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Chapter 4  

Modelling Characteristics of the Runoff Process with 
Time-Dependent Data 

4.1 Annual Specific Discharge 
The influences of the land cover change, as was stated before, can only be detected when some 
variables involved in the model reflect the transformations occurred in the system during a significant 
time span (e.g. from 1960 to 1993). A reasonable time interval in which the climatic factors should be 
accumulated or evaluated seems to be a six-month interval, which corresponds to the water-seasons of 
a given year, i.e. winter and summer (see Section  2.7). By doing so, two important conditions can be 
fulfilled, namely: 1) the short-term auto correlation of climatic factors becomes insignificant; and, 2) 
the seasonal fluctuations of the climatic factors can be clearly set down. 

Two models are to be formulated in order to attain the previous conditions, namely 

( )1 2, , , , 2, 3 1, , 46 1961, ,1993t t t t t
il i i iJ iQ f x x x l i tε= + = = =… … …β , (4.1) 

for winter ( 2l = ) and summer ( 3l = ) respectively. The selection of robust models fulfilling the 
constraints stated in Section 3.2 is to be described in following paragraphs. 

4.1.1 Description of Time-Dependent Variables 
At this stage and before any attempt to model the seasonal specific discharges (4.1) is carried out, it is 
useful to visualize the empiric PDF of the time-dependent factors for both winter and summer. Figure 
4-1 shows histograms for the percentages of a given land cover type whereas Figure 4-2 depicts 
histograms of some climatic factors as well as specific discharge for winter and summer. 

Figure 4-1 resembles the upper row of histograms shown in Figure 3.3, but there is an essential 
difference in the current ones. Histograms shown in Figure 4-1 do not depict the PDF of 33-year mean 
for each land cover type as it was in the previous case but rather than that the PDF of the time series of 
land cover types (see Figure 2.17) considering all spatial units. All distributions are unimodal and have 
a sample size equal to 184. Location and dispersion statistics for these distributions are summarised in 
Appendix 3. Comparing coefficients of variation among these three variables (i.e. land cover shares) it 
is clear that the variable representing impervious cover has the greatest value, and hence the largest 
relative dispersion of the data. This statement is also corroborated by the histogram depicting its 
empiric PDF (see Figure 4.1). The other two land cover variables are also skewed but in a lesser 
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degree than the distribution of “impervious” cover. The ranges of the sample PDFs for forest, 
impervious and permeable cover are [8.5, 98.7], [0.0, 31.0], and [1.3, 87.9] % respectively. Variables 
whose PDF are shown in Figure 4.1 have been evaluated at basin level, i.e. i i⊆ ΩL in equations 
(2.23) to (2.27). 
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Figure 4.1 Histograms depicting the empiric PDF of the land cover types for all spatial units ( i i⊆ ΩL ) from 
1961 to 1993 (Number of observations for each histogram = 184). 

The sample PDF for the specific precipitation in winter shown in Figure 4.2 exhibits a positive 
skewness whereas the PDF of this variable in summer is almost symmetrical. Both, the maximum and 
the minimum semi-annual specific precipitation occur in winter; hence, its standard deviation, as well 
as its coefficient of variation, in this season, is greater than that estimated in summer. In spite of this, 
the mean specific precipitation in winter is less than that in summer, and conversely, the mean specific 
discharge in winter is greater than that in summer. Due to this fact, the coefficient of variation of the 
specific discharge in summer is greater than that in winter. These characteristics of the water budget 
can be visualised in Figure 4.2. (Location and spread measures for all distributions shown in Figure 
4.2 are summarized in Appendix 3). Such different behaviours of the water cycle fully justify the 
previous proposal [see point 2) above] to estimate two models, one for each water season.  

PDFs for the maximum and the mean temperatures in January and July respectively are skewed and 
multimodal, but their relative variability in both cases during summer (July) is smaller than that in 
winter (January) (see the coefficient of variation in Appendix 3). 

4.1.2 Assessing the Dimensionality of the System 
In a complex system, such as the one being analysed here, where each explanatory variable jx  is 
mutually correlated with all the rest, it is very important to estimate the maximum number of variables 
a model should have in order to reduce as much as possible the effects of the existing 
multicollinearity. If a model has an excess of predictors, i.e. overparametrization, the sampling 
distributions of the estimated parameters β̂  become very broad. This, in turn, may lead to confusions, 
errors in estimation, and even worse, to apparent contradictions when an estimated parameter comes 
up from the optimisation process with the opposite sign as the one expected (Rousseeuw and Leroy 
1987, Wilks 1995). One viable approach to address such difficulty is presented below. 
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Figure 4.2 Histograms depicting the empiric PDF of climatic factors and specific discharge for all spatial 
units from 1961 to 1993. 

                                                      
1  Number of valid observations in the corresponding sample. 
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Let the correlation matrix of all potential explanatory variables ( )1 2, , , Jx x x…  be represented by [ ]R , 
a non-singular and symmetric matrix. Based on this matrix, J  eigenvectors je  and their 
corresponding eigenvalues jω  can be calculated, which should satisfy the equation  

[ ] j j jω=R e e . (4.2) 

Subsequently, the eigenvalues are arranged in descending order, namely 1 2 , , Jω ω ω≥ ≥… . Based on 
them, the dimensionality of the system is the index k  that satisfies the following relationship 

( ) 1

1

v

k

j
j
J

j
j

k
ω

ν
ω

=

=

= ≥
∑

∑
, (4.3) 

where ( )v k  is the proportion of the total variance retained by the first k  eigenvectors and ν  a 
threshold parameter. For instance, 0.9ν =  means that at least 90% of the total observed variance in 
the system is described with k  eigenvectors. Hence, it implicitly gives an insight into the maximum 
number of variables that a model should contain in order to retain a certain minimum amount of 
information describing the variability of the system. In general, ν  lays within the interval 
0.85 0.95ν≤ ≤ . 

In the present case, the matrix [ ]R  has been calculated using the following set of variables, 
{ }1 7 8 9 11 12 14 15 16 17 19 21 30, , , , , , , , , , , , 1, , 46 1961, ,1993x x x x x x x x x x x x x i t∀ = =… …  whose results for the 
winter season are shown in Table 4.1. In this matrix, only those variables exhibiting the highest 
correlation with 2Q  have been included. For example, from the subset of variables describing slope, 
only 7x  has been selected because it has the highest correlation with the explained variable among the 
subset comprised by { }2 3 4 5 6 7, , , , ,x x x x x x . The same has been done with those describing aspects, 
elevation, temperature, and land cover. 

Table 4.1 Correlation matrix [ ]R  for the winter season. Additionally, a vector containing the correlation of 
each variable with the output variable 2Q   has been included at the left. 

 2Q  1x  7x  8x  9x  11x  12x  14x  15x  16x  17x  19x  21x  30x  

1x  -0.0079 1.0000      

7x  0.3501 -0.1185 1.0000   Symmetric 

8x  -0.0599 0.1402 -0.6907 1.0000    

9x  -0.2256 -0.0204 -0.0097 -0.0330 1.0000    

11x  0.0619 -0.0788 0.5371 -0.7303 0.1269 1.0000    

12x  0.3352 -0.0539 0.2628 -0.0726 -0.4182 -0.1512 1.0000    

14x  0.1954 -0.1252 0.7575 -0.6671 0.0403 0.6237 0.1382 1.0000    

15x  -0.3527 0.0570 -0.2276 -0.1519 0.1428 0.1786 -0.5277 -0.2578 1.0000    

16x  0.3781 -0.1458 0.8233 -0.4100 -0.1788 0.2785 0.2877 0.4858 -0.1509 1.0000    

17x  -0.1871 -0.1238 0.4692 -0.6627 0.2642 0.4883 -0.0914 0.5410 0.0618 0.0820 1.0000   

19x  0.2174 0.1170 -0.4008 0.5710 -0.3122 -0.3990 0.1765 -0.4636 -0.0317 -0.0394 -0.9707 1.0000  

21x  0.7100 0.0182 0.1166 -0.1259 -0.2379 0.0780 0.2805 0.0597 -0.0942 0.1059 -0.1150 0.1741 1.0000 

30x  0.1336 0.0133 -0.0508 0.0179 0.0612 0.0131 -0.1605 -0.0189 0.0860 -0.0676 0.0321 -0.0517 0.1810 1.0000
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As shown in Table 4.1, the correlation coefficients, either positive or negative, indicate that each 
explanatory variable is in higher or in lesser degree related with everything else. Based on this result it 
can be inferred that finding linear independent observables to describe a complex system seems to be 
improbable.  

The eigenvalues of matrix [ ]R  (i.e. for winter season) are 

[ ]T 4.295  2.426  1.282  1.086  0.970  0.875  0.691  0.544  0.391  0.217  0.154  0.056  0.014j =e . 
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Figure 4.3 Curve showing the relative variance retained by the k  first eigenvectors of the matrix [ ]R for 
winter. Additionally, the crosses show the results for the summer season. The correlation matrices 
have been calculated with time series from 1961 to 1993. 

In order to assess the dimensionality of the system, it would be worthwhile to plot the index k  versus 
( )v k . Figure 4.3 illustrates the results of applying (4.3) to the previous eigenvalues. The horizontal 

dashed line in this Figure shows the threshold level chosen for this analysis, i.e. 0.9. This line, in turn, 
intersects the heavier line at a point whose abscissa lies in the interval [7,8]. The crosses depicted in 
Figure 4.3, which illustrate the values obtained for the summer season, show a very high level of 
agreement with the ones obtained for winter. This corroborates that the basic laws governing the 
system, either in winter or in summer, are the same, even if the climatic variables behave quite 
differently. Thus, the dimensionality of this system, given the available information, is about seven. 
This indicates that a conservative number of variables aimed to describe the system should be around 
this value in order to restrict, to a large extent, the existing and unavoidable multicollinearity amongst 
the explanatory variables. 

Which variables should then be selected? One approach may be to use the first seven uncorrelated 
principal components as predictors as proposed by Jolliffe (1986). This option, although it filters the 
“noise” present in the data, has the following shortcoming: the principal components often have no 
physical interpretation, and thus would not allow in this case isolating the effects of land cover change. 
Instead, the method described before is to be proposed to tackle this issue. The next paragraph will 
describe this procedure in detail. 
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4.1.3 Finding a Robust Model 
In essence, the selection procedure used in this case is quite similar to that employed in Section 3.3.8, 
although there are some differences, namely 

1. Firstly, convex and continuously differentiable functions should be proposed. Three types are 
suitable for this case. The first one is a potential model (shortened to POT) that considers all 
possible explanatory variables as having nonlinear relationships with the explained variable. The 
second model type, thereafter called MLP1, regards the climatic variables 21x  and 22x  as the only 
ones having a nonlinear relationship with the explained variable whilst the rest are considered 
linearly related with the explained variable. Lastly, the third model type (shortened to MLP2) 
regards the land cover variables as the only ones exhibiting linear relationships with the output 
variable. These models can be written explicitly as 

( )0
jt t t

il ij i
j

Q x= +∏ β
β ε   , (4.4) 

( ) '

0 ' '

'

jt t t t
il j ij j ij i

j
j j

Q x x

≠

= + + +∑ β
β β β ε   , (4.5) 

 and 

( )0 *
jt t t t

il j ij J ij i
jj
j

Q x x
∈

∉

= + + +∑ ∏
U

U

β
β β β ε

 

, (4.6) 
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2. The estimators or objective functions to be minimised in both cases are twofold, one with 1ϕ = , 
and the other with 2ϕ = . This will allow assessing the sensitivity of the models with regard to 
existing outliers. 

3. A weighting factor for each observation is to be used according to (3.13). For such equation the 
threshold 2.5cZ = . 

4. The goodness of the fit of all models pre-selected by both the Mallows’ *pC  and  the Jackknife 
statistics should be additionally assessed by the following quality measures (Bárdossy 1993, 
Lettenmaier and Wood 1993, Wilks 1995) 
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1 l̂ lE Q Q= −  , (4.7) 

( )22
1 10

1 ˆ
T n

t t
il il

t i

E Q Q
n = =

= −∑∑  , (4.8) 

3 2E E=  , (4.9) 

3
4

l

EE
Q

=  , (4.10) 

5
1 10

1 ˆ
T n

t t
il il

t i

E Q Q
n = =

= −∑∑  , (4.11) 
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l

EE
Q

=  , (4.12) 

7
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ˆvar( )var( )

t t
il il

t t
il il

Q QE
Q Q
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1 10
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l il

t i

Q Q
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= ∑∑  , (4.14) 

 ( )1 2
ˆ ˆ, , , ,t t t t
il i i iJQ f x x x= … β ,   

1 10

1 T n
t

l il
t i

Q Q
n = =

= ∑∑  , (4.15) 

l̂Q =   The mean of the calculated values based on the optimised model. 

lQ =  The mean of the observed values. 

1E =  The degree of correspondence of the calculated mean and the observed mean, often 
termed as BIAS. 

2E =  Mean square error, or simply MSE, represents the mean of the square of the 
differences of the calculated and the observed values. 

3E =  The positive square root of mean square error (RMSE). 

4E =  The relative root mean square error (RRMSE). 

5E =  The mean absolute error (MAE). 

6E =  The relative mean absolute error (RMAE). 

7E =  The Pearson product-moment coefficient of linear correlation (r) between l̂Q  and lQ . 

5. A supplementary criterion to assess the relative information contained in a given model compared 
with the so-called saturated model is to be incorporated into this analysis. The goal being that this 
criterion should complement and strengthen the selection of best performing models carried out by 
the Mallows’ *pC  statistic as well as the Jackknife estimator θ . 
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 A suitable criterion constitutes the Akaike Information Criterion (or simply AIC ), which was 
introduced by Akaike (1973) for evaluation of autoregressive models in time series analysis. 
According to Akaike, a statistic that is proportional to the sum of both the maximum log-likelihood 
of the model with respect to the observed data and its number of parameters provides an adequate 
basis for the comparative evaluation of the model. Within the context of this study, i.e. a model 
with j  explanatory variables, the AIC  can be calculated as follows (based on Venables and 
Ripley 1997) 

0
0

AIC ln 2p
j n p

n
∗ ∗

 Φ  = +   
, (4.16) 

 where p∗Φ  and p∗  have the same definitions as in Section 3.3.5. The best model according to the 
Akaike’s criterion minimises AICj . 

6. Each observation, either in winter or in summer, that is to be used to model (4.1) must satisfy a 
water budget constraint; otherwise, it will be considered as an outlier, and hence will be excluded 
from the optimisation process. Based on the continuity equation (i.e. conservation of mass), the 
water balance equation of a given basin during a time interval can be stated as follows: 
precipitation should be equal to the sum of evapotranspiration, runoff, water withdrawal from or 
water transfer to the basin (negative), and the change in water storage in both groundwater and 
surface reservoirs, all expressed in [mm]. 

 This balance of mass can be further simplified. Firstly, water withdrawals or transfers are not 
significant in the present case; and secondly, changes in water storage, whose estimation proves to 
be very difficult due to its non-steady character, can be neglected when the water balance equation 
is applied for long term intervals as is the case in the present study (Refsgaard et al. 1989, Dooge 
1992). 

 Based on these simplifications and the available statistical data for the Upper Neckar Basin (e.g. 
expected annual evapotranspiration is about 560 mm), two constraints can be formulated with a 
99% level of significance 

21 280 190 [mm]t t
i ix Q≤ − ≤  , (4.17) 

22 3260 590[mm]t t
i ix Q≤ − ≤  . (4.18) 

 The interpretation of (4.17) and (4.18) is as follows: the evapotranspiration in a given basin i  and 
at time t  should be greater than or equal to 80 and 260 mm, and less than or equal to 190 and 
590 mm in winter and summer respectively, at the given level of confidence. Additionally, these 
constraints filter out information from those basins where the underground catchment does not 
match with its surface counterpart (e.g. derived from basin’s topographic features), which in turn, 
induce severe problems in the water balance of the basin. This situation normally occurs in basins 
within karstic geological formations. 

The procedure and criteria employed to select the best model and to rank them according to their 
degree of robustness and overall quality is described below. 
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Algorithm 5 

1. Select ( )f i  and optimise2 all possible models (i.e. *min pΦ ) given a set of variables (e.g. in this 
case models13 8191J = ⇒ ) using two estimators: one with 1ϕ = , and another with  2ϕ = .  

2. Select all models whose * *p JC C≤ ; where *JC  is the Mallows’ statistic of the saturated model. 
These models constitute the subset of the best performing ones estimated for a given ϕ .  

3. Calculate for the previously selected subsets the Jackknife statistics =1)θ(ϕ  and =2)θ(ϕ . 

4. Rank models in ascending order with regard to their combined validation statistics 

=1) =2)θ = θ θ( (ϕ ϕ+  and chose as the most robust model for a given functional type (POT, MLP1 or 
MLP2) the model that exhibits the minimum combined value. 

5. The best model, and hence the most suitable function among the three attempted, is to be selected 
from the short list of robust models based on the results obtained for their respective quality 
measures [see (4.7) to (4.13)]. Additionally, all variables constituting the best model should have a 
p-value ranging from 5% to 10%. 

The procedure described above as well as the method employed to optimise, select, test, and validate 
these models has been implemented within a set of programs written in Visual Fortran. These 
programs have been compiled along with a graphical user interface that helps the user through the 
modelling steps as can be seen in Appendix 6. The final product has been called MDS, which stands 
for Model Development and Simulation. Its modular structure would also allow including new 
subroutines and model types, if required, with minimum effort. 

4.1.4 Selecting a Robust Model for Winter 

The starting point consists of selecting among the available observables described in Chapter 2; those 
of them which are logically suitable to be considered as potential explanatory variables of the specific 
discharge in winter 2Q . These variables are in this case { 1, ,19,21,30,32}jx j = … . Afterwards, 
modified forward selection can be applied to rank this set of variables from the strongest to the 
weakest and then to use this information together with a correlation matrix derived from the same set 

                                                      
2   The non-linear unconstrained optimization of the objective function Φ  was carried out with the Generalized 

Reduced Gradient method originally proposed by Wolfe (1963) and later generalized by Abadie and 
Carpentier (1969) [There are many Fortran subroutines available for this method, e.g. in IMSL Fortran 
Libraries (1997), or the GRG algorithm, among others]. This procedure is iterative and employs a Hessian 
estimated by central differences and a quadratic extrapolation technique. The problem under consideration 
can be formulated as 

 
β

Subject to β

min ( , ( , ))g Q fΦ =

−∞ ≤ ≤ ∞

x
, 

 where g  and f  are convex and continuously differentiable functions.  
In order to ease and speed up the convergence of the solution, the domain of the input data andQ x , 
originally in [0, ]+ has been transformed to the interval [ ,1]ε . Those values originally equal to zero have 
been modeled as a very small positive number, e.g.  101 10ε −= × , just to avoid likely indeterminations 
during the calculations. All parameters after the optimization are transformed back to their original domains. 
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of data to pre-select a short list of potential explanatory variables. This list, ranked according to the 
modified forward selection criterion, consists of { 21,16,11,19,15,7, 8,14,12,17,9, 30,18}jx j = . 
This procedure, as it happens with all stepwise algorithms, would not necessarily select the best model 
(Draper and Smith 1981). However, it can be used to reduce the size of potential predictors before all 
possible models are estimated. 

The proposed method (Section 4.1.3) can be applied to this dataset aiming at obtaining a robust model 
for winter, which, in turn, delivers the results summarized in Table 4.2. It should be noted that this 
Table only shows the three best models for each type ordered in decreasing order of robustness (out of 
a total of 49,146 models generated and evaluated for winter).  

From the original dataset, a number of outliers have been isolated by means of constraints given by 
(4.17). This, in turn, has reduced the sample size to 643. The nature of the high uncertainty present in 
those flawed observations cannot be addressed in this study, but in general, they can be attributed 
either to errors in measurement and/or interpolation techniques, or to divergence between the 
morphological and the underground catchments due to complex geological formations (e.g. a karstic 
formation). 

The non-linear relationship between the *pC  and the AIC  statistics can be clearly seen in Figure 4.4. 
This result with respect to a model’s performance implies that the Mallows’ statistic is much more 
sensitive than the Akaike’s information criterion. This does not mean that they show contradicting 
results. In fact, in both cases good models can certainly be found at low values. Due to this fact, 
further analysis will only show one of them as a measure of relative performance. 
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Figure 4.4 Curve depicting the non-linear relationship between the Mallows’ *pC  statistic and the AIC for 
the sample of best performing models described in Table 4.2. The best models in both cases
exhibit small values. 

From Table 4.2 it can be assessed that the most frequent variables within the subset of more robust 
models are those variables representing the specific seasonal precipitation, mean slope in floodplains 
and buffer zones of streams, mean field capacity, and fraction of south-facing slopes. Less frequent are 
the land cover related factors, but not by far with the latter. It can be also seen in this Table that there 
is no model within this subset that does not have at least one land cover variable. 
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The significance test for those models marked with a ‘ ’ in Table 4.2 shows that all variables, with the 
exception of 8x , are definitely significant at the 10% level, and in some cases even at 1% . Hence, the 
null hypotheses can be safely rejected at the 10% level of significance in favour of the alternative 
hypotheses, i.e. these variables are certainly not independent from the explained variable. Results of 
the Monte Carlo simulations carried out with 500 replicates are shown in Table 4.3. 

Table 4.2 Sample of the best models for winter (1 = a variable is included in the model, otherwise it is
omitted). Values of the optimum estimators (minimum) with 2=ϕ  and 1=ϕ  are presented, as 
well as the results for the cross validation and the Akaike's information criterion. The most robust
models are highlighted with the symbol  . All values are dimensionless since the optimisation 
has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 7x  8x  9x  11x  12x  14x  15x  16x  17x 18x 19x 21x 30x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3729 1 1  1   1    1 1  0.967 12.6 4309.2 0.999 20.55 0.992  

3829 1 1  1 1 1 1  1  1 1  0.953 9.5 4306.1 0.986 20.24 1.004  

3837 1 1  1 1 1 1 1 1  1 1  0.949 8.5 4304.9 0.984 20.24 1.006  

Multilinear-potential models: MLP1 

7827 1 1  1   1   1 1 1 1 0.940 5.1 4296.6 0.971 20.33 0.995  

7318 1   1   1  1 1  1 1 0.942 5.1 4296.6 0.970 20.35 0.996 

7315 1   1   1   1 1 1 1 0.942 5.1 4296.6 0.970 20.35 0.996 

Multilinear-potential models: MLP2 

3733 1 1  1   1  1  1 1  0.934 4.8 4291.0 0.962 20.29 0.978  

3734 1 1  1   1  1 1  1  0.934 4.7 4291.0 0.962 20.29 0.983  

3731 1 1  1   1   1 1 1  0.934 4.7 4291.0 0.963 20.30 0.986  

It is important to remark that the best models presented in Table 4.3, which have been selected from 
thousands of possibilities because of their outstanding performance in comparison with the others, 
have between 6 and 8 explanatory variables. This range fits extremely well with the previously 
suggested number of variables that this system should have based only on the analysis of the 
dimensionality of the system.  

Table 4.3 Results of the permutation test for models No. 3729, No. 7827, No. 3733 and No. 3734 using
R=500. The tabulated figures are the Monte Carlo p-values as fractions. The estimator has been 
minimised with 2ϕ = . 

Model Type 7x  8x  11x  15x  17x  18x  19x  21x  30x  

3729 POT  0 0.002 0.008  0 - -  0  0 - 

7827 MLP1  0 0.148 0.016 0.016 -  0  0  0 0.080 

3733 MLP2  0 0.042  0  0  0 - 0.008  0 - 

3734 MLP2  0 0.064  0 0.002  0 0.002 -  0 - 

Subsequently, a model should be chosen among those shown in Table 4.3. Models number 3733 and 
3734 are very good candidates since their estimators and validation indicators are the lowest and the 
second lowest according to Table 4.2. Both models are of type MLP2 and have in common all variables 
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with the exception of 18x  and 19x . This means that both can be used depending on the requirements 
since the former relates the fraction of forest and permeable cover whereas the latter relates forest and 
impervious cover with the explained variable. 

By inspection of Table 4.4 it can be established that both models (No. 3733 and No. 3734) perform 
much better than models No. 3729 and No. 7827 with regard to BIAS, MSE, RMSE, RRMSE, MAE, 
RMAE and r. Model 3734 is even better than model No. 3733 in some respects, but for practical 
purposes both can be used indifferently. 

The potential model has the tendency to overestimate its predictions as can be inferred from the 
positive value of its bias ( 1E ). On the contrary, MLP1 and MLP2 models tend to underestimate 
predictions, though their bias is two or three orders of magnitude less than that of the potential model. 

Table 4.4 Quality measures for the most robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3729 POT 0.45 813.0 28.5 0.12 23.6 0.10 0.96 

7827 MLP1 0.00 789.8 28.1 0.12 23.5 0.10 0.96 

3733 MLP2 0.00 785.4 28.0 0.12 23.4 0.10 0.96 

3734 MLP2 0.00 785.4 28.0 0.12 23.4 0.10 0.96 

RMSE ( 3E ) or the square root of MSE ( 2E ) can be thought of as a typical magnitude for predicted 
errors, thus the lower the value the better the fit would be. Once again, selected models exhibit the 
lowest values. RRMSE ( 4E ) relates the overall magnitude of errors with the mean of all observations, 
and therefore can be expressed as a percentage. In this case, the error of MLP2 models is 12.16% with 
respect to the mean of the observations. This value is more sensible to outliers because it is derived 
from the MSE. In this case also the lower the value the better the fit is. MAE and RMAE ( 5E  and 6E  
respectively) are less sensitive to errors as compared with MSE and RMSE respectively. The 
percentage error with respect to the mean is in this case equal to 10.16%. Finally, the correlation 
coefficient ( 7E ) confirms what has been stated before, i.e. that models No. 3733 and No. 3734 are 
among those models showing a high correlation but not the highest, which always corresponds to the 
saturated model. The interpretation of this quality measure should be done cautiously since it reflects 
the association between observed and calculated values but does not account for biases present in the 
predictions (Wilks, 1995). 

Based on all these results, it can be stated that multi-linear models have performed much better than 
the pure potential one. Moreover, models having precipitation as the only variable of the potential sub-
model and the rest in the linear one are in general better than pure potential models; but, they are not 
as good as those having only land cover in the linear sub-model. This, in turn, indicates that based on 
the evidence provided by the sample, land cover factors are linearly related with the total specific 
discharge in winter at a high degree of certainty, say at least 99%. 

The optimised parameters for both models are shown in Table 4.5. Both potential sub-models have 
almost the same values and share the same sign. However, that does not occur in the linear sub-
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models. The signs of these coefficients correspond with the perception one can have about this natural 
system. For instance, precipitation and mean slope without doubts should have a positive sign. In other 
words, the higher their values, the bigger the specific discharge from a given basin will be. Field 
capacity, on the contrary, should have a negative sign because the higher its average value, the bigger 
the quantity of water stored in the soil matrix, and hence, the lesser the expected runoff.  

Regarding the sign of land cover variables, one could expect based on hydrological considerations that 
forests and permeable covered surfaces (e.g. grassland, cropland, meadows, etc.) have to have both 
higher evapotranspiration and infiltration rates than impervious covered surfaces. Additionally, the 
overall roughness of the former is higher than that of the latter, and hence, longer concentration times 
and lesser runoff volumes can be expected. Due to this rationale, forest and permeable cover would 
tend to reduce the seasonal specific yield (thus, a negative sign should be expected in the case of a 
linear sub-model) whereas impervious cover would tend to evaporate less and hence increase the 
seasonal specific yield (thus, a positive sign should be expected in a linear sub-model).  

Although it is sometimes difficult to interpret signs of the terms in empirical models, mainly because 
of multicollinearity among explanatory variables, the selected models agree with the assertions 
mentioned above. 

0 200 400 600 800
Qobs

0

200

400

600

800

Q
ca

l

n=643

50

150

250

350

Q
ob

s 
an

d 
 Q

ca
l [

m
m

/y
ea

r]

1960 1970 1980 1990
Time (t) [year]

Qobs
Qcal

n=33

Figure 4.5 At the left panel, a scatterplot shows the relationship between observed and calculated values using
model No. 3733 for winter. The samples size is 643. The right panel illustrates a time series of the 
observed specific discharge in winter and their corresponding calculated values for Basin No. 13. 

The quality of the fit achieved by one of the proposed models (e.g. No. 3733) can be visualized in the 
scatterplot shown in Figure 4.5 (left panel). At the right panel of Figure 4.5, a time series of both the 

Table 4.5 Optimized parameters (with 2ϕ = ) for models No. 3733 and No. 3734. 

Model 0β  17β  18β  19β  *Jβ  7β  8β  11β  15β  21β  

3733 36.783 -1.1663 - -0.8487 0.2227 0.0903 0.2051 0.0887 -0.1149 1.1987 

3734 -47.587 -0.3159 0.8551 - 0.2186 0.0904 0.2078 0.0898 -0.1156 1.2010 
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observed specific discharge in winter for basin No. 13 located within the Study Area and the 
corresponding predicted values are displayed. This graph shows that the model No. 3733 has been able 
to simulate the positive trend present in the observed data and relates it with land cover variables apart 
of climatic and morphologic factors. It does not estimate, however, quite accurately some peaks and 
low values present in the time series. 

Additionally, a plot of the standardized errors versus observations is shown in Figure 4.6 (right panel). 
This figure is very important because it illustrates at first glance that the errors are homoscedastic at 
least in the interval about [50,450] [mm]. Outside this interval, since there are few observations, 
nothing can be inferred; however, it is assumed that they also have the same error distribution. As was 
stated earlier, errors should be randomly distributed with zero mean and constant variance (i.e. be 
homoscedastic); otherwise, a proposed model is considered biased.  

A plot depicting the distribution of standardized residuals over the time axis is also important when 
dealing with time series because it can help to spot long term cyclic variation patterns. For the model 
No. 3733 (model No. 3734 as well), as it is shown in Figure 4.6 (left panel), that does not seem to be 
the case. Based on both graphs shown in Figure 4.6, it can be concluded that the proposed model 
complies with those conditions stated above. 
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Figure 4.6 The left panel shows a plot of the standardized residuals for winter obtained with model No. 3733 
versus time. At the right panel, a standardized residual plot for the same model is presented. 

4.1.5 Selecting a Robust Model for Summer 
Selecting a model that fits the observed specific discharge for summer during the period 1.11.1960 to 
31.10.1993 for the Study Area based on observables described before would involve the calculation of  

222 1−  possible combination of variables, and thus an equal number of likely models. Such a 
demanding task with regard to computing time can be simplified in the following way.  

Firstly, a correlation matrix relating 3{( , ) 1, ,19,22,31,33}jQ x j∀ = …  was calculated based on the 
existing dataset that fulfils the constraints given by (4.18). This dataset has a cardinality equal to 1150. 
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Using this information and the criteria explained and used before (e.g. Section 3.3.8), variables having 
the highest correlations with the explained variable were pre-selected to form a short list of 
observables with which a robust model is to be found. This short list should also contain the first J  
strongest variables (limited here to 12 because of computing limitations) according to the modified 
forward selection procedure. This short list ordered from the strongest to the weakest is composed of 
{ 22,15,7,14,17,9,16,18,13,33,19,10}jx j = . This pre-selection presupposes that variables 
having very little correlation with the explained variable would not contribute much to explaining the 
observed variance of 3Q , while on the contrary,  they would complicate the calculation by increasing 
the computing time, introducing ‘noise’ to the solution, and probably increasing the multicollinearity. 
It should be observed that these variables fulfil all conditions stated in (3.2) regarding the components 
of the system.  

Since likely effects of land cover are to be disclosed, three variables have been taken into account, 
namely { 17, ,19}jx j∀ = … . These variables, with the exception of variable 18x , have been 
evaluated at basin label (i.e. i i≡ ΩL ). 

Based on the correlation matrix, it was found that the correlation coefficient between 3Q  and 18x  
depends on the domain where the latter is evaluated. For instance, if the fraction of impervious land 
cover ( 18x ) is estimated at a domain comprised by riparian zones and floodplains along the stream 
network (i.e. i i i≡ ⊂ ΩL B ), then its correlation coefficient with 3Q  is about 8.4 times greater than 
that obtained if this variable is evaluated at basin level (i.e. i i≡ ΩL ). An explanation for such 
fluctuation is the fact that new settlements, industrial states, and major transportation infrastructure 
within the Study Area tend to be closer to both existing transportation axes and traditional urban 
agglomerations which, according to historic evidence, have a great probability to be located along the 
valleys with moderate slopes that surround main rivers and their tributaries. On the contrary, it is very 
unlikely that land use types with a higher percentage of impervious areas would occur at a random 
place with poor accessibility and sheer slopes. Thus, estimating the fraction of impervious areas within 
a catchment using its whole area may underestimate the effects of this land cover on the hydrological 
cycle and hence the impacts of its change over time. This is, in turn, reflected by its low coefficient of 
correlation. Conversely, if the reference area becomes smaller and additionally is set to correspond to 
highly sensitive ecosystems as those mentioned above, the correlation coefficient increases. Because 
of that 18x  has been evaluated in this case within the domain i i i≡ ⊂ ΩL B .  

Moreover, it was also found that the correlation coefficient between 18x  and 3Q  in winter does also 
depend on the area of reference of the former variable, but in this case the opposite occurs, namely  

18 2r ( ( ), )i ix QΩ≡L  is 1.6 times greater than 18 2r ( ( ), )iix Q≡ BL . 

A summary of the results obtained after applying the proposed method (see Section 4.1.3) to the 
variables of the short list is shown in Table 4.6. This Table reveals that the uncertainty of the system in 
summer is much higher than that in winter, and because of that, a model in general requires more 
variables to explain the observed variance; for instance, the minimum number of variables in this case 
was eight whilst the most robust model found (No. 3965) has ten explanatory variables. Because of the 
high uncertainty of the system in summer, optimum estimator values (see Tables 4.2 and 4.6) are 
higher in summer than those in winter, and so are the cross-validation statistics. 
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From Table 4.6 two models have been selected according to the guidelines mentioned above, namely: 
model No. 3965 and No. 3967, whose types are POT and MLP2   respectively. The significance tests 
displayed in Table 4.7 show that all variables, with the exception of  33x  in model No. 3967, are 
significant at 10%. This drawback makes the latter less reliable than model No. 3965. 

Table 4.6 Sample of the best models for summer (1 = a variable is included in the model, otherwise it is 
omitted). Values of the optimum estimators (minimum) with 2=ϕ  and 1=ϕ  are presented, as 
well as the results for the cross validation and the Akaike's information criterion. The most robust
models are highlighted with the symbol  . All values are dimensionless since the optimisation 
has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 7x  9x  10x  13x  14x  15x  16x  17x 18x 19x 22x 33x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3965 1 1  1 1 1 1 1 1  1 1 7.249 9.9 8143.4 7.433 70.83 7.501  

4093 1 1 1 1 1 1 1 1 1  1 1 7.246 11.5 8145.0 7.449 70.82 7.493  

3967 1 1  1 1 1 1 1 1 1 1 1 7.246 11.5 8145.0 7.443 70.81 7.524  

Multilinear-potential models: MLP1 

3967 1 1  1 1 1 1 1 1 1 1 1 8.244 12.2 8291.0 8.457 74.97 8.556  

4095 1 1 1 1 1 1 1 1 1 1 1 1 8.242 14.0 8292.7 8.476 75.03 8.540 

3455  1  1 1 1 1 1 1 1 1 1 8.279 15.0 8293.8 8.477 75.09 8.560 

Multilinear-potential models: MLP2 

3967 1 1  1 1 1 1 1 1 1 1 1 7.518 16.6 8188.1 7.736 71.49 7.791  

4095 1 1 1 1 1 1 1 1 1 1 1 1 7.487 14.0 8185.5 7.719 71.48 7.809  

4028 1 1 1  1 1 1 1   1 1 7.567 19.9 8191.4 7.762 71.77 7.791  

 
Table 4.7 Results of the permutation test for models No. 3965 and No. 3967 using R=500. The tabulated 

figures are the Monte Carlo p-values as fractions. The estimator has been minimised with 2ϕ = . 

Model Type 7x  9x  13x  14x  15x  16x  17x  18x  19x  22x  33x  

3965 POT  0  0 0.012  0  0  0  0  0 -  0 0.054 

3967 MLP2  0  0 0.004  0  0  0 0.010 0.060 0.018  0 0.194 

The reliability of the potential model is confirmed by comparing the quality measures shown in Table 
4.8. According to these results, model predictions in both cases tend to underestimate observations 
since their respective bias ( 1E ) is negative. The potential model has a bias whose absolute value is 
greater than that of the multi-linear one, but its relative root mean square error ( 4E ) is a bit smaller 
than that of the latter (i.e. about 25.3% and 25.8% respectively). Additionally, the correlation 
coefficient between observed and calculated values for the potential model ( 7 0.87E ≈ ) is almost as 
high as that obtained for the saturated one. This is a good advantage because having two variables less 
makes a model relatively simpler. 

Based on these arguments, it seems adequate to opt for model No. 3965 instead of model 3967. The 
optimised parameters for the chosen model are shown in Table 4.9. It is important to emphasize that 
two land cover variables, i.e. forest and impervious cover, have been selected by the proposed 
algorithm as significant variables to explain the annual specific discharge of a basin during summer. 
Their relative influence on the system is somehow reflected in this model by the order of magnitude of 
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the coefficients and their signs. The fraction of forest cover within a spatial unit has a coefficient in 
model No. 3965 whose absolute value is one order of magnitude higher than the coefficient for the 
fraction of impervious cover evaluated in i i i≡ ⊂ ΩL B , i.e. within a buffer zone of the stream 
network. 

Table 4.8 Quality measures for the most robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3965 POT -0.11 1515.5 38.9 0.25 31.0 0.20 0.88 

3967 MLP2 -0.01 1580.9 39.8 0.26 31.4 0.20 0.87 

Both coefficients have negative signs, which may have the following interpretation. Land cover 
variables in this study are indicators of both intensity and type of land-atmosphere interactions. 
Forested areas would tend to evaporate more water than those portions of the basin with other land 
cover types (e.g. impervious, grassland, cropland) under the same climatic and morphologic conditions 
because of the high transpiration rates attributed to the tree physiology. This assertion has been 
confirmed by long-term controlled catchment experiments in several locations around the globe and 
with different types of tree species. Studies carried out or reported by Law 1956, Bosch and Hewlett 
1982, Kirby et al. 1991, Eeles and Blackie 1993, and Jones 1997 indicate that afforestation would lead 
to a considerable reduction of annual runoff yield, or conversely, that deforestation would augment the 
yield of a given catchment. Such conclusions imply an inverse relationship between 17x and 3Q  or 
between 17x and 2Q . This kind of inverse relationship is represented in model No. 3965 by the 
negative exponent of variable 17x . 

As stated before, impervious areas would evaporate water to the atmosphere due to the absorption of 
heat provided by the sun, but in much smaller amounts than the latter because they lack of a very 
important component of the evapotranspiration process, namely the transpiration of vegetal tissue. As 
a result, a higher yield should be expected at the outlet of such areas. This relationship is denoted in 
model No. 3965 by the negative sign of the exponent of variable 18x , and its smaller absolute value in 
comparison with that of variable 17x . In fact, these exponents are in the following ratio 

17 18: 18.7 : 1β β = .  

It is noteworthy to express that the relationship between land cover variables is certainly highly non-
linear in summer, whereas in winter, due to almost no physiological activity of vegetation, the 
relationship between specific discharge and land cover is very close to linear. This is why a multi-
linear potential model containing these variables in the linear sub-model was chosen as the most 
robust one in winter, whereas in summer, all models of type MLP2 and MLP1 performed badly 
compared with those of type POT (see Table 4.6) with the additional advantage, in general, that the 

Table 4.9 Optimized parameters (with 2ϕ = ) for model No. 3965. 

Model 0β  7β  9β  13β  14β  15β  16β  17β  18β  22β  33β  

3965 20.235 0.6473 0.1346 0.0954 -1.8215 -0.6539 0.0066 -0.2994 -0.0161 1.9459 -0.2331
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latter needs less variables than the former. Because of this, a potential model was selected as the most 
robust one based on the available data. 

Other variables such as 7x  or 15x  appear in almost all models both in winter and summer (see Tables 
4.2 and 4.6). According to the selected models, the following assertions can be done. Firstly, the 
higher the mean slope within i i⊂ΩB  is, the higher the seasonal runoff yield of the basin iΩ  would 
be, and secondly, the higher the mean field capacity of the basin, the lower its specific discharge. 
These statements make sense also from a theoretical point of view. 

The goodness of the fit achieved by model No. 3965 can be visualized by the scatterplot depicted in 
Figure 4.7 (left panel) or by means of a time series shown in Figure 4.7 (right panel) which relates 
predicted and observed values for the basin No. 13 within the Study Area. The latter shows clearly that 
model No. 3965 is able to simulate the majority of peaks and valleys of the observed time series based 
on the input data. The cases where the model has failed may indicate an underestimation of the spatial 
distribution of precipitation. In these cases, the proposed model has also been able to simulate the 
positive trend observed in the data (see Figure 4.7 right panel).  
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Figure 4.7 The left panel shows a scatterplot of the observed values versus calculated ones for summer 
obtained with model No. 3965. The right panel illustrates a time series of the observed specific
discharge in summer and their corresponding calculated values for Basin No. 13. 

4.1.6 Visualizing the Effects of Land Cover Change on Annual Runoff 
A good example for visualizing the effects of land cover change is the drainage area of the River 
Körsch (in the present study named as Basin No. 13), whose gauging station is located at Denkendorf-
Sägewerk. This area, because of its vicinity to Stuttgart, has endured a fast land use change triggered 
mainly by anthropologenic driving forces. Because of them, impervious areas have grown from about 
7.3% of the total area in 1961 to about 30.9% in 1993. That means an average annual growth rate of 
about 4.6%. Forest grew slowly since 1961 to the middle of the 70s and then a smooth decline has 
begun as can be seen in the graph on top of Figure 4.8. 
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During the same period, precipitation in this basin has endured a continuous decline as it is illustrated 
by the trend line shown in Figure 4.8 (dashed line). This climatic factor, which is composed of 21x  and 

22x  in the present case, has a marked periodicity but, in general, its average is decreasing at the rate of 
1.1 mm/year. Conversely, the seasonal specific discharge has increased at the rate of 0.83 mm/year 
during the same period (see the graph at the bottom of Figure 4.8). 
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Figure 4.8 Comparison of time series of land cover, precipitation and specific discharge in winter and

summer for Basin No. 13. Calculated values using models No. 3733 for winter and No. 3965 for 
summer are also displayed. 

Based on these facts, and considering that other factors are quasi-constant or reveal no trend at all, an 
upward tendency of the specific discharge can only be attributed to influences stemming from land 
cover changes occurring in the basin since 1961. This assertion has been corroborated by the models 
presented before. They not only predict an upward trend as can be seen in Figure 4.8, but they also 
relate the specific discharge with two land cover variables, whose tests of independence with the 
explained variable can be rejected even at levels of significance lower than 1% according to the Monte 
Carlo simulations carried out. 

Moreover, it should be noted that the selected models represent a regionalization for all basins within 
the study area, and because of this, the models might fail to predict with high certainty a peak or a 
nadir at a given time point. However, they have an advantage; i.e. they can perceive upward or 
downward tendencies of those variables included in the model, and hence, predict an expected value 
for the explained variable based on such trends. 
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4.2 Specific Peak Discharge 
4.2.1 Description of Some Time-Dependent Variables Employed 
In the present section, variables that have not been described before and are deemed potential 
predictors for peak flows within a basin are to be described. According to Chow (1964) and others, 
suitable potential predictors for peak flows are antecedent indices for both precipitation and 
temperature. In the present case, their maximum seasonal values will be employed because of their 
high correlation with the explained variable. Figure 4.9 illustrates the PDFs of such variables for 
winter and summer as well as the PDFs of the observed peak flows. 

The PDFs of the maximum API for both winter and summer have a skewness of approximately 1.1 
and 0.8 respectively, which means that they are clearly skewed to the right as can be seen in Figure 
4.9. Their dispersion is, however, different in winter from that of summer. In fact, the range, the 
standard deviation, and the coefficient of variation in winter are higher than the corresponding figures 
in summer (see Appendix 3). The parameters on which API is based have been calibrated so that the 
maximum correlation with the explained variable can be achieved. So, for winter the parameters are 
κ = 0.95  and 90[days]C = , whereas for summer κ = 0.85  and 30[days]C = . 

With regard to maximum ATI, its PDF in winter is almost symmetrical (skewness equal to 0.2), while 
in summer it is positively skewed (0.9). This index has been evaluated using temperature in degrees 
Kelvin [K] for the convenience of having positive numbers. The range of this variable is very small in 
both winter and summer, although the range in winter is higher than that in summer. The coefficients 
of variation are quite small compared with other variables, which may indicate that this variable is of 
little use in explaining the variance of the specific peak flow. 

Finally, Figure 4.9 shows, at the bottom, the PDFs of the specific discharge in winter and summer, 
which are the explained variables in this section. These variables have a skewness of about 1.9 and 3.5 
for winter and summer respectively. The kurtosis of these variables are very high also, namely 7.9 and 
24.0, for winter and summer respectively. In other words, their PDFs are very peaky and positively 
skewed. In reality, such distributions show that very high values may occur but their probability is 
very small. The challenge is then to determine whether the occurrence of these high values is 
somehow linked with the land cover variables.  
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Figure 4.9 Histograms depicting the empiric PDFs for both maximum API and ATI indices for winter (left 
panel) and summer (right panel), as well as the specific peak discharge considering all spatial units 
during the period from 1.11.1960 to 31.10.1993. 

4.2.2 Selecting a Robust Model for Winter 
The first step consists of selecting potential predictors of the explained variable from the available 
dataset. In this case, specific peak flows in winter ( 4Q ) are assumed to have functional relationships 
with the following set of predictors based either on previous experience or common sense, namely 
{ 1, ,19, 21, 24, 28, 30, 32, 36}jx j = … . This long list of predictors should be shortened somehow because 
of the reasons already explained. Applying the same procedure used before, a short list composed of 
the twelve strongest predictors was found, i.e. { 28,12,15,19, 30, 9,16,17, 3,1,11,18}jx j = . This short 
list of predictors does not only simplify the calculation proposed in paragraph (Section 4.1.3), but also 
satisfies the restriction established by (3.2). The cardinality of the sample data to be employed consists 
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of 1182 valid observations spread along the time axis from 1.11.1960 to 31.10.1993. In this case also, 
all land cover variables, i.e. { 17, ,19}jx j∀ = …  have been evaluated within the domain 

i i i≡ ⊂ ΩL B  due to the same reasons explained in Section 4.1.5. 

In the present situation, three simple functional forms similar to those proposed before in (4.4), (4.5) 
and (4.6) are suitable to model 4Q  and 5Q (see next paragraph). There are, however, some differences 
with subscripts l  and 'j , namely 
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 ==  =   .

 (4.19) 

These three model types are adopted for this section and will be investigated in the subsequent 
analysis because they fit the characteristics of the problem at hand, for example, they can tackle the 
non-linear relationships among some predictors and the explained variable. It is also important to 
notice that a number of empirical studies, for instance those carried out by Chow (1964), Clarke 
(1994), Abdulla and Lettenmaier (1997), and Ayros (2001) have corroborated their applicability to 
model this characteristic of the discharge originated in a given drainage basin. Additionally, it should 
be stated that they all satisfy the guidelines suggested by the concept of simplicity stated before. 

Using the short list of observables, the proposed method can be applied in order to assess which model 
type and which variables are needed to obtain a robust model based on the existing information for the 
Study Area. A summary of the results obtained are illustrated in Table 4.10. 

Table 4.10 Sample of the best models for specific peak discharge in winter  (1 = a variable is included in the 
model, otherwise it is omitted). Values of the optimum estimators (minimum) with 2=ϕ and 

1=ϕ  are presented, as well as the results for the cross validation and the Akaike's information
criterion. The most robust models are highlighted with the symbol . All values are dimensionless 
since the optimisation has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 1x  3x  9x  11x  12x  15x  16x  17x 18x 19x 28x 30x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
1401  1  1 1 1 1   1 1  7.989 7.7 2623.7 8.148 74.47 8.256  

1881 1 1  1  1 1   1 1  7.995 8.6 2624.6 8.151 74.39 8.259  

1817 1 1    1 1   1 1  8.021 10.3 2626.4 8.146 74.54 8.280  

Multilinear-potential models: MLP1 

4091 1 1 1 1 1 1 1  1 1 1 1 7.600 11.6 2534.6 7.779 72.73 7.835  

4094 1 1 1 1 1 1 1 1 1  1 1 7.600 11.6 2534.6 7.779 72.73 7.841  

4093 1 1 1 1 1 1 1 1  1 1 1 7.600 11.6 2534.6 7.779 72.74 7.842  

Multilinear-potential models: MLP2 

1308  1    1 1 1   1  7.913 4.3 2609.1 8.032 74.90 8.236  

1310  1    1 1 1 1  1  7.906 5.3 2610.2 8.041 74.90 8.240  

1820 1 1    1 1 1   1  7.903 4.8 2609.6 8.036 74.83 8.304  
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Table 4.10 shows that the pure potential models (POT) have in general a relative poorer performance if 
compared with the multi-linear potential ones (MLP1, and MLP2). This finding suggests that not all 
variables, with the exception of 28x , have a strong non-linear relationship with the explained variable 

4Q . 

Models of type MLP1 in general and model No. 4091 in particular exhibit the lowest values of the 
cross-validation statistics, the latter for instance got 7.779 and 7.835 for estimators 2ϕ =  and 1ϕ =  
respectively (see Table 4-10); therefore, they are comparatively more robust and thus more reliable 
than the other model types. They have, however, one disadvantage if compared with models of type 
MLP2, namely, they have almost two times as many variables as models of type MLP2. According to the 
concept of simplicity, model No. 1308 is preferable to model No. 4091 because the former has only 
five predictors and performs almost as good as the latter; in fact, its cross validation statistics are at 
most about 5.1% greater than those of the model No. 4091. 

In order to take the final decision and select a robust model, the test of significance, whose results are 
displayed in Table 4-11 for the previously selected models, should also be taken into account. These 
Monte Carlo simulations show that models No. 1401 and No. 4091 have some variables for which the 
null hypotheses of the significance test cannot be rejected at 5 or 10% level of significance. This 
means that based on the sample, there seems to be no evidence of a functional dependence among 
these variables and 4Q . Model No. 1308, on the contrary, has variables significant at even less than 
1%. These results confirm that all variables contained in the model are certainly not independent of the 
explained variable. Hence, the model No. 1308 is selected as a robust model to predict the specific 
peak in winter. 

Table 4.11 Results of the permutation test for models Nos. 1401, 4091, and 1308 using R=500. The tabulated 
figures are the Monte Carlo p-values as fractions. The estimator has been minimised with 2ϕ = . 

Model Type 1x  3x  9x  11x  12x  15x  16x  17x  18x  19x  28x  30x  

1401 POT -  0 - 0.046 0.100  0  0 - -  0  0 - 

4091 MLP1  0  0 0.210 0.038 0.030 0.022  0 - 0.022  0  0 0.261

1308 MLP2 -  0 - - -  0  0  0 - -  0 - 

Model No. 1308, as displayed in Table 4.12, has a very small positive bias (i.e. -48 ×10 ), which 
means that this model would tend, although in a very small measure, to overestimate its predictions. 
This model, nevertheless, does not exhibit the smallest values with regard to other quality measures, 
but they are very close to the minimum, which in this case corresponds to model No. 4091. 

Table 4.12 Quality measures for the most robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

1401 POT 0.01 9.08 3.01 0.35 2.34 0.27 0.78 

4091 MLP1 0.00 8.38 2.89 0.33 2.25 0.26 0.79 

1308 MLP2 0.00 9.00 3.00 0.34 2.33 0.27 0.78 
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The relative root mean square error of model No. 1308 is about 34.4%. This figure is 2.8 times greater 
than the corresponding value obtained for the annual specific discharge in winter. This is partly 
because the PDF of 4Q  is very skewed and has a relatively small average (about 8.8 mm). It could 
also be due to the uncertainty involved in predicting peak flows. It also implies that this model tends to 
be more accurate when predicting values greater than the observed mean. Because of these 
inaccuracies, the correlation coefficient between observed and calculated values using an estimator 
with 2ϕ =  is about 0.78 (only).  

It is important to remark that the optimised coefficients (see Table 4.13) for the selected model exhibit 
inverse relationships for variables, 15x , 16x , and 17x ; and direct relationships with the remaining ones. 
Such relationships make sense from a physical point of view, for instance, the higher the field 
capacity, the more rainwater is retained in the soil matrix, and hence, the smaller the peak. Conversely, 
the higher the specific precipitation, the higher the peak to be expected. Furthermore, the larger the 
forested areas in a basin, the higher the evapotranspiration, and hence, the lower the peak discharge 
tends to be. This kind of rationale has been extracted from the sample data by the selected model.  

A condition for an unbiased estimator function is that [ ] 0E Φ =  and the var( ) .constΦ =   (with Φ  
given by (3.10), Nolsøe et al. (2000). Unfortunately, these very important conditions are sometimes 
not fulfilled by a chosen model. This is the case with the selected model No. 1308, whose standardized 
errors exhibit a nonlinear variation of the variance, or in other words, they are heteroscedastic with 
respect to the predictor 28x and the explained variable 4̂Q  as it is shown in Figure 4.10.  

Figure 4.10 Scatterplot of residuals shows a clear heteroscedasticity of the errors with respect to variable 

28x and the estimated values 4̂Q  using model No. 1308. 

According to Gentleman (1974), Draper and Smith (1981), Montgomery and Peck (1982), among 
others, this problem can be addressed by weighting the residuals in the objective function according to 
their reliability. As Figure 4.10 shows, in the present case the higher the predictor 28x , the greater the 
variance of the residual, and hence the less reliable the observation will be. In such a case, the inverse 

Table 4.13 Optimized parameters (with 2ϕ = ) for model No. 1308 without removing heteroscedasticity. 

Model 0β  17β  18β  *Jβ  3β  15β  16β  28β  

1308 -0.2173 -0.0361 - 0.1873 0.2249 -0.2893 -0.0070 1.0847 
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of the predictor powered to a given exponent can be used as a robust weighting scheme. Thus, 
equation (3.10), which is the objective function to be minimised, can be written in general as 
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  wϕ      an exponent to be calibrated, and 

  t
iε , cZ , and sε   variables defined in (3.11), (3.13), and (3.14) respectively. 

In this case, the heteroscedasticity of the model No. 1308 with respect to the variable * 28j =  has 
been greatly attenuated using the exponent 2w = −ϕ . The selection of this exponent has been done 
by trial and error, although other possibilities can be found in the literature (e.g., Draper and Smith 
1981). 

In order to visualize whether the new estimator stabilizes the variance, a new plot of residuals is 
needed. In this case, it would be appropriate to examine the pattern of distribution of a pair of 
variables such as 4̂,{ }t t t

i i iw Q w ε in order to be consistent with the definition of the estimator given by 
(4.20) and (4.21). The weighted residuals are, of course, standardised. Figure 4.11 (left panel) depicts 
the distribution of these variables obtained for model No. 1308. The residuals plots in Figure 4.11 
reveal that the spread of the error term is roughly the same along the response. In other words, the 
weighted estimator appears to be effective in this case. 
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Figure 4.11 The left panel shows a scatterplot of residuals obtained for model No. 1308 using the estimator 
described by (4.20) and (4.21). The graph at the right panel shows the nonlinear relationship
among the calculated/observed specific peak in winter and the inverse of the maximum 
precipitation index. 

The goodness of the fit between the observed 4Q  and the calculated explained variable 4̂Q  along the 
domain of the input variable 28x can be visualised in the right panel of Figure 4.11. The inverse of the 
variable has been employed here with two purposes: 1) to enhance the nonlinear relationship between 
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the variables, and 2) to stabilize the variance of this explanatory variable so that the plot can contain 

4Q  and 4̂Q .  

The set of parameters that minimise the objective function (4.20) is shown in Table 4.14. The modulus 
of these parameters is different from those shown in Table 4.13, but their sign is the same. Table 4.14 
also shows the optimised coefficients for model No. 1310, which may be interesting to analyse since it 
is composed of all variables of model No. 1308 plus one that represents the fraction of impervious 
cover in the floodplains. Although model No. 1310 has not achieved the best performance, it may be 
interesting to see the effect of this land cover variable upon the specific peak discharges in winter. 

It is interesting to see in the previous table that all constants have preserved their signs after the 
inclusion of variable 18x , however, their magnitude is affected in several intensities. The coefficient 
obtained for variable 18x  is positive and its module is about 4.5 times greater than that obtained for 
variable 17x . Furthermore, after removing the heteroscedasticity of these models, all variables, with 
the exception of 17x , remain significant at the 5% level as can be seen in table 4.15. The latter is 
significant at the 10% level. 

Table 4.15 Results of the permutation test for models No. 1308 and No. 1310 using R=500. The tabulated 
figures are the Monte Carlo p-values as fractions. Heteroscedasticity has been removed using the
estimator described in (4.20) with 2w= =ϕ ϕ . 

Model Type 3x  15x  16x  17x  18x  28x  

1308 MLP2 0.050  0  0 0.022 -  0 

1310 MLP2 0.042  0  0 0.098 0.020  0 

The implication of having a positive coefficient for variable 18x  in model No. 1310 is that if all other 
terms of this model remain constant, an increment of impervious cover in sensible areas of the 
catchment, such as the floodplains, would certainly increase the specific peak flow in winter. 
Conversely, based on models No. 1308 and No. 1310, an increment in forested areas in those places 
would tend to reduce the specific peak in winter. 

4.2.3 Selecting a Robust Model for Summer 

Based on the available data, a set of potential predictors of the variable 5Q  is composed of the 
following variables { 1, ,19,22,25,29,31,33,37}jx j = … . Due to the reasons already explained, a 
pre-selection procedure similar to that described in Section 4.1.4 can be used to reduce the number of 
variables to a maximum 12. This procedure yields, in the present case, the following subset of 
potential predictors: { 29,9,12,10,19,18,4,14,15,1,17,31}jx j = . In this case, the sample data 
contains 1187 observations distributed during the period 1.11.1960 to 31.10.1993.  

Table 4.14 Optimized parameters (with 2w= =ϕ ϕ ) for models No. 1308 and No. 1310 after removing 
heteroscedasticity. 

Model 0β  17β  18β  *Jβ  3β  15β  16β  28β  

1308 -4.5505 -0.0149 - 1.9570 0.0814 -0.4167 -0.0040 0.8214 

1310 -4.6254 -0.0110 0.0497 1.3327 0.1135 -0.3812 -0.0043 0.8515 
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The parameter σ  used in the definition of variable 4x  is taken equal to 0.3. Regarding those variables 
that represent the fractions of each land cover type, it was found that 17x  and 19x  are more significant 
if they are evaluated within the domain i i≡ ΩL , whereas 18x  gives better results if it is estimated 
within a buffer zone of the streams that comprise floodplains and riparian wetlands, i.e. 

i i i≡ ⊂ ΩL B .  

Three model types similar to those defined in Section 4.2.2 (4.19) are regarded as suitable for 
modelling the specific peak discharge in summer. Having the model types and a subset of observables 
as potential predictors of 5Q  the proposed method can be applied. As a summary of the results, Table 
4.16 was compiled from the several thousand possible combinations of predictors and estimators that 
have been calculated in this case. This table only presents the best three combinations for each model 
type considering basically their performance using two estimators, namely 2ϕ =  and 1ϕ = . The 
weighting function is the same as that shown in (3.13). Initially the distribution of the term t

iε  in the 
models described in (4.19) is regarded as homoscedastic. 

Table 4.16 Sample of the best models for specific peak discharge in summer (1 = a variable is included in the
model, otherwise it is omitted). Values of the optimum estimators (minimum) with 2=ϕ and 

1=ϕ  are presented, as well as the results for the cross validation and the Akaike's information
criterion. The most robust models are highlighted with the symbol . All values are dimensionless 
since the optimisation has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 1x  5x  9x  10x  12x  14x  15x  17x 18x 19x 29x 31x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3954 1 1  1 1 1    1 1 1 6.345 11.2 2640.1 6.591 62.32 6.724  

3441  1  1 1 1   1  1 1 6.450 28.7 2657.4 6.653 62.53 6.679  

4082 1 1 1 1 1 1    1 1 1 6.339 12.1 2640.9 6.614 62.18 6.764  

Multilinear-potential models: MLP1 

3967 1 1  1 1 1 1 1 1 1 1 1 11.345 13.5 2665.0 11.635 82.79 11.778  

3583  1 1 1 1 1 1 1 1 1 1 1 11.339 13.9 2665.4 11.654 82.53 11.791  

3567  1 1 1 1  1 1 1 1 1 1 11.396 17.8 2669.4 11.689 82.49 11.760  

Multilinear-potential models: MLP2 

3447  1  1 1 1  1 1 1 1 1 9.435 11.3 2635.7 9.752 63.83 7.029  

3959 1 1  1 1 1  1 1 1 1 1 9.414 10.6 2635.0 9.740 63.69 7.045  

3953 1 1  1 1 1   1  1 1 9.555 24.3 2648.8 9.858 63.86 6.983  

Model No. 3954 is regarded as the most robust model based on the quality indicators shown in Table 
4.16. It is, however, necessary to check some additional conditions. The first one is to confirm whether 
the random error of the model exhibits a uniform distribution with zero mean and a constant variance. 
The easiest way to do this is by depicting the residuals versus a predictor or the estimated value in a 
scatterplot in the same way as it was done before. Since the specific peak in winter did exhibit a 
marked heteroscedasticity with respect to the antecedent precipitation index, it would also be 
convenient to check whether the standardised residuals in this case have the same behaviour with 
respect to 29x . The results of these tests shown in Figure 4.12 are stunning. The variance of the 
residuals of model No. 3954 increases non-linearly with an increase of the predictor 29x . 
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Models No. 3447 and No. 3953, which may also be interesting to be analysed because they consider 
that land cover variables have a linear relationship with the explained variable, also show a marked 
heteroscedasticity with respect to the variable mentioned above. Hence, before proceeding with the 
analysis, such an anomaly should be removed (see Figure 4.12 right panel). This irregular behaviour 
does not occur with the remaining variables of these models. 
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Figure 4.12 Scatterplots of residuals of model No. 3954 before (left panel) and after (right panel) the
heteroscedasticity of the errors with respect to variable 29x  has been removed. 

It is also necessary to apply a significance test to corroborate that the variables contained in a given 
model are not just noise but that they are in some way linked to the explained variable. Such a test 
will, in turn, help to reduce even further the short list of ‘good’ models mentioned above. If a model 
contains non-significant variables, it should be eliminated. The results of the significance test are 
presented in Table 4.17. 

Table 4.17 Results of the permutation test for models No. 3954 and No. 3441 using R=500. The tabulated 
figures are the Monte Carlo p-values as fractions. Heteroscedasticity has been removed using the
estimator described in (4.20) with 2=ϕ  and 2.5w =ϕ . 

Model Type 1x  5x  10x  12x  14x  18x  19x  29x  31x  

3954 POT 0.010  0  0  0  0 - 0.010  0  0 

3441 POT -  0  0  0  0  0 -  0  0 

From Table 4.17 it can be concluded that all these models have variables that are certainly not 
independent from the explained variable at the level of significance of 1%, and in some cases, the null 
hypothesis can even be rejected at smaller levels of significance. Put differently, any of these models 
is a good choice, but one of them should exhibit relatively better quality indicators. Let us therefore 
analyse the calculated quality measures of the selected models shown in Table 4.18 in order to see 
which of them is the most reliable. 

The information contained in Table 4.18 indicates that model No. 3954 has performed better than 
model No. 3441 because all quality measures, with the exception of the bias ( 1E ), calculated for the 
former are smaller than that of the latter. Additionally, both models tend to overestimate the 
observations since their bias is a positive value. The coefficient of correlation of the most robust 
model (No. 3954) is about 0.82; the RMSE ( 3E ) of this model is about 7.1 mm and its RRMSE is 
about 1.1. These relatively high values are the result of the high uncertainty present in the system 
when the climatic variable 29x  exhibits higher values. It is worth noting that potential models 
predicting peak flows in summer have performed much better that the multi-linear potential ones, as 
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can be seen in Table 4.16. Such behaviour of the system is different from that found for the same 
runoff characteristic (explained variable) during winter (see Section 4.2.2). 

Table 4.18 Quality measures for the selected robust models with 2ϕ =  and 2.5w =ϕ . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3954 POT 0.01 50.8 7.13 1.07 5.52 0.83 0.82 

3441 POT 0.00 51.1 7.15 1.07 5.54 0.83 0.81 

Why is this happening? A plausible answer is the following: the linkage between land cover, the 
atmospheric process (e.g. evapotranspiration, precipitation) and the resulting runoff within a spatial 
unit during winter can be modelled with a linear sub-model mainly because of the small physiological 
activity of the vegetal tissue during this season. The opposite occurs in summer because the peak of 
biomass production is reached during this season. This, in turn, would increase evapotranspiration, and 
thus, reduce the specific peak flows in a given catchment. Such relationships seem to be non-linear at 
a mesoscale level as the previous models suggest. This fact can be corroborated with many studies 
carried out at a microscale; for example, the Penman-Monteith concept (Penman 1948,  Monteith 
1965) regards evapotranspiration as a non-linear function of many factors, one of which is land cover. 

The optimised coefficients for the most robust model found for the specific peak flow in summer are 
shown in Table 4.19. 

Assuming that there is no high multicollinearity among the different factors employed, the following 
interpretation of the sign of the variables can be stated. The variable area ( 1x ) exhibits an inverse 
relationship with the specific peak discharge; in other words, the bigger the drainage area is, the 
smaller the peak discharge would be expected. This result agrees with other empirical studies carried 
out by several authors (e.g. Chow, 1964). 

Trimmed mean slope ( 5x ) has come up as a statistically significant factor with a direct relationship to 
the explained variable. From the physical point of view, this relationship makes sense since the higher 
the slope in a given basin is, the faster is the expected flow of water through the hillslopes and stream 
networks, hence the lesser the concentration time, and consequently the higher the discharge would be. 
It is interesting to note that the selected robust model is not related with the mean slope of the basin 
( 2x ) but with a trimmed mean that excludes the 30% of the observations at both ends of the PDF of 
( 2x ). This finding is remarkable because it is in those locations of the basin that have mild slopes 
where a land cover change is most likely to occur as it is depicted in the left panel of Figure 4.13. The 
right panel of Figure 4.13 shows that land cover change occurs more or less with the same likelihood 

Table 4.19 Optimized parameters (with 2ϕ =  and 2.5w =ϕ ) for model No. 3954 after removing 
heteroscedasticity. 

Model 0β  1β  5β  10β  12β  14β  19β  29β  31β  

3954 3003.8 -0.0309 1.1850 0.5410 -0.3101 -3.3029 -0.0694 2.0880 -0.9061 
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between 340 and 680 m above sea level; in this elevation range are located the majority of the urban 
settlements and major infrastructure within the Study Area.  

The fraction of north-facing slopes in a basin ( 10x ) exhibits a direct relationship with the explained 
variable. This link may be explained from a physical point of view as follows. North-facing slopes in 
the North Hemisphere get less radiation per square meter than those south-facing ones. This, in turn, 
implies that in such locations of the basin, less evapotranspiration will be produced, and thus a 
tendency to get higher runoff may be expected. 
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Figure 4.13 PDF showing the likelihood of a given place to endure a land cover change based on its slope and 
elevation. These curves take into account all locations that have undergone a land cover change 
from 1960 to 1993. 

On the contrary, the share of permeable cover ( 19x ) within a given basin has an inverse relationship 
with the specific peak flow. This relationship makes sense from a hydrological point of view because 
the higher the share of such areas within a basin, the higher the infiltration rate to the underground, 
and therefore, the smaller the runoff tends to be in a given basin. Additionally, taking into account that 
locations with permeable surfaces would likely have vegetation cover, their overall roughness will be 
higher, and hence, smaller peaks and longer concentration times can be expected. The vegetal tissue 
likely present in this land cover category would also tend to diminish the runoff because of the 
increment in evapotranspiration.  

The direct relationship of the precipitation index ( 29x ) is evident. The higher the specific precipitation, 
the higher the antecedent precipitation index, and hence, the higher the specific runoff. Mean 
temperature ( 31x ), on the contrary, has an inverse relationship with peak flows. The reason is as 
follows. The higher the mean temperature in a given basin is, the higher the evapotranspiration, and 
thus, the smaller the specific peak runoff expected. 

The relationship between observed and the calculated values for the selected model are shown in 
Figure 4.14. It illustrates that the uncertainty of the model widens at higher levels. This phenomenon 
may have some relationship with the fast and high intensity rainstorms typical in summer whose 
occurrence, magnitude and consequences has proved to be very difficult to predict. 
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Figure 4.14 This scatterplot shows the relationship between calculated and observed specific peak flows using 

the potential model No. 3954. 

4.3 Specific Volume of the Annual Peak Event 
The PDF of the cumulative specific discharge of the annual peak event ( 6Q ) is positively skewed 
(1.14) and has a kurtosis of about 2.28. The sample size used to calculate the histogram shown in 
Figure 4.15 is 1307. Moreover, this variable has a range of about 118.3 mm and a coefficient of 
variation of about 0.53. The right tail of the PDF shows that rare events with a period of return greater 
than 800 years have occurred during the reference period. In this case, having such a big sample has 
given some advantages: 1) it allows determining its empirical distribution more accurately; 2) it 
reduces the uncertainty with regard to the occurrence of some extraordinary events; and, 3) it increases 
the reliability of the model because its parameters would have narrower confidence intervals at the 
same level of significance.  

Determining the period of return of extraordinary events as well as investigating whether land cover 
changes have influenced their frequency of occurrence are crucial tasks in hydrology because they are 
tightly linked with planning and investment of the key infrastructure of a region. In this stage of the 
study, however, only the magnitude of this variable will be considered. The frequency of occurrence 
and its related period of return will be analysed afterwards. 
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Figure 4.15 Histogram depicting the PDF of the cumulative specific discharge of the annual peak event ( 6Q ) 

considering the time series from 1.11.1960 to 31.10.1993 for all spatial units. 

The explained variable 6Q , as can be seen in the time series at the bottom of Figure 4.16, exhibits a 
cyclic behaviour during the period of investigation. In order to visualize possible trends in the data, a 
5-year moving average has been applied to this time series and is depicted in the same graph 
mentioned above. The same procedure has been applied for the explanatory variables 26x  and 27x , 
whose results are shown in the top and middle graphs of Figure 4.16. Based on this presentation of the 
data, the following characteristics can be mentioned. 6Q  has a long-term cycle whose lowest value 
occurs in 1974. From this time until 1993 this variable has had the tendency to increase, albeit 
potential climatic explanatory variables, such as the annual maximum precipitation index ( 27x ) and 
the corresponding precipitation index ( 26x ) at the time of occurrence of the peak event, show a 
slightly negative trend in case of the former and no trend in case of the latter. Nevertheless, the cyclic 
behaviour of all these random variables is analogous. Consequently, based on this empirical evidence 
and the principle of causality that governs natural systems (Casti, 1990), one may conclude that there 
must be reasons that explain such deviations from the mean value. What are they? The next part of this 
section will be devoted to answer this question. 

Based on a similar procedure described before (see Section 4.1.4) and taking into account all potential 
explanatory variables available, the twelve strongest predictors of 6Q  are { 27, 26, 4, 9,10,x jj =  
12,14,15,16,17,18,19} . The sample size obtained in this case is 1307 observations, which contain all 
valid data ranging from 1961 to 1993 at annual basis and for each spatial unit.  

In order to obtain higher Pearson correlation coefficients,  the three variables representing the share of 
land cover within a spatial unit have been evaluated as follows: 17x  and 19x  have been evaluated 
within the domain i i i≡ ⊂ ΩL B , whereas 18x  is within i i≡ ΩL . In other words, the former are 
estimated within the buffer zones of the stream network, while the latter is within the whole basin. 

The functional relationships to be established between the potential predictors and the explained 
variable are similar to those represented by (4.4), (4.5) and (4.6). In this case, however, the subscripts 
take the values 6l =  and ' 27j = . In addition to that it should be said that the model to be found 
should fulfil the constraints stated in (3.2).  
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Figure 4.16 Comparison of time series showing the variability of the explained variable ( 6Q ) and two climatic 
factors ( 26x ) and ( 27x ). Each observation is represented by a point during the period from
1.11.1960 to 31.10.1993. The annual mean is depicted by a continuous line. The trend of these 
series is illustrated by a 5-year moving average represented by a continuous dotted line.  

As a result of applying the method proposed in Section 4.1.3 a set of the best models has been selected 
and illustrated in Table 4.20. This table shows that multi-linear potential models of type MLP1 are 
more suitable and robust than those with functional forms of type MLP2 and POT, because both the 
estimators and the Jackknife statistics are always the smallest among the subset of the most reliable 
models. It is noteworthy to state that among the best models, three variables are always present, 
namely: 4x , 26x  and 27x . This result agrees with the highly correlated relationships among the 
predictors and the explained variable shown in Figure 4.16. According to the results illustrated in 
Table 4.20 the most robust model is No. 3662. 
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Table 4.20 Sample of the best models for cumulative specific discharge of a yearly peak (1 = a variable is
included in the model, otherwise it is omitted). Values of the optimum estimators (minimum) with

2=ϕ  and 1=ϕ  are presented, as well as the results for the cross validation and the Akaike's
information criterion. The most robust models are highlighted with the symbol  . All values are 
dimensionless since the optimisation has been carried out in the interval (0,1] . 

2ϕ =  1ϕ =  
Model 4x  9x  10x  12x  14x  15x  16x  17x 18x 19x 26x 27x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3825 1  1 1 1 1    1 1 1 8.743 10.9 5560.4 8.917 79.48 9.051  

3835 1  1 1 1 1 1 1  1 1 1 8.719 11.6 5561.1 8.934 79.20 9.090  

3807 1  1 1  1 1 1 1 1 1 1 8.728 12.9 5562.4 8.946 79.23 9.084  

Multilinear-potential models: MLP1 

3662 1   1   1 1 1  1 1 8.473 9.5 5530.4 8.6018 77.75 8.765  
3614 1     1 1 1 1  1 1 8.483 10.9 5531.7 8.6205 77.88 8.757  

3661 1   1   1  1 1 1 1 8.473 9.4 5530.3 8.5972 77.79 8.782  

Multilinear-potential models: MLP2 

3733 1  1   1   1 1 1 1 8.873 7.5 5585.2 9.0410 79.58 9.114  

3734 1  1   1  1 1  1 1 8.872 7.5 5585.2 9.0400 79.54 9.130  

3717 1  1      1 1 1 1 8.909 10.4 5588.0 9.0638 79.89 9.137  

The error term of the selected model is not homoscedastic as was initially expected. This means that a 
correction has to be made before the simulation test is applied. The best results have been obtained by 
introducing a weight that is inversely proportional to 27x  (i.e. 1.0wϕ = ). The results of the Monte 
Carlo simulation aimed at determining the level of significance of each variable are shown in Table 
4.21. 

Table 4.21 Results of the permutation test for model No. 3662 using R=500. The tabulated figures are the
Monte Carlo p-values as fractions. Heteroscedasticity has been removed using the estimator
described in (4.20) with 2=ϕ  and 1.0w =ϕ . 

Model Type 4x  12x  
16x  17x  18x  26x  27x  

3662 MLP1  0 0.004  0  0  0  0  0 

The results of the simulation shown in Table 4.21 indicate that all variables constituting model No. 
3662 are certainly not independent from the explained variable 6Q  at a level of significance even less 
than 1%. The quality measures estimated for this model are shown in Table 4.22. 

Table 4.22 Quality measures for the selected robust model with 2ϕ =  and 1.0w =ϕ . 

1E  2E  3E  4E  5E  6E  7E  
Model Type 

mm[ ]  2mm[ ]  mm[ ]  [ ]−  mm[ ]  [ ]−  [ ]−  

3662 MLP1 0.00 223.1 14.9 0.48 11.8 0.38 0.75 

As shown in Table 4.22, the selected model has a bias about zero. The differences between RRMSE 
and RMAE and between RMSE and MAE as well as their magnitude are a good indication of the 
uncertainty present in the data, which cannot be explained by the model. In fact, it is able to explain 
56.1% of the total variance or in other words, it has a coefficient of correlation of about 0.75. Such a 
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result is satisfactory considering that the model is composed of seven predictors and eight parameters. 
The optimized coefficients are shown in Table 4.23.     

These coefficients show that variables representing a trimmed slope ( 4x ), the mean elevation ( 12x ), 
the share of impervious cover ( 18x ), and the specific precipitation index of a catchment ( 27x ) have a 
direct relationship with the explained variable. In other words, the higher they are, the bigger the 
cumulative specific discharge of a yearly peak ( 6Q ). On the contrary, the remaining predictors have an 
inverse relationship. It is interesting to note the opposite relationship of those variables representing 
the share of land cover within a basin. Forest cover will reduce the cumulative volume of a flood event 
whereas impervious cover will do the opposite.  

4.4 Specific Volume and Total Duration of High Flows 
According to the correlation matrix shown in Table 4.24, it has been found that the specific volume of 
high flows ( 7Q ) is highly correlated with the total duration of high flows ( 9Q ) in winter, and so are 
the correspondent variables in summer 8Q  and 10Q . Because of that, it would be sufficient to search 
for explanatory variables for any of them and for both seasons. The variables that will be used in the 
following analysis are 9Q  and 10Q . 

These variables, whose positive skewed distributions (skewness of about to 1.3 and 2.7 respectively) 
are depicted in Figure 4.17, are correlated in various degrees with the following subsets of 
observables, which can be considered as potential explanatory variables. For instance, in winter the 
subset is composed of { 24,30,41,1,4,9,10,12,16,17,18,19}jx j = , whereas in summer it is 
composed of { 25,31,40,1,4,9,10,12,16,17,18,19}jx j = .  

  7Q  9Q  8Q  10Q    

 7Q  1 0.871     

 9Q  0.871 1     

 8Q    1 0.890   

 10Q    0.890 1   

For the evaluation of the land cover variables the following criteria have been used: for winter, 
variables 17x  and 18x  have been evaluated within the buffer zone of the streams ( i i i≡ ⊂ ΩL B ), 
whereas 19x  has been evaluated within the whole catchment ( i i≡ ΩL ). For summer,  17x  and 19x  
are calculated within the buffer zones, whereas 18x  is calculated for the entire spatial unit. By using 
these criteria, the highest correlation coefficients have been obtained. 

Table 4.23 Optimized parameters (with 2ϕ =  and 1.0w =ϕ ) for model No. 3662 after removing 
heteroscedasticity. 

Model 0β  4β  12β  16β  17β  18β  26β  *Jβ  27β  

3662 188.11 3.7250 0.0105 -0.0834 -0.0852 0.4167 -0.7521 0.0085 1.7998 

Table 4.24 Correlation matrix [ ]R  among explained variables 7 8 9 10, , , and Q Q Q Q . The sample size is equal 
to 976. 



 110

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Q9 [day]

0

0.05

0.1

0.15

0.2

0.25

f(
Q

9
) 

[-
]

n=1312

 
0 5 10 15 20 25 30 35 40 45 50 55

Q10 [day]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f(
Q

10
) 

[-
]

n=1318

 
Figure 4.17 Histograms depicting the empiric PDFs for both total duration of high flows in winter (left panel) 

and summer (right panel) considering all spatial units during the period from 1.11.1960 to
31.10.1993. 

Having these subsets of plausible explanatory variables, the proposed method (Section 4.1.3) was 
applied and the results shown in Table 4.25 have been obtained. Results obtained for winter and 
summer indicate that the total duration of high flows have a very strong correlation with the 
macroclimatic situation represented by the variables 30x  and 41x  in winter and 31x  and 40x  in 
summer. By a careful inspection of Table 4.25, it can also be noticed that such predictors mostly 
govern the occurrence of peak flows which equalled or exceeded 5% of the time.  

Independent of the functional form employed, the best models for either winter or summer always 
contain variables 40x and 41x . Furthermore, the inclusion of almost all variables only reduced the total 
explained variance by a modest 1.3% in winter and by 1.6% in summer (e.g. models MLP2 in 
summer). 

However, a multi-linear potential model in summer (MLP2 - 3076) having two climatic variables and 
an additional one representing land cover got the highest ranking because it is the most robust model 
according to the cross validation statistics. A characteristic of the best models in summer is the 
absence of morphological variables, or, if they are included, their contribution is negligible. A similar 
situation occurs with the best model in winter (POT - 3074). 

Tests of significance conducted according to the method proposed do not indicate that the variables 
included in the best models are independent from the explained variable at a 5% level of significance. 
Results of the simulations are shown in Table 4.26. The quality measures and the optimized 
parameters are presented in Tables 4.27 and 4.28. 

Based on these results it can be stated that the variable total duration of high flows in both winter and 
summer is mainly governed by the macroclimatic conditions. Morphological variables play an 
irrelevant role in this case but land cover variables have been found to be statistically dependent and 
significant although their contribution to the total explained variance is quite small. In other words, 
this is a case where very small or even “zero correlation does not imply independence” (Casti, 1990). 
On the contrary, independence always implies zero correlation (Deutsch, 2001). 
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Table 4.25 Sample of the best models for total duration of high flows in winter and summer (1 = a variable is
included in the model, otherwise it is omitted). Values of the optimum estimators (minimum) with

2=ϕ  and 1=ϕ  are presented, as well as the results for the cross validation and the Akaike's
information criterion. The most robust models are highlighted with the symbol  . All values are 
dimensionless since the optimisation has been carried out in the interval (0,1] . 

Winter 

2ϕ =  1ϕ =  
Model 1x  4x  9x  10x  12x  16x  17x  18x 19x 24x 30x 41x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
3074       1    1 1 3.091 10.76 2919.1 3.21 38.46 3.34  

3974 1 1     1  1 1 1 1 3.055 4.53 2912.9 3.24 38.07 3.37  

4055 1 1 1  1  1 1 1 1 1 1 3.051 9.06 2917.4 3.26 38.03 3.39  

Multilinear-potential models: MLP1 

3080      1     1 1 3.131 2.36 2936.8 3.21 38.86 3.35  
3769  1  1 1 1  1  1 1 1 3.115 6.26 2940.7 3.29 38.48 3.37  

3656   1   1    1 1 1 3.126 4.19 2938.6 3.28 38.60 3.38  

Multilinear-potential models: MLP2 

3073        1   1 1 3.160 27.3 2947.9 3.27 38.61 3.38  

3074       1    1 1 3.154 24.8 2945.4 3.26 38.61 3.39  

4055 1 1 1  1  1 1 1 1 1 1 3.081 10.7 2931.3 3.29 38.10 3.44  

Summer 

2ϕ =  1ϕ =  
Model 1x  4x  9x  10x  12x  16x  17x  18x 19x 25x 31x 40x

Φ  *pC  AIC θ  Φ  θ  
Obs. 

Potential models: POT  
2048            1 2.536 24.2 1625.0 2.57 31.64 2.77  

2565        1 1 1  1 2.489 12.7 1613.7 2.57 30.85 2.78  

4031 1 1  1 1 1 1 1 1 1 1 1 2.447 11.0 1611.9 2.62 30.47 2.93  

Multilinear-potential models: MLP1 

2564        1  1  1 2.305 5.14 1543.3 2.36 29.61 2.47  
2565        1 1 1  1 2.295 3.14 1541.3 2.36 29.41 2.48  

2563       1  1 1  1 2.297 3.89 1542.0 2.36 29.46 2.48  

Multilinear-potential models: MLP2 

3076        1   1 1 2.291 14.48 1537.6 2.34 30.02 2.50  

2052        1    1 2.328 27.47 1550.4 2.37 30.07 2.54  

4093 1 1 1 1 1 1  1 1 1 1 1 2.254 15.61 1538.7 2.40 29.19 2.61  

In this respect, the proposed method is much more robust than the standard inference tests of 
independence based on the normal distribution theory, in which zero correlation implies independence. 
Paraphrasing what has been clearly stated by Blyth (1996) and Shaw (1997), among others, the 
standard linear correlation methods cannot capture the non-linear dependencies existing between time 
series of n  given variables. As a corollary, it can be stated that if the normality assumption does not 
hold, as is the case here (e.g. see Figure 4.17), the standard inference theory can lead to deceptive 
conclusions. 
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Furthermore, a consequence of what has been found by these simulations can be also stated in a 
probabilistic context. For instance, the likelihood of their joint occurrence of the total duration of high 
flows in winter, the mean temperature in January, the occurrence of a certain type of circulation 
pattern, and the fraction of the buffer zones of streams covered with forest is not equal to the product 
of the likelihood of each event occurring independently from each other. 

Table 4.26 Quality measures for the selected robust models with 2ϕ = . 

1E  2E  3E  4E  5E  6E  7E  
Model Type Season 

[day]  2[day ]  [day]  [ ]−  [day]  [ ]−  [ ]−  

3074 POT Winter -0.09 11.15 3.34 0.25 2.21 0.17 0.94 

3076 MLP2 Summer 0.00 5.28 2.30 0.34 1.59 0.24 0.94 

 
Table 4.27 Results of the permutation test for models No. 3074 and No. 3076 for winter and summer 

respectively. The tabulated figures are the Monte Carlo p-values as fractions using R=500. 

Model Type Season 17x  18x  30x  31x  40x  41x  

3074 POT Winter  0 -  0 - -  0 

3076 MLP2 Summer -  0 - 0.024  0 - 

 

4.5 Frequency of High Flows 
Based on the previous analyses, it has been shown that land cover variables are related to many runoff 
characteristics at a mesoscale level (e.g. peak flow) during both winter and summer. Besides that, and 
since those relationships have statistically significant variables, it can be expected that a change of one 
of them, for instance the share of impervious areas within a basin, will have an impact sooner or later 
on the maximum peak flow, for example, or on the total annual discharge. In other words, land cover 
variables have been related with the magnitudes of the observables. However, up to here, nothing has 
been said about the factors that govern the probability of occurrence of high flows in a given 
catchment during winter or summer. 

In order to address this issue, it has been investigated by means of the maximum likelihood method 
which theoretical distribution function fits the data best. In this study the available information, i.e. 

11Q  and 12Q  (which stand for the absolute frequency of high flows during winter and summer 
respectively) will be used. After several trials, the best fits obtained for the EDF (empirical 

Table 4.28 Optimized parameters (with 2ϕ = ) for models  No. 3074 and No. 3076 for winter and summer 
respectively. 

Model Type Season 0β  17β  18β  *Jβ  30β  31β  40β  41β  

3074 POT Winter 1.4185 0.0589 - - -0.1155 - - 0.9509 

3076 MLP2 Summer 0.8890 - 0.1048 3.3653 - -0.5023 1.1430 - 
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distribution function) of these variables (see Figure 4.18) are the Poisson and the Weibull distribution 
functions, whose probability and density functions are 

k
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for both winter and summer correspondingly. The MLEs (maximum likelihood estimates) of the 
parameters µ , a , and b  are ˆ 3.952[1/ ]yearµ = , â 0.820= , and b̂ 1.918=  respectively. In 
case of the summer frequencies, a continuity correction has to be made because a continuous 
distribution has been used to estimate discrete data. Comparing the EDFs and the fitted ones shown in 
Figure 4.18, it seems that the theoretical models fit the data reasonably well although some differences 
exist. For instance, the Poisson distribution tends to under-allocate probability for smaller values of 

11Q , whereas the opposite occurs for higher ones. In summer appears the opposite if the Weibull 
distribution is used. In order to assess the goodness of the fits a 2χ  test is indispensable. It shows that 
the null hypothesis (i.e. that the data were drawn from the fitted distribution) for both the Poisson 
(winter) and the Weibull (summer) distributions cannot be rejected because their -valuesp  are 0.206 
and 0.254 respectively.  
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Figure 4.18 Empirical and fitted CDFs for both frequency of high flow events in winter (left panel) and

summer (right panel) considering all spatial units during the period from 1.11.1960 to 31.10.1993.

Having done this, the previously mentioned issue can be re-stated based on the GLM (Generalized 
Linear Models theory) (Gilchrist, 1984; Clark, 1994; Davison and Hinkley, 1997; Lindsey, 1999). It is 
worth mentioning that this method has been used to estimate probabilities or occurrence frequencies of 
a given event; e.g. Stahl and Demuth (1999) have used a logit model to fit binary data, and Davisson 
and Hinkley (1997) have estimated counts of a discrete variable using a log-linear model. The method 
employed here is based on GLM but with some modifications suitable for the present case. It is as 
follows. 

A generalized linear (or non-linear) model can be used to relate the parameters of the PDF of a given 
variable t

ilQ  (the thl  characteristic of the runoff process for the thi spatial unit at time t ) with a 
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number of predictors or observables. In other words, µ  and b  should be related to a number of 
predictors or observables ( )1 2, , ,t t t

i i iJx x x… .  

The structure of a generalized model can be written using three elements: 

1. The deterministic element or the predictor, which is a suitable function of the explanatory 
variables jx ; for instance, a multi-linear (ML), a potential (POT), or a multi-linear-potential 
(MLP) relationships whose explicit equations are  

( )0
jt t

il ij
j

x
β

η β= +∑ , (4.24) 
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il ij
j

x
β
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respectively. 
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 2. The distributional element, which indicates that the variance of the response is an explicit 
function of the mean µ  for each observation, i.e.  var( ) ( )t t

il ilQ V uκ= . 

 Where, ( )V i  is the variance function and κ  is the dispersion parameter. 

For example, for the Poisson distribution 
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and for the Weibull distribution 
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 where ()Γ ⋅  is the gamma function. 

3.  Finally, the last element of the model is the monotone and differentiable link function ()g ⋅ , 
which establishes a “link” between the predictor and the mean so that ( )t t

il ilg µ η= . 

In the present case, three link functions are to be tested:  

Name Link Function 

Identity 
t t
il ilµ η=  

Logit 0
1 exp( )

t
il t

il

K Kµ
η

= >
+

Log exp( )t t
il ilµ η=  

In the logit model, K is a case specific constant denoting an asymptotic behaviour of the data. 

The estimation of the parameters β  is to be carried out by maximizing the log-likelihood function 
( )⋅ , whose general form for a variable t

ilQ  exhibiting a PDF ( a,b, , , )t t
il if Q x… β  given a set of 

explanatory variables ( )1 2, , ,t t t
i i iJx x x… , and provided that all observations are independent is written 

as 

,

( ) log ( a,b, , )t t
il i

i t

f Q= ∏ x…β β . (4.29) 

Once the three elements of a given model have been defined, the maximum likelihood estimators 
(MLEs) of its parameters β  can be found by maximizing 

 
ˆ

max ( )
β

β , (4.30) 

and the goodness of the fit can be assessed either by the deviance 

{ }ˆD 2 ( ) ( )Qκ= − β , (4.31) 

or by the Akaike’s Information Criterion  AIC 
*ˆAIC 2 ( ) 2p= − +β . (4.32) 

In (4.31) κ  can be estimated by   
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and ( )Q is the log-likelihood of the saturated model which is nothing else than a model where  
ˆ , ,t t

il ilQ u i l t= ∀ . The term *p  in (4.32) is the number of parameters used in a given model that 
contains j  input variables. 

For the selection of variables and other relevant quality measures, as well as for the significance tests, 
the employed method is the same as before, with the only difference that the likelihood ˆ2 ( )− β  will 
be used instead of the objective function Φ  (see Section 3.3.2-4, Section 3.3.6-7, and Section 4.1.3).  

Tables 4.29 to 4.31 summarized the results obtained by applying the previous methodology to the 
available data. 

Table 4.29 The best models obtained for the frequency of high flows in winter and summer (1 = a variable is 
included in the model, otherwise it is omitted). The estimated deviance, as well as the results for 
the cross validation statistic and the Akaike's information criterion, is presented. The most robust 
models are highlighted with the symbol  . All values are dimensionless. 

Winter:  11 11Poisson( )t t
i iQ ∼ µ  

Model 
No. 4x  9x  10x  14x 15x  16x  17x  18x  19x 21x 32x 41x Predictor Link κ  AIC  θ  Obs.

2653   1  1 1 1  1 1  1 ML log 0.656 4545.8 3405.8  

2651   1  1 1  1 1 1  1 ML logit 0.601 4458.5 2934.4  

3933 1  1  1 1 1  1 1 1 1 POT identity 0.746 4327.3 2626.4  

Summer: 12 12Weibull(a,b )t t
i iQ ∼  

Model 
No. 7x  8x  12x  14x 15x  16x  17x  18x  19x 25x 31x 40x Predictor Link κ  AIC  θ  Obs.

4015 1 1  1  1 1 1 1 1 1 1 ML log 0.909 1902.0 231813  

2821 1       1 1 1  1 POT  identity 3.299 1367.0 2060.9  

3052 1 1 1 1  1  1  1  1 MLP identity 2.981 1372.2 1378.4  

 

Table 4.30 Parameter estimates and results of the permutation test (the Monte Carlo p-values with R=500) 
obtained for the selected models for winter and summer respectively. 

Winter (POT model No. 3933) 

Parameter 0β  4β  10β  15β  16β  17β  19β  21β  32β  41β  

Estimates 0.0240 -0.6373 0.5561 0.2248 -0.0046 -0.1310 -0.1663 0.7614 0.0583 0.1602 

p-value -  0  0 0.015  0  0  0  0 0.018  0 

Summer (MLP model No. 3052) 

Parameter 0β  18β  *Jβ  7β  8β  12β  14β  16β  25β  40β  

Estimates 0.1003 0.0115 4.9230 -0.8247 -1.1360 -0.2890 0.4863 -0.0063 1.0979 0.4540 

p-value - 0.032 - 0.010 0.004 0.002 0.064 0.024  0  0 
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Table 4.31 Additional quality measures for the selected robust models. 

1E  2E  3E  4E  5E  6E  7E  Model 
No. Type Season 

-1year[ ]  -2year[ ]  -1year[ ]  [ ]−  -1year[ ]  [ ]−  [ ]−  

3933 POT Winter 0.00 2.16 1.47 0.36 1.16 0.29 0.77 

3052 MLP Summer 0.16 1.13 1.06 0.49 0.76 0.35 0.87 

The selected models (see Tables above) have statistically significant variables, in other words, the null 
hypothesis (see Section 3.3.7) of independence can be rejected in favour of the alternative hypothesis 
(i.e. predictors are certainly not independent of the explained variable) at the 5% level of significance, 
with the exception of variable 14x  in model No. 3052 in summer. It is worth noting that the selected 
models have one or more land cover variable(s) as predictor(s).  

Based on the model structure and on the evidence contained in the samples, the following remarks can 
be stated.  

For winter, the frequency of occurrence of high flows is, as expected, largely dependent on the 
meteorological conditions, specially the total precipitation 21x ; the wetter a given year is, the more 
likely a flood event would arise. The same direct relationship applies to the maximum temperature in 
January 32x   and the composed indicator of wet circulation patterns 41x , share of north-facing slopes 

10x , and average field capacity 15x . Inversely related are the trimmed mean slopes 4x  and the shares 
of forest and permeable areas (such as grasslands) in the buffer zones of the stream network 17x  and 

19x  respectively.  

During summer, the model shows that variables with a direct relationship are the meteorological ones, 
i.e. mean precipitation 25x  and the composed index for wet circulation patterns 40x , the share of 
saturated areas 14x  and the share of impervious areas within a catchment 18x . Inversely related appear 
to be the mean slope near the stream network 7x , drainage density 8x   , mean elevation 12x , and the 
share of karstic formation 16x  within a given basin.  

As stated by equations (4.27) and (4.28) the variance of the thi  response at time t  is a function of its 
mean t

iµ , which is, in turn, a function of a set of predictors { }tj ix . Figure 4.19 illustrates this fact for 
the MLP model No. 3052 for summer as an example. Although it is not shown here, the proposed 
model for winter also exhibits similar features. 

The plot in Figure 4.19 also shows the way in which the selected MLP model (No. 3052) for summer 
has been able to cope with the heteroscedasticity present in the sample ( 0=1196n ).  

Concerning the frequency of high flows in summer 12Q  plotted in the ordinates, this Figure depicts 
also that the expectation of the observed values is quite close to the expectation of the calculated ones 
at different levels of the predictor 40x . Hence, considering these facts, it can be said that the proposed 
model (which has a Pearson correlation coefficient between the observed and calculated values of 
about r=0.87 ) is fitting the observed data quite well, even though some mismatches occur at higher 
levels of the predictor. These shortcomings of the model can be attributed to the lack of enough 
observations at those levels. 



 118

0 5 10 15 20 25 30
x40 [day]

0

5

10

15

Q
ob

s 
, 
Q

ca
l [

ye
ar

-1
]

Qobs
Qcal
Line: magnitud of the std. dev.
Circle / square: mean

n=1196

Figure 4.19 Plot showing the variation of the dispersion of the explained variable 12Q (observed and calculated 
by model No. 3052) as a function of the predictor 40x . Both continued and dashed lines represent 
the magnitude of the standard deviation whereas dots and rectangles represent the mean values at 
each level of  predictor. 

 

 

 


