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Chapter 3  

Parametric Modelling of the Runoff Process 

3.1 Basic Principles 
How complex should a model be to describe the observed reality? The answer to this question depends 
on the available data and the intended final use of the proposed model. If the aim of modelling is to 
understand the relationships among several intertwined components, then a parametric model -for 
instance one aimed to describe a characteristic of the runoff process- should be as simple as possible 
so that the main relationships among the input variables can be fully perceived. “The complexity of 
reality does not imply the need for a complex model” (Gilchrisk 1984).  Based on the knowledge 
provided by simple models, more complex ones can be formulated afterwards to tackle the 
deficiencies of the simple ones. In this context the concept of simplicity comprises the following 
principles (Gilchrisk 1984): 

1. Parsimony of parameters. This principle advises that the number of parameters in a given model 
should be minimum. In other words: “entities should not be multiplied unnecessarily” (William of 
Ockham, ~14th century). 

2. The number of variables. The number of selected explanatory variables should be as few as 
possible, but they should explain as much as possible the phenomenon represented by the explained 
variable. 

3. The model structure. The functional relationships linking all variables employed in a given model 
should be as simple as possible. Linear relationships would be preferred to non-linear ones if the 
studied phenomenon allows such simplification. 

4. A good approximation to reality. A given model that has been selected based on the previous 
principles should provide a good approximation to the observed phenomenon described by the 
collected data. 
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3.2 Defining the Formal System 
The cumulative throughput of the water cycle or any of its derivative characteristics t

iQ  for a given 
basin i  within the Study Area during a period t  (from time 1t −  to time t ) can be defined as a 
function of observables1 (Chow 1962, Rodriguez-Iturbe 1969,  Raudkivi 1979, Clark 1994, Abdulla 
and Lettenmaier 1996 have proposed similar approaches) and/or of their derivative information as 
follows 

( ), , , 1, , 1, ,t t t t t
i i i i iQ f i n t Tε= + ∀ = ∀ =G U M β … … , (3.1) 

where 
t
iQ  the output variable measured for the spatial unit i  occurred during the period t , 

t
iG  ,1 ,2 ,

t t t
i i i gx x x =   " , a vector of size (1 )g×  containing g  observables that 

describe the morphological characteristics for the spatial unit i  during the period t , 

t
iU  , 1 , 2 ,

t t t
i g i g i g ux x x+ + +

 =   " , a vector of size (1 )u×  containing u  input variables 

that describe the land cover states for the spatial unit i  during the period t , 

t
iM  , 1 , 2 ,

t t t
i u g i u g i u g mx x x+ + + + + +

 =   " , a vector of size (1 )m×  containing  m  input 

variables that describe the climatic conditions for spatial unit i  during the period t , 

β  [ ]lβ= , a vector of size *( 1)J ×  containing the model parameters to be estimated. 

t
iε  an independent additive error for the spatial unit i  occurred during the period t , 
i  a subscript for spatial units; 1, ,i n= … , 
j  a subscript for type of input variable; 1, ,j J= … , 
t  a subscript for the time period; 1, ,t T= … , 
n  the total number of spatial units within the Study Area, 
l  a subscript for each model parameter; *1, ,l J= … , 
*J  the total number of model parameters, 
J  g u m= + + , the total number of input variables or observables, 
T  = 33 years, the total number of years covered by the available time series, i.e. from 

1961 to 1993, and 
( )f i  a non-linear function. 

The formal system (see Chapter 2) as it is stated in (3.1) is a function of all available variables. 
However, in a highly complex natural system such as the water cycle, where everything is related with 
everything else, it is highly improbable to find an observable ( )t t t t

ij i i ix ∈ ∪ ∪G U M  where 
1 j J≤ ≤  that is absolutely independent of the rest of the input variables. Additionally, it is also 

                                                      
1 A physical property, such as weight or temperature, that can be observed or measured directly, as 

distinguished from a quantity, such as work or entropy, that must be derived from observed quantities 
(Walker, 1999). 
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possible that some of the input variables are more suitable to describe a characteristic of the water 
cycle than others due to particular reasons, or that a subset of input variables are linearly dependent 
among themselves, hence having a lesser number of them might be enough to explain the system’s 
behaviour. In other words, there may be multicollinearity amongst the variables contained in a given 
data set (Montgomery 1982). 

Based on this rationale, it is sound to assume that it is likely that a set made up of few key variables 
may explain the behaviour of the system almost as good as the original model described by (3.1), with 
the great advantages of having a fewer number of input variables to deal with and thus a much simpler 
system to understand. The problem is therefore, to find out which set of variables explains as much as 
possible the observed system’s output while keeping the number of variables as small as possible. In 
addition to that, the selected variables have to be statistically significant as will be explained later. 

Assume that a set of L  variables exist and fulfils the previous conditions, thus a hydrological 
characteristic of the system can be represented as 

G U(1) (2) ( ) ( ) ( ), , , , , , , ,( )
t t t

t t t t t t t
i i i i j i j i L iQ f x x x x x ε

∈ ∈ ∈

= +
G U M

… … …
�����������	����������
 �����	����
 �����	����


β . (3.2) 

The selected input variables are ordered (here represented by a sub index within parentheses) so that 
they correspond to the original variables according to the following convention  

i( ) G1t t
jx j j∈ ∀ ≤ ≤G  

i( ) U1t t
j Gx j j j∈ ∀ + ≤ ≤U  

i( ) U 1t t
jx j j L∈ ∀ + ≤ ≤M  

with 

3 L J≤ <  

G 1j ≥ , U G 1j j− ≥  and U 1L j− ≥ . 

The minimum number of variables has been fixed to three because each subcategory of the input 
variables has to be represented by at least one variable. This constraint will allow tackling effectively 
the first objective of this study, namely: to assess the effects of land cover change under continuously 
changing weather conditions and assuming that the physiographical characteristics of the Study Area 
at mesoscale level can be considered as invariant during the chosen time interval of this study.  

By using this procedure it will be possible to split the observed variability of the output variable along 
the time axis into two independent components, one that is only explained by climatic fluctuations 
(some of them cyclic or even exogenous to the Study Area), and the second one that is exclusively 
explained by land cover changes occurring within the system. It should be noted that the model will be 
fitted under given physiographical characteristics for various basins within the study area. 

Furthermore, since a watershed is an open system, it can be assumed that land cover changes may 
influence the microclimatic conditions and hence the throughput of the system, but they would have 
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very little influence on the macroclimate of the basin, which is considered an exogenous variable of 
the system. 

The reasoning stated above can be summarised by the following expression 

t t t t t t t

t t t

dQ Q dG Q dU Q dM
dt G dt U dt M dt

∂ ∂ ∂= + +
∂ ∂ ∂

. (3.3) 

As was stated in Section 2.2, the physiographical factors are regarded as quasi-static, thus 

0
tdG
dt

≈  (3.4) 

Hence 

t t t t t

t t

dQ Q dU Q dM
dt U dt M dt

∂ ∂≈ +
∂ ∂

. (3.5) 

3.3 Modelling the Long-term Mean of the Annual 
Specific Discharge 

3.3.1 Introduction 
In order to develop and test a methodology to solve the problem stated before, a characteristic of the 
water cycle, namely the 33-year annual mean specific discharge for the catchments within the Study 
Area is to be modelled. Such an exercise is the simplest to be carried out and therefore it will allow 
testing the proposed method, as well as comparing its results with those obtained by standard methods 
often found in the literature (e.g. in Chow 1964 or in Clark 1994). 

In should be noted that the model (3.8) to be derived here will not allow us to assess the effects of land 
cover change because the evolution of the system during the studied period is not taken into account, 
but rather than this, it will show whether a variable ijx ∈ U (i.e. a land cover state of the basin) 
contributes “on average” to describe significantly the system or not. In the present case, each variable 

ijx is defined as 

1

1 1, , 1, ,
T

t
ij ij

t

x x i n j J
T =

= ∀ = ∀ =∑ … … ,  (3.6) 

and 

1
1

1 1, ,
T

t
i i

t

Q Q i n
T =

= ∀ =∑ … .  (3.7) 

In this case, each element ijx  contains the arithmetic means of the available time series for the spatial 
unit i  and the input variable j . As a consequence of this, the time index t  is not longer needed; 
hence, the model could be called time-independent or static.  So Q  would be simply represented as 

( )1 2, , , , , ,i i i ij iJ iQ f x x x x ε= +β… … . (3.8) 
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Assume that the variables shown in Table 3.1 may be used to describe this characteristic of the water 
cycle in the Study Area. In this case 3, 16, 3,m g u= = =  thus 22J = . 

Table 3.1 Definition and notation of input and output variables used to describe the 33-year mean annual 
discharge for the Study Area. 

Variable 

Factor Name Index j  
Unit Description 

Q    [mm] 33-year mean specific annual discharge 
G  1x  1 [km²] Area of the catchment  

 2x  2 [°] Mean catchment slope  
 3x  3 [°] Median of the catchment’s slope 
 4x  4 [°] Trimmed mean slope F(15)-F(85) 
 5x  5 [°] Trimmed mean slope F(30)-F(70) 
 6x  6 [°] Mean slope of the stream network 
 7x  7 [°] Mean slope in floodplains 
 8x  8 [1/km] Drainage density 
 9x  9 [-] Shape factor 
 10x  10 [-] Fraction of north-facing slopes 
 11x  11 [-] Fraction of south-facing slopes 
 12x  12 [m] Mean elevation of the catchment 
 13x  13 [m] Difference between max. and min. elevation within a catchment 
 14x  14 [-] Fraction of saturated areas 
 15x  15 [mm] Mean field capacity 
 16x  16 [-] Fraction of karstic formations 
U  17x  17 [-] Mean fraction of forest cover 
 18x  18 [-] Mean fraction of impervious cover 
 19x  19 [-] Mean fraction of permeable cover 
M  20x  20 [mm] Mean annual precipitation 

 30x  21 [°C] Mean temperature in January 
 32x  22 [°C] Mean maximum temperature in January 

Based on this assumption, the task will be to find out which variables are the most and the least 
significant. For instance, variables such as: 2 7, ,x x… (see Table 3-1), are all depicting the slope of the 
catchment’s terrain using different definitions or conventions. Slope is in general a very important 
physiographical factor since it is related to the velocity of the surface runoff and the rate of infiltration 
into the soil matrix, therefore, based on these arguments, it can be assumed that a variable representing 
this factor should be relevant to model a long-term mean of the annual discharge. The problem is then 
to find the best indicator representing the slope. Similar reasoning can be applied for the other 
variables. 

In order to solve this problem three algorithms are proposed, namely: 

• Modified forward selection, 
• Modified backward elimination, and 
• Modified all-possible regressions approach. 

These approaches are based on standard statistical procedures (Montgomery 1982) but with some 
modifications to overcome the difficulties imposed by the system analysed in this study. 
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The standard method, i.e. the Stepwise Method (Montgomery 1982, Gilchrisk 1984), use multi-linear 
regression analysis to rank the input variables from the weakest to the strongest, or vice versa. Using 
these results a model with the thj strongest variables can be selected. This method estimates the 
parameters of a given model by minimizing the so-called unexplained deviation, commonly known as 
the 2L estimator (Rousseeuw and Leroy 1987). Such estimator is defined as 

( )22 min!i
i

L ε= →∑ . (3.9) 

The shortcomings of this procedure stem from its assumptions, namely: 

• The relationship between input and output variables is assumed to be linear. 

• The errors iε  have to be independent random variables and normally distributed with zero mean 
and constant variance (homoscedastic) for all i  (Berenson 1983, Montgomery 1982, Wonnacott 
1990). Standard parametric statistical tests can be used for analysis of variance, calculation of 
confidence intervals, and test of independence only if these conditions are fulfilled. 

• There is no guarantee that “the best” model has been chosen. 

This means that a model describing a highly complex system such as the water cycle, which is non-
linear by nature (Bonell, 1993), had to be linearized if its parameters would have to be estimated using 
multi-linear regression. Usually, a model is linearized by taking logarithms of (3.8). According to the 
assumptions, iln( )ε  has to be normally distributed with zero mean and constant variance [i.e. 

2N(0, )s ], which in turn implies that iε  has to be  lognormal distributed (Gilchrisk 1984), which is 
not true in reality. 

The following algorithms will consider the following improvements to overcome these shortcomings: 

1. The form of the model should have a non-linear functional form (.)f  and its parameters have to be 
estimated by a non-linear optimisation algorithm without any sort of linearization or suitable 
transformation. 

2. The estimator Φ , which constitutes the objective function to be minimized by a non-linear 
optimisation algorithm, should be in general written as m̂inΦ

β
 

with  

1 1

T n
t t
i i

t i

w
ϕε

= =

Φ =∑∑ , (3.10) 

where 

ˆ 1, , 1, ,t t t
i i iQ Q i n t Tε = − ∀ = ∀ =… …  (3.11) 

( )1 2
ˆ ˆ, , , ,t t t t
i i i iJQ f x x x= β…  (3.12) 

t
iε  a random error with zero mean for a spatial unit i  occurred during the period t , 

ˆt
iQ  an estimate of the output variable for a spatial unit i  occurred during the period t , 
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ϕ  a parameter2 greater than zero. It denotes the confidence that one has in the data set 
and the influence that outliers may have in the estimation of β̂ . The bigger ϕ , the 
more the influence of outliers is with respect to the estimates of the output variable. 
Rousseeuw and Leroy (1987) have extensively documented the effect of the type of 
estimator with regard to the robustness of the model parameters, 

t
iw  a weighting factor greater than or equal to zero corresponding to a spatial unit i  

during the period t  introduced to correct heteroscedasticity if present in the data set, 
or to diminish the influence of outliers in the estimation of the model’s parameters; 
hence, it will contribute to improve the model robustness. The same idea is used by 
the weighted least squares method (Montgomery 1982, Rousseeuw and Leroy 1987). 
This weighting factor is estimated as follows: 

1 if

0 if

t
i

c
t
i t

i
c

Z
s

w

Z
s

ε

ε

ε

ε

 ≤=  >

 (3.13) 

with 

2

0

1 ( )
1

t
i

t i

s
nε ε=

− ∑∑  (3.14) 

sε  the estimated sample standard deviation of random errors provided that the 
expectation of t

iε  is zero, 0t
iEε ε = =  , 

ε  the mean of random errors, 

0n  the total number of observations, 

cZ  a threshold value normally ranging from 2 to 3 (Rousseeuw and Leroy 1987). 

3.3.2 Modified Forward Selection 
Assuming that the general model is represented by (3.1), then the expected output should be as follows 

( )1 2, , , ,t t t t t
i i i i J iQ f x x x ε= +( ) ( ) ( ) β… , (3.15) 

where 1
t
ix ( ) is the strongest input variable, or in other words, the variable that alone got the minimum 

value for the estimator Φ  presented by (3.10). The next variable 2
t
ix ( )  is one that makes the greatest 

improvement to the model (further reduction of Φ ) once 1
t
ix ( )  has been already selected. This process 

is then repeated 2J −  times (Gilchrisk 1984). In (3.15) t
i Jx ( )  represents the weakest variable. Weak 

variables can be discarded due to their small contribution in explaining the dependent variable t
iQ . 

                                                      
2  Historically astronomers in the 18th century and then Edgeworth (1887) used 1ϕ = , but due to great 

difficulties they had trying to minimise (3.10) this criterion was abandoned and replaced by 2ϕ =  (first 
introduced by Laplace) (Gilchrisk 1984), as is actually used by the Method of Least Squares. 
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In general, the algorithm used for this approach is as follows: 

Algorithm 1 

1. Assume a functional form for ( )f i . 
2. For all 1, ,j J= … . 

a. Bring into the model the variable t
jx  and estimate β̂  so that min!jΦ → ; the model at this 

stage has only one input variable, namely: 

( )ˆ, 1, , 1, ,t t t
i ij iQ f x i n t Tε= + ∀ = ∀ =β … … . (3.16) 

b. Perform a significance test (see Section 3.3.7) for the variable t
jx .   

3. Repeat step 2. ( 1)J −  times. 
4. Select a variable that is significant (from step 2.) and gives the lowest estimator, i.e. min( )jΦ . 

This is the strongest variable among a set of J variables available. Rename it as (1)
tx  and use it 

always in the following steps.  
5. For all 1, , (1), ,(.)j J j= ∧ ≠… … . 

a. Bring the new variable t
jx  into the model (.)j ≠ , then estimate β̂  so that min!jΦ → ; the 

model at this stage is as follows: 

( )(1)
ˆ, , 1, , 1, ,t t t t

i i ij iQ f x x i n t Tε= + ∀ = ∀ =β … … . (3.17) 

b. Perform a significance test (see Section 3.3.7) for the variable t
jx . 

6. From the remaining variables (step 5.) select as in step 4. the second strongest variable. Rename it 
as (2)

tx  and then include it in (3.16) as follows: 

( )(1) (2)
ˆ, , , 1, , 1, ,t t t t t

i i i ij iQ f x x x i n t Tε= + ∀ = ∀ =β … … . (3.18) 

7. Repeat steps 5.-6. until all variables are chosen or stop it either if no more significant reduction of 
Φ  is achieved by the inclusion of a new variable j , or if the last chosen variable is not statistically 
significant (step 5.b.). 

3.3.3 Modified Backward Elimination 
This procedure is the opposite of that presented in the Algorithm 1. In other words, this approach starts 
with all variables and discards in each step the variable with the lowest contribution to the model. The 
first variable to be discarded is the weakest variable. Then the process continues until only one 
variable is left, this is then called the strongest variable. In general, the algorithm is as follows: 

Algorithm 2 

1. Assume a functional form for ( )f i . 
2. Bring all variables t

jx  into the model and estimate β̂  so that min!Φ → ; a model at this stage has 
J  variables (sometimes it is called saturated model, Gilchrisk 1984) namely: 

( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… . (3.19) 

3. For 1, ,j J= …  that are still in the list of variables. 
a. Estimate ˆ jβ  eliminating only variable j  at each step so that min!jΦ → ; in general a model at 

this stage is as follows 

1 2 , 1 , 1
ˆ( , , , , , , , )t t t t t t t

i i i i j i j iJ j iQ f x x x x x ε− += +β… … . (3.20) 
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b. Select from those models obtained in step 3.a. one combination that provides the lowest 
estimator, i.e. min( )jΦ . Then exclude the variable that has not been used, i.e. t

jx . Comparing 
the estimator of this combination jΦ  with Φ , it is clear that the contribution of variable j  has 
been minimal compared with the rest. For the next steps this variable, called the weakest 
variable, would be excluded. 

4. Repeat step 3 ( 1)J −  times eliminating the weakest variable each time until one variable is left. 
The last one is called the strongest variable. 

3.3.4 Building All Combinations 
Although the two described procedures are relatively fast, they only consider a small subset from all 
possible combinations that can be built up from J  input variables. Hence, many models, perhaps very 
good ones, are not evaluated by these procedures. This shortcoming for a complex system may be 
crucial because it may lead to choose a wrong model, or one that is not the best. In order to find the 
“best model”, 2 1J −  combination of variables have to be evaluated (the null model, i.e. one having a 
constant and no variables has been excluded). As shown in Table 3.2, the total number of possible 
combinations considering 22 input variables is 4,194,303! Hence, this method, although convenient 
when the number of variables is small, is not practical due to the high computation time required when 
the number of variables is greater than 12, but still possible depending on computational power at 
hand. 

Table 3.2 Total number of possible combinations of J input variables. 

Number of variables 
J  

Number of combinations 

2 1J −  
2 3 
4 15 
8 255 

16 65,535 
22 4,194,303 
32 4,294,967,295 

Assuming that the number of variables is small enough to use this method, then, how can the best 
model be selected out of hundreds or maybe thousands of possible models?  In order to answer this 
question, firstly, it should be noted that the greater the number of input variables, the smaller will be 
the value of the objective function Φ (3.10) after the minimization. Hence, the value β̂min ( )Φ  as an 
indicator of the quality of the model does not lead to find the best combination of explanatory 
variables (the same behaviour can be observed in multi-linear regression models: the greater J , the 
better the fit and the greater the value of 2R  is; to counter-balance this effect an adjusted 2R  was 
proposed by Ezekiel in 1930). In the present case, two criteria have been implemented to solve this 
issue, namely: 

• The Mallows’ pC ∗  statistic to select a subset of best performing combinations of input 
variables, and 

• A cross-validation test to evaluate the quality and robustness of the previously selected subset of 
combinations, from which the best model is to be chosen. 
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3.3.5 Selection of the Best Models Using Mallows’ pC ∗  Statistic 
The Mallows’ statistic can be estimated as follows (Berenson 1983): 

( )( )0
0

2

2

1
2 *

1
p

p
J

R n J
C p n

R
∗

∗

− −
= + −

−
, (3.21) 

where 

( )2
2 1 1

2

1 1 1 10

ˆ

1
1

T n
t t
i i

t i
p T n T n

t t
i i

t i t i

Q Q
R

Q Q
n

= =
∗

= = = =

−
= −

  −   

∑∑

∑∑ ∑∑
 (3.22) 

*p  the number of parameters used in a given model that contains j  input variables, 
2
JR  is equal to 2

pR ∗  if j J=  and **p J= . In other words, the coefficient of 
determination associated with a model containing all input variables available (i.e.J ). 

This indicator showing the quality of the model, commonly known as the pC ∗  criterion, was 
introduced by Mallows (1973). It has the advantage, compared with an adjusted 2R , that in addition to 
adjust the sum of squared errors, it can be demonstrated that its expectation is equal to the number of 
parameters used in the model (Daniel and Wood, 1980), or  

*pE C p∗
  =  . (3.23) 

That means that the closer the value of pC ∗  to *p , the lesser the bias of the fitted model, hence, the 
better the model fit is. Using this property, the best model or a set of best performing models can be 
identified as it is shown in Figure 3.1. 

Other criteria such as the Akaike’s Information Criteria (Akaike, 1973) can also be used for selecting 
models as will be discussed later. 
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Figure 3.1 Identification of the best model using the ∗pC  plot. 

3.3.6 Model Validation 
In order to evaluate the quality of the model, a Cross-Validation Method (Efron 1981, Simonoff 1996) 
is carried out for each possible model that belongs to the subset of the best performing models selected 
before. This procedure is a special case of the Jackknife Method introduced by Quenouille (1949) and 
Tukey (1958). It consists of dividing the data set into y  groups of equal size of observations, and 
consecutively, it deletes one group at a time; then, it estimates the model parameters β̂  with the 
remaining points using the same estimation procedure previously used. A model estimated in such a 
way is then validated with the group of data not considered during its estimation. This procedure is 
then repeated for all groups, i.e y  times. As a result of this procedure y  Jackknife statistics θy  are 
obtained. Finally, all y  statistics are combined to obtain the Jackknife estimator θ . In general this 
estimator would indicate how robust3 the model is; the lesser the value of θ , the more robust the 
model is regarding the disturbances from outliers present in the dataset.  

If the number of groups is equal to the number of observations ( 0n=y ) the procedure is called 
cross-validation. 

Let D  be the original set of observations in a given case. Using the notation used before 

( ){ }, 1, , 1, , 1, ,t t
i ijQ x i n j J t T= = == … … …D . (3.24) 

The algorithm used to validate a model ( )f i  composed of J  variables is described below (based on 
Efron 1981). 

Algorithm 3 

1. For all 1, ,i n= … . 
2. For all 1, ,t T= … . 

                                                      
3  The term “robust” was coined in statistics by G.E.P. Box in 1953. In general, referring to a statistical 

estimator, it means “insensitive to small departures from the idealized assumptions for which the estimator is 
optimised.” Launer and Wilkinson 1979, Huber 1981. 
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a. Let ( ){ }, 1, ,t t t
i i ijQ x j J== …E  be a subset of observations given i  and t . Eliminate 

the subset t
iE  from the original data set so that a new subset  t

i= −
�
D D E . 

b. Using 
�
D  estimate β

�
 so that min!Φ →

�
. 

c. Estimate ( )1 2, , , ,t t t t
i i i iJQ f x x x= β
� �

… . 
d. Calculate the Jackknife statistic for the observation i , t  as follows 

( )2t t t
i i iQ Qθ = −

�
. (3.25) 

e. Repeat step 2. T times. 
3. Repeat step 1. n times. 
4. Calculate the overall quality indicator or Jackknife estimator for a given model as follows 

1 1

, 0
n T

t
i

i t= =

θ = θ θ ≥∑∑ . (3.26) 

The most reliable model among the subset of the best performing models (see Figure 3.1) can be 
selected using the Jackknife estimator θ . The minimum value of θ  will correspond to the best model. 
The exponent employed in (3.25) has been chosen equal to two because of the following reasons: 1) to 
make positive the difference between the calculated and the observed value; and, 2) to penalize those 
points where the model has large differences, hence making θ  larger, and thus reducing its robustness. 

3.3.7 Significance Test 
A significance test has the purpose of assessing the plausibility of a scientific hypothesis (Davison and 
Hinkley 1997) based on a given set of data. Literally, a hypothesis should be understood as “a 
proposition made as a basis for reasoning” without reference to its value of truth, or “as a starting-
point for further investigation” (Concise Oxford Dictionary). A significance test, however, can not 
prove that a hypothesis is true or false, in fact no procedure can guarantee that (Gilchrist 1984), but it 
will lead to conclude that based on the data available there is enough evidence to state that a 
hypothesis is unlikely to be true and hence can be rejected. Rejecting a hypothesis always presupposes 
a level of risk that can be defined as the probability that such a hypothesis is rejected when in fact it is 
true (Error Type I). This probability is called level of significance (α ). By definition, a significance 
test is performed to infer that a hypothesis that is represented by an assumed value of a parameter 
called null hypothesis 0H  is not likely to be the true value (Lane 2001), consequently, it can be 
rejected in favour of an alternative hypothesis AH  at a given level of significance. AH  should be an 
important alternative of 0H  to be detected, one that is likely to be true if 0H  is not (Davison and 
Hinkley 1997). Often AH  is taken as the opposite of 0H . 

Working with all data available to do this task is unpractical. Therefore, a test statistic Θ  should be 
built so that it will satisfy the following conditions: 1) it has to summarize some aspects of the data 
relevant to the particular problem so that it measures the discrepancy between the data and the null 
hypothesis, e.g. the smaller the value of Θ , the stronger the evidence against 0H (the opposite is also 
possible) is; 2) its behaviour whether 0H  or AH  is true should be remarkably different from each 
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other; and 3) the sampling distribution of Θ  must be known or at least approximately estimated under 
the assumption that 0H  is true (Neave and Worthington 1988). 

Suppose then that a test statistic fulfils these three conditions mentioned above and that the value of 
the test statistic based on the available data is denoted by ϑ . In such a case, the level of evidence 
against 0H  is measured by the significance probability (Davison and Hinkley 1997) or the so-called 
-valuep  

0-value Pr( )p Hϑ= Θ ≤ . (3.27) 

If -value<p α  two answers are plausible, namely: 1) that 0H  is true but a rare event has been 
observed (summarized by ϑ ); or 2) that based on the strong evidence against 0H  provided by the 
available data, 0H  does not conform to the observed phenomenon and therefore can be considered a 
bad hypothesis. Hence, it can be rejected at the level of significance α . The latter answer has been 
adopted as the rationale of the significance test (Gilchrist 1984). Conversely, if -valuep α≥  0H  
can not be rejected. In general, the following verbal interpretations can be formulated: if the -valuep  
is between 1% and 5%, less than 1%, or even less than 0.1%, this would mean that there is a 
considerable, a very strong, or a practically conclusive evidence, respectively, in the data to reject 

0H (Neave and Worthington 1988). 

In order to perform a significance test within the context of this study the following definitions are 
necessary. Let the set of observations be a random sample denoted by D , whose cardinality (i.e. the 
number of valid observations) is 

0n nT= ≤D . (3.28) 

Based on D , assume that an observed phenomenon in a given location i  during the period t  can be 
predicted by a model using J  explanatory variables (i.e. observables and/or derivative information) 
and a vector of calibrated parameters β̂ . Such a model is represented by  

( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… . (3.29) 

In this case there would be J  null hypotheses 0H  that require to be tested within the scope of the 
present study, which also implies J  corresponding alternative hypotheses to be formulated. The 
objective of the - thj  null hypothesis is to test whether the variable jx  in the model (3.29) is 
independent with respect to the explained variable Q  considering the - dimensionalJ  space ( J\ ) 
where the model has been defined. In other words, to infer that based on the sample data these 
variables are certainly not independent at the level of significance α , or that the sample does not 
indicate at the level of significance α  that the variable jx  has been chosen by chance when such a 
model was assessed. 

The - thj  null hypothesis and its corresponding alternative one can be written up as follows 
( )
0
jH  : Variables Q  and jx  are independent in J\ , given a functional 

 ( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… , and the random sample D . 

( )j
AH  : These variables are not independent under the previous conditions. (3.30) 
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or the same but using conditional probabilities as 

( )( )
( )( )

( )( )

( )
0 1 ( 1) ( ) ( 1) ( )

1 ( 1) ( 1)

( )
1 1 ( 1) ( ) ( 1) ( )

1 ( 1)

ˆPr , , , , , , ,

ˆPr , , , , , ,

ˆPr , , , , , , ,

Pr , , ,

j t t t t t t t t
i i i j i j i j iJ i i j

t t t t t t
i i i j i j iJ i

j t t t t t t t t
i i i j i j i j iJ i i j

t t t
i i i j i

H Q f x x x x x x

Q f x x x x

H Q f x x x x x x

Q f x x x

ε

ε

ε

− +

− +

− +

−

= +

= = +

= +

≠ =

… …

… …

… …

…

: β

β

: β

( )( )( 1)
ˆ, , ,t t t

j iJ ix ε+ +… β .

 (3.31) 

As mentioned above, one of the prerequisites to perform a significance test is to know in advance the 
sampling distribution of Θ  in order to calculate the exact -valuep . In the present case, due to the 
complexity of the relationships among the components of the system this may be very difficult or even 
impossible considering that the test statistic has an unknown - dimensionalJ  distribution under the 
null hypothesis. 

To overcome this problem without the simplistic and sometimes doubtful assumption that the 
sampling distribution of Θ  under 0H  is approximately equal to a known theoretical distribution (e.g. 
normal, exponential, t-student, 2χ among others) a resampling method 4 can be used to estimate a 
reasonable approximation for the exact -valuep  of the test statistic Θ . These methods, sometimes 
termed as Monte-Carlo test, randomisation test, permutation test, or bootstrap, are suitable to estimate 
confidence intervals and significance probabilities for problems with very limited datasets and 
unknown or -at most- partially known distribution function (Dudewicz 1992, Canty 1998). The 
permutation test  is a nonparametric or distribution-free test, and will be employed here because of the 
following reasons: first, it allows using any test statistic that may be considered meaningful, and 
second, it can be used even if the size of the population is finite (Good, 2000). 

As already mentioned, in order to test the hypothesis given by (3.31), a test statistic Θ  that measures 
the level of dependence between the variables is needed. Furthermore, it should consider that jx  and 
Q  are not alone, but there are 1J −  additional explanatory variables. Thus, the simplest test statistic 
in such a case would be the estimator Φ  defined in (3.10). The test statistic Θ = Φ  is a large number 
under ( )

0
jH , and conversely very small if ( )

0
jH  should not be true.  

The rationale of this test is as follows: since F  -the distribution function of Θ  under the null 
hypothesis- is unknown, F̂ -an EDF5 obtained from the simulated datasets under the null hypothesis- 

                                                      
4  Though the resampling methods were an old idea, they were not extensively used until the late 1970’s mainly 

due to lack of computer power not commonly available in those days. Despite the fact that fast computers did 
not exist until the 1960’s, the first real use of such a method was carried out by W. S. Gosset (“Student”) in 
1908 to corroborate its famous t-distribution. Later on, in 1935, R. A. Fisher applied for first time a 
randomisation test to estimate p-values and some years later, Fermi, von Neumann, N. Metropolis and S. 
Ulman introduced the term Monte Carlo Simulation around 1948 (Hammersley and Handscomb 1964; 
Dudewicz 1992). For the reasons mentioned above, Monte Carlo Simulations and related techniques have 
been vastly used for spatial analysis (Davison and Hinkley 1997), especially since its reintroduction by Efron 
in 1979. 

5  Empirical Distribution Function. 
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is said to be minimal sufficient for F (Davison and Hinkley 1997). In order to estimate F̂ , R  batches 
of artificial data sets, each of size 0n , have to be generated without replacement from D  (Wilks 
1995). 

Let the -thr  simulated data set be denoted by *
rD , with 0 1, ,*

rn nT r R= = ≤ =D D … . As 

jx  is supposed to be independent from Q  under the null hypothesis, a random permutation of jx , 
denoted by *

jx  , should not produce any effect in the selected test statistic, had jx  been  replaced by 
*
jx  in the original set D . In the present case, the result of such substitution is called the -thr  

simulated data set *
rD . Further on, the test statistic will be evaluated using *

rD  and the result will be 
denoted by *

rϑ . Since D  is a random sample, there are 0!n  equally likely permutations of jx . As 0!n  
is a large number, for practical reasons R  will be limited to 1000R = or perhaps 10000R =  
randomly selected permutations. Based on these results, the EDF that mimics the unknown 
distribution function (F ) can be calculated, and from it, the proportion of the random *

rϑ  that are 
smaller than or equal to the observed ϑ  is finally estimated. Such proportion is called the Monte Carlo 
-valuep . Formally it can be calculated by 

* *

mc
0!

#( ) #( )-value
1

p p
n R
ϑ ϑ ϑ ϑ≤ ≤= ≅ =

+
. (3.32) 

Where mcp  is the Monte Carlo -valuep , and # denotes the number of permutations in which the 
event *ϑ ϑ≤  occurs. 

In general, the algorithm for the significance test is as follows: 

Algorithm 4 

1. Given a functional form ( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… , and the random sample D , 
estimate β̂  so that min!Φ →  The test statistic is then ϑ = Φ . 

2. For all 1, ,r R= … . 
a. Generate t

ijx
∗  as a random permutation of t

ijx , with 1, , 1, ,i n t T= =… … . 
b. Generate the simulated data set *

rD  replacing t
ijx  by t

ijx
∗ . 

c. Based on *
rD  estimate *ˆ

rβ so that * min!rΦ →  The test statistic is then * *
r rϑ = Φ . 

3. Sort ϑ  among * 1, ,r r Rϑ = …  so that 
* * * *
(1) ( 1) ( ) ( )r r Rϑ ϑ ϑ ϑ ϑ−≤ ≤ ≤ ≤ ≤ ≤" " . (3.33) 

4. Estimate the Monte Carlo -valuep  as in (3.32). In this case the one sided test statistic is equal to 

mc
1-value
1

rp p
R
−≅ =
+

. (3.34) 

5. Select a level of significance (say, 5%α = ). 
6. Make a decision: 

If -valuep α≤  then, 
  ⇒ Reject ( )

0
jH  in favour of ( )j

AH at the level of significance α , then 
 ⇒ Conclusion: At this level of significance variables t

iQ  and t
ijx  are certainly not 

independent. 
  Else, ( )

0
jH can not be rejected. 
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3.3.8 Analysis of Results 
The empiric probability density functions (PDF) of the explanatory variables used to model the long-
term mean of the annual specific discharge are far from being normally distributed or closer to any 
other theoretical distribution as can be seen in Figures 3.2 and 3.3. The same is true for the explained 
variable. 

0 1000 2000 3000 4000 5000
x1 [km2]

0

0.1

0.2

0.3

0.4

f(
x 1

) 
[-

]

2 3 4 5 6 7 8 9 10 11 12 13
x2 [°]

0

0.1

0.2

0.3

f(
x 2

) 
[-

]

1 2 3 4 5 6 7 8 9 10 11 12
x3 [°]

0

0.1

0.2

0.3

0.4

f(
x 3

) 
[-

]

4 5 6 7 8 9
x4 [°]

0

0.05

0.1

0.15

0.2

0.25

f(
x 4

) 
[-

]

2 3 4 5 6 7 8 9 10
x5 [°]

0

0.1

0.2

0.3

f(
x 5

) 
[-

]

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4
x6 [°]

0

0.1

0.2

0.3

0.4

f(
x 6

) 
[-

]

2 4 6 8 10 12 14 16
x7 [°]

0

0.1

0.2

0.3

0.4

0.5

f(
x 7

) 
[-

]

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
x8 [1/km]

0

0.1

0.2

0.3

f(
x 8

) 
[-

]

0 1 2 3 4 5 6 7 8 9
x9 [-]

0

0.1

0.2

0.3

0.4

f(
x 9

) 
[-

]

4 6 8 10 12 14 16 18 20
x10 [%]

0

0.1

0.2

0.3

0.4

f(
x 1

0
) 

[-
]

4 8 12 16 20 24 28 32
x11 [%]

0

0.1

0.2

0.3

0.4

f(
x 1

1
) 

[-
]

300 350 400 450 500 550 600 650 700 750 800 850 900
x12 [m]

0

0.04

0.08

0.12

0.16

0.2

f(
x 1

2
) 

[-
]

100 200 300 400 500 600 700 800
x13 [m]

0

0.1

0.2

0.3

f(
x 1

3
) 

[-
]

36 40 44 48 52 56 60 64 68
x14 [%]

0

0.1

0.2

0.3

f(
x 1

4
) 

[-
]

60 70 80 90 100 110 120 130
x15 [mm]

0

0.1

0.2

0.3

0.4

f(
x 1

5
) 

[-
]

0 10 20 30 40 50 60 70 80 90 100
x16 [%]

0

0.2

0.4

0.6

f(
x 1

6
) 

[-
]

Figure 3.2 Histograms depicting the empiric PDF of all physiographic explanatory variables considered in 
this study. 

Using the modified Backward Elimination (BE) and the modified Forward Selection (FS) (Section 
3.3.3 and Section 3.3.2) the relative importance of the variables can be assessed. The results using a 
nonlinear model such as 0

1

j
J

i ij i
i

Q x ββ ε
=

= +∏   with 2 1 1, ,iw i nϕ = ∧ = ∀ = …  are shown in 
Table 3.3. 
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Table 3.3 Relative importance of variables used to model the long-term mean specific discharge according to 
BE and FS approaches. 

 strongest weakest  

BE→  20x  4x  3x  15x  13x  7x  1x  5x  11x 17x 19x 10x 8x 6x 9x 18x 2x 30x  32x  14x  12x  16x  

 20x  4x  3x  15x  13x  17x  1x  5x  11x 19x 2x 10x 18x 30x 7x 8x 9x 6x  32x  14x  12x  16x FS←

Table 3.3 shows a direct consequence of the non-linearity of the water cycle, i.e. the different rankings 
obtained by using Algorithms 1 (FS) and 2 (BE) independently. The former begins with the strongest 
variable until the weakest variable is found, whereas the latter does the opposite. Results have shown 
that these procedures differ always in a number of cases (not shaded in the Table). In this case 
however, they have agreed on the five strongest and the four weakest variables. 
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Figure 3.3 Histograms depicting the empiric PDF of the land cover and meteorological variables, as well as 
the specific annual discharge (the explained variable) considered as long term averages from 1961 
to 1993. 
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It should be noted that both methods have only calculated  ( )1 2J J +  combinations of input variables, 
which in this case is equal to 253 out of the 4,194,303 possibilities. This represents a big disadvantage 
for both approaches because many ‘good’ models could have not been evaluated. 

As can be inferred from the previous example, selecting the best model can be stated as a 
combinatorial problem with the following objective function: given a random sample, find the 
minimum number of significant variables that explain as much of its variance as possible. To solve 
such problem stochastic optimization methods such as simulated annealing or neural networks can be 
used. 

Since the number of possible models is very high in the present case and hence very costly in 
calculation time (e.g. a computer employing one second per model would need about 48.5 days to 
evaluate all combinations), the previous methods may help to discard some variables that represent the 
same factor but have been calculated in a different way, as it is the case with the variables 2 7, ,x x… . 

In other words, these  methods  may  help  to  assess  the  relative  importance  of  the  variables 
among each different sub-group of factors. So, using this procedure only the variables 
{ }1 4 8 9 11 13 15 17 18 19 20 30, , , , , , , , , , ,x x x x x x x x x x x x  have been selected for the next step, i.e. ‘to find the best 
model’. 

In this case, building all possible models still is a feasible approach because only 12 variables have 
been left after the first screening. The results obtained can be appreciated by means of a *pC  plot 
shown in Figure 3.4. Additionally, the composition of some of the best performing models has been 
presented in Table 3.4. 
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Figure 3.4 vs. * *pC p  plot showing the best 5 models for each *p  using the following variables
{ }1 4 8 9 11 13 15 17 18 19 20 30, , , , , , , , , , ,x x x x x x x x x x x x . The number at the right of the marker (+) indicates
the model’s number. For models where 8*p ≥  only the number of the best model is shown. 
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The last row in Table 3.4 shows the relative frequency of occurrence of a variable only with regard to 
the subset of best performing models shown in Table 3.4 by ( ). 

These frequencies show that the most common variables among those of the subset are mean 
precipitation and trimmed slopes 15-85 ( 20 4,x x ), followed by mean temperature in January ( 30x ); 
then by mean fraction of impervious cover and drainage density ( 18 8,x x ); then another land cover 
related variable, namely the fraction of permeable cover ( 19x ), and then all the rest. These results are 
not surprising because the system is mainly driven by precipitation, topography, and macroclimate; 
thus they appear as the most commonly used variables.  What is more interesting is the fact that one of 
the variables representing land cover is very often used as an explanatory variable describing the mean 
discharge of mesoscale basins. 

Table 3.4 Design matrix showing the composition of some of the best models depicted in Figure 3.4 (1 ≡ a 
variable is included in the model, 0 ≡ otherwise). For each model the value of the estimator Φ and 
the Jackknife statistic θ  is also presented (  ≡ Subset of the best models). 

Model Number 1x  4x  8x  9x  11x  13x  15x 17x 18x 19x 20x 30x Φ  θ  Description 

2           1  0.5427 0.5948  

1026  1         1  0.4299 0.4889  

1538  1 1        1  0.3717 0.4697  

1035  1       1  1 1 0.3354 0.4300  

1539  1 1        1 1 0.3381 0.4729  

1043  1      1   1 1 0.3529 0.4755  

1570  1 1    1    1  0.3535 0.4764  

1547  1 1      1  1 1 0.3209 0.4896  

1039  1       1 1 1 1 0.3285 0.4270  

1163  1   1    1  1 1 0.3313 0.4741  

3587 1 1 1        1 1 0.3316 0.4849  

1099  1    1   1  1 1 0.3319 0.4680  

1551  1 1      1 1 1 1 0.3102 0.4885  

1567  1 1     1 1 1 1 1 0.3068 0.5315  

1631  1 1   1  1 1 1 1 1 0.3037 0.5835  

1663  1 1   1 1 1 1 1 1 1 0.3015 0.7538  

1791  1 1  1 1 1 1 1 1 1 1 0.3000 0.8293  

2047  1 1 1 1 1 1 1 1 1 1 1 0.2994 0.8766  

4095 1 1 1 1 1 1 1 1 1 1 1 1 0.2992 0.9248 Saturated model

Frequency [%] 2 22 12 0 2 2 2 2 12 4 22 18 Only considering models showing a . 

Another important conclusion that can be drawn from Table 3.4 is that using all available variables for 
a given phenomenon does not always lead to the best model. This fact is related with the problem’s 
dimensionality6. In the present case, the dimensionality of the system is around 7. This indication 

                                                      
6  The dimensionality of a system is the minimum number of linear combinations of principal components that 

explain as much as, say 95%, of the total variance observed in its correlation matrix. 
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suggests the adequate number of variables that a model should have. In the present case, the subset of 
best performing models has between 3 and 6 variables. 

The next step is to select from the short list of “good” candidates the best one. In other words, which is 
the most reliable model within this subset that satisfy the constrains given by (3.2) and has variables 
with a level of significance, say 5% 0.05α = = ?  

As can be seen in Table 3.4, the estimator Φ  alone does not lead to the best model, which from this 
point of view only, is the saturated model (No. 4095) since it exhibits the minimum value for the 
estimator (0.2992). The answer to the first part of the question can be given by calculating the 
Jackknife or cross-validation statistic θ  also depicted in Table 3.4. Using this indicator, the robustness 
of a model can be assessed. Not surprisingly, the saturated model gets the highest value (0.9248), this 
means it is to be considered the least reliable model. Therefore, a trade-off between  Φ  and θ  should 
be taken into account in order to make a wise selection decision, which leads to pick models No. 1039 
and No. 1035 as those with the lowest and second lowest Jackknife statistic θ  (0.4270 and 0.4300 
respectively). 

The final step is then to determine whether all variables are significant or not at a certain level of 
significance chosen beforehand. The described simulation technique explained before delivers the 
estimates for the -valuep  shown in Table 3.5.  

Table 3.5 Results of the permutation test for models No. 1035 and No. 1039 using R=500. 
The tabulated figures are the Monte Carlo p-values as fractions. 

Model 
Number 4x  18x  19x  20x  30x  

1035 0.0020 0.0160 - 0.0000 0.0360 

1039 0.0080 0.0260 0.3740 0.0000 0.0440 

These results lead to the final decision, namely: model number No. 1035 is selected as “the best” one, 
since all its variables have successfully passed the significance test. Hence, all ( )

0
jH  can be rejected in 

favour of the corresponding ( )j
AH , for all 4,18,20,30j =  at 5% level of significance. As a 

conclusion it is possible to state that all its variables are certainly not independent of the explained 
variable at the given level of significance. 

The most significant variable in model No. 1035 is precipitation ( 0.0% 5%mcp <� ) and the least 
significant mean temperature in January ( 3.6% 5%mcp <� ). Model No. 1039, although with the 
best cross-validation statistic, has one variable ( 19x ) failing to pass the significance test and thus it is 
dropped out. This variable corresponds to the fraction of permeable areas whose 

37.4% 5%mcp >� . 

Finally, the model that best describes the mean specific discharge occurring within a catchment 
located in the Upper Neckar Basin, based on the provided information can be written explicitly as 

( )2 0.6709 0.1089 1.8860 1.4226
4 18 20 300.559 10i i i i i iQ x x x x− −= × + ε  (3.35) 

This model has been calculated considering all observations contained in the sample (n=46). The 
relationship between observed values and calculated ones are depicted in Figure 3.5. This picture 
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shows also two likely outliers encircled by a doted line. These points, which may contain big errors, 
e.g. due to faulty measurements, can influence drastically the model performance. They should be 
carefully checked, and if the errors persist then they should be removed from the data set. The 
identification of outliers and the utilization of more robust estimators will be explored in the next 
chapter. 

The proposed model shows clearly that land cover is a significant variable with regard to the 
estimation of the long term mean specific discharge, but, since it is a static model, it can not be used to 
assess the hydrological impacts triggered by land cover changes [see (3.3) to (3.5)]. It is presented 
here because it helps to show the advantages of the proposed method using a practical but 
computationally simple example rather than to provide an answer to the research question stated in 
Chapter 1.  
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Figure 3.5 Scatterplot showing the relationship of  vs.  obs calQ Q  using the model (No. 1035) given by (3.35). 

A sample of size n 46=  was used in the calculation. Outliers have not been removed. 

In order to provide an answer to the research question, time dependent models should be calibrated 
using the proposed method. Chapter 4 will be devoted to this task. Models aimed at estimating the 
specific discharge, the specific volume of high flows, the specific peak discharge, among others, at 
annual or seasonal basis will be presented afterwards. 
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Chapter 4  

Modelling Characteristics of the Runoff Process with 
Time-Dependent Data 

4.1 Annual Specific Discharge 
The influences of the land cover change, as was stated before, can only be detected when some 
variables involved in the model reflect the transformations occurred in the system during a significant 
time span (e.g. from 1960 to 1993). A reasonable time interval in which the climatic factors should be 
accumulated or evaluated seems to be a six-month interval, which corresponds to the water-seasons of 
a given year, i.e. winter and summer (see Section  2.7). By doing so, two important conditions can be 
fulfilled, namely: 1) the short-term auto correlation of climatic factors becomes insignificant; and, 2) 
the seasonal fluctuations of the climatic factors can be clearly set down. 

Two models are to be formulated in order to attain the previous conditions, namely 

( )1 2, , , , 2, 3 1, , 46 1961, ,1993t t t t t
il i i iJ iQ f x x x l i tε= + = = =… … …β , (4.1) 

for winter ( 2l = ) and summer ( 3l = ) respectively. The selection of robust models fulfilling the 
constraints stated in Section 3.2 is to be described in following paragraphs. 

4.1.1 Description of Time-Dependent Variables 
At this stage and before any attempt to model the seasonal specific discharges (4.1) is carried out, it is 
useful to visualize the empiric PDF of the time-dependent factors for both winter and summer. Figure 
4-1 shows histograms for the percentages of a given land cover type whereas Figure 4-2 depicts 
histograms of some climatic factors as well as specific discharge for winter and summer. 

Figure 4-1 resembles the upper row of histograms shown in Figure 3.3, but there is an essential 
difference in the current ones. Histograms shown in Figure 4-1 do not depict the PDF of 33-year mean 
for each land cover type as it was in the previous case but rather than that the PDF of the time series of 
land cover types (see Figure 2.17) considering all spatial units. All distributions are unimodal and have 
a sample size equal to 184. Location and dispersion statistics for these distributions are summarised in 
Appendix 3. Comparing coefficients of variation among these three variables (i.e. land cover shares) it 
is clear that the variable representing impervious cover has the greatest value, and hence the largest 
relative dispersion of the data. This statement is also corroborated by the histogram depicting its 
empiric PDF (see Figure 4.1). The other two land cover variables are also skewed but in a lesser 
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degree than the distribution of “impervious” cover. The ranges of the sample PDFs for forest, 
impervious and permeable cover are [8.5, 98.7], [0.0, 31.0], and [1.3, 87.9] % respectively. Variables 
whose PDF are shown in Figure 4.1 have been evaluated at basin level, i.e. i i⊆ ΩL in equations 
(2.23) to (2.27). 
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Figure 4.1 Histograms depicting the empiric PDF of the land cover types for all spatial units ( i i⊆ ΩL ) from 
1961 to 1993 (Number of observations for each histogram = 184). 

The sample PDF for the specific precipitation in winter shown in Figure 4.2 exhibits a positive 
skewness whereas the PDF of this variable in summer is almost symmetrical. Both, the maximum and 
the minimum semi-annual specific precipitation occur in winter; hence, its standard deviation, as well 
as its coefficient of variation, in this season, is greater than that estimated in summer. In spite of this, 
the mean specific precipitation in winter is less than that in summer, and conversely, the mean specific 
discharge in winter is greater than that in summer. Due to this fact, the coefficient of variation of the 
specific discharge in summer is greater than that in winter. These characteristics of the water budget 
can be visualised in Figure 4.2. (Location and spread measures for all distributions shown in Figure 
4.2 are summarized in Appendix 3). Such different behaviours of the water cycle fully justify the 
previous proposal [see point 2) above] to estimate two models, one for each water season.  

PDFs for the maximum and the mean temperatures in January and July respectively are skewed and 
multimodal, but their relative variability in both cases during summer (July) is smaller than that in 
winter (January) (see the coefficient of variation in Appendix 3). 

4.1.2 Assessing the Dimensionality of the System 
In a complex system, such as the one being analysed here, where each explanatory variable jx  is 
mutually correlated with all the rest, it is very important to estimate the maximum number of variables 
a model should have in order to reduce as much as possible the effects of the existing 
multicollinearity. If a model has an excess of predictors, i.e. overparametrization, the sampling 
distributions of the estimated parameters β̂  become very broad. This, in turn, may lead to confusions, 
errors in estimation, and even worse, to apparent contradictions when an estimated parameter comes 
up from the optimisation process with the opposite sign as the one expected (Rousseeuw and Leroy 
1987, Wilks 1995). One viable approach to address such difficulty is presented below. 
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Figure 4.2 Histograms depicting the empiric PDF of climatic factors and specific discharge for all spatial 
units from 1961 to 1993. 

                                                      
1  Number of valid observations in the corresponding sample. 
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Let the correlation matrix of all potential explanatory variables ( )1 2, , , Jx x x…  be represented by [ ]R , 
a non-singular and symmetric matrix. Based on this matrix, J  eigenvectors je  and their 
corresponding eigenvalues jω  can be calculated, which should satisfy the equation  

[ ] j j jω=R e e . (4.2) 

Subsequently, the eigenvalues are arranged in descending order, namely 1 2 , , Jω ω ω≥ ≥… . Based on 
them, the dimensionality of the system is the index k  that satisfies the following relationship 

( ) 1

1

v

k

j
j
J

j
j

k
ω

ν
ω

=

=

= ≥
∑

∑
, (4.3) 

where ( )v k  is the proportion of the total variance retained by the first k  eigenvectors and ν  a 
threshold parameter. For instance, 0.9ν =  means that at least 90% of the total observed variance in 
the system is described with k  eigenvectors. Hence, it implicitly gives an insight into the maximum 
number of variables that a model should contain in order to retain a certain minimum amount of 
information describing the variability of the system. In general, ν  lays within the interval 
0.85 0.95ν≤ ≤ . 

In the present case, the matrix [ ]R  has been calculated using the following set of variables, 
{ }1 7 8 9 11 12 14 15 16 17 19 21 30, , , , , , , , , , , , 1, , 46 1961, ,1993x x x x x x x x x x x x x i t∀ = =… …  whose results for the 
winter season are shown in Table 4.1. In this matrix, only those variables exhibiting the highest 
correlation with 2Q  have been included. For example, from the subset of variables describing slope, 
only 7x  has been selected because it has the highest correlation with the explained variable among the 
subset comprised by { }2 3 4 5 6 7, , , , ,x x x x x x . The same has been done with those describing aspects, 
elevation, temperature, and land cover. 

Table 4.1 Correlation matrix [ ]R  for the winter season. Additionally, a vector containing the correlation of 
each variable with the output variable 2Q   has been included at the left. 

 2Q  1x  7x  8x  9x  11x  12x  14x  15x  16x  17x  19x  21x  30x  

1x  -0.0079 1.0000      

7x  0.3501 -0.1185 1.0000   Symmetric 

8x  -0.0599 0.1402 -0.6907 1.0000    

9x  -0.2256 -0.0204 -0.0097 -0.0330 1.0000    

11x  0.0619 -0.0788 0.5371 -0.7303 0.1269 1.0000    

12x  0.3352 -0.0539 0.2628 -0.0726 -0.4182 -0.1512 1.0000    

14x  0.1954 -0.1252 0.7575 -0.6671 0.0403 0.6237 0.1382 1.0000    

15x  -0.3527 0.0570 -0.2276 -0.1519 0.1428 0.1786 -0.5277 -0.2578 1.0000    

16x  0.3781 -0.1458 0.8233 -0.4100 -0.1788 0.2785 0.2877 0.4858 -0.1509 1.0000    

17x  -0.1871 -0.1238 0.4692 -0.6627 0.2642 0.4883 -0.0914 0.5410 0.0618 0.0820 1.0000   

19x  0.2174 0.1170 -0.4008 0.5710 -0.3122 -0.3990 0.1765 -0.4636 -0.0317 -0.0394 -0.9707 1.0000  

21x  0.7100 0.0182 0.1166 -0.1259 -0.2379 0.0780 0.2805 0.0597 -0.0942 0.1059 -0.1150 0.1741 1.0000 

30x  0.1336 0.0133 -0.0508 0.0179 0.0612 0.0131 -0.1605 -0.0189 0.0860 -0.0676 0.0321 -0.0517 0.1810 1.0000
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As shown in Table 4.1, the correlation coefficients, either positive or negative, indicate that each 
explanatory variable is in higher or in lesser degree related with everything else. Based on this result it 
can be inferred that finding linear independent observables to describe a complex system seems to be 
improbable.  

The eigenvalues of matrix [ ]R  (i.e. for winter season) are 

[ ]T 4.295  2.426  1.282  1.086  0.970  0.875  0.691  0.544  0.391  0.217  0.154  0.056  0.014j =e . 
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Figure 4.3 Curve showing the relative variance retained by the k  first eigenvectors of the matrix [ ]R for 
winter. Additionally, the crosses show the results for the summer season. The correlation matrices 
have been calculated with time series from 1961 to 1993. 

In order to assess the dimensionality of the system, it would be worthwhile to plot the index k  versus 
( )v k . Figure 4.3 illustrates the results of applying (4.3) to the previous eigenvalues. The horizontal 

dashed line in this Figure shows the threshold level chosen for this analysis, i.e. 0.9. This line, in turn, 
intersects the heavier line at a point whose abscissa lies in the interval [7,8]. The crosses depicted in 
Figure 4.3, which illustrate the values obtained for the summer season, show a very high level of 
agreement with the ones obtained for winter. This corroborates that the basic laws governing the 
system, either in winter or in summer, are the same, even if the climatic variables behave quite 
differently. Thus, the dimensionality of this system, given the available information, is about seven. 
This indicates that a conservative number of variables aimed to describe the system should be around 
this value in order to restrict, to a large extent, the existing and unavoidable multicollinearity amongst 
the explanatory variables. 

Which variables should then be selected? One approach may be to use the first seven uncorrelated 
principal components as predictors as proposed by Jolliffe (1986). This option, although it filters the 
“noise” present in the data, has the following shortcoming: the principal components often have no 
physical interpretation, and thus would not allow in this case isolating the effects of land cover change. 
Instead, the method described before is to be proposed to tackle this issue. The next paragraph will 
describe this procedure in detail. 
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4.1.3 Finding a Robust Model 
In essence, the selection procedure used in this case is quite similar to that employed in Section 3.3.8, 
although there are some differences, namely 

1. Firstly, convex and continuously differentiable functions should be proposed. Three types are 
suitable for this case. The first one is a potential model (shortened to POT) that considers all 
possible explanatory variables as having nonlinear relationships with the explained variable. The 
second model type, thereafter called MLP1, regards the climatic variables 21x  and 22x  as the only 
ones having a nonlinear relationship with the explained variable whilst the rest are considered 
linearly related with the explained variable. Lastly, the third model type (shortened to MLP2) 
regards the land cover variables as the only ones exhibiting linear relationships with the output 
variable. These models can be written explicitly as 

( )0
jt t t

il ij i
j

Q x= +∏ β
β ε   , (4.4) 

( ) '

0 ' '

'

jt t t t
il j ij j ij i

j
j j

Q x x

≠

= + + +∑ β
β β β ε   , (4.5) 

 and 

( )0 *
jt t t t

il j ij J ij i
jj
j

Q x x
∈

∉

= + + +∑ ∏
U

U

β
β β β ε

 

, (4.6) 
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2. The estimators or objective functions to be minimised in both cases are twofold, one with 1ϕ = , 
and the other with 2ϕ = . This will allow assessing the sensitivity of the models with regard to 
existing outliers. 

3. A weighting factor for each observation is to be used according to (3.13). For such equation the 
threshold 2.5cZ = . 

4. The goodness of the fit of all models pre-selected by both the Mallows’ *pC  and  the Jackknife 
statistics should be additionally assessed by the following quality measures (Bárdossy 1993, 
Lettenmaier and Wood 1993, Wilks 1995) 
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1 l̂ lE Q Q= −  , (4.7) 

( )22
1 10

1 ˆ
T n

t t
il il

t i

E Q Q
n = =

= −∑∑  , (4.8) 

3 2E E=  , (4.9) 
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l
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l̂Q =   The mean of the calculated values based on the optimised model. 

lQ =  The mean of the observed values. 

1E =  The degree of correspondence of the calculated mean and the observed mean, often 
termed as BIAS. 

2E =  Mean square error, or simply MSE, represents the mean of the square of the 
differences of the calculated and the observed values. 

3E =  The positive square root of mean square error (RMSE). 

4E =  The relative root mean square error (RRMSE). 

5E =  The mean absolute error (MAE). 

6E =  The relative mean absolute error (RMAE). 

7E =  The Pearson product-moment coefficient of linear correlation (r) between l̂Q  and lQ . 

5. A supplementary criterion to assess the relative information contained in a given model compared 
with the so-called saturated model is to be incorporated into this analysis. The goal being that this 
criterion should complement and strengthen the selection of best performing models carried out by 
the Mallows’ *pC  statistic as well as the Jackknife estimator θ . 
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 A suitable criterion constitutes the Akaike Information Criterion (or simply AIC ), which was 
introduced by Akaike (1973) for evaluation of autoregressive models in time series analysis. 
According to Akaike, a statistic that is proportional to the sum of both the maximum log-likelihood 
of the model with respect to the observed data and its number of parameters provides an adequate 
basis for the comparative evaluation of the model. Within the context of this study, i.e. a model 
with j  explanatory variables, the AIC  can be calculated as follows (based on Venables and 
Ripley 1997) 

0
0

AIC ln 2p
j n p

n
∗ ∗

 Φ  = +   
, (4.16) 

 where p∗Φ  and p∗  have the same definitions as in Section 3.3.5. The best model according to the 
Akaike’s criterion minimises AICj . 

6. Each observation, either in winter or in summer, that is to be used to model (4.1) must satisfy a 
water budget constraint; otherwise, it will be considered as an outlier, and hence will be excluded 
from the optimisation process. Based on the continuity equation (i.e. conservation of mass), the 
water balance equation of a given basin during a time interval can be stated as follows: 
precipitation should be equal to the sum of evapotranspiration, runoff, water withdrawal from or 
water transfer to the basin (negative), and the change in water storage in both groundwater and 
surface reservoirs, all expressed in [mm]. 

 This balance of mass can be further simplified. Firstly, water withdrawals or transfers are not 
significant in the present case; and secondly, changes in water storage, whose estimation proves to 
be very difficult due to its non-steady character, can be neglected when the water balance equation 
is applied for long term intervals as is the case in the present study (Refsgaard et al. 1989, Dooge 
1992). 

 Based on these simplifications and the available statistical data for the Upper Neckar Basin (e.g. 
expected annual evapotranspiration is about 560 mm), two constraints can be formulated with a 
99% level of significance 

21 280 190 [mm]t t
i ix Q≤ − ≤  , (4.17) 

22 3260 590[mm]t t
i ix Q≤ − ≤  . (4.18) 

 The interpretation of (4.17) and (4.18) is as follows: the evapotranspiration in a given basin i  and 
at time t  should be greater than or equal to 80 and 260 mm, and less than or equal to 190 and 
590 mm in winter and summer respectively, at the given level of confidence. Additionally, these 
constraints filter out information from those basins where the underground catchment does not 
match with its surface counterpart (e.g. derived from basin’s topographic features), which in turn, 
induce severe problems in the water balance of the basin. This situation normally occurs in basins 
within karstic geological formations. 

The procedure and criteria employed to select the best model and to rank them according to their 
degree of robustness and overall quality is described below. 
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Algorithm 5 

1. Select ( )f i  and optimise2 all possible models (i.e. *min pΦ ) given a set of variables (e.g. in this 
case models13 8191J = ⇒ ) using two estimators: one with 1ϕ = , and another with  2ϕ = .  

2. Select all models whose * *p JC C≤ ; where *JC  is the Mallows’ statistic of the saturated model. 
These models constitute the subset of the best performing ones estimated for a given ϕ .  

3. Calculate for the previously selected subsets the Jackknife statistics =1)θ(ϕ  and =2)θ(ϕ . 

4. Rank models in ascending order with regard to their combined validation statistics 

=1) =2)θ = θ θ( (ϕ ϕ+  and chose as the most robust model for a given functional type (POT, MLP1 or 
MLP2) the model that exhibits the minimum combined value. 

5. The best model, and hence the most suitable function among the three attempted, is to be selected 
from the short list of robust models based on the results obtained for their respective quality 
measures [see (4.7) to (4.13)]. Additionally, all variables constituting the best model should have a 
p-value ranging from 5% to 10%. 

The procedure described above as well as the method employed to optimise, select, test, and validate 
these models has been implemented within a set of programs written in Visual Fortran. These 
programs have been compiled along with a graphical user interface that helps the user through the 
modelling steps as can be seen in Appendix 6. The final product has been called MDS, which stands 
for Model Development and Simulation. Its modular structure would also allow including new 
subroutines and model types, if required, with minimum effort. 

4.1.4 Selecting a Robust Model for Winter 

The starting point consists of selecting among the available observables described in Chapter 2; those 
of them which are logically suitable to be considered as potential explanatory variables of the specific 
discharge in winter 2Q . These variables are in this case { 1, ,19,21,30,32}jx j = … . Afterwards, 
modified forward selection can be applied to rank this set of variables from the strongest to the 
weakest and then to use this information together with a correlation matrix derived from the same set 

                                                      
2   The non-linear unconstrained optimization of the objective function Φ  was carried out with the Generalized 

Reduced Gradient method originally proposed by Wolfe (1963) and later generalized by Abadie and 
Carpentier (1969) [There are many Fortran subroutines available for this method, e.g. in IMSL Fortran 
Libraries (1997), or the GRG algorithm, among others]. This procedure is iterative and employs a Hessian 
estimated by central differences and a quadratic extrapolation technique. The problem under consideration 
can be formulated as 

 
β

Subject to β

min ( , ( , ))g Q fΦ =

−∞ ≤ ≤ ∞

x
, 

 where g  and f  are convex and continuously differentiable functions.  
In order to ease and speed up the convergence of the solution, the domain of the input data andQ x , 
originally in [0, ]+\ has been transformed to the interval [ ,1]ε . Those values originally equal to zero have 
been modeled as a very small positive number, e.g.  101 10ε −= × , just to avoid likely indeterminations 
during the calculations. All parameters after the optimization are transformed back to their original domains. 
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of data to pre-select a short list of potential explanatory variables. This list, ranked according to the 
modified forward selection criterion, consists of { 21,16,11,19,15,7, 8,14,12,17,9, 30,18}jx j = . 
This procedure, as it happens with all stepwise algorithms, would not necessarily select the best model 
(Draper and Smith 1981). However, it can be used to reduce the size of potential predictors before all 
possible models are estimated. 

The proposed method (Section 4.1.3) can be applied to this dataset aiming at obtaining a robust model 
for winter, which, in turn, delivers the results summarized in Table 4.2. It should be noted that this 
Table only shows the three best models for each type ordered in decreasing order of robustness (out of 
a total of 49,146 models generated and evaluated for winter).  

From the original dataset, a number of outliers have been isolated by means of constraints given by 
(4.17). This, in turn, has reduced the sample size to 643. The nature of the high uncertainty present in 
those flawed observations cannot be addressed in this study, but in general, they can be attributed 
either to errors in measurement and/or interpolation techniques, or to divergence between the 
morphological and the underground catchments due to complex geological formations (e.g. a karstic 
formation). 

The non-linear relationship between the *pC  and the AIC  statistics can be clearly seen in Figure 4.4. 
This result with respect to a model’s performance implies that the Mallows’ statistic is much more 
sensitive than the Akaike’s information criterion. This does not mean that they show contradicting 
results. In fact, in both cases good models can certainly be found at low values. Due to this fact, 
further analysis will only show one of them as a measure of relative performance. 
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Figure 4.4 Curve depicting the non-linear relationship between the Mallows’ *pC  statistic and the AIC for 
the sample of best performing models described in Table 4.2. The best models in both cases
exhibit small values. 

From Table 4.2 it can be assessed that the most frequent variables within the subset of more robust 
models are those variables representing the specific seasonal precipitation, mean slope in floodplains 
and buffer zones of streams, mean field capacity, and fraction of south-facing slopes. Less frequent are 
the land cover related factors, but not by far with the latter. It can be also seen in this Table that there 
is no model within this subset that does not have at least one land cover variable. 
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The significance test for those models marked with a ‘ ’ in Table 4.2 shows that all variables, with the 
exception of 8x , are definitely significant at the 10% level, and in some cases even at 1% . Hence, the 
null hypotheses can be safely rejected at the 10% level of significance in favour of the alternative 
hypotheses, i.e. these variables are certainly not independent from the explained variable. Results of 
the Monte Carlo simulations carried out with 500 replicates are shown in Table 4.3. 

Table 4.2 Sample of the best models for winter (1 = a variable is included in the model, otherwise it is
omitted). Values of the optimum estimators (minimum) with 2=ϕ  and 1=ϕ  are presented, as 
well as the results for the cross validation and the Akaike's information criterion. The most robust
models are highlighted with the symbol  . All values are dimensionless since the optimisation 
has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 7x  8x  9x  11x  12x  14x  15x  16x  17x 18x 19x 21x 30x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3729 1 1  1   1    1 1  0.967 12.6 4309.2 0.999 20.55 0.992  

3829 1 1  1 1 1 1  1  1 1  0.953 9.5 4306.1 0.986 20.24 1.004  

3837 1 1  1 1 1 1 1 1  1 1  0.949 8.5 4304.9 0.984 20.24 1.006  

Multilinear-potential models: MLP1 

7827 1 1  1   1   1 1 1 1 0.940 5.1 4296.6 0.971 20.33 0.995  

7318 1   1   1  1 1  1 1 0.942 5.1 4296.6 0.970 20.35 0.996 

7315 1   1   1   1 1 1 1 0.942 5.1 4296.6 0.970 20.35 0.996 

Multilinear-potential models: MLP2 

3733 1 1  1   1  1  1 1  0.934 4.8 4291.0 0.962 20.29 0.978  

3734 1 1  1   1  1 1  1  0.934 4.7 4291.0 0.962 20.29 0.983  

3731 1 1  1   1   1 1 1  0.934 4.7 4291.0 0.963 20.30 0.986  

It is important to remark that the best models presented in Table 4.3, which have been selected from 
thousands of possibilities because of their outstanding performance in comparison with the others, 
have between 6 and 8 explanatory variables. This range fits extremely well with the previously 
suggested number of variables that this system should have based only on the analysis of the 
dimensionality of the system.  

Table 4.3 Results of the permutation test for models No. 3729, No. 7827, No. 3733 and No. 3734 using
R=500. The tabulated figures are the Monte Carlo p-values as fractions. The estimator has been 
minimised with 2ϕ = . 

Model Type 7x  8x  11x  15x  17x  18x  19x  21x  30x  

3729 POT � 0 0.002 0.008 � 0 - - � 0 � 0 - 

7827 MLP1 � 0 0.148 0.016 0.016 - � 0 � 0 � 0 0.080 

3733 MLP2 � 0 0.042 � 0 � 0 � 0 - 0.008 � 0 - 

3734 MLP2 � 0 0.064 � 0 0.002 � 0 0.002 - � 0 - 

Subsequently, a model should be chosen among those shown in Table 4.3. Models number 3733 and 
3734 are very good candidates since their estimators and validation indicators are the lowest and the 
second lowest according to Table 4.2. Both models are of type MLP2 and have in common all variables 
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with the exception of 18x  and 19x . This means that both can be used depending on the requirements 
since the former relates the fraction of forest and permeable cover whereas the latter relates forest and 
impervious cover with the explained variable. 

By inspection of Table 4.4 it can be established that both models (No. 3733 and No. 3734) perform 
much better than models No. 3729 and No. 7827 with regard to BIAS, MSE, RMSE, RRMSE, MAE, 
RMAE and r. Model 3734 is even better than model No. 3733 in some respects, but for practical 
purposes both can be used indifferently. 

The potential model has the tendency to overestimate its predictions as can be inferred from the 
positive value of its bias ( 1E ). On the contrary, MLP1 and MLP2 models tend to underestimate 
predictions, though their bias is two or three orders of magnitude less than that of the potential model. 

Table 4.4 Quality measures for the most robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3729 POT 0.45 813.0 28.5 0.12 23.6 0.10 0.96 

7827 MLP1 0.00 789.8 28.1 0.12 23.5 0.10 0.96 

3733 MLP2 0.00 785.4 28.0 0.12 23.4 0.10 0.96 

3734 MLP2 0.00 785.4 28.0 0.12 23.4 0.10 0.96 

RMSE ( 3E ) or the square root of MSE ( 2E ) can be thought of as a typical magnitude for predicted 
errors, thus the lower the value the better the fit would be. Once again, selected models exhibit the 
lowest values. RRMSE ( 4E ) relates the overall magnitude of errors with the mean of all observations, 
and therefore can be expressed as a percentage. In this case, the error of MLP2 models is 12.16% with 
respect to the mean of the observations. This value is more sensible to outliers because it is derived 
from the MSE. In this case also the lower the value the better the fit is. MAE and RMAE ( 5E  and 6E  
respectively) are less sensitive to errors as compared with MSE and RMSE respectively. The 
percentage error with respect to the mean is in this case equal to 10.16%. Finally, the correlation 
coefficient ( 7E ) confirms what has been stated before, i.e. that models No. 3733 and No. 3734 are 
among those models showing a high correlation but not the highest, which always corresponds to the 
saturated model. The interpretation of this quality measure should be done cautiously since it reflects 
the association between observed and calculated values but does not account for biases present in the 
predictions (Wilks, 1995). 

Based on all these results, it can be stated that multi-linear models have performed much better than 
the pure potential one. Moreover, models having precipitation as the only variable of the potential sub-
model and the rest in the linear one are in general better than pure potential models; but, they are not 
as good as those having only land cover in the linear sub-model. This, in turn, indicates that based on 
the evidence provided by the sample, land cover factors are linearly related with the total specific 
discharge in winter at a high degree of certainty, say at least 99%. 

The optimised parameters for both models are shown in Table 4.5. Both potential sub-models have 
almost the same values and share the same sign. However, that does not occur in the linear sub-
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models. The signs of these coefficients correspond with the perception one can have about this natural 
system. For instance, precipitation and mean slope without doubts should have a positive sign. In other 
words, the higher their values, the bigger the specific discharge from a given basin will be. Field 
capacity, on the contrary, should have a negative sign because the higher its average value, the bigger 
the quantity of water stored in the soil matrix, and hence, the lesser the expected runoff.  

Regarding the sign of land cover variables, one could expect based on hydrological considerations that 
forests and permeable covered surfaces (e.g. grassland, cropland, meadows, etc.) have to have both 
higher evapotranspiration and infiltration rates than impervious covered surfaces. Additionally, the 
overall roughness of the former is higher than that of the latter, and hence, longer concentration times 
and lesser runoff volumes can be expected. Due to this rationale, forest and permeable cover would 
tend to reduce the seasonal specific yield (thus, a negative sign should be expected in the case of a 
linear sub-model) whereas impervious cover would tend to evaporate less and hence increase the 
seasonal specific yield (thus, a positive sign should be expected in a linear sub-model).  

Although it is sometimes difficult to interpret signs of the terms in empirical models, mainly because 
of multicollinearity among explanatory variables, the selected models agree with the assertions 
mentioned above. 
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Figure 4.5 At the left panel, a scatterplot shows the relationship between observed and calculated values using
model No. 3733 for winter. The samples size is 643. The right panel illustrates a time series of the 
observed specific discharge in winter and their corresponding calculated values for Basin No. 13. 

The quality of the fit achieved by one of the proposed models (e.g. No. 3733) can be visualized in the 
scatterplot shown in Figure 4.5 (left panel). At the right panel of Figure 4.5, a time series of both the 

Table 4.5 Optimized parameters (with 2ϕ = ) for models No. 3733 and No. 3734. 

Model 0β  17β  18β  19β  *Jβ  7β  8β  11β  15β  21β  

3733 36.783 -1.1663 - -0.8487 0.2227 0.0903 0.2051 0.0887 -0.1149 1.1987 

3734 -47.587 -0.3159 0.8551 - 0.2186 0.0904 0.2078 0.0898 -0.1156 1.2010 
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observed specific discharge in winter for basin No. 13 located within the Study Area and the 
corresponding predicted values are displayed. This graph shows that the model No. 3733 has been able 
to simulate the positive trend present in the observed data and relates it with land cover variables apart 
of climatic and morphologic factors. It does not estimate, however, quite accurately some peaks and 
low values present in the time series. 

Additionally, a plot of the standardized errors versus observations is shown in Figure 4.6 (right panel). 
This figure is very important because it illustrates at first glance that the errors are homoscedastic at 
least in the interval about [50,450] [mm]. Outside this interval, since there are few observations, 
nothing can be inferred; however, it is assumed that they also have the same error distribution. As was 
stated earlier, errors should be randomly distributed with zero mean and constant variance (i.e. be 
homoscedastic); otherwise, a proposed model is considered biased.  

A plot depicting the distribution of standardized residuals over the time axis is also important when 
dealing with time series because it can help to spot long term cyclic variation patterns. For the model 
No. 3733 (model No. 3734 as well), as it is shown in Figure 4.6 (left panel), that does not seem to be 
the case. Based on both graphs shown in Figure 4.6, it can be concluded that the proposed model 
complies with those conditions stated above. 
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Figure 4.6 The left panel shows a plot of the standardized residuals for winter obtained with model No. 3733 
versus time. At the right panel, a standardized residual plot for the same model is presented. 

4.1.5 Selecting a Robust Model for Summer 
Selecting a model that fits the observed specific discharge for summer during the period 1.11.1960 to 
31.10.1993 for the Study Area based on observables described before would involve the calculation of  

222 1−  possible combination of variables, and thus an equal number of likely models. Such a 
demanding task with regard to computing time can be simplified in the following way.  

Firstly, a correlation matrix relating 3{( , ) 1, ,19,22,31,33}jQ x j∀ = …  was calculated based on the 
existing dataset that fulfils the constraints given by (4.18). This dataset has a cardinality equal to 1150. 
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Using this information and the criteria explained and used before (e.g. Section 3.3.8), variables having 
the highest correlations with the explained variable were pre-selected to form a short list of 
observables with which a robust model is to be found. This short list should also contain the first J  
strongest variables (limited here to 12 because of computing limitations) according to the modified 
forward selection procedure. This short list ordered from the strongest to the weakest is composed of 
{ 22,15,7,14,17,9,16,18,13,33,19,10}jx j = . This pre-selection presupposes that variables 
having very little correlation with the explained variable would not contribute much to explaining the 
observed variance of 3Q , while on the contrary,  they would complicate the calculation by increasing 
the computing time, introducing ‘noise’ to the solution, and probably increasing the multicollinearity. 
It should be observed that these variables fulfil all conditions stated in (3.2) regarding the components 
of the system.  

Since likely effects of land cover are to be disclosed, three variables have been taken into account, 
namely { 17, ,19}jx j∀ = … . These variables, with the exception of variable 18x , have been 
evaluated at basin label (i.e. i i≡ ΩL ). 

Based on the correlation matrix, it was found that the correlation coefficient between 3Q  and 18x  
depends on the domain where the latter is evaluated. For instance, if the fraction of impervious land 
cover ( 18x ) is estimated at a domain comprised by riparian zones and floodplains along the stream 
network (i.e. i i i≡ ⊂ ΩL B ), then its correlation coefficient with 3Q  is about 8.4 times greater than 
that obtained if this variable is evaluated at basin level (i.e. i i≡ ΩL ). An explanation for such 
fluctuation is the fact that new settlements, industrial states, and major transportation infrastructure 
within the Study Area tend to be closer to both existing transportation axes and traditional urban 
agglomerations which, according to historic evidence, have a great probability to be located along the 
valleys with moderate slopes that surround main rivers and their tributaries. On the contrary, it is very 
unlikely that land use types with a higher percentage of impervious areas would occur at a random 
place with poor accessibility and sheer slopes. Thus, estimating the fraction of impervious areas within 
a catchment using its whole area may underestimate the effects of this land cover on the hydrological 
cycle and hence the impacts of its change over time. This is, in turn, reflected by its low coefficient of 
correlation. Conversely, if the reference area becomes smaller and additionally is set to correspond to 
highly sensitive ecosystems as those mentioned above, the correlation coefficient increases. Because 
of that 18x  has been evaluated in this case within the domain i i i≡ ⊂ ΩL B .  

Moreover, it was also found that the correlation coefficient between 18x  and 3Q  in winter does also 
depend on the area of reference of the former variable, but in this case the opposite occurs, namely  

18 2r ( ( ), )i ix QΩ≡L  is 1.6 times greater than 18 2r ( ( ), )iix Q≡ BL . 

A summary of the results obtained after applying the proposed method (see Section 4.1.3) to the 
variables of the short list is shown in Table 4.6. This Table reveals that the uncertainty of the system in 
summer is much higher than that in winter, and because of that, a model in general requires more 
variables to explain the observed variance; for instance, the minimum number of variables in this case 
was eight whilst the most robust model found (No. 3965) has ten explanatory variables. Because of the 
high uncertainty of the system in summer, optimum estimator values (see Tables 4.2 and 4.6) are 
higher in summer than those in winter, and so are the cross-validation statistics. 
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From Table 4.6 two models have been selected according to the guidelines mentioned above, namely: 
model No. 3965 and No. 3967, whose types are POT and MLP2   respectively. The significance tests 
displayed in Table 4.7 show that all variables, with the exception of  33x  in model No. 3967, are 
significant at 10%. This drawback makes the latter less reliable than model No. 3965. 

Table 4.6 Sample of the best models for summer (1 = a variable is included in the model, otherwise it is 
omitted). Values of the optimum estimators (minimum) with 2=ϕ  and 1=ϕ  are presented, as 
well as the results for the cross validation and the Akaike's information criterion. The most robust
models are highlighted with the symbol  . All values are dimensionless since the optimisation 
has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 7x  9x  10x  13x  14x  15x  16x  17x 18x 19x 22x 33x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3965 1 1  1 1 1 1 1 1  1 1 7.249 9.9 8143.4 7.433 70.83 7.501  

4093 1 1 1 1 1 1 1 1 1  1 1 7.246 11.5 8145.0 7.449 70.82 7.493  

3967 1 1  1 1 1 1 1 1 1 1 1 7.246 11.5 8145.0 7.443 70.81 7.524  

Multilinear-potential models: MLP1 

3967 1 1  1 1 1 1 1 1 1 1 1 8.244 12.2 8291.0 8.457 74.97 8.556  

4095 1 1 1 1 1 1 1 1 1 1 1 1 8.242 14.0 8292.7 8.476 75.03 8.540 

3455  1  1 1 1 1 1 1 1 1 1 8.279 15.0 8293.8 8.477 75.09 8.560 

Multilinear-potential models: MLP2 

3967 1 1  1 1 1 1 1 1 1 1 1 7.518 16.6 8188.1 7.736 71.49 7.791  

4095 1 1 1 1 1 1 1 1 1 1 1 1 7.487 14.0 8185.5 7.719 71.48 7.809  

4028 1 1 1  1 1 1 1   1 1 7.567 19.9 8191.4 7.762 71.77 7.791  

 
Table 4.7 Results of the permutation test for models No. 3965 and No. 3967 using R=500. The tabulated 

figures are the Monte Carlo p-values as fractions. The estimator has been minimised with 2ϕ = . 

Model Type 7x  9x  13x  14x  15x  16x  17x  18x  19x  22x  33x  

3965 POT � 0 � 0 0.012 � 0 � 0 � 0 � 0 � 0 - � 0 0.054 

3967 MLP2 � 0 � 0 0.004 � 0 � 0 � 0 0.010 0.060 0.018 � 0 0.194 

The reliability of the potential model is confirmed by comparing the quality measures shown in Table 
4.8. According to these results, model predictions in both cases tend to underestimate observations 
since their respective bias ( 1E ) is negative. The potential model has a bias whose absolute value is 
greater than that of the multi-linear one, but its relative root mean square error ( 4E ) is a bit smaller 
than that of the latter (i.e. about 25.3% and 25.8% respectively). Additionally, the correlation 
coefficient between observed and calculated values for the potential model ( 7 0.87E ≈ ) is almost as 
high as that obtained for the saturated one. This is a good advantage because having two variables less 
makes a model relatively simpler. 

Based on these arguments, it seems adequate to opt for model No. 3965 instead of model 3967. The 
optimised parameters for the chosen model are shown in Table 4.9. It is important to emphasize that 
two land cover variables, i.e. forest and impervious cover, have been selected by the proposed 
algorithm as significant variables to explain the annual specific discharge of a basin during summer. 
Their relative influence on the system is somehow reflected in this model by the order of magnitude of 
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the coefficients and their signs. The fraction of forest cover within a spatial unit has a coefficient in 
model No. 3965 whose absolute value is one order of magnitude higher than the coefficient for the 
fraction of impervious cover evaluated in i i i≡ ⊂ ΩL B , i.e. within a buffer zone of the stream 
network. 

Table 4.8 Quality measures for the most robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3965 POT -0.11 1515.5 38.9 0.25 31.0 0.20 0.88 

3967 MLP2 -0.01 1580.9 39.8 0.26 31.4 0.20 0.87 

Both coefficients have negative signs, which may have the following interpretation. Land cover 
variables in this study are indicators of both intensity and type of land-atmosphere interactions. 
Forested areas would tend to evaporate more water than those portions of the basin with other land 
cover types (e.g. impervious, grassland, cropland) under the same climatic and morphologic conditions 
because of the high transpiration rates attributed to the tree physiology. This assertion has been 
confirmed by long-term controlled catchment experiments in several locations around the globe and 
with different types of tree species. Studies carried out or reported by Law 1956, Bosch and Hewlett 
1982, Kirby et al. 1991, Eeles and Blackie 1993, and Jones 1997 indicate that afforestation would lead 
to a considerable reduction of annual runoff yield, or conversely, that deforestation would augment the 
yield of a given catchment. Such conclusions imply an inverse relationship between 17x and 3Q  or 
between 17x and 2Q . This kind of inverse relationship is represented in model No. 3965 by the 
negative exponent of variable 17x . 

As stated before, impervious areas would evaporate water to the atmosphere due to the absorption of 
heat provided by the sun, but in much smaller amounts than the latter because they lack of a very 
important component of the evapotranspiration process, namely the transpiration of vegetal tissue. As 
a result, a higher yield should be expected at the outlet of such areas. This relationship is denoted in 
model No. 3965 by the negative sign of the exponent of variable 18x , and its smaller absolute value in 
comparison with that of variable 17x . In fact, these exponents are in the following ratio 

17 18: 18.7 : 1β β = .  

It is noteworthy to express that the relationship between land cover variables is certainly highly non-
linear in summer, whereas in winter, due to almost no physiological activity of vegetation, the 
relationship between specific discharge and land cover is very close to linear. This is why a multi-
linear potential model containing these variables in the linear sub-model was chosen as the most 
robust one in winter, whereas in summer, all models of type MLP2 and MLP1 performed badly 
compared with those of type POT (see Table 4.6) with the additional advantage, in general, that the 

Table 4.9 Optimized parameters (with 2ϕ = ) for model No. 3965. 

Model 0β  7β  9β  13β  14β  15β  16β  17β  18β  22β  33β  

3965 20.235 0.6473 0.1346 0.0954 -1.8215 -0.6539 0.0066 -0.2994 -0.0161 1.9459 -0.2331
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latter needs less variables than the former. Because of this, a potential model was selected as the most 
robust one based on the available data. 

Other variables such as 7x  or 15x  appear in almost all models both in winter and summer (see Tables 
4.2 and 4.6). According to the selected models, the following assertions can be done. Firstly, the 
higher the mean slope within i i⊂ΩB  is, the higher the seasonal runoff yield of the basin iΩ  would 
be, and secondly, the higher the mean field capacity of the basin, the lower its specific discharge. 
These statements make sense also from a theoretical point of view. 

The goodness of the fit achieved by model No. 3965 can be visualized by the scatterplot depicted in 
Figure 4.7 (left panel) or by means of a time series shown in Figure 4.7 (right panel) which relates 
predicted and observed values for the basin No. 13 within the Study Area. The latter shows clearly that 
model No. 3965 is able to simulate the majority of peaks and valleys of the observed time series based 
on the input data. The cases where the model has failed may indicate an underestimation of the spatial 
distribution of precipitation. In these cases, the proposed model has also been able to simulate the 
positive trend observed in the data (see Figure 4.7 right panel).  
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Figure 4.7 The left panel shows a scatterplot of the observed values versus calculated ones for summer 
obtained with model No. 3965. The right panel illustrates a time series of the observed specific
discharge in summer and their corresponding calculated values for Basin No. 13. 

4.1.6 Visualizing the Effects of Land Cover Change on Annual Runoff 
A good example for visualizing the effects of land cover change is the drainage area of the River 
Körsch (in the present study named as Basin No. 13), whose gauging station is located at Denkendorf-
Sägewerk. This area, because of its vicinity to Stuttgart, has endured a fast land use change triggered 
mainly by anthropologenic driving forces. Because of them, impervious areas have grown from about 
7.3% of the total area in 1961 to about 30.9% in 1993. That means an average annual growth rate of 
about 4.6%. Forest grew slowly since 1961 to the middle of the 70s and then a smooth decline has 
begun as can be seen in the graph on top of Figure 4.8. 
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During the same period, precipitation in this basin has endured a continuous decline as it is illustrated 
by the trend line shown in Figure 4.8 (dashed line). This climatic factor, which is composed of 21x  and 

22x  in the present case, has a marked periodicity but, in general, its average is decreasing at the rate of 
1.1 mm/year. Conversely, the seasonal specific discharge has increased at the rate of 0.83 mm/year 
during the same period (see the graph at the bottom of Figure 4.8). 
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Figure 4.8 Comparison of time series of land cover, precipitation and specific discharge in winter and

summer for Basin No. 13. Calculated values using models No. 3733 for winter and No. 3965 for 
summer are also displayed. 

Based on these facts, and considering that other factors are quasi-constant or reveal no trend at all, an 
upward tendency of the specific discharge can only be attributed to influences stemming from land 
cover changes occurring in the basin since 1961. This assertion has been corroborated by the models 
presented before. They not only predict an upward trend as can be seen in Figure 4.8, but they also 
relate the specific discharge with two land cover variables, whose tests of independence with the 
explained variable can be rejected even at levels of significance lower than 1% according to the Monte 
Carlo simulations carried out. 

Moreover, it should be noted that the selected models represent a regionalization for all basins within 
the study area, and because of this, the models might fail to predict with high certainty a peak or a 
nadir at a given time point. However, they have an advantage; i.e. they can perceive upward or 
downward tendencies of those variables included in the model, and hence, predict an expected value 
for the explained variable based on such trends. 
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4.2 Specific Peak Discharge 
4.2.1 Description of Some Time-Dependent Variables Employed 
In the present section, variables that have not been described before and are deemed potential 
predictors for peak flows within a basin are to be described. According to Chow (1964) and others, 
suitable potential predictors for peak flows are antecedent indices for both precipitation and 
temperature. In the present case, their maximum seasonal values will be employed because of their 
high correlation with the explained variable. Figure 4.9 illustrates the PDFs of such variables for 
winter and summer as well as the PDFs of the observed peak flows. 

The PDFs of the maximum API for both winter and summer have a skewness of approximately 1.1 
and 0.8 respectively, which means that they are clearly skewed to the right as can be seen in Figure 
4.9. Their dispersion is, however, different in winter from that of summer. In fact, the range, the 
standard deviation, and the coefficient of variation in winter are higher than the corresponding figures 
in summer (see Appendix 3). The parameters on which API is based have been calibrated so that the 
maximum correlation with the explained variable can be achieved. So, for winter the parameters are 
κ = 0.95  and 90[days]C = , whereas for summer κ = 0.85  and 30[days]C = . 

With regard to maximum ATI, its PDF in winter is almost symmetrical (skewness equal to 0.2), while 
in summer it is positively skewed (0.9). This index has been evaluated using temperature in degrees 
Kelvin [K] for the convenience of having positive numbers. The range of this variable is very small in 
both winter and summer, although the range in winter is higher than that in summer. The coefficients 
of variation are quite small compared with other variables, which may indicate that this variable is of 
little use in explaining the variance of the specific peak flow. 

Finally, Figure 4.9 shows, at the bottom, the PDFs of the specific discharge in winter and summer, 
which are the explained variables in this section. These variables have a skewness of about 1.9 and 3.5 
for winter and summer respectively. The kurtosis of these variables are very high also, namely 7.9 and 
24.0, for winter and summer respectively. In other words, their PDFs are very peaky and positively 
skewed. In reality, such distributions show that very high values may occur but their probability is 
very small. The challenge is then to determine whether the occurrence of these high values is 
somehow linked with the land cover variables.  
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Figure 4.9 Histograms depicting the empiric PDFs for both maximum API and ATI indices for winter (left 
panel) and summer (right panel), as well as the specific peak discharge considering all spatial units 
during the period from 1.11.1960 to 31.10.1993. 

4.2.2 Selecting a Robust Model for Winter 
The first step consists of selecting potential predictors of the explained variable from the available 
dataset. In this case, specific peak flows in winter ( 4Q ) are assumed to have functional relationships 
with the following set of predictors based either on previous experience or common sense, namely 
{ 1, ,19, 21, 24, 28, 30, 32, 36}jx j = … . This long list of predictors should be shortened somehow because 
of the reasons already explained. Applying the same procedure used before, a short list composed of 
the twelve strongest predictors was found, i.e. { 28,12,15,19, 30, 9,16,17, 3,1,11,18}jx j = . This short 
list of predictors does not only simplify the calculation proposed in paragraph (Section 4.1.3), but also 
satisfies the restriction established by (3.2). The cardinality of the sample data to be employed consists 
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of 1182 valid observations spread along the time axis from 1.11.1960 to 31.10.1993. In this case also, 
all land cover variables, i.e. { 17, ,19}jx j∀ = …  have been evaluated within the domain 

i i i≡ ⊂ ΩL B  due to the same reasons explained in Section 4.1.5. 

In the present situation, three simple functional forms similar to those proposed before in (4.4), (4.5) 
and (4.6) are suitable to model 4Q  and 5Q (see next paragraph). There are, however, some differences 
with subscripts l  and 'j , namely 

if

if

4,5

28 4
'

29 5

l

l
j

l

=

 ==  =   .

 (4.19) 

These three model types are adopted for this section and will be investigated in the subsequent 
analysis because they fit the characteristics of the problem at hand, for example, they can tackle the 
non-linear relationships among some predictors and the explained variable. It is also important to 
notice that a number of empirical studies, for instance those carried out by Chow (1964), Clarke 
(1994), Abdulla and Lettenmaier (1997), and Ayros (2001) have corroborated their applicability to 
model this characteristic of the discharge originated in a given drainage basin. Additionally, it should 
be stated that they all satisfy the guidelines suggested by the concept of simplicity stated before. 

Using the short list of observables, the proposed method can be applied in order to assess which model 
type and which variables are needed to obtain a robust model based on the existing information for the 
Study Area. A summary of the results obtained are illustrated in Table 4.10. 

Table 4.10 Sample of the best models for specific peak discharge in winter  (1 = a variable is included in the 
model, otherwise it is omitted). Values of the optimum estimators (minimum) with 2=ϕ and 

1=ϕ  are presented, as well as the results for the cross validation and the Akaike's information
criterion. The most robust models are highlighted with the symbol . All values are dimensionless 
since the optimisation has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 1x  3x  9x  11x  12x  15x  16x  17x 18x 19x 28x 30x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
1401  1  1 1 1 1   1 1  7.989 7.7 2623.7 8.148 74.47 8.256  

1881 1 1  1  1 1   1 1  7.995 8.6 2624.6 8.151 74.39 8.259  

1817 1 1    1 1   1 1  8.021 10.3 2626.4 8.146 74.54 8.280  

Multilinear-potential models: MLP1 

4091 1 1 1 1 1 1 1  1 1 1 1 7.600 11.6 2534.6 7.779 72.73 7.835  

4094 1 1 1 1 1 1 1 1 1  1 1 7.600 11.6 2534.6 7.779 72.73 7.841  

4093 1 1 1 1 1 1 1 1  1 1 1 7.600 11.6 2534.6 7.779 72.74 7.842  

Multilinear-potential models: MLP2 

1308  1    1 1 1   1  7.913 4.3 2609.1 8.032 74.90 8.236  

1310  1    1 1 1 1  1  7.906 5.3 2610.2 8.041 74.90 8.240  

1820 1 1    1 1 1   1  7.903 4.8 2609.6 8.036 74.83 8.304  
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Table 4.10 shows that the pure potential models (POT) have in general a relative poorer performance if 
compared with the multi-linear potential ones (MLP1, and MLP2). This finding suggests that not all 
variables, with the exception of 28x , have a strong non-linear relationship with the explained variable 

4Q . 

Models of type MLP1 in general and model No. 4091 in particular exhibit the lowest values of the 
cross-validation statistics, the latter for instance got 7.779 and 7.835 for estimators 2ϕ =  and 1ϕ =  
respectively (see Table 4-10); therefore, they are comparatively more robust and thus more reliable 
than the other model types. They have, however, one disadvantage if compared with models of type 
MLP2, namely, they have almost two times as many variables as models of type MLP2. According to the 
concept of simplicity, model No. 1308 is preferable to model No. 4091 because the former has only 
five predictors and performs almost as good as the latter; in fact, its cross validation statistics are at 
most about 5.1% greater than those of the model No. 4091. 

In order to take the final decision and select a robust model, the test of significance, whose results are 
displayed in Table 4-11 for the previously selected models, should also be taken into account. These 
Monte Carlo simulations show that models No. 1401 and No. 4091 have some variables for which the 
null hypotheses of the significance test cannot be rejected at 5 or 10% level of significance. This 
means that based on the sample, there seems to be no evidence of a functional dependence among 
these variables and 4Q . Model No. 1308, on the contrary, has variables significant at even less than 
1%. These results confirm that all variables contained in the model are certainly not independent of the 
explained variable. Hence, the model No. 1308 is selected as a robust model to predict the specific 
peak in winter. 

Table 4.11 Results of the permutation test for models Nos. 1401, 4091, and 1308 using R=500. The tabulated 
figures are the Monte Carlo p-values as fractions. The estimator has been minimised with 2ϕ = . 

Model Type 1x  3x  9x  11x  12x  15x  16x  17x  18x  19x  28x  30x  

1401 POT - � 0 - 0.046 0.100 � 0 � 0 - - � 0 � 0 - 

4091 MLP1 � 0 � 0 0.210 0.038 0.030 0.022 � 0 - 0.022 � 0 � 0 0.261

1308 MLP2 - � 0 - - - � 0 � 0 � 0 - - � 0 - 

Model No. 1308, as displayed in Table 4.12, has a very small positive bias (i.e. -48 ×10 ), which 
means that this model would tend, although in a very small measure, to overestimate its predictions. 
This model, nevertheless, does not exhibit the smallest values with regard to other quality measures, 
but they are very close to the minimum, which in this case corresponds to model No. 4091. 

Table 4.12 Quality measures for the most robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

1401 POT 0.01 9.08 3.01 0.35 2.34 0.27 0.78 

4091 MLP1 0.00 8.38 2.89 0.33 2.25 0.26 0.79 

1308 MLP2 0.00 9.00 3.00 0.34 2.33 0.27 0.78 
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The relative root mean square error of model No. 1308 is about 34.4%. This figure is 2.8 times greater 
than the corresponding value obtained for the annual specific discharge in winter. This is partly 
because the PDF of 4Q  is very skewed and has a relatively small average (about 8.8 mm). It could 
also be due to the uncertainty involved in predicting peak flows. It also implies that this model tends to 
be more accurate when predicting values greater than the observed mean. Because of these 
inaccuracies, the correlation coefficient between observed and calculated values using an estimator 
with 2ϕ =  is about 0.78 (only).  

It is important to remark that the optimised coefficients (see Table 4.13) for the selected model exhibit 
inverse relationships for variables, 15x , 16x , and 17x ; and direct relationships with the remaining ones. 
Such relationships make sense from a physical point of view, for instance, the higher the field 
capacity, the more rainwater is retained in the soil matrix, and hence, the smaller the peak. Conversely, 
the higher the specific precipitation, the higher the peak to be expected. Furthermore, the larger the 
forested areas in a basin, the higher the evapotranspiration, and hence, the lower the peak discharge 
tends to be. This kind of rationale has been extracted from the sample data by the selected model.  

A condition for an unbiased estimator function is that [ ] 0E Φ =  and the var( ) .constΦ =   (with Φ  
given by (3.10), Nolsøe et al. (2000). Unfortunately, these very important conditions are sometimes 
not fulfilled by a chosen model. This is the case with the selected model No. 1308, whose standardized 
errors exhibit a nonlinear variation of the variance, or in other words, they are heteroscedastic with 
respect to the predictor 28x and the explained variable 4̂Q  as it is shown in Figure 4.10.  

Figure 4.10 Scatterplot of residuals shows a clear heteroscedasticity of the errors with respect to variable 

28x and the estimated values 4̂Q  using model No. 1308. 

According to Gentleman (1974), Draper and Smith (1981), Montgomery and Peck (1982), among 
others, this problem can be addressed by weighting the residuals in the objective function according to 
their reliability. As Figure 4.10 shows, in the present case the higher the predictor 28x , the greater the 
variance of the residual, and hence the less reliable the observation will be. In such a case, the inverse 

Table 4.13 Optimized parameters (with 2ϕ = ) for model No. 1308 without removing heteroscedasticity. 

Model 0β  17β  18β  *Jβ  3β  15β  16β  28β  

1308 -0.2173 -0.0361 - 0.1873 0.2249 -0.2893 -0.0070 1.0847 
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of the predictor powered to a given exponent can be used as a robust weighting scheme. Thus, 
equation (3.10), which is the objective function to be minimised, can be written in general as 

1 1

T n
t t
i i

t i

w
ϕε

= =
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  wϕ      an exponent to be calibrated, and 

  t
iε , cZ , and sε   variables defined in (3.11), (3.13), and (3.14) respectively. 

In this case, the heteroscedasticity of the model No. 1308 with respect to the variable * 28j =  has 
been greatly attenuated using the exponent 2w = −ϕ . The selection of this exponent has been done 
by trial and error, although other possibilities can be found in the literature (e.g., Draper and Smith 
1981). 

In order to visualize whether the new estimator stabilizes the variance, a new plot of residuals is 
needed. In this case, it would be appropriate to examine the pattern of distribution of a pair of 
variables such as 4̂,{ }t t t

i i iw Q w ε in order to be consistent with the definition of the estimator given by 
(4.20) and (4.21). The weighted residuals are, of course, standardised. Figure 4.11 (left panel) depicts 
the distribution of these variables obtained for model No. 1308. The residuals plots in Figure 4.11 
reveal that the spread of the error term is roughly the same along the response. In other words, the 
weighted estimator appears to be effective in this case. 
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Figure 4.11 The left panel shows a scatterplot of residuals obtained for model No. 1308 using the estimator 
described by (4.20) and (4.21). The graph at the right panel shows the nonlinear relationship
among the calculated/observed specific peak in winter and the inverse of the maximum 
precipitation index. 

The goodness of the fit between the observed 4Q  and the calculated explained variable 4̂Q  along the 
domain of the input variable 28x can be visualised in the right panel of Figure 4.11. The inverse of the 
variable has been employed here with two purposes: 1) to enhance the nonlinear relationship between 
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the variables, and 2) to stabilize the variance of this explanatory variable so that the plot can contain 

4Q  and 4̂Q .  

The set of parameters that minimise the objective function (4.20) is shown in Table 4.14. The modulus 
of these parameters is different from those shown in Table 4.13, but their sign is the same. Table 4.14 
also shows the optimised coefficients for model No. 1310, which may be interesting to analyse since it 
is composed of all variables of model No. 1308 plus one that represents the fraction of impervious 
cover in the floodplains. Although model No. 1310 has not achieved the best performance, it may be 
interesting to see the effect of this land cover variable upon the specific peak discharges in winter. 

It is interesting to see in the previous table that all constants have preserved their signs after the 
inclusion of variable 18x , however, their magnitude is affected in several intensities. The coefficient 
obtained for variable 18x  is positive and its module is about 4.5 times greater than that obtained for 
variable 17x . Furthermore, after removing the heteroscedasticity of these models, all variables, with 
the exception of 17x , remain significant at the 5% level as can be seen in table 4.15. The latter is 
significant at the 10% level. 

Table 4.15 Results of the permutation test for models No. 1308 and No. 1310 using R=500. The tabulated 
figures are the Monte Carlo p-values as fractions. Heteroscedasticity has been removed using the
estimator described in (4.20) with 2w= =ϕ ϕ . 

Model Type 3x  15x  16x  17x  18x  28x  

1308 MLP2 0.050 � 0 � 0 0.022 - � 0 

1310 MLP2 0.042 � 0 � 0 0.098 0.020 � 0 

The implication of having a positive coefficient for variable 18x  in model No. 1310 is that if all other 
terms of this model remain constant, an increment of impervious cover in sensible areas of the 
catchment, such as the floodplains, would certainly increase the specific peak flow in winter. 
Conversely, based on models No. 1308 and No. 1310, an increment in forested areas in those places 
would tend to reduce the specific peak in winter. 

4.2.3 Selecting a Robust Model for Summer 

Based on the available data, a set of potential predictors of the variable 5Q  is composed of the 
following variables { 1, ,19,22,25,29,31,33,37}jx j = … . Due to the reasons already explained, a 
pre-selection procedure similar to that described in Section 4.1.4 can be used to reduce the number of 
variables to a maximum 12. This procedure yields, in the present case, the following subset of 
potential predictors: { 29,9,12,10,19,18,4,14,15,1,17,31}jx j = . In this case, the sample data 
contains 1187 observations distributed during the period 1.11.1960 to 31.10.1993.  

Table 4.14 Optimized parameters (with 2w= =ϕ ϕ ) for models No. 1308 and No. 1310 after removing 
heteroscedasticity. 

Model 0β  17β  18β  *Jβ  3β  15β  16β  28β  

1308 -4.5505 -0.0149 - 1.9570 0.0814 -0.4167 -0.0040 0.8214 

1310 -4.6254 -0.0110 0.0497 1.3327 0.1135 -0.3812 -0.0043 0.8515 
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The parameter σ  used in the definition of variable 4x  is taken equal to 0.3. Regarding those variables 
that represent the fractions of each land cover type, it was found that 17x  and 19x  are more significant 
if they are evaluated within the domain i i≡ ΩL , whereas 18x  gives better results if it is estimated 
within a buffer zone of the streams that comprise floodplains and riparian wetlands, i.e. 

i i i≡ ⊂ ΩL B .  

Three model types similar to those defined in Section 4.2.2 (4.19) are regarded as suitable for 
modelling the specific peak discharge in summer. Having the model types and a subset of observables 
as potential predictors of 5Q  the proposed method can be applied. As a summary of the results, Table 
4.16 was compiled from the several thousand possible combinations of predictors and estimators that 
have been calculated in this case. This table only presents the best three combinations for each model 
type considering basically their performance using two estimators, namely 2ϕ =  and 1ϕ = . The 
weighting function is the same as that shown in (3.13). Initially the distribution of the term t

iε  in the 
models described in (4.19) is regarded as homoscedastic. 

Table 4.16 Sample of the best models for specific peak discharge in summer (1 = a variable is included in the
model, otherwise it is omitted). Values of the optimum estimators (minimum) with 2=ϕ and 

1=ϕ  are presented, as well as the results for the cross validation and the Akaike's information
criterion. The most robust models are highlighted with the symbol . All values are dimensionless 
since the optimisation has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 1x  5x  9x  10x  12x  14x  15x  17x 18x 19x 29x 31x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3954 1 1  1 1 1    1 1 1 6.345 11.2 2640.1 6.591 62.32 6.724  

3441  1  1 1 1   1  1 1 6.450 28.7 2657.4 6.653 62.53 6.679  

4082 1 1 1 1 1 1    1 1 1 6.339 12.1 2640.9 6.614 62.18 6.764  

Multilinear-potential models: MLP1 

3967 1 1  1 1 1 1 1 1 1 1 1 11.345 13.5 2665.0 11.635 82.79 11.778  

3583  1 1 1 1 1 1 1 1 1 1 1 11.339 13.9 2665.4 11.654 82.53 11.791  

3567  1 1 1 1  1 1 1 1 1 1 11.396 17.8 2669.4 11.689 82.49 11.760  

Multilinear-potential models: MLP2 

3447  1  1 1 1  1 1 1 1 1 9.435 11.3 2635.7 9.752 63.83 7.029  

3959 1 1  1 1 1  1 1 1 1 1 9.414 10.6 2635.0 9.740 63.69 7.045  

3953 1 1  1 1 1   1  1 1 9.555 24.3 2648.8 9.858 63.86 6.983  

Model No. 3954 is regarded as the most robust model based on the quality indicators shown in Table 
4.16. It is, however, necessary to check some additional conditions. The first one is to confirm whether 
the random error of the model exhibits a uniform distribution with zero mean and a constant variance. 
The easiest way to do this is by depicting the residuals versus a predictor or the estimated value in a 
scatterplot in the same way as it was done before. Since the specific peak in winter did exhibit a 
marked heteroscedasticity with respect to the antecedent precipitation index, it would also be 
convenient to check whether the standardised residuals in this case have the same behaviour with 
respect to 29x . The results of these tests shown in Figure 4.12 are stunning. The variance of the 
residuals of model No. 3954 increases non-linearly with an increase of the predictor 29x . 
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Models No. 3447 and No. 3953, which may also be interesting to be analysed because they consider 
that land cover variables have a linear relationship with the explained variable, also show a marked 
heteroscedasticity with respect to the variable mentioned above. Hence, before proceeding with the 
analysis, such an anomaly should be removed (see Figure 4.12 right panel). This irregular behaviour 
does not occur with the remaining variables of these models. 
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Figure 4.12 Scatterplots of residuals of model No. 3954 before (left panel) and after (right panel) the
heteroscedasticity of the errors with respect to variable 29x  has been removed. 

It is also necessary to apply a significance test to corroborate that the variables contained in a given 
model are not just noise but that they are in some way linked to the explained variable. Such a test 
will, in turn, help to reduce even further the short list of ‘good’ models mentioned above. If a model 
contains non-significant variables, it should be eliminated. The results of the significance test are 
presented in Table 4.17. 

Table 4.17 Results of the permutation test for models No. 3954 and No. 3441 using R=500. The tabulated 
figures are the Monte Carlo p-values as fractions. Heteroscedasticity has been removed using the
estimator described in (4.20) with 2=ϕ  and 2.5w =ϕ . 

Model Type 1x  5x  10x  12x  14x  18x  19x  29x  31x  

3954 POT 0.010 � 0 � 0 � 0 � 0 - 0.010 � 0 � 0 

3441 POT - � 0 � 0 � 0 � 0 � 0 - � 0 � 0 

From Table 4.17 it can be concluded that all these models have variables that are certainly not 
independent from the explained variable at the level of significance of 1%, and in some cases, the null 
hypothesis can even be rejected at smaller levels of significance. Put differently, any of these models 
is a good choice, but one of them should exhibit relatively better quality indicators. Let us therefore 
analyse the calculated quality measures of the selected models shown in Table 4.18 in order to see 
which of them is the most reliable. 

The information contained in Table 4.18 indicates that model No. 3954 has performed better than 
model No. 3441 because all quality measures, with the exception of the bias ( 1E ), calculated for the 
former are smaller than that of the latter. Additionally, both models tend to overestimate the 
observations since their bias is a positive value. The coefficient of correlation of the most robust 
model (No. 3954) is about 0.82; the RMSE ( 3E ) of this model is about 7.1 mm and its RRMSE is 
about 1.1. These relatively high values are the result of the high uncertainty present in the system 
when the climatic variable 29x  exhibits higher values. It is worth noting that potential models 
predicting peak flows in summer have performed much better that the multi-linear potential ones, as 
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can be seen in Table 4.16. Such behaviour of the system is different from that found for the same 
runoff characteristic (explained variable) during winter (see Section 4.2.2). 

Table 4.18 Quality measures for the selected robust models with 2ϕ =  and 2.5w =ϕ . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3954 POT 0.01 50.8 7.13 1.07 5.52 0.83 0.82 

3441 POT 0.00 51.1 7.15 1.07 5.54 0.83 0.81 

Why is this happening? A plausible answer is the following: the linkage between land cover, the 
atmospheric process (e.g. evapotranspiration, precipitation) and the resulting runoff within a spatial 
unit during winter can be modelled with a linear sub-model mainly because of the small physiological 
activity of the vegetal tissue during this season. The opposite occurs in summer because the peak of 
biomass production is reached during this season. This, in turn, would increase evapotranspiration, and 
thus, reduce the specific peak flows in a given catchment. Such relationships seem to be non-linear at 
a mesoscale level as the previous models suggest. This fact can be corroborated with many studies 
carried out at a microscale; for example, the Penman-Monteith concept (Penman 1948,  Monteith 
1965) regards evapotranspiration as a non-linear function of many factors, one of which is land cover. 

The optimised coefficients for the most robust model found for the specific peak flow in summer are 
shown in Table 4.19. 

Assuming that there is no high multicollinearity among the different factors employed, the following 
interpretation of the sign of the variables can be stated. The variable area ( 1x ) exhibits an inverse 
relationship with the specific peak discharge; in other words, the bigger the drainage area is, the 
smaller the peak discharge would be expected. This result agrees with other empirical studies carried 
out by several authors (e.g. Chow, 1964). 

Trimmed mean slope ( 5x ) has come up as a statistically significant factor with a direct relationship to 
the explained variable. From the physical point of view, this relationship makes sense since the higher 
the slope in a given basin is, the faster is the expected flow of water through the hillslopes and stream 
networks, hence the lesser the concentration time, and consequently the higher the discharge would be. 
It is interesting to note that the selected robust model is not related with the mean slope of the basin 
( 2x ) but with a trimmed mean that excludes the 30% of the observations at both ends of the PDF of 
( 2x ). This finding is remarkable because it is in those locations of the basin that have mild slopes 
where a land cover change is most likely to occur as it is depicted in the left panel of Figure 4.13. The 
right panel of Figure 4.13 shows that land cover change occurs more or less with the same likelihood 

Table 4.19 Optimized parameters (with 2ϕ =  and 2.5w =ϕ ) for model No. 3954 after removing 
heteroscedasticity. 

Model 0β  1β  5β  10β  12β  14β  19β  29β  31β  

3954 3003.8 -0.0309 1.1850 0.5410 -0.3101 -3.3029 -0.0694 2.0880 -0.9061 
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between 340 and 680 m above sea level; in this elevation range are located the majority of the urban 
settlements and major infrastructure within the Study Area.  

The fraction of north-facing slopes in a basin ( 10x ) exhibits a direct relationship with the explained 
variable. This link may be explained from a physical point of view as follows. North-facing slopes in 
the North Hemisphere get less radiation per square meter than those south-facing ones. This, in turn, 
implies that in such locations of the basin, less evapotranspiration will be produced, and thus a 
tendency to get higher runoff may be expected. 
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Figure 4.13 PDF showing the likelihood of a given place to endure a land cover change based on its slope and 
elevation. These curves take into account all locations that have undergone a land cover change 
from 1960 to 1993. 

On the contrary, the share of permeable cover ( 19x ) within a given basin has an inverse relationship 
with the specific peak flow. This relationship makes sense from a hydrological point of view because 
the higher the share of such areas within a basin, the higher the infiltration rate to the underground, 
and therefore, the smaller the runoff tends to be in a given basin. Additionally, taking into account that 
locations with permeable surfaces would likely have vegetation cover, their overall roughness will be 
higher, and hence, smaller peaks and longer concentration times can be expected. The vegetal tissue 
likely present in this land cover category would also tend to diminish the runoff because of the 
increment in evapotranspiration.  

The direct relationship of the precipitation index ( 29x ) is evident. The higher the specific precipitation, 
the higher the antecedent precipitation index, and hence, the higher the specific runoff. Mean 
temperature ( 31x ), on the contrary, has an inverse relationship with peak flows. The reason is as 
follows. The higher the mean temperature in a given basin is, the higher the evapotranspiration, and 
thus, the smaller the specific peak runoff expected. 

The relationship between observed and the calculated values for the selected model are shown in 
Figure 4.14. It illustrates that the uncertainty of the model widens at higher levels. This phenomenon 
may have some relationship with the fast and high intensity rainstorms typical in summer whose 
occurrence, magnitude and consequences has proved to be very difficult to predict. 
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Figure 4.14 This scatterplot shows the relationship between calculated and observed specific peak flows using 

the potential model No. 3954. 

4.3 Specific Volume of the Annual Peak Event 
The PDF of the cumulative specific discharge of the annual peak event ( 6Q ) is positively skewed 
(1.14) and has a kurtosis of about 2.28. The sample size used to calculate the histogram shown in 
Figure 4.15 is 1307. Moreover, this variable has a range of about 118.3 mm and a coefficient of 
variation of about 0.53. The right tail of the PDF shows that rare events with a period of return greater 
than 800 years have occurred during the reference period. In this case, having such a big sample has 
given some advantages: 1) it allows determining its empirical distribution more accurately; 2) it 
reduces the uncertainty with regard to the occurrence of some extraordinary events; and, 3) it increases 
the reliability of the model because its parameters would have narrower confidence intervals at the 
same level of significance.  

Determining the period of return of extraordinary events as well as investigating whether land cover 
changes have influenced their frequency of occurrence are crucial tasks in hydrology because they are 
tightly linked with planning and investment of the key infrastructure of a region. In this stage of the 
study, however, only the magnitude of this variable will be considered. The frequency of occurrence 
and its related period of return will be analysed afterwards. 
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Figure 4.15 Histogram depicting the PDF of the cumulative specific discharge of the annual peak event ( 6Q ) 

considering the time series from 1.11.1960 to 31.10.1993 for all spatial units. 

The explained variable 6Q , as can be seen in the time series at the bottom of Figure 4.16, exhibits a 
cyclic behaviour during the period of investigation. In order to visualize possible trends in the data, a 
5-year moving average has been applied to this time series and is depicted in the same graph 
mentioned above. The same procedure has been applied for the explanatory variables 26x  and 27x , 
whose results are shown in the top and middle graphs of Figure 4.16. Based on this presentation of the 
data, the following characteristics can be mentioned. 6Q  has a long-term cycle whose lowest value 
occurs in 1974. From this time until 1993 this variable has had the tendency to increase, albeit 
potential climatic explanatory variables, such as the annual maximum precipitation index ( 27x ) and 
the corresponding precipitation index ( 26x ) at the time of occurrence of the peak event, show a 
slightly negative trend in case of the former and no trend in case of the latter. Nevertheless, the cyclic 
behaviour of all these random variables is analogous. Consequently, based on this empirical evidence 
and the principle of causality that governs natural systems (Casti, 1990), one may conclude that there 
must be reasons that explain such deviations from the mean value. What are they? The next part of this 
section will be devoted to answer this question. 

Based on a similar procedure described before (see Section 4.1.4) and taking into account all potential 
explanatory variables available, the twelve strongest predictors of 6Q  are { 27, 26, 4, 9,10,x jj =  
12,14,15,16,17,18,19} . The sample size obtained in this case is 1307 observations, which contain all 
valid data ranging from 1961 to 1993 at annual basis and for each spatial unit.  

In order to obtain higher Pearson correlation coefficients,  the three variables representing the share of 
land cover within a spatial unit have been evaluated as follows: 17x  and 19x  have been evaluated 
within the domain i i i≡ ⊂ ΩL B , whereas 18x  is within i i≡ ΩL . In other words, the former are 
estimated within the buffer zones of the stream network, while the latter is within the whole basin. 

The functional relationships to be established between the potential predictors and the explained 
variable are similar to those represented by (4.4), (4.5) and (4.6). In this case, however, the subscripts 
take the values 6l =  and ' 27j = . In addition to that it should be said that the model to be found 
should fulfil the constraints stated in (3.2).  
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Figure 4.16 Comparison of time series showing the variability of the explained variable ( 6Q ) and two climatic 
factors ( 26x ) and ( 27x ). Each observation is represented by a point during the period from
1.11.1960 to 31.10.1993. The annual mean is depicted by a continuous line. The trend of these 
series is illustrated by a 5-year moving average represented by a continuous dotted line.  

As a result of applying the method proposed in Section 4.1.3 a set of the best models has been selected 
and illustrated in Table 4.20. This table shows that multi-linear potential models of type MLP1 are 
more suitable and robust than those with functional forms of type MLP2 and POT, because both the 
estimators and the Jackknife statistics are always the smallest among the subset of the most reliable 
models. It is noteworthy to state that among the best models, three variables are always present, 
namely: 4x , 26x  and 27x . This result agrees with the highly correlated relationships among the 
predictors and the explained variable shown in Figure 4.16. According to the results illustrated in 
Table 4.20 the most robust model is No. 3662. 
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Table 4.20 Sample of the best models for cumulative specific discharge of a yearly peak (1 = a variable is
included in the model, otherwise it is omitted). Values of the optimum estimators (minimum) with

2=ϕ  and 1=ϕ  are presented, as well as the results for the cross validation and the Akaike's
information criterion. The most robust models are highlighted with the symbol  . All values are 
dimensionless since the optimisation has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 4x  9x  10x  12x  14x  15x  16x  17x 18x 19x 26x 27x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3825 1  1 1 1 1    1 1 1 8.743 10.9 5560.4 8.917 79.48 9.051  

3835 1  1 1 1 1 1 1  1 1 1 8.719 11.6 5561.1 8.934 79.20 9.090  

3807 1  1 1  1 1 1 1 1 1 1 8.728 12.9 5562.4 8.946 79.23 9.084  

Multilinear-potential models: MLP1 

3662 1   1   1 1 1  1 1 8.473 9.5 5530.4 8.6018 77.75 8.765  
3614 1     1 1 1 1  1 1 8.483 10.9 5531.7 8.6205 77.88 8.757  

3661 1   1   1  1 1 1 1 8.473 9.4 5530.3 8.5972 77.79 8.782  

Multilinear-potential models: MLP2 

3733 1  1   1   1 1 1 1 8.873 7.5 5585.2 9.0410 79.58 9.114  

3734 1  1   1  1 1  1 1 8.872 7.5 5585.2 9.0400 79.54 9.130  

3717 1  1      1 1 1 1 8.909 10.4 5588.0 9.0638 79.89 9.137  

The error term of the selected model is not homoscedastic as was initially expected. This means that a 
correction has to be made before the simulation test is applied. The best results have been obtained by 
introducing a weight that is inversely proportional to 27x  (i.e. 1.0wϕ = ). The results of the Monte 
Carlo simulation aimed at determining the level of significance of each variable are shown in Table 
4.21. 

Table 4.21 Results of the permutation test for model No. 3662 using R=500. The tabulated figures are the
Monte Carlo p-values as fractions. Heteroscedasticity has been removed using the estimator
described in (4.20) with 2=ϕ  and 1.0w =ϕ . 

Model Type 4x  12x  
16x  17x  18x  26x  27x  

3662 MLP1 � 0 0.004 � 0 � 0 � 0 � 0 � 0 

The results of the simulation shown in Table 4.21 indicate that all variables constituting model No. 
3662 are certainly not independent from the explained variable 6Q  at a level of significance even less 
than 1%. The quality measures estimated for this model are shown in Table 4.22. 

Table 4.22 Quality measures for the selected robust model with 2ϕ =  and 1.0w =ϕ . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3662 MLP1 0.00 223.1 14.9 0.48 11.8 0.38 0.75 

As shown in Table 4.22, the selected model has a bias about zero. The differences between RRMSE 
and RMAE and between RMSE and MAE as well as their magnitude are a good indication of the 
uncertainty present in the data, which cannot be explained by the model. In fact, it is able to explain 
56.1% of the total variance or in other words, it has a coefficient of correlation of about 0.75. Such a 
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result is satisfactory considering that the model is composed of seven predictors and eight parameters. 
The optimized coefficients are shown in Table 4.23.     

These coefficients show that variables representing a trimmed slope ( 4x ), the mean elevation ( 12x ), 
the share of impervious cover ( 18x ), and the specific precipitation index of a catchment ( 27x ) have a 
direct relationship with the explained variable. In other words, the higher they are, the bigger the 
cumulative specific discharge of a yearly peak ( 6Q ). On the contrary, the remaining predictors have an 
inverse relationship. It is interesting to note the opposite relationship of those variables representing 
the share of land cover within a basin. Forest cover will reduce the cumulative volume of a flood event 
whereas impervious cover will do the opposite.  

4.4 Specific Volume and Total Duration of High Flows 
According to the correlation matrix shown in Table 4.24, it has been found that the specific volume of 
high flows ( 7Q ) is highly correlated with the total duration of high flows ( 9Q ) in winter, and so are 
the correspondent variables in summer 8Q  and 10Q . Because of that, it would be sufficient to search 
for explanatory variables for any of them and for both seasons. The variables that will be used in the 
following analysis are 9Q  and 10Q . 

These variables, whose positive skewed distributions (skewness of about to 1.3 and 2.7 respectively) 
are depicted in Figure 4.17, are correlated in various degrees with the following subsets of 
observables, which can be considered as potential explanatory variables. For instance, in winter the 
subset is composed of { 24,30,41,1,4,9,10,12,16,17,18,19}jx j = , whereas in summer it is 
composed of { 25,31,40,1,4,9,10,12,16,17,18,19}jx j = .  

  7Q  9Q  8Q  10Q    

 7Q  1 0.871     

 9Q  0.871 1     

 8Q    1 0.890   

 10Q    0.890 1   

For the evaluation of the land cover variables the following criteria have been used: for winter, 
variables 17x  and 18x  have been evaluated within the buffer zone of the streams ( i i i≡ ⊂ ΩL B ), 
whereas 19x  has been evaluated within the whole catchment ( i i≡ ΩL ). For summer,  17x  and 19x  
are calculated within the buffer zones, whereas 18x  is calculated for the entire spatial unit. By using 
these criteria, the highest correlation coefficients have been obtained. 

Table 4.23 Optimized parameters (with 2ϕ =  and 1.0w =ϕ ) for model No. 3662 after removing 
heteroscedasticity. 

Model 0β  4β  12β  16β  17β  18β  26β  *Jβ  27β  

3662 188.11 3.7250 0.0105 -0.0834 -0.0852 0.4167 -0.7521 0.0085 1.7998 

Table 4.24 Correlation matrix [ ]R  among explained variables 7 8 9 10, , , and Q Q Q Q . The sample size is equal 
to 976. 
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Figure 4.17 Histograms depicting the empiric PDFs for both total duration of high flows in winter (left panel) 

and summer (right panel) considering all spatial units during the period from 1.11.1960 to
31.10.1993. 

Having these subsets of plausible explanatory variables, the proposed method (Section 4.1.3) was 
applied and the results shown in Table 4.25 have been obtained. Results obtained for winter and 
summer indicate that the total duration of high flows have a very strong correlation with the 
macroclimatic situation represented by the variables 30x  and 41x  in winter and 31x  and 40x  in 
summer. By a careful inspection of Table 4.25, it can also be noticed that such predictors mostly 
govern the occurrence of peak flows which equalled or exceeded 5% of the time.  

Independent of the functional form employed, the best models for either winter or summer always 
contain variables 40x and 41x . Furthermore, the inclusion of almost all variables only reduced the total 
explained variance by a modest 1.3% in winter and by 1.6% in summer (e.g. models MLP2 in 
summer). 

However, a multi-linear potential model in summer (MLP2 - 3076) having two climatic variables and 
an additional one representing land cover got the highest ranking because it is the most robust model 
according to the cross validation statistics. A characteristic of the best models in summer is the 
absence of morphological variables, or, if they are included, their contribution is negligible. A similar 
situation occurs with the best model in winter (POT - 3074). 

Tests of significance conducted according to the method proposed do not indicate that the variables 
included in the best models are independent from the explained variable at a 5% level of significance. 
Results of the simulations are shown in Table 4.26. The quality measures and the optimized 
parameters are presented in Tables 4.27 and 4.28. 

Based on these results it can be stated that the variable total duration of high flows in both winter and 
summer is mainly governed by the macroclimatic conditions. Morphological variables play an 
irrelevant role in this case but land cover variables have been found to be statistically dependent and 
significant although their contribution to the total explained variance is quite small. In other words, 
this is a case where very small or even “zero correlation does not imply independence” (Casti, 1990). 
On the contrary, independence always implies zero correlation (Deutsch, 2001). 
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Table 4.25 Sample of the best models for total duration of high flows in winter and summer (1 = a variable is
included in the model, otherwise it is omitted). Values of the optimum estimators (minimum) with

2=ϕ  and 1=ϕ  are presented, as well as the results for the cross validation and the Akaike's
information criterion. The most robust models are highlighted with the symbol  . All values are 
dimensionless since the optimisation has been carried out in the interval (0,1] . 

Winter 

2ϕ =  1ϕ =  
Model 1x  4x  9x  10x  12x  16x  17x  18x 19x 24x 30x 41x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3074       1    1 1 3.091 10.76 2919.1 3.21 38.46 3.34  

3974 1 1     1  1 1 1 1 3.055 4.53 2912.9 3.24 38.07 3.37  

4055 1 1 1  1  1 1 1 1 1 1 3.051 9.06 2917.4 3.26 38.03 3.39  

Multilinear-potential models: MLP1 

3080      1     1 1 3.131 2.36 2936.8 3.21 38.86 3.35  
3769  1  1 1 1  1  1 1 1 3.115 6.26 2940.7 3.29 38.48 3.37  

3656   1   1    1 1 1 3.126 4.19 2938.6 3.28 38.60 3.38  

Multilinear-potential models: MLP2 

3073        1   1 1 3.160 27.3 2947.9 3.27 38.61 3.38  

3074       1    1 1 3.154 24.8 2945.4 3.26 38.61 3.39  

4055 1 1 1  1  1 1 1 1 1 1 3.081 10.7 2931.3 3.29 38.10 3.44  

Summer 

2ϕ =  1ϕ =  
Model 1x  4x  9x  10x  12x  16x  17x  18x 19x 25x 31x 40x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
2048            1 2.536 24.2 1625.0 2.57 31.64 2.77  

2565        1 1 1  1 2.489 12.7 1613.7 2.57 30.85 2.78  

4031 1 1  1 1 1 1 1 1 1 1 1 2.447 11.0 1611.9 2.62 30.47 2.93  

Multilinear-potential models: MLP1 

2564        1  1  1 2.305 5.14 1543.3 2.36 29.61 2.47  
2565        1 1 1  1 2.295 3.14 1541.3 2.36 29.41 2.48  

2563       1  1 1  1 2.297 3.89 1542.0 2.36 29.46 2.48  

Multilinear-potential models: MLP2 

3076        1   1 1 2.291 14.48 1537.6 2.34 30.02 2.50  

2052        1    1 2.328 27.47 1550.4 2.37 30.07 2.54  

4093 1 1 1 1 1 1  1 1 1 1 1 2.254 15.61 1538.7 2.40 29.19 2.61  

In this respect, the proposed method is much more robust than the standard inference tests of 
independence based on the normal distribution theory, in which zero correlation implies independence. 
Paraphrasing what has been clearly stated by Blyth (1996) and Shaw (1997), among others, the 
standard linear correlation methods cannot capture the non-linear dependencies existing between time 
series of n  given variables. As a corollary, it can be stated that if the normality assumption does not 
hold, as is the case here (e.g. see Figure 4.17), the standard inference theory can lead to deceptive 
conclusions. 



 112

Furthermore, a consequence of what has been found by these simulations can be also stated in a 
probabilistic context. For instance, the likelihood of their joint occurrence of the total duration of high 
flows in winter, the mean temperature in January, the occurrence of a certain type of circulation 
pattern, and the fraction of the buffer zones of streams covered with forest is not equal to the product 
of the likelihood of each event occurring independently from each other. 

Table 4.26 Quality measures for the selected robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type Season 

[day]  2[day ]  [day]  [ ]−  [day]  [ ]−  [ ]−  

3074 POT Winter -0.09 11.15 3.34 0.25 2.21 0.17 0.94 

3076 MLP2 Summer 0.00 5.28 2.30 0.34 1.59 0.24 0.94 

 
Table 4.27 Results of the permutation test for models No. 3074 and No. 3076 for winter and summer 

respectively. The tabulated figures are the Monte Carlo p-values as fractions using R=500. 

Model Type Season 17x  18x  30x  31x  40x  41x  

3074 POT Winter � 0 - � 0 - - � 0 

3076 MLP2 Summer - � 0 - 0.024 � 0 - 

 

4.5 Frequency of High Flows 
Based on the previous analyses, it has been shown that land cover variables are related to many runoff 
characteristics at a mesoscale level (e.g. peak flow) during both winter and summer. Besides that, and 
since those relationships have statistically significant variables, it can be expected that a change of one 
of them, for instance the share of impervious areas within a basin, will have an impact sooner or later 
on the maximum peak flow, for example, or on the total annual discharge. In other words, land cover 
variables have been related with the magnitudes of the observables. However, up to here, nothing has 
been said about the factors that govern the probability of occurrence of high flows in a given 
catchment during winter or summer. 

In order to address this issue, it has been investigated by means of the maximum likelihood method 
which theoretical distribution function fits the data best. In this study the available information, i.e. 

11Q  and 12Q  (which stand for the absolute frequency of high flows during winter and summer 
respectively) will be used. After several trials, the best fits obtained for the EDF (empirical 

Table 4.28 Optimized parameters (with 2ϕ = ) for models  No. 3074 and No. 3076 for winter and summer 
respectively. 

Model Type Season 0β  17β  18β  *Jβ  30β  31β  40β  41β  

3074 POT Winter 1.4185 0.0589 - - -0.1155 - - 0.9509 

3076 MLP2 Summer 0.8890 - 0.1048 3.3653 - -0.5023 1.1430 - 
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distribution function) of these variables (see Figure 4.18) are the Poisson and the Weibull distribution 
functions, whose probability and density functions are 
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for both winter and summer correspondingly. The MLEs (maximum likelihood estimates) of the 
parameters µ , a , and b  are ˆ 3.952[1/ ]yearµ = , â 0.820= , and b̂ 1.918=  respectively. In 
case of the summer frequencies, a continuity correction has to be made because a continuous 
distribution has been used to estimate discrete data. Comparing the EDFs and the fitted ones shown in 
Figure 4.18, it seems that the theoretical models fit the data reasonably well although some differences 
exist. For instance, the Poisson distribution tends to under-allocate probability for smaller values of 

11Q , whereas the opposite occurs for higher ones. In summer appears the opposite if the Weibull 
distribution is used. In order to assess the goodness of the fits a 2χ  test is indispensable. It shows that 
the null hypothesis (i.e. that the data were drawn from the fitted distribution) for both the Poisson 
(winter) and the Weibull (summer) distributions cannot be rejected because their -valuesp  are 0.206 
and 0.254 respectively.  
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Figure 4.18 Empirical and fitted CDFs for both frequency of high flow events in winter (left panel) and

summer (right panel) considering all spatial units during the period from 1.11.1960 to 31.10.1993.

Having done this, the previously mentioned issue can be re-stated based on the GLM (Generalized 
Linear Models theory) (Gilchrist, 1984; Clark, 1994; Davison and Hinkley, 1997; Lindsey, 1999). It is 
worth mentioning that this method has been used to estimate probabilities or occurrence frequencies of 
a given event; e.g. Stahl and Demuth (1999) have used a logit model to fit binary data, and Davisson 
and Hinkley (1997) have estimated counts of a discrete variable using a log-linear model. The method 
employed here is based on GLM but with some modifications suitable for the present case. It is as 
follows. 

A generalized linear (or non-linear) model can be used to relate the parameters of the PDF of a given 
variable t

ilQ  (the thl  characteristic of the runoff process for the thi spatial unit at time t ) with a 
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number of predictors or observables. In other words, µ  and b  should be related to a number of 
predictors or observables ( )1 2, , ,t t t

i i iJx x x… .  

The structure of a generalized model can be written using three elements: 

1. The deterministic element or the predictor, which is a suitable function of the explanatory 
variables jx ; for instance, a multi-linear (ML), a potential (POT), or a multi-linear-potential 
(MLP) relationships whose explicit equations are  

( )0
jt t

il ij
j

x
β

η β= +∑ , (4.24) 

( )0
jt t

il ij
j

x
β

η β= ∏ , (4.25) 
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respectively. 
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 2. The distributional element, which indicates that the variance of the response is an explicit 
function of the mean µ  for each observation, i.e.  var( ) ( )t t

il ilQ V uκ= . 

 Where, ( )V i  is the variance function and κ  is the dispersion parameter. 

For example, for the Poisson distribution 

Poisson( ) with ,

var

1

11

t t t t
il il il il

t t
il il

Q E Q i t

Q

l

µ µ

κµ
κ

  = ∀ 
  = 
=

=

∼

, (4.27) 

   



 115

and for the Weibull distribution 
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( )
( ) ( )
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 where ()Γ ⋅  is the gamma function. 

3.  Finally, the last element of the model is the monotone and differentiable link function ()g ⋅ , 
which establishes a “link” between the predictor and the mean so that ( )t t

il ilg µ η= . 

In the present case, three link functions are to be tested:  

Name Link Function 

Identity 
t t
il ilµ η=  

Logit 0
1 exp( )

t
il t

il

K Kµ
η

= >
+

Log exp( )t t
il ilµ η=  

In the logit model, K is a case specific constant denoting an asymptotic behaviour of the data. 

The estimation of the parameters β  is to be carried out by maximizing the log-likelihood function 
( )⋅A , whose general form for a variable t

ilQ  exhibiting a PDF ( a,b, , , )t t
il if Q x… β  given a set of 

explanatory variables ( )1 2, , ,t t t
i i iJx x x… , and provided that all observations are independent is written 

as 

,

( ) log ( a,b, , )t t
il i

i t

f Q= ∏ x…β βA . (4.29) 

Once the three elements of a given model have been defined, the maximum likelihood estimators 
(MLEs) of its parameters β  can be found by maximizing 

 
ˆ

max ( )
β

βA , (4.30) 

and the goodness of the fit can be assessed either by the deviance 

{ }ˆD 2 ( ) ( )Qκ= − βA A , (4.31) 

or by the Akaike’s Information Criterion  AIC 
*ˆAIC 2 ( ) 2p= − +βA . (4.32) 

In (4.31) κ  can be estimated by   
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and ( )QA is the log-likelihood of the saturated model which is nothing else than a model where  
ˆ , ,t t

il ilQ u i l t= ∀ . The term *p  in (4.32) is the number of parameters used in a given model that 
contains j  input variables. 

For the selection of variables and other relevant quality measures, as well as for the significance tests, 
the employed method is the same as before, with the only difference that the likelihood ˆ2 ( )− βA  will 
be used instead of the objective function Φ  (see Section 3.3.2-4, Section 3.3.6-7, and Section 4.1.3).  

Tables 4.29 to 4.31 summarized the results obtained by applying the previous methodology to the 
available data. 

Table 4.29 The best models obtained for the frequency of high flows in winter and summer (1 = a variable is 
included in the model, otherwise it is omitted). The estimated deviance, as well as the results for 
the cross validation statistic and the Akaike's information criterion, is presented. The most robust 
models are highlighted with the symbol  . All values are dimensionless. 

Winter:  11 11Poisson( )t t
i iQ ∼ µ  

Model 
No. 4x  9x  10x  14x 15x  16x  17x  18x  19x 21x 32x 41x Predictor Link κ  AIC  θ  Obs.

2653   1  1 1 1  1 1  1 ML log 0.656 4545.8 3405.8  

2651   1  1 1  1 1 1  1 ML logit 0.601 4458.5 2934.4  

3933 1  1  1 1 1  1 1 1 1 POT identity 0.746 4327.3 2626.4  

Summer: 12 12Weibull(a,b )t t
i iQ ∼  

Model 
No. 7x  8x  12x  14x 15x  16x  17x  18x  19x 25x 31x 40x Predictor Link κ  AIC  θ  Obs.

4015 1 1  1  1 1 1 1 1 1 1 ML log 0.909 1902.0 231813  

2821 1       1 1 1  1 POT  identity 3.299 1367.0 2060.9  

3052 1 1 1 1  1  1  1  1 MLP identity 2.981 1372.2 1378.4  

 

Table 4.30 Parameter estimates and results of the permutation test (the Monte Carlo p-values with R=500) 
obtained for the selected models for winter and summer respectively. 

Winter (POT model No. 3933) 

Parameter 0β  4β  10β  15β  16β  17β  19β  21β  32β  41β  

Estimates 0.0240 -0.6373 0.5561 0.2248 -0.0046 -0.1310 -0.1663 0.7614 0.0583 0.1602 

p-value - � 0 � 0 0.015 � 0 � 0 � 0 � 0 0.018 � 0 

Summer (MLP model No. 3052) 

Parameter 0β  18β  *Jβ  7β  8β  12β  14β  16β  25β  40β  

Estimates 0.1003 0.0115 4.9230 -0.8247 -1.1360 -0.2890 0.4863 -0.0063 1.0979 0.4540 

p-value - 0.032 - 0.010 0.004 0.002 0.064 0.024 � 0 � 0 
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Table 4.31 Additional quality measures for the selected robust models. 

1E  2E  3E  4E  5E  6E  7E  Model 
No. Type Season 

-1year[ ]  -2year[ ]  -1year[ ]  [ ]−  -1year[ ]  [ ]−  [ ]−  

3933 POT Winter 0.00 2.16 1.47 0.36 1.16 0.29 0.77 

3052 MLP Summer 0.16 1.13 1.06 0.49 0.76 0.35 0.87 

The selected models (see Tables above) have statistically significant variables, in other words, the null 
hypothesis (see Section 3.3.7) of independence can be rejected in favour of the alternative hypothesis 
(i.e. predictors are certainly not independent of the explained variable) at the 5% level of significance, 
with the exception of variable 14x  in model No. 3052 in summer. It is worth noting that the selected 
models have one or more land cover variable(s) as predictor(s).  

Based on the model structure and on the evidence contained in the samples, the following remarks can 
be stated.  

For winter, the frequency of occurrence of high flows is, as expected, largely dependent on the 
meteorological conditions, specially the total precipitation 21x ; the wetter a given year is, the more 
likely a flood event would arise. The same direct relationship applies to the maximum temperature in 
January 32x   and the composed indicator of wet circulation patterns 41x , share of north-facing slopes 

10x , and average field capacity 15x . Inversely related are the trimmed mean slopes 4x  and the shares 
of forest and permeable areas (such as grasslands) in the buffer zones of the stream network 17x  and 

19x  respectively.  

During summer, the model shows that variables with a direct relationship are the meteorological ones, 
i.e. mean precipitation 25x  and the composed index for wet circulation patterns 40x , the share of 
saturated areas 14x  and the share of impervious areas within a catchment 18x . Inversely related appear 
to be the mean slope near the stream network 7x , drainage density 8x   , mean elevation 12x , and the 
share of karstic formation 16x  within a given basin.  

As stated by equations (4.27) and (4.28) the variance of the thi  response at time t  is a function of its 
mean t

iµ , which is, in turn, a function of a set of predictors { }tj ix . Figure 4.19 illustrates this fact for 
the MLP model No. 3052 for summer as an example. Although it is not shown here, the proposed 
model for winter also exhibits similar features. 

The plot in Figure 4.19 also shows the way in which the selected MLP model (No. 3052) for summer 
has been able to cope with the heteroscedasticity present in the sample ( 0=1196n ).  

Concerning the frequency of high flows in summer 12Q  plotted in the ordinates, this Figure depicts 
also that the expectation of the observed values is quite close to the expectation of the calculated ones 
at different levels of the predictor 40x . Hence, considering these facts, it can be said that the proposed 
model (which has a Pearson correlation coefficient between the observed and calculated values of 
about r=0.87 ) is fitting the observed data quite well, even though some mismatches occur at higher 
levels of the predictor. These shortcomings of the model can be attributed to the lack of enough 
observations at those levels. 
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Figure 4.19 Plot showing the variation of the dispersion of the explained variable 12Q (observed and calculated 
by model No. 3052) as a function of the predictor 40x . Both continued and dashed lines represent 
the magnitude of the standard deviation whereas dots and rectangles represent the mean values at 
each level of  predictor. 
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Chapter 5  

Modelling Characteristics of Low-Flows with Time-
Dependent Data 

5.1 Introduction 
An accurate analysis of low-flow regimes occurring in a given stream or river is of crucial importance 
in watershed management because of the following reasons. Firstly, low-flows will constrain the 
design of key infrastructure facilities such as water supply and irrigation systems, river navigation 
networks, and hydroelectric power plants. Secondly, they will indicate to the water-manager the 
maximum levels of BOD1 and the maximum allowable concentrations of other pollutants (e.g. Hg, Pb, 
Zn, P, N, Rn) that should not be reached in a given stream so that its ecosystem will not be jeopardized 
or damaged during a drought period.  

In general, longer low-flow periods will increase investment costs of a given infrastructure facility in a 
non-linear way. Additionally, an erroneous estimation of such regimes will cause substantial economic 
losses for a region since the water shortage will hamper production processes.   

In order to better understand this phenomenon, it is necessary to determine the most likely period of 
the year when it may occur. In other words, this means that the temporal distribution of discharge and 
precipitation should be determined within a given domain (i.e. a basin) for different time intervals 
during a water year, say months. By knowing these two observables and assuming that the annual 
change of underground storage is insignificant, the basic form of the water budget for a given spatial 
unit iΩ  during a given time interval t  can be determined as 

t t t t
i i i iP Q S− − − ∆V

0
0

≈
= , (5.1) 

where the variables P , Q , V , and S∆ stand for precipitation, discharge, evapotranspiration, and 
change of underground storage. The operator ⋅  represents the integral of a given variable over the 
spatial domain iΩ  and/or during the time interval t  (e.g. one month). This equation must hold 
everywhere because it represents the principle of conservation of mass within the system. The results 
of (5.1) can then be averaged in order to have an unbiased estimator for each variable at a given time 

                                                      
1  Biochemical Oxygen Demand (BOD) refers to the amount of oxygen that would be consumed if all the 

organics in one litre of water were oxidized by bacteria and protozoa (ReVelle and ReVelle, 1988). 
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interval (e.g. for January). The result of such a procedure for the Study Area is depicted in Figure 5.1. 
This graphical presentation shows that the most probable low-flow spells would take place during 
summer (M, J, J, A, S, O), in which the evapotranspiration will increase because of higher air 
temperature; which in turn will reduce the river discharge although the precipitation has increased 
within its basin.  
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Qm = Monthly mean specific discharge
Pm = Monthly mean precipitation

 

Figure 5.1 Annual water balance of the Study Area. Each value is computed over the period 1961 to 1993. 

Because of this fact, the present study will only consider low-flow spells that happen during summer. 
Having defined the time span for the study of low-flows, the following question can be formulated in 
connection with the general aim of the present research: are the land cover changes that have taken 
place within the study area influencing in some way the probabilities of occurrence and/or the total 
duration of low-flow events? 

In order to answer this question, the available information will be first described. 

Table 5.1 Correlation matrix [ ]R  among explained variables  13 14 15 16, , , and Q Q Q Q and some climatic 
explanatory variables in summer. The sample size is equal to 860. 

  13Q  14Q  15Q  16Q  25x  31x  37x  38x   

 13Q  1         

 14Q  0.771 1    Symmetric  

 15Q  0.291 0.345 1       

 16Q  0.633 0.711 0.633 1      

 25x  -0.335 -0.587 -0.113 -0.251 1     
 31x  0.103 0.246 0.036 0.130 -0.312 1    
 37x  0.143 0.252 0.060 0.142 -0.297 0.846 1.   
 38x  0.664 0.849 0.297 0.587 -0.569 0.228 0.241 1.  

5.2 Description of Time-Dependent Variables 
The time series depicted in Figure 5.2 for catchments No. 11 and No. 13 as well as the correlation 
matrix shown in Table 5.1 point out the same fact: the explained variables { 13, ,16}lQ l∀ = …  are 
mutually correlated. 
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Figure 5.2 Time series showing the trends (by means of a 5-year running average) and the actual values for 
variables 13Q , 14Q , and 15Q  as well as for some explanatory variables including land cover for 
two catchments of approximately the same size ( 2km125[ ]A ≅ ). On the left panel is catchment
No. 11 with growing shares of forest and impervious cover; whereas on the right panel is 
catchment No. 13 which has endured a steady land use transition from grassland (permeable land 
cover) to settlement (impervious land cover) and a steady decline of forest since the mid 70s. The 
data shown here correspond to the period from 1961 to 1993. 

Hence, it would be sufficient to model one of them in order to give an answer to the previous question. 
An evident selection will be the total drought duration 14Q  since it exhibits the higher correlations not 
only with all potential predictors but also with the rest of the explanatory variables. 

The following remarks can be stated based on the time series shown in Figure 5.2. 

• Firstly, that both the daily mean precipitation (for summer) 25x  and the daily mean air 
temperatures in July 31x  do not reveal any significant trend; 

• Secondly, that the composed variable 38x , which accounts for days with dry circulation patterns 
and a decreasing antecedent precipitation index exhibits a completely different behaviour 
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depending on the shares of land cover while almost constant seasonal-mean precipitation and 
temperature have been observed; 

• Thirdly, that the variable 38x  is highly correlated with total drought durations ( 14Q ), and; 
• Finally, that the land cover variables seem to have played a significant role in the duration of 

low-flows at mesoscale level, especially the shares of forest and/or impervious areas. As is 
shown in Figure 5.2, a combination of a rapid growth of impervious cover accompanied by a 
decline of forest may have led to a rapid shrink of the total drought durations; conversely, 
slightly growing shares of forest and impervious areas may have led to an increase of total 
drought durations. In other words, the explained variable 14Q  has been attenuated by land cover 
variables. The rectangles with dashed line shown in Figure 5.2 illustrate this fact, i.e. the same 
climatic phenomenon (a dry year) may produce different outcomes depending on the land cover 
situation within the catchment, as well as on its morphology. 

The distribution of the explained variable 14Q  is positively skewed (skewness = 1.45) with its mode 
and median occurring at 0 and 6 [day] respectively. Hence, three positively skewed theoretical 
distributions from the exponential family, specifically the exponential, the gamma, and the Weibull 
distributions, were fitted to the observations using the maximum likelihood method. The 2χ  test 
statistic obtained for each fit was 1.2, 2.5, and 1.05 respectively. Based on this statistical test, whose 

-value = 0.31p , it is possible to assume that the data can be modelled using a Weibull distribution 
with a shape factor 1.035a =  and a scale factor 29.708b = . The sample also indicates that the 
explained variable is heteroscedastic with regard to one of its predictors, namely 38x . Additional 
statistics of the explained variable can be found in the Appendix 4.  

5.3 Total Drought Duration 
Using the procedures described in Chapter 4 it was found that the most significant variables to explain 

14Q  are { 1,7, 8,9,10,13,16,17,18,19,31,38}jx j = . In this case, forest and permeable cover have 
been evaluated at basin level whereas impervious cover has been evaluated within the floodplains and 
buffer zones of the stream network, i.e. { 17,19 1, , 46}j i ix j i≡∀ = ∧ Ω ∀ = …L  and 
{ 18 1, , 46}j i i ix j i≡∀ = ∧ ⊂ Ω ∀ = …L B . 

Using these twelve variables and a sample with 752 observations, all possible combinations of 
predictors have been calculated using the following model with three variants (predictors). Explicitly it 
can be written as 

( )

( )
( )

14 14

38

14
38

38

14 2
38

Weibull(a,b ) 0 ,

0 0

0

0 0
var

0

t t t
i i i

t
it

i t t
i i

t
it

i t t
i i

Q Q i t

x
E Q

x

x
Q

x

µ

κ µ

> ∀

 ==  >
 ==  >

∼

   (5.2) 

where 
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( )
( ) ( )

1

1 2 1

b 1 a

1 2a 1 a

t t
i iµ

κ

−

− −

= Γ +

= Γ + −Γ +
. (5.3) 

Three predictors that are functions of the explanatory variables will be used. They will be called 
(POT), and multi-linear potential 1 and 2 (MLP1, MLP2) respectively. They can be written as follows 

( )0
jt t

i ij
j

x
β

η β= ∏ , (5.4) 

( )0 *
jt t t

i j ij J j ij
jj

x x
β

η β β β β
∈∈ ∪

= + +∑ ∏
MG U

, (5.5) 

and 

( )0 *
jt t t

i j ij J ij
jj
j

x x
β

η β β β
∈

∉

= + +∑ ∏
U

U

 (5.6) 

respectively. In all cases the link function will be the identity one, so that 

,t t
i i i tη µ= ∀ . (5.7) 

Where 

{ }
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Table 5.2 shows the summarised results of applying the proposed method (see Chapters 3 and 4) to the 
present dataset. 

Table 5.2 Robust models for total drought duration in summer (1 = a variable is included in the model, 
otherwise it is omitted). The estimated deviance as well as results for the cross validation statistic
and the Akaike’s information criterion is presented. The most robust models are highlighted with 
the symbol  . All values are dimensionless. 

Summer: 14 Weibull(a,b )t t
i iQ ∼  

Model 
No. 1x  7x  8x  9x  10x  13x  16x  17x  18x 19x 31x 38x Predictor Link κ  AIC  θ  Obs.

3502  1 1  1  1 1  1 1 1 POT identity 0.611 6293.9 20.42  

3149    1   1 1 1  1 1 MLP1 identity 0.811 6217.8 24.16  

2964 1 1 1   1  1    1 MLP2 identity 0.794 5958.8 7.18  
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Table 5.4 Additional quality measures for the selected robust model. 

1E  2E  3E  4E  5E  6E  7E  Model 
No. Type Season 

day[ ]  2day[ ]  day[ ]  [ ]−  day[ ]  [ ]−  [ ]−  

2964 MLP2 Summer 0.00 175.83 13.26 0.45 9.26 0.31 0.86 

During the process of selection of predictors and for a given model type, it has been observed that 
some variables appear always or very often as elements of the subset of the best models.  This fact is 
illustrated in Table 5.2 where variables 17x  and 38x  have been always present. The selected model 
whose variables are all significant at 5% not only indicates that the total drought duration within a 
catchment primarily depends on the macroclimatic conditions represented by the variable 38x , but also 
that the morphology of the catchment and the land cover will play an important role. This evidence 
also provides valuable support to the remarks presented above in Section 5.2. Hence, variables such as 
mean terrain slope in the buffer zones of streams 7x , drainage density 8x , and share of forest cover 

17x  should be taken into account when watershed management plans are carried out.  

The behaviour of the water system concerning the total drought duration appears to have complex and 
non-linear relationships with the observables or predictors. The following reasons help to corroborate 
this statement. On the one hand, the variable 38x  has a nonlinear relationship with the explained 
variable (see Table 5.2), which not only depends on the macrocirculation patterns but also on the 
antecedent precipitation index. The latter, which is an indicator of the soil moisture, is, in turn, directly 
related to the share of forest within a catchment and inversely related to the share of impervious areas. 
On the other hand, the share of forest appears as a linear predictor of the explained variable, too (see 
Table 5.2). Such a complex relationship makes the analysis of low flows more complicated to model.  

Fortunately, using the proposed method, a model composed of six predictors out of twelve potential 
ones has been found, i.e. model MLP2 No. 2964. It has not only a correlation coefficient of 0.86 
between the observed and calculated total drought duration, but it also exhibits the smallest Jackknife 
statistic (7.18) compared with other potential robust models (see Table 5.2). In addition to that, the 
model’s output largely supports the presumption that the explained variable has been drawn from a 
Weibull distribution, as can be seen in the Q-Q plot of Figure 5.3, although deviations are accounted at 
the right tail of the distribution.  

A Q-Q plot is a scatterplot, in which ‘each coordinate pair consists of a data value and a 
corresponding theoretical estimate for that data value derived from the empirical cumulative 
probability estimate’ (Wilks, 1995). The empirical cumulative probability estimate for the thi  smallest 
data value will be assumed to be equal to ( ) 0 ( )( ) ( 1) Pr{ }i ip x i n X x= + ≈ ≤ , where 0n  is the sample 

Table 5.3 Parameter estimates and results of the permutation test (the Monte Carlo p-values with R=500) 
obtained for the selected model MLP2 No. 2964. 

Parameter 0β  17β  *Jβ  1β  7β  8β  13β  38β  

Estimates -0.269  0.071 14.658 -0.075 -0.711 -2.126 0.236 0.869 

p-value - 0.045 - � 0 � 0 � 0 0.016 � 0 
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size. Hence, the thi coordinate pair of the Q-Q plot in the present case is given by 1
( ) ( )[ , ( ( ))]i ix F p x− , 

where 1()F−  represents the fitted inverse Weibull CDF with parameters a  and b  given above. 

0 40 80 120
Total drought duration
Q14(obs) , Q14(cal) [day]

0

40

80

120

W
ei

b
u
ll 

Q
u
an

ti
le

s 
fo

r
  
Q

1
4
(o

b
s)

 ,
 Q

1
4
(c

al
) 
[d

ay
]

Data
Model results

n=752

 
Figure 5.3 Q-Q plot showing the fit of a Weibull(a,b)distribution to both the observed and the calculated 

total drought duration that have occurred in the case Study Area during the period of 1961 to 1993.
The calculated values are the output of model type MLP2 No. 2964. A perfect fit would have all 
points falling on the 1:1 line. 

The Q-Q plot depicted in Figure 5.3 shows two facts. Firstly, it illustrates how the fitted Weibull 
distribution has been able to reproduce the empirical distribution of the data up to values of a total 
drought duration of about 88 [day], which corresponds to the 97th percentile. In other words, the fit 
works satisfactorily with the exception of the right tail, which exhibits larger differences because the 
Weibull distribution allocates too much probability to the few observations with values greater than 88 
[day], which are too few in the given sample. This is why the Weibull quintiles are above the 1:1 line. 
Secondly, this plot depicts clearly how closely the selected model has been able to reproduce the 
empirical distribution function of the data up to about 75 [day]. 
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Chapter 6  

An Integrated Approach to Assess the Impacts of 
Climatic and Land Use/Cover Changes on the 
Hydrological Cycle at the Mesoscale Level 

6.1 Introduction 
As was stated before, the present state of land use in a given spatial unit or region is the outcome of 
two complex and interacting dynamic systems, namely: the anthropogenic activities and ‘natural’ 
subsystems as depicted in Figures 1.1 and 1.2. Hence, land use changes cannot be understood 
completely without an ‘insight’ into the innumerable relationships among all possible driving forces 
that may cause a transformation from a land use/cover into another one.  

It is, however, unrealistic to pursue a model that attempts to find all possible links (most of them non-
linear) between all processes (e.g. weather conditions, soil type distribution, hydrological regime) and 
all actors involved (e.g. individuals, firms, government acting according to a legal framework) because 
of the tremendous size of such a model, which, in turn, would make the analysis so complicated and 
inefficient that the whole modelling effort would become worthless. In physics, for instance, this sort 
of determinism has been abandoned a long time ago, especially for the analysis of macroscopic multi-
particle systems. A good example is the Metropolis algorithm (Metropolis et al. 1953), which 
simulates the evolution of a system in a heat bath towards thermal equilibrium. Moreover, in the 
present case, this amount of information will never be collected because of both economic reasons and 
data protection laws. 

It is possible, nevertheless, to simplify the system’s complexity to some extent. For instance, Allen 
(1978-1997) and Peréz-Trejo (1996) introduced a spatial dynamic modelling framework, which 
describes the average behaviour of an individual or a firm by a system of interacting differential 
equations that govern the structural changes of the system with regard to population and employment  
growth (in various sectors), as well as their spatial distribution. In this case, the system’s self-
organization is assured by the existence of bifurcation points (a critical point at which the system will 
branch into completely different paths or possible future states), which in a way preserve the 
adaptability and creativity of the system according to Allen (1997).  

This approach has, however, some shortcomings. Firstly, the fact that most dynamical systems have a 
strange attractor in some region of the parameter values describing the system (Casti, 1990). Such an 
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attractor is characterized by instability in all motions, deterministic randomness, and sensitivity to 
initial conditions. These characteristics imply that a small nudge in one of its variables will take the 
system to a completely different course. Secondly, the mathematical structure of the system is 
deterministic; hence, the inherent uncertainty of various subsystems has not been taken into account. 

The intrinsic randomness of the system is evident, for instance, when one tries to model the weather 
conditions in a given area or the housing location choice of an individual. Because of this important 
characteristic of the system, only one fact is certain: a perfect prediction of a future state based on the 
present state is impossible.  

Based on the previous considerations the following questions may be stated. How can a dynamic 
system be formalized in order to avoid the aforementioned difficulties and take into account its 
intrinsic randomness? Moreover, which kind of answers should be expected from this type of model? 
The consensus found in the reviewed literature points out that this sort of system can be modelled 
using a mathematical construct named a stochastic process. The technique used for solving such 
systems is called a stochastic or a Monte Carlo simulation (Hammersley and Handscomb 1964, Ripley 
1987, Haldorsen and Damsieth 1990). 

This technique employs batches of artificial data (i.e. realizations) generated for every random 
variable of the model resampled from their corresponding probability distributions. The numerous 
solutions of the system would allow determining the PDFs of the output variables, from which 
decisions can be taken in a probabilistic way. 

These ideas and their application to assess impacts of land use/cover change on the hydrological cycle 
in a given basin will be illustrated with the following stochastic simulation model. 

6.2 Model Structure 
The model presented here consists of four modules (see Figure 6.1): 

1. The land use/cover change model, 
2. The scenario definition, 
3. The stochastic simulation, and 
4. The statistical inference. 

It should be noted that the model structure is general and, hence, it can be applied anywhere. However, 
the calibration of the land use/cover change model, as well as, modules two and four depend on local 
conditions that have to be analysed for each particular case. Therefore, they will be discussed 
extensively in Section 6.3 which deals with the model implementation in the Special Study Area. 

6.2.1 A Simple Land Use/Cover-Change Model 
The land use/cover change (LUCC) model described below has been chosen because it has a simple 
structure and can be implemented easily. Furthermore, it assumes that there exists a one to one 
relationship between each land use and land cover class employed. Despite its simplicity, this model 
still captures key components that characterize the complexity of the real phenomenon as will be 
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shown in the next section. This model is based on works carried out by Bell (1974), Turner (1987), 
Flamm and Turner (1994), and, Muller and Middleton (1994). This model can be further improved by 
considering the spatial variability of the land cover transitions (e.g. by using semivariograms) as has 
been proposed recently by Brown (2002). In this respect, more research is still needed. 

Let the pair ( , )Z F  be a stochastic process resembling the land use/cover transformations to be 
endured by the system during a time span T . Let {( , ) : 1 , })i j i j N= ≤ ≤Z  denote the N N×  integer 
lattice covering a given spatial unit Ω  ; then  { }= ,( , )t t

ijU i j ∈U Z  denotes the land use/cover of spatial 
unit Ω  at time t , where 1, ,t T= … . Let { : 0,1, , } {0,1, , }qs q u u= = =S … …  be a finite state space 

Figure 6.1 Model structure showing the main objectives, required inputs, and outputs for each module. 

Modules Objective Data 

• Why Uik has changed to 
Ujk in place k  ∀ i, j, k ? 

• Which are the driving 
forces that have induced 
these LUC changes? 

• Where a change of LUC 
[i→j] will most probably 
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• LANDSAT mages 
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and climatic  
conditions 

Output • Future Scenarios 
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denoting 1u +  mutually exclusive land use/cover classes so that , ,t
ijU i j t∈ ∀S . Finally, let 

{ },( , )ij i j= ∈ ZF F  be a neighbourhood system where ⊆ ZFij  denotes the neighbours of ( , )i j .  

Then, the system can be defined as a Markov random field1 over ( , )Z F  if for every ( , )i j  and every 

qs  (see Geman and Geman, 1984) 

( )( )

1 1
'

1 1
'

'

Pr( , ( , ) , 1, , 1)

Pr , ( , ) ( , ) ( , )

( ) .

kl

t t t
ij q kl q

t t t
ij q kl q ij

t
qq ij

U s U s k l t t

U s U s k l k l i j

π

− −

− −

= = ∀ ∈ = −

= = = ∈ ∨ =

=

Z …

F , (6.1) 

where '( )tqq ijπ  is the probability that the outcome of the t -th transition in cell ( , )i j  will be 'qs , given 
that the outcome of the 1t − -th transition was qs , and ',q qs s ∈ S . In other words, the system has no 
memory; the selection of the new state ( )t  for a given cell ( , )i j  depends only on the current state 
( 1)t − of this cell and its neighbours and not on prior states. Since historical records support this 
condition, the system is fully determined by the transition-probability matrix '( )t

qq ijπΠ  given by 

'

0

0 0 ' 0

( , ') ' , ' 1
( )

1 ( , ) '

t
ij

t
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t
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∑
. (6.2) 

Turner (1987), Brown (2000, 2002), among others, have pointed out that the transition probability 
( , ')t

ijp q q  depends on local and time specific conditions. Several empirical studies also have shown 
that the transition probability is related with socio-economic factors, land use policies, and 
morphological characteristics of the terrain (Bell, 1974; Flamm and Turner, 1994; Berry, 1995; Brown 
et al. 2000, 2002). 

In the present case, this probability will be determined by (based on Berry et al. 1995) 
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∑ ∑  (6.3) 

where 

0( , ')w q q  = Calibration and scaling parameters to be determined with past information.   

( , ')Pw q q  = Control parameters denoting both the political willingness and the society’s 
level of awareness with regard to environmental impacts and sustainability. The 

                                                      
1  A Markov random field (MRF) is a stochastic process regarded as a generalization of the usual Markov chain 

(Cross and Jain, 1983). A Markov chain is a sequence of trials, where the outcome of each trial depends only 
on the outcome of the previous one (Feller, 1950 quoted by van Laarhoven and Aarts, 1992). 
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set of parameters will be scenario specific and will be of key importance during 
the simulation. In general, they are values greater or equal to zero. Zero means 
that a transition is not possible and the greater the value, the greater the 
willingness to promote such transformation. 

( , ')t
ijw q q  = Location and time specific factor indicating the likelihood that a given cell will 

be transformed to another land use/cover type based on the neighbourhood 
conditions. 

K  = Number of exogenous variables regarded as driving forces behind a land 
use/cover change. 

, , ,l k i j  = Indexes. 

( , )kx i j  = Time independent driving force k , with ( , )i j ∈ Z . 

0( , ')q qβ  = Intercept for a LUCC from 'q q→ . 

( , ')k q qβ  = Coefficient estimate for driving force k related with a LUCC from 'q q→ . 

This probability assumes that the driving forces will be constant or quasi-constant during the 
simulation time, and it takes into account the fact that landscape changes do not occur randomly in 
space but in patches or clusters (Brown, 2002). In other words, if a given cell is surrounded by cells 
belonging to a distinct land use/cover class it is more likely that a land use/cover change occurs here 
rather than in another one that is surrounded by the same land use/cover class. 

The variable ( , ')t
ijw q q  has been estimated as 

{ }1
'( , ) : ( , )

( , ')
1

t
ij q ijt

ij
c

i j U s i j
w q q

n

− = ∧ ∈
=

+
F

 , (6.4) 

where {}⋅  represent the cardinality of the set composed of all neighbours of the cell ( , )i j  having a 
land use/cover type 'q  at the 1t − -th transition. cn  denotes the number of  neighbours of a given cell 
and c  an integer denoting the neighbourhood configuration. In the present case 2c = , which means 
that a given cell has eight neighbours (i.e. 8cn = ). The neighbourhood is determined as in Geman 
and Geman (1984) 

{ }2 2( , ) : 0 ( ) ( )ij k l k i l j c= ∈ < − + − ≤ZF . (6.5) 

6.2.2 Stochastic Simulation  
The purpose of the stochastic simulation is to determine how severely a change in land use/cover 
would affect the hydrological system of a given basin Ω  provided specific scenario conditions. The 
impacts on the hydrological system will be quantified by those empiric models calibrated in Chapters 
4 and 5. The variables used by these models will be obtained as follows. The land use/cover variables 
are obtained as realizations of the LUCC model proposed before; the morphological variables are 
invariants for the period of the simulation; and the climatic variables will be drawn from their 
multivariate joint distribution. The resampling procedure, however, has to be done sequentially since 
the climatic variables are mutually dependent. The procedure is as follows. Firstly, a variable assumed 
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to be independent (i.e. either 24x , 25x , or 27x , for winter, summer and annual respectively) has to be 
drawn from their respective EDF. For a subsequent variable, however, the distribution from which it 
has to be drawn will be modified by the value of the primary variable. This modified distribution is the 
conditional distribution as defined by the Bayes theorem. The conditional distribution for a secondary 
variable kx  can be formally written as 

, , ) Pr( , )(
ik k i k k i iX X i kF x x i k X x X x i k∀ ≠ ∀ ≠ = ≤ = ∀ ≠ . (6.6) 

The proposed simulation is carried out by the subsequent algorithm.  

Algorithm 6 

1. For 1, ,r R= … , where R  denotes the total number of realizations. 
2. For 1, ,t T= … , where T  denotes the total number of years in each realization r . 
3. For all ( , )i j ∈ Z . 

a. Estimate ( , ')t
ijp q q  as in (6.3). 

b. Generate a random number [ )unif 0,1ϖ ∼ . 

c. If 
' 1 '

1 1

( , ) ( , )
q q

t t
ij ij

l l

p q l p q lϖ
−

= =

< ≤∑ ∑  accept transition from 'q q→ . 

4. Estimate land use/cover shares *t
rΩU  for the spatial unit Ω . 

5. Resample (with replacement) the independent variables , 24,25,27ix i =  from their respective 
EDFs. 

6. Resample (with replacement) the remaining secondary climatic variables *t
rΩM  from their 

respective conditional distribution functions (6.6). 
7. Scale up all climatic variables according to the scenario conditions. Check additional 

constraints. In case they are not fulfilled return to step 6. 
8. Estimate ( )* * * ˆ, , , (2,3,4,5,6,9,10,11,12,14)t t t t

kr r r kQ f kΩ Ω Ω Ω= ∀ =G U M β . With ˆ
kβ  and 

( )f i  according to Chapters 4 and 5. 
9. Repeat step 2. T  times. 
10. Estimate the long-term mean for each realization * * , 1, ,t

kr krQ E Q k r t TΩ
 = ∀ =  … . 

11. Repeat step 1. R  times. 
12. Estimate means and variances for each runoff characteristic at each time interval t , 

* * , 1, ,t
kt krQ E Q t k r RΩ

 = ∀ =  … , and 

( )2* * *var( ) , 1, ,t
kt kr ktQ E Q Q t k r RΩ

 = − ∀ =  
… . 

13. Estimate * * , 1, , 1, ,t
k krQ E Q k t T r R = ∀ = =  … … . 

14. For each k , estimate from the simulated-EDF for the long term means { }*( ) : 1, ,krQ r R= …  
the exceedance probabilities kα  with respect to historical records as 

[ ]* *
( 1) ( )1 ,

1k k r k k r
r Q E Q Q

R
α − Ω= − ≤ <

+
 

15. For each k , estimate 95% confidence intervals based on { }*( ) : 1, ,krQ r R= … . 
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6.3 Model Implementation 
6.3.1 Special Study Area 
The proposed simulation model will be applied in the spatial unit No. 13, which is located upstream of 
the station Denkendorf-Sägewerk (E3 526 300, N5 397 100) in the river Körsch. Its area is about 
126.3 km² and because of its vicinity to Stuttgart it has endured a rapid land use and cover change in 
the past four decades. Figure 6.2 shows the location of the Special Study Area as well as the main 
transportation network and main settlements in the region. 

 
Figure 6.2 Special Study Area for the land use and cover change simulation model. 

Stuttgart is the capital of the State of Baden-Württemberg as well as the state’s Central Business 
District, and the main cultural and industrial hub of the Greater Stuttgart Region, which is composed 
of the following counties (Landkreis) Böblingen, Esslingen, Göppingen, Ludwigsburg, and Rems-
Murr, as well as the independent municipality (Stadtkreis) Stuttgart. This region is considered a 
densely populated area (BBR, 2000), with a gross density in 2001 of about 717 inh/km² (SLA). 

Stuttgart municipality provides an oversupply of jobs since its activity rate (i.e. 
:Total Employment Total Population ) is about 3 : 5 , whereas the region has an average of 

about 1.8 : 5  (in 2001, SLA). This large difference in the employment distribution, as well as the 
variety of services offered in the central city, constitute the main driving forces for daily commuting to 
Stuttgart.  
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6.3.2 Calibration and Validation of the LUCC Model 
The LUCC model proposed before will use four (i.e. 3u = ) mutually exclusive land use/cover 
classes, namely 

Table 6.1 Land use/cover categories. 

q  Description 
0 restricted or unused land 
1 forest 
2 impervious cover 
3 permeable area 

The procedure to calibrate the model comprises the following steps. The first step is the definition of 
the potential predictors. According to (6.3), the probability ( , ')t

ijp q q  has to be explained by 
exogenous variables called driving forces. In the present case, six potential predictors have been 
conceived as proximate sources of a land use/cover change. They denote accessibility to main 
transportation axes, jobs, amenities (located in towns and settlements) as well as morphological 
variables. In this model, it is assumed that such variables remain unchanged during the simulation 
period. A summary of these variables is shown Table 6.2. All variables have been defined as lattices 

( , ) : ( , )kx i j i j ∈ Z . 

Having done this, the available land use/cover images acquired in 1975 and 1993 respectively (see 
Section 2.6.1) were used to determine all sites where land use/cover transitions ( ', , ' 0q q q q→ ∀ > )  
have taken place during this period. As a result, it was found that the number of cells with transition 
(2,1)  is negligible (i.e. 0.08%). This implies that the probability of a transition from impervious cover 
to forest can be taken as approximately equal to zero. Moreover, it is assumed that it will remain 
constant during the simulation period for all cells in the Special Study Area. 

Table 6.2 Potential predictors of land use/cover change. 

k  variable Description Units Source 

1 1( , )x i j  Distance to main highways [m] Digitized 1:50 000 topographic maps 

2 2( , )x i j  Distance to towns and settlements 
with metro or railway connection 

[m] Digitized 1:50 000 topographic maps 

3 3( , )x i j  Distance to streams [m] From DEM, 30×30m 

4 4( , )x i j  Elevation [m] DEM, 30×30m 

5 5( , )x i j  Slope [°] From DEM, 30×30m 

6 6( , )x i j  Aspect relative to south [°] From DEM, 30×30m 

Then, five independent random samples, one for each possible land use/cover transition ( , ')q q , were 
obtained according to the following criteria. Each sample should include a binary indicator variable 

'( , )qqy i j  and the corresponding values of the exogenous variables ( , )kx i j , i.e. each sample is 
composed of the following information ( ){ }' 1 6 '

( , ), ( , ), , ( , ) : ( , )qq qq
y i j x i j x i j i j ∈ Z…  . Additionally, 
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each sample should have an equal number of observations for each category of the binary indicator, 
and a total of nobs 2000= . The binary indicator variable denotes the probability of occurrence of a 
land use/cover change. If it has occurred it takes the value 1, if not it takes the value 0. More formally 

1 0

' 1 0

1 if ' '
( , )

0 if

t t
ij ij

qq t t
ij ij

U q U q q q
y i j

U U q

 = ∧ = ∧ ≠=  = =
, (6.7) 

where and0 1975, 1 1993t t= = . 

The calibration of the parameters needed for (6.3) will be carried out for each transition probability 
independently. The explained variable is the binary indicator whereas the explanatory variables are the 
driving forces kx . A model for a transition probability ( , ')q q  assumes that the observations of the 
binary indicator provided by the corresponding sample are realizations of a Bernoulli distribution. The 
expectation of this variable is therefore  

( )

' ( )( , ) Pr( , ')
1

k

k

x

qq x

eE y i j q q
e

  = =  +

η

η , (6.8) 

where ( )kxη is the linear predictor (see Chapter 4) defined as 

0
1

( ) ( , ') ( , ') ( , )
K

k k k
k

x q q q q x i jη β β
=

= +∑ . (6.9) 

Upon this basis, the best models where obtained by applying the method described in Chapter 3 to 
select the best model given K  predictors. The coefficients were fitted by the maximum likelihood 
method (Chapter 4). The results for the most robust models are shown in Table 6.3. All variables are 
significant at the 5% level.  

Table 6.3 Fitted model coefficients for each transition probability.  

Land use/cover 
transition  

From (q ) To ( 'q ) 
0̂( , ')q qβ  1̂( , ')q qβ  2̂( , ')q qβ  4̂( , ')q qβ  5̂( , ')q qβ  

1 2 5.966E -01 7.030E-03 -9.173E-02 -1.259E-03 -1.768E-03 
1 3 5.561E+00 -9.179E-03 -8.639E-02 -5.745E-04 -7.529E-04 
2 3 3.027E+00 -1.018E-02 -8.011E-02 -8.123E-05 9.876E-04 
3 1 -3.168E+00 4.267E-03 1.798E-01 -2.508E-04 5.638E-04 
3 2 -3.678E+00 1.227E-02 3.160E-02 -9.757E-04 -5.455E-04 

In order to validate the model, a land use/cover map from 1984 (see Section 2.6.1) has been used as a 
starting condition. Then, using the parameters shown in Table 6.3 and corresponding scaling 
parameters, the model was run for an interval of 9 years with an 100R = . As a result, one hundred 
realizations for the land use/cover state in 1993 were obtained and compared with the observed land 
cover map from 1993 using the standard error matrix. On average, the realizations have shown that the 
model has an overall accuracy of 85%. 
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6.4 Development Scenarios for the Special Study Area 
The proposed LUCC model as well as the hydrological models found before (see Chapters 4 and 5) 
will be coupled during the simulations under the framework conditions of a given scenario for the 
Special Study Area (see Figure 6.2). 

Scenarios are “neither predictions nor forecasts of future conditions. Rather they describe alternative 
plausible futures that conform to sets of circumstances or constraints within which they occur” 
(Hammond, 1996). The purpose of scenarios “is to illuminate uncertainty, as they help in determining 
the possible ramifications of an issue along one or more plausible (but indeterminate) paths” (Fisher, 
1996). Scenarios to be conceived for this study will have a dynamic character because they “not only 
look into consistent future situations, but [also] include the consideration of feasible development 
paths” (Treuner, 1995). This character of a given scenario will be accomplished in this study by using 
a stochastic simulation, which will deliver a number of “images of possible futures” given a common 
starting situation. According to Treuner (1995), scenarios must be envisaged and elaborated taking 
into account three fundamental issues: 1) future social values; 2) interpretation of a region’s external 
conditions; and 3) assumptions (explicit or implicit) as to the mechanisms of causes and effects of 
changing patterns. 

It should be noted that the third point has been already carefully analysed in the context of the present 
study. For instance, cause-effect relationships have been found between many runoff characteristics 
and the shares of the land cover, morphological, and climatic variables for a given basin. Besides that, 
the land cover state of a given basin at a point in time has been related with exogenous variables 
governing land use/cover change. The fundamental hypothesis in this case is that these models fitted 
with past information will still be valid in the future. The remaining two issues are to be discussed 
below. 

6.4.1 Socio-economic Scenarios 
In order to simplify the analysis and taking into account the actual socio-economic and political 
situation in Germany, only two future paths with regard to socio-economic factors and attitudes have 
been conceived for the Special Study Area. They have been termed as Scenarios S1 and S2. These 
scenarios have some common features to ease comparison. For instance, the population in the region 
will slightly decline at about 0.1% per year (according to an external forecast for the administrative 
units covering the Special Study Area i.e. Stadtkreis Stuttgart and Landkreis Esslingen, SLA, 2002). 
Furthermore, the GDP per capita of Baden-Württemberg will grow at an average rate of about 2.3% 
per year (SLA). However, these scenarios will have characteristic conditions with regard to the driving 
forces and the society attitudes that promote land use/cover changes, namely: 

Scenario S1 

The keyword for this scenario is status quo. The storyline of this scenario describes a future state of 
the Special Study Area in which its development can be explained as an extrapolation of past trends. 
This scenario assumes that the steady growth of income per capita combined with an excellent 
provision of road transportation network and stable taxation for fossil fuels (0.65 €/l) will keep the 
relationship between car-ownership and the demand for residential floor space tightly correlated 
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(r2=0.88 from 1974 to 1997, as can be seen in Figure 2.2). These indicators will continue to grow at 
2.6% and 1.5% per year respectively. In addition to that, the rent for housing in Stuttgart and its 
surroundings will soar due to the region’s high level of centrality. 

The implication of these assumptions is that although the population settled in the region is quasi 
constant, the demand for larger apartments and detached houses with large gardens located in villages 
and settlements with good road accessibility will grow rapidly. As a result, new housing areas will 
appear everywhere in the outskirts of Stuttgart, accompanied by large shopping malls with huge 
parking places whilst floor space downtown will be swiftly taken by branches of the service sector.  
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Figure 6.3 Land use/cover forecast based on Scenario S1 conditions for Special Study Area as a whole (total 
area 126.3 km²). The observation points are derived from the LANDSAT scenes for 1975, 1984
and 1993. The forecasted period is up to 2025. 

The consequences of these developments for the overall balance of the land use/cover in the Special 
Study Area can be seen in Figure 6.3. The forecast has been done based on a Markov chain whose 
transition matrix adjusted to fit the observations is 

T1

1 0 0 0

0 0.984 0.016 0

0 0 0.986 0.014

0 0.002 0.018 0.980

t t+

 
 
 
 =  
 
 
   

U U , (6.10) 

where tU  is a 4-dimention vector denoting the area for each land use/cover category for the whole 
Special Study Area in time t . Applying this procedure, only the last three land use/cover categories 
( 1, , 3q = … ) will endure transformations, for instance, forest will decrease slightly, impervious areas 
will grow rapidly, and permeable areas will decrease continuously. Restricted areas are preserved.  
This scenario describes a fast urban sprawl in the Special Study Area. Using this forecast the LUCC 
model will be scaled up so that the land use/cover categories forest, impervious, and permeable cover 
will reach in average 1280, 5950, 5390 ha respectively by the end of 2025. 
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Scenario S2 

The keyword for this Scenario is local sustainability. The storyline of this scenario differs from the 
previous one in several topics. Firstly, the public opinion, in general, and the political decision-making 
bodies, in particular, will finally become aware that a rapid urban sprawl represents a threat to the 
environment, which, in turn, may contribute to increased flooding and drought hazards in the region. 
Consequently, tougher land use by-laws and higher property tax regulations will be adopted. As a 
result, the demand for floor space per capita will be reduced significantly. 

Secondly, the “Eco Tax” (tax on fuel that makes commuting more expensive) will be strengthened. 
Tax exceptions will be introduced for smaller and pollution-free cars, whereas higher taxes will be 
imposed on vehicles with standard combustion engines. These regulations, along with a sufficient 
frequency and capacity offered by almost pollution-free mass transportation systems, will slow down 
the growth rate of the car-ownership ratio. As a result, the demand for space required for new roads 
and parking places will be reduced dramatically. Because of the new legislation, the growth rate of 
impervious areas, as can be seen in Figure 6.4, will slowdown from 1.3% per year of the “status quo” 
Scenario to 0.4% per year in Scenario S2. The scenario denotes a consolidation of the urban fabric of 
the Special Study Area. 
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Figure 6.4 Land use/cover forecast based on Scenario S2 conditions for the Special Study Area as a whole. 

Thirdly, the decrease of forest observed in the period 1975 to 1993 has been taken by the public 
opinion as a loss of German “identity”. Therefore, land use/cover compensation rules stated in the EIA 
(Environmental Impact Assessment) by-laws will be strengthened, and wherever possible reforestation 
projects will be initiated. At the end of the simulation period (i.e. 2025) the land use/cover categories 
forest, impervious, and permeable cover will have an average of 2160, 4390, and 6075 ha respectively. 
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6.4.2 Macroclimatic Scenarios 
Why are macroclimatic scenarios needed during these simulations? Before this question is answered, 
another question must be asked: Is climate really changing? The answer is unequivocally yes (Karl 
and Trenberth 1999, Houghton et al. 2001, Zwiers 2002). Currently, there is plenty of empirical 
evidence that the Earth’s surface mean temperature has endured a very rapid increase during the last 
100 years that “counters a millennial-scale cooling trend, which is consistent with long-term 
astronomical forcing” (Mann et al. 1999) (i.e. the gravitational driving force “which is thought to have 
driven long-term temperatures downward since the mid-Holocene at a rate within the range of -0.01° 
to -0.04°C/century” [see Berger,1988 in Mann et al. 1999]). As an example, Figure 6.5 depicts the 
reconstruction of the temperature anomalies2 for the past millennium in the Northern Hemisphere 
carried out by Mann et al. (1999). Based on proxy data (i.e. paleoclimatic) and instrumental records 
from many studies (Hansen and Lebedeff 1988, Jones, 1994, Vinnikov et al. 1990, Mann et al. 1999) 
the IPCC (Houghton et al. 2001) has concluded that the average surface temperature in the Northern 
Hemisphere has increased by 0.6 ± 0.2°C during the 20th century. 
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Figure 6.5 Reconstruction of the Northern Hemisphere average temperature anomaly for the past millennium 
according to Mann et al. 1999(2). Data from the period (1000 to 1902) is reconstructed from tree 
rings, ice cores, varved sediments, and corals [Mann et al. (1) 1999]. Data from period (1902-
1998) is from instrumental measurements. The grey region represents the 95% confidence range.
The moving average shows the decreasing trend up to 1900. 

Since climate is changing, the weather and its meteorological indicators used in this study at 
mesoscale will certainly change in the future. However, to estimate how big these changes would be in 
a given place using General Circulation Models (GCM) is rather complicated because of the extremely 
high uncertainty involved in future estimates. The uncertainty of the system does not come only from 
the complexity of the system3 itself but also from future actions of human beings, especially with 

                                                      
2  The air temperature anomaly is defined as the difference between the temperature in a given year and the 

average from period (1961-1990), which is roughly 15°C for the Northern Hemisphere (IPCC, 2000). 
3  The intrinsic uncertainty of the state-of-the-art GCM models is caused by the complexity of the iterations 

among the components of the climatic system, i.e. the atmosphere, the hydrosphere, and the biosphere. At the 
moment, even using the best supercomputers available, the system of equations can be solved for a spatial 
resolution of about H: 250 km, V: 1 km. Hence, results of GCM cannot be used directly for climatic 
inferences at local level (Karl and Trenberth 1999). Estimates at local level are then obtained by statistical 
downscaling techniques (von Storch et al. 1999). 
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regard to both the amount of emissions of greenhouse gases into the atmosphere and the magnitude of 
land use/cover changes. Greenhouse gases (e.g. CH4, N2O, CO2, SO2) are directly linked with climatic 
disruptions of the last century. Figure 6.6 shows for example the strong correlation between the 
temperature anomalies of the Northern Hemisphere and the atmospheric concentration of CO2 
(r = 0.72).  
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Figure 6.6 Relationship between the atmospheric CO2 concentrations and the temperature anomalies in the 

Northern Hemisphere up to 1998. Additionally, this Figure depicts the emission conditions 
adopted in this study for scenario S1 and S2, which correspond to the IPCC emissions scenarios 
A2 and B1  respectively. [Data: temperature anomalies from Mann et al. 1999; CO2 concentrations 
from the standard IPCC CO2 concentration history dataset (Enting et al. 1994); IPCC scenario
concentrations obtained from IPCC Data Centre]. 

Based on these facts, the answer to the first question is now straightforward. Macroclimatic scenarios 
are needed in order to deal with the uncertainty of climate in the future. They will provide the 
framework for the climatic conditions for a future world under given hypothesised socio-economic 
and emission scenarios. In order to simplify the analysis, this study only conceives two extreme 
macroclimatic scenarios called Scenario C1 and C2 respectively. 

Scenario C1 

The keyword for this scenario is pessimistic, and describes the worst-case situation. The storyline for 
this emission scenario corresponds to the “A2” scenario described by Jordan et al. (2000) and 
McCarthy (2001). It envisages a heterogeneous future world with a continuously growing population. 
Emphasis is given to local, short-term solutions instead of long-term, globally-oriented, and 
sustainable ones. Free market, consumerism, and increase of income per capita are pursued all over the 
world. The promotion of clean and resource-efficient technologies will be very limited, and the main 
source of energy will still be fossil fuels. Global inequality will grow. Under these conditions, it is 
hypothesized that the atmospheric CO2 concentration will reach about 525 ppmv by the year 2050. 
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Put differently, this scenario assumes that Nature is very resilient to human stress; that global warming 
is a natural process in which anthropogenic activities do not play a significant role; and that 
sustainability is a rather expensive and unachievable goal. 

GCM simulations (CGCM1: Boer et al., 2000; and HadCM2: Johns, 1996) under this emission 
scenario suggest that 30-year mean climate changes at regional levels will be very likely to happen in 
the future. For Germany in particular, the most expected climatic disruptions in the future are 
summarized below (for details see also Table 6.4). 

Precipitation will increase in winter due to an intensified hydrological cycle but will decrease in 
summer because of an increased evapotranspiration. Furthermore, the intensity and frequency of 
extreme precipitation events in summer will likely increase, mainly because of changes in atmospheric 
moisture, thunderstorm activity, and large-scale storm activity. (Hennessy et al., 1997; McGuffie et al., 
1999). In other words, the return period of extreme events will be shortened. Consequently, magnitude 
and frequency of high flows will most likely increase. It is also very likely that low-flow periods or 
droughts will increase due to greater evaporation (Gregory et al., 1997). Mean temperature will very 
likely increase in both seasons. The frequency of minimum and maximum temperatures will also 
change, i.e. fewer cold and frost days in winter, and much dryer and hotter days in summer (Houghton 
et al. 2001). In other words, weather patterns in this future world will become more intense and erratic. 

Scenario C2 

The keyword for this scenario is optimistic. The storyline of this emission scenario corresponds to 
scenario “B1” described by Jordan et al. (2000) and McCarthy (2001). It describes a convergent future 
world with a global population stabilizing in mid-century. “Global Sustainability” is the motto of all 
governments on Earth, which implement global solutions for economic and environmental issues. 
Most of the energy demand will be covered by renewable energy sources (e.g. biomass, solar, 
hydroelectric, tidal power, eolic, and geothermic). Promotion of clean and resource efficient 
technologies will be a key element of the decision-making process. As a result, CO2 emissions as well 
as other greenhouse gasses will decrease after 2050, and the atmospheric CO2 concentration will reach 
about 550 ppmv only by the year 2100. 

The GCM (CGCM1: Boer et al., 2000; and HadCM2, Johns 1996) fed with these conditions predict 
that the climatic changes in Germany will be much less severe than those in scenario C1; in fact, the 
difference between these scenarios in growth rate per decade for both mean precipitation and 
temperature is in relation of 3:1 approximately. The mean temperature increase, for instance, by the 
year 2020 will remain under the 95% confidence interval of the natural variability (McCarthy, 2001), 
but the change of mean precipitation in winter will certainly exceed the natural variability of the last 
century (about 0.1% per decade, New et al., 2000). The detailed information obtained from these 
simulations is shown in Table 6.4. 

6.4.3 Assembling the Development Scenarios 
The assessment of the future state of a complex system requires a starting point situation and a 
reference framework from which the system will evolve into the future, i.e. a development scenario. In 
the present case, the starting point is the state of the catchment of the river Körsch in 1993. The 
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development scenarios will be assembled by combining one socio-economic scenario (S1, S2) with one 
macroclimatic scenario (C1, C2) at a time. As a result, four development scenarios are obtained, which 
are called C1S1, C1S2, C2S1, and C2S2 respectively. The specific conditions for each of them are 
shown Table 6.4. 

Table 6.4 Composition of the development scenarios. 

Variable Development Scenario 

Description Name Class / Season /Cat. C1S1 C2S1 C1S2 C2S2 

Change [% / year] 
17x  Forest -0.9 -0.9 +0.7 +0.7 
18x  Impervious cover +1.3 +1.3 +0.4 +0.4 

Land-cover 

19x  Permeable cover -0.8 -0.8 -0.5 -0.5 
Change [% / decade] 

24x  Winter +4.1 +1.6 +4.1 +1.6 
Mean precipitationII 

{ }: ( ) 0.9x F x <  
25x  Summer -2.7 -1.0 -2.7 -1.0 

Probability of occurrenceI Pr( )X x≤  [-] 
24x  Winter * * * * 

Low precipitationII 
{ }: ( ) 0.1x F x ≤  

25x  Summer 0 * 0 * 
Change in probability and magnitude [% / decade] 

24x  Winter * * * * 
High precipitationII  
{ }: ( ) 0.9x F x ≥  

25x  Summer +4.0 * +4.0 * 
Change [% / decade] 

30x  Winter +2.1 +0.8 +2.1 +0.8 
Mean temperatureII 

{ }: ( ) 0.9x F x <  
31x  Summer +2.9 +1.1 +2.9 +1.1 

Probability of occurrenceI Pr( )X x≤  [-] 
30x  Winter 0 * 0 * 

Low temperatureII 
{ }: ( ) 0.1x F x ≤  

31x  Summer 0 * 0 * 
Change in probability and magnitude [% / decade] 

30x  Winter * * * * 
High temperatureII 
{ }: ( ) 0.9x F x ≥  

31x  Summer +10.0 * +10.0 * 
Change [% / decade] 

21x  Winter +3.9 +1.6 +3.9 +1.6 Annual precipitationIII 
22x  Summer -2.7 -1.0 -2.7 -1.0 

Change [% / decade] 
27x  Annual +1.4 +0.5 +1.4 +0.5 
28x  Winter +3.9 +1.5 +3.9 +1.5 

Maximum APIIII 

29x  Summer 0.0 0.0 0.0 0.0 
Change [% / decade] 

32x  Winter +2.0 +0.7 +2.0 +0.7 Maximum TemperatureIII

33x  Summer +1.6 +0.6 +1.6 +0.6 
Change [% / decade] ATI at annual peakIII 

discharge 34x  Annual -0.2 -0.1 -0.2 -0.1 
Change [% / decade] 

41x  Winter / Wet +6.9 +2.7 +6.9 +2.7 
40x  Summer / Wet -8.9 -3.5 -8.9 -3.5 

Duration of a given 
category of Circulation 
PatternsIII, IV 

38x  Summer / Dry  +9.0 +3.3 +9.0 +3.3 
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Notes: * Denotes that there will be no significant change in magnitude or that the probability of occurrence 
will remain equal to that of the reference period 1961-1993. 

 I Based on the PDF of the variable during the reference period. 
 II Based on GCM simulations carried out by IPCC (CGCM1: Boer et al., 2000; and HadCM2: Johns, 

1996) under a given emission scenario. 
 III Based on potential relationships between a given variable and mean precipitation and mean 

temperature at catchment level. Winter, summer, and annual relationships are 
( ) ( )1 2

0 24 30
t t t t
i ix x x

β ββ ε= +  

  ( ) ( )3 4

0 25 31
t t t t
i ix x x

β ββ ε= +  

  ( ) ( ) ( ) ( )1 2 3 4

0 24 30 25 31
t t t t t t
i ix x x x x

β β β ββ ε= +  

  respectively. This formulation has the advantage that can be easily transformed into an incremental 
equation. For example, for winter the incremental equation is 

  1 24 2 30
t t t
ix x xβ β∆ = ∆ + ∆ . 

   The parameters iβ  were found empirically and all are significant at the 5% level. The following 
Table shows these coefficients for each variable: 

Variable 1β  2β  3β  4β  
21x  0.956 0.026   
22x    0.862 -0.131 
27x  0.290 0.017 0.475 0.508 
28x  0.945 0.048   
29x    0.808 0.765 
32x  0.125 0.703   
33x    -0.042 0.516 
34x  -0.032 0.004 0.020 0.009 
38x    -2.492 0.677 
40x    2.796 -0.603 
41x  1.483 0.361   

 IV This fact is also supported by the excellent agreement found between observed and downscaled 
monthly precipitation at catchment level (Bardossy and Caspary, 1999) using the CPs. 
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6.5 Simulation Results 
A total number of 2500 realizations have been carried out for each development scenario (simulation 
time ∼ 7.5h on an 800 MHz workstation). Based on the simulation results, the following summary has 
been prepared to show how the conditions of each scenario have influenced the runoff characteristics 
of the Special Study Area, however, a more detailed analysis of results and conclusions will be 
presented in Chapter 8.  

Firstly, Table 6.5 shows the average growth rate in percent per decade for each simulated variable and 
for each scenario, taking as reference year the beginning of the simulation, i.e. 1994. This information 
is presented in both a tabular and a visual way to ease the comparison between different scenarios and 
types of impact measured by the simulated variables. Based on this optical aid, it can be clearly seen 
that the hydrological system of the studied catchment will endure the greatest disruptions under the 
C1S1 scenario conditions, and conversely, the least ones under scenario C2S2. The other two scenarios, 
i.e. C1S2 and C2S1, are in-between the previous two. 

Table 6.5 Average percent change per decade for each simulated variable taken 1994 as reference year. The 
colours indicate the magnitude and the sign of the simulated changes (see legend below); e.g., red 
represents the highest positive change whereas dark blue does the opposite. 

Development Scenario Development Scenario 
Variable Description Symbol

C1S1 C1S2 C2S1 C2S2 C1S1 C1S2 C2S1 C2S2
Total discharge in winter 2Q  6.9 5.4 3.7 2.4     
Total discharge in summer 3Q  -2.6 -6.8 0.4 -4.1     
Specific peak in winter 4Q  8.8 5.4 5.4 2.5     
Specific peak in summer 5Q  -3.7 -1.6 0.1 -0.6     
Specific volume of the annual peak 6Q  9.9 3.2 8.0 2.2     
Total duration of high flows in winter 9Q  5.6 6.2 2.3 2.7     
Total duration of high flows in summer 10Q -1.9 -4.5 1.8 -1.1     
Frequency of high flows in winter 11Q 7.1 3.5 4.4 1.3     
Frequency of high flows in summer 12Q -2.8 -2.6 -1.2 -1.8     
Total drought duration in summer 14Q 8.4 8.0 3.7 3.8     

 Legend 

 

 

Each average growth rate has been estimated based on the simulated mean values for 1994 and 2025. 
This approach yields satisfactory approximation of the decadal growth rates since the simulated mean 
value grows continuously during the simulation period as can be seen in Figure 6.7. 
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Figure 6.7 Historical records for total winter discharge ( 2Q ) in the Special Study Area from 1961 to 1993. 
The dotted line on the right depicts one of the realizations of this variable for the period 1994 to 
2025 under C1S1 scenario conditions. The continuous line denotes the simulated mean value at a 
give time t , which has a positive trend in this case (i.e. 6.9% per decade, see Table 6.5). 

From the simulations, it is also possible to estimate the likelihood that the long-term mean of a given 
variable will be exceeded during the period 1994-2025 under a given scenario. The summary of these 
exceedance probabilities and the long-term means (i.e. from 1961 to 1993) for each variable and 
scenario are presented in Table 6.6. If the probability is greater than 0.95, this means that it is very 
likely that the past mean of a given variable will be surpassed in the future, or in other words, that the 
expectation of a variable will increase over time. On the contrary, a value less than 0.05 will mean that 
the past mean of a variable will be hardly reached (in fact it will only occur 5% of the time at this 
probability level), thus, a decreasing tendency of the expectation of such a variable is very likely 
foreseeable. 

Table 6.6 Probability that the long-term mean for a given variable will be exceeded under certain scenario
conditions.  

Development Scenario Variable Description Symbol Long-term 
mean Unit 

C1S1 C1S2 C2S1 C2S2 
Total discharge in winter 2Q  181.2 [mm] 1.000 1.000 1.000 1.000 
Total discharge in summer 3Q  153.4 [mm] 0.332 0.020 0.238 0.020 
Specific peak in winter 4Q  7.1 [mm] 0.218 0.037 0.052 0.002 
Specific peak in summer 5Q  9.1 [mm] 0.335 0.335 0.231 0.229 
Specific volume of the annual peak 6Q  25.8 [mm] 1.000 0.992 1.000 0.973 
Total duration of high flows in winter 9Q  10.0 [day] 0.732 0.775 0.580 0.649 
Total duration of high flows in summer 10Q  8.1 [day] 1.000 0.995 0.998 0.984 
Frequency of high flows in winter 11Q  4.3 [-] 0.920 0.712 0.786 0.460 
Frequency of high flows in summer 12Q  4.9 [-] 0.265 0.219 0.071 0.060 
Total drought duration in summer 14Q  21.2 [day] 0.437 0.423 0.703 0.716 

The long-term means for both simulated and observed values for each runoff characteristic can also be 
plotted in order to visualize the effects of a given development scenario on a given runoff 
characteristic. In the present case the deviation from the mean of the historical records (1961-1993) 
expressed in percent has been found appropriate for this purpose. In addition to the magnitude of the 
deviation, which  is  shown  in Figure  6.8  by  a  dot,  it  is  also  very important to know the degree of 
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Figure 6.8 Deviations in percent of the mean of the simulated variables with respect to the respective
historical mean (i.e. observations during 1961-1993) under given scenario conditions. The mean 
value and its 95% confidence interval are represented here with a dot and a bar respectively. 
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dispersion of this indicator. This has been achieved by plotting the 95% confidence interval of the 
simulated mean with respect to the reference period. 

1960 1975 

1984 1993 

2025 Scenario S1 (r=999) 2025 Scenario S2 (r=999) 

  

Figure 6.9 Time series of land cover in the Special Study Area from 1960 to 1993. Additionally, random 
realizations of the land use/cover for the year 2025 under two different scenario conditions. 

As said above, 2500 land use/cover realizations were conducted for each scenario. The spatial domain 
of the catchment was divided into cells of 30×30 m with a total extension of 745 cells in west-east 
direction and 393 cells in north-south direction. The state of each land use/cover category for each cell 
has been reckoned during the simulation period based on the model proposed before. The land 
use/cover balance in the basin is estimated after each LUCC simulation has been finished. A sample of 
such results can be seen in Figure 6.10. These simulated values are subsequently employed for the 
evaluation of the runoff characteristics at the correspondent point in time. The results of the LUCC 
simulation, however, were not kept in order to speed up the simulation. The model, nevertheless, can 
deliver one of such realizations at a certain point in time, as can be seen in Figure 6.9 for socio-
economic scenarios S1 and S2 respectively. 
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Figure 6.10 Sample from the land use/cover simulations showing the evolution of impervious cover in the 

Special Study Area based on socio-economic scenario S1. The forecasted trend and the 
observations have been depicted as a reference. 

Additionally, the probability that the land use/cover state of a given cell will be transformed to a 
different state during the time span of the simulation can be estimated from the simulation results. 
Figure 6.11 shows, for instance, the spatial distribution of the probability that the land use/cover in a 
given location of the basin will be transformed to impervious cover by the end of 2025. In this Figure, 
for instance, the red colour indicates that the probability that a cell would be transformed to 
impervious cover (e.g. road, urban settlement) is greater than 0.9. This situation, as shown in this 
Figure, tends to occur mainly in the fringes of existing settlements were available land with particular 
morphological and accessibility conditions remains still under other usages. 

 
 

 
 

Figure 6.11 Probability that the land use/cover of a given location will be transformed to impervious cover up
to the year 2025 based on the socio-economic scenario S1. (The sample size for each cell is 2500).
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Chapter 7  

Sensitivity Analysis 

7.1 Introduction 
Once a model has been selected, calibrated and validated, it is of crucial importance to study how 
changes in variables, parameters, and model structure would affect the behaviour of the model output. 
Such a study is generally known as sensitivity analysis (Gilchrist, 1984). As to the model user, the 
sensitivity analysis will provide him/her all required information and insight about the model 
performance and its limitations, which, in turn, will contribute to reduce the risk of an inappropriate 
application of the model. 

It should be noted that the sensitivity with regard to model structure was already considered during the 
model selection (see Chapter 4 and Chapter 5). Therefore, the present chapter will go through the 
remaining issues, namely: 1) sensitivity of model parameters to a given variable, 2) model sensitivity 
to a given parameter, and, 3) sensitivity of the significance probability ( valuesp− ) as to the number 
of replicate simulations R .  

7.2 Sensitivity of Parameters to Catchment Size 
One of the major concerns in the present study is to investigate the effects of the spatial scale at which 
the model is optimised with regard to the model parameters and its overall performance. In other 
words, it would be necessary to answer the question: are the model- parameters invariant with regard 
to the spatial scale?  In this case, the spatial scale is represented by the catchment size 1x , which 
ranges from 4.5 to 4002.0 km2. 

In order to illustrate the procedure presented below, the model No. 3733 fitted for the annual specific 
discharge in winter (see Section 4.1.4) will be used as an example. In this case, the model estimates 
can be written as 

( )2 7 8 11 15 17 19 21
ˆ ˆ, , , , , , , 1, , 46 1961, ,1993t t t t t t t t
i i i i i i i iQ f x x x x x x x i t= = =… …β , (7.1) 

using the vector β̂  as in Section  4.1.4, Table 4.5. 
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Algorithm 7 

1. For all 10,25,50,100,200,250,500,1000,2000,3500,4500a = , where a  is a threshold for the 
variable 1x  given in [km²]. 

a. Build a sample aD  of size 0an  so that 1 1, , 46ix a i< ∀ = … .  

b. Use aD  to estimate ˆaβ  for the model ( )2 7 8 11 15 17 19 21
ˆ, , , , , , ,t t t t t t t t t

i i i i i i i i a iQ f x x x x x x x ε= +β  so that 
min!aΦ →  

c. Estimate the Akaike’s Information Criterion aAIC  for the previous model.  

2. Repeat step 1. if needed. 

3. Plot 0an , aAIC , and ˆaβ  versus a . 
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Figure 7.1 Parameter sensitivity to catchment size for the multi-linear potential model (No. 3733) selected

for the annual specific discharge in winter 2Q . Samples are from the period from 1961 to 1993. 

Based on the results of the previous Algorithm, which are depicted in Figure 7.1, the following 
remarks can be formulated. 

1. Since AIC is proportional to the sample size, the ratio 0AIC /a an can be used to compare the 
results obtained by the previous Algorithm with regard to the quality of the model with respect to 
the amount of information provided. As can be seen in the Figure above, this indicator reaches a 
peak at around 100 km² and then decreases slowly. Based on this finding, it can be inferred that the 
amount of information for those samples with spatial units whose area is less than 2100 km )(a ∼ is 
not as complete as for those derived with thresholds greater than or equal to 2100 km )(a ∼ . 
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2. Parameters for the morphological variables (i.e. 7 8 11, ,x x x , and 15x ) exhibit an irregular behaviour 
(as to their sign and magnitude) when the samples used for the model-calibration have spatial units 
with an area less than 2100 km )(a ∼ . This can be regarded as a direct consequence of what has 
been mentioned above since the data here perhaps reflects a case specific situation unwanted for a 
model supposed to describe the phenomenon at a much broader scale. However, values for the 
analyzed parameters tend to stabilize for threshold values a  greater than 100 km² (see right panel 
of Figure 7.1). As this example has shown, parameters of morphological variables in a model 
conceived to explain the specific discharge for a given catchment can be considered as scale 
invariant if 2100 kma > .  

3. The parameter 21β , which is linked with the climatological variable total precipitation, has a 
downward trend within the interval 2[10, 50] [km ]a ∈ and becomes asymptotic when it reaches a 
magnitude of about 1.2 (see left panel of Figure 7.1). Thus, it can be stated that this parameter is 
scale invariant for values of 250 kma > . Additionally, it should be noticed that its order of 
magnitude is several times greater than that of the morphological variables. Such a fact just points 
out how important this variable is with regard to discharge predictions at a mesoscale level. 

4. Finally, those parameters associated with land cover variables such as forest and permeable cover 
( 17β  and 19β ) exhibit in general a downward tendency, keeping an almost constant relationship 
between them. Because of this fact, it can be inferred that these variables have a complex 
relationship to the water system, which depends greatly on the scale at which the analysis is carried 
out. Consequently, their corresponding parameters appear to be scale dependent as shown in the 
Figure 7.1. 

7.3 Model Sensitivity to a Given Parameter 
In many cases, it would be desirable to know how changes of a parameter (e.g. due to errors of 
estimation caused by data quality) would influence the behaviour of the model output. In other words, 
to assess how the uncertainty of one parameter can influence the model results (Mein and Brown, 
1978). 

A simple procedure to assess the percentage rate of change in the expected output ˆtilQ  per unit of 
percentage change in the parameter jβ , frequently referred as relative sensitivity, is presented below. 

Let  

( )1
ˆ ˆ, , , 1, , 46 1, , 1961, ,1993t t t
il i iJQ f x x i j J t= = = =… … … …β , (7.2) 

be a general model for a given runoff characteristic l , which depends on J  predictors jx , and where 
( )f i  and β̂  are a known functional form and a vector of estimated parameters respectively. Based on 

these definitions, the rate of change of ˆtilQ  with jβ  or simply the absolute sensitivity coefficient t
ijc , 

can be computed as (McCuen, 1973, Leavesley et al. 1983, Gilchrist, 1984) 

ˆ

ˆt
t il
ij

j

Qc
β

∂=
∂ β , (7.3) 
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where the partial derivative is evaluated at β̂ . Absolute sensitivities, however, have the serious 
disadvantage that the values estimated for two different parameters cannot be directly compared 
because their values largely depend on the magnitudes of each parameter respectively. Therefore, 
dimensionless-relative sensitivities are preferred in practice. The relative sensitivity of the model 
output, tije , with respect to the parameter ĵβ  can be written as 

1ˆ ˆ
ˆˆ ˆ

t
j jt t il

ij ij t t
jil il

Qe c
E Q E Q

β β
β

−   ∂ ∂  = =                 
, (7.4) 

where ˆt
ilE Q     is the expectation of the output given by ( )1

ˆ ˆ, , ,t t t
il i iJE Q f x x  =   … β .  

Figure 7.2 illustrates for a specific case how the two factors shown in parenthesis in (7.4) are related to 
each other, considering three different parameters. Based on this Figure, it can be concluded that the 
most sensitive parameter in this case is 22β , which is associated with the variable cumulative 
precipitation in summer, and the least 17β , which is associated with the share of forest of a given 
basin. These results show that the system is highly sensitive to precipitation and much less sensitive to 
land cover or slopes. These results are not surprising because the system is mainly governed by 
climatic variables, and only modulated by the morphology and the land cover of a given basin. 
However, it should be noted that the magnitude of the relative sensitivity of the parameter 7β  

associated with the mean slope in the buffer zones of the stream network is quite similar to that of 17β . 
This result suggests that the sensitivity of the model to a change of the parameter value for land cover 
is as important as that corresponding to mean slopes. Nevertheless, the sign of the changes of the 
output will be the opposite because these variables ( 17x  and 7x ) associated with these parameters 
have an inverse and a direct relationship with the model output respectively as can be seen in the 
Figure below. 
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Figure 7.2 Relationship between andˆ ˆ ˆt t
il il j jQ E Q β β ∂ ∂    for model No. 3965 obtained for the specific 

discharge in summer ( 3Q ). The relative sensitivities for each parameter at a given level can be 
obtained as the quotient between an ordinate and its corresponding abscise. The dots represent the 
geometric mean of the relative changes taking into account all observations is the sample. 
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7.4 Convergence of the Monte Carlo Simulations 
A randomization test is to be performed in order to assess whether an explained variable Q  is either 
statistically independent (H0) or dependent on a given variable jx  under a joint distribution of 
J predictors. As mentioned in Section 3.3.7, the estimator Φ  measures the level of interdependence 
between Q  and jx  (ceteris paribus), and the valuep −  indicates whether to accept or reject the null 
hypothesis in favour of the alternative one at a given label of significance α , say 5%. However, this 
procedure can be executed only if one knows in advance how many replicates of the statistical test 
have to be carried out in order to have a conclusive result, which, in turn, leads to take the right 
decision. 

Of course, the more replicates the better, but a large value (say 10 000R > ) still constitutes a great 
hindrance at the actual state of development of desktop computers, namely a dramatic increase of 
computing time. This side effect would then make this procedure too time consuming to be applied for 
practical purposes. Therefore, it would be advantageous to establish a certain minimum number of 
simulations required to guarantee a stable result. 
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Figure 7.3 Sensitivity of the valuep− with respect to the number of replicate simulations. Panel on top 
shows the results for variable 19x ; and panel down depicts the results for variable 8x . The 
simulations are carried out for model No. 3733 fitted for the annual specific discharge in winter. 

As shown in Figure 7.3, the valuep −  obtained for two variables 19x and 8x  that are part of the 
model No. 3733 calibrated for the annual specific discharge in winter [see (7.1)] tend to converge to a 
certain limit, which is the value that would be obtained if R  would tend to infinite.  As a rule of 
thumb, it is suggested that reasonable estimates can be obtained when R  varies between 100 and 1000 
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(Davison and Hinkley 1997). The convergence of the valuep −  is commonly achieved when 
500R �  as actually it happened with the variable 8x  shown in the Figure below. However, there are 

cases in which convergence only occurs for values of 1000R >  as it is the case of the variable 19x . 
Since this is not known in advance, a good recommendation would be to continue with the simulations 
if the obtained valuep −  is too close (about 10%) to the level of significance decided in advance for 
the test of independence.  

In the present case, since the valuep −  obtained for the variable 19x  is much less than 5%, the 
simulation could have been stopped at 500R = . 

A great advantage of this test with relation to the parametric tests is that in this case the PDF of the test 
statistic (e.g. the estimator) is not assumed but rather built up from the simulation results as shown in 
Figure 7.4. The valuep −  estimated by the Algorithm 4 (see Section 3.3.7) is the area on the left tail 
of the empirical distribution function of  Φ  that is less than or equal to the value of the estimator 
given the original sample, for the model 3733, this value is 0.9342Φ = . As seen in the Figure below, 
the EDF is not symmetrical and skewed to the left.  
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Figure 7.4 Histogram of 5000R =  Monte Carlo replicates of the estimator Φ  for the model No. 3733 when 
the variable 8x  has been tested for independence. The unshaded area in the left tail correspond to 
the valuep− . 
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Chapter 8  

Discussion and Conclusions 

8.1 Discussion 
In this section, some remarks as to the methodology and results presented in previous chapters are to be 
set forth and discussed. 

First, it should be stated that the methodology employed in this study is general and can be applied 
anywhere if the required information is available. The results obtained, however, are specific for the 
Upper Neckar catchment.  

Concerning the methodology employed in chapter three to five to select parsimonious models for ten 
runoff characteristics having just the minimum number of variables and parameters has been proved 
convenient with regard to providing insight into the functioning of the system and easing their 
applicability in more complex simulation models. Those variables that constitute a given model were 
selected taking into account two conditions. Firstly, the number of variables in a model should be as 
close as possible to the dimensionality of the system (i.e. around 7); and secondly, in each model there 
should be at least one variable directly linked to the morphology, to the climate factors, and to the land 
cover state of the basin respectively. By doing so, these models not only have saved considerable 
computing time in the subsequent simulations carried out in Chapter 6, but also have been able to react 
to changes in macroclimate and land cover as can be appreciated in Table 6.5. In other words, these 
minimalist models have been capable of detecting many of the entangled relationships between the 
predictors (which are very often non-linear) contained in their unknown joint distribution function.  

Additional advantages of the selection procedure are twofold. The risk of over-parameterization as well 
as the possible multicollinearity among predictors was considerably minimised. A direct consequence 
of the latter is, for instance, the significant reduction of the confidence intervals of all model’s 
parameters. 

The inclusion of statistically significant variables in a model is also of key importance with regard to 
finding “good” but “simple” models among the numerous possibilities given by a set of predictors. The 
main reason for this is that a non-significant variable will increase the total variance, but will not 
contribute to explain it better. In other words, it will only add noise to the system and deteriorate the 
explanatory power of other significant predictors. In this respect, the randomisation test employed has 
proved to be an indispensable analytical tool compared with any conventional parametric statistical 
tests. In this case, considering the fact that the multivariate joint distribution function of the predictors is 
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unknown, the latter would have provided misleading decision results as to which variable is to be in or 
out of a model. This would have undoubtedly occurred since all parametric tests are based on 
assumptions with regard to the distribution functions of the variables. 

The use of the Jackknife statistic during the cross-validation of the best models has tremendously 
facilitated the task of the selection of the “best” model. Additionally it was of essential importance in 
the present study since it allows estimating at the same time the level of predictability and the 
robustness of a model in presence of data that contain outliers. One important advantage of this statistic 
is that it can be used always regardless of the estimator employed. 

It has to be mentioned that all of these statistical techniques are very effective for modelling complex 
systems but they require substantial computing resources, which will increase non-linearly with respect 
to the amount of data employed. 

As said above, the integration of two realms of the system, namely the hydrological behaviour of a 
catchment and the state of the land cover at a given point in time has been achieved in this study 
because of the simplicity of the hydrological models employed describing many runoff characteristics 
and of the character of the Land Use/Cover Change (LUCC) model, which in spite of its simple 
formulation, has reached an 85% level of predictability in its validation phase (see 6.3.2). This result 
has been achieved mainly because of the spatially distributed character of the LUCC model. Recalling 
its basic formulation, it makes the transition probability from one land cover type to another depend on 
external driving forces that vary over space but not in time. In this case, the driving forces behind land 
cover change have been considered static just to keep the model as simple as possible under the existing 
constraints of time and resources assigned for this research. This shortcoming should be improved in 
future versions, because some of the external driving forces behind land cover change may vary over 
time, for instance accessibility to towns and settlements with access to railway connection. The LUCC 
model, however, can be modified to accept dynamic driving forces based on the same formulation 
presented here. Another aspect of the LUCC model that should be improved in future versions is its link 
with other factors that induce a land use change. The land use of a given location depends among other 
factors on its accessibility, the existing land use regulations, and the location of residents and job places. 
Under specific conditions the state of these variables are such that they can induce a land use change. 
Then, eventually, a land cover change will follow with all its consequences to the environment. This 
coupling between land use and land cover models is still a challenge for future versions of this kind of 
simulation model.  

Secondly, as to the results obtained in this study the subsequent remarks can be formulated, which, as 
was already said, are relevant for the Upper Neckar catchment in general and for the Körsch catchment 
in particular.    

Based on the relationships thoroughly discussed in Chapters 4 and 5, which relate several runoff 
indicators for basins exhibiting various sizes and morphological characteristics, having different 
percentages of land cover shares and at different points in time, it can be inferred that land cover 
variables are certainly having an effect on the hydrological cycle at mesoscale basins. In all cases that 
have been analysed, the subset of the best performing models always contains one or more of these 
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variables. The test of independence has shown that such variables are certainly not independent of the 
explained variables at the 5% level, and in some cases at even less than that significance level.  

The magnitude of the effects of land use/cover change on the hydrological cycle of a mesoscale basin, 
of course, cannot be compared with those triggered by sudden meteorological changes. It should be 
borne in mind that the hydrological system is driven by the weather and that the morphological 
characteristics of the basin and its land use/cover can only modulate the response of the system. 
However, the effects of land use/cover change are cumulative and may cause long-lasting 
consequences. For instance, they will further a continuous increase of the total discharge in winter and 
will induce long periods of drought in summer (see Table 6.5). Both effects will have enormous 
consequences for the environment and the economy of the region. 

More specifically, the effects of land use/cover change on the hydrological system of a mesoscale basin 
under two extreme climatic scenarios can be summarised below. 

The total discharge in winter, 2Q , will increase at about 6.9% per decade in the worst-case scenario 
C1S1, i.e. a very rapid urban sprawl (about 1.3% per year) accompanied by a continuous increase of 
mean air surface temperature caused by global warming. If the growth rate of impervious cover will 
decline to a modest 0.4% per year and climate will continue with the actual warming tendency the 
growth rate may be about 5.4% per decade (i.e. development scenario C1S2). These growth rates may 
decrease only if the global community really will minimize the amount of emissions of greenhouse 
gases to the atmosphere. If this becomes true, then these figures will be reduced to 3.7 and 2.4% per 
decade for development scenarios C2S1 and C2S2 respectively. The 95% confidence intervals shown in 
Figure 6.8 indicate that the average total discharge in winter up to 2025 would be 17% to 44% bigger 
that that of the base period (1961-1990) for scenario C1S1. In the most favourable scenario (C2S2) 
these figures will be as low as 7% and 34% respectively. 

The total discharge in summer, 3Q , will in general tend to decrease because of higher temperatures and 
corresponding increasing evapotranspiration. This variable, for instance, will suffer a decrement of 
6.8% per decade in the development scenario C1S2 (which contemplates an increase in forested areas).  
In development scenarios C1S1 and C2S1, however, it may endure increments as to the reference 
period. 

Specific peaks in winter, 4Q , will tend to increase in all scenarios. However, the largest deviation from 
the historical mean corresponds to the development scenario C1S1 (i.e. urban sprawl accompanied with 
future climatic conditions exhibiting hotter winters). Land use/cover change plays a very important role 
in this runoff indicator. The difference in percent between the socio-economic scenarios S1 and S2 is 
about 3% per decade regardless of the macroclimatic settings. 

Specific peaks in summer, 5Q , will tend to decrease in all scenarios with the exception of scenario 
C2S1. In the latter, summers will not be much hotter as during the reference period but an increase of 
impervious cover will reduce the concentration time of surface runoff, which, in turn, will tend to 
increase peak flows at the rate of 0.1% per decade. However, the confidence intervals estimated for 
each scenario show that this variable might have a large fluctuation around the mean of the base period. 
Summer peaks are often local phenomena caused by convective precipitation. 
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The specific volume of the annual peak event, 6Q , is the runoff characteristic that is mostly affected by 
land cover changes simulated in the Special Study Area. The difference between the growth rates of this 
variable under socio-economic scenarios S1 (i.e. urban sprawl) and S2 (i.e. densification) may range 
from 5.8% to 6.7% per decade, depending on whether the future macroclimate conditions will be either 
moderate or exacerbated respectively (i.e. climate conditions of scenario C2 or C1 correspondingly). 
Furthermore, if impervious cover will follow the actual trend, and mean temperature will increase at the 
rate of 0.4°C per decade (i.e. a grow of 2.4% per decade in average) due to global warming (C1S1), 
then, this variable will grow at about 9.9% per decade. This implies that if scenario C1S1 would 
become true, the future volume of the annual peak flow could be between 15% and 43% greater than 
during the reference period with a 95% level of confidence. In other words, more intensive floods can 
certainly be expected downstream of the Special Study Area. 

Total duration of high flows in winter, 9Q , will be higher on average in the densification scenario (S2) 
than in the urban sprawl scenario (S1) assuming constant climatic conditions. In other words, 
discharges that occur less than five percent of the time will persist during longer periods. The reason for 
that stems from the fact that the former scenario promotes an increase of forest and restricts the 
development of impervious cover at a low growth rate. The latter, though, does just the opposite. A 
higher amount of forest would induce lower rates of evapotranspiration in winter, which, in turn, would 
tend to increase surface runoff. Additionally, it should be noted that even in the most favourable case 
(i.e. C2), the mean temperature in winter would grow at about 0.8% per decade based on actual trends 
for the Northern Hemisphere. This increase of heat in the system will induce a faster melting of the 
snowpack, which, in turn, will also contribute to increase the surface runoff and its persistence at higher 
discharge levels. 

Total duration of high flows in summer, 10Q , will do just the opposite of its counterpart in winter, i.e. 
they will tend to decline in general, mainly because mean temperature in summer will increase. The 
growth rate in the densification scenario is even smaller because forest will grow under this scenario, 
which implies higher rates of evapotranspiration and, hence, lower surface runoff. The exception is the 
scenario C2S1 (i.e. moderate climate and urban sprawl) where this variable will tend to grow at just 
0.1% per decade. The main reasons are the moderate temperatures of the climatic scenario and the large 
reduction of forest combined with a large expansion of impervious areas promoted by the socio-
economic scenario S1. Less forest implies less evapotranspiration whereas more impervious areas imply 
shorter concentration time and drastically decreased infiltration capacity of the basin. All put together 
they have made this variable to grow at 1.8% per decade. 

Frequency of high flows will grow in winter, 11Q , and conversely, will decline in summer , 12Q . 
Moreover, the urban sprawl scenario (S1) will exhibit the larger growth rates under the same climatic 
conditions. In other words, if the actual trends in land cover continue, regardless of the macroclimatic 
conditions, it is very likely (95% certainty) that the frequency of high flows in winter will be greater 
than that of the reference period. Although the average tendency of this variable is to decline in 
summer, sudden increases as compared to the reference period can be expected. The reasons for these 
developments in general are closely related to those already stated for variables 9Q  and 10Q , but they 
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are inversely related. In short, if a combination of factors cause the total duration of high flows to 
persist at higher values during longer times then the frequency of such flows will tend to decrease. 

Finally, the total drought duration in summer, 14Q , will tend to increase faster in climatic scenario C1 
than in C2. Land use/cover changes will have an impact on this variable but in a lesser degree as 
compared with those originated by a macroclimatic change. 

8.2 Conclusions 
The present study was based on three general objectives (see Section 1.4) aimed at investigating the 
impacts of climatic and land cover/use changes in a mesoscale catchment. Considering these objectives 
and the results that have been achieved and documented in previous chapters, it is possible to draw the 
following conclusions. 

1. The key element in the analytical part of this study was the use of temporal and spatially distributed 
data available for 46 gauging stations at the Upper Neckar Catchment from 1961 to 1993. Based on 
this vast amount of information and with the help of sophisticated optimisation algorithms and 
nonparametric statistical techniques, it was possible to search and validate “very good” models that 
describe the state of the system at any point in time and for each spatial unit (i.e. a basin). These 
numerical relationships have allowed discriminating between the effects of climatic and land cover 
variability at mesoscale level. The quantifications of the magnitude of a given land cover change is 
straightforward.  

2. Calibrated models for several runoff characteristics in winter and summer have shown that land 
cover variables are statistically significant (5% level) components of the water cycle at the 
mesoscale. However, the performance of models in winter is better than that in summer. 

3. The integration of these hydrological models with a simple stochastic land use/cover change model 
has proved to be feasible and enlightening. Although the land use/cover model used in this study is 
quite simple, the results show that it is a promising planning tool since it allows testing the effects of 
several land use/cover and climatic scenarios on the hydrological cycle. 

4. Further research, however, is still needed in order to improve the land use/cover change model so 
that it includes other time dependent factors which induce land use/cover changes. 

5. Further steps should be carried out in order to promote the use and development of integrated 
planning tools as logical and systematic constructs that support planners’ actions dealing with the 
complexities of natural systems and their entangled relationships with anthropogenic activities. By 
doing so, a step towards sustainability will be realized. 
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Appendix 1 
Correspondence table showing the composition of the spatial units (i.e. basins) based on subunits 
called sub-catchments derived from a DEM (30×30 m, LfU) (see Figure 2.5). 

Spatial 
Unit 

Composed of 
Sub-catchments 

1 1   46 
2 2 
3 3    6   40 
4 4   30 
5 5    7    9 
6 6   27   25   39   15 
7 7 
8 8   17   28 
9 9   20   12 
10 10   35   41 
11 11 
12 12   33   22   37 
13 13 
14 14 
15 15   26   14   16 
16 16 
17 17 
18 18 
19 19   29 
20 20 
21 21 
22 22   23 
23 23   21 
24 24   44    2   34   11   10    5 
25 25 
26 26   32 
27 27 
28 28 
29 29 
30 30 
31 31 
32 32 
33 33 
34 34   31 
35 35   38 
36 36 
37 37 
38 38   18 
39 39 
40 40   42    8 
41 41 
42 42   19   24    1    4 
43 43 
44 44   36   45 
45 45 
46 46 
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Appendix 2 
Basic information of the spatial units and their gauging stations located within the Study Area. 

Spatial Area nobs Outliers 
Unit 

Gauging Station 
Name 

River 
Name [km2] [year] [%] 

1 Wannweil-Bahn Echaz 161.31 32 16.3
2 Pfäffingen Ammer 133.52 33 18.5
3 Plochingen Neckar 4002.00 33 12.1
4 Riederich Erms 161.25 33 18.2
5 Horb Neckar 1119.74 33 15.5
6 Plochingen Fils 701.61 33 11.5
7 Hopfau-2 Glatt 202.34 32 16.9
8 Wendlingen Lauter 190.00 33 13.6
9 Oberndorf Neckar 694.71 33 12.7

10 Bad Imnau Eyach 331.08 33 10.3
11 Rangendingen Wehr Starzel 122.50 33 9.7
12 Rottweil-Gaswerk Neckar 454.78 33 13.6
13 Denkendorf-Sägewerk Körsch 126.29 33 14.8
14 Geislingen Eyb 123.20 33 16.1
15 Süßen Fils 357.00 33 12.7
16 Süßen Lauter 68.20 33 13.6
17 Kirchheim Lindach 92.10 32 12.5
18 Frommern Eyach 72.90 28 7.1
19 Oberensingen-2 Aich 178.00 32 10.0
20 Epfendorf Schlich 106.00 32 10.6
21 Horgen Fischbach 120.40 22 10.9
22 Bühlingen Eschach 218.52 21 6.7
23 Horgen-Kläranlage Eschach 208.00 33 20.0
24 Kirchentellinsfurt Neckar 2321.83 33 32.4
25 Baiereck-Typ Herrenbach 4.50 31 13.9
26 Geislingen-Brücke Fils 137.60 32 12.8
27 Reichenbach Lützelbach 14.57 22 15.0
28 Unterlenningen Lauter 58.80 32 22.2
29 Neuenhaus-Brücke Schaich 38.20 25 7.5
30 Bad Urach-Kurgebiet Erms 108.30 32 19.4
31 Dußlingen-Pulvermühle Wiesaz 38.10 30 9.3
32 Wiesensteig-Ort Fils 30.30 33 17.3
33 Göllsdorf Prim 124.90 31 4.8
34 Tübingen-Bläsiberg Steinlach 139.00 31 10.0
35 Owingen-Ort Eyach 206.20 32 8.4
36 Bebenhausen Goldersbach 34.32 29 12.1
37 Deißlingen Neckar 37.90 26 10.4
38 Balingen Eyach 122.90 23 4.8
39 Eislingen Krumm 25.80 19 3.2
40 Wendlingen Kläranlage Neckar 3270.10 22 15.0
41 Gruol Stunzach 75.80 19 14.2
42 Wendlingen Wehr Neckar 3075.00 16 6.9
43 Schömberg-Zulauf Schlichem 28.40 13 2.3
44 Tübingen-Lustnau Goldersbach 68.18 9 4.4
45 Tübingen-Lustnau Kirnbach 8.90 13 16.9
46 Wannweil Firstbach 6.70 11 17.3
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Appendix 3 
Sample statistics of the explanatory variables employed in this Study. 

Variable 
Name Unit nobs Min Max Mean Median Std Cv [%] 

1x  [km²] 46 4.50 4002.00 433.08 124.05 895.75 206.8

2x  [°] 46 3.02 11.07 6.97 7.27 2.07 29.7

3x  [°] 46 2.20 10.01 6.00 6.00 1.53 25.5

4x  [°] 46 4.92 9.14 6.68 6.73 1.09 16.3

5x  [°] 46 3.24 8.86 6.13 6.10 1.36 22.2

6x  [°] 46 1.09 3.73 2.36 2.29 0.68 28.7

7x  [°] 46 3.37 15.93 7.63 7.09 2.60 34.0

8x  [1/km] 46 1.75 2.53 2.16 2.18 0.16 7.4

9x  [-] 46 1.02 7.06 2.56 2.23 1.10 42.7

10x  [-] 46 5.49 18.20 12.34 12.12 2.42 19.6

11x  [-] 46 5.13 30.75 18.66 17.79 4.33 23.2

12x  [m] 46 386.14 818.34 595.13 609.72 114.40 19.2

13x  [m] 46 144.00 768.00 434.22 447.00 161.57 37.2

14x  [-] 46 39.82 65.48 56.78 57.08 5.74 10.1

15x  [mm] 46 66.88 136.19 98.58 97.28 14.64 14.8

16x  [-] 46 0.00 99.26 20.62 8.03 28.40 137.7

17x  [-] 184 8.50 98.69 42.33 38.23 18.54 43.8

18x  [-] 184 0.00 31.05 4.89 3.44 4.89 100.0

19x  [-] 184 1.26 87.91 52.78 56.19 17.12 32.4

20x  [mm] 1518 487.68 1680.32 910.44 892.52 182.94 20.1

21x  [mm] 1518 170.68 1052.33 399.67 388.77 119.42 29.9

22x  [mm] 1518 237.96 910.88 510.78 510.13 103.72 20.3

23x  [mm] 1518 1.46 4.60 2.52 2.48 0.50 19.7

24x  [mm] 1518 1.01 5.57 2.25 2.20 0.62 27.8

25x  [mm] 1518 1.45 4.85 2.79 2.76 0.59 21.3

27x  [mm] 1518 41.25 182.84 79.84 77.82 19.00 23.8

28x  [mm] 1518 38.40 255.52 90.84 86.93 27.42 30.2

29x  [mm] 1518 29.22 138.19 61.63 60.35 17.36 28.2
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Appendix 3 
(Continuation). Sample statistics of the explanatory variables employed in this Study. 

Variable 
Name Unit nobs Min Max Mean Median Std Cv [%] 

30x  [°C] 1518 -8.10 4.20 -0.92 -0.70 2.65 289.3

31x  [°C] 1518 13.10 22.20 16.82 16.60 1.56 9.3

32x  [°C] 1518 0.60 12.20 6.20 6.20 2.21 35.7

33x  [°C] 1518 19.70 29.60 23.30 22.90 1.73 7.4

35x  [K] 1518 280.71 296.51 291.84 291.95 2.02 0.6

36x  [K] 1518 279.06 286.41 282.26 282.14 1.51 0.5

37x  [K] 1518 289.63 296.51 292.09 291.97 1.24 0.4

38x  [day] 860 0 79 22.00 17.00 19.40 88.3

39x  [day] 33 37 127 80.45 80.00 19.81 24.6

40x  [day] 976 0 30 4.68 3.00 4.71 100.6

41x  [day] 1239 0 60 11.30 10.00 8.14 71.8

Note: Variables 26x  and 34x  are not included in this table because they depend on the time point 
where the variable is to be evaluated. 
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Appendix 4 
Sample statistics of the explained variables modelled in this Study. 

Variable 
Name Unit nobs Min Max Mean Median Std Cv [%] 

1Q  [mm] 1244 69.40 1 206.39 405.38 379.35 182.57 45.0

2Q  [mm] 1254 31.89 793.67 248.90 234.74 117.35 47.1

3Q  [mm] 1255 20.68 639.58 156.29 136.57 87.43 55.9

4Q  [mm] 1312 0.67 59.48 8.80 7.58 5.44 61.8

5Q  [mm] 1318 0.47 82.85 6.81 4.91 6.20 91.0

6Q  [mm] 1307 1.60 119.94 30.68 27.83 16.13 52.6

7Q  [mm] 1239 1.50 446.52 74.21 55.79 63.59 85.7

8Q  [mm] 976 1.38 363.11 34.23 22.91 37.72 110.2

9Q  [day] 1312 0 66 12.80 11.00 9.79 76.6

10Q  [day] 1318 0 46 4.79 3.00 6.28 131.0

11Q  [1/year] 1247 1 15 4.36 4.00 2.36 54.1

12Q  [1/year] 977 1 16 3.02 2.00 2.31 76.6

13Q  [day] 860 1 135 12.58 10.00 12.08 96.1

14Q  [day] 860 1 145 31.76 25.00 27.2 85.6

15Q  [mm/year] 834 0.14 304.91 19.97 15.82 18.95 94.9

16Q  [mm] 834 0.00 33.63 1.57 0.70 2.37 151.3
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Appendix 5 
Existing valid runoff data for the gauging stations located within the Study Area from 1961 to 1993 
(Gauging station No. ≡  Spatial unit No.). 

Year (19xx) Station 
No. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

1                 
2                 
3                 
4                 
5                 
6                 
7                 
8                 
9                 

10                 
11                 
12                 
13                 
14                 
15                 
16                 
17                 
18                 
19                 
20                 
21                 
22                 
23                 
24                 
25                 
26                 
27                 
28                 
29                 
30                 
31                 
32                 
33                 
34                 
35                 
36                 
37                 
38                 
39                 
40                 
41                 
42                 
43                 
44                 
45                 
46                 

 

Legend: 

 Valid data exists for a given gauging station and a water year. 
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Appendix 6 
Sequence of screen captures showing the user interface of the MDS program. From top-left to bottom-
right: 1) reading a database; 2) selecting variables; 3) selecting the model type; 4) selecting the number 
of replicates for the permutation test; 5) selecting the method for searching the best model; 6)
displaying the design matrix of all possible combinations of variables. 
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Appendix 6 
(Continuation). From top-left to bottom-right: 7) selecting the visualizer; 8) authorship; 9) working 
space showing many examples of possible plots included in the program that help the user to judge the
goodness of the fit during the process of calibration of a model. 
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Appendix 7 
European Circulation Patterns according to Hess and Brezowsky (1969). 

Major Type Sub-type No. Description Abbreviation

Zonal circulation W 1 West, anticyclonic Wa 

  2 West, cyclonic Wz 

  3 Southern, West WS 

  4 Angleformed West WW 

Mixed circulation SW 5 Southwest, anticyclonic SWa 

  6 Southwest, cyclonic SWz 

 NW 7 Northwest, anticyclonic NWa 

  8 Northwest, cyclonic NWz 

 HM 9 Central European high HM 

  10 Central European ridge BM 

 TM 11 Central European low TM 

Meridional  N 12 North, anticyclonic Na 

circulation  13 North, cyclonic Nz 

  14 North, Iceland high, anticyclonic HNa 

  15 North, Iceland high, cyclonic HNz 

  16 British Isles high HB 

  17 Central European trough TRM 

 NE 18 Northeast, anticyclonic NEa 

  19 Northeast, cyclonic NEz 

 E 20 Fennoscandian high, anticyclonic HFa 

  21 Fennoscandian high, cyclonic HFz 

  22 Norwegian Sea-Fennoscandian high, 
anticyclonic HNFa 

  23 Norwegian Sea-Fennoscandian high, cyclonic HNFz 

  24 Southeast, anticyclonic SEa 

  25 Southeast, cyclonic SEz 

 S 26 South, anticyclonic Sa 

  27 South, cyclonic Sz 

  28 British Isles low TB 

  29 Western Europe trough TRW 

Unclassified U 30 Classification not possible U 




