

Universität Stuttgart

Fakultät Informatik

Improving the Processing of Decision Support Queries:
Strategies for a DSS Optimizer

Authors:
Dipl.-Inform. Holger Schwarz
Dipl.-Inf. Ralf Wagner
Prof. Dr. B. Mitschang

Institute of Parallel and Distributed
High-Performance Systems (IPVR)
Department of Computer Science
University of Stuttgart
Breitwiesenstr. 20-22
70565 Stuttgart
Germany

 Improving the Processing
of Decision Support Queries:

Strategies for a DSS Optimizer

H. Schwarz, R. Wagner, B. Mi tschang

Technical Report TR-2001-02
Mai 2001

 1

Improving the Processing of Decision Support Queries:
Strategies for a DSS Optimizer

Holger Schwarz, Ralf Wagner, Bernhard Mitschang
Institute of Parallel and Distributed High-Performance Systems, University of Stuttgart

D-70565 Stuttgart, Germany
{hrschwar, wagnerrf, mitsch}@informatik.uni-stuttgart.de

Technical Report TR-2001-02
Department of Computer Science

University of Stuttgart
Mai 2001

Abstract
Many decision support applications are built upon data mining and OLAP tools and allow us-

ers to answer information requests based on a data warehouse that is managed by a powerful
DBMS. In this paper, we focus on tools that generate sequences of SQL statements in order to
produce the requested information. Our thorough analysis revealed that many sequences of que-
ries that are generated by commercial tools are not very efficient. An optimized system architec-
ture is suggested for these applications. The main component is a DSS optimizer that accepts pre-
viously generated sequences of queries and remodels them according to a set of optimization
strategies, before they are executed by the underlying database system. The advantages of this
extended architecture are discussed and a couple of appropriate optimization strategies are iden-
tified. Experimental results are given, showing that these strategies are appropriate to optimize
query sequences of OLAP applications.

1. Introduction

During the last decade data warehouses turned out to be the common basis for the integration
and analysis of data in modern enterprises. Decision support applications are used to analyze data
on the operational level as well as on the strategic level. This includes techniques like online ana-
lytical processing (OLAP) and data mining. Additional tools are used for the preprocessing and
integration of data from different sources.

A lot of work has been done on decision support systems and their optimization. In the field of
data mining the focus was on algorithms. There is for example a huge set of algorithms for mining
association rules including parallel algorithms [11] [2]. For OLAP applications, several important
aspects have been discussed in literature. One is the integration of additional operators into the
database system, e.g. the cube operator [9] [10] and its efficient implementation [12]. Query
primitives that allow related query plans to share portions of their evaluation are introduced in
[33]. Another focus is the use of specific index types in order to optimize typical OLAP queries
[18] [19]. There has also been a lot of work in the area of using materialized views to answer deci-
sion support queries and the maintenance of these materialized views [3] [26] [27] [32]. Our work
is recognizing this previous work, but also complementing it. We are not aware of any comparable
approach that involves a separate optimizer in between the decision support tool and the data
warehouse database system (DWDBS) as we suggest it.

 2

In this paper, we focus on a commonly used processing model for decision support systems
(DSS). According to this model, the application generates a sequence of SQL statements, which is
processed by the DWDBS. The result tables of the statements in a sequence build the basis for the
final result that is presented to the user as reply to his/her information request. SQL is used as
query language because most data warehouses are based on a relational or extended relational da-
tabase system. As the information requests of the users are likely to be very complex, many appli-
cations produce sequences of rather simple statements for each request in order to reduce the
complexity of the query generation process and in order to preserve portability to other database
systems.

We analyzed tools that work according to this model and found that there are many possibili-
ties to improve the query sequences they generate and the way they are executed. We will show
that several of these approaches are independent of the application and its special query generation
process. Hence, they could be used for many decision support applications that are run on a data
warehouse. This leads us to an optimized system architecture. The central element of this architec-
ture is a DSS optimizer that accepts sequences of SQL statements. The sequences are processed
according to a set of optimization strategies. An optimized version of the sequence is sent to the
DWDBS and executed there. As in the original model, the application uses the partial results in
order to produce the final result for an information request. The strategies we suggest for the DSS
optimizer include the combination of a sequence of statements into a single complex statement,
semantic rewrite strategies, parallel execution of statements in a query sequence as well as provid-
ing additional statistical information for the query optimizer of the DWDBS.

This report is organized as follows: In Section 2 we describe our application scenario and the
common architecture of decision support systems. The optimized architecture that includes a DSS
optimizer as an additional component is introduced in Section 3. In Section 4 we discuss some
strategies that are appropriate for this DSS optimizer. The results of our performance analysis as-
sessing the benefits of these strategies are explained in Section 5. Finally, our conclusions are
given in Section 6.

2. Application Scenario

In this section we describe some basic aspects of data warehousing, decision support systems
and the OLAP application scenario we have chosen for our investigations. We present some ex-
amples for typical information requests and the common architecture of systems that process such
requests.

2.1. Data Warehousing

Data warehousing has gained more and more importance for decision support in organizations
and enterprises [15] [25]. Most medium-sized and large organizations integrate data that is rele-
vant for decis ions and that originate from different data sources into a data warehouse. Due to the
huge amount of data, usually parallel, (object-) relational database systems are deployed. In addi-
tion, several tools are needed for the extraction and cleansing process as well as for the analysis of
the data.

The analysis of data has two main aspects. On the one hand, OLAP tools are used to view the
data along different dimensions [4]. Typical dimensions that are relevant for an enterprise are
time, customers, suppliers and products. The users should know which information they are about
to retrieve from the data warehouse. In knowledge discovery, on the other hand, data mining tools
are able to detect correlations and to find previously unknown pattern in data. It is possible, for
example, to determine correlations between the consuming behavior of a certain group of custom-
ers and some characteristics of these customers like age or profession. Examples for OLAP tools
are MicroStrategy [16] and BusinessObjects [1] whereas Darwin [28], Enterprise Miner [24] and
Intelligent Miner [29] are representatives for data mining tools.

 3

Typical data models for data warehouses are called star schema and snowflake schema. For our
experiments, we have chosen the snowflake schema given in Figure 1 that shows some important
aspects of a retailer. Our schema is based on the TPC-H Benchmark [30], which comprises deci-
sion support SQL queries. The original schema consists of eight tables describing a typical sce-
nario of a retailer. The retailer receives orders (table ORDERS) that consist of single items
(LINEITEM). The orders are sent by customers (CUSTOMER), which reside in a nation (NA-
TION) and region (REGION). The items refer to parts (PART) delivered by suppliers (SUP-
PLIER), which reside in a nation and region, too. Finally, the parts delivered by a supplier are
given by the joint table PARTSUPP.

We used a modified schema for our experiments. There are two main reasons for that:
• The OLAP tool we used for our experiments needs a special type of schema, a snowflake

schema with partially redundant dimension tables. The necessary modifications are just formal,
and easily achievable by syntactical equivalence transformations. There are no semantic
changes.

• The time dimensions are extended in two ways. First, the date field of the original schema is
split into separate tables for days, weeks, months and years. Second, additional information is
provided for each unit of time, e.g. the last day, week or month for a given date. These exten-
sions make days, weeks, months etc. explicitly available for queries and enable for example the
comparison of a given month with the respective month in the preceding years.
The modified schema has more fact and dimension tables than the original schema. Figure 1

depicts the part of the modified schema, which is relevant for our example queries. The main fact
table is shown in the middle of the picture. Some of the dimension tables and connections to fur-
ther tables are given around this fact table.

...

SHIPMONTHKEY

SHIPDAYNAME

SHIPDAY

SHIPDATE

...

CUSTREGIONKEY

CUSTNATIONKEY

CUSTNAME

CUSTKEY

...

SUPPREGIONKEY

SUPPNATIONKEY

SUPPNAME

SUPPKEY

...

SHIPPRIORITY

ORDERPRIORITY

ORDERSTATUS

ORDERKEY

...

ORDERMONTHKEY

ORDERDAYNAME

ORDERDAY

ORDERDATE

...

BRAND

MFGR

PARTNAME

PARTKEY

...

ORDERYEARKEY

ORDERDMONTHNAME

ORDERMONTH

ORDERMONTHKEY

ORDERMONTHORDERDAY

LINEITEM_ORDERS
SHIPDAY

CUSTOMERORDER

PART

SUPPLIER

...

QUANTITY

...

ORDERDATE

SHIPDATE

CUSTKEY

SUPPKEY

PARTKEY

ORDERKEY

...

SHIPMONTHKEY

SHIPDAYNAME

SHIPDAY

SHIPDATE

...

CUSTREGIONKEY

CUSTNATIONKEY

CUSTNAME

CUSTKEY

...

SUPPREGIONKEY

SUPPNATIONKEY

SUPPNAME

SUPPKEY

...

SHIPPRIORITY

ORDERPRIORITY

ORDERSTATUS

ORDERKEY

...

ORDERMONTHKEY

ORDERDAYNAME

ORDERDAY

ORDERDATE

...

BRAND

MFGR

PARTNAME

PARTKEY

...

ORDERYEARKEY

ORDERDMONTHNAME

ORDERMONTH

ORDERMONTHKEY

ORDERMONTHORDERDAY

LINEITEM_ORDERS
SHIPDAY

CUSTOMERORDER

PART

SUPPLIER

...

QUANTITY

...

ORDERDATE

SHIPDATE

CUSTKEY

SUPPKEY

PARTKEY

ORDERKEY

Figure 1. Snowflake Schema based on TPC-H

2.2. OLAP Scenario

We have chosen a typical OLAP scenario of a retail company for our experiments. This in-
cludes some information requests a user could define and process by means of an OLAP tool. The
selection of requests is based on the following requirements:
• The requests have to be typical questions a retailer would ask based on the information available

in the data warehouse.
• It must be feasible to model the requests with currently available OLAP tools and it must be

feasible to answer these questions based on our schema.
• The complexity of selected requests should be similar to the complexity of business questions in

the TPC-H benchmark.

 4

Three typical information requests that meet these requirements are shown in Figure 2. They
are important for the management of a retailer as the questions belong to the categories merchan-
dise management or customer relationship management [14] [23]. The schema we presented
above includes the relevant information that is necessary to answer these requests.

Information request A:
Which are the top products whose number of sold pieces in the months chosen by
the user compared to the respective month ago has increased mostly?
Information request B:
What is the distribution of the number of sold products over the different countries
for products and years chosen by the user?
Information request C:
Which are the top customers who bought products in the last three years of a mini-
mum total amount chosen by the user and who show the lowest standard deviation
of the totals in these years?

Figure 2. Selected Information Requests

2.3. Architectural Issues

Numerous decision support applications are based on the system architecture given in Figure 3.
The end users specify the information they need by means of a graphical user interface. For exam-
ple, they have to define the relevant data and the necessary calculations on these facts as well as
criteria for filtering and the way results should be presented. These requirements are used by the
application to generate a sequence of SQL queries. Meta data is used by the query generator in
order to produce the appropriate query sequences. In an OLAP application the meta data include
information about available fact tables and the hierarchical dependencies of attributes in one di-
mension. As soon as the query generator produced a sequence of SQL queries, these queries are
sent to the data warehouse database system one after the other. The application reads and proc-
esses partial results from the DWDBS and finally presents the result to the end user.

Data Warehouse
Database System

Query
Generator

Result
Processing Meta Data

Graphical User Interface

SQL

Information Request

Partial
Results

Result

Decision Support Application

Data Warehouse
Database System

Query
Generator

Result
Processing Meta Data

Graphical User Interface

SQL

Information Request

Partial
Results

Result

Decision Support Application

Figure 3. Standard System Architecture

Many typical decision support applications generate sequences of SQL queries. For informa-
tion request A in our scenario such a sequence is given in Figure 4. This query sequence (QS) was
produced by an OLAP tool. The Figure only shows the four insert statements. The create table
statements and other details that are also part of the generated sequence are omitted here for the
sake of readability. The first statement (Q1) produces the temporary table A1 that includes the sum
of the fact quantity for all parts in January and February 1994. The second statement (Q2) only
differs in that it sums the same quantity for the preceding months of January and February 1994.
The purpose of the third query (Q3) is mainly to calculate the absolute and relative increase of the

 5

quantity for each part based on the values of Q1 and Q2. Finally, Q4 selects all parts from Q3 ac-
cording to the given ranking criterion and provides the result data in table A4.

This sample query sequence consists of four statements. In general, the conversion of OLAP
information requests into sequences of SQL statements results in sequences of different complex-
ity, which ranges from just one to eight queries for the information requests we have chosen here.
According to our experience, it is very likely that relevant business questions result in query se-
quences with several statements, sometimes even more than 20. Hence, the three information re-
quests given in Figure 2 represent important types of OLAP queries and are relevant in order to
judge optimization strategies.

INSERT INTO A1 (orderyearkey, ordermonthkey, partkey, sumquantity)
SELECT od.orderyearkey, od.ordermonthkey, lo.partkey, SUM(lo.quantity)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.ordermonthkey IN (199401,199402)
GROUP BY od.orderyearkey, od.ordermonthkey, lo.partkey;

INSERT INTO A2 (ordermonthkey, partkey, sumquantity)
SELECT od.ordermonthkey, lo.partkey, SUM(lo.quantity)
FROM lineitem_orders lo, orderday od
WHERE od.lastmonthdate = lo.orderdate AND od.ordermonthkey IN (199401, 199402)
GROUP BY od.ordermonthkey, lo.partkey;

INSERT INTO A3 (ordermonthkey, ordermonthname, orderyearkey, orderyear, partkey, partname,
sumquantity, lmsumquantity, incrquantity, incrquantity2)

SELECT om.ordermonthkey, om.ordermonthname, oy.orderyearkey, oy.orderyear, pa.partkey,
pa.partname, A1.sumquantity, A2.sumquantity, A1.sumquantity - A2.sumquantity,
(A1.sumquantity - A2.sumquantity) / A2.sumquantity

FROM A1,A2, ordermonth om, orderyear oy, part pa
WHERE A1.ordermonthkey = A2.ordermonthkey AND A1.partkey = A2.partkey
AND A1.ordermonthkey = om.ordermonthkey
AND A1.orderyearkey = oy.orderyearkey AND A1.partkey = pa.partkey;

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey, orderyear, partkey, partname,
sumquantity, lmsumquantity, incrquantity, incrquantity2)

SELECT A3.ordermonthkey, A3.ordermonthname, A3.orderyearkey,
A3.orderyear, A3.partkey, A3.partname, A3.sumquantity,
A3.lmsumquantity, A3.incrquantity, A3.incrquantity2

FROM A3
WHERE A3.incrquantity2 >= 98;

Q1

Q2

Q4

Q3

INSERT INTO A1 (orderyearkey, ordermonthkey, partkey, sumquantity)
SELECT od.orderyearkey, od.ordermonthkey, lo.partkey, SUM(lo.quantity)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.ordermonthkey IN (199401,199402)
GROUP BY od.orderyearkey, od.ordermonthkey, lo.partkey;

INSERT INTO A2 (ordermonthkey, partkey, sumquantity)
SELECT od.ordermonthkey, lo.partkey, SUM(lo.quantity)
FROM lineitem_orders lo, orderday od
WHERE od.lastmonthdate = lo.orderdate AND od.ordermonthkey IN (199401, 199402)
GROUP BY od.ordermonthkey, lo.partkey;

INSERT INTO A3 (ordermonthkey, ordermonthname, orderyearkey, orderyear, partkey, partname,
sumquantity, lmsumquantity, incrquantity, incrquantity2)

SELECT om.ordermonthkey, om.ordermonthname, oy.orderyearkey, oy.orderyear, pa.partkey,
pa.partname, A1.sumquantity, A2.sumquantity, A1.sumquantity - A2.sumquantity,
(A1.sumquantity - A2.sumquantity) / A2.sumquantity

FROM A1,A2, ordermonth om, orderyear oy, part pa
WHERE A1.ordermonthkey = A2.ordermonthkey AND A1.partkey = A2.partkey
AND A1.ordermonthkey = om.ordermonthkey
AND A1.orderyearkey = oy.orderyearkey AND A1.partkey = pa.partkey;

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey, orderyear, partkey, partname,
sumquantity, lmsumquantity, incrquantity, incrquantity2)

SELECT A3.ordermonthkey, A3.ordermonthname, A3.orderyearkey,
A3.orderyear, A3.partkey, A3.partname, A3.sumquantity,
A3.lmsumquantity, A3.incrquantity, A3.incrquantity2

FROM A3
WHERE A3.incrquantity2 >= 98;

Q1

Q2

Q4

Q3

Figure 4. Query Sequence for Request A

3. Optimized System Architecture

In the standard architecture presented in Figure 3 the performance of a decision support appli-
cation mainly depends on the capabilities of the query generator and on the query optimization
and execution capabilities of the DWDBS. Therefore, if one envisages performance problems
there are two different ways to go: On the one hand, one could improve the query generator and
on the other, one could improve the query optimizer of the DWDBS.

Improving the query generator means to enhance the set of rules according to which the queries
are generated. This task depends on the underlying DWDBS. The optimum query sequence for
IBM DB2 could look quite different compared to the optimum sequence for Oracle or SQL
Server. Since almost all decision support applications aim to support several database systems, the
optimization strategies of the query generator have to be developed for each dedicated database
system. Furthermore, this has to be done for each decision support application separately. Hence,
there could be different optimization strategies for every combination of a decision support appli-
cation and the underlying DWDBS.

Improving the query optimizer of the DWDBS is also a very difficult task. New query optimi-
zation strategies for decision support that are implemented in a database system should on the one
hand be based on the analysis of a couple of decision support applications. On the other hand, the
developers have to show that the new optimizations do not negatively influence the performance
of other types of applications or even deteriorate the performance of the optimizer itself.

 6

Query
Generator

Result
Processing Meta Data

SQL

Information Request

Partial Results

Result

DSS
Optimizer

SQL

Query
Rewrite

Parallelism

Statistics

Decision Support Application

Data Warehouse
Datenbase System

Graphical User Interface

Query
Generator

Result
Processing Meta Data

SQL

Information Request

Partial Results

Result

DSS
Optimizer

SQL

Query
Rewrite

Parallelism

Statistics

Decision Support Application

Data Warehouse
Datenbase System

Graphical User Interface

Figure 5. Optimized System Architecture

In summary, both starting-points for performance enhancements of decision support applica-
tions in a standard architecture turn out to be very difficult. The complexity results from the he t-
erogeneity of applications and database systems as well as from the complexity of query optimiz-
ers that are used in commercial database systems.

We suggest an optimized system architecture for decision support which is shown in Figure 5.
The main idea of this architecture is a DSS optimizer as an additional system component between
the query generator and the DWDBS. This optimizer accepts query sequences from different ap-
plications. It transforms these sequences into optimized versions of query sequences, which are
then sent to the DWDBS. The DSS optimizer is neither part of a special application nor of the da-
tabase system. The main advantages of the extended architecture are as fo llows:
• In a typical data warehouse environment, several decision support applications access data in

the warehouse. The DSS optimizer offers performance enhancements for all of these applica-
tions.

• The DSS optimizer is not part of a decision support application. Therefore, its development and
enhancement is not part of the application development. It is done only once and not especially
for each application.

• The DSS optimizer offers performance enhancements for existing decision support applications
without the need to change the query generation process of these applications. They benefit
from the optimizer simply by directing their query streams to it instead of sending them directly
to the DWDBS.

• Using the DSS optimizer reduces the need for each application to consider special capabilities
of the underlying database system. The query generators of the applications can mostly be kept
independent of the database system, thus they are less complex.

• The DSS optimizer may include optimization strategies that are offered by some database sys-
tems as well as strategies that are not supported by state-of-the-art database systems. Multi-
Query-Optimization is an example for an area where current systems offer only little support.

In summary, the optimized system architecture offers support for many decision support appli-

cations and many database systems without additional development effort for each of the applica-
tions or database systems. In the following chapter, we further discuss a couple of essential opti-
mization strategies for the DSS optimizer. All strategies are demonstrated in our OLAP scenario.

 7

4. Strategies for the DSS Optimizer

There are a couple of strategies that offer performance enhancements for query sequences
which are generated by decision support tools. For example, one could rewrite the query sequence.
This ranges from changes to some queries of the sequence up to the combination of all queries of
the sequence into one single query. Other alternatives are to run several queries in the sequence in
parallel or to feed the query optimizer of the DWDBS with supplementary statistical information,
which is required to find appropriate query plans for all queries in a sequence. Additionally,
changes to the schema of the data warehouse, like e.g. additional indexes, aggregate or partition
tables, could support a given query sequence. In this section, we discuss these optimization strate-
gies. For each of them we argue whether it is an appropriate strategy for the DSS optimizer or not.
The goal is to incorporate all optimizations into the DSS optimizer that need no information about
the application and little information about the underlying database system. For all strategies we
identified as appropriate, we discuss the main aspects of their implementation.

Not all optimization strategies mentioned here are new. The contribution of this paper is not to
find new algorithms for a database optimizer, but to combine existing technology in an additional
system component that offers performance advantages for a huge range of applications and that is
independent of the concrete application and the DWDBS. Currently, none of the existing systems
follows this approach.

4.1. Rewrite Strategies for Query Sequences

In this section we describe three different strategies to rewrite a given query sequence.

Strategy I: Single-Query (SQ)
Typical query sequences that are produced by decision support applications can be rewritten as

a single and in most cases more complex query. A straightforward method to achieve this single-
query is as follows: Starting with the second query in the sequence, replace the occurrence of each
temporary table in the FROM clause by the complete SELECT statement that generates data for
this temporary table. If we use this simple syntactic replacement algorithm for the query sequence
in Figure 4, we first have to look at Q2. As this one does not use any temporary table, we have to
examine query Q3. It needs data from table A1 as well as from A2. Therefore, the FROM clause is
changed and A1 is replaced by the SELECT statement of Q1. The same replacement is necessary
for A2. The new query for A3 does not include any references to temporary tables. Hence, we can
proceed with the last query in this sequence. It is only based on the content of A3. Its purpose is to
filter out the relevant data according to the ranking criterion. We replace A3 in the FROM clause
of query Q4 by the new version of the query for A3. The resulting single-query for information
request A is shown in Figure 6. The corresponding single-query for information request C is given
in the appendix.

This type of query rewrite that is similar to view expansion is an appropriate strategy for the
DSS optimizer because it does not require any knowledge about the application that generated the
query sequence or about the DWDBS. The rewrite strategy is only based on the list of queries that
constitute the given query sequence.

Why should this single-query run faster than the original sequence of queries? There are two
main arguments. First, there is less overhead for creating temporary tables and for inserting data
into these tables. Only one temporary table is explicitly generated and filled with data, whereas all
other temporary results are handled by the database system as part of the query execution. In our
experiments, some temporary tables contained several millions of rows. These tables were filled
with about 8000 rows per second. Thus, loading temporary tables represents significant overhead
for some of the query sequences. There is some additional overhead for the creation of these tem-
porary tables to be taken into account.

 8

Second, there are more chances for query optimization by the DWDBS. In case of a query se-
quence, the statements of the sequence are sent to the DWDBS one after the other. Hence, the
query plan for each statement is generated without any knowledge about the other statements in
the sequence. If the complete sequence is combined into one single statement the query optimizer
has the whole picture. Therefore, the optimizer might have a chance to exploit common sub-
expressions among the query portions that previously belonged to separate queries.

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey, orderyear,
partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

SELECT A3.ordermonthkey, A3.ordermonthname, A3.orderyearkey,
A3.orderyear, A3.partkey, A3.partname, A3.sumquantity,
A3.lmsumquantity, A3.incrquantity, A3.incrquantity2

FROM

(SELECT om.ordermonthkey, om.ordermonthname, oy.orderyearkey,
oy.orderyear, pa.partkey, pa.partname, A1.sumquantity,
A2.sumquantity, A1.sumquantity - A2.sumquantity
AS incrquantity,
(A1.sumquantity - A2.sumquantity) /
A2.sumquantity AS incrquantity2

FROM

(SELECT od.orderyearkey, od.ordermonthkey,
lo.partkey, SUM(lo.quantity)

FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.ordermonthkey IN (199401, 199402)
GROUP BY od.orderyearkey, od.ordermonthkey, lo.partkey
) AS A1 (orderyearkey, ordermonthkey, partkey, sumquantity),

(SELECT od.ordermonthkey, lo.partkey, SUM(lo.quantity)
FROM lineitem_orders lo, orderday od
WHERE od.lastmonthdate = lo.orderdate
AND od.ordermonthkey IN (199401, 199402)
GROUP BY od.ordermonthkey, lo.partkey
) AS A2 (ordermonthkey, partkey, sumquantity),

ordermonth om, orderyear oy, part pa
WHERE A1.ordermonthkey = A2.ordermonthkey
AND A1.partkey = A2.partkey AND A1.ordermonthkey = om.ordermonthkey
AND A1.orderyearkey = oy.orderyearkey AND A1.partkey = pa.partkey
) AS A3 (ordermonthkey, ordermonthname, orderyearkey, orderyear,

partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

WHERE A3.incrquantity2 >= 98;

from Q1

from Q2

from Q3

from Q3

INSERT INTO A4 (ordermonthkey, ordermonthname, orderyearkey, orderyear,
partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

SELECT A3.ordermonthkey, A3.ordermonthname, A3.orderyearkey,
A3.orderyear, A3.partkey, A3.partname, A3.sumquantity,
A3.lmsumquantity, A3.incrquantity, A3.incrquantity2

FROM

(SELECT om.ordermonthkey, om.ordermonthname, oy.orderyearkey,
oy.orderyear, pa.partkey, pa.partname, A1.sumquantity,
A2.sumquantity, A1.sumquantity - A2.sumquantity
AS incrquantity,
(A1.sumquantity - A2.sumquantity) /
A2.sumquantity AS incrquantity2

FROM

(SELECT od.orderyearkey, od.ordermonthkey,
lo.partkey, SUM(lo.quantity)

FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.ordermonthkey IN (199401, 199402)
GROUP BY od.orderyearkey, od.ordermonthkey, lo.partkey
) AS A1 (orderyearkey, ordermonthkey, partkey, sumquantity),

(SELECT od.ordermonthkey, lo.partkey, SUM(lo.quantity)
FROM lineitem_orders lo, orderday od
WHERE od.lastmonthdate = lo.orderdate
AND od.ordermonthkey IN (199401, 199402)
GROUP BY od.ordermonthkey, lo.partkey
) AS A2 (ordermonthkey, partkey, sumquantity),

ordermonth om, orderyear oy, part pa
WHERE A1.ordermonthkey = A2.ordermonthkey
AND A1.partkey = A2.partkey AND A1.ordermonthkey = om.ordermonthkey
AND A1.orderyearkey = oy.orderyearkey AND A1.partkey = pa.partkey
) AS A3 (ordermonthkey, ordermonthname, orderyearkey, orderyear,

partkey, partname, sumquantity, lmsumquantity,
incrquantity, incrquantity2)

WHERE A3.incrquantity2 >= 98;

from Q1

from Q2

from Q3

from Q3

Figure 6. Single-Query for Request A

Given these advantages of a single-query, it seems to be a good idea to combine queries of a
sequence into a single one in general. Nevertheless, the task is not that easy for the DSS optimizer.
We have further analyzed the queries in our application scenario based on the query plans the
optimizer of DB2 generated for our experiments. Table 1 shows how they differ in the number of
joins and sort operations. The values given here especially show that the straightforward combina-
tion of the original query sequence into one SQL query can result in a large number of joins and
sorts. For information request C, the single-query (SQ) needs 33 joins and 37 sort operations. The
corresponding query plan has more than 200 nodes. This complexity is not easy to handle for the
optimizer of the DWDBS. Its output might be a rather ‘bad’ query plan. As one example, the
number of join orders increases exponentially with the number of joins. With more than 10 joins,
it is likely that the optimizer is not able to consider all relevant orders. Additionally, it might not
detect all common sub-expressions that are part of the query and that could be combined. The ap-
propriate and manageable complexity of queries depends on the characteristics of the optimizer
used in the DWDBS.

So far, our discussion has shown that in some cases a sequence of queries might run faster than
the combined single-query and that in other situations this might not be true. Our experiments
show examples for both cases. Hence, the DSS optimizer has to decide for each query sequence
whether it should be combined or not.

 9

Table 1. Characteristics of different Queries

Optimization Strategy Information
Request A

Information
Request C

 JOINS SORTS JOINS SORTS

QS max. 5 max. 10 max. 6 max. 8

QS + MergeSelect - - max. 3 max. 3

QS + WhereToGroup - - max. 4 max. 3

SQ 7 14 33 37

SQ + MergeSelect - - 13 14

SQ + WhereToGroup - - 16 16

Strategy II: Partial Combination
One alternative is not to combine the whole sequence into a single-query but to merge it into a

couple of queries. As we have argued, one single-query could be too complex for the optimizer of
a DWDBS to find a good execution plan. If the DSS optimizer generates a small number of semi-
complex queries, this new sequence could be more efficient.

For some query sequences it is not possible to generate an equivalent single-query, because
there are dependencies within the sequence. This appears in the case of ranking. In the query se-
quence shown in Figure 4 the last query Q4 selects data according to a filter criterion. For the sake
of simplicity, we assumed that the filter value is known in advance. Depending on the way the
user defined the information request and the query generation process of the application, this filter
predicate might be determined based on data in A3. In this case, the last query of the sequence
could include a variable instead of the filter predicate. Hence, the partial combination strategy is
applicable. The DSS optimizer could combine Q1, Q2 and Q3 as described for Strategy I and
leave Q4 as is. The same holds for the last query of QS for information request C.

This strategy is suitable for the DSS optimizer because it is only based on the list of queries
that constitute the given query sequence. The optimization task is to find the proper points where
to cut off the original sequence. This could be done based on dependency graphs as given in
Figure 9. A directed dependency graph G consists of nodes Qi, which represent the queries. An
edge from Qk to Ql denotes that the result of Qk is used by query Ql. The queries of a subset G’ of
G can be combined if the following conditions hold:
• G’ has only one exit point Qj, i.e. the result of only one of the queries in G’ is accessed by que-

ries in G that are not part of G’.
• Qj depends on all other queries in G’ by direct or transitive dependencies, i.e. G’ is a coherent

graph.
• There are no cyclic dependencies in G’, in particular no query in G’ depends on Qj.

For information request C the partial combination strategy leads to the following set of alterna-
tive query sequences: Q1, {Q2, …, Q7}, Q8; Q1, Q2, {Q3, …, Q7}, Q8; Q1, …, Q3, {Q4, …,
Q7}, Q8; Q1, …, Q4, {Q5, …, Q7}, Q8; Q1, …, Q5, {Q6, Q7}, Q8 and Q1, …, Q4, Q6, {Q5,
Q7}, Q8. In this list {Q3, ..., Q7} for example denotes the combination of all queries for the tem-
porary tables C3 through C7 into one query. The query sequences we present in this paper benefit
more from other types of query rewrite as will be given in the next section.

Strategy III: Semantic Rewrite
Another deciding factor for the DSS optimizer is based on supplementary analysis of the origi-

nal query sequence. One method to minimize the runtime of query execution is to minimize the
number of temporary tables in the whole sequence, thus removing the overhead for writing to and
reading from temporary tables. It is also important to avoid repeated references to temporary ta-
bles when composing the single-query. Most temporary tables imply joins between underlying
tables. Repeated referencing of temporary tables in different queries of a sequence implies a re-

 10

dundant computation of these temporary tables via nested SQL statements when composing the
single-query.

There is a large set of transformations that could be applied to query sequences. We only give
some examples of rather simple ones here and describe them in an informal way. As it is not our
intention to give an extensive enumeration of transformations, we focus on some transformations
that we were able to apply to the query sequences for our sample information requests. A detailed
analysis and formal description is subject of our current work. For all transformations, we suppose
that only the result of the last query in a sequence is relevant for the application.
• There are Queries, which restrict one single previous temporary table by additional projections

and/or selections. These projections and/or selections can be moved into the foregoing query. In
the first case, the projections of both queries are concatenated (ConcatProject), whereas this is
done for both selections in the second place (ConcatSelect).

• Queries with identical FROM, WHERE, GROUP BY, HAVING and ORDER BY clauses can
be merged into one query by combining the SELECT clauses. We refer to this transformation as
MergeSelect.

• Queries with identical SELECT, FROM, GROUP BY, HAVING and ORDER BY clauses can
sometimes be merged into one query by concatenating the WHERE predicates (MergeWhere).
If the queries differ only in a selection on the same column, they can be combined by replacing
parts of the WHERE clause by an additional grouping on this column (WhereToGroup).

• Queries with identical SELECT, FROM, WHERE, GROUP BY and ORDER BY clauses can be
merged into one query by combining the HAVING predicates using logical operations (Merge-
Having).

• In some queries joins with temporary tables act like filters. These joins can be moved to another
query in the sequence (MoveJoin).

Based on these rules, we generated two modified query sequences for information request C.

QS+MergeSelect is shown in Figure 7. We briefly describe the ratio behind the transformations
that are marked with arrows.

(1) MergeSelect
The queries for C5 and C6 only differ in the SELECT clause. Using the MergeSelect transfor-
mation results in a new query for C5. It includes the calculation of both necessary standard
deviations. In the new query for C7 only the new table C5 is used instead of C5 and C6. The
join of lineitem_orders and orderday is now performed only once.

(2) MoveJoin
The only purpose of the join with C4 in the queries for C5 and C6 is to filter out customers that
are not relevant for further analysis. No column of C5 or C6 is based on data in C4. In the
modified sequence the joins with C4 are moved to the query that delivers C7. As a result, the
number of references to C4 is cut down.

(3) MoveJoin
The temporary table C4 includes all results of table C1, C2 and C3 but with additional filtering
on the turnover per customer. In QS this filter is applied in C5 and C6 by joins with C4. In the
modified sequence, this filter is applied in the query for C7 as described for transformation (1).
Therefore, the join with C4 replaces the access to C1, C2 and C3 in the new query for C7.

The main parts of the second transformed sequence for information request C are given in

Figure 8. It includes the same modifications as QS+MergeSelect. The additional transformation is
marked as (4). The ratio behind this modification is as follows: The queries for C1, C2 and C3 of
QS only differ in the WHERE clause. They can be combined into the new query for C1 with an

 11

additional grouping on orderyearkey. Groups with a turnover less than 500000 are filtered. The
second query of QS+WhereToGroup selects all customers for which a turnover exists for 1992,
1993 and 1994. With this transformation, the number of references to lineitem_orders and order-
day as well as the number of joins between these two tables is reduced.

Obviously, these rewrite strategies can also be combined with the single-query strategy and the
partial combination strategy. We refer to the queries resulting from these hybrid strategies as
SQ+MergeSelect and SQ+WhereToGroup, where each respective query sequence is combined
into one query. As a consequence, the number of join and sort operations in the rewritten queries
drop drastically (more than 50%) as can be seen in Table 1.

INSERT INTO C5 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C6 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice) / AVG(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C7 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT cu.custkey, cu.custname, C5.stddeviation,
C6.stddeviation, C1.turnover1992,
C2.turnover1993, C3.turnover1994

FROM C1, C2, C3, C5, C6, customer cu

WHERE C5.custkey = C1.custkey
AND C5.custkey = C2.custkey
AND C5.custkey = C3.custkey
AND C5.custkey = C6.custkey
AND C5.custkey = cu.custkey;

INSERT INTO C8 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C7.custkey, C7.custname, C7.stddev1,
C7.stddev2, C7.turnover1992,
C7.turnover1993, C7.turnover1994

FROM C7
WHERE C7.stddev2 <= 0.66794004454646;

INSERT INTO C5 (custkey, stddev1, stddev2)
SELECT lo.custkey, STDDEV(lo.endprice),

STDDEV(lo.endprice) / AVG(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992,1993,1994)

GROUP BY lo.custkey;

INSERT INTO C7 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C4.custkey, cu.custname, C5.stddev1, C5.stddev2,
C4.turnover1992, C4.turnover1993, C4.turnover1994

FROM C4, C5, customer cu

WHERE C4.custkey = C5.custkey
AND C4.custkey = cu.custkey;

INSERT INTO C8 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C7.custkey, C7.custname, C7.stddev1,
C7.stddev2, C7.turnover1992,
C7.turnover1993, C7.turnover1994

FROM C7
WHERE C7.stddev2 <= 0.66794004454646;

QS QS + MergeSelect

1

1

1

3

2

2

INSERT INTO C5 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C6 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice) / AVG(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C7 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT cu.custkey, cu.custname, C5.stddeviation,
C6.stddeviation, C1.turnover1992,
C2.turnover1993, C3.turnover1994

FROM C1, C2, C3, C5, C6, customer cu

WHERE C5.custkey = C1.custkey
AND C5.custkey = C2.custkey
AND C5.custkey = C3.custkey
AND C5.custkey = C6.custkey
AND C5.custkey = cu.custkey;

INSERT INTO C8 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C7.custkey, C7.custname, C7.stddev1,
C7.stddev2, C7.turnover1992,
C7.turnover1993, C7.turnover1994

FROM C7
WHERE C7.stddev2 <= 0.66794004454646;

INSERT INTO C5 (custkey, stddev1, stddev2)
SELECT lo.custkey, STDDEV(lo.endprice),

STDDEV(lo.endprice) / AVG(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992,1993,1994)

GROUP BY lo.custkey;

INSERT INTO C7 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C4.custkey, cu.custname, C5.stddev1, C5.stddev2,
C4.turnover1992, C4.turnover1993, C4.turnover1994

FROM C4, C5, customer cu

WHERE C4.custkey = C5.custkey
AND C4.custkey = cu.custkey;

INSERT INTO C8 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C7.custkey, C7.custname, C7.stddev1,
C7.stddev2, C7.turnover1992,
C7.turnover1993, C7.turnover1994

FROM C7
WHERE C7.stddev2 <= 0.66794004454646;

QS QS + MergeSelect

11

11

11

33

22

22

Figure 7. Modified Sequences for Request C (MergeSelect)

 12

INSERT INTO C1 (custkey, year, turnover)
SELECT lo.custkey, od.orderyearkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)

GROUP BY lo.custkey, od.orderyearkey

HAVING SUM(lo.endprice) >= 500000;

INSERT INTO C2 (custkey)
SELECT C1.custkey
FROM C1
GROUP BY C1.custkey
HAVING COUNT(*) = 3;

INSERT INTO C4 (custkey, turnover1992, turnover1993,
turnover1994)

SELECT C2.custkey, C1a.turnover, C1b.turnover, C1c.turnover
FROM C1 C1a, C1 C1b, C1 C1c, C2
WHERE C1a.custkey = C1b.custkey
AND C1b.custkey = C1c.custkey
AND C1c.custkey = C2.custkey
AND C1a.year = 1992
AND C1b.year = 1993
AND C1c.year = 1994;

... See QS + MergeSelect

INSERT INTO C1 (custkey, turnover1992)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1992

GROUP BY lo.custkey;

INSERT INTO C2 (custkey, turnover1993)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1993

GROUP BY lo.custkey;

INSERT INTO C3 (custkey, turnover1994)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1994

GROUP BY lo.custkey;

INSERT INTO C4 (custkey, turnover1992, turnover1993,
turnover1994)

SELECT C1.custkey, C1.turnover1992, C2.turnover1993,
C3.turnover1994

FROM C1, C2, C3
WHERE C1.custkey = C2.custkey
AND C1.custkey = C3.custkey

AND C1.turnover1992 >= 500000
AND C2.turnover1993 >= 500000
AND C3.turnover1994 >= 500000;

QS QS + WhereToGroup

4

4

INSERT INTO C1 (custkey, year, turnover)
SELECT lo.custkey, od.orderyearkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)

GROUP BY lo.custkey, od.orderyearkey

HAVING SUM(lo.endprice) >= 500000;

INSERT INTO C2 (custkey)
SELECT C1.custkey
FROM C1
GROUP BY C1.custkey
HAVING COUNT(*) = 3;

INSERT INTO C4 (custkey, turnover1992, turnover1993,
turnover1994)

SELECT C2.custkey, C1a.turnover, C1b.turnover, C1c.turnover
FROM C1 C1a, C1 C1b, C1 C1c, C2
WHERE C1a.custkey = C1b.custkey
AND C1b.custkey = C1c.custkey
AND C1c.custkey = C2.custkey
AND C1a.year = 1992
AND C1b.year = 1993
AND C1c.year = 1994;

... See QS + MergeSelect

INSERT INTO C1 (custkey, turnover1992)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1992

GROUP BY lo.custkey;

INSERT INTO C2 (custkey, turnover1993)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1993

GROUP BY lo.custkey;

INSERT INTO C3 (custkey, turnover1994)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1994

GROUP BY lo.custkey;

INSERT INTO C4 (custkey, turnover1992, turnover1993,
turnover1994)

SELECT C1.custkey, C1.turnover1992, C2.turnover1993,
C3.turnover1994

FROM C1, C2, C3
WHERE C1.custkey = C2.custkey
AND C1.custkey = C3.custkey

AND C1.turnover1992 >= 500000
AND C2.turnover1993 >= 500000
AND C3.turnover1994 >= 500000;

QS QS + WhereToGroup

44

44

Figure 8. Modified Sequence for Request C (WhereToGroup)

4.2. Parallelism

In this section we discuss how parallel execution can support the query sequences generated by
decision support applications. Our focus is not on intra-query parallelism. We assume that the
DWDBS is able to generate parallel query plans for all queries in a sequence, where suitable.

Apart from this perspective on parallelism, it is also interesting to see whether the DSS opti-
mizer can figure out a group of queries in the sequence that could be run in parallel. Therefore, our
focal point is inter-query parallelism. For each sequence of queries, we can determine how the
steps of the sequence depend on each other and describe these dependencies for example by
means of a graph. The dependency graphs for the query sequences A and C of our application sce-
nario are shown in Figure 9. For sequence A the graph shows, that A1 and A2 could be generated
in parallel. For sequence C, the tables C1, C2 and C3 could first be generated in parallel and later
in the sequence the same holds for tables C5 and C6. In general, a group of queries can be exe-
cuted in parallel, if none of the queries within the group depends on each other.

The dependency graph for a given sequence of queries can easily be determined by observing
the FROM clauses of all queries. The graph consists of the temporary tables Tempi as nodes. An
edge from node Tempi to Tempj exists if the FROM clause of query Qj contains Tempi. In particu-
lar, no knowledge about the application is required. Hence, this optimization strategy turns out to
be applicable for the DSS optimizer.

The implementation of this strategy can be based on methods that generate parallel execution
plans for SQL queries as they are used in standard database systems. These techniques produce an
internal representation of the queries, which is extended by data and pipeline parallelism. The
same methods could be used to exploit dependency graphs for query sequences like those in
Figure 9. That is why available technology is very well suited for the DSS optimizer [7] [21].

But how about the interface of the DSS optimizer to the database system? The standard inter-
face of a DWDBS allows the application to send one query after the other within one database
transaction. For each of the SQL statements to be run in parallel, a separate connection and a sepa-

 13

rate transaction is necessary. Since those queries that are independent of each other should be
started in parallel, only their access to the data warehouse base tables could inhibit the use of par-
allel transactions. If we assume that decision support applications only read base tables in the data
warehouse, the standard SQL interface of database systems turns out to be sufficient for the opti-
mization strategy we have discussed here.

A1

A2

A4

A3

C1

C2

C3

C4

C5

C6

C7

C8

A1

A2

A4

A3

C1

C2

C3

C4

C5

C6

C7

C8

Figure 9. Dependency Graphs

4.3. Statistics

Query sequences generated by decision support applications usually produce the result data set
that is relevant for the end user as the last step of the sequence. As soon as this last query termi-
nates the final result is available and all other temporary tables could be dropped. For query se-
quence A in our example, table A4 contains all relevant data for the end user whereas tables A1,
A2 and A3 may be deleted as soon as A4 is complete.

Each query in a sequence is processed by the optimizer of the DWDBS. One important factor
that determines the efficiency of query execution is whether all necessary statistical information is
available for the optimizer or not. Relevant statistical information is the number of rows, the num-
ber and type of all columns and the distribution of values in all columns of each table that is read
by a query. Most database systems do not automatically update statistical information. For exam-
ple, a separate statement is available for Oracle8i that starts the update of statistical information
for a single table [22]. The following statement would be necessary to generate statistics for A1:
ANALYZE TABLE A1 COMPUTE STATISTICS. Additional parameters may be used in order
to make available more detailed information on the table and its indexes.

We assume that statistical information is up to date for all base tables of the data warehouse.
However, this is not true for temporary tables generated by a sequence of queries. If the execution
of a query sequence should be based on current statistics, the statements that provide this informa-
tion have to be added to the sequence. The sequence for query C, as given in Figure 9, could be
augmented by calling ANALYZE TABLE for the temporary tables C1 through C7. The statistical
information has to be available for each of these tables before the tables are read by another query
in the sequence for the first time. The statistical information for table C1 does not have to be pre-
sent until the query for C4 starts execution.

This leads to an additional strategy for the DSS optimizer that is applicable without any knowl-
edge about the application that generated a sequence of queries. A sequence could be extended by
statements that provide additional statistical information for the DWDBS optimizer. For this task
the DSS optimizer has to know, how this is done for different database systems and which pa-
rameters influence the available statistics. It also has to take into account the trade-off between the
time that is needed for the update of statistical information and the query execution time that is

 14

saved with execution plans based on this information. Further enhancements could be achieved by
running statistic updates in parallel to other statements in the sequence. This is always possible if
the queries do not depend on the temporary table for which the statistic update is in progress.

4.4. Partitioning and Indexing

All optimization strategies we have discussed so far are based on rewriting a sequence of SQL
statements or enhancing the way it is executed. In this section, we will briefly discuss some ap-
proaches to support OLAP applications by changing the schema of the data warehouse.

Additional indexes on base tables in the data warehouse enable the optimizer of the DWDBS to
find query plans that are more efficient. No rewriting of queries is required. It is necessary to find
the proper combination of indexes that offer maximum support for all applications on the data
warehouse and take into account given constraints on disk space and time for index maintenance.
If typical query sequences on the data warehouse are known, administration tools of current data-
base systems can be used to establish the suitable set of indexes [5] [13].

Partition tables support typical OLAP queries because they reduce the amount of base data that
has to be scanned for one sequence of queries. One large fact table could include data for several
years. If the typical query retrieves data for exactly one year, it might be more efficient to store the
facts in partition tables for each year. The scan of one partition table instead of scanning the com-
plete large fact table might then be sufficient for many queries. A smaller volume of data is likely
to result in a more efficient retrieval of results. This kind of partitioning is supported by some
OLAP tools [16]. The information how data is partitioned must be part of the meta data in order to
make this strategy applicable for the query generator of the application.

Applications on a data warehouse can also be supported by aggregate tables. Especially OLAP
applications require a lot of grouping and aggregation. If the aggregated data is already present in
the data warehouse, queries run more efficient because less data has to be processed and less ag-
gregations have to be computed. A base fact table, for example, could include data for each day,
whereas most queries need data on a monthly or yearly basis. In this case, redundant aggregate
tables should contain pre-aggregated data for each month and for each year. Some algorithms to
find the proper set of aggregate tables are described in [12]. [32] describes a couple of approaches
how a given query can be processed based on existing aggregate tables.

Our experimental results indicate that indexes, aggregate and partition tables are appropriate
means to enhance query sequences. The performance enhancement is likely to decrease with the
length of a query sequence. This is because in general only the statements at the beginning of a
sequence access the base tables whereas the statements towards the end of the sequence mainly
access temporary tables. Hence, the strategies mentioned here primarily support the statements at
the beginning of query sequences.

Nevertheless, the DSS optimizer is not the suitable component to create indexes, aggregate ta-
bles or partition tables. The successful exploitation of these three strategies is based on knowledge
about the schema of the data warehouse and the characteristics of all applications that access data
in the warehouse. There is another important difference to the optimization approaches described
in Section 4.1 through 4.3. All strategies we described there offer a local optimization for exactly
one sequence of queries, whereas additional indexes and additional tables also influence the per-
formance of other queries. Therefore, they should be part of the DWDBS administration.

5. Experimental Results

For our experiments, we have created the modified schema as described in Section 2.1 in a da-
tabase system. We populated the tables with data based on the original TPC-H data, generated
with three different scale factors according to the benchmark specifications. Our largest data set
for which the results are presented here was produced with scale factor 10. The raw data summa-
rizes to 10 GB, the main fact table lineitem_orders has about 60 million rows. The environment

 15

used for the experiments consists of a Sun Enterprise E4500 with 12 processors, 12 GB main
memory, the object-relational database system IBM DB2/UDB V7.1 and a benchmark tool that is
provided with DB2.

From a technological point of view, we could have used any other market-strength DBMS
since we only used techniques that are commonly available (e.g. parallelism, indexes, partitioning
as well as statistics). The decis ion for DB2 was twofold: First, we wanted to collect detailed in-
formation on the generated query plans. This information is provided by the EXPLAIN utility of
DB2 [13]. Second, DB2 is known for its good optimization technology and thus can play a good
reference point.

The results given in Table 2 are a subset of more than 400 experiments, where one experiment
is the execution of one query sequence for one information request on one test data set. Each value
presented here, is the average of at least three experiments. Some cells of Table 2 are empty be-
cause not all optimization strategies were applicable to all of the three information requests. Most
of them are applicable to information request A and request C. Business questions that are similar
to these two are very likely to build the majority of questions in a real environment.

Table 2. Experimental Results (in seconds)

Information Requests Optimization Strategy

A B C

1 QS 4877 498 30209

2 QS + MergeSelect - - 4188

3 QS + WhereToGroup - - 2296

4 SQ 2834 - 10734

5 SQ + MergeSelect - - 3853
6 SQ + WhereToGroup - - 4900

7 QS + Statistics 3109 - 5263

8 QS + Parallelism 3939 - 29004

9 QS + Indexes 5428 25 -

10 QS + Partitions 3712 26 27984

Looking at the results in more details, one can see that in almost all cases the optimization

strategies were successful in reducing the runtime of the information requests. Sometimes there
was only a slight enhancement whereas other strategies led to an execution time that was an order
of a magnitude shorter than for the original query.

The execution time for the original sequence of queries (QS) is given in line 1. The modified
versions of the query sequences and their combination into a single-query (SQ) as described in
Section 4.1 are shown in lines 2 through 6. These results show that combining the statements of a
sequence is likely to improve the performance. However, this is not true for information request C.
The sequence QS+WhereToGroup runs much faster than the corresponding single-query. Hence,
the DSS optimizer has to decide in which situation it is appropriate to combine the queries of a
sequence and in which the eventually modified version of the sequence is the best choice.

Line 7 of Table 2 shows the results for the query sequence that was enhanced by generating
additional statistical information for temporary tables. In our experiments, this version of the que-
ries runs always faster than the original sequence. For information request C it was also faster than
the very complex single-query (SQ), whereas for request A it was slower than the single-query.
Therefore, leaving the query sequence as is and generating additional statistical information for
temporary tables is a supplementary alternative to the other strategies, which can be used by the
DSS optimizer.

The third basic alternative for the DSS optimizer is to run the sequence of queries as it was
generated, but with some queries of the sequence in parallel as described in Section 4.2. The ex-
perimental results for this strategy are given in line 8. They show only a slight improvement com-
pared to the original sequence. Especially for information request C the enhancement is less than

 16

10 percent. This is because the runtime of the query sequence for this question is dominated by
only one query that joins several temporary tables.

Some results for the strategies that turned out not to be appropriate for the DSS optimizer are
given in lines 9 and 10. With additional indexes and partitions, we can see a remarkable perform-
ance enhancement for information request B. Additional partition tables reduced the runtime for
information requests A and C, where the reduction is between 8 and 25 percent. For the informa-
tion requests A and C we achieved further improvements by other strategies that are useable by
the DSS optimizer. Hence, we do not loose too much optimization potential if the DSS optimizer
has to ignore additional indexes and partitions as optimization strategies. Nevertheless, in a real
environment these strategies are mandatory for the administrator of the data warehouse.

6. Conclusion

In this work we investigated that an optimizer in between decision support applications and the
DWDBS is essential for the efficient processing of some classes of typical information requests
generated by DSS tools. Hence, we suggested an optimized system architecture for decision sup-
port applications. In this architecture, generated query sequences are rewritten by an additional
system component, called DSS optimizer. The transformation is based on optimization strategies
that are independent of the application and use little knowledge about the underlying database sys-
tem. This DSS optimizer has two main advantages. First, it is able to support several applications
without any need to change their query generation algorithms. Second, it is capable of applying
optimization strategies that are not supported by state-of-the-art database systems.

We set up a realistic application scenario, selected a set of relevant information requests and
ran a large series of experiments based on TPC-H data. Our experiments have shown that all three
strategies we proposed for the DSS optimizer were successful. They reduced the runtime of the
given query sequences significantly. None of the three strategies turned out to be the best in all
situations. Hence, it is the task of the DSS optimizer to decide upon the strategy to use. This deci-
sion should be based on information gained from the query sequence itself and on meta data
gained from the underlying database system. Therefore, further work will focus on heuristics that
could be used by the DSS optimizer in order to decide which optimization strategy or which com-
bination of strategies should be used for a given sequence of queries.

Another important issue of future work is the design and implementation of the DSS optimizer.
The basic technology for a DSS optimizer is in place because all three strategies are based on ma-
tured technology. Generating single-queries is similar to view expansion. Determining queries
within a sequence that could run in parallel is based on parallel database technology [7] [21]. Us-
ing statistical information for query optimization is a basic optimization technology. Furthermore,
we want to apply extensible optimization technology as is available with systems like CAS-
CADES [8]. In doing so, one has to observe that the DSS optimizer is not a general-purpose opti-
mizer, but only a specific component that supports only a predefined set of optimization strategies.
Consequently, we want to reconsider the main design decisions of an optimizer e.g. search space,
rule set and cost-based decision making. As a result, we want to come up with a tailored and effi-
cient DSS optimization component.

Acknowledgement. We would like to thank Leonard Shapiro and Ralf Rantzau for helpful dis-
cussions and their comments on an early version of the paper.

 17

References

[1] AberdeenGroup: Bringing Analytical Reporting to Enterprise Business Intelligence. Aberdeen
Group, Boston, 1999.

[2] R. Agrawal, J. C. Shafer: Parallel Mining of Association Rules. In: TKDE 8(6), 1996.
[3] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, K. Shim: Optimizing Queries with Material-

ized Views. In: ICDE, March 1995.
[4] S. Chaudhuri, U. Dayal: An Overview of Data Warehousing and OLAP Technology. In:

SIGMOD Record, Vol. 26., No. 1, 1997.
[5] S. Chaudhuri, V. Narasayya: AutoAdmin “What- if” Index Analysis Utility. In: SIGMOD Re-

cord, Vol. 27, No. 2, 1998.
[6] C. J. Date, H. Darwen: A guide to the SQL standard. 4th ed., Addison-Wesley, Reading,

1997.
[7] D. DeWitt, J. Gray: Parallel Database Systems: The Future of High Performance Database

Systems. In: CACM, Vol. 35, No. 6, pp. 85-92, 1992.
[8] G. Graefe: The Cascades Framework for Query Optimization. In: DE Bulletin, Vol. 18, No. 3,

1995.
[9] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, H.

Pirahesh: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab
and Sub-Totals. In: Data Mining and Knowledge Discovery, Vol. 1, No. 1, 1997.

[10] P. Gulutzan, Trudy Pelzer: SQL-99 Complete, Really. R&D Books, Lawrence, 1999.
[11] J. Han, M. Kamber: Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
[12] V. Harinarayan, A. Rajaraman, J. D. Ullman: Implementing Data Cubes Efficiently. In: SIG-

MOD Record, Vol. 25, No. 2, 1996.
[13] IBM: DB2 Command Reference, 1999.
[14] Informix: Data Warehousing for the Retail Industry. White Paper, http://www.informix.com,

1998.
[15] R. Kimball: The Data Warehouse Toolkit. John Wiley & Sons, New York, 1996.
[16] MicroStrategy: The Case for Relational OLAP. White Paper, MicroStrategy, 1995.
[17] B. Mitschang: Query Processing in Database Systems (in German), Vieweg-Verlag, 1995.
[18] P. O’Neil, G. Graefe: Multi-Table Joins Through Bitmapped Join Indices. In: SIGMOD Re-

cord, Vol. 24, No. 3, 1995.
[19] P. O’Neil, D. Quantas: Improved Query Performance with Variant Indexes. In: SIGMOD Re-

cord Vol. 26, No. 2, 1997.
[20] C. Nippl: Providing Efficient, Extensible and Adaptive Intra-query Parallelism for Advanced

Applications. Technische Universität München, Dissertation, 2000.
[21] C. Nippl, B. Mitschang: TOPAZ: A Cost-Based, Rule-Driven, Multi-Phase Parallelizer. Proc.

VLDB Conf., New York, 1998.
[22] Oracle Corporation: Oracle8i SQL Reference. Release 3 (8.1.7), Oracle, September 2000.
[23] D. Peppers, M. Rogers: Data Warehousing and Retailing. DM Reviews, October 1998.
[24] SAS Institute: Finding the Solution to Data Mining. White Paper, SAS Institute, 1998.
[25] A. Sen, V. S. Jacob: Industrial-Strength Data Warehousing. In CACM Vol. 41, No. 9, 1998.
[26] D. Srivastava, S. Dar, S. Jagadish, A. Levy. In: VLDB, September 1996.
[27] S. N. Subramanian, S. Venkataraman: Cost-Based Optimization of Decision Support Queries

using Transient-Views. In: SIGMOD Record, Vol. 27, No. 2.
[28] Thinking Maschines Corporation: Darwin Reference. Release 3.0.1. Thinking Maschine Cor-

poration, 1998.
[29] D. S. Tkach: Information Mining with the IBM Intelligent Miner Family. White Paper, IBM,

1998.

 18

[30] Transaction Processing Performance Council: TPC Benchmark H (Decision Support) Stan-
dard Specification, Revision 1.1.0, June 1999.

[31] R. Wagner: Optimization of an OLAP Application for Retailers (in German). University of
Stuttgart, Faculty of Computer Science, Project Paper, Nr. 1770, 2000.

[32] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, M. Urata: Answering Complex SQL
queries Using Automatic Summary Tables. In: SIGMOD Record, Vol. 29, No. 2, 2000.

[33] Y. Zhao, P. M. Deshpande, J. F. Naughton, A. Shukla: Simultanous Optimization and Evalua-
tion of Multiple Dimensional Queries. In. SIGMOD Record, Vol. 27, No. 2, 1998.

Appendix

INSERT INTO B1 (partkey, partname, custregionkey, custregionname, custnationkey,
custnationname, orderyearkey, orderyear, sumquantity)

SELECT pa.partkey, pa.partname, cr.custregionkey, cr.custregionname, cn.custnationkey,
cn.custnationname, oy.orderyearkey, oy.orderyear, SUM(lo.quantity)

FROM lineitem_orders lo, customer cu, orderday od, part pa, custregion cr, custnation cn,
orderyear oy

WHERE cu.custkey = lo.custkey AND od.orderdate = lo.orderdate
AND lo.partkey = pa.partkey AND cu.custregionkey = a5.custregionkey
AND cu.custnationkey = cn.custnationkey AND od.orderyearkey = oy.orderyearkey
AND pa.partkey <= 3 AND oy.orderyearkey = 1994

GROUP BY pa.partkey, cr.custregionkey, cn.custnationkey, oy.orderyearkey;

Figure 10. Query Sequence for Request B

 19

INSERT INTO C1 (custkey, turnover1992)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1992

GROUP BY lo.custkey;

INSERT INTO C2 (custkey, turnover1993)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1993

GROUP BY lo.custkey;

INSERT INTO C3 (custkey, turnover1994)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1994

GROUP BY lo.custkey;

INSERT INTO C4 (custkey, turnover1992, turnover1993,
turnover1994)

SELECT C1.custkey, C1.turnover1992, C2.turnover1993,
C3.turnover1994

FROM C1, C2, C3
WHERE C1.custkey = C2.custkey
AND C1.custkey = C3.custkey
AND C1.turnover1992 >= 500000
AND C2.turnover1993 >= 500000
AND C3.turnover1994 >= 500000;

INSERT INTO C5 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C6 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice) / AVG(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C7 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT cu.custkey, cu.custname, C5.stddeviation,
C6.stddeviation, C1.turnover1992,
C2.turnover1993, C3.turnover1994

FROM C1, C2, C3, C5, C6, customer cu
WHERE C5.custkey = C1.custkey
AND C5.custkey = C2.custkey
AND C5.custkey = C3.custkey
AND C5.custkey = C6.custkey
AND C5.custkey = cu.custkey;

INSERT INTO C8 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C7.custkey, C7.custname, C7.stddev1,
C7.stddev2, C7.turnover1992,
C7.turnover1993, C7.turnover1994

FROM C7
WHERE C7.stddev2 <= 0.66794004454646;

Q1

Q8

Q7

Q6

Q5

Q4

Q3

Q2

INSERT INTO C1 (custkey, turnover1992)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1992

GROUP BY lo.custkey;

INSERT INTO C2 (custkey, turnover1993)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1993

GROUP BY lo.custkey;

INSERT INTO C3 (custkey, turnover1994)
SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey = 1994

GROUP BY lo.custkey;

INSERT INTO C4 (custkey, turnover1992, turnover1993,
turnover1994)

SELECT C1.custkey, C1.turnover1992, C2.turnover1993,
C3.turnover1994

FROM C1, C2, C3
WHERE C1.custkey = C2.custkey
AND C1.custkey = C3.custkey
AND C1.turnover1992 >= 500000
AND C2.turnover1993 >= 500000
AND C3.turnover1994 >= 500000;

INSERT INTO C5 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C6 (custkey, stddeviation)
SELECT lo.custkey, STDDEV(lo.endprice) / AVG(lo.endprice)
FROM lineitem_orders lo, orderday od, C4
WHERE od.orderdate = lo.orderdate
AND od.orderyearkey IN (1992, 1993, 1994)
AND lo.custkey = C4.custkey

GROUP BY lo.custkey;

INSERT INTO C7 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT cu.custkey, cu.custname, C5.stddeviation,
C6.stddeviation, C1.turnover1992,
C2.turnover1993, C3.turnover1994

FROM C1, C2, C3, C5, C6, customer cu
WHERE C5.custkey = C1.custkey
AND C5.custkey = C2.custkey
AND C5.custkey = C3.custkey
AND C5.custkey = C6.custkey
AND C5.custkey = cu.custkey;

INSERT INTO C8 (custkey, custname, stddev1, stddev2,
turnover1992, turnover1993, turnover1994)

SELECT C7.custkey, C7.custname, C7.stddev1,
C7.stddev2, C7.turnover1992,
C7.turnover1993, C7.turnover1994

FROM C7
WHERE C7.stddev2 <= 0.66794004454646;

Q1

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Figure 11. Query Sequence for Request C

 20

INSERT INTO C8 (custkey, custname, stddev1, stddev2, turnover1992, turnover1993, turnover1994)
SELECT C7.custkey, C7.custname, C7.stddev1, C7.stddev2, C7.turnover1992, C7.turnover1993,

C7.turnover1994
FROM

(SELECT cu.custkey, cu.custname, C5.stddeviation, C6.stddeviation,
C1.turnover1992, C2.turnover1993, C3.turnover1994

FROM
(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1992
GROUP BY lo.custkey
) AS C1 (custkey, turnover1992),
(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1993
GROUP BY lo.custkey
) AS C2 (custkey, turnover1993),
(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1994
GROUP BY lo.custkey
) AS C3 (custkey, turnover1994),
(SELECT lo.custkey, STDDEV(lo.endprice)
FROM lineitem_orders lo, orderday od,

(SELECT C1.custkey, C1.turnover1992, C2.turnover1993, C3.turnover1994
FROM

(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, lookup_orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1992
GROUP BY lo.custkey
) AS C1 (custkey, turnover1992),
(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1993
GROUP BY lo.custkey
) AS C2 (custkey, turnover1993),
(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1994
GROUP BY lo.custkey
) AS C3 (custkey, turnover1994)

WHERE C1.custkey = C2.custkey AND C1.custkey = C3.custkey
AND C1.turnover1992 >= 500000 AND C2.turnover1993 >= 500000
AND C3.turnover1994 >= 500000

) AS C4 (custkey, turnover1992, turnover1993, turnover1994)
WHERE od.orderdate = lo.orderdate AND od.orderyearkey IN (1992, 1993, 1994)

AND lo.custkey = C4.custkey
GROUP BY lo.custkey
) AS C5 (custkey, stddeviation),

(SELECT lo.custkey, STDDEV(lo.endprice) / AVG(lo.endprice)
FROM lineitem_orders lo, orderday od,

(SELECT C1.custkey, C1.turnover1992, C2.turnover1993, C3.turnover1994
FROM

(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1992
GROUP BY lo.custkey
) AS C1 (custkey, turnover1992),
(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1993
GROUP BY lo.custkey
) AS C2 (custkey, turnover1993),
(SELECT lo.custkey, SUM(lo.endprice)
FROM lineitem_orders lo, lookup_orderday od
WHERE od.orderdate = lo.orderdate AND od.orderyearkey = 1994
GROUP BY lo.custkey
) AS C3 (custkey, turnover1994)

WHERE C1.custkey = C2.custkey AND C1.custkey = C3.custkey
AND C1.turnover1992 >= 500000 AND C2.turnover1993 >= 500000
AND C3.turnover1994 >= 500000

) AS C4 (custkey, turnover1992, turnover1993, turnover1994)
WHERE od.orderdate = lo.orderdate AND od.orderyearkey IN (1992, 1993, 1994)

AND lo.custkey = C4.custkey
GROUP BY lo.custkey
) AS C6 (custkey, stddeviation),
customer cu

WHERE C5.custkey = C1.custkey AND C5.custkey = C2.custkey AND C5.custkey = C3.custkey
AND C5.custkey = C6.custkey AND C5.custkey = cu.custkey

) AS C7 (custkey, custname, stddev1, stddev2, turnover1992, turnover1993, turnover1994)
WHERE C7.stddev2 <= 0.66794004454646;

Figure 12. Single Query for Request C

