
Universität Stuttgart
Fakultät Informatik

The Shadow Approach: An Orphan
Detection Protocol for Mobile Agents

Joachim Baumann, Kurt Rothermel

Bericht 1998/08
July 1998

The Shadow Approach: An Orphan Detec-
tion Protocol for Mobile Agents

Joachim Baumann, Kurt Rothermel

Email:Joachim.Baumann@informatik.uni-stuttgart.de

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)

Fakultät Informatik
Universität Stuttgart

Breitwiesenstr. 20 - 22
D-70565 Stuttgart

1 Introduction 1

The Shadow Approach: An Orphan Detection Protocol
for Mobile Agents

Joachim Baumann, Kurt Rothermel

IPVR (Institute for Parallel and Distributed High-Performance Systems)
Breitwiesenstraße 20-22

D-70565 Stuttgart
EMail:Joachim.Baumann@informatik.uni-stuttgart.de

Abstract. Orphan detection in distributed systems is a well researched field for
which many solutions exist. These solutions exploit well defined parent-child re-
lationships given in distributed systems. But they are not applicable in mobile
agent systems, since no similar natural relationship between agents exist. Thus
new protocols have to be developed. In this paper one such protocol for control-
ling mobile mobile agents and for orphan detection is presented.
The ‘shadow’ approach presented in this paper uses the idea of a placeholder
(shadow) which is assigned by the agent system to each new agent. This defines
an artificial relationship between agents and shadow. The shadow records the lo-
cation of all dependent agents. Removing the root shadow implies that all depend-
ent agents are declared orphan and eventually be terminated. We introduce agent
proxies that create a path from shadow to every agent. In an extension of the basic
protocol we additionally allow the shadow to be mobile.
The shadow approach can be used for termination of groups of agents even if the
exact location of each single agent is not known.

1 Introduction

A mobile agent is regarded as a piece of software roaming the network on behalf of a
user, e.g. searching for information in different databases, buying a flight ticket and
renting a car, or trying to find the cheapest flower shop. Mobile agents seem to be the
solution to many of the problems in the area of distributed systems. But while the idea
of mobile agents is quite appealing, and while many researchers are working in this ar-
ea, some very important problems have not been solved. Most of the research concen-
trates on providing the basic system support for migration, communication, the security
of the platform underlying the agent system and for the asynchronous operation of
agents. Some solutions for these problems already exist and have been implemented in
different agent systems (e.g. [12], [4], [8], [14], [7], [6]). But until now no protocols ex-
ist for orphan detection in mobile agent systems.

Orphan detection in an agent system is very important both from the user’s and from the
system side, because a running agent uses resources which are valuable to both user and
system. The user has to pay for resources (at least in principle), and the system has only
a limited amount of them. So if the user does not need the results of a distributed com-
putation in progress anymore, he wants to be able to terminate the computation to min-
imize the resulting cost. With an orphan detection mechanism the user simply declares
the agents to be terminated as orphans. Orphan detection guarantees that the now use-
less agents can be determined by the system and ended, thus freeing the resources they
have bound. In this paper we will present a new protocol, the shadow protocol, that al-

2 The Agent Model 2

lows both control of mobile agents and orphan detection. The paper is organized as fol-
lows: Sect. 2 presents our agent model. In Sect. 3 the shadow protocol is presented with
different extensions and optimizations. Sect. 4 presents related work, and in Sect. 5 the
conclusion and outlook is given.

2 The Agent Model

In this section we will give you a
short overview of our agent model,
that has been described in more de-
tail in [12], [1] and [4]. Our model
of an agent-based system - as many
other models - is mainly based on
the concepts of agents and places.
Places provide the environment for
safely executing local as well as vis-
iting agents. An agent system consists of a number of (abstract) places, being the home
of various services. Agents are active entities, which may move from place to place to
meet other agents and access the places’ services. Each agent is identified by a globally
unique agent identifier. An agent’s identifier is generated by the system at agent creation
time. The creating place can be derived from this name. It is independent of the agent’s
current place, i.e. it does not change when the agent moves to a new place. In other
words, the applied identifier scheme provides location transparency. A place is entirely
located on a single node of the underlying network, but multiple places may be situated
on a given node. For example, a node may provide a number of places, each one as-
signed to a certain agent community, allowing access to a certain set of services or im-
plementing a certain prizing policy. Places are divided into two types, depending on the
connectivity of the underlying system. If a system is connected to the network all the
time (barring network failures and system crashes), a place on this system is calledcon-
nected. If a system is only part-time connected to the network, e.g. a user’s PDA (Per-
sonal Digital Assistant), the place is calledassociated.

3 The Shadow Protocol

In this section we discuss the basic Shadow Protocol with its agent proxies, the exten-
sion that allows the shadows to be mobile, and discuss possible optimizations.

3.1 The Idea

In the shadow concept each application cre-
ates one or more shadows, a data structure
on a connected place. The place where the
shadow is created does not necessarily have
to run on the same host on which the creat-
ing application runs. Each agent created by
the application depends on such a shadow (Fig. 2). As long as the shadow exists in the
system, no contact of agents to the application itself or to the computer system on which

Hi

migration

place B

place C
application

service agent
mobile agent

place A

Fig. 1.The Agent Model

comm.

Application creates

Place

Agent

Shadow

Fig. 2.The Creation of a Shadow

3 The Shadow Protocol 3

the application runs is necessary. In regular intervals (calledtime to live or ttl) the sys-
tem checks for each agent if the associated shadow still exists. If the shadow does no
longer exist (because the application removed it), the agent is declared to be an orphan
and is removed.

If an agent creates a new agent, the system
assigns the to this new agent the shadow of
the creating agent, and the same remaining
ttl until the next check (Fig. 3). This assign-
ment cannot be changed by the agents. Lim-
iting the time span to the remainingttl of the
creating agent (and not to the original time
interval) is necessary to prevent malicious
agents from living infinitely. Otherwise the mechanism could be circumvented simply
by creating a new agent with again the wholettl just before the life span of the old agent
ends. If a place on which a shadow resides cannot be reached, the system tries to contact
the place several times. If still the place cannot be reached, the shadow is presumed no
longer existent and its associated agents are killed. The disadvantage of this approach
is that regardless of what an agent does, it has to connect to its shadow’s place in regular
intervals. The advantage on the other hand is that we have a worst-case time bound for
the termination of agents through removing the shadows. This upper bound is exactly
the sum ofttl of the agents and the timeout for contacting.

Until now the protocol only allows passive termination. By removing a shadow all de-
pendent agents are declared orphans, and after thettl it is guaranteed that all agents have
been removed by the orphan detection. By adding thepath concept to this protocol, we
also allow active termination, i.e. termination of an agent while itsttl is greater 0. Agent
proxies are structures at each place that keep track of the movement of all agents de-
pendent of a specific shadow, thus creating a path leading to the agent. By storing the
place at which the agent got checked the last time we can find the beginning of a path
for every agent. Even if the path gets lost, the agent will contact the shadow after thettl.

If an agent arrives at a place where not yet an agent proxy for this shadow exists, one is
created (Fig. 4). As soon as the agent migrates to another place, the destination (being
part of the path leading to the agent) is stored in the proxy together with thettl.

When the end of thettl is reached, the agent’s shadow gets a request for extending the
agent’s life, and thus the new place of the agent is made known to the shadow (Fig. 5).
The path entries stored in the different agent proxies along the agent’s way is now su-
perfluous and can be removed using the knowledge about thettl stored in the proxy. An
entry can also be removed if the agent migrates back to this place (this simply optimizes
the now circular path by removing the loop).

An agent proxy contains, for a specific place, all path segments of agents belonging to
the same shadow. It exists exactly as long as there is a path entry in it. As soon as the
agent proxy contains no more entries, it can be removed as well. This is especially help-
ful if the agents are actively terminated, i.e. the system actively sends messages to ter-
minate the agents as fast as possible. In that case, all entries are removed from the agent
proxy, allowing the system to delete the proxy as well.

creates

Place

Agent

Shadow

Place

depend

Agent

Fig. 3.Creating a New Agent

3 The Shadow Protocol 4

3.2 The Protocol

We will discuss the different parts
of the protocol separately. The
protocol is presented in an object-
oriented pseudo-code notation.

The place on which the agent re-
sides, decrements in regular inter-
vals thettl of the agent. As soon
as thettl of the agent is 0, a mes-
sage is sent back to the home
place of the shadow, containing
the id of agent and shadow. At the
same time a timer is started with a
timeout, and the agent enters the
check phase (Fig. 6). To allow
greater flexibility each shadow
(and thus the group of associated
agents) can have a timeout of its
own. This allows for a loophole
by setting a very long timeout.
But this can be corrected by intro-
ducing a per-place timeout. The
timeout finally chosen is the min-
imum of agent timeout and place
timeout.

Fig. 4.Proxie Paths Fig. 5.Regular Update of Proxies

Shadow

Place

Agent

Shadow

Place

Agent

Agent Proxy

Agent Proxy

Shadow

Place

Agent

Agent Proxy

Shadow

Place

Agent

Regular Intervals:
for each agent

agent.timeToLive - -;
if (agent.timeToLive == 0)

sendCheck(agent.shadowHome, current-
Place,

agent.shadowId, agent.id);
startTimer(min(place.TimeOut,agent.time-

Out),
agent.proxy, agent);

onArrival(agent)
agentproxy = proxyList.find(agent.shadowId);
if(agentproxy == null)

agentproxy = new Proxy(agent.id, agent.timeTo-
Live,

agent.shadowHome, current-
Place);

proxyList.add(agentproxy);
else

agentproxy.add(agent.agentId, agent.timeTo-
Live);

agent.proxy = agentproxy;
agentList.add(agent);
agent.start();

onLeaving(agent, target)

Fig. 6.System Methods

3 The Shadow Protocol 5

The check message is received by the
home place of the shadow. First a timer
is stopped that has been started the last
time the ttl has been sent back to the
agent. This allows to detect agents that
have been terminated (see below). The
ttl is requested from the responsible
shadow, and if greater 0 is sent back by
the system to the requesting agent. As
soon as the message is received, the tim-
er for the timeout is stopped, and the
agent’sttl is set (see Fig. 7). This ends
the agent’s check phase and allows it to
migrate again. When an agent arrives at
a place, the list of agent proxies is
searched for a proxy of that agent. If
none exists, a new one is created, and
the agent gets a reference on it. As soon
as an agent wants to leave, itsttl is
checked. This is done to prevent an
agent who is in the check phase to mi-
grate. If it is not in the check phase, the
information in the agent proxy is updat-
ed to point to the target place. At the
same time a timer is started that re-
moves the path after the sum of remain-
ing ttl and timeout (see Fig. 6). The
shadow can decide on a case-by-case
basis if an agent’s life time is to be ex-
tended, and by which interval.

In Fig. 8 we present an example policy,
that for all of the agents returns the
samettl. This method checks first if an
agent entry already exists for this agent
(in case a newly created agent contacts
the shadow), updates the information
about the location of the agent, and re-
turns thettl. The shadow is also called
if the system has detected (via the time-
out), that an agent has been terminated.
The simplest policy is to remove the re-
lated entry from the list. We now dis-
cuss the reaction to the different time-
outs (see Fig. 9). One possible reaction
to the timeout of the check message has been sketched out above. Here we present a

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
shadow = shadowList.find(shadowId);
timeToLive = shadow.timeToLive(from, agen
if (timeToLive > 0)

startTimer(timeToLive
+ shadow.getTimeOut(agentId),
shadow, agentId);

sendAllowance(from, agentId, timeToLiv

receiveAllowance(agentId, timeToLive)
stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;

Fig. 7.The Check Phase

timeToLive(from, agentId, shadowId)
[here an example policy is presented]

shadowproxy = listOfProxies.find(shadowId)
agententry = shadowproxy.get(agentId)
if(agententry != null)

agententry.target = from;
else

agententry = new AgentEntry(from, agen
timeToLive);

shadowproxy.add (agententry);
return agententry.timeToLive;

remove(agentId)
[implement policy]

agentproxy = listOfProxies.find(agentId);
Fig. 8.Methods in the Shadow Object

onTimer(proxy, agent) // check timeout
[here an example policy is presented]

agentList.remove(agent);
agentproxy.remove(agentId);
if(agentproxy.entries() == 0)

proxyList.remove(agentproxy);

onTimer(agentproxy, agentId)// path redundan
[implement policy]

agentproxy.remove(agentId);
if(agentproxy.entries() == 0)

proxyList.remove(agentproxy);

onTimer(shadow, agentId) // ag. terminated
Fig. 9.System: Reaction to Timeouts

3 The Shadow Protocol 6

simple alternative; the agent is removed at once. The next timeout affects the paths. As
soon as an agent migrates, the path segment pointing to its new location is created, and
a timer started. As soon as this timer ends, we know that the path information in the
shadow itself has been updated, and this part of the path can safely be removed. The last
method is called if an agent has not tried to contact the shadow for the sum ofttl and
timeout. In this case the agent has terminated. The shadow method (see Fig. 9) is called
to react to it.

Finding Agents.If we want to
actively terminate a specific
agent, we have to find it first.
This can be done with the help of
the information stored in the
agent proxies. If the agent is in
the local list of active agents, it is
already found. If not, the related
agent proxy is searched. If it is
not found, an error is returned. If
it is discovered, afind request is
sent to the target found in the
proxy. At the target place the list
of active agents is again exam-
ined. If the agent is found, a suc-
cess message is sent back. If not,
the related agent proxy is
searched again. If no proxy ex-
ists, an error is sent back. Other-
wise, the message is sent on. This
is repeated until the agent is found or the path ends (see Fig. 10).

3.3 Mobile Shadows

In cases where many of the agents depending on a shadow move somewhere far away
(i.e. communication costs are high), every one of the agents has to contact the shadow
independently, resulting in unnecessarily high communication costs. If the migration
behaviour is known in advance, the shadow can be placed in a way that reduces the com-
munication cost. But in many cases the behaviour is not known in advance, or the group
moves as a whole from area to area (e.g. from one organization to another). In these cas-
es it would be much better if the shadow moved with the agents. Possible policies where
to place the shadow could be:

• at a place where the communication cost to all dependent agents would be lowest.

• where one agent important for the computation is situated. If the place becomes
unavailable (e.g. crashes), both shadow and agent would not be reachable, and the
other dependent agents would be terminated.

While in the first case the shadow would have to be persistent, in the second case it
would have to be transient to implement the policy.

find(agentId)
if (agentList.find(agentId) != null)

return(this);
agentproxy = shadowList.find(agentId);
if(agentproxy != null)

sendFind(agentproxy.target(agentId), this, agentI
else

return(notFoundError);

receiveFind(searcher, agentId)
if (agentList.find(agentId) != null)

sendFound(searcher, this, agentId);
if((agtproxy = proxyList.find(agentId)) != null)

sendFind(agtproxy.target(agentId), searcher, agen
else

sendError(searcher, notFoundError, agentId);

receiveFound(from, agentId)
return(from);

receiveError(error, agentId)

Fig. 10.Finding Agents

3 The Shadow Protocol 7

To move a shadow two problems have to be dealt with. The first is that the agents de-
pending on the shadow have somehow to be notified about the new location of the shad-
ow. The second is that the application still has to be able to reach the shadow, e.g. in
case it wants to terminate the agents. Both problems can be solved similar to the ap-
proach used with the agent proxies. When a shadow moves, a shadow proxy stays be-
hind. Thus over time a shadow path is built. By contacting the copy at the home place
in regular intervals this path can be cut short. As alternative to intervals at which to cut
the path short, a maximum path length would be suitable. But using a maximum path
length adds communication along the path, because as soon as the maximum path
length has been reached the shadow proxies along the path have to be notified that they
are no longer needed. A combination of these policies seems the most flexible.

Now, when an agent requests a newttl, the shadow might already have moved some-
where else. In this case, the request is sent to the new place of the shadow. If the shadow
already has moved again, the request is forwarded along the path of shadow proxies un-
til the shadow itself is reached. The shadow sends a new grant back to the agent together
with its new place. The next time the agent sends its request directly to the new place.

The shadow proxies can be removed as soon as the path is no longer needed and no
agent still has the reference to a shadow proxy. Thus the maximum of agent and shadow
ttl is the maximum time the proxy has to be hold. One exception has to be made though.
The first proxy, that stays at home, cannot be removed as long as the shadow is else-
where.

The Protocol.We first examine the
shadow part of the protocol. Moving the
shadow to another place creates a path to
the target and starts a timer. After the
timeout of this timer the path has to be
deleted. The path is created by leaving a
shadow proxy behind. Removing the
shadow is done by sending a message
along the path (see Fig. 11). Each shad-
ow gets attl, after which it must contact
its home place. This time is not necessar-
ily the same as for the agents.

In regular intervals thisttl is decrement-
ed. As soon as the shadow’sttl is 0, the
shadow enters the check phase. A mes-
sage containing the shadow id and its
current place is sent to the home place
and a timer is started (see Fig. 12). The
check message for the shadow contains
the new place of the shadow. If the shad-
ow proxy at home still exists, it is updat-
ed and thettl is sent back. If the answer

move(target)
if (timeToLive != 0)

sendShadow(target, this);
if(currentPlace != null) // part of path

pathTimeOut = timeToLive + timeOu
startTimer(pathTimeOut, shadow);

currentPlace = target;

terminateShadow()
if (currentPlace != null) // shadow moved

sendTerminate(currentPlace, id);

Fig. 11.Additional Shadow Methods

Regular Intervals:
[agent related part stays the same]

for each shadow
if (shadow.homePlace != place.name())

shadow.timeToLive--;
if (shadow.timeToLive == 0)

sendCheck(shadow.homePlace,
shadow.id);

startTimer(shadow.timeOut,

Fig. 12.Extended System Methods:
Regular Intervals

3 The Shadow Protocol 8

is not received until the timeout, the shadow is removed (more complex reactions with
retries can be chosen instead).

As soon as it is received, the timer is
stopped and thettl is set (see Fig.
13). The shadow proxies creating
the path between home place and
shadow get a similar timeout after
the sum ofttl of the shadow, of the
agent (see below) and the communi-
cation timeout. At that point the path
is redundant and can be removed
(see below). This way the path creat-
ed by the shadow is cut short in reg-
ular intervals. If the shadow comes
back to its home place, the shadow
proxy is replaced by the original.

In the basic protocol the agent check
message is sent to the shadow’s
home place. Now it is sent to the
place from which the lastttl mes-
sage has been received. This is done
by storing it in an additional at-
tribute. If the shadow moves be-
tween two such messages, the check
message is sent to a shadow proxy
(somewhere on the path) instead of
the original. The shadow proxy now
forwards this agent check message
along the path. The original, upon
receiving the message, sends back
thettl and its own place. The path is
superfluous as soon as the shadow’s
place is known at the home place
and no agent still references a part
of it (see Fig. 14).

onTimer(shadow) // this path seg. is redundan
shadowList.remove(shadow);

receiveAllowance(shadowId, timeToLive)
shadow = shadowList.find(shadowId);
stopTimer(shadow);
shadow.timeToLive = timeToLive;

receiveCheck(from, shadowId)
shadow = shadowList.find(shadowId);
if(shadow != null)

shadow.currentPlace = place;
sendAllowance(from, shadowId,

Fig. 13.Additional System Methods:
Checking the Shadow

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
if(currentPlace != place.name())

sendCheck(currentPlace, from,
shadowId, agentId);

else
shadow = shadowList.find(shadowId);
timeToLive =

shadow.timeToLive(from, agentId
if (timeToLive > 0)

startTimer(timeToLive
+ shadow.getTimeOut(agentId
shadow, agentId);

sendAllowance(from, place.name(),
agentId, timeToLive);

receiveAllowance(shadowPlace, agentId, timeToL
stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;

Fig. 14.Changed System Methods:
Extending the Agent’s Life

3 The Shadow Protocol 9

Together with sending back thettl to
the agent the shadow starts a timer. If
after this timeout the agent did not
send a check message, the shadow
knows that the agent has terminated.
But since the timeout is detected at a
place and not inside the shadow, the
information might only reach a proxy
and not the shadow itself. In this case
the shadow has to be informed. Thus a
message is sent along the path contain-
ing the information that the agent has
terminated. Every proxy sends the in-
formation onward until it reaches the
shadow. Now the agent entry is re-
moved (see Fig. 15).

3.4 Optimizing the Communication

As soon as more than one agent belongs to a shadow, optimizations of the communica-
tion are possible. Three optimizations exist:

• If two agents belonging to the same shadow come to the same place, thettl of the
one with the lower remaining time interval is set to thettl of the other one. This
works with an arbitrarily large number of agents on a place and happens conven-
iently at the arrival of a new agent.

• If an agent’s shadow has been checked, then this information also gets transferred
to all other agents belonging to the same shadow on the same place as the agent.

• The combination of shadow and agent proxies creates a spanning tree that follows
the agents’ movements with the shadow as the root. The tree can be optimized by
simply using common paths for the parts of the paths that are the same for different
agents. This effectively reduces the number of messages that flow without chang-
ing the functionality. Furthermore, the agents on nodes along the tree can be up-
dated simulataneously.

The proxies allow to find an agent, e.g. to terminate it actively. But with all of the men-
tioned optimizations the path to a specific agent can be lost. This can happen if an agent
gets additionalttl from another agent, and the path assuming the originalttl is removed.
The optimizations make it impossible to terminate a specific agent.

The interesting point though is that this doesn’t matter for the termination of the whole
group of agents. If the termination message is sent to all known proxies, then these prox-
ies forward the termination message along all of the paths they are part of. Ultimately
this termination message reaches all of the agents, even those no longer directly known
to the shadow. The path segment for an agent exists exactly for the currentttl of the
agent. So if it got additional time, then at that place the agent proxy holds the path from
that place for that remaining time. Every time an agent gets additional time from another

onTimer(shadow, agentId) // agent terminated
shadow.remove(agentId);
if (shadow.currentPlace != place.name())

sendRemoved(currentPlace, shadowId,
agentId);

receiveRemoved(shadowId, agentId)
shadow = shadowList.find(shadowId);
if(shadow != null)

if(shadow.currentPlace != place.name())
sendRemoved(currentPlace, shadowId

agentId);
else

shadow = shadowList.find(shadowId);
Fig. 15.Changed System Methods:

Detecting Terminated Agents

3 The Shadow Protocol 10

agent, there exists a valid path to that other agent. So, by first following the path to the
other agent, and then the still valid path to our agent, every agent gets the termination
message. This way, all of the mentioned optimizations can be used without compromis-
ing functionality for the group as a whole.

3.5 Fault Tolerance

Our fault model contains two types of failures, node failures (fail-stop) and network par-
titions. It is important to note that from the viewpoint of a node these failures are not
distinguishable. By introducing a path of proxies the fault sensitivity of the protocol is
increased. If only one of the nodes containing a proxy is not reachable, either through
node failure or network partitioning, the path is broken. Different mechanisms have to
be used for the two different kinds of paths. While in the case of a broken agent proxy
path only one agent is no longer reachable until itsttl is 0, in the case of a broken shadow
proxy path the agents trying to extend their life are threatened. The mechanism em-
ployed for the agent proxy paths has already been presented in Sect. 3, and is only dis-
cussed briefly. The mechanism used for shadow proxy paths has not yet been discussed
in the protocol section and is examined in the following in detail.

Agent Proxy Path.By introducing thettl, after which the agent has to contact the shad-
ow’s place, it is guaranteed that even if the path is broken, the new location of the agent
can be identified after thettl (as a worst-case bound), as long as either the network par-
tition is short-term, or agent place and shadow place are in the same partition. If after
thettl (plus the timeout) the agent has not contacted the shadow, the shadow knows that
the agent does not exist any longer (either because it has terminated or has been declared
orphan and removed by the system).

Shadow Proxy Path.Two strategies are possible for dealing with a broken shadow
proxy path. The first strategy does not change the characteristics of the protocol, but
manages only short-term failures. It lets the last shadow proxy of the still-existing path
try to contact the next shadow proxy again. The problem though is that the newttl has
to be sent to the agent before the system decides to terminate it.

The second strategy allows for longer failures but changes the worst-case bound for pas-
sive termination of the agents (the worst-case bound is 2ttl in this variant). If the last
shadow proxy detects the break, it sends a newttl back to the agent, but with thehome
place of the shadow as the new location. The newttl is the minimum of the remaining
shadowttl and the agentttl. If the shadow would have been removed, then the shadow
proxy would know about it (and would have been removed as well). Thus the shadow
still exists and it is correct to send the allowance. The home place of the shadow is sent
instead of the location of the next shadow proxy in the path, to guarantee that the agent
has a valid place to send the request for the nextttl. If the ttl of the agent is shorter than
the remaining time of the shadow proxy path, then the next request will be sent along
the same path (that hopefully is connected again). If thettl of the path is shorter, then
the agent will contact the home place of the shadow when the shadow itself has request-
ed a newttl. This means that the home place holds the new location of the shadow and
forwards the request correctly.

4 Related Work 11

4 Related Work

In the area of mobile agent systems the current research concentrates on the basic sys-
tem support. But now that many different agent systems existing support the function-
ality needed to realize applications, mechanisms providing the functionality presented
in this paper are essential. Thus the problem areas of orphan detection and termination
of agents are beginning to evoke the interest of the research community. But apart from
the mechanisms developed at the University of Stuttgart (see [5] describing a group con-
cept or [2] discussing an energy concept and a path concept) no publications present
similar functionality for mobile agent systems. However, in the area of distributed sys-
tems many algorithms exist that solve similar problems. The area of distributed algo-
rithms, and especially distributed termination detection (in [9] and in [13] a discussion
of many algorithms can be found) and distributed garbage collection (one example is
the work on Stub Scion Pair Chains [11]), has to be seen as related work.

But two differences prevent the use of these algorithms for mobile agent systems. First
of all, the fault model is different. The possibility of network partitions or node crashes
does not exist in the fault model used for most distributed algorithms. Mobile agent sys-
tems explicitly include these faults in their fault model. Furthermore, the fault model
supports the asynchrony of agents. The second difference is the autonomy of the “ob-
jects” in question that very much influences the processing model. A process (or object)
in the distributed system area is not normally seen as autonomous. Here a process is
seen as a cooperating part of a larger application. For a mobile agent the autonomy is
one of the important prerequisites. This autonomy leads to the problem that a malicious
agent might try to remove itself from the control by the system. These differences make
it impossible to use the existing distributed algorithms in the area of mobile agent sys-
tems. It might be possible to use one such algorithm as the basis for a new design tai-
lored to the needs of mobile agent systems. But the changes in the fault model and in
the processing model effect so many changes in the algorithm itself that acorrect trans-
formation would be problematic at best. Nevertheless we believe that in principle it is
possible to transform these algorithms correctly into algorithms that take the peculiari-
ties of mobile agent systems into account. The key to this is an automatic transformation
that, used on e.g. an algorithm for distributed garbage collection, turns it into a orphan
detection and / or termination algorithm for mobile agent systems. An analogon to such
an algorithm exists for the automatic transformation of termination detection algorithms
into distributed garbage collection algorithms [10].

5 Conclusion and Future Work

In this paper we presented the shadow protocol. The shadow protocol has still some dis-
advantages: it introduces additional communication into the system and resources
(memory) are bound to store the different path information. But the advantages out-
weigh the disadvantages by far: the mechanism is robust against malicious or faulty
agents, the path information is updated without additional communication costs (no
outdated path information exists), and the time until all agents are terminated in the
worst case can be determined exactly. The presented protocol has been implemented in
our agent system Mole (for a description of Mole see [12], [1], and [4]).

5 Conclusion and Future Work 12

We will examine the area of fault tolerance in detail. The presented mechanism is robust
against short time network partitioning and system faults, but does not cope well with
lasting faults. We will investigate in which way the shadow concept can be made fault
resilient by replication of the control structures.

Acknowledgements: Parts of the protocol have been implemented by M. Zepf. The
comments of F. Hohl, M. Schwehm and M. Straßer improved the quality of the paper.

A The Protocol

In this appendix the protocols are listed as a whole. Each of them is presented as meth-
ods in a pseudo object-oriented fashion. Some basic object types, e.g. lists are assumed
existing. Methods can be called asynchronously, e.g.

• startTimer (time, agentId) will call a methodonTimer(agentId) aftertime.

• sendMessage(place, „Hello“) is sent toplace and callsreceiveMessage(„Hel-
lo“).

Methods bodies containing [here an example policy is presented] can be used to imple-
ment a specific policy, e.g. for reacting to a message asking for more energy (in the en-
ergy concept). The presented implementation is one of the possible policies.

A.1 Objects needed

Needed Objects

Object Shadow
Method timeToLive(AgentId);
Method remove(AgentId);
Attribute listOfProxies:List of AgentProxy;
Attribute timeToLive:Integer;
Attribute timeOut:Integer;
...

Object AgentProxy
Attribute id:AgentId;
Attribute timeToLive:Integer;
Attribute target:placeName;

Object ShadowProxy
Attribute agents:List of AgentProxy;

Object Agent
Attribute id:AgentId;
Attribute timeToLive:Integer;
Attribute timeOut:Integer;
Attribute proxy:ShadowProxy;
Attribute shadowId:ShadowId;
Attribute shadowHome:PlaceName;
Attribute home:PlaceName;
...

5 Conclusion and Future Work 13

A.2 Methods in the Object Shadow

Shadow

timeToLive(from, agentId)
[here an example policy is presented]

agentProxy = listOfProxies.find(agentId);
if(agentProxy != null)

agentProxy.target = from;
else

agentProxy = new AgentProxy(from, agentId, timeToLive);
return agentProxy.timeToLive;

remove(agentId)
agentProxy = listOfProxies.find(agentId);
listOfProxies.remove(agentProxy);

A.3 Basic Protocol with Proxies

Place: Methods

Regular Intervals:
for each agent

agent.timeToLive - -;
if (agent.timeToLive == 0)

sendCheck(agent.shadowHome, currentPlace, agent.shadowId, agent.id);
startTimer(min(localTimeOut, agent.timeOut), agent.proxy, agent);

onArrival(agent)
agentproxy = proxyList.find(agent.shadowId);
if(agentproxy == null)

agentproxy = new Proxy(agent.id, agent.timeToLive, agent.shadowHome, cur-
rentPlace);

proxyList.add(agentproxy);
else

agentproxy.add(agent.agentId, agent.timeToLive);
agent.proxy = agentproxy;
agentList.add(agent);
agent.start();

onLeaving(agent, target)
if (agent.timeToLive > 0)

agentList.remove(agent);
agent.proxy.setTarget(agent.id, target));
startTimer(agent.timeToLive + agent.timeOut, agent.proxy, agent.id);
SendAgent(target, agent);

else
SendException (agent);

onTimer(agentproxy, agentId) // time for the proxy path has ended
agentproxy.remove(agentId);
if(agentproxy.entries() == 0)

proxyList.remove(agentproxy);

5 Conclusion and Future Work 14

onTimer(agentproxy, agent) // allowance has not been sent in time
[here an example policy is presented]

agentList.remove(agent);
agentproxy.remove(agentId);
if(agentproxy.entries() == 0)

proxyList.remove(agentproxy);

onTimer(shadow, agentId) // agent has been killed due to timeout
shadow.remove(agentId);

receiveAllowance(agentId, timeToLive)
stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;
proxyList.setTime(agentId, timeToLive);

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
shadow = shadowList.find(shadowId);
timeToLive = shadow.timeToLive(from, agentId);
if (timeToLive > 0)

startTimer(timeToLive + shadow.getTimeOut(agentId), shadow, agentId);
sendAllowance(from, agentId, timeToLive);

createAgent(creatingAgent, AgentClass, parameterList)
newAgent = new AgentClass(parameterList);
newAgent.timeToLive = creatingAgent.timeToLive;
newAgent.timeOut = creatingAgent.timeOut;
newAgent.shadowId = creatingAgent.shadowId;
newAgent.shadowHome = creatingAgent.shadowHome;
onArrival(newAgent);

A.4 Finding Agents

Place: Methods

find(agentId)
if (agentList.find(agentId) != null)

return(currentPlace);
if(shadowList.find(agentId) != null)

sendFind(agentproxy.target(agentId), currentPlace, agentId);
else

return(notFoundError);

receiveFind(searcher, agentId)
if (agentList.find(agentId) != null)

sendFound(searcher, currentPlace, agentId);
if(proxyList.find(agentId) != null)

sendFind(proxy.target(agentId), searcher, agentId);
else

sendError(searcher, notFoundError, agentId);

5 Conclusion and Future Work 15

receiveFound(from, agentId)
return(from);

receiveError(error, agentId)
if (error == notFoundError)

return(error);

A.5 Mobile Shadows

Shadow: Additional Attrib utes

Object Shadow
Method move(placeName);
Attribute currentPlace:PlaceName; // null if shadow is at home
Attribute homePlace:PlaceName;
Attribute timeToLive:Integer;

Shadow: Additional Methods

move(target)
if(timeToLive != 0)

sendShadow(target, this);
if(currentPlace != null) // we are part of the path

startTimer(timeToLive + timeOut, shadow);
currentPlace = target;

terminateShadow()
if (currentPlace != null) // the shadow has moved out

sendTerminate(currentPlace, id);
delete(this);

Place: Additional and Extended Methods

Regular Intervals:
for each agent

agent.timeToLive - -;
if (agent.timeToLive == 0)

sendCheck(agent.shadowHome, this, agent.shadowId, agent.id);
startTimer(min(localTimeOut, agent.timeOut), agent.proxy, agent);

for each shadow
if (shadow.homePlace != place.name()) // only if not at home place

shadow.timeToLive--;
if (shadow.timeToLive == 0)

sendCheck(shadow.homePlace, shadow.id);
startTimer(shadow.timeOut, shadow);

onTimer(shadow, agentId) // agent has been killed
shadow.remove(agentId); // due to timeout
if (shadow.currentPlace != place.name())

sendRemoved(currentPlace, shadowId, agentId);

onTimer(shadow)
shadowList.remove(shadow); // shadow path can be removed

5 Conclusion and Future Work 16

receiveAllowance(shadowPlace, agentId, timeToLive)
stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;
agent.shadowHome = shadowPlace;
proxyList.setTime(agentId, timeToLive);

receiveAllowance(shadowId, timeToLive)
shadow = shadowList.find(shadowId);
stopTimer(shadow);
shadow.timeToLive = timeToLive;

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
if(currentPlace != place.name()) // not the current shadow

sendCheck(currentPlace, from, shadowId, agentId);
else

shadow = shadowList.find(shadowId);
timeToLive = shadow.timeToLive(from, agentId);
if (timeToLive > 0)

startTimer(timeToLive + shadow.getTimeOut(agentId), shadow, agentId);
sendAllowance(from, place.name(), agentId, timeToLive);

receiveCheck(from, shadowId)
shadow = shadowList.find(shadowId);
if(shadow != null)

shadow.currentPlace = place;
sendAllowance(from, shadowId, shadow.timeToLive);

receiveShadow(shadow)
if(shadow.timeToLive != 0)

if(shadow.homePlace != place.name())
shadow.currentPlace = place.name();
shadowList.add(shadow);

else // shadow comes back home
shadowList.find(shadow.shadowId);
shadowList.remove(orig_shadow);
shadowList.add(shadow);
shadow.currentPlace = null;

receiveRemoved(shadowId, agentId)
shadow = shadowList.find(shadowId);
if(shadow != null)

if(shadow.currentPlace != place.name())
sendRemoved(currentPlace, shadowId, agentId);

else
shadow = shadowList.find(shadowId);
shadow.remove(agentId);

5 Conclusion and Future Work 17

B References

1. J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Straßer. “Communication
Concepts for Mobile Agent Systems”, in Mobile Agents ‘97, LNCS 1219,
Springer-Verlag, pp. 123 - 135, 1997.

2. J. Baumann. „A Protocol for Orphan Detection and Termination in Mobile Agent
Systems“, Tech. Report 1997/09, Fac. of Computer Science, U. of Stuttgart, 1997.

3. J. Baumann, F. Hohl, K. Rothermel, M. Straßer. „Mole - Concepts of a Mobile
Agent System“, in WWW Journal, Special Issue on Software Agents, to appear.

4. J. Baumann, N. Radouniklis. „Agent Groups for Mobile Agent Systems“, in
Distributed Applications and Interoperable Systems, H. König et al., Eds.,
Chapman & Hall, pp. 74 - 85, 1997.

5. J. Baumann, C. Tschudin, J. Vitek. “Mobile Object Systems: Workshop
Summary”, Workshop Proceedings for the 2nd Workshop on Mobile Object
Systems, in Workshop Reader ECOOP ’96, d-punkt.verlag, pp. 301 - 308, 1996.

6. General Magic, “Odyssey Web Site”. URL: http://www.genmagic.com/agents/
7. IBM. “The Aglets Workbench”. URL: http://www.trl.ibm.co.jp/aglets/
8. F. Mattern. “Verteilte Algorithmen”, Springer-Verlag, 1989.
9. G. Tel, F. Mattern. “The Derivation of Distributed Termination Detection

Algorithms from Garbage Collection Schemes.“, ACM TOPLAS 15:1, pp. 1-35,
1993.

10. M. Shapiro, P. Dickman, D. Plainfossé. “SSP Chains: Robust, Distributed
References supporting acyclic Garbage Collection”, Tech. Report No. 1799,
INRIA, Rocquencourt, Frankreich, 1992.

11. M. Straßer, J. Baumann, F. Hohl. “Mole - A Java Based Mobile Agent System”,
in Workshop Reader ECOOP ’96, d-punkt, pp. 327 - 334, 1996.

12. G. Tel. „Distributed Algorithms“, Cambridge University Press, 1994.
13. J. E. White. “Telescript Technology: The Foundation of the Electronic

Marketplace”, General Magic, 1994.

