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Chapter 3  

Parametric Modelling of the Runoff Process 

3.1 Basic Principles 
How complex should a model be to describe the observed reality? The answer to this question depends 
on the available data and the intended final use of the proposed model. If the aim of modelling is to 
understand the relationships among several intertwined components, then a parametric model -for 
instance one aimed to describe a characteristic of the runoff process- should be as simple as possible 
so that the main relationships among the input variables can be fully perceived. “The complexity of 
reality does not imply the need for a complex model” (Gilchrisk 1984).  Based on the knowledge 
provided by simple models, more complex ones can be formulated afterwards to tackle the 
deficiencies of the simple ones. In this context the concept of simplicity comprises the following 
principles (Gilchrisk 1984): 

1. Parsimony of parameters. This principle advises that the number of parameters in a given model 
should be minimum. In other words: “entities should not be multiplied unnecessarily” (William of 
Ockham, ~14th century). 

2. The number of variables. The number of selected explanatory variables should be as few as 
possible, but they should explain as much as possible the phenomenon represented by the explained 
variable. 

3. The model structure. The functional relationships linking all variables employed in a given model 
should be as simple as possible. Linear relationships would be preferred to non-linear ones if the 
studied phenomenon allows such simplification. 

4. A good approximation to reality. A given model that has been selected based on the previous 
principles should provide a good approximation to the observed phenomenon described by the 
collected data. 
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3.2 Defining the Formal System 
The cumulative throughput of the water cycle or any of its derivative characteristics t

iQ  for a given 
basin i  within the Study Area during a period t  (from time 1t −  to time t ) can be defined as a 
function of observables1 (Chow 1962, Rodriguez-Iturbe 1969,  Raudkivi 1979, Clark 1994, Abdulla 
and Lettenmaier 1996 have proposed similar approaches) and/or of their derivative information as 
follows 

( ), , , 1, , 1, ,t t t t t
i i i i iQ f i n t Tε= + ∀ = ∀ =G U M β … … , (3.1) 

where 
t
iQ  the output variable measured for the spatial unit i  occurred during the period t , 

t
iG  ,1 ,2 ,

t t t
i i i gx x x =   " , a vector of size (1 )g×  containing g  observables that 

describe the morphological characteristics for the spatial unit i  during the period t , 

t
iU  , 1 , 2 ,

t t t
i g i g i g ux x x+ + +

 =   " , a vector of size (1 )u×  containing u  input variables 

that describe the land cover states for the spatial unit i  during the period t , 

t
iM  , 1 , 2 ,

t t t
i u g i u g i u g mx x x+ + + + + +

 =   " , a vector of size (1 )m×  containing  m  input 

variables that describe the climatic conditions for spatial unit i  during the period t , 

β  [ ]lβ= , a vector of size *( 1)J ×  containing the model parameters to be estimated. 

t
iε  an independent additive error for the spatial unit i  occurred during the period t , 
i  a subscript for spatial units; 1, ,i n= … , 
j  a subscript for type of input variable; 1, ,j J= … , 
t  a subscript for the time period; 1, ,t T= … , 
n  the total number of spatial units within the Study Area, 
l  a subscript for each model parameter; *1, ,l J= … , 
*J  the total number of model parameters, 
J  g u m= + + , the total number of input variables or observables, 
T  = 33 years, the total number of years covered by the available time series, i.e. from 

1961 to 1993, and 
( )f i  a non-linear function. 

The formal system (see Chapter 2) as it is stated in (3.1) is a function of all available variables. 
However, in a highly complex natural system such as the water cycle, where everything is related with 
everything else, it is highly improbable to find an observable ( )t t t t

ij i i ix ∈ ∪ ∪G U M  where 
1 j J≤ ≤  that is absolutely independent of the rest of the input variables. Additionally, it is also 

                                                      
1 A physical property, such as weight or temperature, that can be observed or measured directly, as 

distinguished from a quantity, such as work or entropy, that must be derived from observed quantities 
(Walker, 1999). 
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possible that some of the input variables are more suitable to describe a characteristic of the water 
cycle than others due to particular reasons, or that a subset of input variables are linearly dependent 
among themselves, hence having a lesser number of them might be enough to explain the system’s 
behaviour. In other words, there may be multicollinearity amongst the variables contained in a given 
data set (Montgomery 1982). 

Based on this rationale, it is sound to assume that it is likely that a set made up of few key variables 
may explain the behaviour of the system almost as good as the original model described by (3.1), with 
the great advantages of having a fewer number of input variables to deal with and thus a much simpler 
system to understand. The problem is therefore, to find out which set of variables explains as much as 
possible the observed system’s output while keeping the number of variables as small as possible. In 
addition to that, the selected variables have to be statistically significant as will be explained later. 

Assume that a set of L  variables exist and fulfils the previous conditions, thus a hydrological 
characteristic of the system can be represented as 

G U(1) (2) ( ) ( ) ( ), , , , , , , ,( )
t t t

t t t t t t t
i i i i j i j i L iQ f x x x x x ε

∈ ∈ ∈

= +
G U M

… … …
�����������	����������
 �����	����
 �����	����


β . (3.2) 

The selected input variables are ordered (here represented by a sub index within parentheses) so that 
they correspond to the original variables according to the following convention  

i( ) G1t t
jx j j∈ ∀ ≤ ≤G  

i( ) U1t t
j Gx j j j∈ ∀ + ≤ ≤U  

i( ) U 1t t
jx j j L∈ ∀ + ≤ ≤M  

with 

3 L J≤ <  

G 1j ≥ , U G 1j j− ≥  and U 1L j− ≥ . 

The minimum number of variables has been fixed to three because each subcategory of the input 
variables has to be represented by at least one variable. This constraint will allow tackling effectively 
the first objective of this study, namely: to assess the effects of land cover change under continuously 
changing weather conditions and assuming that the physiographical characteristics of the Study Area 
at mesoscale level can be considered as invariant during the chosen time interval of this study.  

By using this procedure it will be possible to split the observed variability of the output variable along 
the time axis into two independent components, one that is only explained by climatic fluctuations 
(some of them cyclic or even exogenous to the Study Area), and the second one that is exclusively 
explained by land cover changes occurring within the system. It should be noted that the model will be 
fitted under given physiographical characteristics for various basins within the study area. 

Furthermore, since a watershed is an open system, it can be assumed that land cover changes may 
influence the microclimatic conditions and hence the throughput of the system, but they would have 
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very little influence on the macroclimate of the basin, which is considered an exogenous variable of 
the system. 

The reasoning stated above can be summarised by the following expression 

t t t t t t t

t t t

dQ Q dG Q dU Q dM
dt G dt U dt M dt

∂ ∂ ∂= + +
∂ ∂ ∂

. (3.3) 

As was stated in Section 2.2, the physiographical factors are regarded as quasi-static, thus 

0
tdG
dt

≈  (3.4) 

Hence 

t t t t t

t t

dQ Q dU Q dM
dt U dt M dt

∂ ∂≈ +
∂ ∂

. (3.5) 

3.3 Modelling the Long-term Mean of the Annual 
Specific Discharge 

3.3.1 Introduction 
In order to develop and test a methodology to solve the problem stated before, a characteristic of the 
water cycle, namely the 33-year annual mean specific discharge for the catchments within the Study 
Area is to be modelled. Such an exercise is the simplest to be carried out and therefore it will allow 
testing the proposed method, as well as comparing its results with those obtained by standard methods 
often found in the literature (e.g. in Chow 1964 or in Clark 1994). 

In should be noted that the model (3.8) to be derived here will not allow us to assess the effects of land 
cover change because the evolution of the system during the studied period is not taken into account, 
but rather than this, it will show whether a variable ijx ∈ U (i.e. a land cover state of the basin) 
contributes “on average” to describe significantly the system or not. In the present case, each variable 

ijx is defined as 

1

1 1, , 1, ,
T

t
ij ij

t

x x i n j J
T =

= ∀ = ∀ =∑ … … ,  (3.6) 

and 

1
1

1 1, ,
T

t
i i

t

Q Q i n
T =

= ∀ =∑ … .  (3.7) 

In this case, each element ijx  contains the arithmetic means of the available time series for the spatial 
unit i  and the input variable j . As a consequence of this, the time index t  is not longer needed; 
hence, the model could be called time-independent or static.  So Q  would be simply represented as 

( )1 2, , , , , ,i i i ij iJ iQ f x x x x ε= +β… … . (3.8) 
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Assume that the variables shown in Table 3.1 may be used to describe this characteristic of the water 
cycle in the Study Area. In this case 3, 16, 3,m g u= = =  thus 22J = . 

Table 3.1 Definition and notation of input and output variables used to describe the 33-year mean annual 
discharge for the Study Area. 

Variable 

Factor Name Index j  
Unit Description 

Q    [mm] 33-year mean specific annual discharge 
G  1x  1 [km²] Area of the catchment  

 2x  2 [°] Mean catchment slope  
 3x  3 [°] Median of the catchment’s slope 
 4x  4 [°] Trimmed mean slope F(15)-F(85) 
 5x  5 [°] Trimmed mean slope F(30)-F(70) 
 6x  6 [°] Mean slope of the stream network 
 7x  7 [°] Mean slope in floodplains 
 8x  8 [1/km] Drainage density 
 9x  9 [-] Shape factor 
 10x  10 [-] Fraction of north-facing slopes 
 11x  11 [-] Fraction of south-facing slopes 
 12x  12 [m] Mean elevation of the catchment 
 13x  13 [m] Difference between max. and min. elevation within a catchment 
 14x  14 [-] Fraction of saturated areas 
 15x  15 [mm] Mean field capacity 
 16x  16 [-] Fraction of karstic formations 
U  17x  17 [-] Mean fraction of forest cover 
 18x  18 [-] Mean fraction of impervious cover 
 19x  19 [-] Mean fraction of permeable cover 
M  20x  20 [mm] Mean annual precipitation 

 30x  21 [°C] Mean temperature in January 
 32x  22 [°C] Mean maximum temperature in January 

Based on this assumption, the task will be to find out which variables are the most and the least 
significant. For instance, variables such as: 2 7, ,x x… (see Table 3-1), are all depicting the slope of the 
catchment’s terrain using different definitions or conventions. Slope is in general a very important 
physiographical factor since it is related to the velocity of the surface runoff and the rate of infiltration 
into the soil matrix, therefore, based on these arguments, it can be assumed that a variable representing 
this factor should be relevant to model a long-term mean of the annual discharge. The problem is then 
to find the best indicator representing the slope. Similar reasoning can be applied for the other 
variables. 

In order to solve this problem three algorithms are proposed, namely: 

• Modified forward selection, 
• Modified backward elimination, and 
• Modified all-possible regressions approach. 

These approaches are based on standard statistical procedures (Montgomery 1982) but with some 
modifications to overcome the difficulties imposed by the system analysed in this study. 
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The standard method, i.e. the Stepwise Method (Montgomery 1982, Gilchrisk 1984), use multi-linear 
regression analysis to rank the input variables from the weakest to the strongest, or vice versa. Using 
these results a model with the thj strongest variables can be selected. This method estimates the 
parameters of a given model by minimizing the so-called unexplained deviation, commonly known as 
the 2L estimator (Rousseeuw and Leroy 1987). Such estimator is defined as 

( )22 min!i
i

L ε= →∑ . (3.9) 

The shortcomings of this procedure stem from its assumptions, namely: 

• The relationship between input and output variables is assumed to be linear. 

• The errors iε  have to be independent random variables and normally distributed with zero mean 
and constant variance (homoscedastic) for all i  (Berenson 1983, Montgomery 1982, Wonnacott 
1990). Standard parametric statistical tests can be used for analysis of variance, calculation of 
confidence intervals, and test of independence only if these conditions are fulfilled. 

• There is no guarantee that “the best” model has been chosen. 

This means that a model describing a highly complex system such as the water cycle, which is non-
linear by nature (Bonell, 1993), had to be linearized if its parameters would have to be estimated using 
multi-linear regression. Usually, a model is linearized by taking logarithms of (3.8). According to the 
assumptions, iln( )ε  has to be normally distributed with zero mean and constant variance [i.e. 

2N(0, )s ], which in turn implies that iε  has to be  lognormal distributed (Gilchrisk 1984), which is 
not true in reality. 

The following algorithms will consider the following improvements to overcome these shortcomings: 

1. The form of the model should have a non-linear functional form (.)f  and its parameters have to be 
estimated by a non-linear optimisation algorithm without any sort of linearization or suitable 
transformation. 

2. The estimator Φ , which constitutes the objective function to be minimized by a non-linear 
optimisation algorithm, should be in general written as m̂inΦ

β
 

with  

1 1

T n
t t
i i

t i

w
ϕε

= =

Φ =∑∑ , (3.10) 

where 

ˆ 1, , 1, ,t t t
i i iQ Q i n t Tε = − ∀ = ∀ =… …  (3.11) 

( )1 2
ˆ ˆ, , , ,t t t t
i i i iJQ f x x x= β…  (3.12) 

t
iε  a random error with zero mean for a spatial unit i  occurred during the period t , 

ˆt
iQ  an estimate of the output variable for a spatial unit i  occurred during the period t , 
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ϕ  a parameter2 greater than zero. It denotes the confidence that one has in the data set 
and the influence that outliers may have in the estimation of β̂ . The bigger ϕ , the 
more the influence of outliers is with respect to the estimates of the output variable. 
Rousseeuw and Leroy (1987) have extensively documented the effect of the type of 
estimator with regard to the robustness of the model parameters, 

t
iw  a weighting factor greater than or equal to zero corresponding to a spatial unit i  

during the period t  introduced to correct heteroscedasticity if present in the data set, 
or to diminish the influence of outliers in the estimation of the model’s parameters; 
hence, it will contribute to improve the model robustness. The same idea is used by 
the weighted least squares method (Montgomery 1982, Rousseeuw and Leroy 1987). 
This weighting factor is estimated as follows: 

1 if

0 if

t
i

c
t
i t

i
c

Z
s

w

Z
s

ε

ε

ε

ε

 ≤=  >

 (3.13) 

with 

2

0

1 ( )
1

t
i

t i

s
nε ε=

− ∑∑  (3.14) 

sε  the estimated sample standard deviation of random errors provided that the 
expectation of t

iε  is zero, 0t
iEε ε = =  , 

ε  the mean of random errors, 

0n  the total number of observations, 

cZ  a threshold value normally ranging from 2 to 3 (Rousseeuw and Leroy 1987). 

3.3.2 Modified Forward Selection 
Assuming that the general model is represented by (3.1), then the expected output should be as follows 

( )1 2, , , ,t t t t t
i i i i J iQ f x x x ε= +( ) ( ) ( ) β… , (3.15) 

where 1
t
ix ( ) is the strongest input variable, or in other words, the variable that alone got the minimum 

value for the estimator Φ  presented by (3.10). The next variable 2
t
ix ( )  is one that makes the greatest 

improvement to the model (further reduction of Φ ) once 1
t
ix ( )  has been already selected. This process 

is then repeated 2J −  times (Gilchrisk 1984). In (3.15) t
i Jx ( )  represents the weakest variable. Weak 

variables can be discarded due to their small contribution in explaining the dependent variable t
iQ . 

                                                      
2  Historically astronomers in the 18th century and then Edgeworth (1887) used 1ϕ = , but due to great 

difficulties they had trying to minimise (3.10) this criterion was abandoned and replaced by 2ϕ =  (first 
introduced by Laplace) (Gilchrisk 1984), as is actually used by the Method of Least Squares. 
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In general, the algorithm used for this approach is as follows: 

Algorithm 1 

1. Assume a functional form for ( )f i . 
2. For all 1, ,j J= … . 

a. Bring into the model the variable t
jx  and estimate β̂  so that min!jΦ → ; the model at this 

stage has only one input variable, namely: 

( )ˆ, 1, , 1, ,t t t
i ij iQ f x i n t Tε= + ∀ = ∀ =β … … . (3.16) 

b. Perform a significance test (see Section 3.3.7) for the variable t
jx .   

3. Repeat step 2. ( 1)J −  times. 
4. Select a variable that is significant (from step 2.) and gives the lowest estimator, i.e. min( )jΦ . 

This is the strongest variable among a set of J variables available. Rename it as (1)
tx  and use it 

always in the following steps.  
5. For all 1, , (1), ,(.)j J j= ∧ ≠… … . 

a. Bring the new variable t
jx  into the model (.)j ≠ , then estimate β̂  so that min!jΦ → ; the 

model at this stage is as follows: 

( )(1)
ˆ, , 1, , 1, ,t t t t

i i ij iQ f x x i n t Tε= + ∀ = ∀ =β … … . (3.17) 

b. Perform a significance test (see Section 3.3.7) for the variable t
jx . 

6. From the remaining variables (step 5.) select as in step 4. the second strongest variable. Rename it 
as (2)

tx  and then include it in (3.16) as follows: 

( )(1) (2)
ˆ, , , 1, , 1, ,t t t t t

i i i ij iQ f x x x i n t Tε= + ∀ = ∀ =β … … . (3.18) 

7. Repeat steps 5.-6. until all variables are chosen or stop it either if no more significant reduction of 
Φ  is achieved by the inclusion of a new variable j , or if the last chosen variable is not statistically 
significant (step 5.b.). 

3.3.3 Modified Backward Elimination 
This procedure is the opposite of that presented in the Algorithm 1. In other words, this approach starts 
with all variables and discards in each step the variable with the lowest contribution to the model. The 
first variable to be discarded is the weakest variable. Then the process continues until only one 
variable is left, this is then called the strongest variable. In general, the algorithm is as follows: 

Algorithm 2 

1. Assume a functional form for ( )f i . 
2. Bring all variables t

jx  into the model and estimate β̂  so that min!Φ → ; a model at this stage has 
J  variables (sometimes it is called saturated model, Gilchrisk 1984) namely: 

( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… . (3.19) 

3. For 1, ,j J= …  that are still in the list of variables. 
a. Estimate ˆ jβ  eliminating only variable j  at each step so that min!jΦ → ; in general a model at 

this stage is as follows 

1 2 , 1 , 1
ˆ( , , , , , , , )t t t t t t t

i i i i j i j iJ j iQ f x x x x x ε− += +β… … . (3.20) 
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b. Select from those models obtained in step 3.a. one combination that provides the lowest 
estimator, i.e. min( )jΦ . Then exclude the variable that has not been used, i.e. t

jx . Comparing 
the estimator of this combination jΦ  with Φ , it is clear that the contribution of variable j  has 
been minimal compared with the rest. For the next steps this variable, called the weakest 
variable, would be excluded. 

4. Repeat step 3 ( 1)J −  times eliminating the weakest variable each time until one variable is left. 
The last one is called the strongest variable. 

3.3.4 Building All Combinations 
Although the two described procedures are relatively fast, they only consider a small subset from all 
possible combinations that can be built up from J  input variables. Hence, many models, perhaps very 
good ones, are not evaluated by these procedures. This shortcoming for a complex system may be 
crucial because it may lead to choose a wrong model, or one that is not the best. In order to find the 
“best model”, 2 1J −  combination of variables have to be evaluated (the null model, i.e. one having a 
constant and no variables has been excluded). As shown in Table 3.2, the total number of possible 
combinations considering 22 input variables is 4,194,303! Hence, this method, although convenient 
when the number of variables is small, is not practical due to the high computation time required when 
the number of variables is greater than 12, but still possible depending on computational power at 
hand. 

Table 3.2 Total number of possible combinations of J input variables. 

Number of variables 
J  

Number of combinations 

2 1J −  
2 3 
4 15 
8 255 

16 65,535 
22 4,194,303 
32 4,294,967,295 

Assuming that the number of variables is small enough to use this method, then, how can the best 
model be selected out of hundreds or maybe thousands of possible models?  In order to answer this 
question, firstly, it should be noted that the greater the number of input variables, the smaller will be 
the value of the objective function Φ (3.10) after the minimization. Hence, the value β̂min ( )Φ  as an 
indicator of the quality of the model does not lead to find the best combination of explanatory 
variables (the same behaviour can be observed in multi-linear regression models: the greater J , the 
better the fit and the greater the value of 2R  is; to counter-balance this effect an adjusted 2R  was 
proposed by Ezekiel in 1930). In the present case, two criteria have been implemented to solve this 
issue, namely: 

• The Mallows’ pC ∗  statistic to select a subset of best performing combinations of input 
variables, and 

• A cross-validation test to evaluate the quality and robustness of the previously selected subset of 
combinations, from which the best model is to be chosen. 
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3.3.5 Selection of the Best Models Using Mallows’ pC ∗  Statistic 
The Mallows’ statistic can be estimated as follows (Berenson 1983): 

( )( )0
0

2

2

1
2 *

1
p

p
J

R n J
C p n

R
∗

∗

− −
= + −

−
, (3.21) 

where 

( )2
2 1 1

2

1 1 1 10

ˆ

1
1

T n
t t
i i

t i
p T n T n

t t
i i

t i t i

Q Q
R

Q Q
n

= =
∗

= = = =

−
= −

  −   

∑∑

∑∑ ∑∑
 (3.22) 

*p  the number of parameters used in a given model that contains j  input variables, 
2
JR  is equal to 2

pR ∗  if j J=  and **p J= . In other words, the coefficient of 
determination associated with a model containing all input variables available (i.e.J ). 

This indicator showing the quality of the model, commonly known as the pC ∗  criterion, was 
introduced by Mallows (1973). It has the advantage, compared with an adjusted 2R , that in addition to 
adjust the sum of squared errors, it can be demonstrated that its expectation is equal to the number of 
parameters used in the model (Daniel and Wood, 1980), or  

*pE C p∗
  =  . (3.23) 

That means that the closer the value of pC ∗  to *p , the lesser the bias of the fitted model, hence, the 
better the model fit is. Using this property, the best model or a set of best performing models can be 
identified as it is shown in Figure 3.1. 

Other criteria such as the Akaike’s Information Criteria (Akaike, 1973) can also be used for selecting 
models as will be discussed later. 
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Figure 3.1 Identification of the best model using the ∗pC  plot. 

3.3.6 Model Validation 
In order to evaluate the quality of the model, a Cross-Validation Method (Efron 1981, Simonoff 1996) 
is carried out for each possible model that belongs to the subset of the best performing models selected 
before. This procedure is a special case of the Jackknife Method introduced by Quenouille (1949) and 
Tukey (1958). It consists of dividing the data set into y  groups of equal size of observations, and 
consecutively, it deletes one group at a time; then, it estimates the model parameters β̂  with the 
remaining points using the same estimation procedure previously used. A model estimated in such a 
way is then validated with the group of data not considered during its estimation. This procedure is 
then repeated for all groups, i.e y  times. As a result of this procedure y  Jackknife statistics θy  are 
obtained. Finally, all y  statistics are combined to obtain the Jackknife estimator θ . In general this 
estimator would indicate how robust3 the model is; the lesser the value of θ , the more robust the 
model is regarding the disturbances from outliers present in the dataset.  

If the number of groups is equal to the number of observations ( 0n=y ) the procedure is called 
cross-validation. 

Let D  be the original set of observations in a given case. Using the notation used before 

( ){ }, 1, , 1, , 1, ,t t
i ijQ x i n j J t T= = == … … …D . (3.24) 

The algorithm used to validate a model ( )f i  composed of J  variables is described below (based on 
Efron 1981). 

Algorithm 3 

1. For all 1, ,i n= … . 
2. For all 1, ,t T= … . 

                                                      
3  The term “robust” was coined in statistics by G.E.P. Box in 1953. In general, referring to a statistical 

estimator, it means “insensitive to small departures from the idealized assumptions for which the estimator is 
optimised.” Launer and Wilkinson 1979, Huber 1981. 
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a. Let ( ){ }, 1, ,t t t
i i ijQ x j J== …E  be a subset of observations given i  and t . Eliminate 

the subset t
iE  from the original data set so that a new subset  t

i= −
�
D D E . 

b. Using 
�
D  estimate β

�
 so that min!Φ →

�
. 

c. Estimate ( )1 2, , , ,t t t t
i i i iJQ f x x x= β
� �

… . 
d. Calculate the Jackknife statistic for the observation i , t  as follows 

( )2t t t
i i iQ Qθ = −

�
. (3.25) 

e. Repeat step 2. T times. 
3. Repeat step 1. n times. 
4. Calculate the overall quality indicator or Jackknife estimator for a given model as follows 

1 1

, 0
n T

t
i

i t= =

θ = θ θ ≥∑∑ . (3.26) 

The most reliable model among the subset of the best performing models (see Figure 3.1) can be 
selected using the Jackknife estimator θ . The minimum value of θ  will correspond to the best model. 
The exponent employed in (3.25) has been chosen equal to two because of the following reasons: 1) to 
make positive the difference between the calculated and the observed value; and, 2) to penalize those 
points where the model has large differences, hence making θ  larger, and thus reducing its robustness. 

3.3.7 Significance Test 
A significance test has the purpose of assessing the plausibility of a scientific hypothesis (Davison and 
Hinkley 1997) based on a given set of data. Literally, a hypothesis should be understood as “a 
proposition made as a basis for reasoning” without reference to its value of truth, or “as a starting-
point for further investigation” (Concise Oxford Dictionary). A significance test, however, can not 
prove that a hypothesis is true or false, in fact no procedure can guarantee that (Gilchrist 1984), but it 
will lead to conclude that based on the data available there is enough evidence to state that a 
hypothesis is unlikely to be true and hence can be rejected. Rejecting a hypothesis always presupposes 
a level of risk that can be defined as the probability that such a hypothesis is rejected when in fact it is 
true (Error Type I). This probability is called level of significance (α ). By definition, a significance 
test is performed to infer that a hypothesis that is represented by an assumed value of a parameter 
called null hypothesis 0H  is not likely to be the true value (Lane 2001), consequently, it can be 
rejected in favour of an alternative hypothesis AH  at a given level of significance. AH  should be an 
important alternative of 0H  to be detected, one that is likely to be true if 0H  is not (Davison and 
Hinkley 1997). Often AH  is taken as the opposite of 0H . 

Working with all data available to do this task is unpractical. Therefore, a test statistic Θ  should be 
built so that it will satisfy the following conditions: 1) it has to summarize some aspects of the data 
relevant to the particular problem so that it measures the discrepancy between the data and the null 
hypothesis, e.g. the smaller the value of Θ , the stronger the evidence against 0H (the opposite is also 
possible) is; 2) its behaviour whether 0H  or AH  is true should be remarkably different from each 



 66

other; and 3) the sampling distribution of Θ  must be known or at least approximately estimated under 
the assumption that 0H  is true (Neave and Worthington 1988). 

Suppose then that a test statistic fulfils these three conditions mentioned above and that the value of 
the test statistic based on the available data is denoted by ϑ . In such a case, the level of evidence 
against 0H  is measured by the significance probability (Davison and Hinkley 1997) or the so-called 
-valuep  

0-value Pr( )p Hϑ= Θ ≤ . (3.27) 

If -value<p α  two answers are plausible, namely: 1) that 0H  is true but a rare event has been 
observed (summarized by ϑ ); or 2) that based on the strong evidence against 0H  provided by the 
available data, 0H  does not conform to the observed phenomenon and therefore can be considered a 
bad hypothesis. Hence, it can be rejected at the level of significance α . The latter answer has been 
adopted as the rationale of the significance test (Gilchrist 1984). Conversely, if -valuep α≥  0H  
can not be rejected. In general, the following verbal interpretations can be formulated: if the -valuep  
is between 1% and 5%, less than 1%, or even less than 0.1%, this would mean that there is a 
considerable, a very strong, or a practically conclusive evidence, respectively, in the data to reject 

0H (Neave and Worthington 1988). 

In order to perform a significance test within the context of this study the following definitions are 
necessary. Let the set of observations be a random sample denoted by D , whose cardinality (i.e. the 
number of valid observations) is 

0n nT= ≤D . (3.28) 

Based on D , assume that an observed phenomenon in a given location i  during the period t  can be 
predicted by a model using J  explanatory variables (i.e. observables and/or derivative information) 
and a vector of calibrated parameters β̂ . Such a model is represented by  

( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… . (3.29) 

In this case there would be J  null hypotheses 0H  that require to be tested within the scope of the 
present study, which also implies J  corresponding alternative hypotheses to be formulated. The 
objective of the - thj  null hypothesis is to test whether the variable jx  in the model (3.29) is 
independent with respect to the explained variable Q  considering the - dimensionalJ  space ( J\ ) 
where the model has been defined. In other words, to infer that based on the sample data these 
variables are certainly not independent at the level of significance α , or that the sample does not 
indicate at the level of significance α  that the variable jx  has been chosen by chance when such a 
model was assessed. 

The - thj  null hypothesis and its corresponding alternative one can be written up as follows 
( )
0
jH  : Variables Q  and jx  are independent in J\ , given a functional 

 ( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… , and the random sample D . 

( )j
AH  : These variables are not independent under the previous conditions. (3.30) 
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or the same but using conditional probabilities as 

( )( )
( )( )

( )( )

( )
0 1 ( 1) ( ) ( 1) ( )

1 ( 1) ( 1)

( )
1 1 ( 1) ( ) ( 1) ( )

1 ( 1)

ˆPr , , , , , , ,

ˆPr , , , , , ,

ˆPr , , , , , , ,

Pr , , ,

j t t t t t t t t
i i i j i j i j iJ i i j

t t t t t t
i i i j i j iJ i

j t t t t t t t t
i i i j i j i j iJ i i j

t t t
i i i j i

H Q f x x x x x x

Q f x x x x

H Q f x x x x x x

Q f x x x

ε

ε

ε

− +

− +

− +

−

= +

= = +

= +

≠ =

… …

… …

… …

…

: β

β

: β

( )( )( 1)
ˆ, , ,t t t

j iJ ix ε+ +… β .

 (3.31) 

As mentioned above, one of the prerequisites to perform a significance test is to know in advance the 
sampling distribution of Θ  in order to calculate the exact -valuep . In the present case, due to the 
complexity of the relationships among the components of the system this may be very difficult or even 
impossible considering that the test statistic has an unknown - dimensionalJ  distribution under the 
null hypothesis. 

To overcome this problem without the simplistic and sometimes doubtful assumption that the 
sampling distribution of Θ  under 0H  is approximately equal to a known theoretical distribution (e.g. 
normal, exponential, t-student, 2χ among others) a resampling method 4 can be used to estimate a 
reasonable approximation for the exact -valuep  of the test statistic Θ . These methods, sometimes 
termed as Monte-Carlo test, randomisation test, permutation test, or bootstrap, are suitable to estimate 
confidence intervals and significance probabilities for problems with very limited datasets and 
unknown or -at most- partially known distribution function (Dudewicz 1992, Canty 1998). The 
permutation test  is a nonparametric or distribution-free test, and will be employed here because of the 
following reasons: first, it allows using any test statistic that may be considered meaningful, and 
second, it can be used even if the size of the population is finite (Good, 2000). 

As already mentioned, in order to test the hypothesis given by (3.31), a test statistic Θ  that measures 
the level of dependence between the variables is needed. Furthermore, it should consider that jx  and 
Q  are not alone, but there are 1J −  additional explanatory variables. Thus, the simplest test statistic 
in such a case would be the estimator Φ  defined in (3.10). The test statistic Θ = Φ  is a large number 
under ( )

0
jH , and conversely very small if ( )

0
jH  should not be true.  

The rationale of this test is as follows: since F  -the distribution function of Θ  under the null 
hypothesis- is unknown, F̂ -an EDF5 obtained from the simulated datasets under the null hypothesis- 

                                                      
4  Though the resampling methods were an old idea, they were not extensively used until the late 1970’s mainly 

due to lack of computer power not commonly available in those days. Despite the fact that fast computers did 
not exist until the 1960’s, the first real use of such a method was carried out by W. S. Gosset (“Student”) in 
1908 to corroborate its famous t-distribution. Later on, in 1935, R. A. Fisher applied for first time a 
randomisation test to estimate p-values and some years later, Fermi, von Neumann, N. Metropolis and S. 
Ulman introduced the term Monte Carlo Simulation around 1948 (Hammersley and Handscomb 1964; 
Dudewicz 1992). For the reasons mentioned above, Monte Carlo Simulations and related techniques have 
been vastly used for spatial analysis (Davison and Hinkley 1997), especially since its reintroduction by Efron 
in 1979. 

5  Empirical Distribution Function. 
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is said to be minimal sufficient for F (Davison and Hinkley 1997). In order to estimate F̂ , R  batches 
of artificial data sets, each of size 0n , have to be generated without replacement from D  (Wilks 
1995). 

Let the -thr  simulated data set be denoted by *
rD , with 0 1, ,*

rn nT r R= = ≤ =D D … . As 

jx  is supposed to be independent from Q  under the null hypothesis, a random permutation of jx , 
denoted by *

jx  , should not produce any effect in the selected test statistic, had jx  been  replaced by 
*
jx  in the original set D . In the present case, the result of such substitution is called the -thr  

simulated data set *
rD . Further on, the test statistic will be evaluated using *

rD  and the result will be 
denoted by *

rϑ . Since D  is a random sample, there are 0!n  equally likely permutations of jx . As 0!n  
is a large number, for practical reasons R  will be limited to 1000R = or perhaps 10000R =  
randomly selected permutations. Based on these results, the EDF that mimics the unknown 
distribution function (F ) can be calculated, and from it, the proportion of the random *

rϑ  that are 
smaller than or equal to the observed ϑ  is finally estimated. Such proportion is called the Monte Carlo 
-valuep . Formally it can be calculated by 

* *

mc
0!

#( ) #( )-value
1

p p
n R
ϑ ϑ ϑ ϑ≤ ≤= ≅ =

+
. (3.32) 

Where mcp  is the Monte Carlo -valuep , and # denotes the number of permutations in which the 
event *ϑ ϑ≤  occurs. 

In general, the algorithm for the significance test is as follows: 

Algorithm 4 

1. Given a functional form ( )1 2
ˆ, , , ,t t t t t

i i i iJ iQ f x x x ε= +β… , and the random sample D , 
estimate β̂  so that min!Φ →  The test statistic is then ϑ = Φ . 

2. For all 1, ,r R= … . 
a. Generate t

ijx
∗  as a random permutation of t

ijx , with 1, , 1, ,i n t T= =… … . 
b. Generate the simulated data set *

rD  replacing t
ijx  by t

ijx
∗ . 

c. Based on *
rD  estimate *ˆ

rβ so that * min!rΦ →  The test statistic is then * *
r rϑ = Φ . 

3. Sort ϑ  among * 1, ,r r Rϑ = …  so that 
* * * *
(1) ( 1) ( ) ( )r r Rϑ ϑ ϑ ϑ ϑ−≤ ≤ ≤ ≤ ≤ ≤" " . (3.33) 

4. Estimate the Monte Carlo -valuep  as in (3.32). In this case the one sided test statistic is equal to 

mc
1-value
1

rp p
R
−≅ =
+

. (3.34) 

5. Select a level of significance (say, 5%α = ). 
6. Make a decision: 

If -valuep α≤  then, 
  ⇒ Reject ( )

0
jH  in favour of ( )j

AH at the level of significance α , then 
 ⇒ Conclusion: At this level of significance variables t

iQ  and t
ijx  are certainly not 

independent. 
  Else, ( )

0
jH can not be rejected. 
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3.3.8 Analysis of Results 
The empiric probability density functions (PDF) of the explanatory variables used to model the long-
term mean of the annual specific discharge are far from being normally distributed or closer to any 
other theoretical distribution as can be seen in Figures 3.2 and 3.3. The same is true for the explained 
variable. 
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Figure 3.2 Histograms depicting the empiric PDF of all physiographic explanatory variables considered in 
this study. 

Using the modified Backward Elimination (BE) and the modified Forward Selection (FS) (Section 
3.3.3 and Section 3.3.2) the relative importance of the variables can be assessed. The results using a 
nonlinear model such as 0

1

j
J

i ij i
i

Q x ββ ε
=

= +∏   with 2 1 1, ,iw i nϕ = ∧ = ∀ = …  are shown in 
Table 3.3. 
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Table 3.3 Relative importance of variables used to model the long-term mean specific discharge according to 
BE and FS approaches. 

 strongest weakest  

BE→  20x  4x  3x  15x  13x  7x  1x  5x  11x 17x 19x 10x 8x 6x 9x 18x 2x 30x  32x  14x  12x  16x  

 20x  4x  3x  15x  13x  17x  1x  5x  11x 19x 2x 10x 18x 30x 7x 8x 9x 6x  32x  14x  12x  16x FS←

Table 3.3 shows a direct consequence of the non-linearity of the water cycle, i.e. the different rankings 
obtained by using Algorithms 1 (FS) and 2 (BE) independently. The former begins with the strongest 
variable until the weakest variable is found, whereas the latter does the opposite. Results have shown 
that these procedures differ always in a number of cases (not shaded in the Table). In this case 
however, they have agreed on the five strongest and the four weakest variables. 
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Figure 3.3 Histograms depicting the empiric PDF of the land cover and meteorological variables, as well as 
the specific annual discharge (the explained variable) considered as long term averages from 1961 
to 1993. 
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It should be noted that both methods have only calculated  ( )1 2J J +  combinations of input variables, 
which in this case is equal to 253 out of the 4,194,303 possibilities. This represents a big disadvantage 
for both approaches because many ‘good’ models could have not been evaluated. 

As can be inferred from the previous example, selecting the best model can be stated as a 
combinatorial problem with the following objective function: given a random sample, find the 
minimum number of significant variables that explain as much of its variance as possible. To solve 
such problem stochastic optimization methods such as simulated annealing or neural networks can be 
used. 

Since the number of possible models is very high in the present case and hence very costly in 
calculation time (e.g. a computer employing one second per model would need about 48.5 days to 
evaluate all combinations), the previous methods may help to discard some variables that represent the 
same factor but have been calculated in a different way, as it is the case with the variables 2 7, ,x x… . 

In other words, these  methods  may  help  to  assess  the  relative  importance  of  the  variables 
among each different sub-group of factors. So, using this procedure only the variables 
{ }1 4 8 9 11 13 15 17 18 19 20 30, , , , , , , , , , ,x x x x x x x x x x x x  have been selected for the next step, i.e. ‘to find the best 
model’. 

In this case, building all possible models still is a feasible approach because only 12 variables have 
been left after the first screening. The results obtained can be appreciated by means of a *pC  plot 
shown in Figure 3.4. Additionally, the composition of some of the best performing models has been 
presented in Table 3.4. 
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Figure 3.4 vs. * *pC p  plot showing the best 5 models for each *p  using the following variables
{ }1 4 8 9 11 13 15 17 18 19 20 30, , , , , , , , , , ,x x x x x x x x x x x x . The number at the right of the marker (+) indicates
the model’s number. For models where 8*p ≥  only the number of the best model is shown. 
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The last row in Table 3.4 shows the relative frequency of occurrence of a variable only with regard to 
the subset of best performing models shown in Table 3.4 by ( ). 

These frequencies show that the most common variables among those of the subset are mean 
precipitation and trimmed slopes 15-85 ( 20 4,x x ), followed by mean temperature in January ( 30x ); 
then by mean fraction of impervious cover and drainage density ( 18 8,x x ); then another land cover 
related variable, namely the fraction of permeable cover ( 19x ), and then all the rest. These results are 
not surprising because the system is mainly driven by precipitation, topography, and macroclimate; 
thus they appear as the most commonly used variables.  What is more interesting is the fact that one of 
the variables representing land cover is very often used as an explanatory variable describing the mean 
discharge of mesoscale basins. 

Table 3.4 Design matrix showing the composition of some of the best models depicted in Figure 3.4 (1 ≡ a 
variable is included in the model, 0 ≡ otherwise). For each model the value of the estimator Φ and 
the Jackknife statistic θ  is also presented (  ≡ Subset of the best models). 

Model Number 1x  4x  8x  9x  11x  13x  15x 17x 18x 19x 20x 30x Φ  θ  Description 

2           1  0.5427 0.5948  

1026  1         1  0.4299 0.4889  

1538  1 1        1  0.3717 0.4697  

1035  1       1  1 1 0.3354 0.4300  

1539  1 1        1 1 0.3381 0.4729  

1043  1      1   1 1 0.3529 0.4755  

1570  1 1    1    1  0.3535 0.4764  

1547  1 1      1  1 1 0.3209 0.4896  

1039  1       1 1 1 1 0.3285 0.4270  

1163  1   1    1  1 1 0.3313 0.4741  

3587 1 1 1        1 1 0.3316 0.4849  

1099  1    1   1  1 1 0.3319 0.4680  

1551  1 1      1 1 1 1 0.3102 0.4885  

1567  1 1     1 1 1 1 1 0.3068 0.5315  

1631  1 1   1  1 1 1 1 1 0.3037 0.5835  

1663  1 1   1 1 1 1 1 1 1 0.3015 0.7538  

1791  1 1  1 1 1 1 1 1 1 1 0.3000 0.8293  

2047  1 1 1 1 1 1 1 1 1 1 1 0.2994 0.8766  

4095 1 1 1 1 1 1 1 1 1 1 1 1 0.2992 0.9248 Saturated model

Frequency [%] 2 22 12 0 2 2 2 2 12 4 22 18 Only considering models showing a . 

Another important conclusion that can be drawn from Table 3.4 is that using all available variables for 
a given phenomenon does not always lead to the best model. This fact is related with the problem’s 
dimensionality6. In the present case, the dimensionality of the system is around 7. This indication 

                                                      
6  The dimensionality of a system is the minimum number of linear combinations of principal components that 

explain as much as, say 95%, of the total variance observed in its correlation matrix. 
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suggests the adequate number of variables that a model should have. In the present case, the subset of 
best performing models has between 3 and 6 variables. 

The next step is to select from the short list of “good” candidates the best one. In other words, which is 
the most reliable model within this subset that satisfy the constrains given by (3.2) and has variables 
with a level of significance, say 5% 0.05α = = ?  

As can be seen in Table 3.4, the estimator Φ  alone does not lead to the best model, which from this 
point of view only, is the saturated model (No. 4095) since it exhibits the minimum value for the 
estimator (0.2992). The answer to the first part of the question can be given by calculating the 
Jackknife or cross-validation statistic θ  also depicted in Table 3.4. Using this indicator, the robustness 
of a model can be assessed. Not surprisingly, the saturated model gets the highest value (0.9248), this 
means it is to be considered the least reliable model. Therefore, a trade-off between  Φ  and θ  should 
be taken into account in order to make a wise selection decision, which leads to pick models No. 1039 
and No. 1035 as those with the lowest and second lowest Jackknife statistic θ  (0.4270 and 0.4300 
respectively). 

The final step is then to determine whether all variables are significant or not at a certain level of 
significance chosen beforehand. The described simulation technique explained before delivers the 
estimates for the -valuep  shown in Table 3.5.  

Table 3.5 Results of the permutation test for models No. 1035 and No. 1039 using R=500. 
The tabulated figures are the Monte Carlo p-values as fractions. 

Model 
Number 4x  18x  19x  20x  30x  

1035 0.0020 0.0160 - 0.0000 0.0360 

1039 0.0080 0.0260 0.3740 0.0000 0.0440 

These results lead to the final decision, namely: model number No. 1035 is selected as “the best” one, 
since all its variables have successfully passed the significance test. Hence, all ( )

0
jH  can be rejected in 

favour of the corresponding ( )j
AH , for all 4,18,20,30j =  at 5% level of significance. As a 

conclusion it is possible to state that all its variables are certainly not independent of the explained 
variable at the given level of significance. 

The most significant variable in model No. 1035 is precipitation ( 0.0% 5%mcp <� ) and the least 
significant mean temperature in January ( 3.6% 5%mcp <� ). Model No. 1039, although with the 
best cross-validation statistic, has one variable ( 19x ) failing to pass the significance test and thus it is 
dropped out. This variable corresponds to the fraction of permeable areas whose 

37.4% 5%mcp >� . 

Finally, the model that best describes the mean specific discharge occurring within a catchment 
located in the Upper Neckar Basin, based on the provided information can be written explicitly as 

( )2 0.6709 0.1089 1.8860 1.4226
4 18 20 300.559 10i i i i i iQ x x x x− −= × + ε  (3.35) 

This model has been calculated considering all observations contained in the sample (n=46). The 
relationship between observed values and calculated ones are depicted in Figure 3.5. This picture 



 74

shows also two likely outliers encircled by a doted line. These points, which may contain big errors, 
e.g. due to faulty measurements, can influence drastically the model performance. They should be 
carefully checked, and if the errors persist then they should be removed from the data set. The 
identification of outliers and the utilization of more robust estimators will be explored in the next 
chapter. 

The proposed model shows clearly that land cover is a significant variable with regard to the 
estimation of the long term mean specific discharge, but, since it is a static model, it can not be used to 
assess the hydrological impacts triggered by land cover changes [see (3.3) to (3.5)]. It is presented 
here because it helps to show the advantages of the proposed method using a practical but 
computationally simple example rather than to provide an answer to the research question stated in 
Chapter 1.  
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Figure 3.5 Scatterplot showing the relationship of  vs.  obs calQ Q  using the model (No. 1035) given by (3.35). 

A sample of size n 46=  was used in the calculation. Outliers have not been removed. 

In order to provide an answer to the research question, time dependent models should be calibrated 
using the proposed method. Chapter 4 will be devoted to this task. Models aimed at estimating the 
specific discharge, the specific volume of high flows, the specific peak discharge, among others, at 
annual or seasonal basis will be presented afterwards. 

 


