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Chapter 7  

Sensitivity Analysis 

7.1 Introduction 
Once a model has been selected, calibrated and validated, it is of crucial importance to study how 
changes in variables, parameters, and model structure would affect the behaviour of the model output. 
Such a study is generally known as sensitivity analysis (Gilchrist, 1984). As to the model user, the 
sensitivity analysis will provide him/her all required information and insight about the model 
performance and its limitations, which, in turn, will contribute to reduce the risk of an inappropriate 
application of the model. 

It should be noted that the sensitivity with regard to model structure was already considered during the 
model selection (see Chapter 4 and Chapter 5). Therefore, the present chapter will go through the 
remaining issues, namely: 1) sensitivity of model parameters to a given variable, 2) model sensitivity 
to a given parameter, and, 3) sensitivity of the significance probability ( valuesp− ) as to the number 
of replicate simulations R .  

7.2 Sensitivity of Parameters to Catchment Size 
One of the major concerns in the present study is to investigate the effects of the spatial scale at which 
the model is optimised with regard to the model parameters and its overall performance. In other 
words, it would be necessary to answer the question: are the model- parameters invariant with regard 
to the spatial scale?  In this case, the spatial scale is represented by the catchment size 1x , which 
ranges from 4.5 to 4002.0 km2. 

In order to illustrate the procedure presented below, the model No. 3733 fitted for the annual specific 
discharge in winter (see Section 4.1.4) will be used as an example. In this case, the model estimates 
can be written as 

( )2 7 8 11 15 17 19 21
ˆ ˆ, , , , , , , 1, , 46 1961, ,1993t t t t t t t t
i i i i i i i iQ f x x x x x x x i t= = =… …β , (7.1) 

using the vector β̂  as in Section  4.1.4, Table 4.5. 
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Algorithm 7 

1. For all 10,25,50,100,200,250,500,1000,2000,3500,4500a = , where a  is a threshold for the 
variable 1x  given in [km²]. 

a. Build a sample aD  of size 0an  so that 1 1, , 46ix a i< ∀ = … .  

b. Use aD  to estimate ˆaβ  for the model ( )2 7 8 11 15 17 19 21
ˆ, , , , , , ,t t t t t t t t t

i i i i i i i i a iQ f x x x x x x x ε= +β  so that 
min!aΦ →  

c. Estimate the Akaike’s Information Criterion aAIC  for the previous model.  

2. Repeat step 1. if needed. 

3. Plot 0an , aAIC , and ˆaβ  versus a . 
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Figure 7.1 Parameter sensitivity to catchment size for the multi-linear potential model (No. 3733) selected

for the annual specific discharge in winter 2Q . Samples are from the period from 1961 to 1993. 

Based on the results of the previous Algorithm, which are depicted in Figure 7.1, the following 
remarks can be formulated. 

1. Since AIC is proportional to the sample size, the ratio 0AIC /a an can be used to compare the 
results obtained by the previous Algorithm with regard to the quality of the model with respect to 
the amount of information provided. As can be seen in the Figure above, this indicator reaches a 
peak at around 100 km² and then decreases slowly. Based on this finding, it can be inferred that the 
amount of information for those samples with spatial units whose area is less than 2100 km )(a ∼ is 
not as complete as for those derived with thresholds greater than or equal to 2100 km )(a ∼ . 
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2. Parameters for the morphological variables (i.e. 7 8 11, ,x x x , and 15x ) exhibit an irregular behaviour 
(as to their sign and magnitude) when the samples used for the model-calibration have spatial units 
with an area less than 2100 km )(a ∼ . This can be regarded as a direct consequence of what has 
been mentioned above since the data here perhaps reflects a case specific situation unwanted for a 
model supposed to describe the phenomenon at a much broader scale. However, values for the 
analyzed parameters tend to stabilize for threshold values a  greater than 100 km² (see right panel 
of Figure 7.1). As this example has shown, parameters of morphological variables in a model 
conceived to explain the specific discharge for a given catchment can be considered as scale 
invariant if 2100 kma > .  

3. The parameter 21β , which is linked with the climatological variable total precipitation, has a 
downward trend within the interval 2[10, 50] [km ]a ∈ and becomes asymptotic when it reaches a 
magnitude of about 1.2 (see left panel of Figure 7.1). Thus, it can be stated that this parameter is 
scale invariant for values of 250 kma > . Additionally, it should be noticed that its order of 
magnitude is several times greater than that of the morphological variables. Such a fact just points 
out how important this variable is with regard to discharge predictions at a mesoscale level. 

4. Finally, those parameters associated with land cover variables such as forest and permeable cover 
( 17β  and 19β ) exhibit in general a downward tendency, keeping an almost constant relationship 
between them. Because of this fact, it can be inferred that these variables have a complex 
relationship to the water system, which depends greatly on the scale at which the analysis is carried 
out. Consequently, their corresponding parameters appear to be scale dependent as shown in the 
Figure 7.1. 

7.3 Model Sensitivity to a Given Parameter 
In many cases, it would be desirable to know how changes of a parameter (e.g. due to errors of 
estimation caused by data quality) would influence the behaviour of the model output. In other words, 
to assess how the uncertainty of one parameter can influence the model results (Mein and Brown, 
1978). 

A simple procedure to assess the percentage rate of change in the expected output ˆtilQ  per unit of 
percentage change in the parameter jβ , frequently referred as relative sensitivity, is presented below. 

Let  

( )1
ˆ ˆ, , , 1, , 46 1, , 1961, ,1993t t t
il i iJQ f x x i j J t= = = =… … … …β , (7.2) 

be a general model for a given runoff characteristic l , which depends on J  predictors jx , and where 
( )f i  and β̂  are a known functional form and a vector of estimated parameters respectively. Based on 

these definitions, the rate of change of ˆtilQ  with jβ  or simply the absolute sensitivity coefficient t
ijc , 

can be computed as (McCuen, 1973, Leavesley et al. 1983, Gilchrist, 1984) 

ˆ

ˆt
t il
ij

j

Qc
β

∂=
∂ β , (7.3) 
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where the partial derivative is evaluated at β̂ . Absolute sensitivities, however, have the serious 
disadvantage that the values estimated for two different parameters cannot be directly compared 
because their values largely depend on the magnitudes of each parameter respectively. Therefore, 
dimensionless-relative sensitivities are preferred in practice. The relative sensitivity of the model 
output, tije , with respect to the parameter ĵβ  can be written as 

1ˆ ˆ
ˆˆ ˆ

t
j jt t il

ij ij t t
jil il

Qe c
E Q E Q

β β
β

−   ∂ ∂  = =                 
, (7.4) 

where ˆt
ilE Q     is the expectation of the output given by ( )1

ˆ ˆ, , ,t t t
il i iJE Q f x x  =   … β .  

Figure 7.2 illustrates for a specific case how the two factors shown in parenthesis in (7.4) are related to 
each other, considering three different parameters. Based on this Figure, it can be concluded that the 
most sensitive parameter in this case is 22β , which is associated with the variable cumulative 
precipitation in summer, and the least 17β , which is associated with the share of forest of a given 
basin. These results show that the system is highly sensitive to precipitation and much less sensitive to 
land cover or slopes. These results are not surprising because the system is mainly governed by 
climatic variables, and only modulated by the morphology and the land cover of a given basin. 
However, it should be noted that the magnitude of the relative sensitivity of the parameter 7β  

associated with the mean slope in the buffer zones of the stream network is quite similar to that of 17β . 
This result suggests that the sensitivity of the model to a change of the parameter value for land cover 
is as important as that corresponding to mean slopes. Nevertheless, the sign of the changes of the 
output will be the opposite because these variables ( 17x  and 7x ) associated with these parameters 
have an inverse and a direct relationship with the model output respectively as can be seen in the 
Figure below. 
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Figure 7.2 Relationship between andˆ ˆ ˆt t
il il j jQ E Q β β ∂ ∂    for model No. 3965 obtained for the specific 

discharge in summer ( 3Q ). The relative sensitivities for each parameter at a given level can be 
obtained as the quotient between an ordinate and its corresponding abscise. The dots represent the 
geometric mean of the relative changes taking into account all observations is the sample. 
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7.4 Convergence of the Monte Carlo Simulations 
A randomization test is to be performed in order to assess whether an explained variable Q  is either 
statistically independent (H0) or dependent on a given variable jx  under a joint distribution of 
J predictors. As mentioned in Section 3.3.7, the estimator Φ  measures the level of interdependence 
between Q  and jx  (ceteris paribus), and the valuep −  indicates whether to accept or reject the null 
hypothesis in favour of the alternative one at a given label of significance α , say 5%. However, this 
procedure can be executed only if one knows in advance how many replicates of the statistical test 
have to be carried out in order to have a conclusive result, which, in turn, leads to take the right 
decision. 

Of course, the more replicates the better, but a large value (say 10 000R > ) still constitutes a great 
hindrance at the actual state of development of desktop computers, namely a dramatic increase of 
computing time. This side effect would then make this procedure too time consuming to be applied for 
practical purposes. Therefore, it would be advantageous to establish a certain minimum number of 
simulations required to guarantee a stable result. 
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Figure 7.3 Sensitivity of the valuep− with respect to the number of replicate simulations. Panel on top 
shows the results for variable 19x ; and panel down depicts the results for variable 8x . The 
simulations are carried out for model No. 3733 fitted for the annual specific discharge in winter. 

As shown in Figure 7.3, the valuep −  obtained for two variables 19x and 8x  that are part of the 
model No. 3733 calibrated for the annual specific discharge in winter [see (7.1)] tend to converge to a 
certain limit, which is the value that would be obtained if R  would tend to infinite.  As a rule of 
thumb, it is suggested that reasonable estimates can be obtained when R  varies between 100 and 1000 
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(Davison and Hinkley 1997). The convergence of the valuep −  is commonly achieved when 
500R  as actually it happened with the variable 8x  shown in the Figure below. However, there are 

cases in which convergence only occurs for values of 1000R >  as it is the case of the variable 19x . 
Since this is not known in advance, a good recommendation would be to continue with the simulations 
if the obtained valuep −  is too close (about 10%) to the level of significance decided in advance for 
the test of independence.  

In the present case, since the valuep −  obtained for the variable 19x  is much less than 5%, the 
simulation could have been stopped at 500R = . 

A great advantage of this test with relation to the parametric tests is that in this case the PDF of the test 
statistic (e.g. the estimator) is not assumed but rather built up from the simulation results as shown in 
Figure 7.4. The valuep −  estimated by the Algorithm 4 (see Section 3.3.7) is the area on the left tail 
of the empirical distribution function of  Φ  that is less than or equal to the value of the estimator 
given the original sample, for the model 3733, this value is 0.9342Φ = . As seen in the Figure below, 
the EDF is not symmetrical and skewed to the left.  
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Figure 7.4 Histogram of 5000R =  Monte Carlo replicates of the estimator Φ  for the model No. 3733 when 
the variable 8x  has been tested for independence. The unshaded area in the left tail correspond to 
the valuep− . 

 


