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Chapter 5  

Modelling Characteristics of Low-Flows with Time-
Dependent Data 

5.1 Introduction 
An accurate analysis of low-flow regimes occurring in a given stream or river is of crucial importance 
in watershed management because of the following reasons. Firstly, low-flows will constrain the 
design of key infrastructure facilities such as water supply and irrigation systems, river navigation 
networks, and hydroelectric power plants. Secondly, they will indicate to the water-manager the 
maximum levels of BOD1 and the maximum allowable concentrations of other pollutants (e.g. Hg, Pb, 
Zn, P, N, Rn) that should not be reached in a given stream so that its ecosystem will not be jeopardized 
or damaged during a drought period.  

In general, longer low-flow periods will increase investment costs of a given infrastructure facility in a 
non-linear way. Additionally, an erroneous estimation of such regimes will cause substantial economic 
losses for a region since the water shortage will hamper production processes.   

In order to better understand this phenomenon, it is necessary to determine the most likely period of 
the year when it may occur. In other words, this means that the temporal distribution of discharge and 
precipitation should be determined within a given domain (i.e. a basin) for different time intervals 
during a water year, say months. By knowing these two observables and assuming that the annual 
change of underground storage is insignificant, the basic form of the water budget for a given spatial 
unit iΩ  during a given time interval t  can be determined as 

t t t t
i i i iP Q S− − − ∆V

0
0

≈
= , (5.1) 

where the variables P , Q , V , and S∆ stand for precipitation, discharge, evapotranspiration, and 
change of underground storage. The operator ⋅  represents the integral of a given variable over the 
spatial domain iΩ  and/or during the time interval t  (e.g. one month). This equation must hold 
everywhere because it represents the principle of conservation of mass within the system. The results 
of (5.1) can then be averaged in order to have an unbiased estimator for each variable at a given time 

                                                      
1  Biochemical Oxygen Demand (BOD) refers to the amount of oxygen that would be consumed if all the 

organics in one litre of water were oxidized by bacteria and protozoa (ReVelle and ReVelle, 1988). 
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interval (e.g. for January). The result of such a procedure for the Study Area is depicted in Figure 5.1. 
This graphical presentation shows that the most probable low-flow spells would take place during 
summer (M, J, J, A, S, O), in which the evapotranspiration will increase because of higher air 
temperature; which in turn will reduce the river discharge although the precipitation has increased 
within its basin.  
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Qm = Monthly mean specific discharge
Pm = Monthly mean precipitation

 

Figure 5.1 Annual water balance of the Study Area. Each value is computed over the period 1961 to 1993. 

Because of this fact, the present study will only consider low-flow spells that happen during summer. 
Having defined the time span for the study of low-flows, the following question can be formulated in 
connection with the general aim of the present research: are the land cover changes that have taken 
place within the study area influencing in some way the probabilities of occurrence and/or the total 
duration of low-flow events? 

In order to answer this question, the available information will be first described. 

Table 5.1 Correlation matrix [ ]R  among explained variables  13 14 15 16, , , and Q Q Q Q and some climatic 
explanatory variables in summer. The sample size is equal to 860. 

  13Q  14Q  15Q  16Q  25x  31x  37x  38x   

 13Q  1         

 14Q  0.771 1    Symmetric  

 15Q  0.291 0.345 1       

 16Q  0.633 0.711 0.633 1      

 25x  -0.335 -0.587 -0.113 -0.251 1     
 31x  0.103 0.246 0.036 0.130 -0.312 1    
 37x  0.143 0.252 0.060 0.142 -0.297 0.846 1.   
 38x  0.664 0.849 0.297 0.587 -0.569 0.228 0.241 1.  

5.2 Description of Time-Dependent Variables 
The time series depicted in Figure 5.2 for catchments No. 11 and No. 13 as well as the correlation 
matrix shown in Table 5.1 point out the same fact: the explained variables { 13, ,16}lQ l∀ = …  are 
mutually correlated. 
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Figure 5.2 Time series showing the trends (by means of a 5-year running average) and the actual values for 
variables 13Q , 14Q , and 15Q  as well as for some explanatory variables including land cover for 
two catchments of approximately the same size ( 2km125[ ]A ≅ ). On the left panel is catchment
No. 11 with growing shares of forest and impervious cover; whereas on the right panel is 
catchment No. 13 which has endured a steady land use transition from grassland (permeable land 
cover) to settlement (impervious land cover) and a steady decline of forest since the mid 70s. The 
data shown here correspond to the period from 1961 to 1993. 

Hence, it would be sufficient to model one of them in order to give an answer to the previous question. 
An evident selection will be the total drought duration 14Q  since it exhibits the higher correlations not 
only with all potential predictors but also with the rest of the explanatory variables. 

The following remarks can be stated based on the time series shown in Figure 5.2. 

• Firstly, that both the daily mean precipitation (for summer) 25x  and the daily mean air 
temperatures in July 31x  do not reveal any significant trend; 

• Secondly, that the composed variable 38x , which accounts for days with dry circulation patterns 
and a decreasing antecedent precipitation index exhibits a completely different behaviour 
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depending on the shares of land cover while almost constant seasonal-mean precipitation and 
temperature have been observed; 

• Thirdly, that the variable 38x  is highly correlated with total drought durations ( 14Q ), and; 
• Finally, that the land cover variables seem to have played a significant role in the duration of 

low-flows at mesoscale level, especially the shares of forest and/or impervious areas. As is 
shown in Figure 5.2, a combination of a rapid growth of impervious cover accompanied by a 
decline of forest may have led to a rapid shrink of the total drought durations; conversely, 
slightly growing shares of forest and impervious areas may have led to an increase of total 
drought durations. In other words, the explained variable 14Q  has been attenuated by land cover 
variables. The rectangles with dashed line shown in Figure 5.2 illustrate this fact, i.e. the same 
climatic phenomenon (a dry year) may produce different outcomes depending on the land cover 
situation within the catchment, as well as on its morphology. 

The distribution of the explained variable 14Q  is positively skewed (skewness = 1.45) with its mode 
and median occurring at 0 and 6 [day] respectively. Hence, three positively skewed theoretical 
distributions from the exponential family, specifically the exponential, the gamma, and the Weibull 
distributions, were fitted to the observations using the maximum likelihood method. The 2χ  test 
statistic obtained for each fit was 1.2, 2.5, and 1.05 respectively. Based on this statistical test, whose 

-value = 0.31p , it is possible to assume that the data can be modelled using a Weibull distribution 
with a shape factor 1.035a =  and a scale factor 29.708b = . The sample also indicates that the 
explained variable is heteroscedastic with regard to one of its predictors, namely 38x . Additional 
statistics of the explained variable can be found in the Appendix 4.  

5.3 Total Drought Duration 
Using the procedures described in Chapter 4 it was found that the most significant variables to explain 

14Q  are { 1,7, 8,9,10,13,16,17,18,19,31,38}jx j = . In this case, forest and permeable cover have 
been evaluated at basin level whereas impervious cover has been evaluated within the floodplains and 
buffer zones of the stream network, i.e. { 17,19 1, , 46}j i ix j i≡∀ = ∧ Ω ∀ = …L  and 
{ 18 1, , 46}j i i ix j i≡∀ = ∧ ⊂ Ω ∀ = …L B . 

Using these twelve variables and a sample with 752 observations, all possible combinations of 
predictors have been calculated using the following model with three variants (predictors). Explicitly it 
can be written as 
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where 
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Three predictors that are functions of the explanatory variables will be used. They will be called 
(POT), and multi-linear potential 1 and 2 (MLP1, MLP2) respectively. They can be written as follows 

( )0
jt t

i ij
j

x
β

η β= ∏ , (5.4) 

( )0 *
jt t t

i j ij J j ij
jj

x x
β

η β β β β
∈∈ ∪
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, (5.5) 
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 (5.6) 

respectively. In all cases the link function will be the identity one, so that 

,t t
i i i tη µ= ∀ . (5.7) 
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Table 5.2 shows the summarised results of applying the proposed method (see Chapters 3 and 4) to the 
present dataset. 

Table 5.2 Robust models for total drought duration in summer (1 = a variable is included in the model, 
otherwise it is omitted). The estimated deviance as well as results for the cross validation statistic
and the Akaike’s information criterion is presented. The most robust models are highlighted with 
the symbol  . All values are dimensionless. 

Summer: 14 Weibull(a,b )t t
i iQ ∼  

Model 
No. 1x  7x  8x  9x  10x  13x  16x  17x  18x 19x 31x 38x Predictor Link κ  AIC  θ  Obs.

3502  1 1  1  1 1  1 1 1 POT identity 0.611 6293.9 20.42  

3149    1   1 1 1  1 1 MLP1 identity 0.811 6217.8 24.16  

2964 1 1 1   1  1    1 MLP2 identity 0.794 5958.8 7.18  
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Table 5.4 Additional quality measures for the selected robust model. 

1E  2E  3E  4E  5E  6E  7E  Model 
No. Type Season 

day[ ]  2day[ ]  day[ ]  [ ]−  day[ ]  [ ]−  [ ]−  

2964 MLP2 Summer 0.00 175.83 13.26 0.45 9.26 0.31 0.86 

During the process of selection of predictors and for a given model type, it has been observed that 
some variables appear always or very often as elements of the subset of the best models.  This fact is 
illustrated in Table 5.2 where variables 17x  and 38x  have been always present. The selected model 
whose variables are all significant at 5% not only indicates that the total drought duration within a 
catchment primarily depends on the macroclimatic conditions represented by the variable 38x , but also 
that the morphology of the catchment and the land cover will play an important role. This evidence 
also provides valuable support to the remarks presented above in Section 5.2. Hence, variables such as 
mean terrain slope in the buffer zones of streams 7x , drainage density 8x , and share of forest cover 

17x  should be taken into account when watershed management plans are carried out.  

The behaviour of the water system concerning the total drought duration appears to have complex and 
non-linear relationships with the observables or predictors. The following reasons help to corroborate 
this statement. On the one hand, the variable 38x  has a nonlinear relationship with the explained 
variable (see Table 5.2), which not only depends on the macrocirculation patterns but also on the 
antecedent precipitation index. The latter, which is an indicator of the soil moisture, is, in turn, directly 
related to the share of forest within a catchment and inversely related to the share of impervious areas. 
On the other hand, the share of forest appears as a linear predictor of the explained variable, too (see 
Table 5.2). Such a complex relationship makes the analysis of low flows more complicated to model.  

Fortunately, using the proposed method, a model composed of six predictors out of twelve potential 
ones has been found, i.e. model MLP2 No. 2964. It has not only a correlation coefficient of 0.86 
between the observed and calculated total drought duration, but it also exhibits the smallest Jackknife 
statistic (7.18) compared with other potential robust models (see Table 5.2). In addition to that, the 
model’s output largely supports the presumption that the explained variable has been drawn from a 
Weibull distribution, as can be seen in the Q-Q plot of Figure 5.3, although deviations are accounted at 
the right tail of the distribution.  

A Q-Q plot is a scatterplot, in which ‘each coordinate pair consists of a data value and a 
corresponding theoretical estimate for that data value derived from the empirical cumulative 
probability estimate’ (Wilks, 1995). The empirical cumulative probability estimate for the thi  smallest 
data value will be assumed to be equal to ( ) 0 ( )( ) ( 1) Pr{ }i ip x i n X x= + ≈ ≤ , where 0n  is the sample 

Table 5.3 Parameter estimates and results of the permutation test (the Monte Carlo p-values with R=500) 
obtained for the selected model MLP2 No. 2964. 

Parameter 0β  17β  *Jβ  1β  7β  8β  13β  38β  

Estimates -0.269  0.071 14.658 -0.075 -0.711 -2.126 0.236 0.869 

p-value - 0.045 -  0  0  0 0.016  0 
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size. Hence, the thi coordinate pair of the Q-Q plot in the present case is given by 1
( ) ( )[ , ( ( ))]i ix F p x− , 

where 1()F−  represents the fitted inverse Weibull CDF with parameters a  and b  given above. 
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Figure 5.3 Q-Q plot showing the fit of a Weibull(a,b)distribution to both the observed and the calculated 

total drought duration that have occurred in the case Study Area during the period of 1961 to 1993.
The calculated values are the output of model type MLP2 No. 2964. A perfect fit would have all 
points falling on the 1:1 line. 

The Q-Q plot depicted in Figure 5.3 shows two facts. Firstly, it illustrates how the fitted Weibull 
distribution has been able to reproduce the empirical distribution of the data up to values of a total 
drought duration of about 88 [day], which corresponds to the 97th percentile. In other words, the fit 
works satisfactorily with the exception of the right tail, which exhibits larger differences because the 
Weibull distribution allocates too much probability to the few observations with values greater than 88 
[day], which are too few in the given sample. This is why the Weibull quintiles are above the 1:1 line. 
Secondly, this plot depicts clearly how closely the selected model has been able to reproduce the 
empirical distribution function of the data up to about 75 [day]. 

 

 

 


