
Adaptive Parallel Communications for Large-Scale Computational
Fluid Dynamics

A thesis accepted by the Faculty of Energy Technology, Process
Engineering and Biological Engineering of the Universität Stuttgart

in partial fulfilment of the requirements for the degree of
Doctor of Engineering Sciences (Dr. Ing.)

by

Katharina Benkert

from Augsburg

Main-referee: Prof. Dr. M. Resch
1. Co-referee: Assoc. Prof. Dr. E. Gabriel
2. Co-referee: Prof. Dr. S. Roller
Date of defence: 23.9.2011

Institut für Höchstleistungsrechnen der Universität Stuttgart

2011



Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; 
detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

ISBN 978-3-8439-0231-1

© Verlag Dr. Hut, München 2011
Sternstr. 18, 80538 München
Tel.: 089/66060798
www.dr.hut-verlag.de

Die Informationen in diesem Buch wurden mit großer Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen 
werden. Verlag, Autoren und ggf. Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell 
verbliebene fehlerhafte Angaben und deren Folgen.

Alle Rechte, auch die des auszugsweisen Nachdrucks, der Vervielfältigung und Verbreitung in besonderen Verfahren wie 
fotomechanischer Nachdruck, Fotokopie, Mikrokopie, elektronische Datenaufzeichnung einschließlich Speicherung und 
Übertragung auf weitere Datenträger sowie Übersetzung in andere Sprachen, behält sich der Autor vor.

1. Auflage 2011



In memory of my mother
Ursula "Wu" Benkert

iii



iv



Contents

1 Introduction 1
1.1 High-Performance Computing for Simulations . . . . . . . . . . . 1
1.2 Requirements for HPC . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Difficulties and Drawbacks of Code Tuning . . . . . . . . . . 3
1.4 The Impact on Scientific Simulations . . . . . . . . . . . . . . . . . 4
1.5 Automatic performance tuning . . . . . . . . . . . . . . . . . . . . 5
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals 7
2.1 The governing equations . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Finite Volume Methods . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Discretization in space . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Discretization in time . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Higher-order schemes . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Algorithm and Parallelization . . . . . . . . . . . . . . . . . . . . . 15
2.3 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Derivation of the spectral equations . . . . . . . . . . . . . . . . . 17
2.3.2 Algorithm and Parallelization . . . . . . . . . . . . . . . . . . . . . 18
2.4 Application Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Euler3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 The NAS FT Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 HPC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Automatic Performance Tuning 25
3.1 Historic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 The Beginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Formalization efforts . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Automatic performance tuning for MPI communications . . . . . 29
3.2 Characteristics of automatic tuning systems . . . . . . . . . . . . 30
3.2.1 When to Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 How to Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



Contents

3.2.2.1 Heuristic modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2.2 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2.3 Advantages and Disadvantages of Heuristic Modelling and Em-

pirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The Abstract Data and Communication Library (ADCL) . . . . . 33
3.3.1 Using ADCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Overheads and Countermeasures: A Sophisticated Selection Logic

and Historic Learning . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Previously Missing Features and Contributions of This Work . . 42
3.4.1 Area of Application . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Outlier Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Reliable Performance Measurements . . . . . . . . . . . . . . . . . 44
3.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Extending the Area of Application of ADCL 47
4.1 Semantics of new ADCL interfaces . . . . . . . . . . . . . . . . . . 47
4.1.1 The ADCL vector-map object . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Extension of the ADCL Interfaces . . . . . . . . . . . . . . . . . . 49
4.1.3 The new function sets . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Integration of ADCL . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Outlier Analysis and Evaluation of Different Decision Algorithms 59
5.1 Outliers in Performance Data . . . . . . . . . . . . . . . . . . . . . 59
5.2 Techniques for Performance Data Evaluation . . . . . . . . . . . . 61
5.2.1 Heuristic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Standard Interquartile Range Method . . . . . . . . . . . . . . . . 63
5.2.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.4 Robust statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.5 Complexity estimates . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Integration of the ADCL . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.3.1 Characterizing the performance of codelets . . . . . . . . . . . . . 71
5.3.3.2 Potential Performance Benefits of ADCL . . . . . . . . . . . . . . 73
5.3.3.3 Statistical Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.3.4 Performance of ADCL . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



Contents

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Timing Techniques for Collective Communications 89
6.1 Timing Techniques to Generate Performance Data . . . . . . . . . 89
6.2 Technical Concept of the ADCL Timer Object . . . . . . . . . . . . 92
6.2.1 Case 1: Optimizing One Request . . . . . . . . . . . . . . . . . . . 92
6.2.2 Case 2: Optimizing Multiple Requests . . . . . . . . . . . . . . . . 94
6.2.3 Integration of the Timer Object . . . . . . . . . . . . . . . . . . . . 95
6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Ranking the codelets from best to worst . . . . . . . . . . . . . . . 98
6.3.2 Assessment of the timing techniques . . . . . . . . . . . . . . . . . 101
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusions and Outlook 107

Bibliography 111

Glossary 121

vii



Contents

viii



Nomenclature

b Bound for heuristic outlier filtering approach

c Codelet

cmeta Meta codelet

C Condition for empirical data point to fulfill to be not an outlier

e Internal energy

emin(c, d) Minimum error concerning the ranking of two codelets c and d
according to their performance

eavg(c, d) Average error concerning the ranking of two codelets c and d ac-
cording to their performance

emax(c, d) Maximum error concerning the ranking of two codelets c and d
according to their performance

η Dynamic viscosity

E Total energy

gavg(k) percentage gain/loss when comparing the averaged verification
runtimes of the code version with an ADCL codelet k to those of the
original code without ADCL

I(c) Instability of a codelet c

K Problem class for NAS Parallel Benchmark

L Characteristic linear dimension

m Measurement

µ Mean

µ̂ Estimated mean

ix



µ̂ f Estimated mean based on the set of filtered empirical data S f

µ̂i
M(c) Estimated mean for codelet c of the i-th verification run using timing

method M

M Timing method

nD n dimensional

nc Number of codelets for a communication pattern

n f Cardinality of S f

nm Number of measurements executed for one codelet during the opti-
mization process

no Number of outliers

nmax
o Maximum number of outliers for heuristic outlier filtering approach

np Number of processes

nr Number of verification runs

ns Synchronization interval for timer_multistep

N (µ, σ2) Normal distribution with mean µ and variance σ2

o(c, d) Overlap of a codelet c with a codelet d

O Landau symbol

p Parallel process

P Pressure

Pmin
v (c) Minimum percentage overhead of a codelet c compared to the best

codelet based on the verification runs

Pavg
v (c) Average percentage overhead of a codelet c compared to the best

codelet based on the verification runs

Pmax
v (c) Maximum percentage overhead of a codelet c compared to the best

codelet based on the verification runs

Pc
M(i) Percentage overhead of a codelet c compared to the best codelet in

the i-th verification run using timing method M

x



Q Quartile

ρ Fluid mass density

Re Reynolds number

s Sample standard deviation

σ2 Variance

Sc Set of ADCL codelets for one communication pattern

Smeta
c Set of meta codelets

S f Set of filtered empirical data

sgn Signum function

t Execution time

t {µ, ψ, ν} t-distribution with location parameter µ, scale parameter ψ and ν
degrees of freedom.

t̂h Estimated average execution time of a codelet for the heuristic
approach

tk
i Execution time of a code version k in the i-th verification run

tmin
k Minimum execution time of a code version k over all verification

run

tavg
k Average execution time of a code version k over all verification run

tmax
k Maximum execution time of a code version k over all verification

run

ti
v(c) Execution time of a codelet c in the i-th verification run

tmin
v (c) Minimum execution time of a codelet c over all verification runs

tavg
v (c) Average execution time of a codelet c over all verification runs

tmax
v (c) Maximum execution time of a codelet c over all verification runs

u Fluid velocity

v Mean fluid velocity

xi



wmin(c, d) Minimum percentage overhead / gain between two codelets c and
d based on the verification runs taking into account the overlap
o(c, d)

wavg(c, d) Average percentage overhead / gain between two codelets c and d
based on the verification runs taking into account the overlap o(c, d)

wmax(c, d) Maximum percentage overhead / gain between two codelets c and
d based on the verification runs taking into account the overlap
o(c, d)

AEOS Automated Empirical Optimization of Software

API Application Programming Interface

B Simple timing method using synchronization (barrier)

CFD Computational Fluid Dynamics

DFT Discrete Fourier Transform

DNS Direct Numerical Simulation

FD Finite Differences

FFT Fast Fourier Transform

Flop Floating Point Operation per Second

GB Gigabyte

HLRS High Performance Computing Center Stuttgart

HPC High Performance Computing

impi Intel MPI

IQR Interquartile range

LFC LAPACK For Clusters

MAD Median of Absolute Deviations

MB Megabyte

ML Maximum Likelihood

MLE Maximum Likelihood Estimation

xii



MPI Message Passing Interface

NB Simple timing method without synchronization (nobarrier)

NSE Navier-Stokes Equations

ODE Ordinary Differential Equation

ompi OpenMPI

PDE Partial Differential Equation

SANS Self-Adapting Numerical Software

SMP Symmetric Multi-Processing

T Timing method timer based on the timer object

TFQMR Transpose Free Quasi-Minimal-Residual

TM Timing method timer_multistep based on the timer object with infre-
quent synchronizations

xiii



Civilization advances by extending the number of important operations
which we can perform without thinking about them.

Alfred North Whitehead

xiv



Abstract

Nowadays, simulation methods in engineering are recognized as equally impor-
tant as the traditional fields of theory and experiment. They reduce or replace
expensive experiments and allow simulations of physical processes which are
impossible to investigate otherwise. Because of their complexity, parallel com-
putations are necessary, commonly using the Message Passing Interface (MPI)
in distributed memory environments.

One of the main obstacles end-users are facing when performing large-scale
computations is the choice between performance and portability. The perfor-
mance of MPI communications depends on various factors such as network
interconnect, MPI implementation, process placement and message sizes. The
complexity of the MPI standard exceeds the average end-user’s knowledge. A
possible solution are empirical optimization libraries which offer a rich set of
codelets, i.e. implementations, for a particular problem as well as methods to
detect the best-performing one. This allows for tuning applications at install- or
runtime without special knowledge or intervention of the end-user.

In this work, two large-scale Computational Fluid Dynamics (CFD) applications
are optimized using the empirical auto-tuning library ADCL, the finite-volume
code Euler3D and a Fast Fourier Transforms benchmark as kernel of spectral
CFD methods. For this, ADCL is extended beyond neighborhood communi-
cation patterns to allow tuning of collective communications. It is shown that
ADCL can shorten runtimes more than 30% for the chosen test cases.

As empirical optimization libraries base their choice of the best-performing
codelet on empirical data, this work also investigates two fundamental problems
that are associated with collecting this data and its evaluation. Firstly, the
empirical data is obtained by measuring the execution times of various codelets
where the measurement method greatly influences its informational value.
Secondly, the evaluation of the data is encumbered by unpredictable variations
in execution time which frequently occur in a parallel setting resulting in data
points which differ greatly from the observed average, so-called outliers. In
this thesis, recommendations are given on how runtime tuning in a parallel
environment needs to be carried out to get optimal results.

Based on the results presented in this work, the library ADCL now possesses
the means to tune MPI communications in most application scenarios and uses
a sound empirical framework to choose the best-performing codelet in MPI



parallel simulations. Optimization of collectives as well as code which overlaps
communication and computation is now possible. This makes the performance
of MPI communications portable, i.e. the communications perform well on
different machines without spending anew time on optimizations, and together
with the easy use of the library, reduces the complexity for the user.
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Zusammenfassung

In den Ingenieurwissenschaften wird heutzutage Simulationsmethoden die
gleiche Bedeutung zugemessen wie den herkömmlichen Bereichen Theorie und
Experiment. Sie reduzieren oder ersetzen teuere Experimente und erlauben
Computersimulationen physikalischer Prozesse, die sonst nicht untersuchbar
wären. Wegen ihrer Komplexität sind parallele Berechnungen notwendig, die
normalerweise auf Systemen mit verteiltem Speicher unter Verwendung von
Message Passing Interface (MPI) ausgeführt werden.

Eines der Hauptprobleme, dem die Benutzer begegnen, wenn sie großskalige
Berechnungen durchführen, ist die Wahl zwischen schneller Ausführung und
Portabilität. Die Eigenschaften der MPI Kommunikationen hängen von ver-
schiedenen Faktoren ab, beispielsweise vom Netzwerktyp, der MPI Imple-
mentierung, auf welchen Knoten die Berechnung ausgeführt wird oder den
Nachrichtenlängen. Die Komplexität des MPI Standards ist größer als das Wis-
sen eines durchschnittlichen Benutzers. Eine mögliche Lösung sind empirische
Optimierungsbibliotheken, die eine große Anzahl an möglichen Implemen-
tierungen, sogenannten Codelets, für ein spezielles Problem zur Verfügung
stellen sowie Methoden um das Beste darunter auszuwählen. Dies erlaubt
es, Anwendungen zur Installations- oder Laufzeit zu optimieren ohne dass
besondere Kenntnisse oder ein Eingreifen des Benutzers notwendig sind.

In dieser Arbeit wird die empirische Optimierungsbibliothek ADCL verwen-
det, um zwei großskalige Strömungssimulationen zu optimieren, den Finite-
Volumen-Code Euler3D und eine Schnelle Fourier-Transformation (FFT), die
den Kernel spektraler Strömungssimulationsmethoden bildet. Dafür wird
ADCL erweitert, so dass nicht mehr nur Nachbarschaftskommunikationen
sondern auch kollektive Kommunikationen optimiert werden können. Es wird
gezeigt, dass ADCL die Laufzeit der Simulationen für die gewählten Beispiele
um bis zu 30% verkürzt.

Da empirische Optimierungsbibiliotheken die Wahl des schnellsten Codelets
basierend auf den empirischen Daten treffen, untersucht diese Arbeit auch
zwei grundsätzliche Probleme, die mit der Erzeugung und dem Auswerten der
Daten in Verbindung stehen. Erstens werden die empirischen Daten gewonnen,
indem die Ausführungszeiten der verschiedenen Codelets bestimmt werden.
Dabei beeinflusst die Methode, wie gemessen wird, zu einem großen Maß
den Informationsgehalt der Daten. Zweitens wird die Auswertung der Daten



durch unvorhersehbare Einflüsse auf die Ausführungszeit erschwert. Diese
Phänomene treten oft in parallelen Anwendungen auf und bewirken, dass
Datenpunkte, sogenannte Ausreisser, sehr von dem beobachteten Durchschnitt
abweichen. In dieser Dissertation werden Empfehlungen gegeben wie Op-
timierungen zur Laufzeit in einer parallelen Umgebung ausgeführt werden
sollten um optimale Resultate zu erzielen.

Basierend auf den Ergebnissen dieser Arbeit verfügt die Bibliothek ADCL jetzt
über die Mittel, MPI Kommunikationen in den meisten Anwendungsszenarien
zu optimieren und besitzt ein solides empirisches Rahmenwerk, um das schnell-
ste Codelet in MPI parallelen Simulationen auszuwählen. Die Optimierung
von kollektiven MPI Operationen sowie Programmcode, bei dem sich Kom-
munikation und Berechnung überlappen, ist jetzt möglich. Dies macht die
Performance von MPI Kommunikationen portabel, d.h. die Kommunikationen
sind auf unterschiedlichen Maschinen schnell ohne dass man erneut Zeit für
Optimierungen aufwenden müsste. Dies reduziert zusammen mit der einfachen
Benutzung der Bibliothek die Komplexität für den Benutzer erheblich.
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1 Introduction

With the development of computers, it has become possible to replace exper-
iments that are either too dangerous, too expensive or plainly impossible to
carry out with simulations based on theoretical models.

Nowadays, simulations have become affordable and are integrated in every-
day research and industrial activities. The most common goals are to reduce
costs during product design or to improve existing products. The areas of
applications are numerous: in turbine design, simulations replace expensive
prototypes and help to achieve optimum efficiency [1, 2]. Industrial coating
processes are optimized—without material loss—to yield a high-quality, thin
and even coating [3]. Simulations improve injection mechanisms [4, 5] and
air-conditioning [6, 7] in cars or help reducing noise and CO2 emissions by
optimizing airfoil design [8].

1.1 High-Performance Computing for Simulations

Computationally intensive simulations require leading edge technology, i.e.
High Performance Computing (HPC) systems. This applies to emerging high-
resolution simulations (e.g. for earth quake models to predict the damages as
accurately as current technology allows [9]), multi-physics applications that
integrate different physical phenomena into a single simulation (e.g. combining
gas flow and particle transport to model lunar probes [10]), multi-scale simula-
tions encompassing different resolutions of a domain (e.g. a regional model of
the Agulhas current system coupled with one global coarse resolution model
to predict the influence on the Atlantic meridional overturning circulation [11]
on the global circulation variability) or parameter studies such as power plant
simulation with varying burners and fuels quality [12].

An especially interesting subject in engineering which falls into the category
of computationally intensive simulations are Computational Fluid Dynamics
(CFD). CFD is an expression used for numerical methods and algorithms de-
vised to resolve fluid flows. Viscid flows are described analytically by the
Navier-Stokes equations (NSEs).

1



1 Introduction

Traditional CFD methods like the often employed Finite Volume method dis-
cretize and solve this equation directly to obtain hydrodynamic variables like
density or the fluid velocity. Solving the NSEs directly without averaging or
approximations other than the numerical error is called a direct numerical sim-
ulation (DNS). It is the most accurate approach to turbulence simulation and a
crucial tool for research carried out at the Institute of Aero- and Gasdynamics of
the University of Stuttgart. It is also still one of the most challenging problems
of HPC since computational power and a large main memory are necessary
to complete a high resolution simulation in an adequate time frame. The first
direct simulation of homogeneous, isotropic turbulence was done by Orszag
and Patterson [13] on a 323 grid using a spectral Galerkin method in 1972. In
2006, Yokokawa et al. [14] did an ground-breaking and in size unpreceded DNS
of incompressible turbulence at large Reynolds numbers. It ran on 512 nodes
of the Earth Simulator with 20483 (double precision) or 40963 (single precision)
grid points and a sustained performance of up to 16.4 TFlops.

1.2 Requirements for HPC

Serial processor performance is reaching its limits: the power per chip cannot
increase further (power wall), frequency scaling has reached its physical limits
and the introduction of further logic to improve Instruction Level Parallelism
(ILP) does not pay off (ILP wall) and the gap between CPU cycle time and
memory access latencies, the memory wall [15, 16, 17], increases. A way out
provide multi- and many-cores architectures, accelerators and the use of more
and more processes. The exploitation of this parallelism needs explicit instruc-
tions from the user as compiler-support is not available or in its infancy. The
dominating parallel programming model is message-passing usually following
the Message Passing Interface (MPI) [18] specification. There are two types of
communication patterns: point-to-point and collective communications.
A point-to-point communication describes the directed message exchange between
a sending and a receiving process. It occurs frequently as part of a neighborhood
communication pattern, where one process exchanges data with its next neigh-
bors. This pattern is found in stencil computations, e.g. in Lattice Boltzmann
methods or finite difference schemes, or originates from physical properties,
such as in molecular dynamics where particles do not hop from one end of the
computational domain to the other.
A collective communication, or short collective, is defined as communication that
involves a group or groups of processes. The latter is/are specified via a MPI
communicator. Apart from two exceptions (MPI_SCAN, MPI_EXSCAN), the col-
lective operations can be categorized into communications of type all-to-all,

2



1.3 The Difficulties and Drawbacks of Code Tuning

all-to-one and one-to-all. In case of one group or an so-called intra-communicator,
data is exchanged within the group following the types of communications just
mentioned. For multiple groups of processes, i.e. if an inter-communicator is
present, data from one group of processes is provided to the other groups. In
most cases, collectives include all processes using the predefined communicator
MPI_COMM_WORLD. Collective operations are employed for example for vector
norms or scalar products.

An important property of a parallel program is its good scalability. Scalability
describes the ability of software to run efficiently on any number of processors.
To allow simulation software to scale to a high number of processes, extensive
code tuning is required. This is especially true for communication operations as
their impact increases with the number of processes used.

1.3 The Difficulties and Drawbacks of Code
Tuning

Tuning code is one of the main challenges of HPC simulations. General Purpose
Graphics Processing Units (GPGPUs) and cell processors with hundreds of
GFlop/s, clusters with hundreds of thousands of processors and dropping
prices for hardware suggest that running complex simulations in short times
is easily feasible. However, without extensive code tuning it is not possible to
exploit the capabilities of HPC systems.

Highly trained personnel often has to introduce hand-coded optimizations into
the simulation software. This process is time-consuming, error-prone and the
results are in most cases not portable, i.e. the tuned code does not perform well
on other systems. This contradicts with fundamental ideas of software engineer-
ing to obtain high quality, re-usable, re-engineerable, maintainable and testable
scientific software. Effects of tuning are hard to judge because the software
environment (compilers, libraries, . . .) has to be taken into account. As a first
measure, computer manufactures and independent software vendors (ISV) pro-
vided highly optimized libraries for common computationally intensive parts
such as linear algebra [19, 20, 21, 22] operations and Fast Fourier Transforms
(FFTs) [23]. With a steady increase and diversification of available computer
architectures, this task has become more and more difficult. Optimizations
become obsolete or counterproductive over time as technology advances. This
is especially true for current and future chip designs such as modern multi-core
processors which have a significantly different layout depending on the manu-
facturer. This concerns the organization and connectivity of the cores, different
cache hierarchies and I/O capabilities of the processors.

3



1 Introduction

When moving from single CPU tunings to performance optimization for shared
or distributed memory systems, tuning complexity increases dramatically due
to the dependency on the number of processes. Run-time effects such as con-
current network traffic or operating system (OS) jitter increase the variance
of performance. Many more considerations regarding parallel efficiency have
to be taken into account. This includes varying network hardware, device
drivers and interconnects, different MPI libraries, latencies when accessing
memory of remote MPI processes as well as multiple possibilities to employ
MPI functionality.

MPI, although unrivaled for distributed memory parallelization, is often play-
fully termed as assembler of parallel programming as it is difficult to program
and offers numerous possibilities for (untraceable) programming errors. In
addition, MPI requires from the user an in-depth knowledge of the voluminous
standard, a knowledge which is often not existing: as result of a six-month
survey [24], it was noted that end-users do not exploit MPI’s possibilities to
their full extent, although considerable time, on average 13.7% of the applica-
tion CPU time, are spent in MPI functions offering plenty of possibilities for
optimization. More than 99% of the MPI runtime was spent in only 19 out of the
176 MPI routines. The pack and unpack functions are rarely employed. Derived
data types are seldomly utilized outside the development phase. Non-blocking
point-to-point communication is less frequently used than blocking communi-
cations. From a user’s perspective, it might be worthwhile to know that there
exist 20 possible variations of how to realize a neighborhood communication
pattern, but implementing all of them and finding out which of them is the
fastest for each HPC system, MPI library, compiler, etc. is out of question. What
is needed is an abstraction which allows to specify which data to communicate
and where to send it.

1.4 The Impact on Scientific Simulations

Figure 1.1 shows the typical development cycle of scientific simulation software.
New ideas and models are implemented and tested on a standard PC or work-
station first. As research advances and the complexity of test cases increases
computational power becomes the limiting factor. The demand emerges to
move up the so-called performance pyramid to larger systems, i.e. to clus-
ters, regional computing centers and ultimately to an HPC center. With the
knowledge gained from the HPC simulations and the on-going improvement
of computer hardware, calculations become less costly over time and can be
moved back onto smaller-scale machines. When the findings lead to revised
models or new algorithms the development cycle is closed. Each transition from
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Figure 1.1: Software development cycle for HPC simulations [25].

one level of the performance pyramid to another (cf. fig. 1.1) normally entails a
certain amount of code modifications. Examples are the introduction of a dis-
tributed memory parallelization when moving from workstations to mid-range
computing and optimization for special hardware features when deploying
the software on HPC systems. A seamless transition benefits the researchers
as it allows them to focus on their research instead of investing considerable
time in dealing with software issues. However in practice, such a transition
is often difficult. Hard- and software stack differ greatly between levels and
between computing centers on the same level, e.g., different processors and
networks, the availability of accelerators, diverse compilers, device drivers and
communication libraries.

In conclusion, computational intensive simulations require HPC which in turn
can only be used effectively if the simulation software is scalable and optimized
for the specific soft- and hardware environment. This code tuning is challenging,
time-consuming and requires special training. Optimization is however system
specific and thus needs to be carried out anew when moving from one system
to another. Otherwise performance penalties are almost inevitable. The solution
to overcome this dilemma are automatic tuning mechanisms that adapt the
software to the underlying environment without human involvement.

1.5 Automatic performance tuning

Automatic performance tuning is an area of research defined by one of the
fundamental questions in computing: how to provide—with reasonable effort—
efficient code on a wide variety of computer architectures steadily increasing
in complexity and diversity. Or, in other words, how to obtain for a kernel
(computational kernel, communication pattern) platform-independently an
equal or superior performance compared to hand-tuned code. A kernel in this
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context is a confined entity of a computer program of special importance, e.g.
the central part of the algorithm or a computationally expensive well-defined
set of operations. An alternate goal of automatic performance tuning is to hide
complexity from the user for example by providing simplified interfaces.

Following the ideas of Whaley [26], an automatic tuning system encapsulates
performance-critical routines (kernels) into a library and offers various codelets
for each kernel as well as timing routines and search techniques. A codelet is a
piece of code that provides one way to solve a particular problem. After the
performance of the codelets has been assessed during a search phase, the system
decides on a codelet judged best-performing and uses it during the simulation.
An empirical search-based tuning system bases its decision on empirical data, i.e.
measurements of execution times.

Auto-tuning MPI communications has its challenges. Depending on various
factors, some measured executions times may not fit into the overall pattern and
require special treatment. The informational value of the measurements has to
be high as one is interested in a short search phase with only a few measurements
per codelet. The Abstract Data and Communication Library (ADCL) is an
empirical auto-tuning library which focuses on MPI communications.

1.6 Outline

An introduction to Finite Volume and spectral methods, the CFD applications
and the HPC systems utilized in this work is given in chap. 2. Chapter 3 presents
an overview over auto-tuning software, introduces ADCL and explains the chal-
lenges faced in this work. The extension of ADCL to collective communications
is explained in chap. 4. Chapter 5 and 6 concentrate on the fundamental is-
sues when using auto-tuning frameworks to tune MPI communications: outlier
handling and the generation of empirical data. A summary and outlook in
chap. 7 conclude this work. The glossary in the appendix gives an overview
over specific terms used in this work.
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Computational Fluid Dynamics or CFD describes the study of fluid flows using
computers. It involves solving the governing equations of fluid dynamics
numerically on a geometrical domain divided into small volumes, i.e. on a
mesh or grid. The processes of discretization refers to the transformation of the
partial differential euqations (PDEs) into equivalent algebraic relations.

The application areas of CFD range from weather and climate simulations,
over optimization of water or combustion power plants, circulations around
cars, air foils and space crafts, analysis of pollution to blood flow simulations
before stent insertions only to name a few. Combined with the magnetic effects
modeled by Maxwell’s equations, they can be used in magneto-hydrodynamics
to study the dynamics of electrically conducting fluids such as plasma.

CFD has become a vital part in research and industry as it offers a number of
advantages over traditional experiments:

• it allows to study fluid flows in locations that are not accessible to measur-
ing heads, e.g. inside a furnice or an artery

• the fluid flow field can be observed without disturbing the flow itself

• CFD imposes less time constraints compared to limited time at experimen-
tal sites such as wind-tunnels

• CFD is of great economical value as simulations are much cheaper than
experiments. In the design phase or when improving existing products,
CFD can be used for parameter studies to reduce the number of prototypes
and thus lower development costs significantly.

Despite the numerical advances in CFD, the solution of many flow phenomena
is still far beyond present capabilities of workstations or small clusters and
requires HPC. This is due to the shear size of the problems or/and the desire to
model the physics as close to reality as possible. Time dependence, turbulence
and the study of coupled phenomena (aero-acoustics, fluid-structure-interaction,
multi-phase flows) add to the demands of computational power.

After introducing the governing equations of fluid dynamics in sec. 2.1, two com-
putational methods, the finite volume method (FVM) and the spectral method
will be presented in sections 2.2 and 2.3. They represent the two dominating
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communication patterns, neighborhood communications and collectives, which
are present in practically every MPI parallel application. Thus, results obtained
in this thesis e.g. for the FVM would also extend to parallel solvers or a finite
element discretization on a structured grid, as the underlying communication
pattern is the same. Section 2.4 presents the application codes and test cases
and sec. 2.5 the HPC systems used in this thesis.

2.1 The governing equations

The motion of fluids can be described in their most general form by the Navier-
Stokes equations (NSEs), named after Claude-Louis Navier and George Gabriel
Stokes. The compressible NSEs are based on conservation laws for mass, mo-
ment and energy with friction and heat transfer. They form a system of non-
linear hyperbolic-parabolic equations. Depending on the type of PDE, the
equations behave differently, both physically and numerically.

Under certain circumstances, simplifications are possible. If the Mach number
is small, M = |v|

c → 0 in theory and M < 0.1− 0.3 in practice, the equations
become incompressible and form a system of parabolic-elliptic PDEs. The
incompressible Navier-Stokes equations on a domain Ω are usually written as

∂u
∂t

+ u · ∇u = −∇P + ν∆u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity vector, P the pressure, ν the kinematic viscosity and ∆
the Laplacian. Depending on the type of PDE, appropriate initial and boundary
conditions need to be specified.

If heat transfer as well as friction (Re→ ∞) can be neglected, the NSEs simplify
to the hyperbolic equations of gas dynamics, the Euler equations. The Reynolds
number Re = ρvL

η , where ρ is the density of the fluid, v the mean fluid velocity,
L the characteristic linear dimension and η the dynamic viscosity of the fluid,
is an important characteristic from which one can deduce the interaction of
friction and velocity.

In differential form, the Euler equations are given as

ρt +∇ · (ρu) = 0 (2.3)
(ρu)t +∇ · ((ρu)⊗ u) +∇P = 0 (2.4)

Et +∇ · (u (E + P)) = 0 (2.5)

8



2.2 Finite Volume Methods

where ρ is the fluid mass density, u the fluid velocity vector, E = ρe + 1
2 ρu · u

the total energy, e the internal energy and P the pressure. Since this results in
3D in five equations with 6 unknowns, the equations are closed by the equation
of state, e.g. with the ideal gas law

P = ρ (γ− 1) e⇔ P = (γ− 1)
(

e− 1
2

ρv2
)

.

Equation (2.4) can be rewritten in vector form as

ut + f1(u)x + f2(u)y + f3(u)z = 0

with

u = (ρ, ρu1, ρu2, ρu3, e )T,
f1(u) = (ρu1, ρu2

1 + P, ρu1u2, ρu1u3, u1(e + P) )T,
f2(u) = (ρu2, ρu1u2, ρu2

2 + P, ρu2u3, u2(e + P) )T and
f3(u) = (ρu3, ρu1u3, ρu2u3, ρu2

3 + P, u3(e + P) )T,

where the vectors fi are fluxes.

2.2 Finite Volume Methods

A very popular numerical discretization method used in CFD is the finite vol-
ume method (FVM) where the PDEs are converted into a numerical scheme
using a physically-based approach based on conservation laws. The domain
is divided into small control volumes, also known as cells, elements or finite
volumes, where the state variables are located at the cell center. Then, the differ-
ential form of the governing equations is integrated over a control volume. The
resulting integral formulation is evaluated using Gauss integration, entailing
the calculation of fluxes across cell boundaries. A suitable time discretization
completes the numerical scheme.

The major advantage of the FVM is that for any single or set of control volumes
the resulting solution exactly satisfies the conservation of mass, momentum and
energy.

2.2.1 Discretization in space

The differential form of the conservation law

ut +∇ · f(u) = 0 (2.6)
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where u is a conserved quantity and f(u) = [f1(u), . . . , fd(u)] is the flux vector,
is integrated over a finite volume Vi ∈ Rd resulting in∫

Vi

utdV +
∫

Vi

∇ · f(u)dV = 0. (2.7)

Using the divergence theorem, one obtains∫
Vi

utdV +
∮

∂Vi

f(u) · ndS = 0.

The vector n ∈ Rd is the unit outward normal to the surface ∂Vi of Vi. To obtain
a numerical scheme, one considers mean values over the volumes Vi, i.e.

ui =
1
|Vi|

∫
Vi

u dV

leading to

|Vi|
∂u
∂t

+
∮

∂Vi

f(u) · ndS = 0. (2.8)

We define the residuum

R = − 1
|V|

∮
∂V

f(u) · ndS (2.9)

as the change of the integral mean value of the control volume. The goal of the
finite volume method is to calculate in each iteration the residuum R.

The computational domain V is divided into non-overlapping finite volumes

Vi, i = 1, . . . , N,

which represent the control volumina such that V = ∪Vi. To simplify things
for the numerical scheme, Vi is assumed to have piecewise smooth edges (2D)
or surfaces (3D), i.e. Vi is a polygon in 2D or polyhedra in 3D, eventually with
curved surfaces.

The rest of the FV method is now outlined in 2D for the sake of simplicity. The
edges resp. surfaces between two finite volumes Vi and Vj are denoted with eij.

Using the simplified geometry, R can now be rewritten as

Ri = − 1
|Vi| ∑

eij⊂∂Vi

∮
eij

f(u) · ndS.

The integration is done with Gauss quadrature rules, for schemes of first and
second order with one Gauss point at the center of the edge or face, resulting in

Ri = − 1
|Vi| ∑

eij⊂∂Vi

|eij|g(ui, uj; nij)
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g is a numerical flux function, i.e. a suitable approximation of f.

Since the Euler equations are rotationally invariant, the integrand f(u) · n can
be written as

f(u) · n = T−1f(Tu),

where T is a rotational matrix.

The residual is

Ri = − 1
|Vi| ∑

eij⊂∂Vi

|eij|T−1g(Tui, Tuj; (1, 0, 0)T) (2.10)

For the flux calculation, at each cell boundary, the state vector of the two adjacent
cells is turned into a local coordinate system, the resulting 1D Riemann problem
at the edge is solved and the computed flux is rotated back into the global
coordinate systems to calculate the residual of the cell.

To solve the Riemann problem at the cell boundaries to obtain the numerical flux
g, the Roe scheme [27] is used in this thesis as an approximate Riemann solver.
The Roe flux is the solution of the exact Riemann problem of the linearized
conservation equation

ut + Alrux = 0, u(x, 0) =
{

ul if x < 0
ur if x > 0 (2.11)

The Roe matrix Alr = A(ū) with the mean values

ūi =
√

ρruir +√ρluil√
ρr +√ρl

, i = 1, . . . , 3, H̄ =
√

ρrHr +√ρl Hl√
ρr +√ρl

,

c̄2 = (γ− 1)
(

H̄ − 1
2

ū2
)

, H =
e + P

ρ

is a valid solution of (2.11). Its eigenvalues are

a1 = v̄1 − c̄, a2 = a3 = a4 = v̄1, a5 = v̄1 + c̄,

and the eigenvectors are

r1 = (1, ū1 − c̄, ū2, ū3, H̄ − ū1c̄ )T,
r2 = (1, ū1, ū2, ū3, 1

2(ū2
1 + ū2

2 + ū2
3) )T,

r3 = (0, 0, 1, 0, ū2 )T,
r4 = (0, 0, 0, 1, ū3 )T,
r5 = (1, ū1 + c̄, ū2, ū3, H̄ + ū1c̄ )T.
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With the notations

∆ρ = ρr − ρl,
∆mi = ρruir − ρluil, i = 1, . . . , 3,

∆e = er − el and
∆e = ∆e− (∆m2 − v̄2∆ρ)v̄2,

one obtains from the condition ur − ul = ∑5
i=1 γiri the coefficients

α2 =
γ− 1

c̄2

[
∆ρ
(

H̄ − ū2
1

)
− ∆e + ū1∆m1

]
α1 = − 1

2c̄
[∆ρ(ū1 + c̄)− ∆m1]−

1
2

α2

α3 = ∆m2 − ū2∆ρ

α4 = ∆m3 − ū3∆ρ

α5 = ∆ρ− α1 − α2

Hereby one obtains the Roe flux

gRoe(uL, uR) = 1
2 (f1 (uL) + f1 (uR))− 1

2

5

∑
k=1

αk|ak|rk

2.2.2 Discretization in time

Integrating (2.8) over a finite time interval [tn, tn+1] and taking into the definition
of the residuum (2.9) leads to∫ tn+1

tn
Ridt =

∫ tn+1

tn
(ui)tdt = un+1

i − un
i .

The time integral of R can be computed for a first order scheme with the mid-
point rule, i.e. ∫ tn+1

tn
Ridt = (tn+1 − tn)Ri(tn).

This results in the fully discretized numerical scheme

un+1
i = un

i + ∆tRn
i = un

i −
∆t
|Vi| ∑

eij⊂∂Vi

|eij|T−1g(Tun
i , Tun

j ; (1, 0, 0)T)

Explicit time discretizations are only conditionally stable, i.e. the maximum time
step is limited, since we assume that the flux over a cell boundary is constant for
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the time step. In 1D, this can be described descriptively: it is only the case if no
waves from local Riemann problems over cell boundaries meet a neighboring
cell boundary. This results in a local time step

∆ti = CFL · ∆xi

|v1i|+ ci

for each cell i, where CFL is the CFL number, named after Courant, Friedrichs
and Levy. Since the states in the cells are normally not the same, the global time
step

∆tglobal = CFL ·min
∆xi

|v1i|+ ci

is used. For multiple dimensions, the equation is modified into

∆tglobal = CFL ·min
2ri

|vmax
i |+ ci

,

where ri is the incircle diameter.

2.2.3 Boundary conditions

The boundary conditions are normally implemented with ghost cells. Wall,
periodic, inflow or outflow boundary conditions are normally employed.

2.2.4 Higher-order schemes

Because of the first order discretization in space, only integral mean values exist
in each cell. The values at the cell boundaries, which are the main input to the
Riemann solver, differ greatly from the real ones. Using reconstruction, local
values are computed from the integral mean values at the cell boundaries. This
requires the knowledge of the distribution of the state variables inside a cell. For
a second-order scheme, a piecewise linear distribution is assumed in the cell.
The integral mean value of the cell has to remain unchanged. The necessary
gradients are reconstructed with help of the neighboring cells. It is important,
that the Total Variation Diminishing (TVD) property holds and no new minima
and maxima are created. The reconstructed slopes thus have to be limited, in
this case using Sweby’s limiter with Φ = 1.5:

sΦ(a, b) = sign(a) max {|minmod(a, Φb)|, |minmod(Φa, b)|} with 1 ≤ Φ ≤ 2
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where a and b are two scalar gradients, where minmod is defined as

minmod(a, b) =


a if |a| < |b|, ab > 0
b if |a| ≥ |b|, ab > 0
0 else

.

For Cartesian grids, the 1D scheme can be applied successively in each dimen-
sion whereas for unstructured grids, the different directions can no longer be
treated separately and more complicated limiters are necessary.

A higher order discretization in time can be achieved with two different ap-
proaches: using separate discretizations for time and space, known as method
of lines, or a combined space-time-discretization, the so-called space-time-
expansion. The latter will be discussed in detail.

Equation (2.7) can be written as numerical scheme

un+1
i = un

i −
1
V

∫ tn+1

tn

N

∑
m=1

g
(

u(m)
L (t), u(m)

R (t)
)

nAmdt

Instead of a quadrature rule for a fist-order scheme, we apply the an integration
scheme of second order, e.g. mid-point rule∫ tn+1

tn

N

∑
m=1

g
(

u(m)
L (t), u(m)

R (t)
)

nAmdt = ∆t
N

∑
m=1

g
(

u(m)
L (tn+1/2), u(m)

R (tn+1/2)
)

nAm

To calculate u(m)
L,R (tn+1/2), we apply a Taylor expansion around the known state

u(m)
L,R (tn),

u(tn+1/2) = u(tn) +
∆t
2

ut(tn) + O(∆t2).

To calculate the unknowns, the time derivate has to be determined. Because
we focus on the state within one single cell and can presume that the distribu-
tion is continuous, eqn. (2.6) can be utilized. The Cauchy-Kovalevskaya (CK)
procedure consists in solving it for the time derivative

ut = −∇ · f(u).

The complete idea of space-time-expansion is to carry out the Taylor expansion
in time and space.

u(x, y, z, tn+1/2) = u(x0, y0, z0, tn)+
∆xux(x0, y0, z0, tn)+
∆yuy(x0, y0, z0, tn)+
∆zuz(x0, y0, z0, tn)+
∆t
2 ut(x0, y0, z0, tn) + O(∆x2, ∆y2, ∆z2, ∆t2)
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Figure 2.1: Schematic view of a second-order STE algorithm. Parts with data
exchange are marked highlighted in dark grey.

The space derivatives are determined via reconstruction while the time deriva-
tives are computed via the Cauchy-Kovalevskaya procedure.This makes it
possible to determine the state at each point within a space-time-element. These
states are used for the flux calculation.

Space-time expansion has some disadvantages over the method of lines. It is
numerically less stable than e.g. Runge-Kutta procedures, and smaller time
steps are necessary. Furthermore, the CK procedure is difficult to program.
These disadvantages are more than compensated by the fact that reconstruction
and flux calculation have to be executed only once instead of multiple times
leading to shorter runtimes. The required synchronizations during each step of
a Runge-Kutta method are omitted. In addition, the order in time and space do
not have to be chosen seperately as a high order in space automatically yields a
high order in time. This improves the quality of the solution compared to the
method of lines.

2.2.5 Algorithm and Parallelization

Figure 2.1 shows the algorithm of a second-order STE algorithm.

A partitioning approach is used for parallelization. Each sub-domain is sur-
rounded by one layer of ghost cells for the mean cell values as well as for the
extrapolated variables. The data exchange happens when the boundary con-
ditions for the cell mean values and for the extrapolated variables are set to
provide the necessary values to compute the gradients and to apply the limiter.
For a Cartesian grid, the resulting communication pattern, the neighborhood
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Figure 2.2: Neighborhood communication pattern to exchange layers of ghost
cells for a 2D Cartesian grid.

communication, is shown in fig. 2.2. Each process exchanges data with its
neighboring 4 (in 2D) and 6 (in 3D) processes.

2.3 Spectral Methods

Spectral methods belong to the group of traditional CFD methods that discretize
and solve the NSEs directly to obtain hydrodynamic variables like density
or the fluid velocity. Their properties make them well-suited for turbulence
simulations. As the name suggests, spectral methods solve the NSEs with a
spectral ansatz. The key part in the numerical solution of the resulting system of
ordinary differential equations are Fast Fourier Transforms. This kernel has been
integrated into several benchmarks, among them the NAS Parallel Benchmarks.
This implementation constitutes one of the CFD applications of this work with
which calculations on miscellaneous HPC systems were conducted.

Spectral methods [28, 29, 30, 31] have been developed since 1969. They use
global polynomial or trigonometric polynomial basis functions of high degree
which are mostly non-zero in the entire domain.

One of their main advantages is its exponential convergence, which means that
the error is decreasing faster than any finite power of the number of grid points
N. This results from the fact that an increase of N is equivalent to an increase
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of the polynomial degree while at the same time h = O(1/N) decreases. It
guarantees an accurate solution of Poisson’s equation for the pressure, which
is responsible for mass conservation. In addition, it ensures a high resolution
to obtain asymptotically correct higher-order statistics for small eddies1 in
turbulence studies at high Reynolds numbers which is computationally more
cost-efficient than finite difference (FD) schemes. Another advantage of spectral
methods is the low demand of main memory as spectral methods allow to
obtain the same error with about half as many degrees of freedom than FD or
finite element methods at higher cost per degree of freedom. This efficiency in
memory consumption made spectral methods especially popular in weather
simulation.

On the other hand, spectral methods generate full matrices, are harder to imple-
ment than FD schemes and affected more seriously in performance and accuracy
from irregular domains compared to low-order alternatives.

2.3.1 Derivation of the spectral equations

Fourier spectral methods express the solution in space as a Fourier series

u(x, t) = ∑
k

ûk(t)eik·x

p(x, t) = ∑
k

p̂k(t)eik·x

and substitute this series into (a weak formulation of) the Navier-Stokes equa-
tions (2.1). Periodic boundary conditions in all three directions are assumed,
where u is 2π-periodic with respect to x. The initial conditions are u(x, 0) =
u0(x) in Ω at t = 0.

In Fourier space (2.1) and (2.2) become a system of ordinary differential equa-
tions (ODEs) (

d
dt

+ ν|k|2
)

ûk = −ik p̂k + ĉk, (2.12)

ik · ûk = 0, (2.13)

which contain the time-dependent coefficients of the trigonometric terms in the
series written in complex exponential form.

The term
ĉk = −(û · ∇u)k

1An eddy is the swirling of a fluid and the induced reverse current when the fluid flows past
an obstacle.
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is nonlinear and responsible for most of the algorithmic complexities of the
problem. The pressure may be eliminated be taking ik dotted with (2.12) and
using (2.13). Hence,

rcl p̂k = − 1
|k|2 ik · ĉk(

d
dt

+ ν|k|2
)

ûk = ĉk − k
k · ĉk

|k|2 .

The Fourier Galerkin approximation consists of truncating the sums at

|k1|, |k2|, |k3| < N/2.

The system of ODEs is then solved by a time-stepping method.

In component form the nonlinear term is

(ĉk)α = −ikβ ∑
m+n=k

ûβ,mv̂α,n. (2.14)

This convolution sum in wave vector space is the standard Galerkin approxima-
tion to the nonlinear term −u · ∇u. A summand of (2.14) is a triple convolution
sum

ŝk = ∑
m+n=k

ûmv̂n, (2.15)

In one dimension, (2.15) simplifies to

ŝk = ∑
m+n=k±N

ûmv̂n

The pseudo-spectral transform method consists of transforming ûm and v̂n, n =
−N/2, . . . , N/2− 1, to the physical space using the discrete Fourier transform
(DFT) with N points, forming the physical space products uivi, i = 0, . . . , N − 1,
and then transforming these products back to Fourier space. The result is

s̃k = ŝk + ∑
m+n=k±N

ûmv̂n.

2.3.2 Algorithm and Parallelization

A straightforward evaluation of the DFTs is tremendously expensive for large
N. Steps towards efficiency include partial summations, i.e. using a sequence of
nested one-dimensional transforms for multi-dimensional transforms, and an
algorithm formulated by Cooley and Tukey [32] in 1965 to compute a DFT of n
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points in O(nlogn) steps which became known as Fast Fourier Transform (FFT).
The computation of an three-dimensional (3D) FFT is the essential and most time
consuming part of a DNS with a Fourier spectral method. It might account for
more than 90% of the computing time as it involves a matrix transpose resulting
in an collective communication of type alltoall which causes large amounts
of data transfer [33, 34]. FFTs have been included in several benchmarks to
evaluate network bandwidth. In this thesis, the 3D FFT kernel of the NAS
parallel benchmarks is used.

2.4 Application Test Cases

This section gives a brief introduction into the two applications used in this
thesis, the code Euler3D implementing a finite-volume method for the Euler
equations and the NAS FT benchmark representing the kernel of a spectral
method.

2.4.1 Euler3D

The code Euler3D [35] implements the finite volume method for the incom-
pressible Euler equations in 3D on structured grids. It is an extension to the
2D variant used in courses and workshops at the Institute of Aero- and Gasdy-
namics of the University of Stuttgart to teach the basic principles of the FVM.
Euler3D is written in Fortran90 using modules.

Its code structure follows the schematic view of fig. 2.1. As test case, we use
a Gauss pulse which travels diagonally through a cubic domain as shown in
fig. 2.3. Table 2.1 gives an overview of the problem sizes used and the resulting
message sizes.

2.4.2 The NAS FT Benchmark

The NAS Parallel Benchmarks [36, 37, 38] from NASA Ames Research Center
are "paper and pencil" benchmarks and consist of a set of five computational
kernels (EP, MG, CG, FT, and IS) and three pseudo applications (LU, SP and
BT). They emulate the characteristic features of large scale CFD applications
and serve to evaluate supercomputers. Each of the kernels addresses a different
type of numerical computation.

The FT benchmark from NAS Parallel Benchmarks 3.0 computes the solution
of a 3D partial differential equation with a FFT which requires all-to-all com-
munications for matrix transpose operations. Consequently, the FT benchmark
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(a) (b)

(c) (d)

Figure 2.3: Test case: a Gauss pulse in density travelling diagonally through the
computational domain.
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2.4 Application Test Cases

#elements/process class #procs message size total message
per process [MB] size[GB]

203
64

0.7
0.04

256 0.17
1024 0.69

303
XS 64

1.5
0.10

256 0.39
1024 1.55

403
S 64

2.7
0.17

256 0.69
1024 2.75

603
L 64

6.0
0.39

256 1.55
1024 6.19

803
64

10.8
0.69

256 2.75
1024 11.01

Table 2.1: Message sizes for Euler3D (weak scaling).

creates substantial communication and evaluates network performance. Its
main loop consists of an evolution step and the computation of the FFT. The
problem classes S (sample code) and A–E vary primarily in the size of the main
arrays. A simulation of a class K benchmark running with np processes is ref-
erenced to by np K, thus 8A stands for a class A benchmark executed with 8
processes. The dimensions of the domain as well as the message sizes for the
different test cases are shown in table 2.4.

Assume a grid with n1 × n2 × n3 points. The 3D FFT is performed as a series
of three successive 1D FFTs on one processor. Depending on the magnitude of
np compared to n3, each processors owns a number of contiguous x-y planes
(np < n3) or only a number of rows x (np > n3). For the former, the 1D FFTs
in the x and y directions are performed locally on one processor. Afterwards
the data is transposed (using MPI_Alltoall) and the FFT in z-direction can be
computed locally. For the latter, two transposes are performed to perform the
FFTs in y- and z-direction. For our test cases, the number of processes always
undermatches n3 resulting in one collective per time step.
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class n1 n2 n3 #procs message size total message
per process [KB] size[GB]

A 256 256 128 8 2097 0.1

B 512 256 256 8 8388 0.532 524

C 512 512 512

32 2097

2.1128 131
256 32
512 8

Figure 2.4: Message sizes for the FFT benchmark (strong scaling).

2.5 HPC Systems

The following HPC systems are used in this work:

The hierarchical network is described by the blocking factor which specifies
the ratio of accumulated communication bandwidth. Suppose 30 nodes are
connected to a level 2 switch (spine switch) with DDR and there are 6 QDR links
between the level 2 and level 1 switches. The signaling rate is 5 Gbit/s for DDR
and 10 Gbit/s for QDR in each direction per connection. The blocking factor is
then

6 · 10 : 30 · 5 = 1 : 2.5

Cacau Cluster: The cacau cluster at High Performance Computing Center of
Stuttgart (HLRS) consisted of 200 dual processor 3.2 GHz Intel EM64T
processors, connected by a 4xInfiniBand network interconnect and a sec-
ondary hierarchical Gigabit Ethernet network. A total of six 48-port
switches were used to connect the nodes, each 48-port switch had four
links to the upper level 24 port Gigabit Ethernet switch. Thus, this network
had a 12:1 blocking factor. In the mean time, the cluster is out of service.

Cray XT5m: The installation at HLRS has 112 Dual Socket Quad Core nodes
consisting of AMD Opteron Processors 23 (C2)@2.4 GHz and 16 GB mem-
ory/node. Each SeaStar chip provides four network links connecting
to four neighbors in the 2D torus, the peak bidirectional bandwidth of
each link is 9.6 GB/s with sustained bandwidth in excess of 6 GB/s and
38.4 GB/sec switching capacity per chip.

IBM Blue Gene/P: Jugene at the Jülich Supercomputing Center is a 73728 node
installation of 4-way Symmetric Multi-processing (SMP) 32-bit PowerPC
450 cores at 850 MHz with 2 GB memory each. The compute nodes are
organized in 72 racks with 32 node cards each with 32 compute nodes.

22



2.5 HPC Systems

The compute nodes are connected in a 3D torus with 5.1 GB/s per node
and an additional collective network.

NEC SX-8: NEC SX-8 is a vector computer. Each shared memory node disposes
of 8 CPUs running at 2 GHz, each with 16 GFlop/s peak performance and
16 GB of main memory. The nodes are connected with an IXS Crossbar
with 8 GB/s bidirectional bandwidth. The number of nodes at HLRS has
been reduced from 72 in 2004 to currently 10 nodes.

Laki Cluster: The NEC Nehalem Cluster Laki at HLRS consists of 700 dual
socket quad-core compute nodes with Intel Xeon (X5560) Nehalem pro-
cessors running at 2.8 GHz with 12 GB memory/node. The nodes are
connected with InfiniBand DDR x4 (up to 20 GBit/s in both directions)
with Voltaire Grid Director 4036 QDR switches. Up to 30 nodes are con-
nected to a 36 port switch. The remaining six ports are used to connect to
each of the six first level switches. The blocking factor is 1:2.5.

SGI Altix 4700: HLRB-II has 9728 cores organized in 19 compute partitions
with 512 cores and 128 or 256 blades (memory channels) each. The pro-
cessors are Intel Itanium 2 Montecito Dual Cores running at 1.6 GHz.
Each core has 4 GB main memory. The NUMAlink4 interconnect has 2
(bidirectional) links per blade, with a total bandwidth of 12.8 GB/s.

Shark Cluster: The shark cluster at the University of Houston consists of 24
single processor, dual core 2.2 GHz AMD Opteron nodes. Each node is
equipped with a 4xInfiniBand and a Gigabit Ethernet card. It disposes
of an InfiniBand network and a Gigabit Ethernet network. The switch
used within the Gigabit Ethernet network provides a full duplex 1 GBit
connection for each node.
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3 Automatic Performance Tuning

From its early beginnings in 1995 until now, automatic performance tuning has
been applied to various application areas, among them linear algebra, FFTs,
solvers and MPI communications. Its historic development is described in
sec. 3.1. The underlying principles of automatic optimization systems, i.e. when
and how to tune, are detailed in sec. 3.2. The Abstract Data and Communication
Library is an auto-tuning library with special support to optimize MPI com-
munications. Its functionality is presented in sec. 3.3. Section 3.4 discusses the
necessary extensions which are realized in this work.

3.1 Historic Overview

The first automatic tuning frameworks focused on linear algebra and Fast
Fourier Transforms. After efforts to formalize automatic tuning, its principles
were employed in different application areas, most importantly in parallel linear
algebra, for solvers and communication operations.

3.1.1 The Beginnings

Numerical linear algebra (i.e. solution of linear systems, linear least squares
problems, eigenvalue problems and singular value problems) is a fundamental
part of many scientific calculations. It in turn is based on small, computa-
tionally intensive low-level operations, namely vector and matrix operations.
These operations were encapsulated in an API and became known as BLAS
(Basic Linear Algebra Subroutines) [19, 20, 21, 39]. Driven by the need to offer
high-performance, low-cost BLAS routines on a steadily increasing number
of architectures, Bilmes et al. presented PHiPAC (Portable High-Performance
matrix-vector libraries in ANSI C) [40] in November 1995. It included a parame-
terized code generator for the general matrix-matrix multiply (GEMM in BLAS)
C = αop(A)op(B) + βC where op(X) = X or XT as well as search scripts for a
brute force and a more sophisticated search technique including a model-based
approach to identify best parameters. With the code generator, a large set of vari-
ants could be created at install time of PHiPAC which provided the library with
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a rich choice of optimization options. Coding guidelines for high-performance
ANSI C exposing a high degree of optimization possibilities to the compiler
ensured portability. Experiments showed that 90% of peak performance on
a variety of current workstations was obtained and vendor-supplied libraries
were often out-performed. Although being the first automatic performance
library, PHiPAC did not reach the popularity of its successor ATLAS.

In September 1997, Frigo introduced FFTW 1.0 [41], a portable C library for
computing the complex discrete Fourier transform (DFT) in one or more dimen-
sions. It consists of three major parts: a codelet generator which automatically
produces code to solve various small sized DFTs, a planner that tests different
strategies how to combine the codelets based on a divide-and-conquer approach
and an executor that executes the plan. It proved to be faster compared to other
DFT software (FFTPACK, code from Numerical Recipes) and vendor-supplied
code. In contrast to PHiPAC, optimization is purely done at runtime, perfor-
mance measurements are based on multiple executions of the same DFT and
the search follows a dynamic programming algorithm. The author valued the
creation of DFTs for larger radices not practical to implement manually and the
ease to implement diverse optimizations and algorithmic variations. At the time
of publication, an MPI parallelization was added. In the latest release FFTW3,
the runtime structure was redesigned to allow for a much larger search space.

Like PHiPAC, the first version of Automatically Tuned Linear Algebra Sub-
routines (ATLAS) [42] released in December 1997 [43] focused on the GEMM
and reports performance comparable or superior to vendor-tuned libraries.
The code generation possibilities have been gradually extended to support
GEMM-based Level 3 BLAS [44, 26], the full BLAS [26] as well as some higher
level routines of the LAPACK API. Whereas PHiPAC uses a wholistic approach
tuning each matrix operation separately, ATLAS assumes an on-chip cache,
i.e. L1 cache, which is accessible from the floating point unit and breaks all
operations down to a square on-chip matrix multiply. This results in shorter
tuning times due to only one tuning operation and a small number of tuning
parameters dealing with the properties of the L1 cache. The tradeoff is lower
performance for small matrices and on systems without L1 cache. ATLAS runs
a set of micro-benchmarks to identify hardware parameters (size of L1 cache,
number of floating point registers, latency of floating-point multiplications, etc.)
which are then used to bound the search space. In an orthogonal line search
where each of the parameters is tuned separately one after the other, ATLAS
discovers an approximate minimum. The order of the parameters, the set of
possible values for each parameter and the reference values for not-yet opti-
mized parameters influence the result of the search. With ATLAS Unleashed,
hand-tuned implementations can be added to the search space.

In the domain of signal and image processing, an additional two projects apart
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from FFTW surfaced around 2001, SPIRAL and UHFFT. SPIRAL [45, 46] is an
ongoing project to optimize Fourier transforms. The transform algorithms are
described in a symbolic Kronecker-product based language SPL and translated
into enhanced C code with a special purpose compiler. SPIRAL employs search
methods based on genetic algorithms [47, 48] at compile time over a space of
mathematically equivalent formulas. UHFFT [49] is similar to FFTW when
regarding the runtime search with a planner step. In addition, it provides a
search method based on performance data gathered at install-time. Transforms
are broken up into smaller parts and executed taking into account the users’
specifications for FFT sizes.

3.1.2 Formalization efforts

At the same time, first approaches were taken to formalize automatic tuning.

The ATLAS project described its ideas as Automated Empirical Optimization
of Software (AEOS) [26], a paradigm for high performance library production
and maintenance. Whaley et al. defined that a portable performance-critical
library using the AEOS methodology (1) requires to isolate performance-critical
routines and has (2) methods of adapting software to differing environments,
(3) robust, context-sensitive timers and (4) an appropriate search heuristic.
The methods of software adaption are subdivided into parameterized adaption
(characteristics which vary from machine to machine e.g. blocking factor are pa-
rameterized) and source code adaption for those architectural variables where pa-
rameterized adaption fails (e.g. instruction cache size, pipeline length). Source
code adaption can be achieved via multiple implementations (various hand-tuned
implementations enriched with a search and timing layer) and code generation
based on parameters offering a high flexibility, high complexity, specialty-based
approach. An AEOS provides many ways of doing a required operation and
empirical timings in order to choose the best method for a given architecture. It
automatizes the already to some extend empirical hand-tuning process.

A broader approach was taken for the Self-Adapting Numerical Software
(SANS) concept [50]. It attributes tuning to different classes such as algorithms,
networking as well as data layout or kernels. Each class is influenced by differ-
ent factors and can be optimized before or only at runtime.

3.1.3 Linear algebra

LAPACK for Clusters (LFC) [51, 52, 53] offers automated tuning of parallel
computing resources for LAPACK. It was initially presented at ParCo 2001 and
later adapted to the context of SANS. It hides complexity from the non-expert
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user by providing a serial, single processor user interface including resource
discovery. LFC decides based on cluster state and overhead whether to execute
the routine in serial or parallel. LFC’s main components are a data collection
daemon, a data mover, a performance modeler/resource selector and a great
number of selection (annealing, ad-hoc evaluation, genetic algorithms, dynamic
linear programming) and search methods (entire parameter space, generic black
box optimization technique or reduce search space through domain-specific
knowledge) with historic learning. Tuning happens at compilation time or
dynamically during execution (at runtime) with or without monitoring.

Similar to LFC, DESOBLAS [54] also hides the choices of performance parame-
ters from the user. The library implements a parallel version of BLAS based on
the idea of delayed evaluation. After a sequence of calls to the library which im-
mediately return, the user has to explicitly request the execution of the pending
operations. DESOBLAS takes into account all outstanding operations to decide
on the data layout.

3.1.4 Solvers

SPARSITY [55, 56] is a toolkit that automatically generates implementations for
the sparse matrix-vector multiplication y← Ax + y with one or more vectors.
It combines ideas from automatic performance tuning and the developing
Sparse Basic Linear Algebra Subroutines (SpBLAS) [57]. Since SpBLAS hides
the data structures from the user, an automatic tuning library can freely decide
on data structure and implementation. Since register and cache blocking as
well as an adequate choice for the block size highly depend on the matrix,
the automatic system decides based on a sample matrix on when and how to
optimize. Performance models based on machine profiling help to prune the
search space. Code generation is partially automatized and produces C code.
A comparison of optimized and unoptimized version ensures no performance
loss.

The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primi-
tives that provide automatically tuned computational kernels on sparse matrices
and continues the work on SPARSITY. Apart from offering transparent access
to a variety of performance optimization techniques, the costs of tuning are
unfolded.

The software package AcCELS (Accelerated Compress-storage Elements for
Linear Solvers) [58] optimizes automatically sparse-matrix-vector operations. It
extends the work of Vuduc [56, 59]. At install time, parameters are estimated,
measured and interpolated performance values are tabulated. At runtime,
the sparse matrix is analyzed. An estimation of the fill-in and the optimal
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performance of a matrix-vector product for a given block size is calculated
based on three parameters.

The Self-Adapting Large-scale Solver Architecture (SALSA) [60] is a project
aiming at providing the suitable linear and non-linear system solver to an
application. Using the characteristics of the application matrix, the solver
contacts a knowledge database and provides an estimate on the best solver to
use. Among the characteristics used for choosing the right solver are structural
properties of the matrix (e.g. maximum and minimum number of non-zeros
per row), matrix norms such as the 1- or the Frobenius-norm, and spectral
properties.

3.1.5 Automatic performance tuning for MPI
communications

Some recent projects focus on automatic performance analysis of MPI commu-
nications. These are:

ACCT [61, 62] aimed at optimizing collective communications. It focuses on
broadcast, scatter and gather since all other operations can be implemented with
these three collectives. The library executes a series of experiments to determine
the best buffer size and the best algorithm for various number of processes. To
reduce the number of experiments, only certain points within the search space
are evaluated and later on, a model-based approach was added. The library is
equipped with two modified steepest descent algorithms to prune the search
space at install time.

STAR-MPI [63], introduced in 2006, allows the automatic optimization of col-
lective MPI operations (alltoall, allgather, allgatherv, allreduce, broadcast) at
runtime providing a similar API as defined in the MPI specifications [18]. It
comprises of an algorithm repository for each collective, a simple automatic
selection mechanism as well as a monitoring interface. The algorithm repository
consists of topology unaware algorithms and automatically generated topol-
ogy aware ones. Both can be annotated with meta-data concerning relevant
system parameters. For a faster tuning, "algorithm grouping" similar to ADCL
attributes is introduced. The library initially compares a single algorithm from
all available groups. After the winner group has been determined, the library
does a fine-tuning of the performance by evaluating all other available algo-
rithms within the winner group. During the monitoring phase, allreduces are
used from time to time, and depending on the outcome, the interval is increased,
stays the same or the algorithm is switched. To use the library, calls to collective
MPI routines are prefixed with STAR_. Site-dependent and message-dependent
optimization is supported.
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In 2008, Hartmann et al. [64] presented a tuning framework for specific collec-
tives. Its main idea is to use orthogonal processor layouts. A configuration
phase explores possible performance improvements which is the basis for the
decision on the implementation during the execution phase.

3.2 Characteristics of automatic tuning systems

Tuning systems vary in many ways, for example in how codelets, i.e. imple-
mentation alternatives, are provided (e.g. produced by a parameterized code
generator in a high-level language to ensure portability and leverage advances
in compiler technology automatically), how to prune the search space (exhaus-
tively, with heuristics or model-based) and when the tuning is done (at install-,
compile- or runtime or any combination of them). This section will look into
the different possibilities of how and when to tune.

3.2.1 When to Tune

Automatic optimization libraries can either apply static tuning or dynamic
tuning or a combination of both. Static tuning is the process of optimizing
a code sequence/application a priori of the actual execution of the program
resulting in software that cannot alter its behavior during execution. Dynamic or
runtime tuning on the other hand leads to software that has the ability to adapt
its behavior at runtime. Static tuning is sometimes subclassified into install-time
tuning at the installation of the automatic optimization library and compile-time
tuning when compiling the application.

The point in time to tune depends partly on the availability of all relevant infor-
mation which shifts with the area of application. For example for dense matrix
kernels, install- or compile-time tuning is quite sufficient [40, 26], whereas for
tuning of MPI communications runtime information is crucial.

For MPI communications, several factors influencing the performance of the
application can only be determined while executing the application. Faraj et
al. acknowledge the fact, that application characteristics (e.g. communication
volume depending on input data, communication frequency) and process place-
ment by the batch scheduler significantly influence the performance [65]. The
latter results in non-uniform network behavior [66]. Other factors are shared
resources such as network links and switches or file systems, the influence of
process arrival patterns to the performance of collective communication oper-
ations as well as OS jitter [67]. OS jitter leads to a slow-down of a subset of
processes utilized in a parallel job. Depending on the work that each process has
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to perform, the order in which processes start to execute a collective operation
varies strongly depending on the application. Thus, the algorithm determined
to lead to the best performance using a synthetic benchmark might in fact be
non optimal in a real application [68].

Inherent to the tuning system is the introduced overhead. The losses for runtime
tuning — mainly introduced by the search process — have to be amortized over
frequent uses of the kernel while install- or compile-time tuning hide the extra
time from the user. From a systems administrator’s point of view, static tuning
is resource-intensive and a waste of computation time. The tuning procedure
itself often exceeds the runtime of an individual application and most of the
pre-tuned sets of parameters are never used. They will typically not reserve the
according time slots to tune these libraries exhaustively in advance, but only a
limited time, e.g. some hours instead of multiple days to tune the MPI collective
operations on a multi-thousand node cluster. End-users themselves will most
probably not use their valuable compute time to perform these time consuming
operations.

3.2.2 How to Tune

To determine the optimal codelet, i.e. the implementation which gives the best
performance for the complete simulation, the performance of a set of codelets
has to be assessed. This can be done in two ways or a combination of them. One
way is heuristic modelling where parameterized theoretical models are used to
estimate the execution times of the codelets. The other is empirical evaluation
of the codelets, i.e. the codelets are run and their performance is measured.

3.2.2.1 Heuristic modelling

Heuristic modelling predicts the execution time of codelets and compares the
predicted execution time of various algorithms. A heuristic is a strategy to find a
close-to-optimal solution in a relatively short time. In the case of communication
optimization, performance predictions are based on theoretical communication
models such as Hockney’s model [69], LogP [70], and LogGP [71]. This approach
has been taken in [72].

Hockney’s model applies to point-to-point operations. It models the communi-
cation time as

t(n) = t0 +
n

r∞

where n is the message length in bytes, t0 is the latency and r∞ the asymptotic
bandwidth, i.e. the maximum achievable bandwidth when n→ ∞.
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The LogP model estimates the communication time of fix-sized short messages
using four parameters L, o, g and P. L is an upper bound on the latency and P
the number of processors. The overhead o is the time span during which the
processor is engaged into sending or receiving the message and its reciprocal
corresponds the communication bandwidth. The gap g defines the minimum
time between sending or receiving two consecutive messages, its reciprocal
corresponds to the communication bandwidth.

The LogGP extends the LogP model with a linear model for long messages by
adding one additional parameter, G, which describes the bandwidth obtained
for long messages.

3.2.2.2 Empirical Evaluation

Another way is to empirically evaluate the codelets, i.e. to actually run them.
This requires methods to prune the search space of available codelets. The
selection logic chooses the order in which the codelets are evaluated. The decision
logic produces a decision based on the collected empirical data and determines
the optimal codelet.

In case of a non-existing selection logic, an exhaustive or brute force search will be
conducted which tests all available codelets. This guarantees to find the best
implementation, but requires considerable amounts of computing time. This
method is therefore ill-suited for runtime optimizations with large numbers of
codelets where the overhead of the expensive search phase probably does not
pay off during the time slot accorded by the batch scheduler.

To limit computational effort, the search space can be bounded, e.g. until
performance starts to decline, by a branch-and-bound technique or arbitrary
restrictions such as looking only at block sizes which are powers of two. Several
systems employ steepest descent methods although it is a discrete optimization
problem and jumps in performance between algorithmic variants are possible as
e.g. shown in [73]. Seymour et. al. evaluated the effectiveness of Nelder-Mead
simplex, genetic algorithms, simulated annealing, particle swarm optimization,
orthogonal search, and random search [74]. Depending on the case, the particle
swarm optimization or the orthogonal search were advantageous.

Vuduc [73] considered the problem of search in an abstract framework, defining
an early-stopping criterion and elaborating a way how to classify implementa-
tions depending on input data at runtime.

The effectiveness of search strategies ultimately depends on characteristics of
the optimization space.
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3.2.2.3 Advantages and Disadvantages of Heuristic Modelling and
Empirical Evaluation

When regarding communication models, some of them are highly sophisticated,
but ultimately suffer from three limitations: firstly, it is often hard to determine
some parameters of (sophisticated) communication models. As an example,
no approach is published as of today which derives a reasonable estimate of
the receive-overhead in the LogGP model [75]. Second, while it is possible to
develop a performance model for a simple MPI-level communication operation,
more complex functions involving alternating and irregular sequences of com-
putation and communication have hardly been modeled as of today. Lastly, all
models have their fundamental limitations and break-down scenarios, since
they represent simplifications of the real world behavior of the machines. Thus,
while modeling collective communication operations can improve the under-
standing of performance characteristics for various algorithms, tuning complex
operations based on these models is fundamentally limited. Fagg confirms
in [61] that the "randomness of our results for a given system also show that a
generalized mathematical model will often not be able to give optimal perfor-
mance". Pješivac-Grbović [76] acknowledged that "based on our findings, we
believe that the complete reliance on models would not yield optimal results."

To outperform empirical search methods, analytical models have to be accurate
enough to be useful, yet simple enough to evaluate quickly. Faulty assumptions
or imprecisions in the model which are likely to occur for purely static models
can lead to a non optimal choice of parameter values. As Kulkarni put it
in [77]: "one advantage of empirical search over analytical models [is]: the lack
of intelligence of the search can occasionally provide better results when the
platform behaves in a manner other than the model’s expectation". This is why
the empirical approach has mostly displaced theoretical modelling and is now
widely accepted.

3.3 The Abstract Data and Communication
Library (ADCL)

The Abstract Data and Communication Library (ADCL) [78] is an automatic em-
pirical performance tuning framework at application level and was introduced
in 2007 by Edgar Gabriel and Shuo Huang [79]. As any auto-tuning library,
it aims to provide the highest possible performance within a given execution
environment. Its use is advantageous as only a single version of the application
source code needs to be maintained while still having the ability to achieve close
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to optimal performance for the application on all architectures. Furthermore,
ADCL gives application developers the possibility to express often occurring
communications patterns in higher level terms and takes away complexity from
them while at the same time exploiting optimization possibilities. The main
area of application are iterative procedures with repetitive numerical kernels
or communication patterns which may stem from iterative solvers or time dis-
cretization schemes. The library is written in C and provides a Fortran interface.
A key concept of the adaptive communication framework is its ability to select
the fastest of the available codelets during the regular execution of the applica-
tion. This allows ADCL to adapt itself to the characteristics of the current hard-
and software environment as well as the application and optimize also parame-
ters which are only known at runtime. ADCL uses the first executions of the
communication within the application to determine the fastest available codelet.
Although some of the tested codelets will deliver a non optimal performance,
this approach avoids a separate ’planner’ step or expensive pre-tuning which
does not contribute to the simulation. This approach also allows an easy integra-
tion of a monitoring interface when tuning MPI communications which could
restart the runtime selection logic in case the networking conditions changed
significantly compared to the initial evaluation.

ADCL incorporates a runtime selection and decision logic in order to choose
the codelet leading to the highest performance of the application. Two different
runtime selection algorithms are currently available within ADCL: the library
can either apply a brute force search strategy which tests all available codelets
of a given communication pattern; alternatively, a heuristic relying on attributes
characterizing a codelet has been developed in order to speed up the runtime
selection procedure [79].

The primary purpose of the library is as an add-on to MPI to optimize MPI
communications and therefore ADCL requires its own API which will be in-
troduced in sec. 3.3.1. However, in principle, the functionality of ADCL could
also be used to optimize other applications. The user has to implement different
codelets for a particular problem, register them with the library and define an
user-provided set of codelets. Then, he can employ the selection and decision
algorithms of ADCL to determine the fastest way to solve the problem.

In the past, ADCL has been used to tune parallel matrix-matrix operations,
low-level parameters of a message passing library [80] and the n-dimensional
neighborhood communication, where processes are located in a Cartesian grid
and each process communicates with its next neighbors along each of the n axes.
This highly relevant communication pattern is the dominant communication
operation in many applications [81, 82] with stencil computations. At present,
the library provides a large predefined set of 20 codelets for this pattern shown
in tbl. 3.1. The different codelets of the neighborhood communication provided
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Codelet Comm. Handl. of non- Data transfer
no name pattern cont. msgs. primitive
0 IsIr_aao all-to-all derived types MPI_Isend/Irecv/Waitall

1 IsIr_pair pair-wise derived types MPI_Isend/Irecv/Wait

2 IsIr_aao_pack all-to-all pack-unpack MPI_Isend/Irecv/Waitall

3 IsIr_pair_pack pair-wise pack-unpack MPI_Isend/Irecv/Wait

4 SIr_aao all-to-all derived types MPI_Send/Irecv/Waitall

5 SIr_pair pair-wise derived types MPI_Send/Irecv/Wait

6 SIr_aao_pack all-to-all pack-unpack MPI_Send/Irecv/Waitall

7 SIr_pair_pack pair-wise pack-unpack MPI_Send/Irecv/Wait

8 S_R_pair pair-wise derived types MPI_Send/Recv

9 Sr_pair pair-wise derived types MPI_Sendrecv

10 S_R_pair_pack pair-wise pack-unpack MPI_Send/Recv

11 Sr_pair_pack pair-wise pack-unpack MPI_Sendrecv

12 WinfencePut_aao all-to-all derived types MPI_Put/MPI_Win_fence

13 WinfenceGet_aao all-to-all derived types MPI_Get/MPI_Win_fence

14 PostStartPut_aao all-to-all derived types MPI_Put/

MPI_Win_post/start

15 PostStartGet_aao all-to-all derived types MPI_Get/

MPI_Win_post/start

16 WinfencePut_pair pair-wise derived types MPI_Put/MPI_Win_fence

17 WinfenceGet_pair pair-wise derived types MPI_Get/MPI_Win_fence

18 PostStartPut_pair pair-wise derived types MPI_Put/

MPI_Win_post/start

19 PostStartGet_pair pair-wise derived types MPI_Get/

MPI_Win_post/start

Table 3.1: Currently available codelets in ADCL in the predefined set of codelets
ADCL_FNCTSET_NEIGHBORHOOD for the regular n-dimensional neighborhood com-
munication and their corresponding attributes.

by ADCL differ in the number of simultaneous communication partners for each
process (pair-wise or all-to-all), the data transfer primitives used (synchronous,
asynchronous, one-sided communication) and the handling of non-contiguous
data (derived data types or pack/unpack). It has been shown that close-to-
optimal performance is delivered for a large number of platforms and network
interconnects [79, 83].

Within the context of this work, the functionality of ADCL has been extended
to collective communication operations and different methods to collect and
evaluate empirical data have been implemented and analyzed. The details are
described in sec. 3.4.
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3.3.1 Using ADCL

ADCL has its own API, it does not use a compiler-based automatic code sub-
stitution or the performance interface of MPI since its goal is to tune any code
fragment and to offer high level interfaces of application level collective opera-
tions which do not directly correspond to certain MPI function calls.

The main objects within the ADCL API describe the data, codelets and the MPI
topology and are used to steer execution and optimization.

ADCL_Vector describes the data to be used during the communication. The user
can for example allocate or register a data structure such as a vector or a
matrix with the ADCL library, detailing the dimensions and extents of the
structure, its basic data type, the number of components per grid point,
the number of layers of halo cells and a pointer to the data array.

ADCL_Function is a codelet that implements a certain numerical kernel or com-
munication pattern. The user can register its own codelets in order to
utilize the ADCL runtime selection logic.

ADCL_Fnctset is a collection of ADCL functions providing the same functional-
ity. ADCL includes a pre-defined function set ADCL_FNCTSET_NEIGHBORHOOD
for the n-dimensional Cartesian neighborhood communication.

ADCL_Attribute is an abstraction for a particular characteristic of a codelet.
Each attribute is represented by the set of possible values for this charac-
teristic.

ADCL_Attrset is a collection of ADCL attributes.

ADCL_Topology provides in the MPI case a description of the process topology
and neighborhood relations within the application.

ADCL_Request combines a vector object, a function set and a topology object.
In analogy to the MPI case where the ADCL_Request represents a persis-
tent communication object similarly to its MPI counterpart for sequential
persistent requests, the ADCL request can be ’started’, in this case using
ADCL_Request_start. Call-site dependent optimizations can be realized
by creating multiple ADCL requests.

The following code sample gives a simple example for an ADCL code, using
a 2D neighborhood communication on a 2D process topology. It can be used
within an existing parallelized program or as a guideline for an initial MPI
parallelization where the user only has to add routines for data distribution and
collection.

#include "mpi.h"

#include "ADCL.h"
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/* Dimensions of the data matrix per process */

#define DIM0 1000

#define DIM1 1000

/* Number of layers of halo-cells */

#define HWIDTH 1

int main ( int argc, char **argv ) {

int ndims = 2; /* number of dimensions */

int vec_dims[2]={DIM0+2*HWIDTH, DIM1+2*HWIDTH};

/* extents of the data array */

double matrix[DIM0+2*HWIDTH][DIM1+2*HWIDTH];

/* data array with halos to be communicated */

int nc = 1; /* entries per grid point */

int hwidth = 1; /* number of layers of halo cells */

MPI_Comm cart_comm;

/* Variables for the process topology information */

int rank; /* rank of the calling process */

int size; /* number of processes */

int cart_dims[]={0,0}; /* number of nodes in each dimension */

int periods[]={0,0}; /* no periodic grid */

MPI_Comm cart_comm; /* Cartesian MPI communicator */

/* ADCL variables

ADCL_Vector adcl_vec;

ADCL_Topology adcl_topo;

ADCL_Request adcl_request;

int i;

/* Initiate the MPI environment */

MPI_Init ( &argc, &argv );

MPI_Comm_rank ( MPI_COMM_WORLD, &rank );

MPI_Comm_size ( MPI_COMM_WORLD, &size );

/* Initiate the ADCL library */

ADCL_Init ();

/* Allocate a 2D matrix with ADCL */

ADCL_Vector_allocate (ndims, vec_dims, nc, ADCL_VECTOR_HALO, hwidth,

MPI_DOUBLE, matrix, &adcl_vec);
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/* Generate a 2-D process topology */

MPI_Dims_create ( size, ndims, cart_dims );

MPI_Cart_create (MPI_COMM_WORLD, ndims, cart_dims, periods, 0,

&cart_comm);

ADCL_Topology_create (cart_comm, &adcl_topo );

/* Combine description of data structure, predefined function set and

process topology */

ADCL_Request_create (adcl_vec, adcl_topo, ADCL_FNCTSET_NEIGHBORHOOD,

&adcl_request );

/* Initialize matrix to zero including halo-cells */

matrix_init ( vec_dims, cart_dims, matrix, cart_comm );

/* Main application loop */

for (i=0; i<NIT; i++ ) {

/* Initiate neighborhood communication */

ADCL_Request_start (adcl_request );

}

/* Output the resulting matrix */

matrix_write ( matrix, cart_comm );

ADCL_Request_free ( &adcl_request );

ADCL_Topology_free ( &adcl_topo );

ADCL_Vector_free ( &adcl_vec );

MPI_Comm_free ( &cart_comm );

ADCL_Finalize ();

MPI_Finalize ();

}

During ADCL_Init and ADCL_Finalize, internal data structures are initialized
resp. freed including the predefined set of codelets such as ADCL_FNCTSET_-

NEIGHBORHOOD for the n-dimensional neighborhood communication. Then, a
two-dimensional, double precision matrix of dimensions ndims and extent
vec_dims with one layer of halo cells is allocated as an ADCL_Vector. The
ADCL_Topology object is based on a previously defined Cartesian communica-
tion cart_comm. ADCL_Vector, ADCL_Topology and the predefined set of codelets
ADCL_FNCTSET_NEIGHBORHOOD are combined to an ADCL_Request. All necessary
ADCL objects are now initialized. ADCL_Request_start replaces the calls to
MPI. It executes the communication, controls the empirical optimization, and
selects transparently to the user the optimal codelet.
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With ADCL, the user is freed from the burden of buffer management or the
creation of derived data types. All data management is done inside ADCL. At
present, also buffered next-neighbor communciations have been implemented,
so ADCL can decide based on the collected data, whether or not copying data is
better then using derived data types. No more sophisticated guesses from the
user are necessary regarding this matter.

The enhancements of ADCL within this thesis to support collective MPI commu-
nications required small changes to the API which are described in chapter 4.

3.3.2 Mode of operation

ADCL passes through the three phases of automatic tuning during the regular
execution of the application, i.e. whenever ADCL_Request_start is called: search,
decision and production.

The search is carried out during the first executions of the communication pattern
in the application which is tuned. The simplest approach, a brute force search
strategy, evaluates all available nc codelets nm times (for statistical reasons)
whereas a search with selection logic would only evaluate some codelets. In
iteration 1 to nm, ADCL calls—transparent for the user—the first codelet and
stores the execution times locally on each process. Although the execution
times on each process may be very different, providing the measurements of
all processes to all other processes would result in an exchange of large data
volumes and an substantial increase in memory consumption and is therefore
not feasible. An optional selection phase decides on the second codelet which
execution times are measured during iterations nm + 1 to 2 · nm. After all nc
codelets have been tested, each process disposes of an array of nc · nm execution
times. A more sophisticated search algorithm based on attributes is explained
in sec. 3.3.3.

Assuming that the runtime environment produces reproducible performance
data over the lifetime of an application, the brute force search is guaranteed to
find the best performing codelet on a given platform. The major drawback of
this approach is the time it might take to determine the fastest codelet. Accord-
ing to observations on various platforms, the library requires between 10 and 50
measurements per codelet in order to have enough data points for a statistical
analysis. Taking into account that the library might have to test up to twenty
different codelets, up to 1000 instances of the communication pattern might
be required before the runtime selection logic comes up with a final decision.
Although this does not necessarily translate into 1000 iterations in the appli-
cation itself, since e.g. an iterative solver very often has multiple instances of
the neighborhood communication within each iteration, adaptive applications
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with varying problem sizes would require a significantly faster procedure in
order for ADCL to become useful for this class of applications. So more efficient
search strategies have to be applied which are described in sec. 3.3.3.

During the following decision phase, the measurements are analyzed mainly
locally with a statistical method capable of handling outliers, i.e. "wrong"
measurements. Only one collective communication is necessary to compute the
global minimum. The statistical method decides on the codelet it considers to
be the fastest, the so-called winner codelet. For a next-neighbor communication,
for example, the statistical method would analyze the performance data for
each of the 20 different codelets given in tbl. 3.1 and decide on the codelet it
judges best-performing. In chapter 5, the current approach is compared to
three other widespread statistical approaches, namely a standard interquartile
range method, cluster analysis and robust statistics. The quality of the decision
also depends on how accurately the collected data reflects the behavior of the
application. That this is not automatically the case is shown in chapter 6 where
alternative data collection methods have been implemented and analyzed.

Starting from iteration nc · (nm + 1), the winner codelet is used in production for
all subsequent iterations.

An additional mode of operation called preselection, is less relevant in practice,
but highly convenient for our research. The user specifies a certain codelet
forcing ADCL to skip the search and decision phases and enter directly the
production phase, so that this codelet is used during the whole runtime of the
application. Using preselection, one can assess the performance of each codelet
in long-term runs to determine which one is the best-performing codelet in
the current setting. This allows e.g. to evaluate if the decision logic of ADCL
made a correct choice or if it selected a codelet which does not deliver optimal
performance. This is why we denote such a set of measurements where each
codelet in a set of codelets is preselected and executed once in a long-term run
as verification run throughout the rest of this work.

3.3.3 Overheads and Countermeasures: A Sophisticated
Selection Logic and Historic Learning

Comparable to any runtime optimization library, ADCL introduces different
types of overheads. As the search phase is integrated into the execution, non-
optimal codelets are executed which causes the major part of the overhead.
During production, the comparatively small calling overhead is present. Also,
additional data structures have to be stored in main memory. ADCL does not
write any data to hard drive, except if the user specifies to store the gathered
performance data on disk.
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The initial search overhead can be reduced by a more sophisticated algorithm or
by historic learning, i.e. the exploitation of knowledge gathered in previous runs
to avoid the search phase altogether. The user can also decide to use preselection
after executing some tuning runs at the cost that changing parameters such
as different nodes allocated by the batch scheduler are no longer taken into
account.

Apart from the brute force search which evaluates all available codelets of a
given communication pattern, ADCL can alternatively apply a heuristic search
method based on attributes characterizing a codelet in order to speed up the
runtime search procedure [79]. The heuristic is based on the assumptions that
the fastest codelet for a given problem size on a given execution environment is
also the codelet having ’optimal’ values of the attributes and that the attributes
are uncorrelated and can thus be tuned seperately one after the other. Therefore,
the algorithm tries to determine the optimal value for each attribute used to
characterize an codelet. After the hypothesis that a certain attribute value leads
to better performance is confirmed by multiple codelets, the optimal value for
this attribute is assumed to be found and the library removes all codelets not
having the required value for the corresponding attribute from the function set
and thus shrinks the list of available codelets. This can speed up the search
tremendously as shown in [79].

The goal of historic learning is to exploit knowledge gained from previous
executions to speed up the search process of ADCL without reducing the quality
of the selection. The main reason is that for some clusters, the execution of some
codelets during the search phase was so time-consuming that at the end of the
run, the search phase still dominated the overall execution time. Moreover,
applications with frequently and dynamically varying problem sizes, e.g. due
to load-balancing or adaptive mesh refinement, can not spent a lot of time in the
tuning phase. Currently, ADCL would probably often not finish tuning before
the communication volumes change. As necessary prerequisites, Feki et al. [84]
introduced a notion of similarity and a certain distance measure as well as a
verifying procedure to eventually discard former performance data which is no
longer valid in the current execution context.

Apart from these overheads, the performance gain of ADCL depends on firstly,
if applicable, how good the winner codelet determined by ADCL is compared
to the original MPI implementation and secondly, how long the application is
running. The longer the production phase takes, the relatively smaller the initial
overhead of the search phase gets.
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3.4 Previously Missing Features and Contributions
of This Work

The three research topics discussed in this work follow from the prior state of
development of ADCL. The first one concerns ADCL’s missing applicability
to collective MPI communications and the contributions of this work to solve
this problem are discussed in sec. 3.4.1. The other two are associated with the
collection and evaluation of empirical data which the optimization process relies
on: firstly, the problem of outliers, i.e. data points which deviate considerably
from the others. They need to be checked for relevance, i.e. if an error of
measurement occurred or if those "outliers" reflect a typical application behavior
as explained in 3.4.2. This work analyzes multiple statistical methods to handle
this problem. Secondly, the necessity of reliable empirical data that accurately
predicts the performance of a codelet poses challenges discussed in sec. 3.4.3.
Several new methods of data collection have been developed, implemented and
analyzed for this work.

3.4.1 Area of Application

A shortcoming of ADCL in the past was its restriction to next-neighbor commu-
nications on Cartesian grids whereas a widely used class of MPI communication
operations, namely collective operations, were not supported. Rabenseifner
showed in a long-term study [24] that apart from point-to-point communica-
tions a significant amount of communication time is spent in the collectives
MPI_Alltoall and MPI_Allreduce. Terry Jones concluded in a more recent
study [85] that the time spent in collectives is predominantly divided among
barrier, allreduce, broadcast, gather and alltoall and that the alltoall

performance is vital to some codes. This set of operations is also of great value
to the CFD community as e.g. the alltoall operation is the central part of FFTs
needed to study transitional phenomena.

Since the performance of collective operations has a considerable influence
on the scalability, many researchers tried to improve the efficiency of collec-
tives [86, 76, 72, 87, 88] based on certain assumptions concerning the type of
network and the message length. However, no single algorithm can lead to
optimal performance in all possible scenarios. Even if the MPI implementation
combines several algorithms using a heuristic switching technique depend-
ing on the message length, the best performance is not guaranteed. The MPI
implementation itself will also use its own algorithm. Thus the user faces a
large choice of possible alternative implementation without knowledge and/or
resources to find the optimal one for his application. He/She has to decide
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whether to use the internal MPI implementation of unknown quality or to
efficiently implement one or more algorithms him-/herself suited for his/her
application.

To support the user in his efforts, it is therefore of utmost importance to extend
ADCL to support collective operations. The contributions described in chapter 4
take away complexity and work from the user and supply him/her with a
valid tool which provides optimal communication performance for his/her
application. It is shown that the native MPI implementation is not always the
best choice. The extension required the introduction of a new ADCL object, the
vector map object.

3.4.2 Outlier Handling

The decision logic is expected to come to a decision which codelet is the best-
performing one based on the collected empirical data. This implies that for each
codelet an estimated mean execution time is calculated. The codelet with the
smallest estimated mean execution time is selected.

Measured communication times commonly differ from each other. If an unpre-
dictable event, such as large network traffic from another application, occurs
at the same time as the communication operation, the execution time will be a
lot higher than expected. If one simply averages over all measurements for one
codelet, the resulting mean is not characteristic for the actual performance of
the codelet. Thus, it is mandatory to exclude or down-weigh the untypical data
point before computing the estimated mean.

However, not all increased executions times are necessarily outliers. When
codelets send large amounts of data at once, package drops at the network
switch occur. Packages have to be retransmitted and cause increased execution
times on a regular basis. If these data points are treated as outliers and are
excluded or down-weighed, one ignores a fundamental property of the codelet
and inevitably obtains an underestimated mean.

In short, an adequate outlier handling is crucial, otherwise the estimated means
are incorrect. The decision logic then would arrive at a wrong conclusion
leading to a performance penalty. It therefore has to be clarified, if a data point
is truly an outlier or if it reflects a typical application behavior, and subsequently,
how this data point should be handled when computing an estimated mean.
Chapter 5 will present different statistical methods to tackle the outlier problem
and contribute a thorough analysis of their quality in a variety of settings.
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3.4.3 Reliable Performance Measurements

The second problem concerns the collection of empirical data. As a general rule,
more data lead to a better statistic, less data create less overhead. However, if
the measurements itself are of low quality and inhibit some (systematical) errors,
more data does not improve the statistical result. Different influences lower
the datas’ reliability, especially when tuning parallel communications: on the
one hand, subsequent measurements might influence each other, in particular
when switching from one codelet to the next. On the other hand, adding
synchronization disrupts the parallel execution. Additionally, the location of
the calls to the timing routines in the source code can effect the quality of the
data. System timers sometimes lack precision when execution times are very
small. To sum up, a runtime optimization library needs to be able to predict the
performance of a codelet based on only a few, but reliable data points to keep
the search overhead low and select the best-performing codelet.

The problem of unreliable empirical data is illustrated in fig. 3.1. It shows the
empirical data obtained from the collective MPI communication of a NAS FFT
benchmark of class B (cf. 2.4.2) running on 32 processes on an SGI Altix with
Intel MPI. Twenty measurements are performed for each of the eight different
collective communication codelets c0 to c7. For a description of the codelets,
the reader is refered to sec. 4.1.3. Each data point represents the averaged
execution time of the communication operation over all processes. This data (♦)
and its estimated mean (red) are compared to the execution times of long-term
simulations for each of the codelets (olive). For codelets c1 (data points 21–40)
and c4 (data points 81–100) as well as to a lesser extent for c3 (data points 41–60)
and c7 (data points 141–160), the empirical data is not representative of the
overall performance. The data for the codelet c0 contains to many outliers, so
they are regarded as valid information and included in the calculation of the
estimated mean.

Thus, apart from a inadequate outlier treatment, also a wrong assessment
of the empirical data results in errors of the decision logic and subsequently
performance losses.

3.4.4 Conclusions

MPI is sometimes playfully called the "assembler of parallel programming". To
use MPI with all its possibilities is too complex and too rich in details for the
average user. An example are the 20 possibilities how to realize a neighborhood
communication pattern shown in tbl. 3.1. However, if one does not leverage
MPI to its full extent, performance losses are inevitable. Since the amount of
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Figure 3.1: Wrong estimation of the mean due to non-representative empirical
data.

computing time is often fixed, this results in simulations of lower resolution to
make up for the slower runtime. But even with a detailed knowledge of MPI,
it is not possible to write a single piece of code which will perform optimally
across HPC systems and for different test cases and MPI implementations.

Thus, complexity needs to be reduced for the user. An abstract interface should
allow him to simply describe his/her data and to which process it should be
communicated. In addition, portable performance is required. Good perfor-
mance for different settings (HPC system, test case, software, . . .) should be
available without having to tune the code anew. This is what ADCL provides.

The state of development of ADCL was far from complete. One of the most
important classes of MPI communications, namely collectives, were missing.
This class has great impact on the scalability of large-scale simulations. It
appears frequently in CFD applications, e.g. to calculate time steps, residuals
or to distribute and collect data. Some applications even rely heavily on them,
such as spectral methods. In the context of this work, the extension of ADCL to
support this significant class of collectives is presented in chapter 4.

It also became clear from this section, that without proper data and the right sta-
tistical method, ADCL can not decide correctly on the best-performing codelet.
This work creates a sound basis for the empirical data needed by the decision
logic. Chapter 5 compares different approaches to handle the outlier problem
and chapter 6 discusses how to obtain reliable empirical data.

Each HPC system is unique and the knowledge how to carry out optimizations
is not readily available. Also it requires more knowledge than the average user
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has. This makes it complicated for the user to apply optimizations to their
own codes. ADCL helps to reduce the complexity while assuring an adequate
performance. Details are hidden, but taken into account. Users who run their
application on different clusters, HPC systems and at sites of collaboration
partners profit from the performance portability.
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In this chapter, enhancements to the ADCL API are described in order to extend
ADCL’s functionality beyond Cartesian neighborhood communication, most
notably to support MPI collective operations. The main challenge lied in the
fact that up to now data description and information about the communication
operation were intertwined. A new set of interfaces is developed and detailed
which supports more generic communication operations, among them most
MPI collective communication operations. They thus enable the optimization
of one of the most widely used features of the MPI specification. Semantic
as well as implementation aspects are discussed. An ADCL version of the
NAS FT benchmark is implemented using the new interfaces for the all-to-
all communication pattern and results for various problem sizes, number of
processors and MPI libraries on several HPC systems are presented.

4.1 Semantics of new ADCL interfaces

The ADCL vector object as presented in sec. 3.3 serves two purposes: first, it
allows to identify the buffer associated with a communication operation; second,
it allows to perform an automatic data mapping of which portion of the data
array is supposed to be transfered to which process. As an example for the latter
the interface to allocate an ADCL vector,

int ADCL_Vector_allocate ( int ndims, int *dims, int nc, int comtype,

int hwidth, MPI_Datatype dat, void *data, ADCL_Vector *vec )

contains the parameter hwidth which specifies the number of layers of halo cells
that have to be transfered to the neighboring processes. Combined with the
topology object based on a Cartesian communicator, the library automatically
determines which elements have to be transfered to which process.
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4.1.1 The ADCL vector-map object

Although this functionality is highly convenient, the corresponding API was
limiting ADCL to Cartesian neighborhood communications, the original driving
force of the library. To support further communication patterns, a set of new
API interfaces is developed in this work, which allow to separate the description
of the communication buffer and the mapping of which elements of the buffer
have to be transfered to which process.

The new set of interfaces developed within this project tries to accommodate
multiple goals:

1. allow for the definition of user defined functions as well as predefined set
of codelets for common MPI communication operations, e.g. neighbor-
hood communication, all-to-all, etc.

2. separate data management from the actual communication operations

3. allow for a light-weight description of data mappings and the automatic
association with remote processes.

The new interface to create an ADCL_Request therefore distinguishes between
five different objects: the vector object, the vector-map object, the topology
object, the set of codelets and the request. The objects for attributes, attribute
sets and codelets remain untouched. In the following, attention is devoted to
the vector, vector-map and the request object.

The main purpose of the ’new’ vector object is to define a data array that will
be used later for communication. The interface allows to register an already
existing or allocate a new multi-dimensional memory region, using the number
of dimensions of the data array, extent of each array, number of elements of each
data point in the array, and the basic MPI datatype. The vector does not specify
which elements of the data array will be used in communication operations.

The vector-map object (or short ’vmap’) allows to define which elements of the
vector object have to be transfered to which process. This functionality does
not have a counterpart in MPI, since it combines functionality often provided
by the vector versions of the MPI collective operations such as MPI_Gatherv,

MPI_Scatterv and derived MPI data types. Although the vmap object does not
have the flexibility of the most generic MPI derived data type constructors such
as MPI_Type_create_struct, it provides a much simpler and more user-friendly
interface compared to the latter one, and covers the most common situations.
Specifically, based on the vector and the vmap object, the ADCL library is able
to construct the required derived MPI data types automatically for the end-user.
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4.1.2 Extension of the ADCL Interfaces

In order to support a large variety of communication patterns, the informa-
tion required for the MPI collective operations, the Cartesian neighborhood
communication and user defined function sets is analyzed in the following.

For the collectives defined in the MPI standard and shown in tbl. 4.1 it is noticed
that the parameters can be separated into three groups: information concerning
the data (buffer, data type), concerning the process topology (communicator,
root) and related to the communication pattern (element counts, reduction
operation, array of element counts or displacements). As an example, for the
MPI_Bcast interface, the information about the data consists of the buffer and
the data type, root and the MPI communicator comm give information about the
process topology and count is related to the communication pattern. As each of
the parameters of the MPI collectives falls into one of these three groups, they
form the basis of the new ADCL objects: information concerning the data is
stored in the ADCL vector object, information concerning the process topology
in the ADCL topology object and information related to the communication
pattern becomes part of the new vmap object.

If one treats send and receive information separately, one obtains four different
types of vmaps for the collectives. The interface of MPI_Gather, for example,
specifies the same information—the amount of data to send/receive—once for
the sender and once for the receiver. This combination is regarded as one vmap
type called all. Together with an inplace type and the halo type for Cartesian
neighborhood communication, this results in six different types of vmap objects.
The constant ADCL_VMAP_NULL can be used for user-defined function sets that
do not necessarily need a vmap object. Table 4.2 summarizes the different
vector-map object types and the required information for each of them.

The types of vmap objects needed for each MPI collective are shown in tbl. 4.3.
The interface for MPI_Gatherv, for example, contains as communication infor-
mation the parameters scount for the sender as well as rcounts and displs

for the receiver. This translates into the ADCL vmap types all and list. MPI
allows the "in place" option for intra-communicators by passing the value
MPI_IN_PLACE to sbuf at all tasks. Since the scount argument is then ignored,
the other possibility for ADCL vmap types is inplace combined with list.

Due to the broad range of parameters required for various operations, different
interfaces for different operations have been defined. The parameter comtype
was originally used in the interfaces to allocate or register a vector and describes
the type of vmap. It now becomes part of the interface to allocate the vmap
object as vmap_comtype_allocate. The new interfaces for vmap, vector, topology
and request creation for the example code from sec. 3.3 are now
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collective data communication topology
information information information

MPI_Bcast buffer, type count root, comm
MPI_Gather sbuf, stype, scount, root, comm

rbuf, rtype rcount
MPI_Gatherv sbuf, stype, scount, root, comm

rbuf, rtype rcounts, displs
MPI_Scatter sbuf, stype, scount, root, comm

rbuf, rtype rcount
MPI_Scatterv sbuf, stype, scounts, displs, root, comm

rbuf, rtype rcount
MPI_Allgather sbuf, stype, scount, comm

rbuf, rtype rcount,
MPI_Allgatherv sbuf, stype, scount, comm

rbuf, rtype rcounts, displs
MPI_Alltoall sbuf, stype, scount, comm

rbuf, rtype rcount
MPI_Alltoallv sbuf, stype, scounts, sdispls, comm

rbuf, rtype rcounts, rdispls
MPI_Alltoallw sbuf, stypes, scounts, sdispls, comm

rbuf, rtypes rcounts, rdispls
MPI_Reduce sbuf, count, op root, comm

rbuf, type
MPI_Allreduce sbuf, count, op comm

rbuf, type
MPI_Reduce_ sbuf, rcount, op comm
Scatter_block rbuf, type

MPI_Reduce_ sbuf, rcounts, op comm
scatter rbuf, type

MPI_Scan sbuf, count, op comm
rbuf, type

MPI_Exscan sbuf, count, op comm
rbuf, type

Table 4.1: Overview of collectives. Interface parameters are divided into data,
communication and topology-related information ( s — send, r — recv).
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ADCL_Vmap_halo_allocate ( int hwidth, ADCL_Vmap *vmap );

ADCL_Vector_allocate ( int ndims, int *dims, int nc, MPI_Datatype dat,

void *data, ADCL_Vector *vec );

ADCL_Topology_create ( MPI_Comm comm, int, root, ADCL_Topology *topo );

ADCL_Request_create ( ADCL_Vector vec, ADCL_Vmap vmap,

ADCL_Topology topo, ADCL_FNCTSET_NEIGHBORHOOD,

ADCL_Request *request );

Special attention has to be attributed to the data types which naturally belong
to the vector object. However, also the request object has data types since in
case of the neighborhood communication, the vector object contains the basic
data type whereas for the request derived types are constructed which depend
on the topology information (size), data information (dimensions and extent
of the data array, nc) and communication information (hwidth). This means
that for collectives the data types from the vector object have to be copied to
the request object. New variables are introduced in the request object which
specify the number of MPI data types to be sent or received. For the copy
operations of the data types and the initialization of the new variables, the
functions ADCL_basic_init and ADCL_basic_free are implemented.

4.1.3 The new function sets

For supporting MPI collective operations within ADCL, one ADCL codelet
is a wrapper around the native MPI collective provided by the MPI library.
This codelet is denoted as encapsulated codelet. Additionally, a variety of algo-
rithms are implemented which perform the collective communication based on
point-to-point communications. Inside the MPI library, the collective function is
likewise performed by one algorithm as a sequence of point-to-point commu-
nications, but it is up to the MPI library which algorithm it uses and in case of
vendor MPI libraries not known to the user.

Vmap comtype Parameters
inplace -
halo hwidth
all count
reduce count, op
list counts, displs
redscatter? counts, op

Table 4.2: Types of ADCL vmap objects (? - not implemented as only needed for
MPI_Reduce_scatter).
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collective vmap type for send (& receive) vectors
MPI_Bcast all
MPI_Gather all & all or inplace & all
MPI_Gatherv all & list or inplace & list
MPI_Scatter all & all or all & inplace
MPI_Scatterv list & all or list & inplace
MPI_Allgather all & all or inplace & all
MPI_Allgatherv all & list or inplace & list
MPI_Alltoall all & all or inplace & all
MPI_Alltoallv list & list or inplace & list
MPI_Alltoallw list & list or inplace & list
MPI_Reduce reduce (2x) or inplace & reduce
MPI_Allreduce reduce (2x) or inplace & reduce
MPI_Reduce_ reduce (2x) or inplace & reduce
Scatter_block

MPI_Reduce_ redscatter (2x) or inplace & redscatter
scatter

MPI_Scan reduce (2x) or inplace & reduce
MPI_Exscan reduce (2x) or inplace & reduce

Table 4.3: Types of ADCL vmap objects for the MPI collectives.

New predefined function sets for allreduce, allgatherv and all-to-all have been
added. ADCL provides five codelets for the allreduce operation. One is the
encapsulated native MPI_Allreduce, the four others are based on send-receive
operations: linear (reduce to root and broadcast with own implementations),
nonoverlapping (reduce and broadcast with MPI implementation), recursive
doubling algorithm as used in MPICH2 [89] for small and intermediate size
messages and ring.

For allgatherv, there is the native MPI implementation, linear (gatherv to root
and broadcast), recursive-doubling as used in MPICH2 [89], Bruck (a variation
of the All-to-all algorithm described in [90]), neighbor exchange (adapted from
allgather algorithm described by Chen et.al. in [91]) and ring.

The all-to-all function set consists of eight codelets, here numbered for reference
in sec. 4.2: the native MPI_Alltoall (c0), linear_sync (c1), pairwise (c2), pair-
wise_excl (c3), linear (c4) and Bruck’s Algorithm [90] with a minor modification
as used in MPICH2 [89], which restricts the number of messages. In our case
block sizes of 2, 4 and 8 (c4–c7) are used.

No special effort has been invested to tune the different codelets as of today. In a
long-term, it is planned to add the flexibility for supporting various data transfer

52



4.2 Performance Evaluation

primitives (blocking, non-blocking, one-sided) and various methods to handle
non-contiguous data, similarly to the Cartesian neighborhood communication.

4.2 Performance Evaluation

To compare the codelets of ADCL with the native MPI_Alltoall, the MPI FFT
Benchmark of the NAS Parallel Benchmarks 3.0 presented in sec. 2.4 is used.
However, there is no intent to compete with FFTW or similar software packages.
The purpose is not to gain maximum performance for this special application,
but to obtain a valid tool for the optimization of all collectives.

4.2.1 Integration of ADCL

The modified code of the FT benchmark is depicted in fig. 4.1 and 4.2. In the
main program, after the call to the benchmark’s setup() routine, ADCL_Init is
called and the ADCL data structures are build: a vmap object for the all-to-all
communication, vector objects for u1 and u2 are registered and a request object
is allocated. A switch is set to false to avoid counting the first call to fft(). It
is set to true right before the main loop. During the computation of the FFT
in the subroutine transpose2_global the call to MPI_Alltoall is replaced by
an ADCL_Request_start. After the call to print_timers() the ADCL objects
are deregistered or deallocated and ADCL_Finalize is called. The header file
ADCL.inc is included in the main program as well as in the subroutine.
The following variable declarations have been added in global.h:

integer adcl_topo, adcl_vmap, adcl_svec, adcl_rvec, adcl_request

logical use_adcl

common /adcl/ adcl_topo, adcl_vmap, adcl_svec, adcl_rvec,

> adcl_request, use_adcl

4.2.2 Setup

The test systems used are the Laki cluster with InfiniBand interconnect, a Cray
XT5m and a NEC-SX8 installation at HLRS, the SGI Altix at LRZ Munich and the
Blue Gene/P system at the Supercomputing System Jülich. Runs were executed
in the virtual node mode, i.e. every core ran an MPI process. Within a single
batch job, three set of runs are executed. Each set consists of 9 runs, one for
each of the 8 codelets presented in sec. 4.1.3 for the all-to-all operation and one
without ADCL, with 200 FFT iterations.
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program ft

include 'ADCL.inc'

c FT: further includes and declarations

call MPI_Init(ierr)

call ADCL_Init(ierr)

c FT: timing and setup

c set up ADCL data structures

call adcl_topology_create ( MPI_COMM_WORLD, 0, adcl_topo, ierr )

call adcl_vmap_alltoall_allocate( ntdivnp/np, ntdivnp/np,

> adcl_vmap, ierr )

call adcl_vector_register ( 1, ntdivnp, 0, dc_type, u2,

> adcl_svec, ierr ) ! send vector

call adcl_vector_register ( 1, ntdivnp, 0, dc_type, u1,

> adcl_rvec, ierr ) ! receive vector

call adcl_request_create_generic ( adcl_svec, adcl_vmap,

> adcl_rvec, adcl_vmap, adcl_topo, ADCL_FNCTSET_ALLTOALL,

> adcl_request, ierr )

c disable adcl while problem is ran once for benchmarking reasons

use_adcl = .false.

c run problem

use_adcl = .true.

c main loop

do iter = 1, niter

call evolve(...)

call fft(...) ! calls transpose_xy_z which calls transpose2_global

end do

c FT: verification and output

c free ADCL objects

call adcl_request_free ( adcl_request, ierr )

call adcl_topology_free ( adcl_topo, ierr )

call adcl_vector_deregister( adcl_svec, ierr )

call adcl_vector_deregister( adcl_rvec, ierr )

call adcl_vmap_free (adcl_vmap, ierr )

call ADCL_Finalize(ierr)

call MPI_Finalize(ierr)

end program FT

Figure 4.1: ADCL implementation of the main program of the FFT NAS Parallel
Benchmark.
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subroutine transpose2_global(xin, xout)

include 'ADCL.inc'

c FT: further includes, declarations and timing

call adcl_request_start ( adcl_request, ierr ) ! replaces

c FT: call mpi_alltoall(xin, ntdivnp/np, dc_type,

c FT: > xout, ntdivnp/np, dc_type,

c FT: > commslice1, ierr)

c FT: timing

end

Figure 4.2: ADCL implementation of the subroutine which communicates the
data of the FFT NAS Parallel Benchmark.

4.2.3 Results

This work follows a two-step procedure to analyze the results. At first, the
execution time of the winner codelet is compared to that of the encapsulated
native MPI_Alltoall. Secondly, the overhead caused by ADCL is taken into
account and the execution time of the ADCL winner codelet is compared to the
benchmark results without ADCL.

In the following, the subscript w refers to the winner codelet, n to the encapsu-
lated native MPI_Alltoall and o to the original implementation without ADCL.
The mean t̄k = 1

nr
∑nr=3

i=1 tk,i, k ∈ {w, n, o} is executed from the execution times
tk,i of the nr = 3 verification runs. The degree of dispersion about the mean is
expressed by the uncertainty uk = sk√

nr
where

sk =

√
1

nr − 1

nr

∑
i=1

(tk,i − t̄k)2

is the sample standard deviation.

For k ∈ {n, o}, the possible gains in percent are given by

gk(t̄k, t̄w) =
t̄k − t̄w

t̄k
· 100

with uncertainty

utotk =

√(
∂gk
∂tk
· uk

)2

+
(

∂gk
∂tw
· uw

)2

=

√√√√( tw

t2
k
· uk

)2

+
(

uw

tx

)2

· 100 .
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When comparing the winner codelet to the encapsulated native MPI_Alltoall,
in 22 out of 42 test cases, i.e. more than 50%, the encapsulated all-to-all was not
the best implementation as shown in fig. 4.3. In other words, there was another
ADCL codelet, i.e. one algorithm based on point-to-point communications,
that outperformed without any tuning the native MPI collective! Among them
were 6 cases in which ADCL performed better (more than 10%). It is important
to note that 7 out of 8 codelets provided by ADCL performed best in at least
one test case. This shows the value of ADCL: firstly, one can not trust in the
performance of the MPI implementation. Secondly, it clearly demonstrates the
need for automatic tuning since no single codelet performs best in all cases.

Secondly, the overhead caused by ADCL is taken into account and the execution
time of the ADCL winner codelet is compared to the results of the original
benchmark without ADCL. The possible gains and losses using ADCL are de-
picted in fig. 4.4. Except for the test cases sgi_altixmpi_8B (go = −1.32%,
utoto = 1.08%), sgi_altixmpi_32B (go = −1.56%, utoto = 1.31%) and ju-
gene_vn_512C (go = −0.05%, utoto = 0.01%), ADCL performs as good or
better than the original version without ADCL. There are no rules identifiable in
which test case the use of ADCL is strongly advisable. This once more strength-
ens the demand for an automatic tuning system to be able to switch to a different
codelet.

4.3 Conclusion

This chapter of the thesis analyzes how to extend the auto-tuning library ADCL.
It describes the goals, semantics and realization of a set of new interfaces. With
the vector-map object developed in the context of this work, data management
and communication information are separated to allow for new communica-
tion patterns or user-defined functions. Predefined function sets for allreduce,
allgatherv and alltoall have been implemented. The approach has been vali-
dated by analyzing the requirements of collective operations and user-defined
functions.

Although the initial implementation for the predefined function sets does not
support various data transfer primitives or methods to handle non-contiguous
data, the results obtained for the NAS FT benchmark with its all-to-all commu-
nication pattern showed that the native MPI implementation has performance
deficits and in all but three cases an equal or superior performance could be
achieved when using ADCL. This makes ADCL an useful tool for vendors and
administrators. The former can use ADCL to verify the performance of their
native MPI collective implementation. The latter get assistance when they have
to decide which MPI to recommend to users.
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test case winner codelet gain gn [%] utotn
laki_impi_8A C7 0.67 0.19
laki_impi_8B C7 2.03 0.51
laki_impi_128C C2 0.05 1.07
laki_impi_512C C3 35.85 0.87
laki_ompi_8A C4 1.83 1.23
laki_ompi_8B C1 0.34 0.50
laki_ompi_32B C3 1.74 0.96
laki_ompi_32C C3 0.46 1.88
laki_ompi_128C C2 1.52 0.89
laki_ompi_512C C3 34.31 2.21
sgi_altixmpi_256C C2 20.27 2.76
sgi_impi_8A C7 3.56 0.25
sgi_impi_8B C4 22.44 8.54
sgi_impi_32B C4 4.92 0.29
sgi_impi_128C C4 11.32 1.47
sgi_impi_256C C1 4.16 5.13
sgi_ompi_8B C4 2.16 0.86
sgi_ompi_32B C3 56.23 23.91
cray_8A C7 0.70 0.15
cray_8B C7 1.14 0.34
cray_128C C3 0.38 0.71
cray_256C C3 6.82 6.62
sx8_8A C7 0.74 0.07
sx8_8B C4 0.32 0.07
sx8_32B C4 1.35 0.50
jugene_vn_8A C5 1.84 0.01
jugene_vn_32B C1 2.14 0.00

Figure 4.3: Overview of test cases with other winning codelets than the encap-
sulated native MPI implementation C0.
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Figure 4.4: Performance gains and losses go in percent when comparing the
total runtime with ADCL’s winner codelet for the all-to-all communication to
the one of the original NAS FFT benchmark version without ADCL. The error
bars show the uncertainty utoto.
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of Different Decision Algorithms

This chapter evaluates the possible overheads of ADCL as an empirical opti-
mization framework and gives recommendations how to minimize them. The
two main sources for overheads are the search phase as non-optimal codelets
are tested and eventually the production phase if the decision algorithm selects
a non-optimal codelet1. A rule of thumb is established on how many data
points are needed for each codelet and four different decision algorithms are
compared.

5.1 Outliers in Performance Data

When an adaptive software component is employed to select the best-performing
codelet at runtime, an estimated mean is calculated for each codelet from the
empirical data. This estimated mean constitutes the basis for the decision to be
taken and strongly depends on a reasonable handling of outliers. An outlier
has mostly been defined in a strict statistical context as a data point "... that
deviates so much from other observations as to arouse suspicion that it was generated
by a different mechanism" [92]. In general, outliers may occur as a result of wrong
models under study, systematic errors or faulty data, i.e. errors in measurement.
The sample mean 1

nm
∑i yi of nm data points, for example, is not an an adequate

estimator of the mean when outliers are present. Just one value yi → ∞ makes
it arbitrarily large and thus completely meaningless.

When auto-tuning communication operations, the process of detecting and
eventually removing outliers is greatly complicated by the fact that the types
and quantities of outliers depend on the network interconnect and the nodes
assigned to the job by the batch scheduler. In this work, four different statistical
methods used for handling outliers are evaluated:

1The third source of overhead, the overhead of ADCL itself, is not always possible to state.
There is not necessarily an equivalent implementation of the communication pattern of the
application as codelet in ADCL. For example for the application code Euler3D used in this
chapter, the data exchange in the application is based on temporary buffers, while ADCL
uses derived data types.
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• a heuristic derived from the trimmed mean value, where data with a large
value are considered outliers and, if not numerous, removed,

• a standard interquartile range method, which constitutes a simple, com-
mon statistical approach,

• cluster analysis, where the data is partitioned into subsets based on simi-
larity and small, distant subsets are excluded and

• robust statistics, a statistically justified procurement in which suspicious
data is down-weighted rather than removed.

The correctness of the decisions with each of these statistical approaches are
verified using performance data in a variety of scenarios over two fundamentally
different network interconnects: a highly reliable InfiniBand network and a
Gigabit Ethernet network having a larger variance in the performance.

Various types of network interconnects have dissimilar characteristics and
produce therefore different types and quantities of outliers. This renders the
distinction between systematic errors and faulty data particularly difficult.

High performance network interconnects such as InfiniBand or Myrinet config-
ured in a fully non-blocking mode will not get congested for the vast majority of
applications, i.e. the links are unlikely to carry so much data that a deterioration
in the quality of service occurs. Such a network will produce highly reliable and
repetitive performance data. One might still observe outliers in performance
data over such high performance networks. They will however not be due to
networking issues but external sources such operating system jitter [67].

A Gigabit Ethernet switch providing the full bisection bandwidth required for
the given number of cluster nodes offers similar overall characteristics as the
networks described above. However, depending on the quality of the switch,
the performance data might show higher variations compared to an InfiniBand
or Myrinet network. These variations make the identification of outliers more
complex.

Another category of cluster networks are hierarchical networks, where (rela-
tively) small switches are used to connect the nodes, and an additional layer of
switches is used to connect these smaller, lower level switches. Due to technical
or financial reasons, switches are often constructed using a fat tree topology
with reduced uplink bandwidths. Examples are InfiniBand switches configured
in a 2:1 blocking mode as for instance in the Thunderbird cluster at Sandia Na-
tional Laboratories [93], or hierarchies of Gigabit Ethernet switches configured
in many off-the-shelf clusters in industry and institutes or as the secondary
network.

Communication patterns on such hierarchical networks can produce data points
which could be considered by a trivial outlier detection algorithm as an invalid
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data point. Figure 5.1 shows the execution time per instance of two different
codelets for a neighborhood communication run across a hierarchical Gigabit
Ethernet network. Both codelets produce a significant number of data points
at the 200,000 µs range, the total number however varies greatly. They are due
to congestion and packet drops at the higher level Gigabit Ethernet switch.
Nevertheless, these data points in both cases contain valuable information
regarding the performance of the codelet due to the systematic nature of their
existence and can not be considered as outliers. Excluding them would lead to a
wrong decision of the runtime logic, but, as stated earlier, ignoring the fact that
performance data can contain outliers would lead to a wrong decision for the
first two classes of networks. True outliers are located at 300,000 µs and above.
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Figure 5.1: Performance data of two different codelets collected on a hierarchical
network on process 0. Congestion and packet drops at the higher level Gigabit
Ethernet switch cause relevant data points at the 200,000 µs range which has to
be taken into account whereas data points above 300,000 µs can be regarded as
outliers.

5.2 Techniques for Performance Data Evaluation

In this work, four different statistical methods used for handling outliers are con-
sidered, namely a heuristic derived from the trimmed mean value, a standard
interquartile range method, cluster analysis and a method using robust statistics.
Based on per-process performance data of each codelet, each technique has to
be able to exclude incidental outliers and generate a consistent result across all
processes while being at the same time computation and communication wise
inexpensive in order to minimize the disruption of the application.
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For each codelet c on each parallel process p, nm measurements are performed
and denote the execution time of the m-th measurement by t(c, p, m).

For the first three methods presented, outliers, i.e. measurements not fulfilling
a certain condition C, are removed from the data set. This leads to a filtered
subset S f of measurements,

S f (c, p) = {t(c, p, m) | t(c, p, m) fulfills C} , (5.1)

with cardinality n f (c, p). Then, common to all methods, the performance data
of each method is analyzed locally on each processor and characterized by an
estimate of the mean value. This can be the local average execution time

µ̂(c, p) =
1

nm
∑
m

t(c, p, m) (5.2)

or its filtered counterpart

µ̂ f (c, p) =
1

n f
∑

m∈S f (c,p)
t(c, p, m). (5.3)

After a global reduction, a maximum average execution time for each algorithm
over all processes is determined. Its minimum is chosen as the best-performing
algorithm.

5.2.1 Heuristic approach

This procedure based on a heuristic was first presented in [79] and has been
applied in ADCL since. It is motivated by fig. 5.1 and relies on two parameters,
namely a bound b, which defines a measurement to be an outlier and the
maximum number of accepted outliers nmax

o . This implies that the condition C
which defines a measurement as outlier is defined as{

t(c, p, m) | t(c, p, m) ≤ b ·min
m

t(c, p, m)
}

.

Outliers from below are practically non-existent. Measurements are regarded
faulty and removed, if in general parlance there are up to nmax

o outliers, and an
estimated mean is computed from the remaining ones. If there are more than
nmax

o outliers, it is assumed that they contain valuable information and they are
included in the computation of the estimated mean.

More precisely, the number of outliers no(c, p) = nm − n f (c, p) is computed
locally for each algorithm in addition to eq. (5.2) and (5.3).
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After the global reduction for each codelet, the maximum average execution
time

µ̂(c) = max
p

µ̂(c, p),

the maximum average execution time considering only filtered data

µ̂ f (c) = max
p

µ̂ f (c, p) (5.4)

and the maximum number of outliers

no(c) = max
p

no(c, p)

for each codelet is determined. Finally, the maximum execution time including
or excluding outliers is selected by

t̂h(c) =
{

µ̂ f (c) if no(c) ≤ nmax
o

µ̂(c) otherwise

depending on whether the maximum number of outliers is exceeded or not.
The codelet c′ fulfilling t̂h(c′) = minc t̂h(c) is chosen as the best one.

This procedure is related to the trimmed mean, which deletes a certain percent-
age of observations from each end of the data and then computes the mean in
the usual way. Despite the fact that the trimmed mean is a simple robust esti-
mator of location (see 5.2.4 for more details on robust methods), its application
in this context is not beneficial since outliers with a very small execution time
hardly appear and have much less impact on the mean value than outliers with
large execution times. Nonetheless, without preceding tests on an architecture a
non-optimal selection of the parameters b and nmax

o and, consequently, of the
best-rated codelet, is possible. The method is thus only as good as the user’s
knowledge about the right choice of these twiddle factors.

5.2.2 Standard Interquartile Range Method

A common approach to remove outliers from a data set consists in using the
interquartile range IQR which is defined as the difference between the third and
first quartile [94]. A quartile, in turn, is any of the three values that divides a
sorted data set into four parts of equal size. The first quartile Q1 marks the end
of the first 25% of data, the third quartile Q3 the beginning of the last 25%. Every
value being smaller than Q1− 1.5 IQR or larger than Q3 + 1.5 IQR is regarded
as outlier.
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Outliers are discarded by setting C to

Q1− 1.5 IQR ≤ t(c, p, m) ≤ Q3 + 1.5 IQR

in (5.1).

The filtered mean (5.3) is computed locally and after a global reduction, the
maximum filtered average execution time for each codelet (5.4) is calculated.
The best-performing algorithm c′ is chosen as the one fulfilling

µ̂ f (c′) = min
c

µ̂ f (c).

5.2.3 Cluster Analysis

Cluster analysis [95] is a common name for a variety of mathematical methods
to partition a data set into subsets called clusters such that similar objects are
grouped together. The similarity or dissimilarity is expressed by a distance mea-
sure, commonly the Euclidean distance. The average linking method employed
here belongs to the group of hierarchical clustering methods which agglom-
eratively build up a hierarchy. The visual representation of the hierarchy in a
treelike structure is denoted as dendrogram. Since outliers become small and
isolated clusters, cluster analysis provides a natural mean to decide whether a
point is an outlier or not. This eliminates the need to specify a bound b as in sec.
5.2.1, but a proper choice of the parameter nmax

o remains.

For the analysis of performance data, starting from the top of the dendrogram,
those clusters are iteratively removed, which have little similarity to the others
and which in total do not exceed the number of accepted outliers nmax

o . This
procedure ensures that the most isolated clusters are removed first. The current
implementation utilizes the average linking method of the Open Source package
Cluster 3.0 [96] with an Euclidean distance measure without prior standard-
ization. After having removed the outliers, the local filtered means and global
maximum average execution times are calculated as described sec. 5.2.2.

5.2.4 Robust statistics

Robust statistics [97, 98, 99] provide a statistically justified way of procure-
ment. Its development was triggered due to problems where the clear decision
whether to keep or reject a data sample can not be decided easily. Down-
weighting dubious observations is considered more appropriate than removing
them completely from the data set, i.e. outliers are handled automatically and
appropriately by the method. This distinguishes robust statics from all methods
mentioned so far which require the removal of outliers.
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Real data can deviate from the often assumed normal distribution in classical
methods. This departure can manifest itself in the form of longer tailed or
skewed distributions. Therefore, robust parametric statistics tend to rely on
replacing the normal distribution with the longer-tailed t-distribution with low
degrees of freedom or with a mixture of two or more distributions. Within the
framework of this analysis, the first approach is applied.

The sample data recorded for the n units, i.e., the measurements of execution
time t(c′, p′, m) for one algorithm on one processor, are denoted for the sake of
simplicity by y1, y2, . . . , yn. Let N (µ, σ2) denote the normal distribution with
mean µ and variance σ2. Then the normal model assumes

y ind∼ N
{

µ(θ), σ2(φ)
}

, (5.5)

where µ is a function of known form indexed by an unknown parameter θ, and
σ2(φ) is the variance of known form indexed by a unknown parameters φ. The
t model replaces the normal distribution assumption (5.5) by

y ind∼ t {µ(θ), ψ(φ), ν} ,

where t {µ, ψ, ν} denotes the t-distribution with location parameter µ, scale
parameter ψ and ν degrees of freedom. The meaning of ν will be explained later.

A maximum likelihood estimation2 applied to make inferences about parame-
ters of the underlying t-distribution from the given data set analogous to those
for the normal model (5.5).

Let f (yi|~ξ) be the logarithm of the density function for t {µ(θ), ψ(φ), ν}. Maxi-
mizing the log-likelihood function

l(θ, φ, ν) =
n

∑
i=1

f (yi|~ξ), (5.6)

with respect to ~ξ = (θ, φ, ν) yields maximum likelihood estimates ~̂ξ = (θ̂, φ̂, ν̂).
Since the density function of the univariate t-distribution is

p(y |~ξ) =
Γ
(

ν+1
2

)
ψ−1/2

√
πνΓ

(
ν
2

) ·
(

1 +
(y− µ)2

ψν

)−(v+1)/2

,

2The maximum likelihood estimation is a statistical method widely used to identify estimates
for the parameters of a statistical model by fitting it to the data.
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where Γ is the Gamma function, the log-density function for each component yi
is

f (yi|~ξ) = −ν + 1
2

ln
[

1 +
(yi − µ(θ))2

νψ(φ)

]
− ln(ψ(φ))

2
+ g(ν) + c̃,

where

g(ν) = ln
[

Γ
(

ν + 1
2

)]
− ln(ν)

2
− ln

[
Γ
(ν

2

)]
, (5.7)

and
c̃ = −1

2
ln(π).

As explained in [100], for ν < ∞, maximum likelihood estimation of θ and
certain functions of φ are robust in the sense that outlying cases with large
Mahalanobis distances δ2

i = (yi − µ)2/ψ are down-weighted. The degree of
down-weighting of outliers depends reciprocally on ν. If ν is fixed a priori at
some reasonable value (degree of freedoms between 4 and 6 have often been
useful in practice), it is a robustness tuning parameter. For larger data sets, ν can
also be estimated from the data by maximum likelihood, yielding an adaptive
robust procedure.

In this work the simplex algorithm of Nelder and Mead [101] was applied for
the sake of simplicity to maximize (5.6). It is part of the GNU Scientific Library.
For constant ν, g(ν) in (5.7) does not enter the maximization process and was
therefore omitted. The median, the second quartile (see sec. 5.2.2), was chosen
as an estimate of location and a multiple of the Median of Absolute Deviations
(MAD)

MAD(y) = mediani| yi −medianp(yp) |

as a scale estimate. A factor of 1.483 is most commonly used.

After obtaining the estimate mean value µ, the same steps as in sec. 5.2.2 were
applied to select the best codelet.

5.2.5 Complexity estimates

As mentioned earlier, the methods discussed within this section will be applied
within a runtime library. This necessitates to minimize the computational costs
of the algorithms handling outliers. Table 5.1 gives an overview about the
complexity estimate for each of the four statistical approaches, with nm being
the number of measurements per codelet.
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Statistical approach Complexity
Interquartile range O(nm log nm)
Heuristic approach O(nm)

Cluster analysis O(n3
m)

Robust statistics exponential in worst case,
a lot faster in most real scenarios

Table 5.1: Complexity estimate for each of the four statistical approaches

5.3 Performance Evaluation

The behavior of each statistical method presented in the previous section is
evaluated for different scenarios, i.e., whether the decision of the statistical
method based on a small number of measurements is comparable to a ranking
obtained by long-term runs. For this, performance data is generated using the
structured Finite Volume solver Euler3D presented in sec. 2.4.1.

5.3.1 Integration of the ADCL

It took only half a day of work to add ADCL to Euler3D. The necessary code
changes are described in the following.

The original MPI implementation exchanged the primitive variables and the
left and right states for the Riemann Problem using the following scheme: the
data from the halo cells is copied to buffers, the buffers are exchanged step
by step in x-, y- and z-direction using MPI_Isend/MPI_Recv/MPI_Waitall and
finally the data from buffers is copied back into halo cells. The data for the
Riemann problem are stored in three arrays xPrimLR, yPrimLR and zPrimLR

where the first dimension is used to distinguish the location of the halo cells
(left/right, front/back or up/down). Thus, one iteration of the solver requires
seven neighborhood communications to update the primitive variables as well
as the states for the Riemann solver in the halo cells.

The first change was a change of data structure. At present, ADCL requires that
communication arrays are stored contiguously in main memory, i.e. instead
of three arrays xPrimLR, yPrimLR and zPrimLR six arrays xPrimL, xPrimR, . . .,
zPrimR are needed. Therefore, preprocessor macros have been introduced to
switch from one representation to the other. Variable declarations for the ADCL
objects were added.
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integer :: adcl_vmap ! ADCL vector map object

integer :: adcl_topo ! ADCL topology

! ADCL vector and request objects for the primitive variables

integer :: adcl_vec_pvar, adcl_request_pvar

! ADCL vector and request objects of the left and right states

! for the Riemann problem

integer :: adcl_vec_xpriml, adcl_request_xpriml

integer :: adcl_vec_xprimr, adcl_request_xprimr

integer :: adcl_vec_ypriml, adcl_request_ypriml

integer :: adcl_vec_yprimr, adcl_request_yprimr

integer :: adcl_vec_zpriml, adcl_request_zpriml

integer :: adcl_vec_zprimr, adcl_request_zprimr

include 'ADCL.inc' ! ADCL internal variables

These ADCL objects are initialized and freed in two new routines iniADCL and
closeADCL shown in Fig. 5.2. Instead of the original MPI implementation, calls
to ADCL_Request_start are executed:

call ADCL_Request_start( adcl_request_pvar, MPI%ierror)

and

call ADCL_Request_start( adcl_request_xPrimL, MPI%ierror )

call ADCL_Request_start( adcl_request_xPrimR, MPI%ierror )

call ADCL_Request_start( adcl_request_yPrimL, MPI%ierror )

call ADCL_Request_start( adcl_request_yPrimR, MPI%ierror )

call ADCL_Request_start( adcl_request_zPrimL, MPI%ierror )

call ADCL_Request_start( adcl_request_zPrimR, MPI%ierror )

respectively. Figure 5.3 shows the changes to the main program. Attention
should be paid to the fact that with only these few code modifications the
performance of the MPI communications is now portable thanks to the use of
ADCL.

5.3.2 Setup

Performance data is generated using Euler3D. Since the neighborhood com-
munication is implemented using ADCL, the library will evaluate, given a
brute-force search, all available codelets for this communication pattern a given
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SUBROUTINE iniADCL(pvar, LRARGS, CONST, MESH, MPI)

integer :: nhalolayers = 1 ! number of halo layers

integer :: ndim = 3 ! number of dimensions

integer :: dims(ndim) ! extent of dimensions

! ....

call ADCL_Init ( MPI%ierror )

call ADCL_Topology_create ( MPI%comm_cart, adcl_topo, MPI%ierror )

call ADCL_Vmap_halo_allocate( 1, adcl_vmap, MPI%ierror )

dims(1) = MESH%IMAX+2; dims(2) = MESH%JMAX+2; dims(3) = MESH%KMAX+2

call ADCL_Vector_register_generic ( 3, dims, NVAR, &

MPI_DOUBLE_PRECISION, pvar, adcl_vec_pvar, MPI%ierror )

call ADCL_Request_create ( adcl_vec_pvar, adcl_vmap, adcl_topo, &

ADCL_FNCTSET_NEIGHBORHOOD, adcl_request_pvar, MPI%ierror)

call ADCL_Vector_register_generic ( 3, dims, NVAR, &

MPI_DOUBLE_PRECISION, xpriml, adcl_vec_xpriml, MPI%ierror )

call ADCL_Request_create ( adcl_vec_xpriml, adcl_vmap, adcl_topo, &

ADCL_FNCTSET_NEIGHBORHOOD, adcl_request_xpriml, MPI%ierror)

... ! same for xprimr, ypriml, yprimr, zpriml, zprimr

END SUBROUTINE iniADCL

SUBROUTINE closeADCL(MPI)

call ADCL_Topology_free ( adcl_topo, MPI%ierror )

call ADCL_Request_free ( adcl_request_pvar, MPI%ierror )

call ADCL_Vector_deregister ( adcl_vec_pvar, MPI%ierror )

call ADCL_Vector_deregister ( adcl_vec_xpriml, MPI%ierror )

... ! same for xprimr, ypriml, yprimr, zpriml, zprimr

call ADCL_Vmap_free ( adcl_vmap, MPI%ierror )

call ADCL_Finalize ( MPI%ierror )

END SUBROUTINE closeADCL

Figure 5.2: ADCL implementation of Euler3D: initialization and deallocation of
ADCL objects
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PROGRAM Euler3D

! Module inclusions and variable declarations

! Initialize Simulation Parameters

! Initialize Mesh

#ifdef ADCL

CALL iniADCL(pvar, LRARGS, CONST, MESH, MPI)

#endif

! Set Initial Condition

! Initialize exact solution module for problems with known

! exact solutions

! Main program loop over time steps

#ifdef ADCL

call closeADCL(MPI)

#endif

! Output & Finalize

END PROGRAM Euler3D

Figure 5.3: ADCL implementation of Euler3D: modified main program.

number of times during the initial iterations of the solver. We use the twelve
different codelets for the neighborhood communication which correspond to
the MPI 1 standard (cf. table 3.1). Using the statistical methods presented, an
estimated average execution time is calculated for every codelet and the codelet
with the smallest one is selected.

The runs generating input for the analysis using a brute-force search as well as
the verification runs have been executed three times using the MPI library Open
MPI v1.4. During each run using the runtime selection logic, 100 data points
have been generated per codelet and process. The prediction quality of the four
evaluation methods was analyzed. During each verification run (cf. sec. 3.3.2),
the execution times of 500 time steps were stored and subsequently averaged
over all three runs. In order to make the conditions as comparable as possible,
the reference data was produced within the same batch scheduler allocation
and thus had the same node assignments.

5.3.3 Results

The communication time of an ADCL run consists mainly of the communication
during the search phase where also non-optimal codelets are tested and the
performance of the codelet selected by the decision algorithm.
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After defining what we understand by "best" or "worst-performing" codelet
in sec. 5.3.3.1, attention is paid to two questions. The first question is of more
general nature: what maximum performance gains resp. losses could we expect
when using ADCL instead of the original MPI implementation. This depends
on the calling overhead of ADCL and the quality of the implemented codelets.
In the best case, we know the best-performing codelet beforehand and avoid
the search and its overhead completely. This is exactly the verification run with
the smallest execution time. In the worst case, we select the slowest codelet.
All codelets during the search phase will be faster than the slowest codelet. In
consequence, the verification run with the largest execution time constitutes
an upper bound. So in sec. 5.3.3.2, the data from the verification runs will be
compared to the original MPI implementation to establish potential gains and
losses and it will be investigated which codelets do actually perform well in the
different settings.

The second question is what is actually gained. This depends on the quality of
the statistical method used in the decision algorithm, i.e. how many data points
are needed during the search and how well the selected codelet performs. It
also depends on the performance of each codelet which is tested during the
search phase, but this overhead can only be influenced indirectly by shortening
the length of the search. So in sec. 5.3.3.3, we will evaluate the choices made
by the statistical methods, investigate what performance penalties arise if the
choice was not correct and describe the influence of amount of measurements
on the selection. Finally, sec. 5.3.3.4 states, what performance gains or losses
one would have obtained for the test case using ADCL with the heuristic based
on a 100 data points per codelet.

5.3.3.1 Characterizing the performance of codelets

Measurements always introduce a certain amount of variability. Causes for
deviations when measuring communications times can be network flooding
resulting from the communication algorithm, a poor implementation of parts of
the MPI library or shared resources as well as sometimes hardware configuration
challenges based on frequency scaling of the processor or the simultaneous
multi-threading leading to different process arrival patterns. These problems
occur without influence of the user and there is no use to do one’s utmost to
circumvent them.

Figure 5.4 shows an example where there is no single best codelet. It shows the
average execution times from three verification runs along with their minimum
and maximum values as error bars for different codelets. Any of the codelets c6,
c0 or c7 might be the fastest, depending on its performance relative to the others.
On the other hand, c7 could also be the slowest codelet or any of the codelets
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c1, c3 and c5. We will encounter this problem again in a different context in
chapter 6.

Figure 5.4: Example of multiple best or worst-performing codelets. The figure
displays the average execution time tavg

v (ci) of 3 verification runs. Y error bars
show the range of average execution times.

Let ti
v(c), i = 1, . . . , nr denote the verification run times of a codelet c and

tavg
v (c) =

1
nr

nr

∑
i=1

ti
v(c), (5.8)

tmin
v (c) = min

i=1,...,nr
ti
v(c) and (5.9)

tmax
v (c) = max

i=1,...,nr
ti
v(c) (5.10)

the average, minimum and maximum verification run time of the codelet.

In the following, operations over i like mini abbreviate mini=1,nr and over a
codelet c like ∑c stands for the sum over all codelets in the set of codelets. We
define the overlap o(c, d) for a codelet c with a codelet d as

o(c, d) = o(d, c) =
{

0 if tmin
v (c) > tmax

v (d) or tmax
v (c) < tmin

v (d)
1 else . (5.11)

The overlap is 0 if the codelets can not switch rankings and 1 otherwise. So
the best-performing codelets or winner codelets are the ones with the minimum
verification run time along with those which have an overlap of 1 with it. The
worst-performing codelets are those with the maximum verification run time along
with those which have an overlap of 1 with it.
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5.3.3.2 Potential Performance Benefits of ADCL

In this section, we will analyze ADCL’s potential to increase application perfor-
mance if the best-performing codelet is selected.

Best- and Worst-performing Codelets Table 5.2 shows the best- resp. worst-
performing codelets for different settings. On Laki with InfiniBand, best- and
worst-performing codelets are clearly defined except for the large test case on
2048 processors. IsIr_aao is the codelet of choice across different numbers
of processes and for different problem sizes. As InfiniBand networks hardly
get congested, a non-blocking communication is well-suited for this type of
network. This assessment is confirmed when looking at the worst-performing
codelets, which are often based on Send/Recv.

On shark, the variations of the execution times for the verification runs are higher,
leading to multiple best- and worst-performing codelets in the different settings.
In contrast to Laki, the problem size or the number of processes do influence
the outcome. IsIr_aao is also often among the winners, as the amounts of
data which are communicated are moderate and do not saturate the Ethernet
interconnect. Blocking communications perform partially well like SendRecv,
but codelets based on Send/Recv are frequently among the worst-performing
ones. That S_R_pair_pack does not perform well across interconnects indi-
cates that either this implementation is ill-suited for the problem or that the
implementation itself can be improved.

Figure 5.5 shows the result if one calculates the sum of all the cases in which a
codelet performs best or worst on Laki with InfiniBand, on shark with Ethernet
and in total. One can see, that for Laki with InfiniBand, winners and worst-
performing codelets are clearly defined whereas on shark with Ethernet, codelets
which perform best in one setting do perform worst in another and vice versa.
In total, 11 out of 12 codelets do perform best in some setting, and 9 out of 12
codelets count to the worst-performing in some setting. The codelet based on
MPI_Isend/MPI_Irecv/MPI_Waitall performs best for most settings, but also
twice moderate and worst once. Only a change of problem size or number
of MPI processes lead to this extremely different behavior. This shows again
the importance of an automatic empirical optimization library. Otherwise,
optimizations might have lead to an implementation of IsIr_aao which would
entail performance losses in 3 of 35, i.e. about 9% of the settings. With ADCL,
the choice of the codelet is not fixed, so that the library can adapt itself to the
current settings.
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laki_32S_ib w l
laki_64S_ib w l
laki_128S_ib w l l
laki_256S_ib w l
laki_512S_ib w l
laki_1024S_ib w l
laki_2048S_ib w l
laki_32L_ib w l
laki_64L_ib w l
laki_128L_ib w l
laki_256L_ib w l
laki_512L_ib w l
laki_1024L_ib w l
laki_2048L_ib w w w l
shark_8XS_eth l w l w l l w l l
shark_16XS_eth w w l l w
shark_32XS_eth l l l l w w l
shark_48XS_eth w w w l w l
shark_8S_eth w w l l
shark_16S_eth w w l l
shark_32S_eth w w w w w l w

Table 5.2: Overview of best-performing (w) and worst-performing (l) codelets.
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Figure 5.5: Sum of cases in which codelet performed best or worst.
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Maximum Performance Gains and Losses We will now demonstrate that
the application performance can benefit of the integration of ADCL. We compare
the runtime of the original code (denoted as noadcl) with the those of the
verification runs for the best- and worst-performing codelet. Also results for
the modified code with multiple arrays for the state variables (denoted as
noadcl-lr) are given for comparison.

In the following, the subscript w refers to the winner codelet, l to the worst-
performing codelet, o to the original implementation without ADCL and m
to the modified Euler3D code with multiple arrays. Let ti

k, i = 1, . . . , nr, k ∈
{o, m, w, l} denote the run times of the four cases and

tavg
k = 1/nr

nr

∑
i=1

ti
k,

tmin
k = min

i=1,...,nr
ti
k and

tmax
k = max

i=1,...,nr
ti
k

the average, minimum and maximum run times.

The average execution times tavg
k , k ∈ {o, m, w, l} for the different code versions

of the nr = 3 verification runs are depicted on the left hand side of fig. 5.6.
The error bars are simply

[
tmin
k − tavg

k , tmax
k − tavg

k

]
. The changes introduced in

Euler3D to integrate ADCL did not turn out favorably. However, it does not
influence the performance of ADCL, as its data transfer primitives are based on
derived data types or pack/unpack, and not on buffers.

The possible percental gains resp. losses of ADCL shown in fig. 5.6 on the right
hand side, are given by

gavg(k) =
tavg
k − tavg

o

tavg
o

· 100%, k ∈ {w, l}

The error bars yield for the winner codelet[
gavg(w)− tmin

w − tmax
o

tmax
o

· 100%, max
(

0,
tmax
w − tmin

o
tmin
o

· 100%− tavg
w

)]
and for worst-performing codelet[

max

(
0, gavg(l)−

tmin
l − tmax

o

tmax
o

· 100%

)
,

tmax
l − tmin

o

tmin
o

· 100%− gavg(w)

]
If multiple winners or worst-performing codelets are present, tmin

w and tmax
w as

well as tmin
l and tmax

l are global minima resp. maxima of all those codelets.
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Figure 5.6: Execution times of original code (noadcl), the modified code with
multiple arrays for the state variables (noadcl-lr) compared to the execution
times using the best-performing and the worst-performing codelet (left side).
Percental gains of best codelet vs. potential losses of worst codelet (right side).
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Laki with InfiniBand shows some potential for optimization for small test cases
and hardly any for the large test case. For shark, performance gains might reach
up to over 30%. For the XS problem size on 8 processors, there will always be
slight performance losses of 1− 5% when using ADCL while on 32 processors,
ADCL always leads to performance gains in the range of 14− 33%. On the
other hand, the graphics show that using ADCL might also decrease the overall
performance if the decision logic does not work properly.

5.3.3.3 Statistical Data Analysis

Measurements on Laki with InfiniBand The first set of tests have been exe-
cuted on Laki. This work first evaluates the statistical approaches using ADCL
performance data from runs over the InfiniBand network with 32, 128, . . . , 2048
MPI processes with problem sizes S and L (cf. tbl. 2.1). As described in the
introduction of this chapter, the InfiniBand network produces highly reliable
performance data with only few outliers. So many of the decisions without data
filtering can be regarded as reasonable and the heuristic shows nearly exactly
the same behavior as without data filtering.

With nm = 100, all statistical methods selected in all cases except for the 512S
setting correctly codelet c0 as winner. In this case, the selected codelet performs
2− 3% worse than the winner codelet as is shown in tbl. 5.3.

winner codelet avg. overhead [%]
run1 run2 run3 run1 run2 run3

no filtering 1 1 1 1.8 1.8 1.8
heuristic 1(f) 1(f) 1 (f) 1.8 1.8 1.8
IQR 0 0 0 0 0 0
cluster analysis 9 1 9 3.2 1.8 3.2
robust statistics 1 0 0 1.8 0 0

Table 5.3: Testcase 512S_ib with incorrect codelets judged best-performing.

If one reduces nm from 100 to 80, 60, 40, 20 or 10 as depicted in fig. 5.7, using
no filtering or the heuristic leads to disadvantageous decisions in some cases,
whereas the method based on IQR, cluster analysis or robust statistics are nearly
insusceptible to variations of nm. Please notice the different scales for figs. 5.7(a)–
(b) and figs. 5.7(c)–(e).

To summarize the results of the InfiniBand tests, all four statistical approaches
presented in the previous section performed reasonably well. Whereas the
heuristic needed 80–100 data points per codelet, the other methods’ choice were
in most cases correct with as little as 10 measurements per codelet.

78



5.3 Performance Evaluation

lak
i_3
2S
_ib

lak
i_6
4S
_ib

lak
i_1
28
S_
ib

lak
i_2
56
S_
ib

lak
i_5
12
S_
ib

lak
i_1
02
4S
_ib

lak
i_2
04
8S
_ib

lak
i_3
2L
_ib

lak
i_6
4L
_ib

lak
i_1
28
L_
ib

lak
i_2
56
L_
ib

lak
i_5
12
L_
ib

lak
i_1
02
4L
_ib

lak
i_2
04
8L
_ib

100

80

60

40
20
10

0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
6,0
6,5
7,0
7,5
8,0
8,5
9,0

 

pe
rf

or
m

an
ce

 lo
ss

 [%
]

# 
m

ea
su

re
m

en
ts

(a) no filtering
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(b) heuristic

Figure 5.7: Overheads of the selected codelet compared to the winner codelet
on Laki with InfiniBand for different settings and different numbers of measure-
ments nm per codelet.
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(c) IQR
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(d) cluster analysis

Figure 5.7: Overheads of the selected codelet compared to the winner codelet
on Laki with InfiniBand for different settings and different numbers of measure-
ments nm per codelet.
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(e) robust statistics

Figure 5.7: Overheads of the selected codelet compared to the winner codelet
on Laki with InfiniBand for different settings and different numbers of measure-
ments nm per codelet.

Measurements on Shark with Gigabit Ethernet The same tests are repeated
with 8, 16, 32 and 48 processes for the XS problem size and 8, 16 and 32 processes
for the small problem size using the Gigabit Ethernet interconnect on shark. The
Gigabit Ethernet switch used within this network provides a full duplex 1GBit
connection for each node. All tests were executed in virtual node mode, so that
two MPI processes are running on each node and have to share one physical
link. This increases the number of outliers, but it would be unreasonable to
leave half of the processors idle if no memory or performance issues militate
against it.

All statistical methods share the behavior of the approach without outlier-
filtering (cf. figs. 5.8(a)–(e)). In the settings 32XS, 8S and 32S, unfavorable
codelets have been selected leading to overheads of about 5%, 25% and 10%
compared to the winner codelet. The influence of nm is negligible.
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(a) no filtering

Figure 5.8: Overheads of the selected codelet compared to the winner codelet on
shark with Ethernet for different settings and different numbers of measurements
nm per codelet.

Looking closer into the performance data, one realizes that the wrong decisions
can not be attributed to the statistical methods, but are inherent in the data.
Figure 5.9 shows the performance data of the different codelets for one setting.
Most communications take around 10 ms with a few outliers in the 200 ms range.
The red lines depict the average execution times of the verification runs for each
codelet. In general, one can extrapolate from the data points to the performance
of the codelet in the production phase, but for IsIr_aao and SIr_aao the data
points suggest a better performance than actually achieved. This is most likely
due to the influence of MPI_barrier which is called during the search phase
before the measurement is started to avoid that subsequent communications
influence one another.

To summarize the results achieved over the Gigabit Ethernet network on shark,
the quality of the predictions for all statistical methods is comparable and
strongly depends on the reliability of the underlying data. The number of
measurements has hardly any influence on the decisions taken.
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(b) heuristic
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(c) IQR

Figure 5.8: Overheads of the selected codelet compared to the winner codelet on
shark with Ethernet for different settings and different numbers of measurements
nm per codelet.
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(d) cluster analysis
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(e) robust statistics

Figure 5.8: Overheads of the selected codelet compared to the winner codelet on
shark with Ethernet for different settings and different numbers of measurements
nm per codelet.
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Figure 5.9: Measurements that do not reflect the performance of the verification
runs (red lines).

5.3.3.4 Performance of ADCL

Table 5.4 shows that even with non-optimal choices of the decision logic of
ADCL, using ADCL is still worth-while. For the small problem size on Laki with
InfiniBand, performance gains for the Gauss pulse after 500 time steps were
around 5%. On shark with Ethernet interconnect, performance gains reached
17%. In any setting, the use of ADCL did not result in performance degradations
of more than 2%.

5.4 Conclusion

This chapter discussed four different approaches for handling outliers in parallel
performance measurements, namely a heuristic derived from the trimmed mean
value, a standard approach using interquartile ranges, an approach based on
cluster analysis and finally a method using robust statistics. Although using
fundamentally different approaches, all methods in our evaluation have shown
the capability to handle outliers in most scenarios. The heuristic tended to
need more data points for a correct decision than the other methods. However,
even with a non-optimal selection, ADCL could improve the application’s
performance in some cases or did at least not degrade it.
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setting avg. gain Yerr− Yerr+
laki_32S_ib -4.86 0.29 0.43
laki_64S_ib -4.64 0.56 0.5
laki_128S_ib -4.39 1.74 1.34
laki_256S_ib -5.25 1.04 0.57
laki_512S_ib -4.5 0.42 0.34
laki_1024S_ib -4.95 0.24 0.41
laki_2048S_ib -4.12 0.32 0.39
laki_32L_ib -0.32 0.19 0.27
laki_64L_ib -0.17 0.32 0.35
laki_128L_ib 0.83 0.56 0.84
laki_256L_ib -0.38 0.18 0.15
laki_512L_ib -0.65 0.81 0.9
laki_1024L_ib -0.36 0.25 0.44
laki_2048L_ib 0.48 0.7 0.76
shark_8XS_eth 1.3 0.6 0.56
shark_16XS_eth 1.46 7.22 9.33
shark_32XS_eth -12.07 6.89 4.42
shark_48XS_eth -17.05 5.41 4.11
shark_8S_eth -1.69 1.01 1.31
shark_16S_eth -11.7 5.37 9.82
shark_32S_eth -7.39 1.97 1.86

Table 5.4: Performance gains for the test case after 500 time steps when using
ADCL with heuristic and 100 data points per codelet.

86



5.4 Conclusion

The major advantage of the interquartile range method and of the heuristic
approach is the low computational complexity compared to cluster analysis and
robust statistics. This is especially important for a library which has to perform
the operations at application runtime.

In [102], a similar investigation was carried out using a TFQMR solver on Laki
with InfiniBand, the cacau cluster with a hierarchical Gigabit Ethernet, which is
now out of service, and on shark with InfiniBand and Ethernet interconnects. It
was shown that the approach applying techniques from robust statistics demon-
strates a superior behavior when the performance data has a low variance, and
the main task is to determine subtle differences between the implementations.
On the other hand, the same approach had significant problems when the data
was widely distributed in multiple, large data clusters. The approach using
cluster analysis did have similar problems in the latter scenario, mainly due to
the removal of too many clusters. The standard approach using interquartile
range showed a fair behavior for any of the analyzed scenarios. The heuristic
based on the trimmed mean value did show the most reliable performance,
delivering the optimal or close to optimal decisions in most of the analyzed
scenarios.

One important result of this chapter is that the method how the performance
data was collected in the past, is not producing reliable data in some cases. This
problem lead to the development of the new data collection methods presented
in chapter 6.
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6 Evaluation of Timing Techniques
to Generate Empirical Data for
Collective Communications

Motivated by the problems encountered in the last chapter, this chapter in-
vestigates how to assess the performance of different codelets implementing
collective MPI communications in an empirical optimization library. The gener-
ation of empirical data is an essential and critical part of the library as the data
constitutes the basis for the optimization process to select the best-performing
codelet.

Four different timing techniques to collect data are presented in sec. 6.1. A
timing technique is a certain way of how to measure communication times to
generate empirical data. Two of them are based on a newly introduced ADCL
object, the ADCL timer object, which allows not only to time a codelet itself, but
also (part of) its environment. Its technical realization is explained in sec. 6.2.
This work evaluates the timing techniques and the impact of the timer object to
generate accurate empirical data taking the optimization of the collective in the
FFT NAS Parallel Benchmark as example. The results on a variety of systems
with different MPI implementations are presented in sec. 6.3.

6.1 Timing Techniques to Generate Performance
Data

A timing technique which generates data for the empirical optimization process
has to match different, competing goals. Firstly, it is favorable if the timing
technique creates no significant additional overhead during the search phase,
i.e. that no additional synchronization for the timing is needed. Secondly, to
keep the search phase—and thus its overhead—short, the timing technique
should generate reliable data with few outliers, so that a small number of
measurements suffices to decide on the best-performing codelet. Thirdly and
most importantly, the data has to reproduce the behavior observed in long-
term runs, i.e. that despite the execution of additional code of the timing
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technique, data comparable to the original execution behavior of the program
without timing is produced. Otherwise, a wrong codelet with a non-optimal
performance is chosen and the overall performance degrades.

Measuring collective communication times is more difficult compared to a
point-to-point communication. Per se, each process only knows its own com-
munication time, but it is impossible to state the total execution time of the
communication without additional communication due to the asynchronous
nature of a parallel program. In the rare case that synchronized clocks are
available, their use would lead to an additional collective of type allreduce to
compute the maximum over all local communication times. Otherwise synchro-
nization has to be enforced manually by calls to MPI_Barrier to get an estimate
of the total execution time of the collective.

The first and simplest timing technique called nobarrier is to embrace the col-
lective communication with timing routines as depicted in fig. 6.1a and use
after a post-processing step the maximum local execution time as an estimator
for the total execution time of the collective communication. This technique
causes practically no additional overhead and is transparent to the user, as it
can be hidden inside ADCL, but has a number of drawbacks. Apparently, it
may fail as there is no correlation between local execution time and its effect on
the total execution time as, e.g., frequent delays of a short communication phase
on one process can cause an increase in the total execution time. As processes
are not synchronized, the current communication may influence the subsequent
one. This may result in wrong preconditions when switching between codelets.
In addition, if execution times are very short, system timers eventually lack
precision.

A solution which measures local execution times and still captures the total
execution time is to add synchronizations before the calls to the timing routines.
This constitutes the second timing technique barrier shown in fig 6.1b. The
synchronizations create additional overhead during the search phase and the
measurements represent a worst-case scenario since eventually delays would
cancel. Also systematic errors may be introduced which falsify the empirical
data since application features such as process arrival patterns are annulated
before the measurement is started and processes do not leave the barrier at the
exact same time. As for nobarrier, the timing technique is transparent for the
user, but system timers might lack precision.

To mimic the application behavior, this work introduces a new ADCL object, the
timer object, which is detailed in sec. 6.2. The timer object does not just measure
the codelet in isolation, but rather the codelet plus (a part of) its environment,
e.g. one or more iterations, as shown in fig. 6.1c and (d). New interfaces offer
handles to the timing routines so that the region which is measured is now
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(a) nobarrier: process-local timing (b) barrier: timing with synchronization

(c) timer: timing of larger code portions
with synchronization

(d) timer_multistep: timing of larger code
portions with infrequent synchronizations

Figure 6.1: Different timing techniques to generate empirical data for collective
communication operations.

controlled by the user and no longer by the library. Its obvious purpose is to
imitate the original execution behavior of the program and avoid distortions
caused by synchronizations directly before and after the execution of the codelet
such as for the barrier technique. As execution times are considerably larger,
problems with the accuracy of machine timers are unlikely. However, the user
has now the choice but also the responsibility to select the right code portion to
measure.

Timing techniques based on the timer object use synchronization for their mea-
surements to make sure that subsequent measurements do not influence one
another. Let ns ≥ 1 denote the number of iterations between two synchroniza-
tions and m, m = 1, . . . the m-th measurement. Then the MPI processes are
synchronized during the (1 + (m− 1) · ns)-th iteration just before the timing is
started and during the m · ns iteration just before the timing is stopped. For the
timing technique timer with the synchronization interval ns = 1 the treatment of
outliers as explained in chapter 5 does not change. For timer_multistep, ns is set to
a value greater than 1, but the number of executions of a specific codelet during
the search phase is left the same, i.e. m ∗ ns = const. to keep the search effort the
same. This results in fewer already averaged measurements per codelet, which
might be more susceptible to the outlier problem. With well-balanced values
for m and ns, this technique should demonstrate an "undisturbed" execution
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behavior but also provide enough measurements to allow outlier handling.

6.2 Technical Concept of the ADCL Timer Object

In the following, the design of the timer object is explained in detail by looking
deeper into ADCL internals. Its goals are to

1. allow to time larger code portions (i) to avoid distortions caused by syn-
chronizations directly before or after the execution of the codelet and
therefore enhance the quality of the empirical data as well as (ii) to en-
able the optimization of communication operations that are part of larger
code portions, such as code sections which overlap communication and
computation,

2. allow the simultaneous optimization of different communications, i.e.
multiple requests, which may interfere with one another and to

3. agree well with the existing systematic of ADCL objects to allow maximum
code reuse.

The first goal sets up requirements of how the measurement of the execution
times of a single request should be carried out. Taken by itself, it would already
allow to compare the different timing techniques without having to introduce a
new timer object. The second goal, however, requires a timer object as multiple
requests need to be controlled simultaneously. We will first explain the code
changes necessary to achieve the first goal and then the concept of the timer
object leading to the second goal.

6.2.1 Case 1: Optimizing One Request

The timing methods nobarrier and barrier already existed in ADCL. Their pseudo-
code is shown in figs. 6.2(a) and (b). Grey portions indicate user code, white
portions are parts inside ADCL. A call to ADCL_Request_start times and ex-
ecutes the codelet. To fulfill the goal mentioned, two additional interfaces,
ADCL_Timer_start and ADCL_Timer_stop to start and stop the timing are pro-
vided. This leaves only the task to execute the codelet to ADCL_Request_start.
This results in the timing techniques timer and timer_multistep as shown in
figs. 6.2(c) and (d). One can clearly see that nobarrier and barrier are more user-
friendly as timer and timer_multistep since they require one single call to the
library instead of three. The latter two, however, offer the possibility to insert
additional code or other communications before and after the execution of the
codelet which are included in the measurement.
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(a) nobarrier (b) barrier

(c) timer (d) timer_multistep

Figure 6.2: Schematic view of implementation of timing techniques with user
code (grey) and ADCL code (white). For the timing techniques nobarrier and
barrier (figs. (a) and (b)), the timing routines embrace only the codelet whereas
for timer and timer_multistep (figs. (c) and (d)), they include the codelet plus its
environment where m denotes the m-th measurement resp. call to start or stop
the timing and ns ≥ 1 the synchronization interval.
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6.2.2 Case 2: Optimizing Multiple Requests

This section explains the existing data structures in ADCL and discusses the
extension towards the timer object taking an iterative TFQMR solver with Jacobi
preconditioning as example. One iteration of the solver requires six neighbor-
hood communications to calculate the necessary matrix-vector products and
two allreduce operations for scalar products. ADCL should be used in this
scenario to tune both the neighborhood communication as well as the allreduce
operations.

From the user’s point of view, each communication operation is an ADCL_Request,
a combination of data, a description of which parts of the data to communicate,
a process topology and a communication pattern. Thus, the neighborhood
communications are replaced by requests 1–6 and the two allreduce operations
form requests 7 and 8 as depicted in fig. 6.3. Internally, the ADCL_Request is
represented by two objects: (i) a request object, which contains information how
to communicate the data build form the data, data description and topology
and (ii) an emethod object which possesses information about the search and
decision process. The division allows that requests share a common emethod
object if they only differ in the actual data but have the same operation, the
same communication volume and process topology. These requests can prune
the search space together, thus combine their performance data. This is the case
for the neighborhood communication as well as for the allreduce operations, so
requests 1–6 share one emethod object as well as requests 7–8.

Figure 6.3: Simplified diagram of the dependencies of ADCL objects for the
TFQMR solver without timer object.
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Each emethod object has a set of codelets which represents the search space. For
the neighborhood communication, the predefined set S1

c of n1
c = 20 codelets c1

i
presented in [103] is taken. For the allreduce operations the predefined set S2

c
with currently n2

c = 5 codelets c2
i was used (cf. sec. 4.1.3). A set of codelets is

thus denoted as Sk
c =

{
ck

1, . . . , ck
nk

c

}
.

A timer object should allow to optimize neighborhood communication and
allreduce operations simultaneously. It might be possible that choosing a certain
codelet for the neighborhood communication influences the performance of
the allreduce operation and vice versa. Therefore all possible combinations of
different codelets from the codelet sets S1

c and S2
c should be evaluated. To allow

for code reuse, one has to keep in mind that major parts of ADCL’s empirical
optimization process, i.e. pruning the search space, involves handling codelets:
the functionality to determine which codelet to evaluate next, to execute the
codelet and to evaluate the performance data.

To follow this concept, meta data structures are introduced which combine
information from different requests. A meta-codelet is a tuple

cmeta
i+(j−1)n2

c
= [c1

i , c2
j ],

and the meta-set of codelets, which contains all possible combinations of
codelets from the codelet sets S1

c and S2
c , is

Smeta
c = S1

c × S2
c =

{
[c1

i , c2
j ], i = 1, . . . , n1

c ; j = 1, . . . , n2
c

}
,

containing for this example 20 · 5 = 100 codelets.

As shown in fig. 6.4, the timer object is associated with requests 1–8. It controls
the execution of a meta-codelet by assigning the right parts of the tuple to the
corresponding requests. The timer object has its own emethod object to collect
and process the empirical data. The attached meta-codelet set and the meta-
codelets possess the same structure as a traditional codelet set and codelets,
allowing to reuse large parts of the functionality of ADCL.

For the sake of completeness it is mentioned that each codelet has attribute
sets with attribute values that are used for the attribute-based search. To allow
for an attribute-based search with multiple requests, meta-attributes and meta-
attribute sets have been constructed in the same way as for the codelets and sets
of codelets.

6.2.3 Integration of the Timer Object

The ADCL implementation of the FFT (see sec. 4.2.1 fig. 4.1) is extended to
integrate the timer object. The modified listing is shown in fig. 6.5. The timer
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Figure 6.4: Simplified diagram of the dependencies of ADCL objects for the
TFQMR solver with timer object.

object is created with ADCL_Timer_create which takes a list of ADCL requests
as argument. During the creation of the timer, this list of requests (and thus
emethods) is associated with the timer object, meta-data structures are set up
and dedicated storage space for the empirical data collected by the timer object
is allocated. When the timer is started, it inquires a meta-codelet and assigns the
codelets of the tuple to the corresponding requests which will later execute them.
The associated requests are no longer allowed to report their own performance
data. As before, the data exchange is initiated by the ADCL_Request_start func-
tion. When the timer is stopped, it stores the execution time of the code section
embraced by ADCL_Timer_start and ADCL_Timer_stop. During the deletion of
the timer, the timer is uncoupled from the requests and its data structures are
freed.

An additional integer variable adcl_timer has been added in global.h. The
code of the subroutine transpose2_global stays the same.
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program ft

include 'ADCL.inc'

c FT: further includes and declarations

call MPI_Init(ierr)

call ADCL_Init(ierr)

c FT: timing and setup

c set up ADCL data structures for send and receive vectors, vmap,

c topology and request

c define timer object

call ADCL_Timer_create ( 1, adcl_request, adcl_timer, ierr )

c main loop

do iter = 1, niter

call ADCL_Timer_start ( adcl_timer, ierr )

call evolve(...)

call fft(...) ! calls transpose_xy_z which calls transpose2_global

call ADCL_Timer_stop ( adcl_timer, ierr )

end do

c FT: verification and output

c free timer object

call ADCL_Timer_free ( adcl_timer, ierr )

c free other ADCL objects

call ADCL_Finalize(ierr)

call MPI_Finalize(ierr)

end program FT

Figure 6.5: Modifications of the ADCL implementation of the FFT NAS Parallel
Benchmark when using the timer object.
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6.3 Performance Evaluation

The different timing techniques for collective communications are evaluated
with the FT benchmark introduced in sec. 2.4. The test systems used are the Laki
cluster, the Cray XT5m and the NEC-SX8 installation at HLRS, the SGI Altix
at LRZ Munich and the Blue Gene/P system at the Supercomputing System
Jülich. Runs were executed in the virtual node mode, i.e. every core ran an MPI
process.

Within a single batch job, nr = 3 sets of runs are executed. Each set contains
12 runs, 4 runs for the different timing techniques and one verification run for
each of the 8 codelets c0–c7 for the all-to-all operation (cf. sec. 4.1.3). For the
former, 200 FFT iterations are used. To evaluate the timing techniques, each of
the eight codelets is measured 20 times which corresponds to 20 FFT iterations.
For timer_multistep, ns was set to 4 entailing m = 5.

6.3.1 Ranking the codelets from best to worst

Our first concern is the informational value of the verification runs when trying
to establish a ranking of the codelets from best to worst. Collectives are known
to have the potential to cause network flooding. This fact by itself can produce
large deviations and it worsens if resources are shared. Limited influence on
the process placement or a poor implementation of parts of the MPI library can
aggravate the network effects. This topic was already discussed in a slightly
different setting in sec. 5.3.3.1.

Figure 6.6 shows an example where codelet c7 could be ranked anywhere
from first (if the execution times of c0 and c6 are large enough) to 8th (if the
execution time of c1 is small enough). One might argue that a way out would
be to increase the number of FFT iterations, thus to prolong the duration of
the verification runs until a unique ranking can be established. This rises the
question which time span leads to stability and thus introduces an unknown
parameter as the amount of increase necessary is not known beforehand. It
can only be determined by trying out different values which leads us back to
traditional benchmarking and contradicts the principle of automatic tuning. As
a consequence also the number of measurements per codelet during the testing
phase would have to be increased and prolong running maybe less efficient
codelets. If a ranking can not be established for long term runs, it would be
foolish to require this during the search phase. To sum up, large deviations
between the verification runs are possible and they lie outside the control of the
HPC user.
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Figure 6.6: Example for instable verification runs. Average execution time. Y
error bars show range of execution time of the 3 verification runs.

So a new measure of instability needs to be introduced, since the sample stan-
dard deviation is inapplicable to quantify the deviations in this context. Suppose
that all codelets have the nearly exact same execution time for each of the three
verification runs resulting in a comparable standard deviation which is assumed
to be very small. Although the latter is small, there is no possibility to establish
any ranking. Let ti

v(c), i = 1, . . . , nr denote the verification run times of a codelet
c and tavg

v (c), tmin
v (c), and tmax

v (c) the average, minimum and maximum verifi-
cation run time of the codelet as defined in eqns. (5.8)–(5.10). Again, operations
over i like mini abbreviate mini=1,nr and over a codelet c like ∑c stands for
∑c∈{c0,...,c7}.

The instability I

I(c) =
1

nc − 1 ∑
d 6=c

o(c, d)

characterizes how many codelets could be swapped in a ranking, where the
overlap o(c, d) for a codelet c with a codelet d is defined as in eqn. (5.11).

The instability is categorized into 5 classes:

0 ≤ I < 0.2 very stable ++
0.2 ≤ I < 0.4 stable +
0.4 ≤ I < 0.6 fair o
0.6 ≤ I < 0.8 unstable -
0.8 ≤ I ≤ 1 very unstable - -

Table 6.1 shows the stability properties of the different test cases.
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system np K Instability I of codelet ∑ I
ncMPI c0 c1 c2 c3 c4 c5 c6 c7

laki 8A 0.57 0.86 0.43 0.14 0.29 0.57 0.43 0.14 0.43 o
impi 8B 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 o

32B 1.00 0.57 1.00 1.00 0.57 0.57 0.57 0.43 0.71 -
32C 0.29 0.14 0.57 0.29 0.14 0.43 0.43 0.29 0.32 +

128C 0.29 0.14 0.29 0.29 0.14 0.00 0.00 0.00 0.14 ++
512C 0.00 0.14 0.00 0.00 0.14 0.00 0.00 0.00 0.04 ++

laki 8A 1.00 1.00 1.00 0.86 0.71 0.86 1.00 1.00 0.93 - -
ompi 8B 1.00 1.00 0.86 0.86 1.00 0.71 1.00 1.00 0.93 - -

32B 0.43 0.29 0.43 0.29 0.29 0.43 0.14 0.29 0.32 +
32C 0.29 0.14 0.29 0.29 0.14 0.00 0.14 0.14 0.18 ++

128C 0.29 0.14 0.14 0.14 0.14 0.00 0.00 0.00 0.11 ++
512C 0.29 0.14 0.43 0.00 0.14 0.43 0.43 0.14 0.25 +

sgi 8A 0.00 0.43 0.57 0.29 0.29 0.14 0.00 0.29 0.25 +
altix- 8B 0.00 0.86 0.86 0.71 0.71 0.86 0.86 0.86 0.71 -
mpi 32B 0.29 0.14 0.71 0.29 0.14 0.71 0.43 0.43 0.39 +

32C 0.00 0.14 0.00 0.29 0.14 0.14 0.43 0.29 0.18 ++
128C 0.00 0.14 0.43 0.57 0.14 0.43 0.43 0.14 0.29 +
256C 0.29 0.29 0.00 0.29 0.43 0.14 0.29 0.57 0.29 +

sgi 8A 0.14 0.29 0.00 0.14 0.29 0.00 0.00 0.29 0.14 ++
impi 8B 1.00 1.00 1.00 1.00 1.00 0.86 1.00 0.86 0.96 - -

32B 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 ++
32C 0.14 0.14 0.43 0.14 0.14 0.43 0.43 0.43 0.29 +

128C 0.43 0.14 0.43 0.43 0.14 0.57 0.14 0.00 0.29 +
256C 1.00 0.29 0.43 0.57 0.29 0.57 0.43 0.71 0.54 o

sgi 8A 1.00 1.00 1.00 0.86 0.86 1.00 1.00 1.00 0.96 - -
ompi 8B 0.71 1.00 0.86 1.00 0.71 1.00 0.86 1.00 0.89 - -

32B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - -
32C 0.29 0.57 0.71 1.00 0.57 0.29 0.43 0.71 0.57 o

128C 0.57 0.14 0.43 0.57 0.14 0.29 0.43 0.00 0.32 +
cray 8A 0.29 0.00 0.00 0.14 0.29 0.14 0.29 0.00 0.14 ++
native 8B 0.43 0.57 0.14 0.14 0.43 0.43 0.71 0.29 0.39 +

32B 0.14 0.14 0.29 0.43 0.14 0.29 0.00 0.00 0.18 ++
32C 0.14 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.07 ++

128C 0.14 0.14 0.14 0.14 0.14 0.14 0.00 0.00 0.11 ++
256C 1.00 0.71 0.57 0.43 0.71 1.00 0.86 0.71 0.75 -

sx8 8A 0.14 0.57 0.71 0.57 0.86 0.57 1.00 0.43 0.61 -
native 8B 0.43 1.00 0.57 0.57 0.57 0.86 0.57 0.29 0.61 -

16B 0.57 0.14 0.43 0.29 0.14 0.43 0.29 0.00 0.29 +
32B 0.71 0.14 0.29 0.14 0.14 0.29 0.57 0.29 0.32 +
32C 0.00 0.00 0.43 0.00 0.00 0.29 0.43 0.29 0.18 ++

jugene 8A 0.00 0.29 0.00 0.00 0.29 0.00 0.00 0.29 0.11 ++
to be continued on next page
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system np K Instability I of codelet ∑ I
ncMPI c0 c1 c2 c3 c4 c5 c6 c7

native 32B 0.00 0.14 0.00 0.00 0.14 0.00 0.00 0.00 0.04 ++
32C 0.00 0.00 0.00 0.00 0.00 0.14 0.29 0.14 0.07 ++

128C 0.00 0.14 0.00 0.00 0.14 0.00 0.00 0.00 0.04 ++
512C 0.00 0.14 0.00 0.00 0.14 0.00 0.00 0.00 0.04 ++

Table 6.1: Stability of the verification runs (np - number of processes, K - NAS Parallel
Benchmark class (see tbl. 2.4), nc - number of codelets)

Remarkably are the very stable conditions on Blue Gene which are probably
a result of the scheduling policy which requires the reservation of a whole
blade even for runs with smaller process numbers. Smaller test cases, especially
8B, tend to be less stable than larger test cases. Also the choice of the MPI
implementation influences the stability. On Laki, the intra-node communication
for test cases 8A and 8B with OpenMPI is less stable than with Intel MPI. On
the SGI, the native MPI implementation, Intel MPI and OpenMPI each show
different stability properties for one test case. The first two MPI implementations
produce nearly equally stable measurements whereas OpenMPI tends to be
unstable.

6.3.2 Assessment of the timing techniques

With the notions of overlap and instability, we can now assess the accuracy of
the timing technique barrier (B), nobarrier (NB), timer (T) and timer_multistep (TM)
by comparing the rankings of codelets of the timing techniques with the ranking
established by the verification runs. For completely stable runs, the rankings of
the timing techniques and the verification runs should be the same. Otherwise,
at least two codelets overlap. In this case, a flip between the codelets in the
ranking is acceptable. However, if two codelets in the ranking do not overlap,
but are flipped in the ranking of a timing technique, a codelet is rated better
than it actually is. To quantify the severity of such a false ordering weight tables
are defined. A high instability signifies on the one hand, that the establishment
of a ranking is eventually more challenging, on the other hand, it reduces the
possibilities for a false ordering. For a completely instable test case, for example,
no false ordering is possible since any ranking would be correct.

Based on the empirical data generated during one verification run by a timing
technique M ∈ {B, NB, T, TM}, an estimated mean µ̂i

M(c) is calculated which
defines a ranking for each timing technique and every run i.
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As the scales of measurements are very different — tens of seconds for the
verification runs, seconds for timer and timer_multistep and microseconds for
the barrier and nobarrier — the overhead is expressed in percentages P instead
of absolute times, i.e. all execution times are scaled:

Pavg
v (c) =

tavg
v (c)−mind(tavg

v (d))
mind(tavg

v (d))
· 100%,

Pmin
v (c) =

tmin
v (c)−mind(tmin

v (d))
mind(tmin

v (d))
· 100%,

Pmax
v (c) =

tmax
v (c)−mind(tmax

v (d))
mind(tmax

v (d))
· 100% and

Pi
M(c) =

µ̂i
M(c)−mind(µ̂i

M(d))
mind(µ̂i

M(d))
· 100%, i = 1, . . . , nr.

The average loss or gain between two codelets based on the verification runs
defines a weight

wavg(c, d) = (Pavg
v (c)− Pavg

v (d)) · (1− o(c, d)),

and is therefore 0 if a ranking between c and d could not be established or the
percental difference of the averaged execution times of the verification runs.
The weights derived from the minimum and maximum loss or gain between
two codelets based on the verification runs are

wmin(c, d) =


(Pmin

v (d)− Pmax
v (c)) · (1− o(c, d)) if Pmin

v (d)− Pmax
v (c) <

Pmax
v (d)− Pmin

v (c)
(Pmax

v (d)− Pmin
v (c)) · (1− o(c, d)) otherwise

and

wmax(c, d) =


(Pmin

v (d)− Pmax
v (c)) · (1− o(c, d)) if Pmin

v (d)− Pmax
v (c) >

Pmax
v (d)− Pmin

v (c)
(Pmax

v (d)− Pmin
v (c)) · (1− o(c, d)) otherwise

,

respectively.

A timing technique switches two codelets c and d if

sgn(Pi
M(c)− Pi

M(d)) 6= sgn(Pavg
v (c)− Pavg

v (d)), (6.1)

where sgn is the signum function. The gravity of this error is based on the
weights w. The average error is

eavg(c, d) =
{

max(0, wavg(c, d)) if (6.1) holds
0 otherwise,
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its minimum

emin(c, d) =
{

max(0, wmin(c, d)) if (6.1) holds
0 otherwise

and its maximum

emax(c, d) =
{

max(0, wmax(c, d)) if (6.1) holds
0 otherwise.

The comparison with 0 avoids counting ranking errors twice which would
happen if absolute values are used. This results in three tables of weights for
the minimum, average and maximum errors.

Figure 6.7 shows the maximum average loss maxc,d eavg(c, d) for one test case
whereas fig. 6.8 displays the sum of all average losses ∑c,d eavg(c, d), both av-
eraged over all sets. The range is depicted by error bars. The labels are a
combination of HPC system, the MPI used (ompi – OpenMPI, impi – Intel
MPI), the number of processes and the NAS parallel benchmark problem class,
e.g. laki_ompi_8A denotes a class A FT benchmark run with 8 processes using
OpenMPI on the Laki Nehalem cluster.

In most cases, the largest errors in the ranking are in the range of 0 up to
5% overhead. There is no clear dependence of errors or error ranges on the
instability, but all timing techniques tend to have more problems the larger I gets.
The results show that barrier and nobarrier have trouble finding the adequate
ranking. timer shows nearly the exact same behavior, whereas timer_multistep
proves to be very effective on the SGI Altix. Only for cray_256C timer_multistep
does not at all perform well. The latter might be attributed to the fact that only
batchjob has been executed for each tuple (HPC system, MPI implementation,
number of processes, benchmark class). The reasons are that results from
multiple batchjobs are not easily comparable due to different process placements
and a sufficient number of batchjobs to obtain a valid statistic would have
exceeded our computing time budgets. Hence there is the possibility that
runtime conditions for a tuple were stable, but did not show the normal behavior.
This is an exception, so even if one tuple shows a misleading behavior of the
timing techniques, taking into account all tuples still gives a good picture of the
performance of the techniques.

The maximum ranking error has only some informational value regarding the
performance of ADCL: firstly, the percentage error (Pi

M(c)− Pi
M(cwinner))(1−

o(c, cwinner)) between one codelet and the winner codelet is in practice always
smaller than the maximum average ranking error eavg(c, cwinner,) depicted in
fig. 6.7 since a misclassification does not necessarily involve the winner codelet.
Secondly, even if the ranking error involves the winner codelet, i.e. the best-
performing codelet is not recognized, it is still possible that ADCL is faster than
the native MPI implementation.
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Figure 6.7: Maximum average error maxc,d eavg(c, d) between two codelets c
and d for different test cases. Y error bars show range from maxc,d emin(c, d) to
maxc,d emax(c, d) between the three verification runs.
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Figure 6.8: Sum of all average errors ∑c,d eavg(c, d) between two codelets c
and d for different test cases. Y error bars show range from ∑c,d emin(c, d) to
∑c,d emax(c, d) between the three verification runs.
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6.4 Conclusion

This chapter introduced the timer object within the Abstract Data and Com-
munication Library (ADCL) which allows to time not only a single codelet but
also its environment. It separates timing of the communication and its actual
execution. This allows to tune two complex scenarios that could not be prop-
erly handled up to now, namely tuning multiple communication operations
simultaneously in case of (suspected) dependencies between these operations,
and tuning code segments that overlap communication and computation. More
generally, through the conceptual separation any code portions of interest can
be instrumented for measurements. The timer object represents however more
than just the timing itself, since it allows (a) to combine the set of codelets of
all operations to be tuned, and all according internal functions like an attribute-
based search and (b) it takes control of the tuning and coordinates the execution
of all requests registered at creation.

Comparing four different timing techniques to produce data for the empirical
optimization process showed the benefits of this approach. Using the timer
object in multi-step mode—and thus execution times of larger code portions
as a basis for the empirical optimization—works especially well on the SGI
Altix and produces good results on NEC SX-8, Jugene, the Laki cluster and in
general on the Cray XT-5m. It clearly improves the accuracy of the results
compared to a highly synchronized timing (i.e. without the timer object) or with
no synchronization at all.
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Empirical optimization libraries open up new vistas on the problem of laborious
and error-prone hand-tuning of simulation code. They enable an end-user to
use high-performance computing resources efficiently without special knowl-
edge and extensive time effort. This is especially important in the field of
computational fluid dynamics (CFD) where high resolution simulations re-
quire large-scale parallel simulations. Without such libraries, the variety of test
cases, runtime parameters as well as the supercomputers’ hard- and software
configuration would demand an on-going effort in benchmarking and tuning.

The Abstract Data and Communication Library (ADCL) is an application level
optimization library with special focus on tuning communication operations in
MPI parallel simulations. It provides its own API which separates the user’s
communication request from the underlying communication layer. This has
several advantages for the end-user as well as from a design perspective. Pre-
defined function sets, e.g. for Cartesian neighborhood communication oper-
ations, simplify parallelization and optimization tasks for the end-user. Only
the ADCL objects for data and topology have to be initialized. The MPI com-
munication itself is hidden inside ADCL. This reduces the programming effort
and facilitates an initial MPI implementation. The abstract interfaces of ADCL
allow not only to tune MPI communications but to replace the underlying com-
munication layer by other mechanisms. GASNET or PGAS languages are two
possibilities.

This work presented enhancements to the Abstract Data and Communication
Library (ADCL) to make it applicable to CFD simulations:

The first result of this thesis widens the area of application of ADCL. The
separation of data and data description using the introduced ADCL vector map
(vmap) object extended the ADCL from neighborhood communication patters
to collective operations. Predefined sets of codelets for allreduce, allgathv
and alltoall have been implemented to assist the user in the optimization
process. This extension made the tuning of the FFT kernel within spectral CFD
methods possible. The performance of the ADCL-enriched FFT benchmark
was tested in a variety of different settings. The integration of ADCL showed
major performance improvements in six of the test cases where the native
MPI_Alltoall implementation delivered a non-optimal performance, and minor
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improvements in the majority of test cases. In only three test cases a slight
decrease of the performance was observed.

The second result constitutes an important achievement towards improved
evaluation of the empirical data. The quality of four different methods to han-
dle outliers were analyzed in order to choose the best-performing codelet: a
heuristic derived from the trimmed mean value, a standard approach using
interquartile ranges, a technique based on cluster analysis and an approach in-
cluding robust statistics. Their performance was evaluated using the structured
Finite Volume code Euler3D which exhibits a next-neighbor communication
pattern. Together with other investigations for a TFQMR solver in [102], the
heuristic presented itself as the most reliable out of the four methods and de-
livered optimal or close to optimal performance in most of the test cases. It is
also favorable due to its low computational complexity. The method based on
robust statistics was the most successful determining subtle differences between
implementation alternatives, but failed—as did the method based on cluster
analysis—for the TFQMR example for data which is more widespread. Also,
the method using interquartile ranges showed an mediocre accuracy in this
case. It was shown that ADCL could improve the applications performance up
to 33%, if the right codelets are selected.

As the third result, the reliability of empirical data collection could be greatly
improved with the design and implementation of an ADCL timer object. A
specific timing technique based on this object, the timer_multistep, showed a
substantial decrease in misclassifications when ranking the codelets. The newly
introduced ADCL timer object makes it now possible to tune multiple MPI com-
munications independently as well as code with overlapping communication
and computation.

ADCL has been applied in large-scale CFD computations and showed that it
can tremendously improve the applications performance. The user benefits
from the abstract interface which allows him to achieve portable performance
using an easy description of the communication operation. He/She does not
have to bother with MPI performance issues whenever he/she first uses or
changes anything in the hard- or software environment such as HPC system,
test case or MPI implementation. ADCL is very beneficial for benchmarking or
optimizations. It can also provide an easy means for MPI vendors or system
administrators to evaluate the quality of MPI implementations.

This research can be continued in various directions: current efforts include
using historic learning to shorten the selection process, to integrate new search
methods such as 2k factorial design or an early stopping criterion and to extend
ADCL to other CFD applications. Predefined function sets for extend neigh-
borhood communication pattern have to be included which are e.g. needed in
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Lattice-Boltzmann simulations. Also, the automatic optimization of neighbor-
hood communications on unstructured grids needs to be added.

The timer object also offers several interesting research topics: the simultaneous
optimization of multiple, dependent communications as outlined e.g. in the
TFQMR solver example, the elaboration of the optimization possibilities for
code with overlapping computations and communications as well as attribute-
based selection algorithms with combined attributes from multiple requests.
The latter can also include research on methods to automatically determine the
impact of certain attributes on the performance and its handling.
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Glossary

(n-dimensional) Neighborhood Communication is a communication pat-
tern in which the MPI processes are located in a Cartesian grid and each
process communicates with its next neighbors along each of the n axes.

Abstract Data and Communication Library (ADCL) is an auto-tuning library
with special focus on tuning communication operations in MPI parallel
programs.

Application Programming Interface (API) is a software interface which can
be used by other software packages to interact.

Automatic Tuning System encapsulates performance-critical routines (kernels)
into a library and offers various codelets for each kernel, timers and search
techniques.

Best-performing codelet is the codelet that yields the best performance based
on a set of verification runs.

Brute-force Search is a type of search in an empirical optimization library
which tests all available codelets.

Codelet is a piece of code that implements one way to solve a particular
problem.

Compile-time Tuning is a sub-category of static tuning in which the applica-
tion program is optimized during compilation.

Computational Fluid Dynamics (CFD) is an area of research which employs
numerical methods and algorithms to solve and analyze fluid flows.

Decision Logic is a part of an empirical optimization library which comes up
with a decision based on the collected empirical data and determines the
optimal codelet, the so-called winner codelet.

Dynamic Tuning see Runtime Tuning.

Empirical Optimization is a way of optimizing performance based on empir-
ical data, i.e. measurements, in contrast to model-based optimization
strategies.
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Glossary

Exhaustive Search see Brute-force Search.

Heuristic is a best-practice rule to rapidly come up with a solution that is close
to the optimal solution.

High Performance Computing (HPC) is a discipline that uses supercomput-
ers, i.e. computers at the edge of technology regarding processing capacity.

Install-time Tuning is a sub-category of static tuning in which the tuning library
is optimized during installation.

Kernel is a confined entity of a computer program of special importance, e.g.
the central part of the algorithm or a computationally expensive well-
defined set of operations.

Message-Passing Interface (MPI) is a API specification for parallel comput-
ing and very frequently used in case of distributed memory systems.

Network Congestion describes the occurrence of deteriorations in the quality
of service (e.g. queueing delay, packet loss) of a network due to excess
amounts of data over a certain link.

Optimal codelet see Winner codelet.

Outlier is an observation which deviates much from the other observations in
the sample.

Runtime Tuning is the opposite of static tuning. It leads to software which has
the ability to adapt its behavior at runtime.

Selection Logic is a part of an empirical optimization library which chooses
the order in which the codelets are evaluated during the search.

Static Tuning is the process of optimizing a code sequence/application a priori
of the actual execution of the program resulting in software that cannot al-
ter its behavior during execution. Static tuning is sometimes sub-classified
into install-time and compile-time tuning.

Verification runs denotes a set of measurements where each codelet in a set of
codelets is preselected and executed once in a long-term run.

Winner codelet is the codelet the decision logic judges best-performing and
which is subsequently used during the production phase.
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