaefer et al. (1999) and 
by Oldiges et al. (2004). 
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7 Metabolic Control Analysis 
The data described in Chapter 5 and the model described in Chapter 6 are now used to analyse 
the control structure of the valine / leucine pathway. The focus has been set on analysing the 
control of the valine excretion rate as this is the flux that is the most interesting in the context 
of Metabolic Engineering. Each of the methods described in Chapter 4.3 are applied and 
compared to each other. In the final section of this chapter the conclusions on the targets for 
further strain optimisation are drawn.  
 

7.1 Enzyme state 

In Table 7-1 the intracellular concentrations of the substrates and inhibitors of the various 
enzymes in the valine pathway are compared to the Michaelis Menten constants (Km) and the 
inhibition constants (IC50) of each enzyme. The constant IC50 gives the inhhibitor 
concentration at which 50 % of the maximum inhibition is reached. The three first enzymes in 
the pathway, AHAS, AHAIR and DHAD, all have Km values much higher than the 
corresponding substrates at steady state. These enzymes are therefore not saturated by their 
substrates and their reaction rate should change fast with changing substrate concentrations. 
However, the AHAS and AHAIR enzymes are both strongly inhibited by valine since the 
inhibition constant, IC50, is much smaller than the valine concentration, and this lowers the 
capacity of the enzymes. DHAD is the only enzyme not saturated by its substrate and not 
inhibited by valine. It should therefore be very sensitive to changes in the metabolite levels 
and will rapidly reach its dynamic equilibrium. One consequently expects the DHAD enzyme 
to have little control of the flux through the pathway.  

Transaminase B is saturated by its substrates, but is not regulated allosterically. It can 
therefore be expected that Transaminase B does not react very fast to changes in the 
metabolite concentrations in the system. It can therefore be expected that this enzyme has a 
significant control of the flux through the pathway.   

Valine efflux is due to passive diffusion, active export and active import (Zitterich and 
Krämer 1994). Considering the large difference in intra- and extracellular valine 
concentration (see Table 7-1), it is clear that active export is the dominating mechanism. 
Passive diffusion is probably less significant since a large gradient can be maintained over the 
membrane. It is also known that the diffusability of valine over the bacterial membranes is 
low (Milner et al., 1987). 
 
Table 7–1: The intracellular concentrations of the substrates of the different enzymes compared to the 
respective Michaelis-Menten constants. The intracellular concentration of valine of 28 mM can be 
compared to the inhibition constants for the three first enzymes. The kinetic constants were 
determined in-vitro (Leyval et al., 2003). 

 
Enzyme Substrate Conc. (mM) Km (mM) IC50 valine (mM) 
AHAS Pyruvate 0.69 8.5 0.9 
AHAIR AcLac 0.24 1.4 6.6 
DHAD DHIV 0.16 1.2 170 
Transaminase B KIV 10 0.15  
  Glut 39 1   
Valine Translocase Valine intrac. 28   
  Valine extrac. 71     
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7.2 The Pool Efflux Capacity 

In the investigated strain about 96 % of the flux through the first common part of the valine / 
leucine pathway ends up as valine, only 4 % is diverted towards leucine (see Figure 4.2). 
These values were calculated from the measured excretion rates of valine and leucine, the 
biomass production rate and the relative amounts of valine and leucine in the biomass. The 
reaction sequence from pyruvate to extracellular valine can therefore, in the context of a Pool 
Efflux Capacity (PEC) analysis, be treated as linear. To apply the PEC analysis one must 
further assume that the enzyme downstream of a metabolite is the only (or at least the 
dominating) enzyme consuming that specific metabolite. In the valine pathway of the valine 
production strain investigated here this is a valid assumption for all enzymes except for the 
acetohydroxyacid synthase (AHAS) enzyme. This enzyme transforms pyruvate to 
acetolactate, but is not the only enzyme that consumes pyruvate. Although the valine flux is 
considerable in this strain, one can not overlook the action of enzymes like pyruvate 
dehydrogenase, pyruvate oxidase etc., which also consume pyruvate. The true PEC value for 
the AHAS enzyme is therefore lower than the one calculated based on the pyruvate pool, but 
its exact value can not be obtained.  

The metabolite concentration time series used for the PEC analysis consist of about 60 data 
points per metabolite over a time period of 25 seconds (Magnus et al., 2006). The time series 
were smoothed using a Fourier transformation smoothing method implemented in Origin 
(OriginLab Corporation) in order to filter out some of the noise in the measurements. The 
degree of smoothing had some influence on the absolute values of the PECs, but did not have 
significant influence on the relative levels, which is the important aspect here.  
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Figure 7–1: The Pool Efflux Capacities of the enzymes in the valine pathway. 

 
The PEC values clearly identify the DHAD enzyme as the enzyme with the largest capacity 

and thus presumably the least control of the flux (Figure 7-1). This is in agreement with the 
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analysis of the enzyme state of DHAD in the previous section. The other four enzymes all 
have comparatively low capacities (note that the true PEC value for AHAS lies somewhere 
below the value reported in Figure 7-1 as pointed out above). The valine translocase has the 
lowest capacity, which is an indication that this step has the highest control of the flux.  

It should be noted that the PEC method is an approximative method so the calculated 
values should not be interpreted as being very exact values. Although the PEC value for 
AHAIR is 20 % larger than the value for the transport step one must interpret these values as 
being equal within the errors associated with the method.  
 

7.3 The control and response coefficients  

The steady state flux control coefficients of the various enzymes with respect to the valine 
excretion rate are reported in Figure 7-2. The coefficients show how the control of the valine 
excretion rate is distributed on the enzymes in the pathway. The flux is mainly controlled by 
the three steps AHAS, BCAAT and translocase where translocase has the highest control. 
Note that even if this step is the most limiting step in the reaction sequence, it would be 
wrong to call it a bottleneck since the control is clearly distributed on the three steps. The 
activity of the DHAD enzyme has practically no influence on the valine excretion rate. The 
identification of translocase and DHAD as the most and the least limiting reaction step is in 
agreement with the PEC analysis. The enzyme activities in the leucine pathway have minor 
negative control due to the fact that they are drawing the flux away from the valine pathway. 
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Figure 7–2: Flux control coefficients for the enzymes in the valine and leucine pathway with respect to 
valine flux. 

 
The AHAS enzyme has the second highest flux control coefficient. This is interesting since 

this enzyme is strongly inhibited by valine as stated in Section 7.1. In an in-vitro study of the 
AHAS enzyme from Corynebacterium glutamicum it was found that the enzyme activity is 
reduced to 43 % at saturating valine concentrations (Elisakova et al., 2005). A similar study of 
AHAS from E. coli concludes that the activity is reduced to 22 % at saturating valine 
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concentrations for the E. coli enzyme (Pang and Duggleby, 1999). The implementation of an 
inhibition resistant AHAS enzyme would therefore increase the AHAS activity considerably 
and this would have a large effect on the valine flux due to the high flux control coefficient 
for AHAS. An inhibition resistant AHAS enzyme is therefore a strong candidate for strain 
optimisation. The implementation of an inhibition resistant AHAS enzyme in a 
Corynebacterium glutamicum strain was actually achieved recently (Elisakova et al., 2005), 
and it was found that this led to a substantial increase in valine excretion.  

The response coefficients listed in Table 7-2 show the influence of the concentration of the 
independent metabolites (i.e. the non-balanced metabolites) on the valine excretion rate. The 
valine flux responds very strongly to changes in pyruvate, with a response coefficient of 8.2. 
It must be stressed again that the control coefficients depend on the state of the system and are 
only valid for infinitesimally small changes at a certain state. It can not be concluded for 
instance that a doubling of pyruvate availability would lead to a valine flux 8.2 times the 
original value. However, it is clear from the high response coefficient that pyruvate 
availability is a decisive factor for the valine excretion. This agrees with the intuitive 
understanding of the valine pathway. A strong dependence on pyruvate is expected since 
pyruvate is the starting metabolite in the sequence and since two pyruvate molecules are 
condensed to one acetolactate molecule so that the effect of changes in the pyruvate pool are 
amplified into the valine pathway.  

The small response coefficients for NADP and NADPH show that the valine flux is not 
limited by the availability of NADPH. 

It is interesting that the response coefficient with respect to glutamate is negative and the 
response coefficient with respect to α-ketoglutarate is positive. Since glutamate is the amino 
group donor in the transaminase reaction forming valine, one would expect an increase in 
glutamate to have a positive effect on the valine flux. However, glutamate is also substrate in 
the leucine transaminase reaction so an increase in glutamate also draws the flux away from 
the valine pathway towards leucine. This shows the importance of considering the whole 
pathway rather than single reaction steps.  

Alanine, which is a second possible amino group donor by the Transaminase C enzyme, has 
very little influence on the valine flux. This is a result of the low activity of the Transaminase 
C enzyme (Radmacher et al., 2002; Leyval et al., 2003).  
 
Table 7–2: Response coefficients giving a measure for the response in valine flux to changes in the 
external metabolites. 

 
External metabolite Response coefficient 
Pyr 8.2 
NADP -0.44 
NADPH 3.6×10-4 
Glut -0.72 
AKG 1.2 
NAD 0 
Ala 0.034 

 

7.4 Model predictions 

The effects of some of the possible changes to the enzyme levels by overexpression or 
deletion of the respective genes were predicted with the model and the resulting calculated 
valine flux is reported in Figure 7-3. Only changes which would be possible to implement in 
the real cell are investigated. Overexpression of the genes coding for acetohydroxyacid 
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synthase (AHAS), acetohydroxyacid isomeroreductase (AHAIR) and dehydroxyacid 
dehydratase (DHAD) has already been implemented in the strain, so a further increase in 
these enzymes would realistically be limited to an increase of about a factor 2. The 
translocase is a two component export permease, specific to aliphatic hydrophobic amino 
acids (Kennerknecht et al., 2002). In the optimisation of a Corynebacterium glutamicum 
isoleucine producer it was discovered that a significant increase in the expression of this 
permease is difficult to achieve in practice (Kennerknecht 2003). The in-silico investigation 
presented here is therefore limited to a 2-fold overexpression of the translocase, further 
increase would have theoretical interest only. 

 The overexpression of the valine transport protein had the largest effect on the valine 
excretion rate and led to an increase in valine flux of 31 % (as displayed in Figure 7-3). The 
overexpression of the DHAD enzyme had a negligible effect as anticipated from the MCA 
and the PEC analysis. This shows that even if the MCA and PEC methods are only analysing 
the system at a specific state, they give good indications of which enzymes one should 
consider for strain optimisation. The reduction of the DHAD enzyme to one tenth of its 
original value only reduced the valine flux by 4.3% again demonstrating the low influence of 
this enzyme. Further increase of the transport enzyme led to a further increase in valine rate. 
The overexpression of AHAIR did not lead to a very significant increase, which was in 
agreement with the MCA analysis, but not with the PEC analysis. The deletion of the leucine 
pathway leads to an increase in valine excretion, but such a change is less advantageous in a 
production process since one would then have a leucine auxotroph strain which could only 
grow when leucine is added to the culture. 
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Figure 7–3: Model predictions of the change in valine flux that would result from changing an enzyme 
level by a factor 2. The effect of reducing the DHAD level by 90 % or deleting the leucine pathway is 
also shown. 

 

As discussed in the previous section the valine flux is strongly limited by the inhibition of 
AHAS. It was investigated how the valine flux would change when the feedback inhibition of 
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AHAS was deleted from the model, and it was found that this led to a large increase in valine 
excretion rate. Such a modification is probably outside the range of validity of the model so 
an accurate prediction of the resulting valine rate can not be given. However, the large change 
in valine rate confirms the conclusion that the implementation of an inhibition resistant 
AHAS enzyme in the real cell would lead to significantly increased valine production.  

Having obtained a very large response coefficient for pyruvate it was investigated how an 
increase in pyruvate concentration would affect the valine flux. A 20 % increase in pyruvate 
availability resulted in a 150 % increase of the valine rate. However, in order to implement 
this in practice substantial alterations in the central metabolism would be required to increase 
the flux through the glycolysis and to keep the pyruvate concentration at the increased level. 
This might be difficult to achieve. Still, since the pyruvate availability is such an important 
factor for the valine excretion rate one should also look for optimisation targets outside the 
valine pathway, possibly in the central metabolism. 

 

7.5 Optimisation of enzyme levels 

The optimal distribution of the enzyme levels was calculated under the constraints described 
in Section 4.3.2. The result is given in Figure 7-4. The optimal valine flux is 0.57 mM/s, 
which is an increase of 150 %. The leucine flux decreased to practically zero. From the 
analysis of the control hierarchy and the model predictions one expects a large increase in the 
translocase activity and also an increase in the BCAAT activity. However, these two enzymes 
also catalyse the transaminase and the transport of leucine and therefore also contribute to pull 
the flux in the direction of leucine rather than valine. In the optimisation study, changes in 
enzyme levels were subject to relatively strict constraints, and especially the homeostasis 
constraint made a decrease in BCAAT necessary. The transport protein was up-regulated by a 
factor 2.2. The AHAS enzyme received an even greater increase of 2.5 times the original 
value. DHAD was down regulated as expected due to its low control of the valine flux.  
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Figure 7–4: The optimal distribution of enzyme levels yielding the maximal flux of valine under the 
constraints given in section 4.3.2. 
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The optimisation of valine flux yielded a very specific distribution of enzyme levels, which 

would not be possible to implement with the specified accuracy in a real cell. The calculated 
optimum is therefore a theoretical optimum, which shows the maximum of what can be 
achieved subject to the specified constraints and the distribution of the enzymes yielding this 
maximum. This is valuable information in identifying the target enzymes for manipulation in 
a practical application.  
 

7.6 Comparison of the different methods  

The different methods used are in good agreement and give a clear picture of the control 
hierarchy in the valine pathway. The control coefficients and the PEC analysis both identify 
DHAD as the least limiting enzyme and the translocase system as the most limiting step in the 
reaction sequence. This is confirmed by the calculation of the effect that finite changes in 
these enzyme activities would have on the valine excretion rate and by the optimisation of the 
enzyme activities. In the investigation presented here the flux control coefficients provided 
correct indications of which enzymes should be considered for strain optimisation. In addition 
to the translocase, the AHAS enzyme and the BCAAT enzyme had significant control. 

The distribution of control as analysed by the flux control coefficients can be understood 
intuitively. The AHAS enzyme is the enzyme diverting the flux away from the central carbon 
metabolism and into the valine / leucine pathway so it is not surprising that this enzyme has 
significant control of the valine excretion rate. The translocase is responsible for actually 
excreting valine and also decreases the valine concentration which has a strong inhibitory 
effect on the AHAS enzyme. The IPMS enzyme diverts flux away from the valine pathway so 
this enzyme has a negative influence on the valine excretion rate. The role of the BCAAT 
enzyme in the control hierarchy is not intuitively clear since this enzyme pulls the flux 
towards both valine and leucine at the same time. A systemic approach is needed to gain 
further insight. The model based metabolic control analysis presented here showed that an 
increase in BCAAT activity leads to an increase in valine flux. Through the control 
coefficients it was possible to obtain quantitative measures for the influence of each enzyme 
by analysing the reaction system as a whole. 

The identification of the exporting translocase as the most promising target for strain 
optimisation is analogous to an investigation of a Corynebacterium glutamicum isoleucine 
producer where export was identified as the most limiting step (Morbach et al., 1996; Sahm et 
al., 1999). The translocase encoded by the brnE and brnF genes (Kennerknecht et al., 2002) is 
the permease which is responsible for the export of both valine and isoleucine and it is the 
most limiting factor in the production of both of these amino acids. That the export system of 
an amino acid is not capable of coping with high export fluxes is not surprising since bacteria 
do not need to excrete primary metabolites in high amounts under normal conditions and 
would therefore not need a powerful export system. It has been demonstrated that the 
overexpression of this translocase poses some practical difficulties (Kennerknecht, 2003). If 
the permease activity can not be significantly increased by recombinant DNA technology, this 
might be achieved through fermentation technology. Keeping the extracellular concentration 
of valine low during a production phase will ease the excretion of valine since the translocase 
would then not have to pump against such a high concentration gradient and since passive 
diffusion of valine back into the cell would be less.  

The strong feedback regulation of the pathway through the AHAS enzyme was 
demonstrated in Section 7.3 and 7.4 and AHAS can be seen as the main regulatory enzyme of 
the valine pathway. It is important to realise that the regulatory enzymes are not necessarily 
the most controlling enzyme. A regulatory enzyme is an enzyme having a regulatory function 
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through its capacity to undergo a change in catalytic activity by allosteric mechanisms or by 
covalent modification (Lehninger et al., 1993). The degree of metabolic control exercised by 
an enzyme is quantified by the control coefficients and refers to the effect that a change of an 
enzyme level will have on the metabolic fluxes and concentrations. It was pointed out already 
in the first paper on MCA by Kacser and Burns (1973) that a regulatory enzyme will typically 
have little control because the regulation mechanism contributes to lowering the flux control 
coefficient. An extensive discussion of this issue was published by Hofmeyr and Cornish-
Bowden (1991). This is in fact one of the most important results of Metabolic Control 
Analysis because it contradicts the intuitive understanding of metabolic engineering. It seems 
logic that in order to increase the flux through a pathway one must increase the activity of the 
regulating enzyme. The work of Kacser and Burns shows that this is not necessarily the case. 
In the presented work this point is confirmed. AHAS is the regulating enzyme, but it is not the 
most controlling enzyme. AHAIR also has a regulatory function, but has a very low flux 
control coefficient. These results emphasise the necessity of differentiating between metabolic 
regulation and metabolic control. It should be noted that in this investigation the flux control 
coefficient for AHAS is unusually high for an enzyme with a strong regulatory function. 

There was a strong correlation between the flux control coefficients and the PEC values of 
the enzymes. Enzymes with high PEC values had little control and vice versa. The valine 
transport step had the highest control and the lowest PEC, and the DHAD enzyme had the 
least control and the highest PEC. Note that this correlation is not true for the AHAIR 
enzyme, which has a low PEC, but little control of the flux. This shows that the PEC values 
will not always be exact measures for control. However, since the main conclusions on the 
most and the least limiting enzymes agree with the MCA analysis, it can be concluded that the 
PEC analysis is a useful method to get a first estimate of the control hierarchy in a metabolic 
network. Its great advantage is its simple calculation procedure, which does not require a 
kinetic model. 

From the definition of elasticity and PEC it is clear that large elasticities will in general lead 
to large PECs. Although there are exceptions to this correlation, it can be seen as the 
underlying reason for the connection between flux control coefficients and PECs. Large 
elasticities are associated with low flux control coefficients (Stephanopoulus et al., 1998) so 
large PECs will in general result in low flux control coefficients and vice versa. The analysis 
of the DHAD enzyme gives an example of this. This enzyme has a particularly high elasticity 
towards its substrate DHIV which result in a high PEC value and a low flux control 
coefficient. These high elasticities occur as a result of the enzyme being neither saturated by 
its substrates nor inhibited by its inhibitor. The enzyme is thus able to react quickly to 
changes in metabolite concentrations. By using the different methods reported here one can 
not only analyse the enzymes’ place in the control hierarchy of the pathway, but also obtain 
some understanding of the causes of their level of control.  

When doing a model based MCA or using a model to predict the changes in flux as a result 
of alterations in the enzyme levels one must consider the range of validity of the model. The 
model applied here simulates the valine / leucine pathway so only the control hierarchy within 
that pathway is examined. By limiting the model to a part of the full metabolic reaction 
network present in a real cell, some of the interactions between the valine / leucine pathway 
and the rest of the metabolism are lost. The model considers the influence of the independent 
metabolites on the valine / leucine pathway, but does not include the influence of the 
metabolites in the valine pathway on the independent metabolites. The predictions made by a 
part model are therefore not 100% accurate unless one is able to keep the independent 
metabolites at their initial level after a change in e.g. enzyme activity. However, for modest 
changes in flux the model gives useful estimates of the expected changes in phenotype.  
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7.7 Identification of target enzymes for strain optimisation 

Based on the acquired understanding of the control of the valine and leucine pathway as 
discussed in this chapter the following suggestions for the further optimisation of the valine 
production strain are made: 
 

1. Overexpression of translocase. 
2. Implementation of an inhibition resistant AHAS enzyme and possibly further 

overexpression. 
3. Removal of the overexpression of the gene coding for DHAD on the plasmid to save 

the cell the burden of overproducing this enzyme which has negligible influence on the 
valine flux. 

4. Modification of the central carbon metabolism to increase pyruvate availability.  
 

The other modifications already applied to the strain (the deletion of the threonine 
dehydratase enzyme, the deletion of the two enzymes in the pantothenic acid pathway and the 
overexpression of AHAS and AHAIR) should be kept as they are.  
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8 Thermodynamic Analysis 
The influence of the thermodynamic forces on the reactions in the valine / leucine pathway is 
now analysed. The analysis is based on the measured intracellular metabolite concentrations 
and on the intracellular reaction rates obtained from the dynamic model described in Chapter 
6. Central to the analysis is the concept of reaction affinity and reaction resistance. First the 
system at its steady state composition will be analysed, before the relationship between 
reaction rate and affinity is investigated. Finally the theory of metabolic control analysis is 
extended to include also the thermodynamic properties, and this theory is used to analyse the 
control of the thermodynamic forces in the reaction network.  
 

8.1 The concept of the thermodynamic resistance 

In Section 4.4.1 the reaction affinity, A, was defined. The affinity is the thermodynamic 
reaction potential and the driving force for chemical reactions. The relation between rate and 
affinity will here be described by introducing a reaction resistance, R, in analogy with Ohms 
law. For an uncoupled reaction, where only one force drives the reaction, the reaction rate can 
be expressed as: 

 

i

i
i R

A
r =            ( 8-1 ) 

 
In the general case it can not be assumed that R is constant with affinity so it must be 

treated as a system variable rather than a parameter. However, as mentioned in Section 4.4.1, 
the reaction rate is proportional to the affinity in near-equilibrium situations so for these cases 
the resistance can be treated as a constant. In addition, it has been observed experimentally 
that in some cases the reaction rate will be proportional to the affinity also for reactions 
operating far from equilibrium. 

The observed rate of an enzyme catalysed reaction depends on several elementary steps 
including the diffusion and adsorption / desorption of the participating compounds to and 
from the enzyme as well as the rate of transformation at the catalytic site. The catalytic 
activity is determined by enzyme concentration, substrate and product saturation levels, 
activation or inhibition effects from other metabolites, substrate competition, the presence of 
metal ions in the cytosol and covalent modification of the enzyme itself yielding an active and 
an inactive form. It is impossible to determine the exact influence of all these factors in-vivo 
so they are summarised in the quantity R which can be considered a function of the enzyme 
state showing the resistance to the driving force. The definition of a reaction resistance allows 
the reaction rate to be expressed as a function of only two variables A and R as seen in Eq. (8-
1). When the reaction rate and affinity are known, the resistance can be calculated from Eq. 
(8-1). 

It should be noted that the thermodynamic resistances are not measures for flux control and 
should not be confused with the flux control coefficients as these are different concepts. The 
resistances are used to describe a reaction system in terms of the thermodynamic potentials. 
They are properties of an enzyme at a specific system state and can be considered a system 
parameter or a system variable. The flux control coefficients are derivatives of a system 
variable, namely the flux, and show how the variable changes in response to an alteration in a 
system parameter.  
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8.2 The thermodynamics of the system at steady state 

The reaction affinities and resistances for the valine / leucine pathway at the non-equilibrium 
steady state were investigated. As demonstrated in Eq. (4-42) the affinity, A, is calculated 
from the standard affinity, A°’, and the steady state concentrations. The standard affinity can 
be calculated from the Gibbs energies of formation, ∆fG°’ according to Eq. (4-43). The values 
of ∆fG°’ were calculated using the group contribution method developed by Mavrovoniotis 
(1990; 1991). Literature values for ∆fG°’ were only available for some of the intermediates in 
the valine / leucine pathway.  

Table 8-1 shows the calculated values for ∆fG°’ as well as the ∆fG°’ values from literature. 
For the pairs NADPH / NADP, NADH / NAD and AcCoA / CoA only the difference in ∆fG°’ 
is needed in order to calculate A°’ since these pairs always occur as reactants and products in 
the same reaction. It is seen that the ∆fG°’ values calculated with the method from 
Mavrovoniotis are in reasonable agreement with the values found in literature. The calculated 
values were used in the further calculations. 
 
Table 8–1: The steady state concentrations, Gibbs energies of formation and the chemical potential 
for the metabolites participating in the valine / leucine pathway. The calculated ∆fG°’ values are 
compared to the ∆fG°’ values found in literature. All literature values are taken from the publication by 
Thauer et al. (1977) except for the value for H2O which is taken from Atkins (1998). The chemical 
potential µ is calculated at the steady state concentrations by using Eq. (4-44). 

 
metabolite concentration ∆fG°' (calculated) ∆fG°' (literature) µ 

 mM kJ/mol kJ/mol kJ/mol 
Pyr 0.689 -481 -475 -499 
AcLac 0.234 -629  -650 
DHIV 0.203 -662  -684 
KIV 7.837 -468  -480 
Valine 29.8 -356 -357 -365 
IPM 0.0209 -829  -856 
KIC 0.0828 -461  -484 
Leu 0.252 -349 -343 -370 
Glut 38.8 -689 -700 -697 
AKG 5.12 -801 -798 -814 
NADPH - NADP  19.8  21.6 
NADPH 0.0351    
NADP 0.0175    
NADH - NAD  19.8  19.8 
NADH 0.272    
NAD 0.528    
AcCoA - CoA  -138  -138 
AcCoA NA    
CoA NA    
CO2 30 -39.7  -395 
H2O 55508 -237 -237 -237 
H+ 0.0001 -39.7  -39.7 

 
 

The measured steady state concentrations are also given in Table 8-1. As stated in Section 
4.2.1 the reduced cometabolites NADH and NADPH could not be measured accurately. The 
concentrations of these metabolites were estimated from the NADH / NAD and NADPH / 
NADP ratios reported in literature (Moritz, 2000; Gourdon and Lindley, 1999; Dominguez, 
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1998) and the measured concentrations of NAD and NADP. It was further assumed that 
AcCoA and CoA had equal concentrations. Thus the concentration dependent terms of 
AcCoA and CoA cancelled out in the calculation of the affinity. It was assumed that the 
intracellular pH equalled 7 so the concentration of H+ was set to 10-7 M. The concentration of 
H2O in the cell is assumed to be that of pure water.  

The chemical potential, µ, of the metabolites at the steady state were calculated from the 
steady state concentrations and the ∆fG°’ values by using Eq. (4-44). The chemical potentials 
are reported in Table 8-1.  

The change in total chemical potential, or Gibbs free energy, in a reaction sequence can be 
analysed by considering the chemical potentials of the reacting species at different stages 
throughout the reaction sequence. In Figure 8-1 the fall in Gibbs energy through the valine 
pathway is visualised. For every reaction step there is a decrease in Gibbs energy as required 
by the second law of thermodynamics. If an increase in Gibbs energy had been found it would 
have implied errors in the measured concentrations.  
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Figure 8–1: The fall of Gibbs free energy, or total chemical potential, through the valine pathway. The 
values on the y-axis show the total chemical potential of the metabolites participating in the reactions 
in the valine pathway at different stages through the reaction sequence. The total chemical potential of 
the metabolites before the first reaction was used as a reference point and set to 0. The diagram then 
displays how the chemical potential of the reactants decrease as the reaction proceed through the 
valine pathway. The values of the chemical potentials are given in kJ per mol of valine formed. 

 
Once the ∆fG°’ values had been determined, the reaction affinities could be calculated using 

Eq. (4-42) and Eq. (4-43). The affinities are tabulated in Table 8-2.  
The two transaminase reactions forming valine and leucine have zero standard affinity, Α°’, 

which implies an equilibrium constant of 1 according to Eq. (4-46). The sign of the total 
affinity, A, and thus the direction of the reaction therefore depends on whether the ratio of 
substrate concentration to product concentration is larger or smaller than 1. The other 
reactions all have large Α°’ and will need a very high concentration difference to change the 
sign of A (see Eq. (4-42)) and proceed backwards. This is true even for the AHAIR reaction 
which, except for the transaminase reactions, has the smallest A°’ of only 13.6 kJ/mol (see 
Table 8-2). In order to reverse this reaction the ratio of products to substrates must be more 
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than 220. The concentration of NADPH is typically equal to or larger than the NADP 
concentration at steady state (Moritz et al., 2000) so the DHIV concentration must be more 
than 220 times the AcLac concentration for the reaction to proceed in the reverse direction. 
Such a large difference is probably unlikely to occur in a living cell. 

When discussing biochemical reactions one often differentiates between reversible and 
irreversible reactions. Strictly there are no irreversible reactions as any reaction can be driven 
in the reverse direction by applying the necessary concentration difference. Absolute 
irreversibility would also conflict with the principle of microscopic reversibility. However, 
reactions with large A°’ are essentially irreversible since the large concentration difference 
required to drive the reaction in the reverse direction never occurs in living cells as discussed 
above. For this reason, the reactions AHAS, AHAIR, DHAD, IPMS and IPMDH can be 
referred to as irreversible reactions. The valine and leucine pathways can therefore only go in 
one direction, towards valine and leucine synthesis. If the cell was to grow on amino acids the 
degradation of valine and leucine would have to proceed through a different pathway. Note 
however that valine can be converted to leucine through the leucine pathway since the valine 
transamination reaction has Α°’ = 0 and may go in either direction.  
 
Table 8–2: The reaction stoichiometry and standard affinities for the reactions, A°’ as well as the 
affinities, A, calculated at the steady state conditions of the system. 

 
Enzyme Reaction A°' A 
    kJ mol-1 kJ mol-1 

AHAS 2Pyr = AcLac + CO2 53.4 46.6 
AHAIR AcLac + NADPH + H = DHIV + NADP 13.6 15.7 
DHAD DHIV = KIV + H2O 42.3 33.0 
BCAAT_Val KIV + Glut = Val + AKG 0 1.74 
IPMS KIV + AcCoA = IPM + CoA 223 238 
IPMDH IPM + NAD = KIC + NADH + H + CO2 37.70 48.9 
BCAAT_Leu KIC + Glut = Leu + AKG 0 2.33 

 
 

The reaction resistances were calculated from Eq. (8-1) and are reported in Figure 8-2. The 
resistances in the enzymes determine which potentials and reaction rates the system will settle 
to at the steady state. As mentioned in Chapter 7.2 the flux in the first common part of the 
pathway is more than 25 times the flux in the leucine pathway (0.24 and 0.0085 mM/s 
respectively) and it is seen from Figure 8-2 that the resistances in the leucine pathway are 
about two orders of magnitude larger than the resistances in the common part of the pathway. 
Since the enzymes in the common part of the pathway are the ones that have been 
overexpressed through recombinant DNA techniques these enzymes have much higher levels 
than the enzymes in the leucine pathway. It can therefore be concluded that there is a certain 
negative correlation between enzyme level and resistance. High enzyme levels will in general 
lead to low resistances as has also been suggested by Qian et al. (2003). The enzymes in the 
leucine pathway are the product of a single operon and their synthesis is regulated at the 
transcription level by the end product leucine (Patek et al., 1994, Inagaki et al., 1990, Parsons 
et al., 1969). These enzymes are therefore downregulated to avoid an overproduction of 
leucine following the increase in KIV availability. The low levels of these enzymes lead to the 
high resistances. 
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Figure 8–2: The reaction network of the valine and leucine pathways with the reaction resistances at 
steady state. The reaction resistances are in MJ s l mol-2. 

 
 
Although there is a correlation between enzyme level and resistance, the enzyme level is 

not the only factor that influences the resistance. Other properties of the system also have 
influence. In addition, the nature of the reaction, that is, which chemical bonds are broken and 
which are formed, is also important. This point is demonstrated by the BCAAT enzyme. The 
same enzyme catalyses both the transamination of KIV to valine and KIC to leucine, but the 
resistance is very different for the two reactions. Substrate competition probably plays a 
significant role here. KIV and KIC must compete for the same catalytic site, and as the 
concentration of KIV is about 100 times that of KIC (see Table 8-1), KIV will to a certain 
degree block the binding of KIC to the enzyme. This is reflected in a higher resistance for the 
KIC transamination. The concentration of KIC is kept low by the high resistances in the IPMS 
and IPMDH reactions.  

 
 

8.3 The relationship between the reaction rate and the affinity 

8.3.1 Thermokinetic expressions 

Rottenberg (1973) and van der Meer et al. (1980) analysed the theoretical relationship 
between the affinity and the reaction rate of a uni-uni Michaelis-Menten reaction (e.g. 
substrate B reacting to product P). In order to do this an additional constraint on the 
concentrations had to be set. van der Meer et al. chose to set the sum of xB and xP constant and 
arrived at the following equation: 
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where VF and VR are the forward and reverse maximal rates and KB and KP are the Michaelis-
Menten constants for substrate B and product P respectively.  
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In the presented work a bi-bi ping-pong reaction (two substrates and two products) will be 
analysed. This is more relevant to biological systems since about 2/3 of the reactions in a 
living cell are bi-bi. The ping-pong reaction mechanism is one of the most common for bi-bi 
reactions and applies for example to all transaminase reactions. For a reaction B + C = P + Q 
following a ping-pong mechanism the kinetic rate equation according to Cleland (1963) is 
given by: 
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Here Keq is the equilibrium constant and Ki,Q and Ki,B are inhibition constants for reactants B 
and Q. Haldane’s relationship for this equation is given by: 
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By using Haldanes relationship one parameter can be eliminated from Eq. (8-3). In the 
following the parameter KB has been eliminated. It might seem like a more obvious choice to 
eliminate Keq, but since different equilibrium states will be investigated it is desirable to keep 
Keq as a parameter in the equation for clarity.  

Α can be expressed as a function of the concentrations and the equilibrium constant by 
using Eqs. (4-42) and (4-43): 
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The bi-bi rate equation has the concentrations of the four participating reactants as variables. 
A change of variables is now made and the reaction rate is expressed as a function of A and of 
the sum of xC and xQ as well as of the concentrations xB and xP. The symbol xCQ is used to 
denote the sum of xC and xQ. 
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In order to use Eq. (8-6) to investigate how the reaction rate varies with Α three constraints 
must be set on the concentrations. Here the choice is to keep xCQ as well as the concentrations 
xB and xP constant. 
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In transaminase reactions the amino group donor (typically glutamate) is the first substrate 
to bind to the enzyme and therefore corresponds to compound B. The keto-acid of the amino 
group donor (typically α-ketoglutarate) is the first product to leave the enzyme and therefore 
corresponds to compound P.  In the metabolism of a cell glutamate and α-ketoglutarate 
participates in many reactions and their concentrations will therefore stay relatively constant 
although xC and xQ may change. This motivates the constraint of constant xB and xP. The 
choice of setting the sum of xC and xQ constant then corresponds to the constraint used by van 
der Meer et al. (1980). 
 

8.3.2 The variation of reaction rate with affinity 

The theoretical variation of reaction rate with affinity for a uni-uni and a bi-bi reaction 
according to Eqs. (8-2) and (8-6) is depicted in Figure 8-3. The exact shape of the curves and 
the maximal rates achieved at large affinities depend on the kinetic parameters. However, the 
qualitative shape of the curves remains the same for most reasonable sets of parameters. The 
curves depicted in Figure 8-3 are representative for the four cases considered. 
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Figure 8–3: The reaction rate dependence on the affinity. Left: the uni-uni Michaelis Menten reaction 
according to Eq. (8-2). The full line is a reaction with A°’ = 0 (i.e. Keq = 1) and the broken line a reaction 
with Α°’ = 17.4 kJ/mol (Keq = 1000). In the first case the kinetic parameters and the concentration 
constraint were set to VF = VR = KB = KP = 10, (xB + xP) = 1. In the second case the kinetic parameters 
and the concentration constraint were set to VF = KB = KP = 10, VR = 0.1, (xB + xP) = 1. This diagram 
was also reported by Westerhoff and van Dam (1987). Right: the bi-bi ping-pong reaction according to 
Eq (8-6). The full line is a reaction with Α°’ = 0 (as for the BCAAT reaction) and the broken line is a 
reaction with Α°’ = 53.4 kJ/mol (as for the AHAS reaction). In the first case all parameters as well as 
the concentration of B and P were set to 1 and the sum of xC and xQ was set to 2. In the second case 
the parameters and constraints were set to VF = KP = KQ = 10, VR = Ki,Q = Ki,B = xB = xP = 1, KC = 0.5 
and (xB + xQ) = 2.  

 
 

In the left diagram in Figure 8-3 it is seen that a uni-uni reaction with A°’ = 0 can be 
assumed to be proportional to A when A/RgT is less than 1. Since this criterion often holds for 
such reactions in the cell this is a useful approximation. For uni-uni reactions with a large 
positive Α°’ the proportionality also holds near A = 0, but for this type of reaction that region 
is less interesting since the reaction will normally go at a high affinity. However, such 
reactions do in general have a point of inflection at a higher affinity (see Figure 8-3). 
Westerhoff and van Dam (1987) suggested that when A is near the point of inflection a linear 
relationship around this point could be used: 
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( )## AALr −=           ( 8-7 ) 

 
where A# is the affinity at the intercept of the tangent to the inflection point with the A-axis 
and L# is the slope of the tangent. 

The bi-bi reaction behaves similarly to a uni-uni reaction when Α°’ = 0. A significant 
difference is seen for reactions with a large positive A°’ (the broken line in the right hand 
diagram in Figure 8-3). The bi-bi reaction has three inflection points instead of one. The 
linear relationship suggested by Westerhoff and van Dam is therefore not useful for bi-bi 
reactions since there would be three different possible tangents and the probability that the 
reaction rate is in a non-linear region is relatively high. Thus for bi-bi reactions with large A°’, 
which is a common reaction type in biochemical networks, a linear relationship can not be 
assumed.  

Figure 8-4 shows the measured variations of reaction rate with affinity for the two bi-bi 
reactions AHAS and BCAAT. This diagram can be compared to the theoretical variation 
depicted in the right hand diagram in Figure 8-3. The AHAS reaction, for which A°’ = 53.4 
kJ/mol, displays a non-linear variation with affinity and is therefore in a state corresponding 
to one of the non-linear regions displayed in Figure 8-3. Thus the non-linearity of bi-bi 
reactions with large A°’ demonstrated by theoretical considerations is confirmed by the 
measurements of the real system. 

The BCAAT reaction is sufficiently close to equilibrium that a linear relation should be 
valid according to the theoretical relationship depicted in Figure 8-3. The linear relation is 
demonstrated by a straight line fitted to the data. The scattering of the data is due to errors in 
the calculated affinities which result from errors in the measurements of the metabolite 
concentrations. All affinities lie close to equilibrium so the affinity range considered is very 
narrow, with all affinities except one being smaller than 0.6. Although the errors in the 
affinities are small in absolute value they become apparent in the narrow range considered 
and make it difficult to determine the proportionality constant, i.e. the phenomenological 
coefficient, accurately. The BCAAT reaction obtains a rate which is similar in magnitude to 
the AHAS reaction with affinities which are 50 times smaller than for the AHAS reaction. 
This shows the large difference in resistance for the two reaction rates. 
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Figure 8–4: The variation of the intracellular reaction rates with affinity for the AHAS reaction and the 
BCAAT reaction forming valine. The dots represent the observed affinities determined directly from the 
intracellular measurements for the various reaction rates. The smoothed curve for the AHAS reaction 
is a 3rd order piecewise polynomial spline with a smoothing factor of 1.65 fitted to the data. For the 
BCAAT reaction a straight line going through the origin was fitted to the data. The lines are added for 
the purpose of visualisation.  
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As described in section 8.2, reactions with large A°’ will need a very large concentration 
difference in order to go in the reverse direction. It is seen from Figure 8-3 that even when 
such reactions are pushed in the reverse direction they will obtain very small rates in that 
direction. This is implied through the Haldane relationship. In addition to the concentrations 
of the reactants, it is the kinetic constants that directly decide the reaction rate. The reverse 
reaction rate of a bi-bi reaction will be small when VF, KP and KQ are large and when VR, KB 
and KC are small. According to the Haldane relationship the following relation holds: 
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By inspecting Eq. (8-8) it is seen that a large A°’ implies that VF, KP and KQ are large and that 
VR, KB and KC are small. Thus, by the Haldane relationship, a large A°’ implies small reverse 
reaction rates.  

It was concluded in section 8.2 that the reactions AHAS, AHAIR, DHAD, IPMS and 
IPMDH are irreversible due to their large A°’. The consideration of the Haldane relationship 
provides further evidence of this conclusion. Even if these reactions could be pushed in the 
reverse direction they would obtain negligibly small reaction rates.  
 

8.3.3 A short discussion of the main conclusions in section 8.3 

The thermokinetic rate equation for a ping-pong, bi-bi reaction was derived. This equation 
was used to give a theoretical proof that for a bi-bi reaction operating far from equilibrium it 
can generally not be assumed that the reaction rate is proportional to the thermodynamic 
driving force. Close to equilibrium this assumption is valid. The theoretical analysis was 
confirmed by the experimental data. 

As discussed in section 4.4.1 the question of linearity is important in the establishment of a 
theoretical basis for the thermodynamic analysis of biochemical systems. It has been 
suggested in several publications that the reaction mechanism of enzymes implies a linear 
relationship also at far from equilibrium conditions. However, these publications only 
considered a uni-uni reaction. Through the analysis of a bi-bi reaction presented here it was 
demonstrated that the conclusion of linearity is wrong.  
 

8.4 The control of the thermodynamic forces and resistances 

8.4.1 The MCA of the thermodynamic functions affinity and resistance 

The classical theory of MCA analysing the control of the concentrations and fluxes in 
metabolic networks was described in Section 4.3.2. The theory will here be expanded to 
evaluate also the control of the affinity and the resistance.  

Control coefficients can be defined for the affinity and the resistance according to Eq. (4-
24) in Section 4.3.2 as: 
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Similarly, response coefficients can be defined for the affinity and the resistance according to 
Eq. (4-25).   
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The local coefficients with respect to the metabolites, i.e. the elasticities, are defined 

according to Eq. (4-26): 
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The π - elasticities are defined according to Eq. (4-27) as: 
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Note that an expression for the elasticity of A can be obtained easily by using Eq. (4-42) in 
combination with Eq. (8-13). 
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νj is here the stoichiometric coefficient of metabolite j, Rg is the universal gas constant and T 
is the temperature in Kelvin. The affinity does not depend directly on any kinetic parameters 
and the π - elasticity of A will therefore equal zero for all parameters considered here. In some 
special cases it might be useful to consider the temperature a parameter or even to consider 
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the stoichiometric coefficients parameters (e.g. in the analysis of oxidative phosphorylation) 
in which cases one could calculate a π - elasticity for A. However, in the work presented here 
only the kinetic parameters and the enzyme levels are treated as system parameters.  

In Section 4.3.2 it was demonstrated how the flux control coefficients depend on the 
concentration control coefficients and the flux elasticities (Eq. 4-36). The same argument is 
applied here to show how the affinity and resistance control coefficients depend on the 
concentration control coefficients. The affinity is a function of the concentrations only, while 
the resistance is a function of the concentrations and the kinetic parameters. Consider reaction 
i with resistance ( )px;fRi =  where x is the vector of the m metabolite concentrations and p 
is the vector of parameters. By applying the chain rule of differentiation an expression for the 
derivative of Ri with respect to parameter pj can be obtained:  
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multiplication with the scaling factor ij Rp  on both sides gives: 
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which according to the definitions in Eqs. (4-28), (8-10), (8-14) and (8-15) is: 
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Following the same procedure for the affinity, the affinity control coefficient is given by 
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The affinity control coefficient gets a simpler expression since the πA equals zero and Eq. (8-
17) can be used to include the general expression for εA. 

Looking at Eq. (8-20) it is seen that the resistance control coefficient can be divided into 
two terms; the π-elasticity and the sum of the ε-elasticities multiplied by the concentration 
control coeffients:  
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direct effects / central control       indirect effects / self-organising 
 
The πR-elasticity was defined in Eq. (8-16) and is the change in resistance with parameter 
when all other variables are held constant. The πR-elasticity is therefore a measure of the 
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direct effect that the change in parameter has on the resistance. The change in parameter 
might also lead to changes in the concentrations as well, which in turn might also influence 
the resistance by for example changing the substrate and product saturation level. These 
indirect effects are given by the second term in Eq. (8-20). Note that if the resistance is 
insensitive towards changes in the concentrations, i.e. if all the εR equal zero, the resistance is 
only affected by the direct effects, in which case the analysis will be simplified. In cases 
where the parameter is not directly influencing the reaction the πR-elasticity will be zero and 
only the indirect effects will apply.  

In Section 4.4.1 it was pointed out that the control of dynamic systems can be divided into 
central control and self-organising. These two terms correspond to the direct effects and the 
indirect effects respectively. The great benefit of Eq. (8-20) is that it gives quantitative 
measures for central control and self-organising. By considering Eq. (8-20) one can assess to 
which degree a system is controlled through central control and to which degree it is 
controlled through self-organising. In the cell central control is exercised through gene 
transcription and translation which may lead to a change in an enzyme level. Self-organising 
is the result of the reaction system adapting itself to the changed enzyme level according to 
the thermodynamic forces in the system and the kinetic properties of the enzymes. 

Two further useful relationships between the elasticity and control coefficients of the 
different variables can be derived from the definition of resistance. The resistance is given by: 
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By taking the total differentials of both sides of Eq. (8-22) with respect to parameter pj the 
following expression is obtained: 
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Multiplying both sides of Eq. (8-23) with ij Rp and using the definition of R in Eq. (8-22) to 
simplify the expression, Eq. (8-23) becomes:  
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which, according to the definitions of the control coefficients in Eqs. (4-29), (8-9) and (8-10), 
is just: 
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By using the same strategy the analogous equation can be derived for the resistance elasticity:   
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As was demonstrated in Section 4.3.2 all flux control coefficients can be calculated if all the 
concentration control coefficients and all the flux elasticities are known. It is seen that by 
using Eq. (8-20), (8-21), (8-25) and (8-26) all the affinity and resistance control coefficients 
can be calculated as well from the concentration control coefficients and the flux elasticities.  
 

8.4.2 The control of the affinity and the resistance in the valine pathway 

The elasticities of the affinities and resistances for the AHAS and the valine BCAAT 
reactions are listed in Table 8-3 and 8-4. By comparing the values of the εAs and the εRs the 
role of the affinity and resistance in the control of the reaction rate can be investigated since 
the εF (the reaction rate elasticity) is just εA minus εR according to Eq (8-26).   
 

Table 8–3: The affinity and resistance elasticities of the AHAS reaction with respect to pyruvate, 
acetolactate and valine. 

 

 εA εR 
Pyr 0.108 -25.8 
AcLac 0.0541 18.5 
Val 0 12.1 

 
 

Table 8–4: The affinity and resistance elasticities for the BCAAT reaction with respect to glutamate, 
ketoisovalerate, α-ketoglutarate and valine.  

 
 εA εR 
Glut 1.45 -4.56 
KIV 1.45 -15.0 
AKG -1.45 -1.44 
Val -1.45 -1.45 

 
It is seen from Table 8-3 that for the AHAS reaction the resistances are very sensitive to the 

concentration of the substrate pyruvate and the product acetolactate while the affinity is 
almost insensitive to changes in these concentrations. For the BCAAT a different picture is 
seen (Table 8-4). The resistance elasticities for the substrates and products are much smaller 
and the affinity elasticities are comparable to the resistance elasticities. This illustrates a 
general point. Reactions far from equilibrium (such as the AHAS reaction) are controlled 
almost entirely through the reaction resistances, i.e. through the properties of the enzymes. 
For reactions closer to equilibrium (such as the BCAAT reaction) the reaction rate is also 
controlled through the affinity, a quantity not directly dependent on the enzyme properties.  

This point is further illustrated by the control coefficients in Table 8-5 where it is seen that 
the AHAS affinity is much less sensitive to changes in the enzyme levels than the resistance. 
For the BCAAT reaction the affinity control coefficient is in the same range as the resistance 
control coefficient. The important conclusion here is that, in general, the closer to equilibrium 
a reaction is, the more the reaction rate is controlled through the affinity. 

The discussion above gives an understanding of why metabolic reaction networks are 
stable. For reactions far from equilibrium the enzyme properties, which have developed 
through evolution, ensure a stable state. For reactions close to equilibrium the affinity plays a 
more important role. However, close to equilibrium the reaction rate varies linearly with 
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affinity. When linearity applies the reactions will develop towards a state of minimum entropy 
production which ensures a stable state (Kondepudi and Prigogine 1998). So, although the 
affinity is a force not directly controlled by the cell, it does not lead to instability.   
 

Table 8–5: The affinity and resistance control coefficients as well as the π-elasticity and the self-
organising term for the reactions in the valine pathway. For each reaction all coefficients have been 
calculated with respect to the enzyme level corresponding to that specific reaction (for example, the 
CR for the AHAS reaction is the control coefficient for the AHAS resistance with respect to the AHAS 
enzyme level, etc.). 

 

Reaction CA
 CR πR ∑ CR Cε  

AHAS -0.00148 -0.324 -1 0.676 
AHAIR -0.00128 -0.0418 -1 0.958 
DHAD -0.000666 -0.00580 -1 0.994 
BCAAT -0.0556 -0.324 -1 0.676 

 
 

The level of central control and self-organising can be evaluated by considering Eq. (8-20) 
as discussed in section 8.4.1. In the following this will be demonstrated by looking at the 
effect that a change in an enzyme level will have on the resistance. The π-elasticity for a 
resistance with respect to an enzyme level is easy to calculate. Consider reaction i with 
resistance Ri and enzyme level ei. The π-elasticity of Ri with respect to enzyme level ei equals 
-1 because the resistance is inversely proportional to the enzyme level when all other 
variables are held constant (an increase in enzyme level means a decrease in resistance). 
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Thus, for the resistance control coefficients reported in Table 8-5, the corresponding π-
elasticity equals -1 in all cases. The terms giving the degree of self-organising in Eq. (8-20) 
can now be calculated. The AHAS resistance, for instance, has a control coefficient of -0.324 
(see Table 8-5) so the self-organising term has the value of 0.676 which demonstrates that the 
system to a certain degree opposes the central control and significantly reduces the effect of 
the change in enzyme level. It is seen that there is a very high degree of self-organising for the 
reactions AHAIR and DHAD where the influence of changing an enzyme level is almost 
completely counteracted by the self-organising of the system. Changing the enzyme level of 
AHAS and BCAAT has a significant effect on the resistance, but also for these reactions the 
self-organising mechanisms of the system strongly counteract the changes in resistance. The 
resistances of AHAS and BCAAT are therefore controlled through a mixture of central 
control and self-organising.   

 

8.4.3 A short discussion of the main conclusions in section 8.4 

The theory of MCA was extended to include also the reaction affinity and the reaction 
resistance. By using the extended MCA theory it was possible to analyse the control of A and 
R in the valine pathway. Since the reaction rate is a function of A and R, the analysis of these 
quantities gave a further insight into how the fluxes are controlled. It was demonstrated that 
the closer a reaction is to equilibrium the more it is controlled through the affinity. Reactions 
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far from equilibrium are controlled mostly through the resistance. This provided an 
explanation of why cellular reaction networks are stable systems.  

It was further demonstrated how quantitative measures for the central control and the self-
organising effects in metabolic networks can be defined and calculated. These concepts give a 
new and deeper insight into the control of such systems since they evaluate to which degree 
the reaction system controls itself and to which degree the cell controls the reaction rates 
through transcription and translation of its genes.   
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9 Alternative modelling approaches 
Several modelling approaches were investigated in the presented project. It turned out that a 
model of the valine / leucine pathway defined using linlog kinetics was the best choice with 
regards to the aim of investigating the control of the valine production and identify targets for 
rational optimisation. The linlog model was therefore presented as a main result of the 
modelling part of the project (Chapter 6) and the further analysis was based on this model. 
However, the choice of this modelling strategy was not clear at the beginning of the 
investigation and other modelling strategies were therefore also considered. These included a 
mechanistic model of the valine / leucine pathway and a linlog model of the entire metabolism 
of the investigated strain. The alternative modelling strategies might be the right choice in 
other research projects. An aim of this thesis was to investigate and develop the methods for 
dynamic modelling, and the other modelling approaches will, therefore, be described here. A 
discussion of why they were not found appropriate for the investigation will also be given.   
 

9.1 A mechanistic model of the valine / leucine pathway 

Using mechanistic rate equations to define a dynamic model has been the traditional approach 
in metabolic modelling (Pissara et al., 1996; Rizzi et al., 1997; Yang et al., 1999; Chassagnole 
et al., 2002). The mechanistic rate equations are derived from the mechanism at which the 
substrates and products bind to and are released from the enzyme. A mechanistic model based 
on the available literature on the enzyme mechanisms was set up for the valine / leucine 
pathway as described in the following. 
 

9.1.1 Definition of the mechanistic model 

The rate equations implemented in the model were derived from the general mechanistic 
equations for enzyme catalysed reactions with two or more substrates and products as derived 
by Cleland (1963). The number of parameters in the equations is reduced as far as possible by 
eliminating all linearly dependent parameters and by using Haldanes relationship. The 
parameter for the maximal rate of the reverse reaction Vr was eliminated from all rate 
equations as this parameter can always be expressed as a combination of the other kinetic 
parameters. In those cases where two kinetic constants can be summarised as one, the 
resulting constant is no longer a mechanistically meaningful constant such as a Michaelis-
Menten or an inhibition constant and is therefore given a number rather than a subscript 
signifying what type of kinetic constant it is. The equilibrium constant is always kept in the 
equation since it can be determined by thermodynamic considerations (see Chapter 4.4).  
 
Acetohydroxyacid synthase (AHAS)   In this reaction two molecules of pyruvate condense 
to form CO2 and acetolactate according to a ping pong reaction as described in literature 
(Gollop et al., 1989; Pang and Duggleby 1999 and 2001, Duggleby and Pang 2000; Lee et al., 
2002): 
 

 
 

 

Pyr CO2 Pyr AcLac
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The rate equation is a reduced ping pong bi-bi equation where several terms could be 
combined by using the Haldane relationship and assuming a constant CO2 concentration. The 
CO2 concentration was assumed to be 30 mM which is the saturated concentration of CO2 in 
water. It is reasonable to assume a constant saturated concentration of CO2 since CO2 is 
produced continuously by the cell. The CO2 will also be in equilibrium with carbonic acid in 
the culture.  

Inhibition terms for valine were added to the equation. Isoleucine and leucine also inhibits 
the enzyme (Leyval et al., 2003), but as this only occurs at concentrations much higher than 
the isoleucine and leucine concentrations present in the cell the action of isoleucine and 
leucine was ignored in the rate equation. Pure competitive inhibition by valine was assumed. 
According to literature (Elisakova et al., 2005, Pang and Duggleby 1999 and 2001) only a 
partial inhibition occurs at saturating valine concentrations. This is incorporated in the 
equation by adding the constant Kr,a which gives the residual activity at saturating valine 
concentrations. It can be seen by inspection that Eq. (9-1) will approach Kr,a as valine and 
pyurvate approach infinity. The inhibition constant Ki determines how fast the partial 
inhibition is reached when the valine concentration increases, but does not determine the 
reaction rate at saturating valine concentrations. The Kr,a value determined in-vitro for the 
AHAS enzyme isolated from Corynebacterium glutamicum is 0.43 (Elisakov et al., 2005). 
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Acetohydroxyacid isomeroreductase (AHAIR)   The AHAIR reaction reduces acetolactate 
to dihydroxyisovalerate by the use of NADPH and proceeds according to an ordered bi-bi 
reaction with NADPH binding first (Shematek et al., 1973; Chunduru et al., 1989; Dumas et 
al., 2001): 
 

 
 
 
A term for the competitive inhibition (Chunduru et al., 1989; Dumas et al., 2001) by valine 
was included in the equation.   
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Dihydroxyacid dehydratase (DHAD)    This enzyme catalyses the transition of 
dihydroxyisovalerate to ketoisovalerate with the loss of water according to a Michaelis-
Menten kinetic (Pirrung et al., 1988, Pirrung et al., 1991). A term for competitive dead end 
inhibition is included in the equation.   
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Branched chain amino acid transferase (BCAAT)    The transaminase B enzyme is the 
main enzyme responsible for the transamination of ketoisovalerate to valine and also for the 
transamination of ketoisocaproate to leucine. The activity of transaminase C which uses 
alanine as amino group donor has been demonstrated in Corynebacterium glutamicum 
(Leyval et al., 2003). However, only the transaminase B enzyme is considered here as this is 
the dominating enzyme in the transamination of the branched chain amino acids in 
Corynebacterium glutamicum (Eggeling et al., 1987; Radmacher et al., 2002; Leyval et al., 
2003). The reaction proceeds according to a ping pong bi-bi mechanism (Hall et al., 1993).  
 
 

 
 
 
The reaction equation is written for the transamination of ketoisovalerate (KIV) to valine. The 
equation for the transamination of ketoisocaproate (KIC) to leucine has the same form with 
KIC instead of KIV and leucine instead of valine.  
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Transport of the branched chain amino acids    The net flux of branched chain amino acids 
over the membrane is a combination of diffusion and active transport (Kennerknecht et al., 
2003). The rate equation contains one irreversible Michaelis Menten term for the active 
transport and one term for passive diffusion. Since it is the same protein that transports valine 
and leucine the two amino acids will compete for the binding site at the protein. This has been 
taken into account in the Michaealis Menten term according to the equation derived by 
Bisswanger (2000).   
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The transport rate for leucine obtains the analogous form: 
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Note that the same kinetic constants occur in the two transport equations above. This must be 
taken into account when optimising the parameters. The parameters KVal and KLeu must 
therefore be defined as global parameters in the MMT2 model.  
 
Isopropylmalate synthase (IPMS)    2-isopropylmalate is the first metabolite in the leucine 
pathway and is formed from ketoisovalerate. An acetyl group is donated by acetyl-CoA to 
yield isopropylmalate. The enzyme is strongly inhibited by leucine (Ulm et al., 1972; Patek et 
al., 1994). A simplified rate equation where the action of Acetyl-CoA has been neglected is 
formulated. Thus the rate equation is written as a reversible Michaelis Menten equation with 
competitive inhibition by leucine: 
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Isopropylmalate dehydrogenase (IPMDH)    The IPMDH reaction catalyses the formation 
of ketosiocaproate from isopropylmalate with the reduction of NAD according to an ordered 
bi-tri mechanism (Pirrung et al., 1994a; Pirrung et al., 1994b): 
 

 
 
In the rate equation the concentration CO2 is taken to be constant which simplifies the rate 
equation to an expression similar to the ordered bi-bi equation:  
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9.1.2 Simulation results with the mechanistic model    

The parameters of the kinetic model were fitted with the MMT2 software using the same 
optimisation strategy as was used for the linlog model (see Section 4.2.3). The equilibrium 
constants Keq were calculated from the Gibbs free energies (see Eq. (4-46)). Information about 
the steady state fluxes was used to identify the rmax values so that only the K – parameters had 
to be fitted. In Figure 9-1 the time courses of the two best models that could be fitted is 
presented. It is seen that the model could not reproduce the measurements as well as the linlog 
model (see Figure 6-1). Especially the simulation of the KIV and the valine time course did 
not give a satisfactory fit to the data. This is surprising at first since the mechanistic model has 
more parameters than the linlog model and therefore should be easier to fit to the 
measurements. The mechanistic model contains 43 independent parameters as compared to 
the 28 parameters in the linlog model.  
 
 

 
 
 
Figure 9–1: The simulated time courses of the metabolites in the valine pathway by the mechanistic 
model for the two best fitting parameter sets. 

 
The reason why the mechanistic model is more difficult to fit lies in the structure of the rate 

equations. The linlog structure sets no boundaries on the elasticities that can be obtained for 
the system (the definition of elasticities is given in Eq. (4-8)). By varying the parameters of a 
linlog model any elasticity can be obtained. For the mechanistic model the rate equations sets 
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limits to what elasticities can be achieved. This is demonstrated by looking at the elasticity of 
the BCAAT reaction with respect to KIV as an example. The BCAAT reaction follows a bi-bi 
ping-pong mechanism which is a common mechanism for enzyme catalysed reactions. The 
rate equation of the BCAAT reaction is given in Eq. (9-4). Using the definition in Eq. (4-8) 
the following expression for the elasticity is obtained: 
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In order to discuss Eq. (9-9) it will be written as: 
 

2Term1TermKIVBCAAT −=,ε         ( 9-10 ) 

 
Term 2 contains all the kinetic constants while Term 1 only depends on the concentrations and 
the equilibrium constant. Consider first the second term in Eq. (9-9). Since concentrations and 
Michaelis Menten constants are always positive numbers, and the term does not contain any 
minus signs, one can conclude that no matter what values are obtained for the concentrations 
and parameters the term will always be larger than 0. Furthermore, if Term 2 is rearranged as: 
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it is clear that Term 2 will also always be smaller than 1 since the denominator in Eq. (9-11) is 
always larger than 1. Thus: 
 

10 ≤≤ 2Term           ( 9-12 ) 

 
Now looking at the first term in Eq. (9-9) it is seen that this term will approach infinity as the 
concentrations go towards equilibrium. (This is a result of the elasticity being defined as the 
scaled partial derivative. At equilibrium the reaction rate is 0 so the relative change of 
reaction rate at that point will be infinite.) The further away from equilibrium the reaction is 
the smaller Term 1 will be. As was demonstrated in Chapter 8, all reactions in the system 
operate far from equilibrium except for the BCAAT reactions, so the BCAAT reactions are 
the reactions that would be able to obtain the largest elasticities. In order to get a feeling for 
the order of magnitude of the elasticities of the BCAAT reaction Term 1 is calculated for the 
steady state. The equilibrium constant for the BCAAT reaction is 1 and the steady state 
concentrations for the species participating in the reaction are: [Val] = 29.8 mM, [KIV] = 7.8 
mM, [AKG] = 5.1 and [Glut] = 38.8 mM. If these values are substituted into Term 1 in Eq. (9-
9) the result becomes: 
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Thus, even for the BCAAT reaction the elasticity with respect to KIV can be maximum 2 
since Term 2 must be subtracted. 

If the elasticities of the other reactions were calculated as well with respect to the substrates 
of the reactions, expressions similar to Eq. (9-9) would be obtained with a Term 1 depending 
on the distance from equilibrium and Term 2 lying between 0 and 1. Elasticities with respect 
to products will also obtain similar expression, but with Term 1 being negative. All reactions 
other than the transaminase reactions are so far from equilibrium that Term 1 becomes 
practically one. Thus for these reactions the elasticity with respect to substrates will be limited 
to: 

 

10 ≤≤ substratesε          ( 9-14 ) 

 
and the elasticity with respect to a product will be: 
 

01 ≤≤− productsε          ( 9-15 ) 

 
Looking at Table 6-2 it is seen that most elasticities in the linlog model are much larger than 
what can be obtained with the mechanistic model. The large elasticities make the linlog model 
flexible enough to fit the measured concentrations. Given the concentration data used here, 
which changes very rapidly, it can be concluded that in the case investigated here large 
elasticities is a prerequisite for a good fit. If one follows the measured time course of KIV in 
Figure 9-1, it is seen that a function that should fit these data must have very high second 
derivatives around t = 0 and t = 5. In other words the reaction rate must be able to change very 
rapidly around those points. This implies large elasticities in the rate equations. The 
conclusion that can be drawn is that the mechanistic model could not be fitted to the data 
because its elasticities can not obtain high enough values.  

The discussion given above raises the question if mechanistic models can be used at all for 
in vivo kinetic modelling. It seems that the reactions that take place inside the cell obeys a 
rate equation which is different than what can be explained by equations based on theoretical 
considerations of the reaction mechanism. With the many substances present in the cytosol it 
is likely that the reaction mechanisms are more complicated than what is captured in the 
Michaelis Menten type of rate equation. Such rate equations might be valid for in vitro 
investigations where the reactions take place in a well defined environment, but in the cytosol 
there are probably other effects that lead to significantly different reaction mechanisms. This 
could include for example unknown activation effects. It is reasonable that the cells have a 
flexible in vivo reaction network. The cell requires this so that changes in the environment do 
not lead to large changes in the intracellular concentrations which could be damaging to the 
cell.  
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9.2 Whole cell modelling 

The linlog model presented in Chapter 6 simulates only the intermediates in the valine and 
leucine pathway. In order to include the influence of other metabolites such as glutamate and 
NADPH on the reactions, these non-balanced metabolites were represented by splines and 
used as input to the simulation.  

A different approach is the whole cell modelling approach where the entire metabolism of 
the cell is modelled. All reactions involved in transforming nutrients to biomass and products 
must be specified. The model will therefore necessarily contain a large number of metabolites 
and reactions. Only the extracellular metabolites must then be defined as input to the model. 

The ability to model the complete metabolism of cells has been a goal in Systems Biology 
and Metabolic Engineering for several years and has led to large research projects such as the 
E-Cell project (Tomita, 2001). However, the modelling of large networks has different 
requirements and potential problems than the modelling of small networks. A critical issue is 
the amount of experimental data that is needed for model identification. Another obvious 
challenge is the fitting of the parameters which becomes an increasingly difficult task when 
the model becomes larger since the parameter search space increases exponentially with 
number of model parameters. It is therefore not given that the global optimum can be found.  

A whole cell kinetic model was developed to provide a proof of concept for the whole cell 
modelling of the investigated Corynebacterium glutamicum strain. The aim was to find out if 
the measured metabolite concentrations could be simulated accurately with a whole cell 
model and to identify potential problems associated with the whole cell modelling approach.  
 

9.2.1 The process of developing a whole cell model for C. glutamicum 

The whole cell model was set up using the software In-Silico Discovery. The model uses 
linlog kinetics for all rate equations.  

The development of a whole cell linlog model consists essentially of 3 steps. First the 
stoichiometry of all reactions in the network and the modulation effects are defined. In-Silico 
Discovery can then automatically generate the required linlog equations based on the 
stoichiometry and modulations. The second step is to carry out a steady state flux analysis 
based on the measured uptake and excretion rates. The “r0” parameters in the linlog rate 
equations (see section 4.2.2) are set equal to the steady state fluxes. Finally the kinetic 
parameters of the model are fitted so that the simulated time courses agree with the metabolite 
measurements. The time series of all 26 measured metabolites were used to fit the parameters. 
Thus the data basis consisted of in total 1500 data points. The model contained 690 
parameters. The parameter fitting was performed on the computer cluster at the Institute of 
Biochemical Engineering, University of Stuttgart using the evolutionary optimisation 
algorithm from the JavaEvA package developed at the University of Tübingen. 

The stoichiometric reaction network included the following reactions: Uptake and excretion 
reactions, glycolysis, the pentose phosphate pathway, the TCA cycle, anaplerotic reactions, 
oxidative phosphorylation and one-carbon-units regeneration as well as the biosynthesis of 
peptidoglycan, nucleic acids, fatty acids and all amino acids and the polymerisation of these 
metabolites to macromolecules. Only reactions confirmed in literature to be active in 
Corynebacterium glutamicum were included in the model. Each compound in the model was 
defined with chemical formula and charge. This information was used to carry out element 
and charge balances on the reactions to check their consistency. The element and charge 
balances are an important tool to eliminate errors in the stoichiometry. 

Furthermore, all reaction rate modulations, i.e. activation and inhibition effects, were 
specified for the reactions according to published literature. For many enzymes no published 
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investigations have been carried out with the enzyme isolated from Corynebacterium 
glutamicum. In these cases the definition of enzyme inhibition and activation was partly based 
on information obtained from other bacteria such as E. coli which has been investigated 
thoroughly.  

The model contained 142 metabolites and 136 reactions in total. 129 of the metabolites 
were balanced. The 13 unbalanced metabolites were the external metabolites as well as H2O 
and H+. 

The most important articles used to define the model are referred to in the next section. In 
addition, different textbooks on biochemistry and bacterial metabolism were used (Gottschalk 
et al., 1985; Neidhardt et al., 1990; Lehninger et al., 1993; Stryer, 1995; White, 2000) as well 
as databases available over the internet such as the Kyoto Encyclopedia of Genes and 
Genomes (www.genome.ad.jp/kegg/), Brenda (www.brenda.uni-koeln.de/), ExPASy 
(www.expasy.ch) and MetaCyc (www.metacyc.org). Other stoichiometric models developed 
for Corynebacterium glutamicum (Vallino and Stephanopoulos, 1993; Pons et al., 1996; 
Takac et al., 1998) were used as a reference, but the developed model is different from these 
models and specific to the investigated strain. The model is defined to use glucose as the only 
carbon and energy source. Thus there are no catabolic reactions of amino acids or fatty acids 
included in the model. 

In setting up the reaction equations all essential reactions believed to occur in the cell were 
included. It was not attempted to define the network so that the stoichiometric matrix did not 
contain any inner degrees of freedom3 as is often done in stoichiometric models intended for 
metabolic flux analysis (see models referred to above). This would have put unnecessary 
limitations to the dynamic model as one would, for example, not have been able to define 
more than one anaplerotic reaction. It was aimed to keep the reaction network as close to 
reality as possible. 

 

9.2.2 The definition of the stoichiometry 

The complete stoichiometric model is given in Table H-2 in Appendix H. Table 9-1 shows an 
excerpt of Table H-2. In the following some of the more special features of the model are 
described. A graphical representation of the network is given in Figure 9-2. 
 
Glucose uptake, glycolysis and pentose phosphate pathway   The main uptake mechanism 
for glucose is the phosphotransferase system. However, as was discussed in Chapter 5, 
Corynebacterium glutamicum may also possess a glucose permease which may be responsible 
for 15 % of the total glucose uptake (Cocaign-Bousquet et al., 1996). Both the uptake systems 
were therefore included in the model (see Figure 9-3). Glucose kinase, which has been 
demonstrated to be active in Corynebacterium glutamicum (Park et al., 2000), transforms 
intracellular glucose into G6P with the consumption of one ATP. G6P can then be 
transformed to 6PG (6-phosphogluconate) over the G6P-dehydrogenase enzyme. Intracellular 
glucose may also be transformed directly to 6PG by the enzymes glucose 1-dehydrogenase, 
gluconolactonase and gluconokinase (see reaction equations in Table H-2 Appendix H).   

The model does not contain a transhydrogenase reaction as Corynebacterium glutamicum 
does not have this enzyme (i.e. there is no interconversion of NADH and NADPH). 
                                                 
3 When performing a metabolic flux analysis the degrees of freedom of the model equal the number of reaction 
rates that must be fixed (i.e. measured) in order to solve the system for the steady state fluxes. The degrees of 
freedom equal the dimension of the null space of the stoichiometric matrix, that is, the nullity of the 
stoichiometric matrix (Magnus, 2001). The outer degrees of freedom are the number of transport rates that must 
be measured, while the inner degrees of freedom are the number of internal reaction rates that must be fixed. A 
more complete discussion of the concept of degrees of freedom in metabolic models is given by Stephanopoulos 
et. al. (1998). 
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The model was defined to suit the data available for model identification. The isomers that 
had been measured as sums (see Chapter 3.4) were therefore defined as one metabolite in the 
model. Thus G6P and F6P were defined as one metabolite (named G6PF6P in Table H-1). 
The same approach was taken for the pairs GAP / DHAP and 2-PG / 3-PG as well as for the 
pentose sugar phosphates ribulose-5-phosphate, ribose-5-phosphate and xylulose-5-
phosphate. Lumping of metabolites in a model is possible as long as the metabolites are 
directly connected to each other in the reaction network, which was the case here. 
 
 
Table 9–1:  Excerpt of Table H-2 showing the synthesis reactions of the amino acids aspartate, 
asparagine, lysine, methionine and threonine. In some cases lumped reactions were written to limit the 
total number of reactions in model 

 

Name  Short name EC Reaction Inhibition Activation 
      
Aspartate transaminase  AspTr 2.6.1.1 oac + glut = asp + akg   
Asparagine Synthase  AsnS 6.3.5.4 atp + asp + glum + h2o = 

amp + pp + asn + glut + 2*h 
amp, asn, 
ser 

 

Aspartate kinase, 
aspartate-semialdehyde 
dehydrogenase 

 AspKin 2.7.2.4, 
1.2.1.11  

asp + atp + nadph + h = 
aspsa + adp + nadp + p 

thr, lys  

Diaminopimelate 
synthase, (several 
enzymes) 

 DapimS 4.2.1.52, 
1.3.1.26, 
2.3.1.117, 
2.6.1.17, 
3.5.1.18  

aspsa + pyr + nadh + succoa 
+ glut = dapim + nad + coa + 
akg + suc 

lys  

diaminopimelate 
epimerase, 
diaminopimelate 
decarboxylase 

 LysS 5.1.1.7, 
4.1.1.20  

dapim + h = co2 + lys glut, lys  

Homoserine 
dehydrogenase 

 HserDH 1.1.1.3  aspsa + nadph + h = hser + 
nadp 

meth, thr, 
cys 

 

Methionine Synthase 
(several reactions) 

 MethS    accoa + hser + h2s + mythf = 
coa + ace + thf + meth + h 

meth, cys  

Homoserine kinase, 
threonine synthase 

 ThreoS 2.7.1.39, 
4.2.3.1  

hser + atp + h2o = thr + adp + 
p + h 

thr, isoleu, 
cys 

nh4 
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Figure 9–2: Overview of the stoichiometric model. The black and the grey dots represent the balanced 
metabolites. The unbalanced metabolites (H2O, H+ and extracellular metabolites) are depicted as 
yellow dots. The intracellular reactions are depicted as red dots and the transport reactions as white 
dots. The light blue compartment represents the cell while the dark blue compartment represents the 
bioreactor.  
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Figure 9–3: Illustration of the reactions of the two glucose uptake system as well as the glycolysis and 
pentose phosphate pathway. Only the main metabolites are shown. The reactions transforming 
glucose to 6PG, without going over the intermediate G6P, includes the intermediates gluconolactone 
and gluconate as well as the enzymes glucose-1-dehydrogenase, gluconolactonase and 
gluconokinase.  

 
Anaplerotic reactions   Corynebacterium glutamicum possesses a large number of 
anaplerotic enzymes with two C3-carboxylating enzymes and three C4-decarboxylating 
enzymes (Sahm et al., 2000). Several authors have described the activity of PEP carboxylase 
(Ozaki and Shiio, 1969; Mori and Shiio 1985; Eikmanns et al., 1989; Jetten et al., 1994; 
Grubler et al., 1994). Furthermore, the activity of a PEP carboxykinase (Jetten and Sinskey, 
1993; Peters-Wendisch et al., 1993), pyruvate carboxylase (Peters-Wendisch 1997), 
oxaloacetate decarboxylase (Jetten and Sinskey, 1995) and malic enzyme (Mori and Shiio, 
1985; Cocaign-Bousquet et al., 1996) has been demonstrated. To what extent these enzymes 
are active in Corynebacterium glutamicum at a given physiological state is not always clear 
and was also not the subject of this thesis. In the model all 5 anaplerotic enzymes were 
included in order not to put incorrect limitations to the flexibility of the network.  
 
Oxidative phosphorylation   The rate equations for the oxidative phosphorylation were 
defined with a P:O ratio of 2. This assumption is typical for stoichiometric models of 
Corynebacterim glutamicum (Vallino and Stephanopoulos, 1993; Pons et al, 1996, Takac et 
al., 1998). Kawahara et al. (1988) demonstrated experimentally that the P:O ratio lies around 
2.  
 
Amino acid synthesis   Synthesis reactions of all 20 amino acids were included. The enzyme 
threonine dehydratase was not included in the model since this enzyme had been deleted in 
the investigated strain. Threonine dehydratase is the enzyme responsible for the 
transformation of threonine to ketobutyrate, the first intermediate in the isoleucine pathway. 
The deletion of this enzyme would therefore presumably lead to an isoleucine auxotroph 
strain. However, according to the KEGG database, ketobutyrate might be formed in an 
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alternative pathway from homoserine over the cystathionine γ-synthase enzyme (metB). In 
preliminary experiments the intracellular concentration of KBut at steady state was measured 
to 0.7 mM and it was observed that the strain could also grow without isoleucine. This 
strongly suggests the existence of the alternative ketobutyrate pathway in the investigated 
strain. In the investigation of another recombinant Corynebacterium glutamicum strain 
Kromer et al. (2006) also concluded that this alternative pathway was active. The synthesis 
reaction of ketobutyrate from homoserine was therefore included in the model. 
 
Lipid biosynthesis   Lipids are built from glycerol-3-phosphate, serine and fatty acids. The 
fatty acid composition was taken from Jang et al. (1997). Other publications specifying the 
fatty acid composition of corynebacteria give similar values as Jang et al. (Collins et al., 1982; 
Chevalier et al., 1992). The amount of energy in the form of phosphate groups (e.g. from 
ATP) for the lipid assembly was included in the protein assembly equation according to 
Neidhardt (1990). Lehninger et al. (1993) specified the types of phosphorylated nucleotides 
needed. 
 
Protein biosynthesis   The amino acid composition of the protein in mole % was as follows 
(Cocaign-Bousquet et al. 1996): alanine, 16.4; arginine, 4.3; aspartate, 4.2; asparagine, 4.2; 
cysteine, 0.023; glutamate, 11; glutamine, 11; glycine, 7.8; histidine, 1.4; isoleucine, 4.0; 
leucine, 5.9; lysine, 3.9; methionine, 1.1; phenylalanine, 2.8; proline, 3.3; serine, 6.0; 
threonine, 6.1; tryptophane, 0.023; tyrosine, 1.7; valine, 5.9. The amount of energy in the 
form of phosphate groups for the protein assembly was included in the protein assembly 
equation according to Neidhardt (1990). Lehninger et al. (1993) specified the types of 
phosphorylated nucleotides needed. 
 
RNA and DNA assembly   The average nucleotide composition of RNA and DNA in E. coli 
was used in the model (Neidhardt et al., 1990). The energy requirement for assembly was 
given by Neidhardt et al. (1993).  
 
Biomass assembly   The dry biomass composition in weight % was specified by Cocaign-
Bousquet et al. (1996) as: 52 % protein, 5% RNA, 1% DNA, 13% lipids and 19% cell wall 
components. The way to incorporate biomass production in the model was to define biomass 
as a metabolite that is excreted from the cell. One biomass unit was defined to be a molecule 
with a molecular mass of 192 000 g/mol. The biomass elemental composition resulting from 
the macromolecular composition specified above was: C0.518H0.070O0.260N0.139P0.013S0.0007.  

The molecular mass of a biomass molecule in the model can be set to any value. 192 000 
g/mol resulted from the choice of defining a DNA molecule as a helix consisting of 100 
nucleotides. With a biomass molecule containing 1 % w/w DNA the resulting molecular mass 
is 192 000 g/mol.  
 

9.2.3 Steady state metabolic flux analysis and topological analysis  

It will be assumed here that the reader is familiar with the concept of steady state metabolic 
flux analysis based on metabolite balances and the different terms and expression used within 
this area. An introduction to metabolic flux analysis is given by Stephanopoulos et al. (1998).  

The stoichiometric model had been defined to include all significant reactions that could 
take place in the cell in order to make the reaction network as realistic as possible. This led to 
a model with in total 7 inner degrees of freedom. The 5 anaplerotic reactions resulted in 4 
inner degrees of freedom. The two glucose uptake systems and the possibility for glucose to 
enter the pentose phosphate pathway either over G6P or over gluconolactone resulted in two 
more. The inclusion of the glyoxylate shunt in the TCA cycle gave rise to one additional 
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degree of freedom. Thus in order to carry out the flux analysis 7 internal rates had to be fixed. 
The following assumptions were made: The glucose uptake is split between the pts system 
and the glucose permease with 85 % of the total flux going over the pts system (as suggested 
by Cocaign-Bousquet et al., 1996). All anaplerotic flux at steady state goes over the 
phosphoenolpyruvate carboxylase enzyme since this enzyme is traditionally believed to be the 
main anaplerotic enzyme in Corynebacterium glutamicum (see references given above). The 
glyoxylate shunt is inactive during growth on glucose as this pathway is normally only active 
during gluconeogenesis. From the glucose taken up through the permease transporter two 
thirds will be converted to G6P by the glucose kinase enzyme. 

It should be noted that fixing some internal rates is only necessary for the flux analysis. 
During the dynamic simulation all rates were allowed to vary.   

The model also had 6 outer degrees of freedom. Thus at least 6 transport rates had to be 
measured in order to solve the system of linear equations and calculate the fluxes. During the 
fermentation in total 8 uptake and excretion rates had been measured which gave a degree of 
redundancy of 2. The measured rates were: uptake of O2, isoleucine and glucose, excretion of 
CO2, valine, leucine and alanine as well as biomass production.  

The model contained 6 conserved moieties. Conserved moieties occur when the model 
structure implies that the sum of two or more metabolites will always stay constant in the 
cell4. The 6 relations that led to the conserved moieties are given in Table 9-2. Conserved 
moieties lead to linear dependencies in the stoichiometric matrix.  

Table 9-3 summarises the results of the topological analysis.  
 

 
Table 9–2:  The conserved moieties in the whole cell model. The abbreviations are explained 
in Appendix H in Table H-1.  
 

NADH +  NAD = const. 
AcCoA + CoA + SucCoA = const. 
FADH2 + FAD = const. 
NADPH + NADP = const. 
THF +  MyTHF +  MeTHF +  FyTHF = const. 
ITP + IDP = const. 

 
 
 
 
Table 9–3:  Summary of the topological analysis of the whole cell model. 
 

Inner degrees of freedom 7
Outer degrees of freedom 6
Total degrees of freedom 13
Degree of redundancy 2
Conserved moieties 6

 
 
 

                                                 
4 The term conserved moieties has been defined by Heinrich and Schuster (1996) as "chemical entities (atoms, 
ions, assemblies of atoms and ions) participating in a reaction system without loss of integrity and always 
remaining in the system (even if it is an open one)". When, for instance, both NAD and NADH are balanced in a 
model, and the synthesis reactions of these metabolites are not part of the model, this will lead to one conserved 
moiety since the sum of NAD and NADH will always remain constant in the system. 
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9.2.4 Simulation results 

In total 16 parameter sets were fitted for the model. The simulated time courses of all 
metabolites for all parameter sets are given in Figure 9-4. It is seen that for the measured 
metabolites the different parameter sets give very similar time courses and the goodness of fit 
is comparable for all parameter sets. For the metabolites for which no measurements are 
available there are large quantitative differences, as is seen for example in serine (ser_c) or in 
glutamine (glum_c). This demonstrates the need for more metabolite data in order to identify 
the correct parameter set. It should, however, be noted that most of the simulated time courses 
are qualitatively similar, that is, they follow the same trend. Thus, some mechanistic 
understanding could be extracted based only on the available measurements.  

The simulated curves fit well with most of the measured concentrations. In the glycolysis 
all metabolites fitted well except the sum of G6P and F6P (the metabolite named G6PF6P in 
Figure 9-4). The sharp rise directly after the stimulus which is seen in all metabolites in the 
glycolysis downstream of F6P could be simulated correctly. Also the nucleotides ATP, ADP 
and AMP as well as NAD and NADP obtained good fits. These metabolites participate in 
many reactions and it is interesting that they could all be simulated accurately by the model.  

For the metabolites glutamate, valine, ketoisovalerate and G6PF6P the dynamic changes in 
concentration could not be reproduced by the model. These metabolites all have much higher 
concentrations than the other measured metabolites. Glutamate for instance has a 
concentration of 40 – 50 mM. This is typically two orders of magnitude more than most of the 
other metabolites.  

In the valine pathway, both KIV and valine obtained poor fits. These are the two 
metabolites in the valine / leucine pathway with the highest values, about 10 mM and 30 mM 
respectively. Although the other metabolites in the pathway (Pyr, AcLac, DHIV, IPM, KIC 
and Leu) could be fitted well, the fit for the pathway seen as a whole is unsatisfactory.  

In order to simulate the large metabolite pools the reaction rates must be able to change fast 
because the change in the metabolite concentration is much higher than the flux at steady 
state. Thus, large elasticities in the rate expressions are required to simulate the large pools. 
The need for large elasticities in a kinetic model was also discussed in Chapter 9.1.  

Figure 9-5 shows the cumulative frequency distribution of the elasticities in the whole cell 
model. 70 % of the elasticities had absolute values smaller than 20 and 95 % of the elasticities 
had absolute values smaller than 1000. In Table 9-4 the parameter values and elasticities for 
the whole cell model are compared to the values for the small model of the valine / leucine 
pathway presented in Chapter 6. The values for the valine pathway are shown. It is seen that 
the elasticities in the small model are two to three orders of magnitude larger than the 
elasticities in the whole cell model. The low elasticities in the whole cell model were the 
underlying reason why the large metabolite pools could not be fitted. 

The parameter values (and thus the elasticities) were not limited upwards during the 
parameter fitting. It is reasonable to believe that a better fit could have been found with larger 
parameter values. The fact that these better fitting parameter sets were not found could 
indicate that the algorithm used for optimisation got stuck in a local optimum and therefore 
did not find the global optimum. It must be recognised that the optimisation of a model with 
690 parameters is a very difficult task since the parameter search space then has 690 
dimensions. Although the evolutionary algorithm is a global, stochastic method, there is no 
guarantee that the global optimum is found. 
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Figure 9–4: The simulation time courses for the 16 identified parameter sets displayed with a different 
colour for each parameter set. The concentrations are scaled with respect to the concentration before 
the stimulus. Thus, the relative change in concentration is depicted. The abbreviations are explained in 
Table H-1. 
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Table 9–4: The parameters and elasticities for the reactions in the valine pathway for the whole cell 
model and for the small model of the valine / leucine pathway. The values for the whole cell model are 
take from the first of the 16 fitted parameter sets. This set is representative of the other 15 sets. 

 

  Small model Whole cell model 
Enzyme Metabolite Parameter value Elasticity Parameter value Elasticity 
AHAS Pyr 6.08 25.9 0.114 0.496 
 AcLac -4.35 -18.5 -0.0342 -0.149 
  Val -2.83 -12.1 -0.00972 -0.042 
AHAIR AcLac 34.7 148 0.0924 0.402 
 NADPH 0.00215 0.00917 0.00263 0.0114 
 DHIV -3.31 -14.1 0 0 
 NADP -2.59 -11 0 0 
  Val -53.5 -228 -0.0258 -0.112 
DHAD DHIV 26.1 111 0.0802 0.349 
 KIV -0.00319 -0.0136 -0.0454 -0.198 
  Val -62.8 -267 -0.00585 -0.0255 
BCAAT_Val KIV 3.82 16.4 0.0135 0.0613 
 Glut 1.40 6.01 0.0421 0.191 
 Val 0 0 -0.0564 -0.256 
 Ala 0.0283 0.122 0 0 
  AKG -0.00275 -0.0119 -0.109 -0.495 
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Figure 9–5: The cumulative frequency distribution of the absolute values of the elasticities in the 
whole cell model. The elasticities from the first of the 16 parameter sets are displayed. This set is 
representative of the other sets.  
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9.2.5 Stability analysis 

Stability analysis of linlog models   As described in section 4.2.6 the stability of a model can 
be assessed by calculating the eigenvalues of the Jacobi matrix. The format of the linlog rate 
equations makes the calculation of the Jacobi matrix straightforward for a linlog model. 
According to Eq. (4-6) the system of ODEs can be written as the stoichiometric matrix N 
multiplied by the vector of rate equations r: 
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where E* is the matrix of unscaled elasticities. When the linlog format in Eq. (4-9) is used the 
parameters are the semi scaled elasticities as demonstrated in Eq. (4-10). E* can therefore 
readily be set up by “unscaling” the parameters and J is calculated by using Eq. (9-17).  

The program In-Silico Discovery uses the linlog format and can print out the stoichiometric 
matrix as well as the parameter matrix, i.e. the matrix of semi-scaled elasticities. The Jacobian 
is therefore easily calculated (e.g. in Matlab) by using Eq. (9-17). The semi-scaled elasticities 
must be unscaled by dividing each elasticity with the respective steady state concentration. 
Thus E* is given by  
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where the first matrix on the right hand side is the semi-scaled elasticity matrix equal to the 
parameter matrix P and the second matrix on the right hand side is a diagonal matrix with 

01 ix  on the main diagonal and zeros everywhere else. Note that the second matrix is equal to 
the inverse of a matrix with just the 0

ix  on the main diagonal and zeros everywhere else. The 
Jacobian is therefore given by: 
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In Eq. (9-19) the parameter matrix must be written with the columns corresponding to the 
metabolites and the rows corresponding to the reaction rates. In-Silico Discovery prints out 
this matrix the other way around, i.e. with the columns corresponding to the reactions and the 
rows corresponding to the metabolites. The matrix from In-Silico Discovery must therefore be 
transposed before Eq. (9-19) can be used.  

The fact that the Jacobian is just the stoichiometric matrix times the unscaled elasticity 
matrix (according to Eq. (9-17)) has an important implication. If the stoichiometric matrix 
contains linearly dependent rows, the Jacobian will also have linearly dependent rows. The 
linear dependencies in the rows in N will be transferred to J so that J contains at least the 
same number of linear dependencies as N. A square matrix with linearly dependent rows will 
have as many zero eigenvalues as there are linear dependencies. Thus, it can be concluded 
that the Jacobian matrix will have at least as many zero eigenvalues as there are linearly 
dependent rows in N.  

Linear dependencies in the Jacobian matrix can also originate from the elasticity matrix. If 
the elasticity matrix contains linearly dependent columns the Jacobian matrix will also contain 
linearly dependent columns as can be seen by inspection of Eq. 9-17. In the presented model 
the glucose stimulus was simulated by including a glucose feed to the fermenter, which at 
time = 0 increased rapidly in the same way that happens for the real system (see section 3.2). 
The glucose feed is a predefined rate and is therefore not correlated to any of the metabolites 
in the model. The elasticities of the glucose feed rate with respect to the metabolite 
concentrations are therefore all equal to zero. In other words, the column in the elasticity 
matrix corresponding to the glucose feed rate contains only zero elements. A zero vector is 
linearly dependent to any other vector according to the definition of linear dependent vectors 
(see the textbook on linear algebra by Fraleigh and Beauregard, 1995), so the zero column in 
E* implies that one further linear dependency is added to J. Thus, the inclusion of the glucose 
feed in the model leads to one more zero eigenvalue in J. 

The important conclusion that can be drawn from the discussion in the preceding 
paragraphs is stated as follows: 

 

 
 

As stated in Section 4.2.6 a zero eigenvalue gives no conclusion on the stability of the 
model. It does not prove that the model is unstable, neither does it prove that it is stable. 

 
 
The stability of the developed model   A stability analysis of the 16 models was performed 
by calculating the eigenvalues of the Jacobian matrices for all parameter sets. The model is 
stable if, and only if, all the real parts of the eigenvalues are negative (Section 4.2.6). Zero 
eigenvalues give no conclusion on the stability. Table 9-5 summarises the eigenvalue 
calculations.  

It is seen in Table 9-5 that all 16 models have 7 zero eigenvalues. These result from the 6 
conserved moieties of the model (see Table 9-3), as well as the zero elasticities of the glucose 
feed as discussed above.  

 
 

 
 

A linlog model with a stoichiometric matrix containing linearly dependent rows or an 
elasticity matrix containing linearly dependent columns will have a Jacobian with one or 
more zero eigenvalues. 
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Table 9–5: The number of zero and positive eigenvalues of the model for the 16 parameter sets. The 
Jacobian has the dimension 129 × 129 and thus has 129 eigenvalues in total. 

 
Parameter set Zero eigenvalues Positive eigenvalues 

1 7 9 
2 7 6 
3 7 7 
4 7 11 
5 7 6 
6 7 6 
7 7 8 
8 7 8 
9 7 9 
10 7 9 
11 7 9 
12 7 7 
13 7 11 
14 7 11 
15 7 7 
16 7 7 

 
 
All parameter sets resulted in Jacobians with several positive eigenvalues. Thus none of the 

identified models were stable. The instability of the model made a sensitivity analysis 
impossible. Thus, it was not possible to calculate the parameter standard deviations. 
Furthermore, a metabolic control analysis could not be performed. The model could also not 
be used to predict the effects of changes in the enzyme levels.  

A feature of the model that might lead to instability is the presence of inner degrees of 
freedom. Inner degrees of freedom imply that there is no unique steady state solution for the 
reaction rates, that is, there is an infinite number of steady state solutions for the rates r. The 
lack of a uniquely defined steady state may lead to an unstable model, but does not strictly 
imply instability. A linlog model may be stable even if the steady state is not uniquely 
defined. This might seem like a contradiction, but is in fact a result of the format of the linlog 
rate equations. Since the r0 parameter in the linlog equation giving the steady state flux (see 
Eq. 4-9) is not multiplied with the concentration dependent terms, the steady state flux 
becomes independent of the dynamics of the system. 

 

9.2.6 Discussion of the whole cell modelling approach 

By developing a large dynamic model it was possible to simulate the entire metabolism of the 
investigated Corynebacterium glutamicum strain and its response to the glucose stimulus. 
Some important observations and conclusions regarding whole cell modelling in general were 
made.  

A large dynamic model needs an extensive amount of data to identify the model 
parameters. The least requirement is that there are more data points than parameters. 
Otherwise the parameters can not be identified, i.e. they will have infinite standard deviations 
and the model will not have any explanatory power nor will it be suitable for a metabolic 
control analysis. In the case presented here 1500 data points were used to determine 690 
parameters. From the 129 balanced metabolites 26 had been measured. Even if this is a fairly 
large data set, it was clear that more data was needed to determine the parameters accurately. 
It can be expected that measurements for at least the majority of the metabolites must be 
provided. Thus, the development of large metabolic models sets very high requirements on 
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the data that must be available for model identification. Although the field of metabolomics is 
developing fast, a limiting factor for whole cell modelling is still the availability of metabolite 
concentration data.  

The fitting of the parameters becomes an increasingly difficult task when the model 
becomes larger. From the 16 identified parameter sets, none had converged to the same 
optimum. The 16 different optima that were found were probably all local optima. This 
demonstrates how difficult it is to find the global optimum when the parameter search space is 
large. Furthermore, as noted in Section 9.2.4, the fit for KIV and valine was not satisfactory. 
This was clearly due to the parameter fitting since good fits could be found with the small 
model (Chapter 6).  

One way to decrease the parameter search space is to impose more constraints on the 
parameters. Implementing the thermodynamic constraint (Section 4.2.5) will already decrease 
the search space considerably and ease the search for the global optimum.  

Another strategy would be to set starting values which are believed to lie in the vicinity of 
the optimal parameter values before the fitting of the whole model is started. As described in 
Section 4.2.3 this can be done by dividing the model into part-models and fit the parameters 
of the part-models first. The fitted parameters for the part-models are then used as starting 
values to fit the parameters of the whole model.  

The evolutionary optimisation algorithm used for the parameter fitting is a global algorithm 
which also has the advantage that the computation can be run in parallel on several computers 
simultaneously. It is therefore well suited to fit the parameters of a whole cell model. 
However, there are also other global algorithms, such as the simulated annealing algorithm, 
which may give a higher probability of finding the global optimum. It should be noted that the 
simulated annealing algorithm is much slower than an evolutionary algorithm.  

While small models are seldom unstable, the stability of large models is not given, as was 
demonstrated for the whole cell model developed here. Stability is an important issue because 
only stable models can be used for metabolic engineering purposes such as metabolic control 
analysis or in-silico design. Based on the experience drawn from the development of the 
Corynebacterium glutamicum model it is recommended to reduce the number of linear 
dependencies in the stoichiometric matrix as much as possible to avoid the zero eigenvalues 
in the Jacobian matrix. In practise this would mean that the model should be set up without 
conserved moieties. The linear dependency resulting from the feed is more difficult to avoid.  

A further measure to avoid instability would be to define the model without inner degrees 
of freedom. However, this is controversial because the model would then be limited with 
respect to what reactions can be included. For instance, only one anaplerotic reaction could be 
included in the model. It has been demonstrated that several anaplerotic reactions are active 
simultaneously in Corynebacterium glutamicum (Petersen, 2000).  

One way to avoid the parameter sets leading to unstable models could be to include the 
stability of the model as a criterion in the parameter fitting. This would imply that the 
eigenvalues of the Jacobian are computed for every simulation run, which would increase the 
computation time. It would, however, decrease the parameter search space which would 
increase the probability of finding the global optimum.  

A well defined whole cell model has some advantages over a small model. A small model 
must necessarily define some metabolites as independent variables which means that the 
model can not capture all the interactions between the modelled pathway and the other 
reactions in the cell. As an example, the model of the valine / leucine pathway presented in 
Chapter 6 can analyse the influence of glutamate on the valine pathway, but can not analyse 
the influence of the valine pathway on the glutamate concentration. This puts some 
restrictions on the applicability of a small model for making predictions of changes in flux 
after a change in enzyme level. However, the development of a whole cell model is a 
complicated process and especially the availability of measurement data is a decisive factor. 
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With the rapid development of metabolomics it can be expected that well-defined whole cell 
models can be established in the future. The model presented here provides a proof of concept 
for the whole cell modelling approach for a Corynebacterium glutamicum strain.  
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10 Conclusion 
The main objective of the investigation was to analyse the dynamic behaviour of the 
intracellular reaction network in a Corynebacterium glutamicum strain. This objective was 
achieved by using different techniques from the areas of Metabolomics, Modelling and 
Simulation, Metabolic Control Analysis and Thermodynamic Analysis. The different methods 
build on each other and are part of an integrated study. 
 
Metabolomics   The measurements of the intracellular concentrations provided the 
experimental data which formed the basis of the further investigation. The experimental 
procedure was developed according to the guidelines that the experiment should be relevant to 
the production conditions, and that the stimulus should have a large impact on the intracellular 
concentrations. As it is impossible to predict the exact effect that a glucose stimulus will have 
on a culture, different procedures had to be tested. The optimal procedure within the context 
of the investigation was a batch fermentation with a time delay of 10 minutes between glucose 
depletion and glucose addition.  

The dynamic changes in the concentrations of 26 metabolites from the central metabolism 
and the valine / leucine pathway were monitored over a time interval of 35 seconds. Samples 
were taken every 440 milliseconds before and after the glucose stimulus. A very rapid 
response was seen in the metabolites in the glycolysis demonstrating the fast reaction kinetics 
in this pathway. In the valine / leucine pathway a mixture of effects was seen resulting from 
the interactions with the other metabolites in the network. It is the first time that the transient 
behaviour of the valine / leucine pathway has been observed.  

Some conclusions could be reached based on a direct interpretation of the measured 
concentration time series. Several authors have suggested the existence of a glucose permease 
in Corynebacterium glutamicum, but until now no proof of this has been presented. The 
measured time series of PEP (phosphoenolpyruvate) supports the permease theory. 
Furthermore, by using time series analysis, the unexpected response in the ketopantoate 
concentration could be analysed. It was demonstrated that ketopantoate is not formed from 
KIV by the ketopantoate-hydroxymethyl transferase enzyme, but through some other 
alternative pathway. It was also concluded that the time series analysis is useful only for small 
networks containing closely connected metabolites. For larger networks the method can not 
reach any conclusion with significant accuracy.  

The comparison of two different stimulus experiments demonstrated the difference in 
intracellular concentrations at different physiological states. At glucose limitation the 
concentrations of the metabolites in the glycolysis were lower than at exponential growth as a 
result of the lower activity of the glucose uptake system and the glycolysis. The AMP 
concentration was higher at glucose limitation signifying a lower energy level of the cell. The 
response in the PEP concentration to the stimulus at glucose limitation suggests that different 
mechanisms of glucose uptake are active at different physiological states.  
 
Modelling and Simulation   A dynamic model of the valine / leucine pathway was developed 
based on the intracellular concentration data. The model gives a quantitative description of the 
concentrations and fluxes in the cell. In this way the model explains the functionality of the 
pathway and the interactions between the metabolites can be analysed. The simulated 
concentrations fitted well with the measured data. The simulated fluxes changed very rapidly 
directly after the glucose stimulus which shows the strong impulse that the pathway had 
received and also the high responsiveness of the reactions in the pathway. Feedback inhibition 
by valine plays an important role in the regulation of the pathway, but a complete inhibition is 
not reached. 
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The model simulation demonstrated the fast dynamics of intracellular networks where 
reactions may obtain much larger rates than what can be achieved in an in vitro experiment. It 
can be concluded that there is a large difference between the in vivo enzyme properties and 
the enzyme properties determined in vitro. The limited validity of in vitro enzyme properties 
for in vivo investigations is an important fact that must be taken into consideration in the 
study of intracellular reactions. 

The development of the model further demonstrated that high elasticities are present under 
in vivo conditions. The only way to explain the measured concentrations was to allow high 
elasticities in the model. The identified large elasticities are another indication that in vivo 
reaction mechanisms are more complicated than what can be analysed by in vitro 
investigations or by theoretical considerations. 

Further methods for the general modelling of dynamic networks were developed. Most 
importantly it was demonstrated that including the second law of thermodynamics as a 
criterion in the fitting of the parameters is essential in order to establish realistic models and 
identify a unique parameter set. The thermodynamic criterion can be used to eliminate false 
models and may also provide further insight into the metabolism of the cell. Thus by using the 
themodynamic criterion Transaminase B was identified as the main enzyme in the 
transamination of ketoisovalerate to valine.  

It was further shown how the parameter standard deviations and the correlations can be 
calculated. The necessity of having a large data set in order to obtain accurate parameters was 
demonstrated. Calculating the parameter correlations enables the modeller to eliminate 
redundant parameters.  

The stability of a model must always be assessed since only stable models can be used for a 
metabolic control analysis.  
 
Metabolic Control Analysis    The control hierarchy in the valine / leucine pathway was 
evaluated by performing a complete metabolic control analysis. It was demonstrated how 
different methods, based either on the kinetic model or directly on the experimental data, can 
be employed to assess the control. The different methods were in general in good agreement 
and gave a clear picture of the control in the valine / leucine pathway.  

By comparing the steady state concentrations to the respective Michaelis-Menten and 
inhibition constants the enzyme state at the in-vivo conditions can be elucidated. A PEC 
analysis is also a completely data driven method and for the first time a PEC analysis was 
compared to a set of flux control coefficients. The similar conclusions reached with the two 
methods showed that even if the PEC analysis is approximate in nature it gives good 
indications of the degree of control. 

The flux control coefficients, which were calculated from the kinetic model, give the most 
detailed analysis of the control of the pathway. These are therefore the most important 
quantities to consider when the targets for further strain optimisation are identified. It was also 
shown how predictions of the change in valine flux following an alteration in enzyme level 
can be made, and how these predictions are important in the rational design of a production 
strain. In an optimisation study of the enzyme levels it was found that the flux through the 
valine pathway could theoretically be increased by 150 % with the optimal enzyme levels. 
The optimisation study was subject to certain constraints on the concentrations and enzyme 
levels.  

In the publications describing the theoretical framework of metabolic control analysis it is 
often emphasised that the control is normally distributed on several enzymes and that the idea 
of a bottleneck enzyme is seldom correct. The investigation presented here illustrates this 
point. The control was mainly distributed on the acetohydroxyacid synthase enzyme, the 
branched chain amino acid transaminase and the exporting translocase.  
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The calculation of the response coefficients demonstrated that the availability of pyruvate 
has substantial influence on the valine flux while the co-metabolites are less important.  

Based on the acquired understanding of metabolic control in the valine / leucine pathway 
clear targets for further strain optimisation were identified. This was one of the main 
objectives in the thesis. The identified targets are listed in Section 7.7. 
 
Thermodynamics   The introduction of the concept of the reaction resistance provides a new 
angle to the analysis of metabolic reaction networks. While metabolic flux is traditionally 
analysed by looking at metabolite concentrations and enzyme levels, the paradigm is now 
shifted to consider the thermodynamic driving force and the resistance to this force in analogy 
with Ohm’s law. The cell adjusts its reaction resistances in order to direct the flux as required 
by the cell’s need for biomass precursors. The thermodynamic theory presented in this work 
provides a new way of describing metabolic reaction networks quantitatively, as well as 
analysing its control and stability, and therefore constitutes an alternative to kinetic models. 
The fundamental difference is that the system is analysed in terms of its forces rather than its 
matter.   

At the steady state of the system large resistances were found in the leucine pathway as a 
result of the transcriptional regulation of the enzyme levels. The resistances in the valine 
pathway were smaller due to the overexpression of the enzymes in this pathway. As a result 
large fluxes were obtained in the valine pathway while the fluxes in the leucine pathway were 
comparatively small.  

The reversibility of the reactions can be elucidated by looking at the standard 
thermodynamic potentials and it was found that the first three reactions in the valine pathway 
and the first two reactions in the leucine pathway are essentially irreversible.  

It has been suggested in literature that there is a linear relationship between affinity and rate 
for enzyme catalysed reactions due to the reaction mechanism of enzymes. It was 
demonstrated here both by theoretical considerations and experimental measurements that this 
is not true for bi-bi reactions operating far from equilibrium. The majority of the reactions in 
the cell will fall within this category so it is concluded that a metabolic reaction network can 
not be analysed by assuming a linear relationship between affinity and rate. The reaction 
resistance must therefore be considered a system variable.  

The theoretical framework of Metabolic Control Analysis was extended to include also 
control coefficients for the thermodynamic properties affinity and resistance. The extended 
theory allows an investigation of the control and stability of reaction networks in terms of the 
thermodynamic forces. By considering the elasticities and control coefficients of the affinity 
and the resistance it was demonstrated that reactions operating far from equilibrium are 
controlled almost entirely through the changes in the resistances i.e. through the enzyme 
properties. In this case the enzyme properties, which were developed through evolution, 
provide the stability of the system. Reactions operating closer to equilibrium are also 
controlled through the affinity. For these reactions the linear relationship between rate and 
affinity will ensure stability. Metabolic reaction systems have a high degree of self-
organisation, i.e. when the system is perturbed by a change in a parameter it will have a strong 
tendency to return to a state close to the original one.  

The investigation of the thermodynamic forces in the valine / leucine pathway was based on 
the concentration measurements and the intracellular reaction rate obtained from the kinetic 
model.  
 
Alternative models   Two alternative modelling approaches were investigated. These 
included a mechanistic model of the valine / leucine pathway based on the enzyme 
mechanisms reported in literature and a whole cell model comprising the entire metabolism of 
Corynebacterium glutamicum.  
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The mechanistic model simulated the same reaction network as the linlog model that was 
presented as the main result for the modelling part in Chapter 6. It can be argued that a 
mechanistic model is in some regards more correct than a linlog model because the reaction 
kinetics are based on the mechanism at which the substrates, products and inhibitors bind to, 
and are released from, the enzyme. The parameters of a mechanistic model are the Michaelis-
Menten constants (Km) and inhibition constants (Ki), which are established concepts in 
enzymology. Although a mechanistic model will normally contain more parameters than the 
corresponding linlog model, an advantage of the mechanistic models is that Km and Ki values 
determined in vitro can often be found in literature, and these values can serve as starting 
values for the parameter fitting.  

The mechanistic model developed here was not capable of giving a satisfactory simulation 
of the measured concentrations of ketoisovalerate and valine. It was demonstrated that the 
structure of mechanistic rate equations implies a limitation in the elasticities that can be 
achieved with a mechanistic model. The elasticities will typically be limited to a value 
between 0 and 1. This was the reason why the model could not be fitted to the data. The 
measurement data, with rapidly changing intracellular concentrations, imply that the model 
must have much larger elasticities. Thus the measurement data were not compatible with the 
mechanistic equations. This is an import result because it raises the question whether or not 
the mechanistic equations, i.e. the Michaelis-Menten type of equations, are valid under in vivo 
conditions. From the investigation reported here it must be concluded that this is not so. The 
in vivo reactions have a more complex and flexible reaction mechanism than what can be 
described with the traditional Michaelis-Menten type of equations. This is one of the main 
conclusions in the presented work and is supported by results obtained in the other parts of the 
investigation as well. The metabolite concentrations reported in chapter 5 demonstrate that 
many metabolite time courses have a high second derivative which suggests that the 
elasticities of the reactions must be high. In chapter 6 large elasticities in the valine / leucine 
pathway was found by developing a linlog model. The development of the whole cell model 
in section 9.2 also demonstrated the need for large elasticities. As noted above, the large 
elasticities are not compatible with Michaelis Menten kinetics.   

A proof of concept for the whole-cell modelling approach was established by setting up a 
model of Corynebacterium glutamicum containing 136 reactions and 142 metabolites. It was 
demonstrated that the model could simulate the whole metabolic network of the cell. Until 
now, no whole cell dynamic models of any organism have been published. (The company 
Insilico Biotechnology has developed whole cell dynamic models, but these have not yet been 
published).  

Some general conclusions were reached regarding the whole cell modelling approach. A 
large data set with measurement data for at least the majority of the modelled concentrations 
must be used to identify the parameters. The availability of metabolome data is the limiting 
factor in the development of whole cell models. Furthermore, the model stability is a critical 
issue for whole cell models. A whole cell model should be defined without conserved 
moieties since these may make the model unstable. The identification of the model parameters 
is a complex task due to the large amount of parameters that must be fitted simultaneously, 
and finding the global optimum can be difficult.  The developed model could not reproduce 
the large metabolite pool due to the low elasticities that were fitted or the model. A parameter 
set with higher elasticities could have provided a better fit.  
 
Overall conclusion The presented thesis demonstrates how the techniques of 
Metabolomics, Modelling and Simulation, Metabolic Control Analysis and Thermodynamics 
can be integrated to provide a metabolic engineering study. The different methods were 
developed further and used to analyse the dynamic behaviour of the metabolic reaction 
network in Corynebacterium glutamicum. Special focus was set on the valine / leucine 
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pathway. The methods build on each other and provide an integrate study. The strategy of the 
investigation was to first observe the metabolism and set up a mathematical model describing 
the system, and then apply the methods of metabolic control analysis and non-equilibrium 
thermodynamics to interpret the observations and the model. The insight into the metabolism 
of the cell acquired in this way was used to identify specific targets for further strain 
optimisation. As such the investigation covered the whole analytical part of a metabolic 
engineering project.  

The investigation followed the holistic thinking of Systems Biology. The fundamental idea 
was to gain an understanding of how the reaction network operated as a system. The kinetic 
model captures the functionality of the modelled network and therefore makes it possible to 
analyse how the metabolites in the network interact. Metabolic Control Analysis and non-
equilibrium Thermodynamics are also methods which take a systemic approach and were 
used here to extract quantitative measures for the systemic properties from the model. The 
presented thesis therefore demonstrates the great usefulness of a kinetic model in Systems 
Biology.  

The most fundamental work in the investigation was the monitoring of the intracellular 
metabolite concentrations. All further analysis did ultimately build on this data. This 
highlights the importance of metabolomics. In order to investigate a metabolic reaction 
network it is essential to be able to observe the metabolic concentrations.  
 
Outlook At some point in the foreseeable future researchers will succeed in developing a 
mathematical model that integrates the genome, transcriptome, proteome and metabolome 
level in order to simulate a whole life cycle of a living cell. This will provide a new 
understanding of life and will have an enormous impact on research in medicine, plant science 
and industrial biotechnology. An important step in this direction is the development of a 
whole cell model at the metabolome level as presented here. With the rapid development of 
metabolomics, data sets large enough for the identification of such models will soon be 
available.  

In industrial biotechnology the modelling of bioreactors is important in deciding on the 
optimal feeding and harvesting strategy for large fermentation plants. The integration of a 
macrokinetic model with an in vivo kinetic model would provide much more detailed and 
reliable simulations of the bioreactor than what can be achieved with a traditional 
macrokinetic model. The in vivo kinetic models have been developed to a level that enables 
the creation of such a hybrid model. No such models have yet been published although these 
models have a great potential of optimising industrial scale bioreactors. 

Non-equilibrium thermodynamics remains an active field of research in physical chemistry 
and it can be expected that further progress will be made in this area. The fundamental nature 
of thermodynamics makes it an ideal theory to analyse the complex reaction network of the 
cell. The full theoretical potential of biothermodynamics applied to intracellular reaction 
networks has not been realised. The analysis of the rate of entropy production in cellular 
systems for example, could provide a new understanding of the control of such systems. The 
increasing availability of metabolome data will enable the theory to be used to analyse real 
systems.  
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Appendix A: Medium Composition 

 
Table A 1: Composition of the complex medium used for the first precultures 

 
 

Substance Concentration
Glucose.H2O 22 g/l

NaCl 2.5 g/l

Peptone 10 g/l

Yeast Extract 10 g/l

Kanamycin solution 1 ml/l  
 
 
 
Table A 2: Composition of the mineral medium used for the main fermentations  

 
 

Substance Concentration

glucose solution 4 g/l
(NH4)2SO4 20 g/l

Ureaa 2.5 g/l
KH2PO4 1 g/l

Na2HPO4*2H2O 1 g/l

MgSO4.7H2O 0.25 g/l

L-Isoleucine 0.14 g/l
CaCl2 stock 1 ml/l

protocatechuic acid 1 ml/l

trace elements I 1 ml/l

trace elements II 1 ml/l

D-Pantothenic acid 1 ml/l

biotin 0.85 ml/l

Kanamycin 1 ml/l

a Urea only used fo the second preculture  
 
 
Table A 3: Calciumchloride stock solution 

 
Substance Concentration
Cacl2*2H2O 10 g/l  
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Table A 4:  Protocatechuic Acid stock solution 

 
 

Substance Concentration

Protocatechuic acid 30 g/l

NaOH (1M) 100 ml/l  
 

 

Table A 5: Trace elements solution I 

 

 
Substance Concentration
FeSO4*7H2O 28.5 g/l

MnSO4*H2O 16.5 g/l
CuSO4*5H2O 0.7625 g/l
ZnSO4*7H2O 6.3 g/l
CoCl2*6H2O 0.13 g/l
NiCl2*6H2O 0.0425 g/l
Na2MoO4*2H2O 0.065 g/l
KAl(SO4)2*12H2O 0.028 g/l
Na2SeO3*5H2O 0.0193 g/l
H2SO4 2 ml/l  

 
 
Table A 6: Trace elements solution II 

 
 

Substance Concentration
H3BO3 0.05 g/l

SrCl2*7H2O 0.05 g/l

Ba2Cl*2H2O 0.05 g/l  
 
 

Table A 7: D-Pantotheate 

 
 

Substance Concentration

D-pantothenic acid 0.24 g/l  
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Table A 8: Biotin stock solution 

 
 

Substance Concentration

biotin 1 g/l  
 
 

Table A 9: Kanamycin stock solution 

 
 

Substance Concentration

Kanamycinsulphate 25 g/l  
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Appendix B: Synthesis of alpha acetolactate  

 
 
The synthesis is performed in a hermetically closed tube of 5 ml. The reaction volume is 4 ml. 
The reaction is: 
 

1 ethyl-2-acetoxy-2-methyl-acetolactate + 2 NaOH  1 α-acetolactate + 1 acetate + 1 ethanol 
 
 
The concentration of sodium hydroxide is 0.1 M (in 4 ml, 4.10-4 moles will be in solution). 
Nitrogen is sparged into the sodium hydroxide solution in order to eliminate oxygen. 40 mg of 
ethyl-2-acetoxy-2-methyl-acetolacte (corresponding to 1.98.10-4 moles) is dissolved in 4 ml 
deoxygenated NaOH. The solution is agitated continuously for 30 minutes at room 
temperature. During the reaction a nitrogen flux is maintained through the solution.  
 

 
 
All the ethyl 2 acetoxy 2 methylacetolactate is converted into alpha acetolactate. Due to the 
instability of this product, the solution has to be used immediately. However, when the 
solution is stored at –18°C, only 20% of the alpha acetolactate is degradated after about 50 
days. 

Ethanol and acetate do not interfer with the MS measurements. For this reason it was not 
necessary to purify the acetolactate. 
 

N2

ethyl acetoxy acetolacte
NaOH
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Appendix C: The data for the optimal stimulus experiment 

The glucose stimulus was added at time = 0.  The dots are the measurement points. The line is 
a smoothed representation of the data showing the trend of the time series. The Fast Fourier 
Transformation (FFT) algorithm was used to smooth the data (Origin, OriginLab, USA). 
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Figure C 1: The response to the glucose stimulus in the EMP pathway and in the nucleotides ATP, 
ADP and AMP.  
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Figure C 2: The response to the glucose stimulus in the valine and the leucine pathway.  
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Figure C 3: The response to the glucose stimulus in 6-phosphoglycerate, in the sum of the pentose-5-
phosphates (intermediates of the PPP pathway) and in the nucleotides NAD and NADP as well as in 
the amino acids isoleucine, alanine and glutamate and in -ketoglutarate.
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Appendix D: Source code for the time-lagged correlation analysis 

The time-lagged correlation method was implemented in a java program. The methods are 
written in the class CMC.java. The main class has the name CorrTest2.java. This class reads 
the metabolite time series from an ASCII file, sets the range of time-lags that are to be 
correlated and calls methods from CMC.java to compute the time-lagged correlation matrix. 
Finally a plot of the calculated correlations is generated using the open source JMat package. 
The source code for CMC.java and CorrTest2.java is given in the following. The JMat 
package can be downloaded from http://jmat.sourceforge.net.  
 
CMC.java: 
 
package mcorrelation; 
 
/** 
 * <p>Title: Metabolite Correlation</p> 
 * <p>Description: This class defines methods to calculate the covariance, 
 * pearsons correlation coefficient and the correlation matrix. 
 * In the correlation matrix method a time lag matrix is first set up 
 * containing the shifted time series as columns. 
 * The correlation coefficients are then calculated from these columns  
</p> 
 * <p>Copyright: Copyright (c) 2003 Jorgen Magnus</p> 
 * <p>Company: Forschungszentrum Juelich</p> 
 * @author Jorgen Magnus 
 * @version 1.0 
 */ 
 
import org.jmat.data.Matrix; 
 
public class CMC { 
 
  public static double Cov(double[] array1, double[] array2) throws 
IllegalArgumentException { 
    int length1 = array1.length; 
    int length2 = array2.length; 
    if (length1 != length2) throw new IllegalArgumentException("Vectors 
must have the same length"); 
 
    double mu1=0; 
    double mu2=0; 
    double cov=0; 
 
    // Calculate mean values 
    for (int i=0; i < length1; i++) { 
      mu1 += array1[i]; 
      mu2 += array2[i]; 
    } 
    mu1 = mu1 / length1; 
    mu2 = mu2 / length1; 
 
    // Calculate covariance 
    for (int i=0; i < length1; i++) { 
      cov += (array1[i] - mu1) * (array2[i] - mu2); 
    } 
      cov = cov / (length1-1); 
      return cov; 
  } 
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  // Pearsons correlation coefficient 
  public static double Correlation(double[] a1, double[] a2) { 
    return Cov(a1, a2)/(Math.sqrt(Cov(a1,a1)*Cov(a2,a2))); 
  } 
 
  // The time lag correlation matrix 
  public static Matrix R(Matrix M, int timestep) { 
    int rowdim = M.getRowDimension(); 
    int coldim = M.getColumnDimension(); 
    Matrix F = new Matrix(rowdim-Math.abs(timestep), 2*coldim); 
    Matrix R = new Matrix(coldim,coldim); 
 
    //Create the time shifted matrix 
    if ( timestep > 0 ) { 
      for (int i=0; i < rowdim-timestep; i++) { 
        for (int j=0; j < coldim; j++) { 
          F.set(i, 2 * j, M.get(i, j)); 
          F.set(i, 2 * j + 1, M.get(i + timestep,j)); 
        } 
      } 
    } 
    else { 
      for (int i = 0; i < rowdim + timestep; i++) { 
        for (int j = 0; j < coldim; j++) { 
          F.set(i, 2 * j, M.get(i - timestep, j)); 
          F.set(i, 2 * j + 1, M.get(i, j)); 
        } 
      } 
    } 
 
    //Create the correlation matrix 
      for (int i=0; i < coldim; i++) { 
        for (int j=0; j < coldim; j++) { 
          
R.set(i,j,Correlation(F.getColumnArrayCopy(2*i),F.getColumnArrayCopy(2*j+1)
)); 
        } 
      } 
    return R; 
  } 
  /** 
   * This method calculates the correlation matrix for time lags between 
   * taustart and tauend. The result is returned as a double[][][] where 
   * the first index is the time lag, i.e. RR[k][][] is the correlation 
matrix 
   * at the kth time step after taustart. RR[k][i][j] is the correlation 
   * coefficient between species i and j at the kth time step after 
taustart. 
   */ 
  public static double[][][] RR(Matrix M, int taustart, int tauend) throws 
IllegalArgumentException { 
    if (taustart >= tauend) throw new IllegalArgumentException("taustart 
must be smaller than tauend"); 
 
      double[][][] RR = new double[Math.abs(taustart) + tauend + 1][][]; 
      int afd = Math.abs(taustart) + tauend + 1; 
      System.out.println("Dimension of RR " + afd); 
      for (int i = taustart; i <= tauend; i++) { 
        RR[i + Math.abs(taustart)] = CMC.R(M,i).getArrayCopy(); 
      } 
     return RR; 
   } 
 } 
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CorrTest2.java: 
 
package mcorrelation; 
 
/** 
 * <p>Title: Metabolite Correlation</p> 
 * <p>Description: </p> 
 * <p>Copyright: Copyright (c) 2003 Jorgen Magnus</p> 
 * <p>Company: Forschungszentrum Juelich</p> 
 * @author Jorgen Magnus 
 * @version 1.0 
 */ 
 
import org.jmat.data.*; 
import org.jmat.io.gui.*; 
import javax.swing.JPanel; 
import java.io.File; 
 
 
public class CorrTest2 { 
 
  public static void main(String args[]) { 
 
  //Read file 
  /* The input file contains the metabolite time courses in columns. 
   The columns must be separated by spaces. 
   */ 
  Matrix A = Matrix.fromASCIIFile 
      (new File("C:/Dokumente und Einstellungen/magnus/Eigene 
Dateien/Splinedata/Pulse3/test190105_2.prn")); 
 
  //Calculate correlations 
  int taus = -400; 
  int taue = 400; 
  double[][][] Correl = CMC.RR(A,taus,taue); 
 
  //Display correlations 
  /* The plotted correlations at positive time lags are corr(refM, corrM) 
  where the reference metabolite refM gets its "tail" deleted 
  and the correlating metabolite has its "head" deleted ie it is moved tau 
  time lags to the left. Correl[][refM][] 
  */ 
  Plot2DPanel ppnew = new Plot2DPanel(); 
      for (int i = 0; i < 2; i++) { 
        Matrix MT = new Matrix(Math.abs(taus)+taue+1, 2); 
        for (int j = 0; j < Math.abs(taus)+taue+1; j++) { 
          MT.set(j,0,j+taus); 
          MT.set(j,1,Correl[j][0][i]); 
        } 
        ppnew.addPlot(MT, String.valueOf(i), "LINE"); 
      } 
      ppnew.setFixedBounds(0,taus,taue); 
      new FrameView(ppnew); 
      Matrix C = new Matrix(Correl[400]); 
      System.out.println(C.toString()); 
  } 
} 
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Appendix E: The complete parameter correlation matrix for the linlog model 

The matrix shows the correlations between the parameters for the different reactions and metabolites. The correlation matrix is symmetric with 
respect to its main diagonal.   
 
 
    AHAS     AHAIR         DHAD     BCAAT Val     
    Pyr AcLac Val AcLac NADPH DHIV NADP Val DHIV KIV Val KIV Glut Ala AKG 
AHAS Pyr 1               
 AcLac -0.97 1              
 Val 0.96 -0.99 1             
AHAIR AcLac 0.0017 0.059 -0.059 1                       
 NADPH 0.067 -0.067 0.055 0.45 1           
 DHIV -0.019 -0.036 0.040 -0.99 -0.48 1          
 NADP 0.093 -0.11 0.090 0.21 0.96 -0.26 1         
  Val 0.13 -0.11 0.10 0.55 0.44 -0.67 0.34 1               
DHAD DHIV 0.16 -0.0053 -0.011 0.25 -0.050 -0.19 -0.11 -0.14 1       
 KIV -0.19 0.22 -0.21 -0.20 -0.088 0.21 -0.022 -0.22 -0.31 1      
 Val -0.093 -0.055 0.078 -0.23 0.055 0.17 0.11 0.18 -0.98 0.22 1     
BCAAT Val KIV -0.21 0.15 -0.12 -0.19 0.026 0.17 0.078 0.054 -0.41 0.28 0.42 1       
 Glut 0.43 -0.49 0.55 -0.076 -0.070 0.063 -0.11 0.10 -0.16 -0.15 0.22 0.38 1   
 Ala 0.59 -0.62 0.68 -0.044 -0.031 0.045 -0.071 0.057 -0.040 -0.079 0.13 0.13 0.79 1  
  AKG -0.32 0.44 -0.50 0.24 -0.0097 -0.20 -0.027 -0.11 0.45 0.035 -0.50 -0.51 -0.83 -0.81 1 
Val Trans Val 0.56 -0.54 0.60 0.041 -0.073 -0.027 -0.12 0.038 0.060 0.0030 0.036 -0.074 0.44 0.84 -0.51 
 Leu -0.26 0.29 -0.32 0.076 0.033 -0.063 0.021 -0.094 0.22 0.016 -0.32 0.14 1.4E-05 -0.39 0.27 
IPMS KIV -0.0075 -0.035 0.033 -0.014 0.0049 -0.0011 0.0044 0.073 -0.14 -0.032 0.13 -0.15 0.13 -0.017 -0.017 
 IPM 0.0012 0.023 -0.022 0.041 0.0058 -0.032 0.0030 -0.028 0.086 0.049 -0.085 0.19 -0.13 0.022 -0.0093 
  Leu -0.022 0.021 0.0051 -0.0039 -0.0032 0.0021 0.0025 0.022 -0.0045 -0.029 0.027 -0.26 -0.18 0.059 0.017 
IPMDH IPM -0.014 0.0098 0.0031 -0.0026 0.0037 -4.3E-04 0.0072 0.021 -0.019 -0.017 0.030 -0.18 -0.11 0.020 0.022 
 KIC 0.013 -0.0096 -0.0024 0.0025 -0.0038 0.00041 -0.0071 -0.020 0.019 0.016 -0.029 0.17 0.10 -0.018 -0.022 
BCAAT Leu KIC 0.039 -0.063 0.056 0.0049 0.016 -0.016 0.012 0.062 -0.093 -0.024 0.091 -0.18 0.090 0.018 -0.036 
 Glut 0.022 -0.047 0.040 0.00094 0.015 -0.012 0.011 0.060 -0.094 -0.030 0.090 -0.18 0.078 0.0068 -0.031 
 Leu -0.017 0.028 -0.0027 0.0032 -0.0079 0.00025 -0.0032 -0.0032 0.042 -0.024 -0.020 -0.18 -0.19 0.050 0.043 
  AKG -0.060 0.076 -0.069 -0.014 -0.016 0.023 -0.0083 -0.055 0.065 0.045 -0.066 0.22 -0.077 -0.019 0.0011 
Leu Trans Leu -0.022 0.015 0.010 -0.0033 -0.0017 -0.0012 0.0031 0.036 -0.025 -0.043 0.046 -0.33 -0.17 0.058 0.020 
  Val -0.0028 0.020 -0.011 0.013 -0.0012 -0.0041 0.0014 -0.030 0.058 0.074 -0.048 0.37 -0.038 0.019 -0.040 



 
     Val Trans IPMS     IPMDH   BCAAT Leu     Leu Trans 

    Val Leu KIV IPM Leu IPM KIC KIC Glut Leu AKG Leu Val 
Val Trans Val 1             
 Leu -0.73 1            
IPMS KIV -0.060 0.028 1                     
 IPM 0.048 -0.014 -0.93 1          
  Leu 0.13 -0.23 -0.21 0.0053 1                 
IPMDH IPM 0.059 -0.13 -0.29 0.19 0.54 1        
 KIC -0.055 0.12 0.29 -0.20 -0.51 -0.999 1       
BCAAT Leu KIC -0.083 0.067 0.52 -0.46 -0.11 -0.11 0.11 1           
 Glut -0.096 0.070 0.55 -0.51 -0.084 -0.11 0.10 0.98 1     
 Leu 0.16 -0.23 -0.39 0.20 0.89 0.51 -0.48 -0.51 -0.50 1    
  AKG 0.067 -0.064 -0.51 0.47 0.077 0.096 -0.093 -0.97 -0.95 0.44 1     
Leu Trans Leu 0.13 -0.25 -0.049 -0.15 0.98 0.55 -0.52 -0.0075 0.023 0.84 -0.022 1   
  Val 0.011 0.093 -0.72 0.79 -0.034 -0.15 0.15 -0.45 -0.50 0.16 0.47 -0.22 1 
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Appendix F: The source code of the spline program JMSpline. 

 
The class Spline01.java contains the main method. This class opens a panel using the 
Plot2DPanel.java class from the JMat package where the concentration data are plotted. The 
panel contains a toolbar which has been extended to also include three new text fields where 
the path to the ASCII file containing the concentration data, the spline degree and the 
smoothing factor can be specified. A button to remove splines from the plot was also 
included. The toolbar was extended by making additions to the JMat class PlotToolBar.java.  
When the user presses enter in one of the text fields, the program calls the method addSpline() 
which is written into the PlotPanel.java class contained in the JMat package. The method 
addSpline() reads the ASCII file containing the concentration data, as well as the contents of 
the text fields on the tool bar, and calculates a spline by using the JSpline++ library. The spline 
is plotted in the panel and the spline coefficients are printed out on XML format. The source 
code for Spline01.java and for the method addSpline() as well as the additions to 
PlotToolBar.java are given below:  
 
Spline01.java : 
 
package org.jmat.test; 
 
/** 
 * <p>Title: <JMSpline/p> 
 * <p>Description: </p> 
 * <p>Copyright: Copyright (c) 2003 Jorgen Magnus 
 * <p>Company: Forschungszentrum Juelich 
 * @Jorgen Magnus 
 * @version 1.0 
 */ 
import java.io.File; 
 
import org.jmat.data.Matrix; 
import org.jmat.io.gui.Plot2DPanel; 
import org.jmat.io.gui.FrameView; 
 
public class Spline01 { 
  String filename; 
  Plot2DPanel p2Dp; 
 
  public Spline01(String filename) { 
    Matrix A = Matrix.fromASCIIFile(new File(filename)); 
    Matrix Data = A.getColumns(0,1); 
    p2Dp = new Plot2DPanel(Data, filename , "SCATTER"); 
    p2Dp.setFixedBounds(0,-5,30); 
    p2Dp.setFixedBounds(1, Data.getColumn(1).min().toDouble(),  
      Data.getColumn(1).max().toDouble()); 
    new FrameView(filename, p2Dp); 
    p2Dp.setName(filename); 
  } 
 
  public static void main(String args[]) { 
    new Spline01("C:/Dokumente und Einstellungen/magnus/ 

Eigene Dateien/Splinedata/Puls2/Puls2Glut.prn"); 
  } 
} 
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                  The method addSpline() as implemented in PlotPanel.java: 
 
 
        //Method add spline to plot 
        public void addSpline() throws CalculatingException { 
 
        // get input from textfields 
        int degree = Integer.parseInt(toolBar.splinedegree.getText()); 
        double smoothpara =  
      Double.parseDouble(toolBar.smoothingparameter.getText()); 
        String theWeights = toolBar.weightsfile.getText(); 
 
        //Get the data values and the weights 
        Plot plt = (Plot) plots.get(0); 
        double[] themesh = plt.getDatas().getColumnArrayCopy(0); 
        double[] thedata = plt.getDatas().getColumnArrayCopy(1); 
        double[] weights = Matrix.fromASCIIFile(new  
        File(theWeights)).getColumnArrayCopy(2); 
 
        //Create the spline 
        Spline spl; 
        int order; 
        if((degree%2) == 0) { 
          spl = PEvenSplineCreator.createSpline(1+degree/2, themesh, 

 thedata,smoothpara, weights); 
        } 
        else { spl = POddSplineCreator.createSpline((1+degree)/2, themesh, 

 thedata,smoothpara, weights); } 
 
        //Print out spline coefficients (SF is the scaling factor) 
        int numberofcoeff = spl.vector().length; 
        double SF = (themesh[themesh.length-1]-themesh[0])/(themesh.length-1); 
        System.out.println("SF " + SF); 
 
        System.out.println("coefficients on the form p(x)=a0 + a1(x-x0) +  

a2(x-x0)^2 ..."); 
 
        System.out.println("<spline name=\"spline\" t0=\"" + themesh[0] + "\">"); 
 
        for (int i=0; i < themesh.length-1; i++) { 
          System.out.println("<break degree=\"" + degree + "\" tr=\"" +  
          themesh[i+1] + "\">"); 
          for (int j=0; j<degree + 1; j++) { 
            System.out.println("<coef c=\"" + j + "\" value=\"" +  
   spl.vector().get(j+(degree+1)*i)/Math.pow(SF,(j+(degree+1)*i)% 

( degree+1)) + "\"/>"); 
          } 
          System.out.println("</break>"); 
          //System.out.println(i + ": " + spl.vector().get(i)/(Math.pow(SF,i%3))); 
        } 
        System.out.println("</spline>"); 
 
        int numberofvalues = 120; 
        double startpoint = themesh[0]; 
        double endpoint = themesh[themesh.length-1]; 
        double stepsize = (endpoint-startpoint)/(numberofvalues-1); 
 
        Matrix splinevalues = new Matrix(numberofvalues,2); 
 
        // The spline values are set in a matrix 
        for (int i=0; i < numberofvalues; i++) { 
          splinevalues.set(i,0,startpoint + stepsize*i); // Set x values 
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          splinevalues.set(i,1,spl.value(startpoint + stepsize*i));  //set y values 
        } 
 
        Matrix Data = plt.getDatas(); 
        this.addPlot(splinevalues, "The Spline","LINE"); 
        this.setFixedBounds(0,-5,30); 
        this.setFixedBounds(1, Data.getColumn(1).min().toDouble() ,  
        Data.getColumn(1).max().toDouble()); 
 
        //Calculate the average before pulse: 
        double sum = 0; 
        int index = 0; 
        for(int i = 0; i < Data.getRowDimension(); i++) { 
          if (Data.get(i,0) <= 0) { 
            sum += Data.get(i,1); 
          } 
          else { 
            index = i; 
            break; 
          } 
        } 
        double average = sum/index; 
        System.out.println("Average: " + average); 
        System.out.println("Data points before pulse: " + index); 

 
 

                Additions to PlotToolBar.java 
 
 
        protected JButton buttonRemove;   
        public TextField smoothingparameter = new TextField("0.2", 6 ); 
        public TextField splinedegree = new TextField("2", 4); 
        public TextField weightsfile = new TextField( " " , 40); 
        protected Label smoothlabel = new Label("Smooth:"); 
        protected Label weightslabel = new Label("Data:"); 
        protected Label splinedegreelabel = new Label("Degree:"); 
 
        buttonRemove = new JButton("Rem");    
        buttonRemove.setToolTipText("Remove old spline");  
 
        buttonRemove.addActionListener(new ActionListener() { 
         public void actionPerformed(ActionEvent e) { 
           plotPanel.removePlot(1);                                 
          } 
        }); 
 
        smoothingparameter.addActionListener(new ActionListener() { 
         public void actionPerformed(ActionEvent e)  { 
           try { 
             plotPanel.addSpline(); 
           } 
           catch (ru.sscc.util.CalculatingException e1)      
                  {e1.printStackTrace();            
               } 
           } 
         }); 
 
         splinedegree.addActionListener(new ActionListener(){ 
          public void actionPerformed(ActionEvent e) { 
            try { 
              plotPanel.addSpline(); 
            } 
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            catch (ru.sscc.util.CalculatingException e1) {e1.printStackTrace();   } 
                 } 
          }); 
 
         weightsfile.addActionListener(new ActionListener() { 
             public void actionPerformed(ActionEvent e) { 
               weightsfile.setText(plotPanel.getName());       
                 } 
          }); 

 
  add(buttonRemove, null); 
  add(splinedegreelabel); 
  add(splinedegree); 
  add(smoothlabel); 
  add(smoothingparameter); 
  add(weightslabel); 
  add(weightsfile); 
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Appendix G: Stability Analysis of Dynamic Models 

 
In the following the condition for the stability of a steady state of a dynamic model is obtained 
using Lyapunov’s stability criterion (Kondepudi and Prigogine, 1998) and linear stability 
analysis. In order to do this the concepts of eigenvectors and eigenvalues of a square matrix 
are needed so a brief introduction to these concepts is given first.  
 
Eigenvectors and eigenvalues of square matrices   Eigenvectors and eigenvalues are 
defined as follows:  
 
Definition: Eigenvalues and eigenvectors 

 
 
The eigenvalues and eigenvectors have the following useful property (Fraleigh and 
Beauregard, 1995): 
 
Theorem: Matrix summary of eigenvalues of A  

 
 
The theorem above is easily proved by using the definition of eigenvalues and eigenvectors.  

If the matrix C is invertible it can be used to diagonalise A, i.e.: 
 

C-1AC = D          ( G-1 )  
 
Conversely, also provided that C is invertible: 
 

A = CDC-1          ( G-2 ) 

 
C will be invertible if and only if A has n independent eigenvectors. 
 
Linear stability analysis and Lyapunov’s criterion for stability   Consider a system of 
differential equations as defined in Eq. (4-5). Suppose the system has a steady state given by: 
 

Let A be an n × n matrix. A scalar λ is an eigenvalue of A if there is a nonzero column 
vector v in n-space such that Av = λv. The vector v is then an eigenvector of A 
corresponding to λ. 

Let A be an n × n matrix and let λ1, λ2, . . . , λn be (possibly complex) scalars and v1, v2, 
. . . , vn be nonzero vectors in n-space. Let C be the n × n matrix having vj as jth column 
vector, and let D be the diagonal matrix with λ1, λ2, . . , λn on its main diagonal and 
zeros everywhere else 
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Then AC = CD if and only if λ1, λ2, . . .  , λn are eigenvalues of A and vj is an 
eigenvector of A corresponding to λj for j = 1, 2, . . . , n.  
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d
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t
         ( G-3 ) 

 
where the superscript 0 refers to the steady state concentration values. When analysing the 
steady state the independent metabolite concentrations, c0, are considered to stay constant so 
they can be included in the parameter vector. An extended parameter vector [ ]pcp 0# =  is 
therefore defined so that Eq. (G-3) can be written as: 
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         ( G-4 ) 

 
The stability of this steady state is analysed by looking at what happens after a small 

perturbation δx. A positive function L(δx) is defined in the space spanned by x. L(δx) can be 
thought of as a distance between the perturbed and the steady state and is referred to as the 
Lyapunov function. If this distance between the steady state x0 and the perturbed state (x0 + 
δx) decreases steadily with time after the perturbation the steady state is stable. Lyapunov’s 
criterion for stability therefore becomes: 

( ) 0>xδL   
( ) 0<
dt

dL xδ
       ( G-5 ) 

 
Suppose now that the stationary state x0 is perturbed by δx = ξ. The metabolite 

concentrations will then be given by: 
 

( )tξxx += 0           ( G-6 ) 

 
The time evolution of metabolite xi is given by: 
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By doing a Taylor expansion of fi around xi

0  fi can be expressed as: 
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The subscript 0 on the partial derivatives indicates that they are evaluated at the stationary 
state x0. The higher order terms in the Taylor polynomial can be neglected since ξ is small 
and one therefore only needs to consider the linear terms (hence linear stability analysis). If 
the relation 
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is used Eq. (G-7) and (G-8) can be combined to get 
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Since by definition 
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Eq. (G-10) reduces to 
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Thus ξi(t) can be expressed as a linear combination of partial derivatives of f. Eq. (G-12) 
written in matrix notation for all ξi  becomes: 

 

Jξξ
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td
d

          ( G-13 ) 

 
J is the matrix of partial derivatives of f often referred to as the Jacobian: 
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where the partial derivatives are evaluated at x0.  

If the eigenvectors of J are independent Eq. (G-2) can be used to obtain a general solution 
of Eq. (G-13). The m × m matrix J has m eigenvalues and eigenvectors. Let D be the diagonal 
matrix of the eigenvalues of J: 
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and C be the matrix made up of the eigenvectors v of J where vj is the jth column in C.  
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According to Eq. (G-2) J can be expressed as: 
 

J = CDC-1          ( G-17 ) 

 
Substituting for J in Eq. (G-13) the differential of ξ becomes: 
 

ξCDCξ 1

d
d −=

t
          ( G-18 ) 

 
Define now a dummy variable 
 

y = C-1ξ          ( G-19 ) 

so that Eq. (G-18) can be written as  
 

Dyy
=

td
d

          ( G-20 ) 

 
Since D is a diagonal matrix the system of differential equations in Eq. (G-20) can be readily 
solved. For each yi one gets: 
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          ( G-21 ) 

 
which has the general solution: 
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where ki is a scalar. In vector notation for all yi: 
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ξ can now be substituted back in again using Eq. (G-19) to get the general solution of Eq. (G-
13): 
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Cξ          ( G-24 ) 

 
With the general solution for the time evolution of the perturbation ξ, a conclusion on the 

stability of the steady state can now be arrived at. According to Lyapunov’s theory the 
stability depends on whether the perturbation ξ will grow or decay with time. It is seen from 
Eq. (G-24) that the only time dependent terms are the exponentials. Thus the stability of the 
system depends only on the eigenvalues of the Jacobian matrix. If one or more of the 
eigenvalues have a positive real part the associated solutions will grow exponentially. The 
stability criterion can therefore be formulated as: 
 
Theorem: Stability criterion 

 
 
 
 
 

A steady state is stable if, and only if, the eigenvalues of the associated Jacobian matrix 
all have negative real parts. 
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Appendix H: The compounds and reactions in the whole cell model.  

Table H 1: The compounds in the whole cell model  

 
Identifier Name Formula Charge 
   
6pg 6-phospho-gluconate C[6]H[10]O[10]P[1] -3
acbut Acetohydroxybutyrate C[6]H[9]O[4] -1
accoa acetyl-CoA C[23]H[34]N[7]O[17] 

P[3]S[1] 
-4

ace acetate C[2]O[2]H[3] -1
aclac Acetolactate C[5]H[7]O[4] -1
adp adenosindiphosphate C[10]H[12]N[5]O[10]P[2] -3
aicar 5-Aminoimidazole-4-carboxamide ribonucleotide C[9]H[13]O[8]N[4]P[1] -2
akg alpha-ketoglutarate C[5]O[5]H[4] -2
ala L-alanine C[3]H[7]N[1]O[2] 0
amp adenosinmonophosphate C[10]H[12]N[5]O[7]P[1] -2
arg arginine C[6]H[15]N[4]O[2] 1
asn asparagine C[4]H[8]N[2]O[3] 0
asp aspartate C[4]H[6]N[1]O[4] -1
aspsa Aspartate semialdehyde C[4]H[7]N[1]O[3] 0
atp adenosintriphosphate C[10]H[12]N[5]O[13]P[3] -4
bio Biomass C[9590.53680824213] 

H[15496.50636610780] 
O[3580.39201453707] 
N[2211.84326906904] 
P[90.68820910037] 
S[5.07201817275] 

-134. 29
124052

carbp carbamoylphosphate N[1]H[2]C[1]O[5]P[1] -2
cdp cytidein-5-diphosphate C[9]H[12]N[3]O[11]P[2] -3
chor chorismate C[10]O[6]H[8] -2
cit citrate C[6]O[7]H[5] -3
citrul Citrulline C[6]H[13]N[3]O[3] 0
cmp cytidein-5-monophosphate C[9]H[12]N[3]O[8]P[1] -2
co2 carbon dioxide C[1]O[2] 0
coa coenzyme A C[21]H[32]N[7]O[16] 

P[3]S[1] 
-4

ctp cytidein-5-triphosphate C[9]H[12]N[3]O[14]P[3] -4
cys cysteine C[3]H[7]N[1]O[2]S[1] 0
dala D-alanine C[3]H[7]N[1]O[2] 0
dapim diaminopimelate C[7]H[14]N[2]O[4] 0
datp deoxy-adenosintriphosphate C[10]H[12]N[5]O[3]P[3] 

O[9] 
-4

dctp deoxy-cytidein-5-triphosphate C[9]H[12]N[3]O[13]P[3] -4
dgtp deoxy-guanosin-5-triphosphate C[10]H[12]N[5]O[13]P[3] -4
dhapgap Sum glycerinaldehyd-3-phosphate and 

dihydroxyacetonephosphate 
C[3]H[5]O[3]P[1]O[3] -2

dhiv Dihydroxyisovalerate C[5]H[9]O[4] -1
dhmv Dihydroxymethylvalerate C[6]H[11]O[4] -1
dna dna segment with 100.2 bases C[976.6]H[1126.9]N[376.1]

O[601.2]P[100.2] 
-100.2

dttp deoxy-thymidin-5-triphosphate C[10]H[13]N[2]O[14]P[3] -4
e4p erythrose 4-Phosphate C[4]H[7]O[3]P[1]O[4] -2
fa140 fatty acid C14, 0 double bonds C[14]H[27]O[2] -1
fa150 fatty acid C15, 0 double bonds C[15]H[29]O[2] -1
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Identifier Name Formula Charge 
   
fa160 fatty acid C16, 0 double bonds C[16]H[31]O[2] -1
fa170 fatty acid C17, 0 double bonds C[17]H[33]O[2] -1
fa180 fatty acid C18, 0 double bonds C[18]H[35]O[2] -1
fa181 fatty acid C18, 1 double bond C[18]H[33]O[2] -1
fad flavin-adenine-dinucleotide, (oxidised C[27]H[31]N[9]O[15]P[2] -2
fadh2 flavin-adenine-dinucleotide (reduced) C[27]H[33]N[9]O[15]P[2] -2
fbp fructose-1,6-bisphosphate C[6]O[6]H[10]P[2]O[6] -4
fmeth N-Formylmethionine C[6]H[10]N[1]O[3]S[1] -1
fum fumarate C[4]H[2]O[4] -2
fythf N-10 formyltetrahydrofolate C[20]H[23]N[7]O[7] 0
g32p Sum 3-phosphoglycerate and 2-phosphoglycerate C[3]H[4]O[7]P[1] -3
g6pf6p Sum glucose-6-phosphate and fructose-6-

phosphate 
C[6]O[6]H[11]P[1]O[3] -2

gdp guanosin-5-diphosphate C[10]H[12]N[5]O[11]P[2] -3
glc glucose C[6]O[6]H[12] 0
gluc Gluconate C[6]H[11]O[7] -1
gluclac D-Glucono-1,5-lactone C[6]H[10]O[6] 0
glum glutamine C[5]H[10]N[2]O[3] 0
glut glutamate C[5]H[8]N[1]O[4] -1
glx glyoxylate C[2]H[1]O[3] -1
gly glycine C[2]H[5]N[1]O[2] 0
glyc3p glycerol-3-phosphate C[3]O[6]H[7]P[1] -2
gmp guanosin-5-monophosphate C[10]H[12]N[5]O[8]P[1] -2
gtp guanosin-5-triphosphate C[10]H[12]N[5]O[14]P[3] -4
h Proton H[1] 1
h2o water H[2]O[1] 0
h2s Hydrogen disulfide H[2]S[1] 0
his histidine C[6]H[9]N[3]O[2] 0
hser homoserine C[4]H[9]N[1]O[3] 0
idp inosin-5-diphosphate C[10]H[11]N[4]O[11]P[2] -3
imp inosin-5-monophosphate C[10]H[11]N[4]O[8]P[1] -2
ipm Isopropylmalate C[7]H[10]O[5] -2
isocit iso-citrate C[6]O[7]H[5] -3
isoleu isoleucine C[6]H[13]N[1]O[2] 0
itp inosin-5-triphosphate C[10]H[11]N[4]O[14]P[3] -4
kbut Ketobutyrate C[4]H[5]O[3] -1
kic Ketoisocaproate C[6]H[9]O[3] -1
kiv Ketoisovalerate C[5]H[7]O[3] -1
kmv Ketomethylvalerate C[6]H[9]O[3] -1
leu leucine C[6]H[13]N[1]O[2] 0
lys lysine C[6]H[15]N[2]O[2] 1
mal malate C[4]O[5]H[4] -2
meth methionine C[5]H[11]N[1]O[2]S[1] 0
methf 5,10-Methylenetetrahydrofolate C[20]H[23]N[7]O[6] 0
mythf methyltetrahydrofolate C[20]H[25]N[7]O[6] 0
nad nicotinamide adenine dinucleotide (oxidized) C[21]H[26]N[7]O[14]P[2] -1
nadh nicotinamide adenine dinucleotide (reduced) C[21]H[27]N[7]O[14]P[2] -2
nadp nicotinamide adenine dinucleotide phosphate 

(oxidized) 
C[21]H[25]N[7]O[17] 
P[3] 

-3

nadph nicotinamide adenine dinucleotide phosphate 
(reduced) 

C[21]H[26]N[7]O[17]P[3] -4

nh4 ammonium N[1]H[4] 1
o2 oxygen O[2] 0
oac oxalacetate C[4]H[2]O[5] -2
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Identifier Name Formula Charge 
   
orn ornithine C[5]H[12]N[2]O[2] 0
p phosphate (orthophosphate) H[1]O[4]P[1] -2
p5p Pentose-5-phosphate (sum of rib5p, ribu5p and 

xyl5p) 
C[5]H[9]O[8]P[1] -2

pep phosphoenolpyruvate C[3]H[2]O[6]P[1] -3
pg13 1,3-diphosphoglycerate C[3]H[4]O[10]P[2] -4
pglycanunit Peptidoglycan unit C[37]H[57]N[7]O[19] 0
phe phenylalanine C[9]H[11]N[1]O[2] 0
pid Phosphatidate C[37.14]O[8]H[69.16]P[1] -2
piea Phosphatidylethanolamine C[39.14]O[8]H[76.16] 

P[1]N[1] 
0

pp diphosphate (pyrophosphate) O[7]P[2] -4
prep Prephenate C[10]O[6]H[8] -2
pro proline C[5]H[9]N[1]O[2] 0
protein Average protein 350 AA C[1593.03318] 

H[2511.34493] 
N[471.58501] 
O[559.26228]S[1.47327] 

-25.59

prpp 5-Phospho-alpha-D-ribose 1-diphosphate C[5]H[8]O[14]P[3] -5
pyr pyruvate C[3]H[3]O[3] -1
rna rna segment with 630 bases C[6038]H[6795]N[2490] 

O[4382]P[630] 
-631

s7p sedoheptulose-7-phosphate C[7]O[10]H[13]P[1] -2
ser serine C[3]H[7]N[1]O[3] 0
so4 sulphate S[1]O[4] -2
suc succinate C[4]O[4]H[4] -2
succoa succinyl CoA C[25]H[35]O[19]N[7] 

P[3]S[1] 
-5

thf tetrahydofolate C[19]H[23]N[7]O[6] 0
thr threonine C[4]H[9]N[1]O[3] 0
trp tryptophan C[11]H[12]N[2]O[2] 0
tyr tyrosine C[9]H[11]N[1]O[3] 0
udp uridin-5-diphosphate C[9]H[11]N[2]O[12]P[2] -3
udpnag UDP-N-acylglucosamine C[17]H[25]N[3]O[17]P[2] -2
udpnapen UDP-N-acetylmuramylpentapeptide C[41]H[63]N[9]O[28]P[2] -2
ump uridin-5-monophophate C[9]H[11]N[2]O[9]P[1] -2
utp uridin-5-triphophate C[9]H[11]N[2]O[15]P[3] -4
val valine C[5]H[11]N[1]O[2] 0
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Table H 2: The reactions in the whole cell model. In the transport reactions the compounds have been 
given a suffix “f” or “c” for fermenter and cytosol respectively in order to differentiate between extra- 
and intracellular compounds. All other reactions occur in the cytosol so in these reactions all 
compounds are intracellular.  

 
Transport      
      
Name  Short name EC Reaction Inhibition Activation 
Phosphotransferase 
system 

 pts   glc_f + pep_c => g6pf6p_c + 
pyr_c 

g6pf6p_c  

Glucose permease  glcperm   glc_f = glc_c   
Isoleucine transport  isoleuT   isoleu_f + 1/3*atp_c + 

1/3*h2o_c => isoleu_c + 
1/3*adp_c + 1/3*p_c +1/3*h_c 

  

Oxygen transport  o2T   o2_f => o2_c   
 O4 transport  so4T   so4_f + atp_c + h2o_c = so4_c 

+ adp_c + p_c + h_c 
  

  pT   p_f + atp_c + h2o_c = 2*p_c + 
adp_c + h_c 

  

CO2 transport  co2T   co2_c => co2_f   
Leucine Transport  leuT   leu_c + 1/3*atp_c + 1/3*h2o_c 

=> leu_f + 1/3*adp_c + 1/3*p_c 
+ 1/3*h_c 

isoleu_c, 
val_c 

 

Alanine transport  alaT   ala_c + 1/3*atp_c + 1/3*h2o_c 
=> ala_f + 1/3*adp_c + 1/3*p_c 
+ 1/3*h_c 

  

Valine transport  ValT   val_c + 1/3*atp_c + 1/3*h2o_c 
=> val_f + 1/3*adp_c + 1/3*p_c 
+ 1/3*h_c 

isoleu_c, 
leu_c 

  

      
Glycolysis      
      
Name  Short name EC Reaction Inhibition Activation 
Phosphofructokinase  pfk  g6pf6p + atp = adp + fbp + h atp, pep, 

6pg 
amp, 
g6pf6p, adp 

Fructose 1-6 
bisphosphate aldolase 

 ald  fbp = 2*dhapgap dhapgap g32p, pep, 
isocit 

Glyceraldehyde-3-
phosphate 
dehydrogenase 

 gapdh  dhapgap + p + nad = pg13 + 
nadh + h 

  

Phosphoglycerate kinase  pgk  pg13 + adp = g32p +atp  g32p, atp 
Enolase  eno  g32p = pep + h2o   
Pyruvate kinase  pk  pep + adp + h = pyr + atp atp, 

accoa, 
succoa 

amp, fbp 

Pyruvate dehydrogenase  pyrdh  pyr + nad + coa = accoa + nadh 
+ co2 

pyr, oac, 
glx, kiv, 
kic, kbut, 
kmv 

 

Glucokinase  glck 2.7.1.2 atp + glc => adp + g6pf6p + h g6pf6p   
      
Pentose phosphate pathway     
      
Name  Short name EC Reaction Inhibition Activation 
Glucose-6-phosphate 
dehydrogenase 

 g6pdh  g6pf6p +nadp +h2o = 6pg + 
nadph +2*h 

atp, nadh, 
nadph 
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6-phospogluconate 
dehydrogenase 

 6pgdh  6pg + nadp => p5p + co2 + 
nadph 

p5p, 
dhapgap, 
fbp, atp, 
e4p, 
nadph 

 

Transketolase 1  tk1  2*p5p =s7p + dhapgap   
Transaldolase  tald  dhapgap + s7p = e4p + g6pf6p   
Transketolase 2  tk2  p5p + e4p = g6pf6p + dhapgap   
glucose 1-dehydrogenase  glcdh2 1.1.1.47 glc + nadp => gluclac + nadph + 

h 
  

Gluconolactonase  gluclactonase 3.1.1.17 gluclac + h2o = gluc + h   
Gluconokinase  gluck 3.1.1.12 gluc + atp => 6pg + adp + h     
      
TCA cycle and the glyoxylate shunt     
      
Name  Short name EC Reaction Inhibition Activation 
      
citrate synthase  citsynth 2.3.3.1 accoa + h2o + oac => cit + coa 

+ h 
atp, nadh, 
cit, akg 

 

Aconitase  ace 4.2.1.3 cit = isocit nad, oac accoa 
Isocitrate dehydrogenase  isocitdh 1.1.1.42 isocit + nadp => akg + co2 + 

nadph 
oac  

alpha ketoglutarate 
dehydrogenase 

 akgdh 1.2.4.2, 
2.3.1.61 

akg + coa + nad => succoa + 
nadh + co2 

  

Succinate thiokinase  suctk 6.2.1.5 succoa + p + adp = suc + coa + 
atp 

  

succinate dehydrogenase   sucdh 1.3.99.1 suc + fad = fum + fadh2   
fumarate hydratase  fumha 4.2.1.2 fum + h2o = mal   
malate dehydrogenase  maldh 1.1.1.37 mal + nad = oac + nadh + h   
Isocitrate lyase  isocitly 4.1.3.1 isocit = suc + glx  fbp, g32p, 

glc, pep, 
akg, suc, 
glx 

ace 

Malate synthase  malsynth 2.3.3.9 accoa + h2o + glx = mal + coa + 
h 

atp, glc  

Acetyl coenzyme A 
synthase 

 Acs 6.2.1.1 coa + ace + atp = accoa + pp + 
amp + h 

dhapgap, 
e4p, p5p, 
amp 

ace 

      
Anaplerotic reactions      
      
Name  Short name EC Reaction Inhibition Activation 
      
Phoshpoenolpyruvate 
carboxylase 

 PEPCXL 4.1.1.31 pep + h2o + co2 => p + oac + h pyr, isocit, 
cit, akg, 
suc, fum, 
mal, glut, 
asp, ace, 
thr 

fbp, accoa, 
gmp, cdp, 
cmp 

Pep carboxykinase  PEPCXK 4.1.1.32 itp + oac = idp + pep + co2 atp, adp, 
akg 

amp 

pyruvate carboxylase  PYRCXL 6.4.1.1 atp + pyr + co2 + h2o => adp + 
p + oac + 2*h 

itp, adp, 
accoa, 
akg, oac, 
amp, asp 
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Malate dehydrogenase, 
malic enzyme 

 MALENZ 1.1.1.40 mal + nadp = pyr + co2 + nadph akg, oac, 
glut 

asp 

Oxaloacetate 
decarboxylase 

 oacDCXL 4.1.1.3 oac + h => pyr + co2     

      
Oxidative phosphorylation     
      
Name  Short name EC Reaction Inhibition Activation 
      
NADH dehydrogenase   nadhDH  2*nadh + o2 + 4*adp + 4*p + 

6*h = 4*atp + 2*nad +6*h2o 
  

FADH dehydrogenase   FadhDH   2*fadh2 + o2 + 2*adp + 2*p + 
2*h = 2*atp + 2*fad + 4*h2o 

  

      
One carbon units regeneration     
      
Name  Short name EC Reaction Inhibition Activation 
      
N10-
formyltetrahydrofolate 
Synthetase  

 fthfS 3.5.1.10 thf + co2 + nadh + atp = adp + p 
+ nad + fythf 

  

Cyclohydrolase, 5,10-
methenyltetrahydrofolate 
reductase  

 methfS 3.5.4.9, 
1.5.1.5 

fythf + nadph + h = methf + 
nadp + h2o 

  

5,10-
methylenetetrahydrofolate 
reductase  

 methfR 1.7.99.5 methf + nadh + h = mythf + nad   

      
      
Amino acid biosynthesis - glutamate amino acids    
      
Name  Short name EC Reaction Inhibition Activation 
      
Glutamate 
dehydrogenase 

 GlutDH 1.4.1.4 akg + nh4 + nadph + h = nadp + 
h2o + glut 

 atp, amp 

Glutamine synthase  GlumS 6.3.1.2 atp + glut + nh4 = adp + p + 
glum + h 

atp, ala, 
gly 

 

Glutamate kinase, 
glutamate dehydrogenase 
and pyrroline carboxylate 
reductase 

 ProS 2.7.2.11, 
1.2.1.41, 
1.5.1.2 

glut + atp + 2*nadph + 2*h = pro 
+ adp + h2o + 2*nadp + p 

adp, 
nadp, pro 

 

ornithine cyclodeaminase  OrnCycDA 4.3.1.12 pro + nh4 = orn + h arg  
ornithine 
carbamoyltransferase 

 OrnCarb 2.1.3.3 carbp + orn = p + citrul p, orn amp, gmp, 
ump, cmp 

Citrulline aspartate ligase 
and argininosuccinate 
lyase 

 ArgS 6.3.4.5, 
4.3.2.1 

citrul + atp + asp = amp + pp + 
fum + arg + 2*h 

    

      
Amino acid biosynthesis - pyruvate amino acids    
      
Name  Short name EC Reaction Inhibition Activation 
      
Acetohydroxy acid 
synthase  

 Ahas 2.2.1.6 2*pyr + h = aclac + co2 leu, val, 
isoleu 
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Acetohydroxy acid 
isomerase  

 Ahair 1.1.1.86 aclac + nadph + h = dhiv + nadp leu, val   

Dihydroxy acid 
dehydratase  

 Dhad 4.2.1.9 dhiv = kiv + h2o leu, val  

Branched chain amino 
acid transaminase 

 BcaatVal 2.6.1.42 kiv + glut = val + akg   

Isopropylmalate synthase   IpmS 2.3.3.13 accoa + kiv + h2o = ipm + coa + 
h 

leu  

Isopropylmalate 
Dehydrogenase  

 IpmDH 1.1.1.85 ipm + nad = kic + nadh + co2   

Branched chain amino 
acid transaminase 

 BcaatLeu 2.6.1.42 kic + glut = leu + akg   

Alanine transaminase  AlaTr 2.6.1.2 pyr + glut = ala + akg   
Alanine racemase  AlaR 5.1.1.1 ala = dala     
      
Amino acid biosynthesis - oxaloacetate amino acids   
      
Name  Short name EC Reaction Inhibition Activation 
      
Aspartate transaminase  AspTr 2.6.1.1 oac + glut = asp + akg   
Asparagine Synthase  AsnS 6.3.5.4 atp + asp + glum + h2o = amp + 

pp + asn + glut + 2*h 
amp, asn, 
ser 

 

Aspartate kinase, 
aspartate-semialdehyde 
dehydrogenase 

 AspKin 2.7.2.4, 
1.2.1.11  

asp + atp + nadph + h = aspsa 
+ adp + nadp + p 

thr, lys  

Diaminopimelate 
synthase, (several 
enzymes) 

 DapimS 4.2.1.52, 
1.3.1.26, 
2.3.1.117, 
2.6.1.17, 
3.5.1.18  

aspsa + pyr + nadh + succoa + 
glut = dapim + nad + coa + akg 
+ suc 

lys  

diaminopimelate 
epimerase, 
diaminopimelate 
decarboxylase 

 LysS 5.1.1.7, 
4.1.1.20  

dapim + h = co2 + lys glut, lys  

 Homoserine 
dehydrogenase 

 HserDH 1.1.1.3  aspsa + nadph + h = hser + 
nadp 

meth, thr, 
cys 

 

Methionine Synthase 
(several reactions) 

 MethS    accoa + hser + h2s + mythf = 
coa + ace + thf + meth + h 

meth, cys  

Homoserine kinase, 
threonine synthase 

 ThreoS 2.7.1.39, 
4.2.3.1  

hser + atp + h2o = thr + adp + p 
+ h 

thr, isoleu, 
cys 

nh4 

Ketobutyrate synthase  KbutS 2.3.1.31, 
2.5.1.48  

accoa + hser + h2o => coa + 
ace + kbut + nh4 + h 

  

Acetohydroxy acid 
synthase  

 AhasIsoleu 2.2.1.6 pyr + kbut + h => acbut + co2 isoleu, 
leu, val 

 

 Acetohydroxy acid 
isomerase  

 AhairIsoleu 1.1.1.86 acbut + nadph + h = dhmv+ 
nadp 

leu, val  

Dihydroxy acid 
dehydratase  

 DhadIsoleu 4.2.1.9 dhmv= kmv + h2o leu, val  

Branched chain amino 
acid transaminase 

 BcaatValIsol 
eu 

2.6.1.42 kmv + glut = isoleu + akg     
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Amino acid biosynthesis - aromatic amino acids    
      
Name  Short name EC Reaction Inhibition Activation 
      
Chorismate Synthase  ChorS 2.5.1.54, 

4.2.3.4, 
4.2.1.10, 
1.1.1.25, 
2.7.1.71, 
2.5.1.19, 
4.2.3.5 

2*pep + e4p + nadph + h + atp 
= 4*p + nadp + adp + chor 

fbp, pep, 
trp, prep, 
tyr, phe, 
p, e4p 

 

Tryptophan Synthase  TrpS 4.1.3.27, 
2.4.2.18, 
5.3.1.24, 
4.1.1.48, 
4.2.1.20 

chor + glum + prpp + ser = trp + 
pp + co2 + dhapgap + glut + pyr 
+ 2*h2o + h 

trp  

Chorismate mutase  ChorM 5.4.99.5 chor = prep tyr, phe  
Prephenate 
dehydrogenase, 
aminotransferase 

 TyrS 1.3.1.12, 
2.6.11 

prep + nad + glut = nadh + co2 
+ akg + tyr 

amp, tyr  

Prephenate dehydratase, 
amino transferase 

 PheS  4.2.1.51, 
2.6.11 

prep + glut + h = co2 + akg + 
phe + h2o 

cit, trp, 
phe 

 

Phosphoglycerate 
dehydrogenase, 
phosphoserine 
aminotransferase, 
phosphoserine 
phosphatase 

 SerS 1.1.1.95, 
2.6.1.52, 
3.1.3.3 

g32p + glut + nad + h2o = ser + 
akg + p + nadh + h 

g32p, ala, 
ser, gly 

 

Serine hydroxymethyl 
transferase 

 GlyS 2.1.2.1 thf + ser = gly + methf + h2o gly, dala  

serine acetyltransferase, 
cysteine synthase  

 CysS 2.3.1.30, 
2.5.1.47 

accoa + ser + h2s = coa + cys + 
ace + h 

gly, cys  

Histidine Synthase 
(several reactions)  

 HisS 2.4.2.17, 
3.6.1.31, 
3.5.4.19, 
5.3.1.16, 
4.1.3.-, 
4.2.1.19, 
2.6.1.9, 
3.1.3.15, 
1.1.1.23 

 prpp + atp + 3*h2o + glum + 
2*nad = 2*pp + aicar + akg + p 
+ his + 2*nadh + 7*h 

adp, nad, 
his, p, 
amp 

 

carbamoyl-phosphate 
synthase  

 carbpS 6.3.5.5  2*atp + glum + co2 + 2*h2o = 
2*adp + p + glut + carbp +3*h 

ump orn, imp 

      
Nucleotide biosynthesis - purines     
      
Name  Short name EC Reaction Inhibition Activation 
      
Ribose-phosphate 
diphosphokinase 

 RpDPK 2.7.6.1 atp + p5p = amp + prpp + h p5p, adp, 
amp 

p 



Appendix H: The compounds and reactions in the whole cell model 175

Aicar Synthase (several 
enzymes) 

 AicarS 2.4.2.14, 
6.3.4.13, 
2.1.2.2, 
6.3.5.3, 
6.3.3.1, 
4.1.1.21, 
6.3.2.6, 
4.3.2.2 

prpp + 2*glum + gly + 4*atp + 
fythf + asp + co2 + 2*h2o = 
2*glut + pp + 4*adp + 4*p + thf 
+ fum + aicar + 8*h 

  

AICAR transformylase, 
IMP Cyclohydrolase 

 ImpS 2.1.2.3, 
3.5.4.10 

aicar + fythf = thf + h2o + imp   

Adenylosuccinate 
synthetase, 
adenylosuccinate lyase 

 AmpS 6.3.4.4, 
4.3.2.2 

gtp + imp + asp = gdp + p + fum 
+ amp + 2*h 

  

 IMP dehydrogenase, 
XMP-glutamine 
amidotransferase 

 GmpS 1.1.1.205, 
6.3.5.2 

imp + 2*h2o + nad + atp + glum 
= nadh + 4*h + amp + pp + gmp 
+ glut 

    

      
Nucleotide biosynthesis - pyrimidines     

      
Name  Short name EC Reaction Inhibition Activation 
      
UMP Synthase (several 
enzymes) 

 UmpS 2.1.3.2, 
3.5.2.3, 
1.3.3.1, 
2.4.2.10, 
4.1.1.23 

carbp + asp + 0.5*o2 + prpp = 
ump + co2 + 2*h2o + pp + p 

  

Cytidylate kinase, 
nucleoside-diphosphate 
kinase, CTP synthase  

 CtpS 2.7.4.14, 
2.7.4.6, 
6.3.4.2 

ump + 3*atp + nh4 = 3*adp + p 
+ ctp + 2*h 

    

      
Nucleotide biosynthesis - interconversion    

      
Name  Short name EC Reaction Inhibition Activation 
      
Adenylate kinase  AdK 2.7.4.3 atp + amp = 2*adp   
Nucleoside diphosphate 
kinase 

 NdPKgdp    atp + gdp = adp + gtp   

Nucleoside 
monophosphate kinase 

 NmPKgmp    atp + gmp = adp + gdp   

Nucleoside diphosphate 
kinase 

 NdPKudp    atp + udp = adp + utp   

Nucleoside 
monophosphate kinase 

 NmPKump    atp + ump = adp + udp   

Nucleoside diphosphate 
kinase 

 NdPKcdp    atp + cdp = adp + ctp   

Nucleoside 
monophosphate kinase 

 NmPKcmp    atp + cmp = adp + cdp   

Nucleoside diphosphate 
kinase 

 NdPKidp    atp + idp = adp + itp     
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Nucleotide biosynthesis - deoxyribonucleotides    

      
Name  Short name EC Reaction Inhibition Activation 
      
 Ribonucleotide 
reductase, nucleoside 
diphosphate kinase 

 dCtpS    cdp + atp + nadph + h = dctp + 
adp + h2o + nadp 

  

 dTTP Synthase (Several 
reactions) 

 dttpS    udp + 3*atp + 2*nadph + h2o + 
methf = dttp + 3*adp + 2*nadp + 
2*p + thf 

  

 Ribonucleotide 
reductase, nucleoside 
diphosphate kinase 

 dGtpS    gdp + atp + nadph + h = dgtp + 
adp + h2o + nadp 

  

 Ribonucleotide 
reductase, nucleoside 
diphosphate kinase 

 dAtpS    adp + atp + nadph + h = datp + 
adp + h2o + nadp 

    

      
Lipid biosynthesis      
      
Name  Short name EC Reaction Inhibition Activation 
      
Fatty acid C14:0 synthesis  fa140S    7*accoa + 6*atp + 12*nadph + 

5*h + h2o = fa140 + 7*coa + 
6*adp + 12*nadp + 6*p 

  

Fatty acid C15:0 synthesis  fa150S    6*accoa + succoa + pyr + 6*atp 
+ 12*nadph + 5*h + h2o = fa150 
+ oac + 7*coa + 6*adp + 
12*nadp + 6*p 

  

Fatty acid C16:0 synthesis  fa160S    8*accoa + 7*atp + 14*nadph + 
6*h + h2o = fa160 + 8*coa + 
7*adp + 14*nadp + 7*p 

  

 Fatty acid C17:0 
synthesis 

 fa170S    7*accoa + succoa + pyr + 7*atp 
+ 14*nadph + 6*h + h2o = fa170 
+ oac + 8*coa + 7*adp + 
14*nadp + 7*p 

  

Fatty acid C18:0 synthesis  fa180S    9*accoa + 8*atp + 16*nadph + 
7*h + h2o = fa180 + 9*coa + 
8*adp + 16*nadp + 8*p 

  

 Fatty acid C18:1 
synthesis 

 fa181S    9*accoa + 8*atp + 15*nadph + 
6*h + h2o = fa181 + 9*coa + 
8*adp + 15*nadp + 8*p 

  

Glycerol-3-phosphate 
dehydrogenase  

 glyc3pDH    dhapgap + nadh + h = glyc3p + 
nad 

glyc3p  

Glycerol-3-phosphate 
acyltransferase  

 glyc3pAT    glyc3p + 2*atp + 0.01*fa140 + 
0.01*fa150 + 0.89*fa160 + 
0.01*fa170 + 0.02*fa180 + 
1.06*fa181 = pid + 2*amp + 
2*pp + 2*h 

  

Phosphateidyl 
ethanolamine Synthase  

 pieaS    pid + ctp + ser = pp + piea + 
cmp + co2 

ctp, dctp, 
dhapgap, 
coa, p 

amp 

      
      
      
      
      
      



Appendix H: The compounds and reactions in the whole cell model 177

Protein polymerisation      
      
Name  Short name EC Reaction Inhibition Activation 
      
Formylmethionine 
synthese  

 fmethS    fythf + meth = fmeth + thf + h   

Protein polymerisation   protP    fmeth + 57.18*ala + 15*arg + 
14.75*asp + 14.75*asn + 
0.07887*cys + 38.33*glut + 
38.33*glum + 27.13*gly + 
4.969*his + 13.8*isoleu + 
20.66*leu + 13.49*lys + 
0.3944*meth + 9.701*phe + 
11.67*pro + 20.9*ser + 
21.29*thr + 0.07887*trp + 
5.836*tyr + 20.66*val + 
464.03*atp + 700*gtp + 
815.03*h2o = 350*amp + 
114.03*adp + 350*pp + 700*gdp 
+ 814.03*p + 1514.03*h + 
protein  

    

      
Nucleotide polymerisation (RNA / DNA)    
      
Name  Short name EC Reaction Inhibition Activation 
      
RNA polymerisation   rnaP    421*atp + 203*gtp + 126*ctp + 

136*utp + 257*h2o = rna + 
630*pp + 256*adp + 256*p + 
887*h 

  

DNA polymerisation   dnaP    24.7*datp + 25.4*dgtp + 
25.4*dctp + 24.7*dttp + 
136.8*atp + 136.8*h2o = 
136.8*adp + 136.8*p + 136.8*h 
+ 100.2*pp + dna + 100.2*h 

    

      
Cell wall synthesis; peptidoglycan (murein)    
      
Name  Short name EC Reaction Inhibition Activation 
      
UDP-N-acetylglucosamine 
Synthase 

 UDPnagS    g6pf6p + glum + accoa + utp = 
udpnag + glut + coa + pp + h 

  

UDP-N-
acetylmuramylpentapeptid
e Synthase  

 UDPnapenS    udpnag + glut + ala + 2*dala + 
pep + nadph + h + dapim + 
5*atp = udpnapen + nadp + 
5*adp + 6*p 

  

peptidoglycan Synthase  pglycanS    udpnag + udpnapen + h2o = 
pglycanunit + dala + ump + udp 
+ p + 3*h 
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Biomass assembly      
      
Name  Short name EC Reaction Inhibition Activation 
      
Biomass assembly   bioA    0.051767901*rna + 

0.068407658*dna + 
38.11974454*piea + 
44.36933353*pglycanunit + 
2.94538462*protein + 
14.44536176*glut => bio 

    

      
Other reactions      
      
Name  Short name EC Reaction Inhibition Activation 
      
Pyrophosphatase   ppP 3.6.1.1 pp + h2o => 2*p   
ATP hydrolysis   atpH     atp + h2o => adp + p + h   
Sulphur assimilation   sA    so4 + 2*atp + 4*nadph + 3*h = 

h2s + 4*nadp + adp + amp + pp 
+ p + 2*h2o 

nadp   

 
 
 
 



Zusammenfassung 
 
 
Untersucht wurde die Funktionalität des intrazellulären Reaktionsnetzwerks eines 
Corynebacterium glutamicum Valin-Produktionsstamms, wobei insbesondere der Valin-
Leucin-Biosyntheseweg in den Blick genommen wurde. Ziel war es, ein quantitatives 
Verständnis über das Verhalten des Reaktionsnetzwerks zu erlangen. Die dazu benötigten 
Methoden wurden entwickelt und die Enzym-Targets zur weiteren Optimierung des 
untersuchten Stamms identifiziert.  

Die intrazellulären Metabolitkonzentrationen wurden nach Anregung durch einen 
Substratstimulus im Übergangszustand eines Glukosestimulusexperiment festgestellt. Ein 
mathematisches Modell, das die Reaktionsdynamik des Valin-Leucin-Synthesewegs in vivo 
beschreibt, wurde entwickelt und eine metabolische Kontrollanalyse basierend auf den Daten 
des Stimulusexperiments und des dynamischen Modells durchgeführt. Die 
thermodynamischen Antriebskräfte im Valin-Leucin-Syntheseweg wurden analysiert. 

Das optimale Verfahren für das Stimulusexperiment zur Erfassung eines nützlichen 
Datensatzes für die Modellierung und Analyse wurde festgelegt. Es wurden Proben in 
Subsekundenintervallen genommen und Konzentrationen von 26 Metaboliten aus dem Valin-
Leucin-Syntheseweg und des Zentralstoffwechsels gemessen. Eine sehr schnelle Reaktion auf 
den Stimulus wurde bei den meisten intrazellulären Metaboliten beobachtet, wie zum Beispiel 
ein dreifacher Anstieg der Pyruvat-Konzentration innerhalb einer Sekunde. Die 
Konnektivitäten der Metaboliten um den Verzweigungspunkt Ketoisovalerat wurden mithilfe 
einer Zeitreihenanalyse untersucht. Es konnte nachgewiesen werden, dass ein Unterschied in 
den Metabolitlevels und den Stimulusreaktionen in zwei verschiedenen physiologischen 
Zuständen besteht.  

Das kinetische Model bestand aus einem Differentialgleichungsmodell, das durch die 
Aufstellung von Materialbilanzen der Metaboliten definiert wurde.  Splines wurden 
verwendet, um die nicht-bilanzierten Metaboliten im Reaktionssystem darzustellen und 
Reaktionsgeschwindigkeitsgleichungen wurden mithilfe der Linlog-Kinetik definiert.  Das 
Modell kann die Konzentrationen und Flüsse im Valin-Leucin-Syntheseweg während des 
Übergangszustandes genau simulieren. Die Verwendung eines Modellselektionskriteriums auf 
der Basis des zweiten Hauptsatzes der Thermodynamik zur Identifizierung von realistischen 
und eindeutigen Modellen erwies sich als entscheidend. Die durch das Modell in vivo 
bestimmten  Enzymeigenschaften wiesen Unterschiede zu den in vitro festgestellten 
Eigenschaften auf. Die maximalen Geschwindigkeiten in vivo waren fast eine Größenordnung 
größer als die maximalen Geschwindigkeiten in vitro. Für die Transaminierung von 
Ketoisovalerat zu Valin ist hauptsächlich das Enzym Transaminase B verantwortlich, wobei 
das Enzym Transaminase C eine untergeordnete Rolle spielt. Die Verfügbarkeit der 
Kofaktoren NADP und NADPH hat nur einen mäßigen Einfluss auf den Fluss durch den 
Valin-Syntheseweg, während der Einfluss von NAD und NADH auf den Fluss durch den 
Leucin-Syntheseweg zu vernachlässigen ist.  

Andere alternative Methoden zur Aufstellung eines kinetischen Modells sind ebenfalls 
untersucht worden. Diese alternativen Methoden bestanden aus einem mechanistischen 
Modell des Valin-Leucin-Synthesewegs und einem großen Linlog-Modell des gesamten 
Stoffwechsels des Stammes. Das mechanistische Modell war aufgrund seiner begrenzten 
Elastizitäten nicht in der Lage die gemessenen Konzentrationen zu simulieren. Die Instabilität 
des gesamten Zellmodells machte dieses für eine metabolische Kontrollanalyse und weitere 
Interpretationen unbrauchbar. Die Simulation des gesamten Stoffwechsels des Stammes 
liefert jedoch einen Proof-of Concept für den gesamten Zellmodellierungsansatz und zeigt, in 
welche Richtung sich die metabolische Modellierung in Zukunft entwickeln wird. 



Sowohl die datengestützten als auch die modellbasierten Methoden wurden verwendet, um 
die Kontrollhierarchie im Valin-Leucin-Syntheseweg zu analysieren. Außerdem wurden auf 
der Basis des Modells Vorhersagen über die Auswirkungen bei Änderungen der Enzymlevels 
getroffen. In einer Optimierungsstudie wurden die Enzymlevels im Hinblick auf den 
Valinfluss optimiert. Auf der Basis des erlangten Verständnisses im Hinblick auf das 
Verhalten des Reaktionsnetzwerkes wurden die folgenden Ziele zur weiteren 
Stammentwicklung formuliert:  
 

1. Überexpression von Valin Translokase 
2. Verwendung eines inhibierungsresistenten AHAS-Enzyms und möglicherweise 

einer weiteren Überexpression. 
3. Entfernung der Überexpression der Genkodierung für DHAD auf dem Plasmid, um 

die Zelle von der Überproduktion des Enzyms zu entlasten, da es einen 
geringfügigen Einfluß auf den Valinfluss hat. 

4. Modifizierung des Zentralstoffwechsels zur Erhöhung der Verfügbarkeit von 
Pyruvat. 

 
Die Bestimmung der Ziele für die Stammentwicklung zeigt die Nützlichkeit eines kinetischen 
Modells im Bereich Metabolic Engineering und für das allgemeine Verständnis der 
metabolischen Kontrolle. 

Die Konzentrationswerte und das kinetische Modell wurden eingesetzt, um die 
thermodynamische Antriebskraft, d.h. die Reaktionsaffinität, im Valin-Leucin-Syntheseweg 
zu analysieren. Das Konzept des Reaktionswiderstandes wurde verwendet, um die 
Antriebskraft mit der Reaktionsgeschwindigkeit analog dem Ohmschen Gesetz in Beziehung 
zu setzen. Dies schaffte einen neuen Blickwinkel hinsichtlich der Analyse von metabolischen 
Netzwerken. Eine Korrelation zwischen dem Enzymlevel und dem Reaktionswiderstand 
wurde gefunden, jedoch haben auch einige andere Faktoren Einfluss auf den Widerstand. Die 
lineare Beziehung zwischen der Reaktionsgeschwindigkeit und der Affinität, die für uni-uni-
Reaktionen gilt, besitzt für die fern des Gleichgewichts ablaufenden bi-bi-Reaktionen keine 
Gültigkeit. Dies wird durch die theoretischen Überlegungen gezeigt und durch die 
experimentellen Beobachtungen bestätigt. Daher kann die Annahme der Linearität für die 
Analyse metabolischer Systeme nicht verwendet werden. Der Reaktionswiderstand muss 
daher als Systemvariable betrachtet werden. Die Theorie der metabolischen Kontrollanalyse 
wurde erweitert, um das Reaktionspotential und den Reaktionswiderstand berücksichtigen zu 
können. Reaktionen fern des Gleichgewichtes werden fast ausschließlich durch 
Veränderungen des Widerstandes kontrolliert, während Reaktionen nahe dem Gleichgewicht 
auch von Veränderungen der Affinität betroffen sind. Das Reaktionssystem wird durch einen 
hohen Grad an Selbstorganisation stabil gehalten.      
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