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“[. . .] the division operator does not have the
same importance as the other operators—it is
not needed as often, and database systems do
not try to exploit the semantics of division by
implementing it as a distinct operator (as, for
example, is done with the join operator).”

R. Ramakrishnan, J. Gehrke [RG00]

Preface
The above citation is a good commentary on the division operator. This work investigates the
division operator and related operators that all help to solve the set containment test problem. We
do not try to show that division is as important as the other operators of the relational algebra,
but we hope that we are able to demonstrate that it is nevertheless a truly useful operator.
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Peter Kutschera, Jochen Rütschlin, Kerstin Schneider, and Jürgen Sellentin.

I especially thank my colleague Holger Schwarz for numerous good pieces of advice, proof-
reading drafts of this work, and a great cooperation during six years.

Thank you, Dirk, Lisa, Marina, Simone, and Tim for supporting me always.



iv

This work is dedicated to Karin and Otfrid.

Ralf Rantzau

Ludwigsburg, December 24, 2003



Abstract
Relational division is an operator of the relational algebra that realizes universal quantifications
in queries against a relational database. Expressing a universal quantification problem in SQL
is cumbersome. If the division operator would have a counterpart in a query language, a more
intuitive formulation of universal quantification problems would be possible. Although division
is a derived operator—it can be expressed using other basic algebra operators—the performance
of queries involving a division problem can be significantly increased if it is implemented as a
separate operator in a query processor.

In this work, we study relational division as well as operators related to it like set containment
join. We present a classification of division algorithms and define algebraic laws to enable query
optimization for queries involving division. A natural generalization of the division operator,
called set containment division, is proposed and algorithms that realize it are discussed, including
an algorithm that uses a new in-memory index data structure. Furthermore, we study strategies
for parallelizing set containment division algorithms.

The most popular data mining sub-task called frequent itemset discovery, where one tries to
find the number of transactions that contain a given set of items, is an excellent example of a
problem that requires efficient set containment tests. In this work, we focus on frequent itemset
discovery algorithms that exploit the query processing capabilities of a relational database sys-
tem. After reviewing the best algorithms based on SQL-92, we suggest a new approach, called
Quiver, that can be executed with the help of set containment division.

We report on performance results that cover experiments with frequent itemset discovery
algorithms running on commercial database systems as well as experiments that highlight the
most important properties of set containment test algorithms using a query processor prototype
implemented in Java.
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Zusammenfassung1

Die Division ist ein Operator der relationalen Algebra zur Realisierung der All-Quantifizierung
innerhalb einer Anfrage an ein relationales Datenbanksystem. Die Division ist ein abgeleiteter
Operator, wie zum Beispiel auch der Verbundoperator (Join), das heißt eine Division kann mit
Hilfe anderer Operatoren der Algebra ausgedrückt werden. Da in der Anfragesprache SQL kein
adäquates Sprachkonstrukt für die relationale Division existiert, ist es nicht möglich, eine SQL-
Anfrage, die ein All-Quantifizierungsproblem enthält, auf intuitive Weise zu formulieren. Für
den ebenfalls abgeleiteten Verbundoperator hingegen gibt es adäquate Sprachkonstrukte in SQL.
In der Literatur wurden Divisionsalgorithmen vorgestellt, die deutlich effizienter sind als Real-
isierungen des Operators mit Hilfe von Basisoperatoren.

Diese Arbeit befasst sich sowohl mit der relationalen Division als auch mit verwandten Op-
eratoren, wie beispielsweise dem Set Containment Join. Dabei steht die Frage im Zentrum,
durch welche effizienten Algorithmen die logischen Operatoren realisiert werden können. Dazu
gehören auch Überlegungen zur Integration der Operatoren in ein Datenbanksystem. So benötigt
ein Datenbanksystem Transformationsregeln für Ausführungspläne während der Anfrageopti-
mierung und Strategien zur Parallelisierung der Pläne. Diese und weitere Fragen werden in
dieser Dissertation erörtert, die in die nachfolgend skizzierten drei Teilbereiche gegliedert ist.

Erstens, schlage ich eine Klassifikation der Eingabedatencharakteristika für die Division
vor und ordne jeder Klasse Algorithmen zu, die die jeweiligen Datencharakteristika für eine
effiziente Verarbeitung voraussetzen. Darüber hinaus werden mehrere algebraische Gesetze
(Transformationsregeln) formuliert, die einen algebraischen Ausdruck mit Divisionsoperator in
einen äquivalenten Ausdruck überführen. Die Klassifikation der Eingabedaten mit den zugehöri-
gen in Frage kommenden Divisionsrealisierungen ist zusammen mit den algebraischen Gesetzen
die Voraussetzung dafür, dass ein Anfrageoptimierer einen effizienten Ausführungsplan einer
Anfrage mit Division finden kann.

Zweitens, stelle ich einen erweiterten Divisionsoperators vor, Set-Containment-Division-
Operator genannt, der nicht auf einem einzigen Divisor, sondern auf mehreren Gruppen von
Divisoren operiert. Der Operator realisiert dabei eine Vereinigung von mehreren Divisionsaus-
führungen. Wir zeigen die Äquivalenz dieses Operators mit anderen Vorschlägen aus der Liter-
atur und stellen die Ähnlichkeit zum Set-Containment-Join-Operator heraus, dessen Verbundbe-
dingung auf mengenwertigen Attributen basiert. Für all diese Operatoren werden verschiedene
Algorithmen untersucht, es werden neue Ansätze für die Set Containment Division vorgeschla-
gen und Strategien zur parallelen Ausführung des Operators diskutiert. Zu den neuen Ansätzen
gehört der Algorithmus Subset Index Set Containment Division, der auf einer Datenstruktur
beruht, die die Ober- und Untermengenbeziehung zwischen den Mengen in einer Relation ef-
fizient verwaltet.

Drittens, untersuche ich als Einsatzgebiet für die relationale Division und ähnliche Oper-
atoren die klassische Data-Mining-Technik Frequent Itemset Discovery, bei der häufig auftre-

1A summary of the dissertation in German
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tende Kombinationen von Elementen (Frequent Itemsets) in einer großen Anzahl von Men-
gen (Transaktionen) gesucht wird. Insbesondere wird überprüft, welche Transaktionen eine
Obermenge von bestimmten Itemsets sind. Dieses Problem wird zum Beispiel idealerweise
durch den Set-Containment-Division-Operator gelöst. Wir stellen einen neuen Frequent-Itemset-
Discovery-Algorithmus genannt Quiver vor, der von einem solchen Operator profitiert. Die
Besonderheit des Algorithmus liegt darin, dass sowohl die Transaktionen als auch die Item-
sets in Relationen verwaltet werden, bei denen ein Tupel ein Menge-Element-Paar repräsentiert.
Üblicherweise werden in allen anderen Ansätzen, die auf SQL-92 beruhen, vollständige Itemsets
durch ein einziges Tupel repräsentiert. Neben diesem neuen Algorithmus werden SQL-basierte
Algorithmen analyisert und das Leistungsverhalten der Algorithmen sowohl an Hand von Mes-
sungen mit kommerziellen Datenbanksystemen als auch mit einer eigenen Implementierung von
Anfrageausführungsplänen aufgezeigt.

Nachfolgend gehe ich auf jeden der eben erwähnten drei Teilbereiche dieser Arbeit detail-
lierter ein und geben einen kurzen Ausblick auf offene Fragen.

Relationale Division

Die Division (÷) ist ein binärer Operator der relationalen Algebra, der aus einer Dividendrelation
r1 und Divisorrelation r2 eine Quotientrelation r3 erzeugt: r1÷ r2 = r3. Die zugehörigen Rela-
tionenschemas sind dabei R1(A∪B), R2(B) sowie R3(A), wobei A und B nichtleere, disjunkte
Attributmengen sind.

In der Literatur finden sich viele verschiedene, äquivalente Definitionen des logischen Divi-
sionsoperators. Die ursprüngliche Definition geht auf Codd zurück [Cod70]. Sie macht schon
deutlich, dass es bei der Division um “Untermengentests” oder “set containment tests” geht:
r1÷ r2 = {t | t = t1.A∧ t1 ∈ r1∧ r2 ⊆ ir1(t)}, wobei ir1(x) = {y | (x,y) ∈ r1} die Bildmenge von x
unter r1 ist.

Graefe [GC95] hat gezeigt, dass für die Division Algorithmen existieren, die im Allgemeinen
eine bessere Leistung zeigen als Realisierungen des Operators mit Hilfe anderer Operatoren. Wir
haben alle bekannten Algorithmen analysiert und danach klassifiziert, wie und nach welchen At-
tributen die Eingabedaten gruppiert sind. Darüber hinaus wurden neue Algorithmen vorgeschla-
gen und bekannte erweitert, um vorhandene Lücken in der Daten-Algorithmen-Klassifikation
zu füllen. Zum Beispiel wurde zusammen mit Nippl [NRM00] ein Divisionsoperator namens
StreamJoin Division vorgestellt, der besonders hauptspeichereffizient ist und eine Dividendta-
belle r1 als Eingabe benötigt, die nach den Attributwerten von B gruppiert ist.

Wenn ein Divisionsoperator in einem Datenbanksystem realisiert wird, sollten für den An-
frageoptimierer Regeln bereitgestellt werden, um Ausführungspläne mit einem enthaltenen Di-
visionsoperator transformieren zu können. Dies ist eine Voraussetzung dafür, einen guten oder
sogar optimalen Plan zu finden. Als Grundlage hierfür stelle ich mehrere algebraische Gesetze
vor, die einen algebraischen Ausdruck mit einem Divisionsoperator in einen äquivalenten Aus-
druck umwandeln, der ebenfalls einen oder mehrere Divisionsoperatoren enthalten kann. Die al-
gebraischen Gesetze decken Situationen ab, in denen einer der Operatoren Vereinigung, Durch-
schnitt, Differenz, Selektion, Kartesisches Produkt, Verbund oder Gruppierung zusammen mit
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einem Divisionsoperator auftritt.

Eine Erweiterung des Divisionsoperators

Der Divisionsoperator prüft, welche Gruppen im Dividend alle Tupel des Divisors enthalten.
Betrachtet man die Dividendengruppen und den Divisor als Mengen, kann man die Division
als einen Untermengentest mit der Kardinalität N : 1 ansehen, wobei man N Dividendenmen-
gen einer Divisormenge gegenüberstellt. Wenn man die Mengenelemente statt in Gruppen als
mengenwertige Attribute in den Relationen verwaltet, entspricht die Division einem Verbundop-
erator, bei dem die Bedingung die Untermengenrelation ist: r1 ��b1⊇b2 r2. Wenn man nun statt
dem einzelnen Divisortupel mehrere Tupel zulässt, das heißt, r1 besitzt Scheman R1(A∪{b1})
und r2 hat Schema R2({b2}∪C), dann ergibt sich ein Operator, der als Set Containment Join
bezeichnet wird. Die Attributmengen A und C repräsentieren Mengenidentifikatoren und die
Attribut b1 und b2 sind die zu vergleichenden Mengen. In der Literatur wurden verschiedene
Algorithmen zur Realisierung des Set Containment Join vorgeschlagen.

Wenn man beim Set Containment Join die Mengenelemente wieder durch Gruppen reprä-
sentiert und beim Ergebnis die Verbundattribute b1 und b2 weglässt, ergibt sich ein Operator,
den ich als Set Containment Division (÷∗) bezeichne. Man kann ihn durch folgenden Ausdruck
definieren:

r1÷∗ r2 =
⋃

t∈πC(r2)

(r1÷πB (σC=t (r2)))× (t) .

Es zeigte sich, dass in der Literatur zwei äquivalente Operatoren unter den Namen Great Di-
vide [DD92] und Generalized Division [Dem82] vorgeschlagen wurden. Die Äquivalenz dieser
Definitionen wird in dieser Arbeit gezeigt. Im Unterschied zu diesen Vorschlägen, stelle ich
zum ersten Mal drei Algorithmen für den Operator vor und diskutiere, wie die Ausführung des
Operators parallelisiert werden kann.

Eine der Implementierungen von Set Containment Division basiert auf dem Divisionsopera-
tor Merge-Sort Division, eine weitere auf Hash-Division. Ein dritter Ansatz beruht auf der Idee,
eine Datenstruktur Subset Graph, die einem Hasse-Diagramm ähnlich ist, für die Gruppenele-
mente des Dividenden oder des Divisors zu verwenden. Hierbei werden Gruppen/Mengen durch
Knoten repräsentiert. Eine gerichtete Kante des Graphen existiert zwischen den Knoten v1 und
v2 genau dann, wenn die Menge in v1 eine echte Untermenge der Menge in v2 ist und keine
Menge in der Relation existiert, die gleichzeitig eine echte Obermenge von v1 und eine echte
Untermenge von v2 ist. Es werden also nur direkte Untermengenbeziehungen durch Kanten
repräsentiert. Als eine Variation dieser Datenstruktur betrachte ich den Fall, dass die Elemente,
die eine Unter- und Obermenge gemeinsam haben, nur in der Untermenge gespeichert wird.
Diese Variante nenne ich Compressed Subset Graph. In Leistungsmessungen ließ sich zeigen,
dass zwar der Speicherbedarf durch Kompression stark verringert werden kann, aber dies zu
hohen Laufzeiteinbußen führt.
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Lösung eines Data-Mining-Problems mit Hilfe der Division

Frequent Itemset Discovery ist eine wichtige Data-Mining-Methode, die zum Beispiel ein Be-
standteil der Suche nach Assoziationsregeln ist. Es gibt eine Vielzahl von Algorithmen für Fre-
quent Itemset Discovery. Darunter gibt es SQL-basierte Algorithmen, bei denen ein Daten-
banksystem für die Speicherung der Transaktionen und der Itemsets verwendet wird und die
gesamte Anwendungslogik durch mehr oder weniger komplexe Anfragen ausgedrückt wird.
In Untersuchungen in der Literatur wurde gezeigt, dass SQL-basierte Algorithmen für dieses
Problem eine schwächere Leistung aufweisen als Algorithmen, die mit proprietären Datenstruk-
turen in Dateien und im Hauptspeicher operieren. Wenn man jedoch mit sehr großen Daten-
mengen nach Frequent Itemsets sucht, ist der Einsatz eines Datenbanksystems von Vorteil, weil
die Ausführung des Algorithmus meist besser skaliert als mit einem dediziertem Data-Mining-
System. Der Grund hierfür liegt darin, dass proprietäre Data-Mining-Systeme nicht dafür vorge-
sehen sind, auf Daten zu operieren, die die Größe des physischen Hauptspeichers überschreiten.
Anders ist dies bei SQL-basierten Algorithmen, sofern der Anfrageoptimierer skalierbare An-
fragepläne generieren kann.

Da unser Ansatz keine besondere Funktionalität der Anfragesprache SQL benötigt, beschrän-
ke ich mich bei der Analyse von SQL-basierten Algorithmen auf solche, die den Sprachumfang
von SQL-92 abdecken, das heißt ich schließe objekt-relationale Erweiterungen wie benutzer-
definierte Funktionen und sehr große Objekte (binary large objects) aus. Allen diesen Algo-
rithmen ist gemeinsam, dass die Itemsets in einem Tabellenschema gespeichert werden, das für
jedes Item ein eigenes Attribut vorsieht. Die Itemsets werden durch das Schema (s#, i#1, . . . , i#k)
repräsentiert, wobei s# ein Itemset bezeichnet und i#1, . . . , i#k die Items (meist in lexikographisch
aufsteigender Reihenfolge der Item-Werte). Eine andere Möglichkeit besteht darin, jedes Item
eines Itemsets in einem eigenen Tupel zu halten, das heißt ein Schema (s#, i#) zu verwen-
den. Dies ist das gleiche Schema, das für Transaktionen benutzt wird. Bei einem solchen ver-
tikalen Schema für Transaktionen und Itemsets ist es möglich, den Set-Containment-Division-
Operator einzusetzen: Man dividiert die Transaktionstabelle t(t#, i#) durch die Kandidaten-
Itemset-Tabelle c(s#, i#): t ÷∗ c. Der Set-Containment-Division-Operator liefert als Ergebnis
diejenigen Kombinationen von Transaktions- und Itemset-Identifikatoren (t#,s#), bei denen das
Itemset in der Transaktion enthalten ist. Wenn man das Ergebnis nach den Transaktionsidenfika-
toren t# gruppiert und pro Gruppe die Zeilen summiert, findet man die Itemset-Identifikatoren,
deren Items häufig genug auftreten, das heißt die Frequent Itemsets.

Wir schlagen einen neuen Algorithmus Quiver vor und beschreiben ihn mit Hilfe des rela-
tionalen Tupelkalküls, der relationalen Algebra sowie mit SQL. Die Ausdrücke für Quiver in der
relationalen Algebra verwenden die Set Containment Division sowohl für die Kandidatengener-
ierungsphase als auch für die Support-Testphase. In Leistungsmessungen konnte gezeigt wer-
den, dass der Quiver-Algorithmus wie erwartet schlechte Ausführungszeiten auf kommerziellen
Datenbanksystemen liefert, dass aber eine Realisierung der Support-Testphase in einem selbst-
implementierten Anfrageprozessor im Vergleich mit anderen Algorithmen höchstens um eine
Größenordnung schlechtere Ausführungszeiten zeigte und in einigen Fällen sogar am besten ab-
schnitt.
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Ausblick

Es ist interessant zu untersuchen, in wie weit die vorgestellten Algorithmen auch für die Ve-
rarbeitung von XQuery-Anfragen eingesetzt werden können, die eine sogenannte Quantified
Expression mit dem Schlüsselwort every enthalten, womit eine Allquantifizierung ermöglicht
wird. Solche Ausdrücke können für die Formulierung einer Division benutzt werden. Ins-
besondere ist für die Semantik einiger XQuery-Anfragen wichtig, dass die Tupelreihenfolge,
wie sie in den Eingabedokumenten vorliegt, auch im Anfrageergebnis beibehalten wird. Deshalb
sind Überlegungen notwendig, wie diese Ordnungserhaltung bei quantifizierten Ausdrücken in
XQuery garantiert werden kann und trotzdem eine effiziente Ausführung der Allquantifizierung
erreicht wird.

Ein weiterer Bereich aktueller Forschung sind die sogenannten Continuous Queries und Data
Streams. Wie für andere Operatoren stellt sich hier das Problem, wie man ressourcenschonend
eine große Anzahl von Anfragen ausführt und optimiert, wenn mehr oder weniger kontinuierlich
neue Daten erzeugt werden. Beispielsweise kann man sich ein Szenario vorstellen, bei dem viele
Anfragen einen Set-Containment-Division-Operator enthalten, der jeweils eine andere, konstante
Dividendtabelle als Eingabe besitzt aber dieselbe Tabelle, die kontinuierlich weitere Gruppen
erzeugt, als Divisor dient. Wenn eine neue Divisorgruppe erzeugt wird, stellt sich das Problem,
wie man die Division in allen Anfragen ausführt, ohne alle Dividendtabellen erneut vollständig
lesen zu müssen.
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“A bad beginning makes a bad ending.”

Euripides (484 BC – 406 BC)

1
Introduction

This chapter highlights the key problem that we study in this thesis and outlines the structure of
the document.

1.1 Problem Statement

The problem of testing if all elements in a set A are contained in another set B is a basic problem in
data management. Suppose, the sets are represented as relations, where each element represents
a tuple, the problem can be solved in two steps: first, join the two sets with an equality predicate
on all columns of both relations and second, check if all elements of A have a join partner in
B. The second step can be accomplished, e.g., by comparing the number of tuples in A with the
number of tuples in the join result or by a set difference operation: if A minus the join result is
an empty relation then A⊆ B.

Generally speaking, the set containment test problem can be solved by a data management
system using efficient implementations of relational operators and by exploiting access paths
defined on the input data. However, what if we want to test many sets A against many sets B? A
straightforward approach is to repeat the test in a nested-loop fashion, i.e., for each set A, test for
each set B if A⊆ B.

The set containment test is a special case of a universal quantification in predicate calculus
where we check whether a predicate holds for all elements of a set. In our case, we test whether
all elements a ∈ A fulfill the set membership predicate a ∈ B. This special case of universal
quantification has a counterpart in the relational algebra: the division operator.

In this thesis, we study this problem and applications of it and discuss query processing
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strategies to solve the problem efficiently using database technology. We will show that cur-
rent commercial database management systems do not always provide an efficient solution and
therefore, we suggest novel query processing approaches for this problem.

1.2 Overview

The remainder of the document is organized as follows. In Chapter 2, we analyze the problem of
universal quantification in the relational model. This comprises an overview of definitions for the
relational division operator as well as algebraic laws that can be exploited by a relational query
optimizer when rewriting an algebraic representation of a query involving a division operation.
Chapter 3 discusses known division algorithms and presents several new approaches that improve
the efficiency for special cases of input data. In Chapter 4, we review set containment join
algorithms and discuss, how to realize the set containment division operator in a query execution
engine. We discuss the important data mining problem of frequent itemset discovery as well as
several SQL-based algorithms for it, including a new one that can exploit the division operator,
in Chapter 5. In Chapter 6, we discuss performance experiments for the algorithms discussed in
the previous chapters. This includes both an analysis of SQL-based algorithms using commercial
database systems and stand-alone Java implementations of query execution strategies. We give a
summary of the thesis as well as our conclusions in Chapter 7 and suggest directions for future
work. Finally, Appendix A provides proofs of theorems and algebraic laws, Appendix B provides
source code samples of the SQL-based algorithms as well as of the Java implementations of
query execution plans, and Appendix C gives detailed information on some of the datasets used
for performance experiments.



“It is by universal misunderstanding that all
agree. For if, by ill luck, people understood
each other, they would never agree.”

C. Baudelaire (1821 – 1867)

2
Universal Quantification

This chapter introduces the terminology used in this document, it provides definitions of the
division operator and related operators, highlights several algebraic laws for division, discusses
how division can be expressed in SQL, and mentions applications that benefit from the division
operator.

2.1 Introduction

Universal quantification is an important operation in the first order predicate calculus. This
calculus provides existential and universal quantifiers, represented by ∃ and ∀, respectively. A
universal quantifier that is applied to a variable x of a formula f specifies that the formula is true
for all values of x. We say that x is universally quantified in formula f , and we write ∀x : f (x) in
calculus.

In relational database management systems, universal quantification is implemented by the
division operator, represented by ÷ in the relational algebra, which was introduced by Codd
in 1970 [Cod70]. The division operator is important for databases because it appears often in
practice, particularly in business intelligence applications, including online analytic processing
(OLAP) and data mining. In this thesis, we will focus primarily on the division operator and
variations of it but we will also discuss its relationship to the set containment join operator,
which requires set-valued attributes as input.

Universal quantification is considered a useful functionality for database query languages.
Darwen and Date suggest in “The Third Manifesto” [DD95] that any database language based
on the relational model shall allow to easily express universal quantification: “If [...] [a database
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language] includes a specific operator for relational projection, then it should also include a
specific operator for the general form of relational division [. . . ].”

Besides the relational world, universal quantification plays a role, e.g., in XQuery, the de-
facto standard database query language for XML data. It provides a syntax for universally quan-
tified expressions [W3C03].

The remainder of this chapter is organized as follows. First, we briefly summarize the terms
used in this document regarding both the theoretical and practical view on relational databases:
the relational model and the implementation of the model in a relational database management
system. In Section 2.3, we present and compare several definitions of the relational division
operator from the literature. In addition, we introduce an operator that generalizes division and
discuss its relationship to other operators. We provide important algebraic laws involving di-
vision in Section 2.4. Section 2.5 focuses on the representation of relational division in SQL.
Finally, in Section 2.6 we discuss applications of universal quantification.

2.2 Terminology

In this work, we separate the terminology used for database systems from that used for the rela-
tional model that underlies database systems. We do this to emphasize the importance of being
unambiguous when speaking of a relational operator. In the relational algebra, i.e., in theory,
an operator is defined in terms of its logical behavior based on a mathematical expression that
characterizes the result relation. In the world of software systems, i.e., in practice, an operator
embodies a particular algorithm. Such an algorithm may expose more properties than its mere
logical behavior regarding the contents of the input and output relations. These properties are
important when we discuss efficient implementations of the division operator in Chapter 3.

2.2.1 Relational Model

When we speak of the relational model, we consider a

• database as a collection of relations. A

• relation contains data that comply to a

• relation schema, which is defined by a list of

• attributes that represent values of a domain. A

• domain is a set of allowed values for an attribute. A relation is a

• set of

• tuples, each of which is an element of the Cartesian product of the attribute domains.

The relational model provides languages like the relational algebra or the tuple relational
calculus to formulate queries on a database. In the relational algebra, a query is formulated
as an
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• algebra expression, which is composed of

• logical operators that take one or more relations as input and produce one output relation.
There are several

• algebraic laws that define how to transform one expression into an equivalent expression.
Two expressions are equivalent if they describe the same set of output tuples for any con-
tents of the input relations. These laws are used by a relational system to optimize the
execution strategy for a query.

2.2.2 Relational System

When we speak of the software that realizes the relational model, called relational database
management system (RDBMS), we consider a

• database as a collection of tables. A

• table contains data that comply to a

• table schema, which is defined by a list of

• columns that represent values of a data type. A

• data type is a set of allowed values for a column. A table is a

• multi-set (or bag) of

• rows, each of which is an element of the Cartesian product of the column data types.

An RDBMS provides a language like SQL to formulate queries on a database. The system
answers a query by first transforming it into to a

• query execution plan, and then by executing the plan by an RDBMS component called

• query execution engine. A query execution plan is composed of

• physical operators, each of which is defined by an implementation of an algorithm. For
each logical operator in the relational model, there can be one or more physical operators
that all produce the same result as the logical operator but, in addition, a physical operator
may exploit certain physical data characteristics of the input tables or produce certain data
characteristics in the output table. Not every physical operator, like, e.g., the sort operator,
must have a counterpart in the algebra of the relational model.

Table 2.1 summarizes analogous terms used for the relational model and a relational system.
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Relational Model RDBMS

database database
relation table
relation schema table schema
attribute column
domain data type
set multi-set
tuple row
logical operator physical operator
algebraic expression query execution plan

Table 2.1: Terms used in theory and practice of the relational world

Set containment division/
Division great divide/ Set containment join

generalized division
Notation r1÷ r2 r1÷∗ r2 r1 ��b1⊇b2 r2

Left input / dividend R1(A∪B), many groups R1(A∪B), many groups R1(A∪{b1}), many sets
Right input / divisor R2(B), single group R2(B∪C), many groups R2({b2}∪C), many sets
Output / quotient R3(A) R3(A∪C) R3(A∪{b1,b2}∪C)
Data layout 1NF 1NF non-1NF

Table 2.2: Summary of operator characteristics

2.3 Relational Operators for Universal Quantification

This section discusses four operators used to realize universal quantification in the relational
model: relational division, set containment join, set containment division, great divide, and gen-
eralized division. We will see that the latter three operators are equivalent. They have been
proposed independently in the literature.

For ease of presentation, we give already here in Table 2.2 an overview of the operators to be
discussed.

2.3.1 The Small Divide

In this section, we present several alternative definitions for division using tuple relational calcu-
lus and relational algebra. We present the original ideas described in the literature but we adapt
the names of relations and operators for the sake of a uniform and hence more comprehensi-
ble presentation. Refer to Table 2.3 for details on the relational operators used in the following
expressions.

Let A = {a1, . . . ,am} and B = {b1, . . . ,bn} be nonempty disjoint sets of attributes. Let R1(A∪
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Operator Name Description

∪ Set union r1∪ r2 = {t | t ∈ r1∨ t ∈ r2}
∩ Set intersection r1∩ r2 = {t | t ∈ r1∧ t ∈ r2}
− Set difference r1− r2 = {t | t ∈ r1∧ t �∈ r2}
× Cartesian product r1×r2 = {t1◦t2 |t1 ∈ r1∧t2 ∈ r2}, where ◦ is the concatenation

operator.
πA Projection πA(r) = {t.A | t ∈ r}, where A is a list of attributes, {A} is the

set of attributes in the list A, and t.A is the concatenation of
values from tuple t that appear in A.

πE Extended projection Allows assigning expressions to attribute names, where E is a
list of assignments. Example: πa,b+c→x(r) for some relation r
with schema R(a,b,c) [GMUW02].

σC Selection σC(r) = {t | t ∈ r∧C(t)}, where C is a condition.
��C Theta-join r1 ��C r2 = σC (r1× r2) and C is a condition.
�� Natural join r1 �� r2 = πA (σC (r1× r2)), where A is the set of attributes

in the schema R1(r1) ∪ R2(r2), C =
∧n

i=1 r1.ai = r2.ai, and
{a1, . . . ,an} is the set of attributes appearing in the schema
R1∩R2.

�C Left semi-join r1 �C r2 = π[r1] (r1 ��C r2), C is a condition, [r1] denotes the
attributes of R1(r1).

�C Left anti-semi-join r1�Cr2 = r1− (r1 �C r2) and C is a condition.
��� Left outer join r1 ��� r2 = (r1 �� r2)∪ ((r1�r2)× (×n

1 (NULL))), where n is
the number of attributes in schema R2(r2) [GK98].

ρr(A) Rename r is a relation name and A is a list of attributes; allows reas-
signing relation and attribute names. Example: ρr2(x,y,z) (r1)
for some relation r1 with schema R1(a,b,c) [GMUW02].

GγF Grouping G is a list of grouping attributes and F is a list of aggre-
gation functions applied to some attribute values. Exam-
ple: a,dγsum(b)→total(r1) for some relation r1 with schema
R1(a,b,c,d) [GMUW02, SKS01].

÷ Division Example: r1÷r2 = r3 for some relations r1, r2, and r3 with the
schemas R1(a,b,c), R2(b,c), and R3(a), respectively. Relation
r1 is called dividend, r2 divisor, and r3 quotient.

÷∗ Set containment division/
Great divide/
Generalized division

Example: r1÷∗ r2 = r3 for some relations r1, r2, and r3 with
the schemas R1(a,b,c), R2(b,c,d,e), and R3(a,d,e), respec-
tively.

��⊆ Set containment join Example: r1 ��b⊆c r2 = r3 for some relations r1, r2, and r3

with the schemas R1(a,b), R2(c,d,e), and R3(a,b,c,d,e), re-
spectively, where b and c are set-valued attributes.

Table 2.3: Overview of the logical operators of the relational algebra used in this thesis

B) and R2(B) be relation schemas, and let r1(R1) and r2(R2) be relations on these schemas. We
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call r1 dividend, r2 divisor, and r3 quotient of the division operation r1÷ r2 = r3. The schema
of r3 is R3(A). We call B, the subset of R1’s attributes that correspond to the attributes of R2,
the dividend’s divisor attributes and A, the remaining attributes of R1, the dividend’s quotient
attributes because they correspond to the attributes of the quotient schema R3. Hence, we can
write r1(A∪B)÷ r2(B) = r3(A).

The original definition of the division operator was given by Codd [Cod72], formulated as a
query in tuple relational calculus:

DEFINITION 1 (CODD’S DIVISION): r1÷ r2 = {t | t = t1.A∧ t1 ∈ r1∧ r2 ⊆ ir1(t)}, where ir1(x)
is called the image set of x under r1 and is defined by ir1(x) = {y | (x,y) ∈ r1}
In this calculus expression, the term t = t1.A means that a tuple in the result, i.e., in the quotient,
consists of the attribute values for A of the dividend tuple t1.

An equivalent definition of Codd’s original definition using tuple relational calculus is given
by Darwen and Date [DD92]:1

DEFINITION 2 (DARWEN’S DIVISION):
r1÷ r2 = {t | ∀t2 ∈ r2∃t1 ∈ r1 : t = t1.A∧ t1.B = t2.B} .

This definition shows why relational division is considered the algebraic counterpart of the uni-
versal quantifier (∀).

Codd writes that “division is so-named because (r1× r2)÷ r2 = r1.” If we first apply the
division and then the product, however, we have no equivalence, according to [Dat94], page 179:
(r1÷ r2)×r2 ⊆ r1. Definition 1 states that division is a set containment test problem. Codd gives
another equivalent definition of the division operator, which he attributes to Paul Healy of IBM
Research, San Jose, which uses other algebra operators. Maier [Mai83] also gives this equivalent
definition in Exercise 3.3a, page 39:2

DEFINITION 3 (HEALY’S DIVISION): r1÷ r2 = πA (r1)−πA ((πA (r1)× r2)− r1) .

In Exercise 3.3b of the same book, there is an alternative definition of the division operator:

DEFINITION 4 (MAIER’S DIVISION): r1÷ r2 =
⋂

t∈r2
πA (σB=t (r1)) .

This idea has been used for an algorithm called stream-join division that will be discussed in
Section 3.3.3.5 on page 46.

In Claußen et al. [CKMP97], an equivalent definition of the division operator using semi-
join (�) as well as anti-semi-join (�) and left outer join (���), is given:

DEFINITION 5 (CLAUSSEN’S DIVISION): r1÷ r2 = ((r1 � r2) ��� r2)�r2.

Abiteboul et al. [AHV95] give yet another definition of division, which is very similar to
Codd’s Definition 1:

1For simplicity, we name this definition and all defintions that follow after the first author only.
2In this definition, Maier actually uses the join symbol �� instead of the Cartesian product symbol ×. His

definition of the join operator subsumes the Cartesian product [Mai83], page 17: “The definition of join does not
require that R1 and R2 have a nonempty intersection. If R1∩R2 = /0, then r1 �� r2 is the Cartesian product of r1 and
r2.” We have adapted the original relation names to ours in this citation.
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DEFINITION 6 (ABITEBOUL’S DIVISION): r1÷ r2 = {t ∈ πA(r1) | (t �� r2)⊆ r1} .
The previous definitions are all based on testing the existence (by means of join operators,

etc.) or non-existence (by means of difference or anti-semi-join operators) of attribute values.
These tests try to directly match values of the elements (B) in the sets of the dividend and values
of the elements in the divisor. A different view on the division problem is an indirect one that
is achieved by counting the number of elements belonging to a quotient group of the dividend
r1 and the number of tuples in the divisor relation r2 (the cardinality of r2). Then, a quotient
group is the set of tuples having the same value for the quotient attributes A. Using an extended
operator of the relational algebra as defined in [GMUW02], the division problem can be defined
with the help of the grouping operator GγF(r1), where G is a list of attributes of r1 and F is a
list of aggregation functions applied to an attribute of r1, as sketched in Table 2.3. A name is
assigned to the attribute corresponding to the aggregation using an arrow. The grouping operator
first partitions the tuples of r1 into groups, where each group is given by a unique value of all
non-aggregated attributes in L. Then, one tuple is generated for each group by employing the
aggregate functions on the respective attributes of all tuples of a group. If no attribute is given
in L then the entire relation r1 is one group. This counting approach has been described, e.g.,
in [GC95], however without using relational algebra. The division operator can thus be defined
as follows:

DEFINITION 7 (GRAEFE’S DIVISION): r1÷ r2 = πA
(

Aγcount(B)→c (r1 � r2) �� γcount(B)→c (r2)
)
.

In Definition 7, the expression r1 � r2 makes sure that only those tuples of r1 are aggregated that
contain values that are also contained in r2. Then, one compares the cardinality of r2 with the
number of tuples in each group defined by a distinct value of the quotient attributes of r1. Finally,
if the numbers are equal, the aggregate values are removed, i.e., the result relation comprises only
the quotient attributes A.

If we know that r1 contains no divisor values other than in r2, i.e., r1 � r2 = r1, which can be
ensured by a foreign key constraint R1.B→ R2, then one can simplify Definition 7 to

r1÷ r2 = πA
(

Aγcount(B)→c (r1) �� γcount(B)→c (r2)
)
.

In [DD92], the basic division operator was called small divide to distinguish it from a gener-
alization of it, called great divide, to be discussed next.

2.3.2 The Great Divide

Before we discuss three equivalent definitions of an extended division operator, we briefly con-
sider another operator related to them. Let R1(A∪B1), R2(B2∪C), and R3(A∪B1∪B2∪C) be
relation schemas, where A = {a1, . . . ,am}, B1 = {b1}, B2 = {b2}, and C = {c1, . . . ,co} are at-
tribute sets. The sets A and C are disjoint and may be empty, B1 and B2 are disjoint and nonempty,
A and B1 are disjoint, and B2 and C are disjoint. The sets B1 and B2 consist of a single set-valued
attribute, respectively. Let r1(R1), r2(R2), and r3(R3) be relations on these schemas. The set con-
tainment join r1 ��b1⊇b2 r2 = r3 is a join between the set-valued attributes b1 and b2, where we
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a b

1 1
1 4
2 1
2 2
2 3
2 4
3 1
3 3
3 4

(a) r1 (dividend)

b

1
3

(b) r2 (divisor)

a

2
3

(c) r3 (quotient)

Figure 2.1: Division: r1÷ r2 = r3

a b

1 1
1 4
2 1
2 2
2 3
2 4
3 1
3 3
3 4

(a) r1 (dividend)

b c

1 1
2 1
4 1
1 2
3 2

(b) r2 (divisor)

a c

2 1
2 2
3 2

(c) r3 (quotient)

Figure 2.2: Set containment division: r1÷∗ r2 = r3

a b1

1 {1,4}
2 {1,2,3,4}
3 {1,3,4}

(a) r1

b2 c

{1,2,4} 1
{1,3} 2

(b) r2

a b1 b2 c

2 {1,2,3,4} {1,2,4} 1
2 {1,2,3,4} {1,3} 2
3 {1,3,4} {1,3} 2

(c) r3

Figure 2.3: Set containment join: r1 ��b1⊇b2 r2 = r3

ask for the combinations of tuples in t1 ∈ r1 and t2 ∈ r2 such that set t1.b1 contains all elements
of set t2.b2. Several efficient algorithms and strategies for realizing this operator in an RDBMS



2.3 Relational Operators for Universal Quantification 11

have been proposed [HM97, MGM03, MGM02a, Ram02, RPNK00].
We have recently suggested a generalization of division that we called set containment divi-

sion, denoted by ÷∗1, because of its similarity to the set containment join [RSMW03]. We have
devised several algorithms for this operator and implemented them in a query execution engine.
The algorithms will be discussed in Chapter 4. Let R1(A∪B), R2(B∪C), and R3(A∪C) be
relation schemas, where A = {a1, . . . ,am}, B = {b1, . . . ,bn}, and C = {c1, . . . ,co} are nonempty
sets of attributes, A and B are disjoint, and B and C are disjoint. Let r1(R1), r2(R2), and r3(R3)
be relations on these schemas. Although we define a new operator, we continue to use the terms
dividend, divisor, and quotient for the relations r1, r2, and r3, respectively. The dividend relation
r1 has the same schema as for the small divide. However, the divisor relation r2 has additional
attributes C. The set containment division operator is defined as follows:

DEFINITION 8 (SET CONTAINMENT DIVISION): r1÷∗1 r2 =
⋃

t∈πC(r2) (r1÷πB (σC=t (r2)))× (t)

The idea is to iterate over the groups defined by the attributes r2.C. Each group is a separate
divisor for a division with dividend r1. We “attach” the divisor group value to the resulting
quotient tuples by a Cartesian product between each quotient group and a one-tuple relation (t).

The similarity to the set containment join operator is illustrated in Figures 2.2 and 2.3. Except
for the fact that the input relations of set containment join are not in first normal form due to the
set-valued attributes and that set containment division does not preserve the “join” attributes in
B, the operators have the same semantics. Another slight difference is that set containment join
allows empty sets as join attribute values whereas set containment division does not have the
notion of an empty set. Furthermore, for the set containment join the attribute sets A and C may
be empty.

Set containment division takes as input relations that are in the first normal form (1NF),
which requires that the attributes have only atomic values. In contrast, a non-atomic domain
has composite or set-valued values. A composite value occurs, e.g., for an address attribute
that is composed of attribute values for street, zip-code, country, etc. An example of a set-valued
attribute is phone-numbers to represent all (zero or more) phone numbers of a person. Set-valued
attributes are required in the input of the set containment join operator, discussed next.3

In 1982, Robert Demolombe suggested a generalized division operator, denoted by ÷∗2, that
is equivalent (see Theorem 1 below) to set containment division [Dem82]. Besides a definition of
the operator in tuple relational calculus and predicate calculus, he gives an algebraic definition:

DEFINITION 9 (GENERALIZED DIVISION):
r1÷∗2 r2 = (πA (r1)×πC (r2))−πA∪C ((πA (r1)× r2)− (r1×πC (r2)))

In 1988, Stephen Todd suggested—presumably independent from Demolombe—a generalized
division operator but he did not publish it himself. However, it has been discussed by Darwen

3We oversimplify our presentation here. Strictly speaking, set containment division does not require input
relations in 1NF, but it requires that each element of a “set” is represented by some attribute values of a separate
tuple. In fact, these values might belong to a set-valued or composite attribute. For example, the set elements
represent web site visits, where each visit is a set itself that consists of (URL, timestamp) pairs, indicating the time
a user has requested the document with the URL. A relation in 1NF does not allow any set-valued or composite
attributes at all.
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and Date [DD92], where it was called great divide, denoted by ÷∗3. A definition in relational
algebra is given by the following expression:

DEFINITION 10 (GREAT DIVIDE):
r1÷∗3 r2 = (πA (r1)×πC (r2))−πA∪C ((πA (r1)× r2)− (r1 �� r2)) .

Definition 10 differs only slightly from Definition 9 of generalized division. It uses a join instead
of a Cartesian product. Darwen and Date write that great divide degenerates to small divide, as
specified in Definition 3, if C = /0 [DD92]. We prove in Appendix A on page 158 the following

THEOREM 1: Set containment division (÷∗1), generalized division (÷∗2), and great divide (÷∗3)
are equivalent operators, i.e., ÷∗1 ≡÷∗2 ≡÷∗3.

The three definitions have been suggested independently. However, while the publications on
generalized division [Dem82] and great divide [DD92] solely focus on the relationship between
the logical operator and the basic division operator, our work on the set containment division
operator [RSMW03, Ran03] puts its emphasis on algorithms to implement physical operators
and to investigate applications for it. In the rest of the document (except for the appendices), we
will use our term set containment division for the operator ÷∗.

2.3.3 Interchanging Operators

We can simulate set containment division by set containment join and vice versa. This is useful if
an RDBMS offers an efficient implementation of only one of the two operators. By interchanging
operators, we can solve problems for one operator by using the other. However, the interchange
incurs a cost for pre- and post-processing of the dividend and divisor table.

Let b1 and b2 be attributes and let A and C be attribute sets. Let r1, r2, and r3 be relations
with the schemas R1(A∪{b}), R2({b}∪C), and R3(A∪C), respectively. Let r′1, r′2, and r′3 be
relations with the schemas R′1(A∪{b1}), R′2({b2}∪C), R′3(A∪{b1,b2}∪C), respectively, where
b1 and b2 are set-valued attributes.

A set containment join problem r′1 ��b1⊇b2 r′2 = r′3 can be solved by a set containment division
operator as follows:

1. Unnest b1 and b2 into groups of tuples and rename attributes b1 and b2 to b: r′1 ⇒ r1,
r′2⇒ r2.

2. Apply the set containment division: r1÷∗ r2 = r3.

3. Incorporate the set values of b1 and b2 into the result: r3 �� r′1 �� r′2 = r′3.

Note that we can use the extended projection operator π, listed in Table 2.3 on page 7 to re-
name columns. By definition, set containment division requires to have the same set element
attribute(s) to appear in both input relation schemas.

Analogously, a set containment division problem πb1→b(r1)÷∗ πb2→b(r2) = r3 can be simu-
lated with the help of a set containment join operator as follows:
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s#

S1
S2
S3

(a) s

s# p#

S1 P1
S1 P2
S1 P4
S3 P2
S3 P3

(b) sp

p# color

P1 green
P2 blue
P3 green
P4 blue

(c) p

Figure 2.4: An example illustrating the empty divisor problem

1. Nest the values b1 and b2 of each group defined by A and C, respectively, into a set value:
r1⇒ r′1, r2⇒ r′2.

2. Apply the set containment join: r′1 ��b1⊇b2 r′2 = r′3.

3. Remove the set values of b1 and b2 from the result: πA∪C(r′3) = r3.

2.3.4 The Empty Divisor Problem

When we formulate a query involving a universal quantification like “Find the suppliers who
supply all parts of color c,” we are led to believe that it can be easily solved using the division
operator.

Suppose, we have the well-known supplier-parts database [DD92, Dat94] consisting of a
supplier table s, a table sp indicating which supplier supplies which part, and a parts table p, as
illustrated in Figure 2.4. Such tables typically occur in a data warehouse of a company [Tra02].

Now, when we try to find the suppliers that supply all blue parts, we can describe this problem
by the algebraic expression sp÷πp# (σcolor=blue (p)) = sp÷{(P2),(P4)}, which in our example
correctly yields supplier number S1.

What happens if we want to find the suppliers supplying all red parts? Let us apply the
previous expression, now using the red color: sp÷πp# (σcolor=red (p)) = sp÷ /0 = {(S1),(S3)}.
Indeed, suppliers S1 and S3 both supply all red parts, i.e., they supply all parts in the empty set.
But this is also true for supplier S2. Any set contains the empty set.

This empty divisor case is discussed in detail in [DD92]. The problem is that our intuition
leads us to believe that our expression is equivalent to the given query. However, the expression
actually only solved the problem “Find the suppliers who supply all parts with color c and who
supply at least one part.” The authors suggest a modified operator called divide per that solves
the original problem. We do not give their algebraic definition here but mention that the new
operator also takes the suppliers table s as parameter in addition to the relations sp and p. Using
the new syntax, the correct expression for our example would be s÷πp# (σcolor=red (p))per sp.
The authors also suggest a “divide per” version for the great divide operator.
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2.3.5 The HAS Operator

Carlis proposed a generalization of the division operator, called HAS [Car86]. He argues that
“division is misnamed” because there are more operators ◦ than division (÷) that fulfill the
equation (r1× r2) ◦ r2 = r1. He further claims that division is “hard to understand” because,
among other arguments, “division is the only algebra operation that gives students any trouble.”
Finally, he writes that division is “insufficient” because it is not flexible enough, it allows only
queries of the form “find the sets that contain all elements of a given set” but it does not help for
queries asking for sets that contain, e.g., at least three elements of a given set.

The HAS operator involves three relations:

• r1 contains entities about which we want the answer if it qualifies in the result,

• r2 contains entities that are used for the qualification, and

• r3 contains the relationships between the entities in r1 and r2.

For example, in the supplier-parts database in Figure 2.4, r1 = s, r2 = p, and r3 = sp. In addition,
the HAS operator uses a combination of six “adverbs,” called associations, to describe the qual-
ification: strictly more than, strictly less than, some of but not all plus something else, exactly,
none of plus something else, and none at all. There are 26− 1 = 63 possible combinations to
choose between one and six associations for a specific HAS operator. Such a combination is
considered as a disjunction of the participating associations.

We illustrate the algebra syntax used in [Car86] by showing how relational division can be
expressed by the HAS operator using one of the 63 association combinations:

r1VIA r3

HAS (exactly or strictly more than)
OF r2

The combination “exactly or strictly more than” is equivalent to the adverb “at least,” typically
used to describe division.4

Another query that can be expressed using the HAS operator, but only with considerable
effort using basic operators, is “Which suppliers do not supply all blue parts?”:

sVIA sp

HAS (strictly less than or some of plus something else or none of)
OF πcolor=blue(p)

The combination used in this query is equivalent to the adverb “not all of.”5

4In the association combination overview in [Car86], this combination has number 9, denoted by the symbol
=>>.

5In the association combination overview in [Car86], this combination has number 33, denoted by the symbol
<.
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2.4 Algebraic Laws

Let us briefly describe the role of algebraic laws for query optimization. Before a query is exe-
cuted by the query execution engine of a relational database management system (RDBMS), the
query optimizer rewrites the algebraic representation of the query according to transformation
rules. Typically, one type of transformation rules is based on algebraic laws and the other maps a
logical operator (e.g., join) to a physical operator (e.g., hash-join). An algebraic law is an equiv-
alence between two different representations of an algebraic expression. Both representations
describe the same set of result tuples for every possible database content. Together with heuris-
tics and/or cost estimations, the optimizer applies transformation rules to subexpressions of the
query such that the entire query can be evaluated with the minimal resource consumption or the
shortest response time. Algebraic laws for the basic operators of the relational algebra are dis-
cussed, e.g., in [JK84, GMUW02]. The implementation of transformation rules (rewrite rules) in
a commercial RDBMS are described, e.g., in [Loh88, PHH92]. Frameworks for building query
optimizers, like Cascades [Gra95] and XXL [BBD+01], offer the possibility to study the code
that is required to realize transformation rules in an RDBMS.

To the best of our knowledge, no commercial RDBMS has an implementation of relational
division. One reason is that there is no keyword in SQL that would allow to express universal
quantification intuitively. Another reason is that set containment tests are not considered as
important as existential element tests that is realized by the join operator. However, special
applications like frequent itemset discovery could be processed efficiently and formulated more
intuitively if division would be a first-class operator. Let us suppose that an RDBMS offers one
or more efficient implementations of division, i.e., physical division operators like hash-division
or merge-sort division [GC95, RSMW03]. An optimizer could replace the division operator by
an expression that simulates the operator and apply transformation rules on the operators in the
expression. In addition, it should also be able to apply rewrite rules to the division operator
directly since efficient implementations are available in the query execution engine.

Therefore, in the following we present several algebraic laws that either preserve the division
operator or produce some non-trivial rewrite result. Note that there are an infinite number of
equivalent expressions for any given algebraic expression. We have tried to distill the most
useful and interesting laws such that a rule-based optimizer might indeed decide to employ them
to achieve an efficient query processing strategy.

No previous work has covered the optimization of queries involving division or generalized
division. However, applications like frequent itemset discovery would benefit from a division
syntax in SQL, an efficient implementation of the operator in a query execution engine, and the
integration of appropriate transformation rules into an optimizer.

Some of the algebraic laws discussed in this section require the notion of a partitioned rela-
tion. We use the following notations and definitions for partitions. Let r′i and r′′i denote nonempty
horizontal partitions of ri such that r′i∪ r′′i = ri, where i ∈ {1,2}, i.e., we define a decomposition
of ri’s tuples. Let r∗i and r∗∗i denote relations that conform to the schemas of the vertical parti-
tions R∗i and R∗∗i of Ri, respectively, such that R∗i ∪R∗∗i = Ri, where i ∈ {1,2}. Hence, we define
a decomposition of Ri’s attributes.

For the laws that follow, we will indicate when we require partitions to be disjoint or not.
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a b

1 1
1 4
2 1
2 2
2 3
2 4
3 1
3 3
3 4
4 1
4 3

(a) r1

b

1
3
4

(b) r2

b

1
3

(c) r′2

b

3
4

(d) r′′2

a

2
3
4

(e) r1÷ r′2

a b

2 1
2 2
2 3
2 4
3 1
3 3
3 4
4 1
4 3

(f) r1 � (r1÷ r′2)

a

2
3

(g) r3

Figure 2.5: An example for Law 1

a b

1 1
1 2
1 3

(a) r′1

a b

1 2
1 4

(b) r′′1

b

1
4

(c) r2

Figure 2.6: The precondition of Law 2 is not fulfilled

The proofs of the laws and theorems can be found in Appendix A on page 153.

2.4.1 Algebraic Laws for Division

Before we present the laws, we state two theorems.

THEOREM 2: Division is non-commutative, i.e., r1÷ r2 �= r2÷ r1 for relations r1 and r2.

THEOREM 3: Division is non-associative, i.e., r1÷ (r2÷ r3) �= (r1÷ r2)÷ r3 for nonempty rela-
tions r1, r2, and r3.

2.4.1.1 Union

When the divisor r2 is decomposed into horizontal partitions then one can divide by these divisors
separately:

LAW 1: r1÷ (r′2∪ r′′2) = (r1 � (r1÷ r′2))÷ r′′2 .
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This law holds also for overlapping divisor partitions, as illustrated in the example in Figure 2.5.
It can help an RDBMS to employ pipeline parallelism as follows. Suppose, r1 is grouped on
A. We can employ efficient group-preserving algorithms for the inner division r1÷ r′2 and the
semi-join and deliver the result as the dividend of the outer division, which again can employ a
group-preserving algorithm.

When we decompose the dividend instead of the divisor, we must take care of the situation
sketched in Figure 2.6. There is a quotient candidate value (a = 1) whose tuples are dispersed
across the dividend relations but none of the groups contains all values of the divisor. However,
the union of the groups does. In other words, r′1÷r2 = /0 and r′′1÷r2 = /0 but (r′1∪r′′1)÷r2 �= /0. We
have to exclude this situation in the precondition of Law 2. Formally, the following precondition
must be true:

c1(r′1,r
′′
1)≡ ∀a ∈ πA(r′1)∩πA(r′′1) : r2 ⊆ πB

(
σA=a

(
r′1
))∨ r2 ⊆ πB

(
σA=a

(
r′′1
))∨

r2 �⊆ πB
(
σA=a

(
r′1
)∪σA=a

(
r′′1
))

(2.1)

LAW 2: If condition c1 (r′1,r
′′
1)≡ true then (r′1∪ r′′1)÷ r2 = (r′1÷ r2)∪ (r′′1 ÷ r2).

Since testing condition c1 can be expensive, we can use a stricter condition c2 that is easier to
check:

c2(r′1,r
′′
1)≡ πA

(
r′1
)∩πA

(
r′′1
)

= /0. (2.2)

It can be shown easily that for any relations r1 = r′1 ∪ r′′1 and r2 as defined before, if c2 holds
then also c1 holds. By using condition c2 instead of c1 with Law 2, an RDBMS can parallelize
a query execution with degree 2 as follows. Suppose that the query execution engine can access
the data in table r1 via an index on A. We can employ two parallel scans: one that starts with the
lowest value of A and scans the leaves of the index in ascending order of A and another that starts
with the highest value of A and retrieves data in descending order of A. Both scans stop as soon
as they encounter the same value for A. Exactly one of them has to process the entire last group.
Higher degrees of parallelism can be achieved by partitioning r1 into n > 2 partitions.

2.4.1.2 Selection

Let p(X) denote a predicate involving only elements of a set of attributes X . Since only r1

contains the attribute set A, we can state the following “selection push-down” law:

LAW 3: σp(A) (r1÷ r2) = σp(A) (r1)÷ r2.

For a predicate that involves only attributes in B, the following “replicate-selection” law
holds:

LAW 4: r1÷σp(B) (r2) = σp(B) (r1)÷σp(B) (r2).

EXAMPLE 1: For a predicate that involves only attributes in B, but that is applied to the dividend
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only, the following expressions are equivalent:

σp(B) (r1)÷ r2 =
(
σp(B) (r1)÷σp(B) (r2)

)−πA
(
πA (r1)×σ¬p(B) (r2)

)
.

This expression is very similar to Law 4. We only have to take care of the situation when
σ¬p(B) (r2) �= /0. In this case, the expression σp(B) (r1)÷ r2 is equal to the empty set because
no dividend tuple has a value of B that can match a tuple in σ¬p(B) (r2). Hence, if σ¬p(B) (r2)
contains at least one tuple, we achieve that the result relation is empty by simply removing all
A values in r1 from the quotient candidates in σp(B) (r1)÷ σp(B) (r2). The Cartesian product
is merely used to “switch” πA (r1) “on or off.”6 To make our argumentation clearer, we could
rewrite our expression as follows:

σp(B) (r1)÷ r2 =
{

σp(B) (r1)÷σp(B) (r2) if σ¬p(B) (r2) = /0, and
/0 otherwise.

To illustrate our first expression, Figure 2.7 shows an example where the division yields an empty
quotient relation. �

2.4.1.3 Intersection

We can push division into intersections or differences of dividend relations.

LAW 5: (r′1∩ r′′1)÷ r2 = (r′1÷ r2)∩ (r′′1 ÷ r2) .

2.4.1.4 Difference

For the difference operator we require the precondition that πA (r′1) and πA (r′′1) are disjoint.7

LAW 6: If πA (r′1)∩πA (r′′1) = /0 then (r′1÷ r2)− (r′′1 ÷ r2) = r′1÷ r2.

2.4.1.5 Cartesian Product

Let A1 and A2 be disjoint subsets of the attribute set A such that A1∪A2 = A. Let r∗1 be a relation
with schema R∗1(A1) and r∗∗1 be a relation with schema R∗∗1 (A2∪B). As usual, let R2(B) be the
schema of the divisor r2. Then it suffices to apply the division only to some of the attributes of
the dividend:

LAW 7: (r∗1× r∗∗1 )÷ r2 = r∗1× (r∗∗1 ÷ r2).

Figure 2.8 illustrates Law 7 with an example. The law can help when the query optimizer finds
that a predicate θ of a theta-join ��θ is always true since ��true≡×.

6Of course, it would suffice to combine πA(r1) with only a single tuple of σ¬p(B) (r2) by the Cartesian product.
7This not the weakest precondition. For the equivalence of the law to hold, it would suffice to require that

∀a ∈ σA=a (πA (r′1)∪πA (r′′1)) : r2 ⊆ σA=a (πA (r′1))∨ r2 ⊆ σA=a (πA (r′′1))∨ r2 �⊆ σA=a (πA (r′1)∪πA (r′′1)) . However,
we prove the law only for the stronger precondition πA (r′1)∩πA (r′′1) = /0.
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a b

1 1
1 4
2 1
2 2
2 3
2 4
3 1
3 3
3 4
4 1
4 3

(a) r1

a b

1 1
2 1
2 2
3 1
4 1

(b) σb<3 (r1)

b

1
3
4

(c) r2

b

1

(d) σb<3 (r2)

a

(e) σb<3 (r1)÷ r2

a

1
2
3
4

(f) σb<3 (r1)÷σb<3 (r2)

a b

1 3
1 4
2 3
2 4
3 3
3 4
4 3
4 4

(g) πa (r1)×σb≥3 (r2)

a

1
2
3
4

(h) πa (πa (r1)×σb≥3 (r2))

a

(i) (σb<3 (r1)÷σb<3 (r2))−πa (πa (r1)×σb≥3 (r2))

Figure 2.7: An illustration for Example 1

Let B1 and B2 be disjoint nonempty subsets of the attribute set B such that B1∪B2 = B. Let
r∗1 be a relation with schema R∗1(A∪B1) and r∗∗1 be a relation with schema R∗∗1 (B2). Again, let
R2(B) be the schema of the divisor r2. Then, we can state the following

LAW 8: If πB2 (r2)⊆ r∗∗1 then (r∗1× r∗∗1 )÷ r2 = r∗1÷πB1 (r2).

Figure 2.9 illustrates Law 8 with an example.

EXAMPLE 2: With the help of Law 8 we can prove that (r1× s)÷ (r2× s) = r1÷ r2. Let B =
B1∪B2. We have R∗1(A∪B1), R∗∗1 (B2), R∗2(B1), R∗∗2 (B2) and thus R1(A∪B1∪B2) as the dividend
schema and R2(B1 ∪B2) as the divisor schema. We define s = r∗∗1 = r∗∗2 . The condition r∗∗1 ⊆
πR∗∗1 (r2) is fulfilled since r∗∗1 = r∗∗2 = πR∗∗2 (r2) = πR∗∗1 (r2). Hence, we have

(r∗1× s)÷ (r∗2× s) = (r∗1× r∗∗1 )÷ (r∗2× r∗∗2 ) (Definition of s)

= (r∗1× r∗∗1 )÷ r2 (Definition of R2)

= r∗1÷πB1(r2) (Law 8)
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Figure 2.8: An example for Law 7
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Figure 2.9: An example for Law 8
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= r∗1÷ r∗2 (Definition of R2)

�

2.4.1.6 Join

Join, like division, is a derived operator. When a division operators occurs together with a join
operator in an expression, it may be beneficial for the execution strategy of an RDBMS to rewrite
the join operator and subsequently apply algebraic laws to rewrite result in combination with di-
vision. The laws involving the selection operator in Section 2.4.1.2 as well as the laws concerning
the Cartesian product in Section 2.4.1.5 can be used to rewrite expressions involving join and di-
vision, since r ��θ s = σθ(r× s), where ��θ is a theta-join with the condition θ. The following
example illustrates such a rewrite.

EXAMPLE 3: Let r∗1, r∗∗1 , and r2 be relations with the schemas R∗1(a,b1), R∗∗1 (b2), and R2(b1,b2),
respectively. Furthermore, let r∗∗1 .b2 be a unique attribute and let r2.b2 be a foreign key that
references r∗∗1 , i.e., πb2 (r2)⊆ r∗∗1 . Suppose, we want to compute relation r3 = (r∗1 ��b1<b2 r∗∗1 )÷
r2. We can derive the following expressions:

r3 = (r∗1 ��b1<b2 r∗∗1 )÷ r2

= σb1<b2 (r∗1× r∗∗1 )÷ r2 (Definition of theta-join)

= (σb1<b2 (r∗1× r∗∗1 )÷σb1<b2 (r2))−πa (πa (r∗1× r∗∗1 )×σb1≥b2 (r2)) (Example 1)

= ((r∗1× r∗∗1 )÷σb1<b2 (r2))−πa (πa (r∗1× r∗∗1 )×σb1≥b2 (r2)) (Law 4)

= (r∗1÷πb1 (σb1<b2 (r2)))−πa (πa (r∗1× r∗∗1 )×σb1≥b2 (r2)) (Law 8)

= (r∗1÷πb1 (σb1<b2 (r2)))−πa (πa (r∗1)×σb1≥b2 (r2)) (since a ∈ R∗1 but a /∈ R∗∗1 )

Note that the term πa (r∗1)× σb1≥b2 (r2) is merely used to test if σb1≥b2 (r2) contains at least
one tuple. If yes, the result of the given problem is the empty set. Otherwise, it is simply
r∗1÷πb1 (σb1<b2 (r2)). Figure 2.10 sketches some intermediate results that occur during the com-
putation of our example expression.

An RDBMS might be able to execute a plan based on this expression more efficiently than
a plan based on the original expression because no join between r∗1 and r∗∗1 is required. Such a
situation occurs, e.g., when there is no index available on r∗1.b1 and no index on r∗∗1 .b2, but when
there are two indexes defined on the columns b1 and b2 of table r2, respectively.

We are not aware of straightforward laws that could help to rewrite join expressions involving
also quotient attributes of A like in (r∗1 ��a+b1<b2 r∗∗1 )÷ r2. �

Let us focus on a special type of join: the semi-join. Let r3 be a relation with schema R3(A).
Then we can state the following

LAW 9: (r1÷ r2)� r3 = (r1 � r3)÷ r2.

This law can help an RDBMS if r3 has few tuples and r1 and r2 have many tuples. It may be
cheaper to keep r3 in memory and to compute the semi-join in one scan over r1, especially if the
join is highly selective and removes many tuples from r1. Then, the division of the join result
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Figure 2.10: An illustration of Example 3

with r2 is likely to be cheap.

2.4.1.7 Grouping

We consider two special cases involving the grouping operator. Concerning the first special
case, let r0 be a relation with schema R0(A∪X) for some nonempty attribute set X . Let r1 =
Aγ f (X)→B(r0), where f is an aggregate function and its result is assigned to the attributes in B.8

In other words, each quotient candidate group of the dividend consists of a single tuple. Hence,
in order to find a quotient, the divisor cannot have more than one tuple. For this special case, we
can formulate

LAW 10: r1÷ r2 =




r1 if σc=0
(
γcount(B)→c (r2)

) �= /0,
πA (r1 � r2) if σc=1

(
γcount(B)→c (r2)

) �= /0, and
/0 otherwise.

Figure 2.11 illustrates an example for this law.
Now, let us consider another special case. Let r0 be a relation with schema R0(X ∪B) for

some nonempty attribute set X . Let r1 = Bγ f (X)→A(r0), where f is an aggregate function and
its result is assigned to the attributes in A.8 In other words, each divisor attribute value B of the
dividend occurs in a single tuple, i.e., the groups defined by B have size one. Furthermore, let
r2.B be a foreign key referencing r1.B, i.e., r2.B⊆ πB (r1).

Hence, there can be at most one dividend tuple for each B value. We simply have to check if
πA(r1 � r2) contains a single value. If it does, then this value is the quotient. Otherwise, there is
no quotient.

8The assignment f (X)→ B is a simplification. In general, f is a list of aggregate functions f1, . . . , fn, where
n = |B|, such that f (X) = ( f1(e1(X)), . . . , fn(en(X))) = (b1, . . . ,bn) = B and ei(X) is an arithmetic expression using
attributes of X , e.g., e5 = 7x3−√x5. The set X may have any number of attributes, it need not be equal to B.
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Figure 2.11: An example for Law 10
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Figure 2.12: An example for Law 11

LAW 11: r1÷ r2 =
{

πA (r1 � r2) if σc=1
(
γcount(A)→c (πA (r1 � r2))

) �= /0, and
/0 otherwise.

Figure 2.12 illustrates an example for this law.

The two laws involving the grouping operator can improve the query execution time consid-
erably because the division operation is replaced by a single join operation and a projection on
the join result. However, since the laws apply only in special cases, we believe that it is not very
likely that RDBMS implementors would opt to consider these laws.

2.4.2 Algebraic Laws for Generalized Division

We have identified several laws for the extended division operator÷∗. In the following, we show
some of the laws that we consider as important.
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2.4.2.1 Union

When the divisor r2 is decomposed into horizontal partitions then one can divide by these divisors
separately:

LAW 12: If πC (r′2)∩πC (r′′2) = /0 then r1÷∗ (r′2∪ r′′2) = (r1÷∗ r′2)∪ (r1÷∗ r′′2).

This law allows to parallelize the execution of a query. Suppose that the dividend r1 is replicated
on n nodes of a query execution engine and that the divisor is equally distributed according to
a hash function on r2.C across the nodes. Then it is possible to reduce the execution time to 1

n
of the original time provided that the division execution is considerably more expensive than the
final union/merge operator plus the cost for data shipping to and from the nodes.

2.4.2.2 Selection

The following law is the same as Law 3 for the division operator.

LAW 13: σp(A) (r1÷∗ r2) = σp(A) (r1)÷∗ r2.

A similar law holds for attribute C of the divisor relation:

LAW 14: σp(C) (r1÷∗ r2) = r1÷∗σp(C) (r2).

The following law is the same as Law 4 for division:

LAW 15: r1÷∗σp(B) (r2) = σp(B) (r1)÷∗σp(B) (r2).

2.5 Universal Quantification and SQL

In this section, we show SQL expressions for division and explain how they give rise to two
classes of algorithms based on the kind of data structures employed.

2.5.1 Classical Division

The commonly used approach to express universal quantification uses two “NOT EXISTS”
clauses due to the mathematical equivalence ∀x∃y : f (x,y) ≡ ¬∃x¬∃y : f (x,y), where f is a
predicate involving the variables x and y. The following example query based on the supplier-
parts database illustrated in Figure 2.4 (page 13) asks for the suppliers who supply all blue parts.9

SELECT DISTINCT s#
FROM sp AS sp1
WHERE NOT EXISTS (

SELECT *
FROM p AS p1

9We actually ask only for those suppliers who supply at least one part, i.e., those s# values in s, where there
exists a tuple in sp with that s# value (see Section 2.3.4).
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WHERE p.color = ’blue’ AND
NOT EXISTS (
SELECT *
FROM sp AS sp2
WHERE sp2.s# = sp1.s# AND

sp2.p# = p1.p#))

A direct translation of this query asks for each supplier such that there is no blue part that is
not supplied by the supplier. Note that SQL operates on tables, i.e., multi-sets/bags of rows as
opposed to sets of tuples in the relational model, as mentioned in Section 2.2. We use the keyword
DISTINCT in the outermost SELECT clause to remove duplicates from the result. Otherwise, we
would get the s# value as many times as it occurs in sp, including the case of duplicate dividend
rows.

This approach is not very intuitive to formulate. Another way to express division queries
has been proposed in the past, using a special syntax for universal quantification. The quantifier
“FOR ALL,” which is part of a so-called quantified predicate [GP99], was planned to be included
in the SQL:1999 standard [ISO02] but it was finally excluded for reasons unknown to the author.
We could phrase queries using the quantifier for division queries in an intuitive way. For example,
the following SQL query employing a quantified predicate is equivalent to the above query:

SELECT DISTINCT s#
FROM sp AS sp1
WHERE FOR ALL (

SELECT *
FROM p AS p1
WHERE color = ’blue’)

(EXISTS (
SELECT *
FROM sp AS sp2
WHERE sp2.s# = sp1.s# AND

sp2.p# = p1.p#))

There is a third way mentioned in the literature that uses aggregation [GC95]. Our example
query can be phrased in SQL using aggregation as follows:

SELECT s#
FROM sp
GROUP BY s#
HAVING COUNT(DISTINCT p#) = (

SELECT COUNT(DISTINCT p#)
FROM p
WHERE color = ’blue’)

There is a problem with this approach because it is not equivalent to the previous two ap-
proaches. It returns the same result as the other queries only if two conditions are met. First,
each p# (B) value in sp (the dividend) is also contained in the p table (the divisor). Defining a
foreign key sp.p# that references p and enforcing referential integrity can fulfill this condition.
Another way to guarantee referential integrity is to preprocess the dividend by a semi-join of div-
idend and divisor. The semi-join returns only those dividend rows whose B values are contained
in the divisor.
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The second condition of this approach requires that the p# (B) values and the divisor rows
are unique. Possible duplicates have to be removed before the division. Hence, the SQL query
above contains the SQL keyword “DISTINCT” when counting p# values to avoid any duplicates.
Note that when the divisor is grouped on all of its attributes, each group consists of a single row
because of the required absence of duplicate rows. The same is true for the dividend if it is
grouped on both A and B.

We have seen that the two approaches (based on existence and based on aggregation) actually
realize two logical operators that give rise to two classes of algorithms, aggregate and scalar. The
scalar class of algorithms relies on direct row matches between the dividend’s divisor attributes
B and the divisor table. The second class, aggregate algorithms, use counters to compare the
number of rows in a dividend’s quotient group to the number of divisor rows. In [Bry89], scalar
and aggregate algorithms are called direct and indirect algorithms, respectively.

Aggregate algorithms are often described as alternative ways to scalar algorithms (for the real
division operator) but they are prone to errors because one has to take care of duplicates, NULL
values, and referential integrity, as mentioned before.

Some query languages for non-relational data models also offer support to express quantifi-
cation. For example, there is a working draft specification of XQuery [W3C03], a query language
for XML data, where universal quantification can be expressed by a so-called every expression.
For example, the following query solves our division problem in an XML database:

for $sp1 in doc("supplier-parts.xml")//sp
where
every $p in //p[color="blue"] satisfies
some $sp2 in //sp satisfies

$sp2/p# = $p/p# and
$sp2/s# = $sp1/s#

return $sp1/s#

A query language syntax dedicated to universal quantification allows us to map the query
directly to a query execution that uses a division algorithm. It is, however, nontrivial to map a
query formulated in an indirect way (e.g. by using nested negations as in the first approach) to a
query execution that uses a division algorithm.

2.5.2 Set Containment Division

We have devised a straightforward hypothetical syntax for the set containment division operator
in SQL. We illustrate the syntax using an example. The following query delivers for each color
the suppliers who supply all parts with that color:10

SELECT s#, color
FROM (

SELECT DISTINCT s#, p#
FROM sp

) AS sp1
GREAT DIVIDE BY (
SELECT DISTINCT p#, color

10see footnote 9 on page 24
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FROM p
) AS p1
ON (sp1.p# = p1.p#)

The syntax has the same structure as the join in the following query, which returns for each color
the suppliers who supply at least one part with that color:

SELECT s#, color
FROM sp INNER JOIN p

ON (sp.p# = p.p#)

According to the SQL standard ([ISO02], Section 7.7, “Joined Table”), the latter query includes a
join condition introduced by the keyword ON. The INNER JOIN clause is a qualified join, where
the keyword INNER denotes the join type. Analogously, we use a “qualified division,” where the
keyword GREAT enables the set containment division. If we use the keyword SMALL instead of
GREAT, we enable the classical division. The terms GREAT and SMALL in combination with
the division operator originate from the article [DD92], as mentioned in Section 2.3.2.

Concerning the power of the SQL syntax, one could allow a more general join condition than
equality between columns in the ON clause like

ON (INTEGER(SUBSTR(sp1.p#, 2, 10))
BETWEEN 3 AND CEILING(SQRT(INTEGER(SUBSTR(p1.p#, 2, 10)))))

However, the result of such a query would have a semantics that is completely different from
division.

2.6 Applications and Beyond

Set containment join is considered an important operator for queries involving set-valued at-
tributes [Hel00, HM02, Mam03, MGM03, MGM02a, Ram02, RPNK00, ZND+01]. For exam-
ple, set containment test operations have been used for optimizing a workload of continuous
queries, in particular for checking if one query is a subquery of another. In particular, Chen and
DeWitt [CD02] suggested an algorithm that re-groups continuous queries to maintain a close-
to-optimal global query execution plan. Each group consists of a set of queries that share some
common join expression. Among the data structures used for the algorithm are query strings.
A query string is an ASCII text string representation of an AND-OR DAG of a query. The
query string is mapped to a signature using a hash-function. The signatures are used during a set
containment test between queries to check if one query is a subquery of another.

Another example of set containment joins is content-based retrieval (using a “search engine”)
in document databases, where a huge set of documents is tested against a set of keywords that all
have to appear in the document.

Frequent itemset discovery, one of the most important data mining operations, is an excellent
example of a set containment test problem: Given a set of transactions T and a single (candidate)
itemset i, how many transactions t ∈ T fulfill the condition i ⊆ t? If this number is beyond the
minimum support threshold, the itemset is considered frequent. In general, we would like to test
a whole set of itemsets I for containment in T :
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Find the number of tuples in I ��⊆ T for each distinct transaction in T .

In this work, we argue that if SQL would allow expressing set containment join and set
containment division problems in an intuitive manner and if several algorithms implementing
these operators were available in a RDBMS, this would greatly facilitate the processing of queries
for frequent itemset discovery.

The relational division operator has been studied in the context of fuzzy relations, e.g., [BP82].
In a fuzzy relation, the tuples are weighted by a number between 0 and 1. One interpretation of
an extended division operator for fuzzy relations, the fuzzy quotient operator [Yag91], is based
on one of several relaxed versions of the universal quantifier, called “almost all,” which is real-
ized by a so-called ordered weighted average operator. The fuzzy quotient operator produces
those values of a ∈ πA(r1), where for “almost all” elements b ∈ πB(r2) the tuple ((a)× (b)) is
in r1 for some fuzzy relations r1 and r2 with schemas R1(A∪B) and R2(B), respectively. Other
interpretations of a “fuzzy” version for division are discussed, e.g., in [BDPP97, Bos97]. We do
not further study the division operator for fuzzy relations in this work.

2.7 Summary

Division is an operator that represents the universal quantifier in the relational model. We gave
an overview of the multitude of definitions of the division operator in the literature. Then, we
introduced a generalization of division called set containment division or great divide or gen-
eralized division. The three names have been suggested independently in the literature. Next,
we illustrated the close relationship between set containment division and set containment join,
which requires set-valued join attributes. Division is a derived operator but there are efficient
division algorithms, i.e., physical operators, that do not rely on basic algebra operators. Hence,
we presented important algebraic laws involving the division operator to enable transformations
of a query execution plan during query optimization. Finally, we mentioned applications where
queries occur that can benefit from an efficient implementation of the division operator. The
algorithms that underly such implementations are the topic of the following chapter.



“Relational division tends to be one of the
least well understood operators of the rela-
tional algebra.”

H. Darwen, C. Date [DD92]

3
Algorithms for Relational

Division
In the previous chapter, we have discussed the logical behavior of relational division and of two
operators related to it, set containment division and set containment join. In this chapter, we
focus on physical division operators by presenting a comprehensive survey of the structure and
performance of division algorithms and by introducing a framework that results in a complete
classification of input data for division [RSMW02]. Then we go on to identify the most efficient
algorithm for each such class. One of the input data classes has not been covered so far. For this
class, we propose several new algorithms. Thus, for the first time, we are able to identify the
optimal algorithm to use for any given input dataset.

These two classifications of optimal algorithms and input data are important for query op-
timization. They allow a query optimizer to make the best selection when optimizing at inter-
mediate steps for the quantification problem and they complement the algebraic laws involving
division that we discussed in Section 2.4.

3.1 Introduction

Several algorithms have been proposed to implement relational division efficiently. They are
presented in an isolated manner in the research literature—typically, no relationships are shown
between them. Furthermore, each of these algorithms claims to be superior to others, but in fact
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s# p#

S1 P1
S1 P4
S2 P1
S2 P2
S2 P3
S2 P4
S3 P1
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(a) sp (dividend)

p#

P1
P2
P4

(b) p (divisor)

s#

S2

(c) result (quotient)

Figure 3.1: sp÷p = result, representing the query “Which suppliers supply all parts?”

each algorithm has optimal performance only for certain types of input data.
To illustrate the division operator we will use a simple example throughout the chapter, illus-

trated in Figure 3.1, representing data from a company’s supplier-parts database [DD92, Dat94]
like the one we used in Section 2.3.4. A p row represents a part that is required for a certain
project and an sp row indicates which supplier can supply which part. The following query can
be expressed by the division operator:1

“Which suppliers supply all parts required by the project?”

As indicated in the table result, only S2 supplies all parts. S2 supplies also part P3 but this
does not affect the result. Both supplier S1 and S3 do not supply part P2. Therefore, they are not
included in the result.

Remember from Section 2.3.1 that the division operator takes two tables for its input, the
dividend and the divisor, and generates one table, the quotient. All the data elements in the
divisor must appear in the dividend, paired with any element (such as S2) that is to appear in the
quotient.

In the example of Figure 3.1, the divisor and quotient have only one column each, but in
general, they may have an arbitrary number of columns. In any case, the set of attributes of the
dividend is the disjoint union of the attributes of the divisor and the quotient. To simplify our
exposition, we assume that the names of the dividend attributes are the same as the corresponding
attribute names in the divisor and the quotient.

The remainder of this chapter is organized as follows. In Section 3.2, we present a classi-
fication of input data for algorithms that evaluate division within queries. Section 3.3 gives an
overview of known and new algorithms to solve the universal quantification problem and clas-
sifies them according to two general approaches for division. In Section 3.4, we evaluate the
algorithms according to both applicability and effectiveness for different kinds of input data,
based on a performance analysis. We discuss related work in Section 3.5 and summarize this
chapter in Section 3.6.

1see footnote 9 on page 24
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3.2 Classification of Data

This section presents an overview of the input data for division. We identify all possible classes
of data based on whether it is grouped on certain columns. For some of these classes, we will
present efficient algorithms in Section 3.3 that exploit the specific data properties of a class.

3.2.1 Input Data Characteristics

The goal of this chapter is to identify optimal algorithms for the division operator, for all possible
inputs. Several papers compare new algorithms to previous algorithms and claim superiority for
one or more algorithms, but they do not address the issue of which algorithms are optimal for
which types of data [Bry89, CKMP97, GC95]. In fact, the performance of any algorithm depends
on the structure of its input data. If we know about the structure of input data, we could employ
an algorithm that exploits this structure, i.e., the algorithm does not have to restructure the input
before it can start generating output data. Of course, there is no guarantee that such an algorithm
is always “better” than an algorithm that requires previous restructuring. However, the division
operator offers a variety of alternative algorithms that can exploit such a structure for the sake of
good performance and low memory consumption.

Suppose we are fortunate and the input data is highly structured. For example, suppose the
data has the schema of Figure 3.1 but is of much larger size, and suppose:

• sp is sorted by s# and p# and resides on disk, and

• p is sorted by p# and resides in memory.

Then the example query can be executed with one scan of the sp table. This is accomplished
by reading the sp table from disk. As each supplier appears, the p# values associated with that
supplier are merged with the p table. If all parts match, the s# value is copied to the result.

The single scan of the sp table is obviously the most efficient possible algorithm in this case.
In the remainder of this chapter, we will describe similar types of structure for input datasets, and
the optimal algorithms that are associated with them. The notion of “optimality” will be further
discussed in the next section.

Revisiting our example in Figure 3.1, how could this careful structuring of input data, such
as sorting by s# and p#, occur? It could happen by chance, or for two other more commonly
encountered reasons:

1. The data might be stored in tables in a certain order. In an RDBMS, one can define that
some columns form the primary key of a table. This is usually realized by a clustered index
like a B-tree [BM72]. The indexed rows are stored on disk in the order of the primary key
column values.

2. The data might have undergone some previous processing, because the division operator
query is part of a more complex query. The previous processing might have been a merge-
join operator, for example, which requires that its inputs be sorted and produces sorted
output data.



32 Algorithms for Relational Division

3.2.2 Choice of Algorithms

A query processor of a database system typically provides several algorithms that all realize the
same operation. An optimizer has to choose one of these algorithms to process the given data. If
the optimizer knows the structure of the input data for an operator, it can pick an algorithm that
exploits the structure. Many criteria influence the decision why one algorithm is preferred over
others. Some of these choice criteria are: the time to deliver the first/last result row, the amount
of memory for internal, temporary data structures, the number of scans over the input data, or
the ability to be non-blocking, i.e., to return some result rows before the entire input data are
consumed.

Which algorithm should we use to process the division operation, given the dividend and
divisor tables shown in Figure 3.1? Several algorithms are applicable but they are not equally
efficient. For example, since the dividend and divisor are both sorted on the column p# in Fig-
ure 3.1, we could select a division algorithm that exploits this fact by processing the input tuples
in a way that is similar to the merge-join algorithm, as we have sketched in the previous section.

What algorithm should we select when the input tables are not sorted on p# for each group
of s#? One option is to sort both input tables first and then employ the algorithm similar to
merge-join. Of course, this incurs an additional computational cost for sorting in addition to the
cost of the division algorithm itself. Another option is to employ an algorithm that is insensitive
to the ordering of input tuples. One such well-known algorithm is hash-division and is discussed
in detail in Section 3.3.2.4.

We have seen that the decision which algorithm to select among a set of different division
algorithms depends on the structure of the input data. This situation is true for any class of
algorithms, including those that implement database operators like join, aggregation, and sorting.

It is possible that division is only a portion of a larger query that contains many additional
query parts. Hence, the input of a division operation is not restricted to base tables, like in the
example of Figure 3.1, but it can be derived tables which are the result of another operation like
a join, for example. Furthermore, the output of the division could be an intermediate result itself
that is further processed within the query. For example, the quotient table result in Figure 3.1
could be the input of an aggregation that counts the number of suppliers. The meaning of the
resulting aggregate is the number of suppliers who supply all parts of the project. Alternatively,
the result in Figure 3.1 could be an input of a join with a table s(s#,name,address, . . .) to retrieve
a supplier’s name, address, etc. instead of a meaningless ID. Thus, the result table produced
by the selected division algorithm can have certain data properties that influence the choice of
additional algorithms, here a join, that are used to process the overall query.

3.2.3 Grouping

Relational database systems have the notion of grouped rows in a table. Let us briefly look at
an example that shows why grouping is important for query processing. Suppose we want to
find for each part the number of suppliers in the sp table of Figure 3.1. One way to compute the
aggregates involves grouping: after the table has been grouped on p#, all rows of the table with
the same value of p# appear next to each other. The ordering of the group values is not specified,
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i.e., any group of rows may follow any other group. Group-based aggregation groups the data
first, and then it scans the resulting table once and computes the aggregates during the scan.

Another way to process this query is nested-loop aggregation. We pick any part number as the
first group value and then search through the whole table to find the rows that match this value
and compute the sum. Then, we pick a second p# value, search for matching rows, compute
the second aggregate, pick the third value, etc. If no suitable search data structure (index) is
available, this processing may involve multiple scans over the entire dataset.

The aggregation step of the group-based approach is obviously more efficient than the second
approach because it can make an assumption about some ordering of the rows. However, the
more efficient processing is paid with the overhead of the preceding grouping.

When a table is to be grouped on a list (a1, . . . ,an) of more than one column, the result is
equal to grouping on a single column in an iterative way: We first group on a1, then for each
subset of rows defined by a1, we group on a2, and for each such subset determined by a2, we
group on a3, etc. Hence, if we want to compare two tables that are grouped on the same set of
columns, we have to be aware of the column list ordering, because the resulting grouped table
has a different structure for each ordering. This fact is important for division when we match
some of the dividend’s divisor columns with all of the divisor’s columns.

Sorted data appears frequently in query processing. Note that sorting is a special grouping
operation. For example, grouping only requires that suppliers supplying the same part are stored
next to each other (in any order), whereas sorting requires more effort, namely that they be in a
particular order (ascending or descending). The overhead of sort-based grouping is reflected by
the time complexity O(n logn) as opposed to the nearly linear time complexity for hash-based
grouping. Hash-based grouping inserts all rows into a hash table and then scans the hash table.
All rows with of the same group are hashed to the same hash-bucket chain. Sometimes more than
one group are hashed to the same chain, which causes a “slightly” more than linear complexity.
Though sort-based grouping algorithms do more than necessary, both hash-based and sort-based
grouping perform well for large datasets [Gra93, GC95].

3.2.4 Grouped Input Data for Division

Relational division has two input tables, a dividend and a divisor, and it returns a quotient ta-
ble. According to the definition of the division operator in Section 2.3.1, we can partition the
attributes of the dividend r1 into two sets, which we denote A and B, where B corresponds to
the attributes of the divisor and A are the quotient attributes. As already mentioned, for simplic-
ity, we assume that the names of attributes in the quotient r3 are the same as the corresponding
attribute names in the dividend r1 and the divisor r2. Thus, we write a division operation as
r3(A) = r1(A∪B)÷ r2(B). In Figure 3.1, A = {s#} and B = {p#}.

Our classification of division algorithms is based on whether certain columns are grouped
or even sorted. Several reasons justify this decision. Grouped input can reduce the amount of
memory needed by an algorithm to temporarily store rows of a table because all rows of a group
have a constant group value. Furthermore, grouping appears frequently in query processing.
Many database operators require grouped or sorted input data (e.g., merge-join) or produce such
output data (e.g., index-scan): If there is an index defined on a base table, a query processor
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Dividend Divisor
Class r1 r2 Description of grouping

A B B

0 − − −
1 − − +
2 − + −
3 − + + arbitrary ordering of groups in r1.B and r2.B
4 − +∗ +∗ same ordering of groups in r1.B and r2.B
5 + − −
6 + − +
7 +1 +2 − A major, r1.B minor
8 +2 +1 − r1.B major, A minor
9 +1 +2 + A major, r1.B minor; arbitrary ordering of groups in r1.B and r2.B
10 +1 +∗2 +∗ A major, r1.B minor; same ordering of groups in r1.B and r2.B
11 +2 +1 + r1.B major, A minor; arbitrary ordering of groups in r1.B and r2.B
12 +2 +∗1 +∗ r1.B major, A minor; same ordering of groups in r1.B and r2.B

Table 3.1: A classification of dividend and divisor

can retrieve the rows in sorted order, specified by the index column list. Thus, algorithms may
exploit for the sake of efficiency the fact that base tables or derived tables are grouped if the
system knows about this fact.

In Table 3.1, we show all possible classes of input data based on whether or not interesting
column sets are grouped, i.e., grouped on all columns of A and/or all columns of B. As we will
see later in this chapter, some classes have no suitable algorithm that can exploit its specific
combination of data properties. The classes that have at least one algorithm exploiting exactly
its data properties are shown in bold font. In class 0, for example, no table is grouped on an
interesting column set. Algorithms for this class have to be insensitive to whether the data is
grouped or not. Another example scenario is class 10. Here, the dividend is first grouped on the
quotient columns A (denoted by +1, the major group) and for each group, it is grouped on the
divisor columns B (denoted by +2, the minor group). The divisor is grouped in the same ordering
(denoted by a superscript asterisk +∗) as the dividend.

Our classification is based on grouping only. As we have seen, some algorithms may require
that the input is even sorted and not merely grouped. We consider this a minor special case of our
classification, so we do not reflect this data property in Table 3.1, but the algorithms in Section 3.3
will refer to this distinction. We do not consider any data property other than grouping in this
chapter because our approach is complete and can easily and effectively be exploited by a query
optimizer and query processor. A further data property is, e.g., whether the data is partitioned
across tables and how it is partitioned (vertically or horizontally). Partitioning is important when
we want to parallelize the query execution.

In Table 3.1, columns are either grouped (+) or not grouped (−). We use the same (a differ-
ent) subscript of + when r1.B and the divisor have the same (a different) ordering of groups in
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(d) Class 10

Figure 3.2: Four important classes of input data, based on the example of Figure 3.1

Class c2

12 11 10 9 8 7 6 5 4 3 2 1
0 + + + + + + + + + + + +
1 + + + + − − + − + + −
2 + + − − + − − − + +
3 + + − − − − − − +
4 + − − − − − − −
5 − − + + − + +

Class c1 6 − − + + − −
7 − − + + −
8 + + − −
9 − − +
10 − −
11 +

(a) Matrix

0
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6 78

9
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(b) Directed acyclic graph

Figure 3.3: A matrix and a DAG representing the input data classification described in Table 3.1

classes 3, 4, 9–12. In addition, when the dividend is grouped on both A and r1.B in classes 7–12,
then +1 (+2) denotes the columns that the table is grouped on first (second).

Figure 3.2 illustrates four classes of input data for division, based on the example data of
Figure 3.1. These classes, which are shown in bold font in Table 3.1, are important for several
algorithms that we present in the following section. The tables are either grouped (+) or not
grouped (−) on the respective column. Notice that for class 10 both tables are grouped in the
same order on p#. If the value P3 is present in a quotient group then it always appears after
P4 and before P1. Figure 3.1 shows another example instance of class 10, where the quotient
order as well as the divisor group order is ascending. The benefit of knowing about such an input
data property will be clarified when we discuss algorithms exploiting this specific property in
Sections 3.3.2.2 and 3.3.2.3.
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If we know that an algorithm can process data of a specific class, it is useful to know which
other classes are also covered by the algorithm. This information can be represented, e.g., by
a Boolean matrix like the one on the left in Figure 3.3. One axis indicates a given class c1

and the other axis shows the other classes c2 that are also covered by c1. Alternatively, we can
use a directed acyclic graph representing the input data classification, sketched on the right of
Figure 3.3. If a cell of the matrix is marked with a plus sign (+), or equivalently, if there is a
path in the graph from class c1 to c2, then an algorithm that can process data of class c1 can
also process data of class c2. The graph clearly shows that the classification is a partial order of
classes, not a strict hierarchy. The source node of the graph is class 0, which requires no grouping
of columns A or B. Any algorithm that can process data of class 0 can process data of any other
class. For example, an algorithm processing data of class 6 is able to process data of classes 9
and 10. All algorithms to be discussed in Section 3.3 assume data properties of either class 0, 2,
5, or 10.

For the subsequent discussion of division algorithms, we define two terms to refer to certain
row subsets of the dividend. Let the dividend r1 be grouped on A (B) as the first or the only set
of group columns, i.e., let the dividend belong to class 5 (2) and all its descendants in Figure 3.3.
Furthermore, let v be one specific value of such a group. Then, the set of rows defined by
σA=v(r1) (σD=v(r1)) is called the quotient group (divisor group) of v. For example, in the sp
table of class 5 in Figure 3.2(c), the quotient group of S1 consists of the rows {(S1, P4), (S1,
P1)}. Similarly, the divisor group of P2 in class 2 in Figure 3.2(b) consists of the single row (S2,
P2).

3.3 Overview of Algorithms

In this section, we present algorithms for relational division proposed in the database literature
together with several new variations of the well-known hash-division algorithm. For the sake of a
concise presentation, we will frequently use abbreviations for the algorithms that we summarize
in Table 3.2.

In Section 3.4, we will analyze and compare the effectiveness of each algorithm with respect
to the data classification of Section 3.2.

3.3.1 Complexity of Algorithms

During the evaluation of relevant literature, we found that it is necessary to clarify that each
division algorithm (analogous to other classes of algorithms, like joins, for example) has perfor-
mance advantages for certain data characteristics. No algorithm is able to outperform the others
for every input data conceivable.

The following algorithms assume that the division’s input consists of a dividend table r1(A∪
B) and a divisor table r2(B), where A is a set of quotient columns and B is the set of divisor
columns, as defined in Section 3.2.4.

During the presentation of the algorithms, we analyze the worst and typical case complexities
of processing time and memory consumption in O-notation, based on the size (number of rows)
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Division algorithm Abbreviation

Hash-division HD
Hash-division for divisor groups HDD
Hash-division for quotient groups HDQ
Merge-count division MCD
Merge-group division MGD
Merge-sort division MSD
Nested-loop division NLD
Nested-loop counting division NLCD
Transposed hash-division HDT
Transposed hash-division for divisor groups HDTD
Transposed hash-division for quotient groups HDTQ
Stream-join division SJD

Table 3.2: Abbreviations for division algorithms

of the dividend |r1| and the size of the divisor |r2|. We use |A|, the number of distinct values of
quotient columns A in the dividend, for some algorithms to derive a complexity formula. Note
that always |A| ≤ |r1|, and in the worst case |A| = |r1|, i.e., each single row of r1 is a potential
(candidate) quotient. To derive formulas for the typical time and memory complexities, we use
the assumption that |r1| � |r2|, i.e., there are many quotient candidates and/or the number of
rows of a typical quotient candidate is much larger than the number of divisor rows. We consider
this situation as the typical case because relational division is defined to compute a set of result
rows and in real-life scenarios this set is of considerable size. A large result size occurs only if
the dividend contains many more rows than the divisor.

In addition to time and memory complexity, it is useful to analyze the I/O cost of each al-
gorithm, as it has been done in detail for some of the following algorithms in [GC95]. How-
ever, since the focus of this chapter is to describe the fundamental structure of input data and
algorithms involved in relational division, we restrict our analysis to memory and processing
complexities and we do not give I/O formulas.

3.3.2 Scalar Algorithms

This section presents division algorithms that use data structures to directly match dividend rows
with divisor rows.

3.3.2.1 Nested-Loop Division

This algorithm is the most naı̈ve way to implement division. However, like nested-loop join, an
operator using nested-loop division (NLD) has no required data properties on the input tables and
thus can always be employed, i.e., NLD can process input data of class 0 and thus any other class
of data, according to Figure 3.3.
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We use two set data structures, one to store the set of divisor values of the divisor table, called
seen divisors, and another to store the set of quotient candidate values that we have found so far
in the dividend table, called seen quotients. We first scan the divisor table to fill seen divisors.
After that, we scan the dividend in an outer loop. For each dividend row, we check if its quotient
value (A) is already contained in seen quotients. If not, we append it to the seen quotients data
structure and scan the remainder of the dividend iteratively in an inner loop to find all rows that
have the same quotient value as the dividend row of the outer loop. For each such row found, we
check if its divisor value is in seen divisors. If yes, we mark the divisor value in seen divisors.
After the inner scan is complete, we add the current quotient value to the output if all divisors in
seen divisors are marked. Before we start processing the next dividend row of the outer loop, we
unmark all elements of seen divisors.

Note that NLD can be very inefficient. For each row in the dividend table, we scan the
dividend at least partially to find all the rows that belong to the current quotient candidate. All
divisor rows and quotient candidate rows are stored in an in-memory data structure. NLD can be
an efficient algorithm for small ungrouped datasets when the overhead of sorting or hash-based
grouping, which involves allocating and filling a hash table, is too high.

This algorithm can make use of any set data structure like hash tables or sorted lists to rep-
resent seen divisors and seen quotients. Let us assume that this algorithm uses hash tables or
any very efficient data structure with a (nearly) constant access time. Then, the worst case time
complexity of this algorithm is O(|r1|2 + |r2|) and the typical time complexity is O(|r1|2). The
memory complexity is O(|A|+ |r2|). Since in the extreme case |A|= |r1|, the worst case memory
complexity is O(|r1|+ |r2|) and the typical memory complexity is O(|r1|).

The pseudo code of the nested-loop division algorithm is shown in Appendix B on page 172.
There, the seen divisors and seen quotients data structures are represented by the divisor hash
table dht and the quotient hash table qht, respectively.

Figure 3.4(a) illustrates the two hash tables used in this algorithm: the divisor/quotient hash
table represents seen divisors/seen quotients, respectively. The value setting in the hash tables is
shown for the time when all dividend rows of S1 and S2 (in this order) have been processed and
we have not yet started to process any rows of S3 in the outer loop. We find that S2 is a quotient
because all bits in the divisor hash table are equal to 1.

The value setting of all illustrations in Figure 3.4 are based on the example from Figure 3.1.
Except for MSD and MGD, broken lined boxes indicate that a quotient is found.

3.3.2.2 Merge-Sort Division

The merge-sort division (MSD) algorithm assumes that

• the divisor r2 is sorted, and that

• the dividend r1 is grouped on A, and for each group, it is sorted on B in the same order
(ascending or descending) as r2.

This data characteristic is a special case of class 10, where B and the divisor are sorted and
not only grouped.
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Figure 3.4: Overview of data structures and processing used in scalar algorithms

The algorithm resembles merge-join when only a single quotient group is processed and it is
similar to nested-loop join for processing all groups. Let us briefly sketch the processing of rows
within a single group, assuming an ascending sort order. We begin with the first row of dividend
and divisor. Let b be the of the columns B. If the divisor value b of the current dividend row
and the divisor row match, we proceed with the next row in both tables. If b is greater than the
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current divisor row, we scan forward to the next quotient group. If b is less than the divisor row,
we proceed with the next row of the group and the current divisor row. If there are no more rows
to process in the quotient group but at least one more row in the divisor, we skip the quotient
group. If there are no more rows to process in the divisor, we have found a quotient and add it to
the output table.

Our merge-sort division is similar to the approach called naı̈ve division, presented in [Gra89,
GC95] and originating from [SC75]. In both approaches, we can implement the scan of each
input such that it ignores duplicates. In contrast to merge-sort division, naı̈ve division explicitly
sorts the data before the merge step. Even worse, naı̈ve division does not merely group the
dividend on A but sorts it, which is more than necessary. Note that we view sorting or grouping
as preprocessing activities that are separate from the core division algorithm. We sketch the
pseudo code of merge-sort division without duplicate removal logic in Appendix B on page 175.

The worst case time complexity of this algorithm is O(|r1|+ |A||r2|) = O(|r1|+ |r1||r2|) =
O(|r1||r2|) because the dividend is scanned exactly once and from the divisor table, we fetch as
many rows as the number of quotient candidates times the number of divisor rows. The typical
case time complexity is O(|r1||r2|). The worst and typical case memory complexity is O(1),
since only a constant number of small data structures (two rows) have to be kept in memory.

Figure 3.4(b) illustrates the matches between rows of dividend and divisor. Observe that the
data is not sorted but only grouped on s# in an arbitrary order.

3.3.2.3 Merge-Group Division

We can generalize merge-sort division to an algorithm that we call merge-group division (MGD).
In contrast to MSD, we assume that

• both inputs are only grouped and not necessarily sorted on the divisor columns, but that

• the order of groups in each quotient group is the same as the order of groups in the divisor.

Note that each group within a quotient group and within the divisor consists of a single row.
This ordering can occur (or can be achieved) if, e.g., the same hash function is used for grouping
the divisor and each quotient group.

In the MSD algorithm, we can safely skip a quotient candidate if the current value of A is
greater (less) than that of the current divisor row, assuming an ascending (a descending) sort
order. Since we do not require a sort order on these columns in MGD, we cannot skip a group on
unequal values, as we do in MSD. For example, suppose that the divisor r2 has a single integer
column and consists of the following rows in the given order: r1 = (3,1,5) and the B values of
the current quotient group G consists of the rows G = (2,5,4,6). We can be sure that G is not
added to the quotient only after

• we have scanned the entire group G, where we find that the first element of r1 (3) is not
contained in G, or

• we have scanned r1 up to last element (5) and we have scanned G up to the second element
(5) to find that G does not contain the other elements of r1 (3 and 1) before element 5
appears.
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The MGD approach makes use of a look-ahead of n divisor rows for some predefined value
n ≥ 1. As in the MSD approach, we compare the current quotient group row with the current
divisor row. In case of inequality, we look ahead up to the nth divisor row to see if there is any
other row matching the current group row. If we find such a match, we can skip the current
quotient candidate. In our example, a look-ahead of 2 means that we check up to the second
element (1) of the divisor. The look-ahead of 2 does not help for any value of G in our example.
A look-ahead of 3 means a check with up to the third divisor element (5). When we check the
second row (5) of the quotient group, we find a match with the third divisor element (5). Here,
we can skip the group because a quotient would have to contain the values 3 and 1 before the
occurrence of 5 to qualify due to the assumption that the group orders are the same. In other
words, the ordering assumption guarantees that the values 3 and 1 cannot occur after the element
5. Since they have neither occurred in G before element 5, we know that this quotient candidate
does not contain all divisor elements, in particular not the elements 3 and 1.

The MSD algorithm is a special case of MGD where the look-ahead is set to one because it
does not look further than the current row for each quotient group row since sorting was applied.

In summary, the MGD approach can make use of as much look-ahead as the minimum of
the available memory and the current divisor size. Note that the divisor fits into memory in
all reasonable cases. Figure 3.4(c) sketches the matches between dividend and divisor rows.
Observe that the order of (single-row) groups within each quotient group in the dividend is the
same as that of the divisor.

The time complexity of this algorithm is O(|r1|+ |A||r2|) because the dividend is scanned
exactly once and the divisor is scanned entirely for each quotient and at least partially for every
quotient candidate. Thus, the worst case time complexity is O(|r1|+ |r1||r2|) = O(|r1||r2|). The
typical case time complexity is also O(|r1||r2|). The worst case memory complexity is O(|r2|) if
we keep the entire divisor as a look-ahead in memory. The typical case memory complexity then
becomes O(1) since |r2| � |r1|.

3.3.2.4 Classic Hash-Division

In this section, we present the classic hash-division (HD) algorithm [GC95]. We call this algo-
rithm “classic” to distinguish it from our variations of this approach in the following sections.
Classic hash-division requires no input data properties (class 0).

The two central data structures of HD are the divisor and quotient hash tables, sketched in
Figure 3.4(d). The divisor hash table stores divisor rows. Each such row has an integer value,
called divisor number, stored together with it. The quotient hash table stores quotient candidates
and has a bitmap stored together with each candidate, with one bit for each divisor. The pseudo
code of hash-division is sketched in Appendix B on page 173.

In a first phase, hash-division builds the divisor hash table while scanning the divisor. The
hash function takes the divisor columns as an argument and assigns a hash bucket to each divisor
row. A divisor row is stored into the hash bucket only if it is not already contained in the bucket,
thus eliminating duplicates in the divisor. When a divisor row is stored, we assign a unique
divisor number to it by copying the value of a global counter. This counter is incremented for
each stored divisor row and is initialized with zero. The divisor number is used as an index for
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the bitmaps of the quotient hash table.
The second phase of the algorithm constructs the quotient hash table while scanning the

dividend. For each dividend row, we first check if its B value is contained in the divisor hash
table, using the same hash function as before. If yes, we look up the associated divisor number,
otherwise we skip the dividend row. In addition to the look-up, we check if the quotient is
already present in the quotient hash table. If yes, we update the bitmap associated with the
matching quotient row by setting the bit to one whose position is equal to the divisor number we
looked up. Otherwise, we insert a new quotient row into the quotient hash table together with a
bitmap where all bits are initialized with zeroes and the appropriate bit is set to one, as described
before. Since we insert only quotient candidates that are not already contained in the hash table,
we avoid duplicate dividend rows.

The final phase of hash-division scans the quotient hash table’s buckets and adds all quotient
candidates to the output whose bitmaps contain only ones. In Figure 3.4(d), the contents of
the hash tables are shown for the time when all dividend and divisor rows of Figure 3.1 have
been processed. We see that since the bitmap of S2 contains no zeroes, S2 is the only quotient,
indicated by a broken lined box.

Hash-division scans both dividend and divisor exactly once. Because hash tables are em-
ployed that have a nearly constant access time, this approach has a worst and typical case
time complexity of O(|r1|+ |r2|) and O(|r1|), respectively. The memory complexity consists
of O(|r2|) to store the divisor hash table plus O(|A||r1|) for the quotient hash table. The size of
a bitmap is proportional to |r1|. Since the worst case scenario implies that |A| = |r1|, the total
worst and typical case memory complexity is O(|r1||r2|).

3.3.2.5 Transposed Hash-Division

This algorithm is a slight variation of classic hash-division. The idea is to switch the roles of the
divisor and quotient hash tables. The transposed hash-division (HDT) algorithm keeps a bitmap
together with each row in the divisor hash table instead of the quotient hash table, as in HD.
Furthermore, HDT keeps an integer value with each row in the quotient hash table instead of the
divisor hash table, as in the HD algorithm.

Same as the classic hash-division algorithm, HDT first builds the divisor hash table. However,
we store a bitmap with each row of the divisor. A value of one at a certain bit position of a bitmap
indicates which quotient candidate has the same values of B as the given divisor row.

In a second phase, also same as HD, the HDT algorithm scans the dividend table and builds
a quotient hash table. For each dividend row, the B values are inserted into the divisor hash table
as follows. If there is a matching quotient row stored in the quotient hash table, we look up its
quotient number. Otherwise, we insert a new quotient row together with a new quotient number.
Then, we update the divisor row’s bitmap by setting the bit to one whose position is given by the
quotient number.

The final phase makes use of a new, separate bitmap, whose size is the same as the bitmaps in
the divisor hash table. All bits of the bitmap are initialized with zero. While scanning the divisor
hash table, we apply a bit-wise AND operation between each bitmap of the hash table and the
new bitmap. The resulting bit pattern of the new bitmap is used to identify the quotients. The



3.3 Overview of Algorithms 43

quotient numbers (bit positions) with a value of one are then used to look up the quotients using
a quotient vector data structure that allows a fast mapping of a quotient number to a quotient
candidate. The HDT pseudo code is shown in Appendix B on page 176.

Figures 3.4(d) and (e) contrast the different structure of hash tables in HD and HDT. The hash
table contents is shown for the time when all sp rows of Figure 3.1 have been processed. While a
quotient in the HD algorithm can be added to the output when the associated bitmap contains no
zeroes, the HDT algorithm requires a match of the bit at the same position of all bitmaps in the
divisor table and it requires in addition a look-up in the quotient hash table to find the associated
quotient row.

The time and memory complexities of HDT are the same as those of classic hash-division.

3.3.2.6 Hash-Division for Quotient Groups

Both classic and transposed hash-division can be improved if the dividend is grouped on either
B or A. However, our optimizations based on divisor groups lead to aggregate, not scalar algo-
rithms. Hence, this section on scalar algorithms presents some optimizations for quotient groups.
The optimizations of hash-division for divisor groups are presented in Section 3.3.3.3.

Let us first focus on classic hash-division. If the dividend is grouped on A, we do not need a
quotient hash table. It suffices to keep a single bitmap to check if the current quotient candidate
is actually a quotient. When all dividend rows of a quotient group have been processed and
all bits of the bitmap are equal to one, the quotient row is added to the output. Otherwise, we
reset all bits to zero, skip the current quotient row, and continue processing the next quotient
candidate. Because of the group-by-group processing of the improved algorithm, we call this
approach hash-division for quotient groups (HDQ).

The HDQ algorithm is non-blocking because we return a quotient row to the output as soon
as a group of (typically few) dividend rows has been processed. In contrast, the HD algorithm
has a final output phase: the quotient rows are added to the result table after the entire dividend
has been processed because hash-division does not assume a grouping on A. For example, the
“first” and the “last” row of the dividend could belong to the same quotient candidate, hence the
HD algorithm has to keep the state of the candidate quotient row as long as at least one bit of
the candidate’s bitmap is equal to zero. Note that it is possible to enhance HD such that it is
not a “fully” blocking algorithm. If bitmaps are checked during the processing of the input, HD
could detect some quotients that can be returned to the output before the entire dividend has been
scanned. Of course, we would then have to make sure that no duplicate quotients are created,
either by preprocessing or by referential integrity enforcements or by keeping the quotient value
in the hash table until the end of the processing. We do not elaborate further on this variation of
HD.

HDQ has the same worst and typical case time complexity as HD since we have to scan the
dividend and divisor table exactly once. However, the worst case memory consumption, due to
the small bitmap, is O(|r2|) and thus the typical memory complexity is O(1).
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3.3.2.7 Transposed Hash-Division for Quotient Groups

We have seen that the HDQ algorithm is a variation of the HD algorithm: if the dividend is
grouped on A, we can do without a quotient hash table. Exactly the same idea can be applied to
HDT yielding an algorithm that we call transposed hash-division for quotient groups (HDTQ).

For grouped quotient columns, we can do without the quotient hash table and we do not
keep long bitmaps in the divisor hash table but only a single bit per divisor. Before any group is
processed, the bit of each divisor column is set to zero. For each group, we process the rows like
in the HDT algorithm. After a group is processed, we add a quotient to the output if the bit of
every divisor row is equal to one. Then, we reset all bits to zero and resume the dividend scan
with the next group.

We do not show the pseudo code for the HDQ and HDTQ algorithms for brevity. However,
we sketch their data structures in the Figures 3.4(f) and (g) for the time when the group of
dividend rows containing the quotient candidate S2 have been processed.

The complexities for time and memory are the same those as for HDQ.

3.3.3 Aggregate Algorithms

Definition 7 in Section 2.3.1 is an indirect way to specify the division operator: If the number of
divisor tuples is equal to the number of tuples belonging to a group defined by the columns A,
add A to the quotient.

The class of algorithms discussed in this section have in common that in a first phase, the
divisor table is scanned once to count the number of divisor rows. Each algorithm then uses
different data structures to keep track of the number of rows in a quotient candidate. Some
algorithms assume that the dividend is grouped on A or B.

Remember that aggregate algorithms require the referential integrity precondition πB(r1) ⊆
πB(r2), as mentioned in Section 2.5.1.

3.3.3.1 Nested-Loop Counting Division

Similar to scalar nested-loop division, nested-loop counting division (NLCD) is the most naı̈ve
way in the class of aggregate algorithms. This algorithm scans the dividend multiple times.
During each scan, NLCD counts the number of rows belonging to the same quotient candidate.

We have to keep track of which quotient candidates we have already checked using a quotient
hash table as shown in Figure 3.5(a). A global counter is used to keep track of the number of
dividend rows belonging to the same quotient candidate. We fully scan the dividend in an outer
loop: we pick the first dividend row, insert its A value into the quotient hash table, and set the
counter to one. If the counter’s value is equal to the divisor count, we add the quotient to the
output and continue with the next row of the outer loop. Otherwise, we scan the dividend in an
inner loop for rows with the same A value as the current quotient candidate. For each such row,
the counter is checked and in case of equality, the quotient is added to the output. When the end
of the dividend is reached in the inner loop, we continue with the next row of the outer loop and
check the hash table if this new row is a new quotient candidate.
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Figure 3.5: Overview of data structures and processing used in aggregate algorithms

The time and memory complexities are the same as for nested-loop division.
For all illustrations in Figure 3.5 broken lined boxes indicate that a quotient is found. Only

S2’s group has as many dividend rows as the divisor.

3.3.3.2 Merge-Count Division

Assuming that the dividend is grouped on A, merge-count division (MCD) scans the dividend
exactly once. After a quotient candidate has been processed and the number of rows is equal to
those of the divisor, the quotient is added to the output. Note that the size of a quotient group
cannot exceed the number of divisor groups because we have to guarantee referential integrity.

The aggregate algorithm merge-count division is similar to the scalar algorithms MSD and
MGD, described in Sections 3.3.2.2 and 3.3.2.3. Instead of comparing the elements of quotient
groups with the divisor, MCD uses a representative (the row count) of each quotient group to
compare it with the divisor’s aggregate. Figure 3.5(b) illustrates the single scan required to
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compare the size of each quotient group with the divisor size.
MCD has a worst case time complexity of O(|r1|+ |r2|) and a typical case time complexity

of O(|r1|). Since no significant data structures have to be kept in memory except for the current
dividend row and the counters, the worst case and typical case memory complexity is O(1).

3.3.3.3 Hash-Division for Divisor Groups

In Section 3.3.2.6, we have analyzed optimizations of hash-division that require a dividend that is
grouped on A. We now show some optimizations of hash-division for a dividend that is grouped
on B. Unlike the hash-division-like algorithms based on quotient groups, the following two
algorithms are blocking.

The first algorithm does not need a divisor hash table because after a divisor group of the
dividend has been consumed, the divisor value will never reappear. We use a counter instead of
a bitmap for each row in the quotient hash table. We call this adaptation of the HD algorithm
hash-division for divisor groups (HDD). The algorithm maintains a counter to count the number
of divisor groups seen so far in the dividend. For each dividend row of a divisor group, we
increment the counter of the quotient candidate. If the quotient candidate is not yet contained in
the quotient hash table, we insert it together with a counter set to one. When the entire dividend
has been processed, we return those quotient candidates in the quotient hash table whose counter
is equal to the global counter.

3.3.3.4 Transposed Hash-Division for Divisor Groups

The last algorithmic adaptation that we present is called transposed hash-division for divisor
groups (HDTD), based on the HDT algorithm. We can do without a divisor hash table, but we
keep an array of counters during the scan of the dividend. The processing is basically the same
as the previous algorithm (HDD): we return only those quotient candidates of the quotient hash
table whose counter is equal to the value of the global counter. Because all divisor groups have
to be processed before we know all quotients, this algorithm is also blocking.

We do not show the pseudo code for the HDD and HDTD algorithms for brevity. However,
we sketch the data structures used in the Figures 3.5(c) and (d) for the time when the entire
dividend has been processed. Note that the dividend contains only three divisor groups (no
P3 rows), because we require that referential integrity between sp and p is preserved, e.g., by
applying a semi-join of the two tables before division. S2 is the only supplier who is contained
in all three divisor groups.

The complexities of HDD and HDTD are the same. Their worst and typical case time com-
plexity is O(|r1|+ |r2|) and O(|r1|), respectively. The worst and typical case memory complexity
is O(|r1|).

3.3.3.5 Stream-Join Division

The new algorithm stream-join division (SJD) [NRM00] is an improvement of hash-division for
divisor groups (HDD). As all other algorithms assuming a dividend that is grouped on B as the
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only or the major set of group columns, SJD is a blocking algorithm. SJD is hybrid because it
counts the number divisor rows, like all other aggregate algorithms, and it maintains several bits
to memorize matches between dividend and divisor, like all other scalar algorithms. However, in
this chapter, we consider SJD an aggregate algorithm due to its similarity to HDD.

The major differences between SJD and HDD are:

• SJD stores a bit instead of a counter together with each quotient candidate in the quotient
hash table.

• SJD is able to remove quotient candidates from the quotient hash table before the end of
the processing.

The SJD algorithm works as follows. As in HDD, we maintain a counter to count the number
of divisor groups seen so far in the dividend. First, we insert all quotient candidates, i.e., A values,
of the first group in the dividend together with a bit initialized with zero into the quotient hash
table. We thereby eliminate possible duplicates in the dividend. Then, we process each following
group as follows. For each dividend row of the current group, we look up the quotient candidate
in the quotient hash table. In case of a match, the corresponding bit is set to one. Otherwise,
i.e., when the A value of a given dividend row is not present in the quotient hash table, we skip
this row. After a group has been processed, we remove all quotient candidates with a bit equal
to zero. Then, we reset the bit of each remaining quotient candidate to zero. Finally, when all
groups have been processed, we compare the current group counter with the number of rows in
the divisor. In case of equality, all quotient candidates in the quotient hash table with a bit equal
to one are added to the output.

Figure 3.5(e) illustrates the use of the quotient hash table in SJD. We assume that the dividend
is equal to the sp table of class 2 in Figure 3.2(b) with the exception that the P3 group {(S2, P3),
(S3, P3)} is missing, due to referential integrity. We show the contents of the hash table for the
time when the entire sp table has been processed. We see that S3 and S1 are not contained in the
hash table because both have already been eliminated after the second group (P2). Only S2’s bit
is set to one and it is a quotient row because the number of groups (three, without P3) is equal to
the number of divisor rows.

The advantage of SJD lies in the fact that the amount of memory can decrease but will never
increase after the quotient candidates have been stored in the quotient hash table. However, the
time and memory complexity is the same as for HDD. Observe that the maximum amount of
memory required is proportional to the number of rows of the first group in the dividend. It may
happen by chance that the first group is the smallest of the entire dividend. In this case, we obtain
a very memory-efficient processing.

This algorithm is called stream-join division because it joins all divisor groups of the dividend
(called streams in [NRM00]) with each other on the columns A.

3.4 Evaluation of Algorithms

In this section, we briefly compare the division algorithms discussed in Section 3.3 with each
other and show which algorithm is optimal with respect to time and memory complexities for
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Dividend Divisor Complexity in O-notation
Division Algorithm Data

r1 r2 Time Memory
algorithm class class

A B B worst typical worst typical

NLCD aggregate |r1|2 + |r2| |r1|2 1 1
NLD scalar |r1|2 + |r2| |r1|2 |r1|+ |r2| |r1|
HD scalar

0 − − − |r1|+ |r2| |r1| |r1||r2| |r1||r2|
HDT scalar |r1|+ |r2| |r1| |r1||r2| |r1||r2|
HDD aggregate |r1|+ |r2| |r1| |r1| |r1|
HDTD aggregate 2 − + − |r1|+ |r2| |r1| |r1| |r1|
SJD aggregate |r1|+ |r2| |r1| |r1| |r1|
MCD aggregate |r1|+ |r2| |r1| 1 1
HDQ scalar 5 + − − |r1|+ |r2| |r1| |r2| 1
HDTQ scalar |r1|+ |r2| |r1| |r2| 1
MGD scalar +∗2 +∗ |r1||r2| |r1||r2| |r2| 1
MSD scalar

10 +1 s+∗2
s+∗ |r1||r2| |r1||r2| 1 1

Table 3.3: Overview of division algorithms

each class of input data discussed in Section 3.2.
Table 3.3 characterizes the algorithms presented so far and shows for each algorithm the class

of required input data, its algorithm class, and its time and memory complexities. Input data are
either not grouped (−), grouped (+), or sorted (r1). Class 10 is first grouped on A, indicated
by +1. For each quotient group, it is grouped (+2) or sorted (s+2, denoted by a superscript
“s”) on B in the same order (denoted by a superscript asterisk +∗) as the divisor. The algorithm
names corresponding to the abbreviations in the first column are given in Table 3.2. We assigned
the algorithms to those data classes that have the least restrictions with respect to grouping.
Remember that an algorithm of class C can also process data of classes that are reachable from C
in the dependency graph in Figure 3.3. The overview of division algorithms in Table 3.3 shows
that, despite the detailed classification in Table 3.1 (comprising 13 classes and enumerating all
possible kinds of input data), there are four major classes of input data that are covered by
dedicated division algorithms:

• class 0, which makes no assumption of grouping,

• class 2, which covers dividends that are grouped only or first on B,

• class 5, which covers dividends that are grouped only or first on A, and finally

• class 10, which specializes class 5 (and class 0, of course) by requiring that for each quo-
tient group, the rows of B and the divisor appear in the same order. Hence, the dividend is
grouped on A as major and B as minor.

Note that algorithms for class 2, namely HDD, HDTD, and SJD, have not been identified in
the literature so far. They represent a new straightforward approach to deal with a dividend that
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is grouped on B. Together with the other three major classes, a query optimizer can exploit the
information on the input data properties to make an optimal choice of a specific division operator.

Suppose, we are given input data of a class that is different from the four major classes.
Which algorithms are applicable to process our data? According to the graph in Figure 3.3, all
algorithms belonging to major classes, which are direct or indirect parent nodes of the given
class, can be used. For example, any algorithm of major classes 0 and 5 can process data of the
non-major classes 6, 7, and 9.

Several algorithms belong to each class of input data in Table 3.3. In class 0, both HD
and HDT have a linear time complexity (more precisely, nearly linear due to hash collisions).
However, they have a higher memory complexity than the other algorithms of this class, NLCD
and NLD.

We have designed three aggregate algorithms for class 2. They all have the same linear time
and memory complexities.

Class 5 has two scalar and one aggregate algorithm assigned to it, which all have the same
time complexity. The constant worst case memory complexity of MCD is the lowest of the three.

The two scalar algorithms MGQ and MSD of class 10, which consists of two subgroups
(sorted and grouped divisor values) have the same time complexity. The worst case memory
complexity of MSD is lower than that of MGD because MSD can exploit the sort order. It may
seem odd that the worst case time complexity is higher than for class 5. This is due to our
definition of the worst case: If the number of (distinct) values in πA(r1) is as high as |r1|, i.e.,
if each dividend tuple forms a quotient candidate then the time complexity of O(|r1|+ |A||r2|)
becomes equal to O(|r1||r2|), as we wrote in Sections 3.3.2.2 and 3.3.2.2.

It is important to observe that one should not directly compare complexities of scalar and ag-
gregate algorithms in Table 3.3 to determine the most efficient algorithm overall. This is because
aggregate algorithms require duplicate-free input tables, which can incur a very costly prepro-
cessing step. There is one exception of aggregate algorithms: SJD ignores duplicate dividend
rows because of the hash table used to store quotient candidates. It does not matter if a quotient
occurs more than once inside a divisor group because the bit corresponding to a quotient candi-
date can be set to one any number of times without changing its value (1). However, SJD does
not ignore duplicates in the divisor because it counts the number of divisor rows.

In general, scalar division algorithms ignore duplicates in the dividend and the divisor. Note
that the scan operations of MGD and MSD can be implemented in such a way that they ignore
duplicates in both inputs [GC95]. However, to simplify our presentation, the pseudo code of
MSD in Appendix B on page 175 does not ignore duplicates.

Let us briefly illustrate some example issues that we have to take into account when com-
paring division algorithms. The first issue is time versus memory complexity. In class 0, for
example, four algorithms have been identified. NLCD and NLD have a quadratic time com-
plexity compared to the linear complexities of HD and HDT. Despite the different processing
performance of these algorithms, a query optimizer may prefer to pick a division operator based
on the NLCD algorithm instead of HD or HDT if the estimated amount of input data is small and
the optimizer wants to avoid the overhead of building hash tables. We do not go into the details
of query optimization here because, in general, the choice of picking a specific operator from a
set of logically equivalent operators (like join and division) also depends on factors other than
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time and memory complexity, as we have mentioned in Section 3.2.2. Nevertheless, time and
memory consumption are the dominant factors in reality.

The second issue is about the efficiency of a query processor for certain operations. We
presented two different approaches for hash-division: the classic approach (HD), where bitmaps
are stored together with quotient candidates in the quotient hash table, and a new approach (HDT)
where bitmaps are stored with each divisor row in the divisor hash table (see Figures 3.4(d) and
(e) for illustrations). These dual approaches may seem interchangeable at first sight with respect
to efficiency. However, in some situations, a query optimizer may prefer one rather than the other,
depending on how efficiently the system processes bitmaps. Suppose the system can process a
few extremely long bitmaps more efficiently than many short bitmaps. If there are many quotient
candidates in the input data (which is typical) but there is a relatively short divisor, then the
bitmaps stored in HD are relatively short but there are many of them. In contrast, HDT would
build very long bitmaps (which may be the deciding factor) but only a few of them would be
stored in the divisor hash table. Analogously, the optimizer may prefer HD to HDT if the input
consists of few but very large quotient candidates. Similar situations apply to the other pairs of
transposed and non-transposed algorithms, i.e., for the HDD/HDTD and HDQ/HDTQ pairs.

3.5 Related Work

Quantifiers in queries can be expressed by relational algebra. Due to the lack of efficient division
algorithms in the past, early work has recommended avoiding the relational division operator to
express universal quantification in queries [Bry89]. Instead, universal quantification is expressed
with the help of the well-known anti-semi-join operator, or complement-join, as it is called in
that paper.

Other early work suggests approaches other than division to process (universal) quantifica-
tion [Day83, Day87]. Universal quantification is expressed by new algebra operators and is
optimized based on query graphs in a non-relational data model [Day87]. Due to the lack of a
performance analysis, we cannot comment on the efficiency of this approach.

The research literature provides only few surveys of division algorithms [CKMP97, Gra93,
GC95]. Some of the algorithms reviewed in this paper have been compared both analytically and
experimentally [GC95]. The conclusion is that hash-division outperforms all other approaches.
Complementing this work, we have shown that an optimizer has to take the input data char-
acteristics and the set of given algorithms into account to pick the best division algorithm. The
classification of four division algorithms in [GC95] is based on a two-by-two matrix. One axis of
the matrix distinguishes between algorithms based on sorting or based on hashing. The other axis
separates “direct” algorithms, which allow processing the (larger) dividend table only once, from
“indirect” algorithms, which require duplicate removal (by employing semi-join) and aggrega-
tion. For example, the merge-sort division algorithm of Section 3.3.2.2 falls into the category
“direct algorithm based on sorting,” while the hash-division for divisor groups algorithm of Sec-
tion 3.3.3.3 belongs to the combination “indirect algorithm based on hashing.” Our classification
details these four approaches and focuses on the fact that data properties should be exploited as
much as possible by employing “slim” algorithms that are separated from preprocessing algo-
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rithms, like grouping and sorting.
Based on a classification of queries that contain universal quantification, several query eval-

uation techniques have been analyzed [CKMP97]. The input data of this algorithm analysis is
stored in an object-oriented or object-relational database, where set-valued columns are avail-
able. Hence, the algorithms they examine can presuppose that the input data is grouped on
certain columns. For example, the table sp in Figure 3.1 could be represented by a set-valued
column p#set of a supplier table s. The authors conclude that universal quantification based
on anti-semi-join is superior to all other approaches, similar to the conclusion of [Bry89]. Note,
however, that this paper has a broader definition of queries involving universal quantification than
the classic definition that involves the division operator. However, the anti-semi-join approach
requires a considerable overhead for preprocessing the dividend. An equivalent definition of the
division operator using anti-semi-join (�) as well as semi-join (�) and left outer join (��lo), is:
r1÷ r2 = ((r1 � r2) ��lo r2)�r2.

In this chapter, we focused on the universal (for-all) quantifier. Generalized quantifiers have
been proposed to specify quantifiers like “at least ten” or “exactly as many” in SQL [HP95]. Such
quantifiers can be processed by algorithms that employ multi-dimensional matrix data struc-
tures [RBG96]. In that paper, however, the implementation of an operator called all is presented
that is similar but different from relational division. Unlike division, the result of the all operator
contains some attributes of the divisor. Hence, we have to employ a projection on the quotient
attributes of the all operator’s result to achieve a valid quotient.

Transformation rules for optimizing queries containing multiple (existential and universal)
quantifications are presented in [JK83]. Our contribution complements this work by offering
strategies to choose a single (division) operator, which may be one element of a larger query
processing problem.

3.6 Summary

Based on a classification of input data properties, we were able to differentiate the major currently
known algorithms for relational division. In addition, we could provide new algorithms for
previously not supported data properties. Thus, for the first time, an optimizer has a full range of
algorithms, separated by their input data properties and efficiency measures, to choose from.

We are aware of the fact that database system vendors are reluctant to implement several
alternative algorithms for the same query operator, in our case the division operation. One reason
is that the optimizer’s rule set has to be extended, which can lead to a larger search space for
queries containing division. Another reason is that the optimizer must be able to detect a division
in a query. This is a non-trivial task because a division cannot be expressed in the current SQL
standard [ISO02]. We have suggested a hypothetical SQL syntax for division (the “small” divide)
in Section 2.5.2.

The following chapter is dedicated to algorithms for the set containment join and set con-
tainment division operator. The latter has an algebraic definition that is based on the division
operator and that can thus exploit the algorithms presented in this chapter.
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“[. . .] even if we didn’t come up with new
ideas in universities, even if we just take
what’s out there [from industry] but analyze it,
study it, organize the ideas so that people can
learn and improve things, I think that that’s a
great contribution.”

H. Garcia-Molina [Win02] 4
Algorithms for Set

Containment Division and
Set Containment Join

In this chapter, we discuss how to realize physical operators for set containment division and
set containment join by reviewing known approaches, discussing parallelization strategies, and
presenting a new data structure to improve the performance for set containment division when
at least one of dividend or divisor fits into main memory. Most of these operators have been
implemented in a query execution engine. They are subject to performance experiments and to a
discussion of implementation details in Chapter 6.

4.1 Introduction

Division is an operator of the relational algebra, which is based on the relational model. In the
basic relational model, all relations are in first normal form (1NF), i.e., all attribute domains
are atomic. One possible extension of the relational model provides relations with multivalued
attributes, where the attribute domain is a collection type like bag or set, defined on top of a primi-
tive domain like floating-point number or text string. A more rigorous extension of the relational
model is the nested relational model [Mak77, JS82], where attributes can be relations them-
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Figure 4.1: Storage representations of set-valued attributes

s# p#set1
S1 {P1, P4}
S2 {P1, P2, P3, P4}
S3 {P1, P3, P4}
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s# p#set1 p#set2 color
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S3 {P1, P3, P4} {P1, P3} red

(c) sp ��p#set1⊇p#set2 p

Figure 4.2: An example containment join on the set-valued attribute p#set

selves. In particular, Jaeschke et al. [JS82] suggest the nest/unnest operators. Further proposals
have been made for transforming data between non-1NF and 1NF, e.g., Fischer et al. [FT82]
(nest/unnest) and Özsoyoğlu et al. [ÖÖM87] (pack/unpack).

Two orthogonal classifications have been suggested for the storage representation of sets:
nesting and location [Ram02]. The nested representation stores the values as a variable length
attribute, the unnested representation stores them as multiple tuples. In a classification based
on the storage location, one can distinguish between an internal representation, where the set
elements are stored together with the accompanying attribute values, and an external represen-
tation, where the set elements are stored in a separate auxiliary table connected by foreign key
references, as depicted in Figure 4.1, inspired by [Ram02]. In this figure, we show a subset of
the “supplies” table sp, where the supplier number s# is a column of an atomic data type and the
parts being supplied are of a set-valued data type. Here, we represent the fact that supplier S3
supplies parts P1, P3, and P4. Only the unnested internal representation conforms to 1NF.

Figure 4.2 illustrates an example computation of the set containment join based on a supplier-
parts database similar to that in Figure 2.4 on page 13, but with different data. We find that
supplier S2 offers all blue and all red parts. All red parts are also supplied by supplier S3.

Suppose, the tables sp and p are defined as before and that the layout of the set-valued
columns p#set1 and p#set2 is unnested internal for both tables, as sketched in Figure 4.3. How is
the set containment join result represented in an unnested internal layout? Since all join attributes
have to be preserved in a theta-join result, one possible definition for representing the matches
could be to pair each row from the left side with each row of the right side, i.e., one could com-
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s# p#

S1 P1
S1 P4
S2 P1
S2 P2
S2 P3
S2 P4
S3 P1
S3 P3
S3 P4

(a) sp

p# color

P1 blue
P2 blue
P4 blue
P1 red
P3 red

(b) p

s# color

S2 blue
S2 red
S3 red

(c) sp÷∗ p

Figure 4.3: An example set containment division

pute the Cartesian product between each pair of groups that fulfills the set containment predicate,
as illustrated in Table 4.1. However, the result table cardinality can become enormous. The set
containment division operator is more space-efficient because it returns only the columns of the
non-join attributes. By joining the result with p and sp, we could produce the same result as the
set containment join in an unnested internal representation.

The remainder of this chapter is organized as follows. In Section 4.2, we give an overview of
set containment join algorithms before we discuss basic algorithms for set containment division
in Section 4.3. Section 4.4 discusses horizontal partitioning options that enable a parallelization
of set containment division. In Section 4.5, we introduce a subset index data structure to improve
the performance of set containment division when at least one table fits into main memory. Sec-
tion 4.6 discusses the role of indexes that manage data on external memory. We summarize this
chapter in Section 4.7.

4.2 Set Containment Join Algorithms

The set containment problem has been studied in great detail in the past [HM97, MGM03,
MGM02a, MGM02b, Ram02, RPNK00]. In particular, several efficient set containment test
algorithms have been developed and storage structures to represent sets in relational, object-
relational, and object-oriented databases have been discussed. Interestingly, the division oper-
ator is closely related to set containment join but the literature on set containment join has not
mentioned this fact.

There are two classes of algorithms realizing the set containment join, one based on sig-
natures [HM97] and the other based on partitioning [RPNK00]. Enhanced algorithms com-
bining both techniques have been developed which significantly outperform all previous ap-
proaches [MGM03, MGM02a, MGM02b]. In this section, we summarize these approaches.

All set containment join algorithms assume that the join attributes are set-valued. Mel-
nik et al. [MGM02b] compare the new approaches to SQL-based approaches based on counting
the number of elements in the join result between two sets and comparing it to the set cardinality
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s# p#1 p#2 color

S2 P1 P1 blue
S2 P1 P2 blue
S2 P1 P4 blue
S2 P2 P1 blue
S2 P2 P2 blue
S2 P2 P4 blue
S2 P3 P1 blue
S2 P3 P2 blue
S2 P3 P4 blue
S2 P4 P1 blue
S2 P4 P2 blue
S2 P4 P4 blue
S2 P1 P1 red
S2 P1 P3 red
S2 P2 P1 red
S2 P2 P3 red
S2 P3 P1 red
S2 P3 P3 red
S2 P4 P1 red
S2 P4 P3 red
S3 P1 P1 red
S3 P1 P3 red
S3 P3 P1 red
S3 P3 P3 red
S3 P4 P1 red
S3 P4 P3 red

Table 4.1: Hypothetical result of set containment join using an unnested internal storage repre-
sentation

of the candidate subset, as discussed in Section 2.5.1. Unfortunately, no comparison is given
with SQL-based approaches using NOT EXISTS, also mentioned in Section 2.5.1.

A recent study compared set containment joins based on a nested internal and an unnested
internal set representation [HM02], also based on the counting approach, only. In the nested ap-
proach, a user-defined containment test predicate is employed that takes two set-valued attributes
as parameters. According to current database technology for evaluating user-defined predicates,
the commercial system in use applies the test predicate on the result table of a Cartesian product
of both input tables. By rewriting the query into one using an unnested layout, a table function is
employed that unnests the set-valued attribute into a table. The optimizer of the system used in
their experiments decided to first build an intermediate result table that comprises the set identi-
fier and the element value as attributes, sorted on the element values. Then, the query execution
plan suggests to merge-join the two sorted input streams on the element value attributes. After
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that, the sorted data is grouped on the set identifiers and set cardinalities. Finally, a filter condi-
tion appends only those set identifier pairs to the result where the cardinality of the contained set
is equal to the number of matches for this pair of sets. The experiments of this study have shown
that the effort of unnesting the sets and preprocessing the data by sorting it on the attributes
to be matched can greatly improve the straightforward nested-loop approach. Unfortunately,
the results have not been compared to more sophisticated approaches as the ones proposed, for
example, in [MGM03].

Helmer gives an excellent overview of algorithms for set containment joins [Hel00]. His
focus is on index structures for set-valued attributes, in particular sequential signature files, ex-
tensible signature hashing, recursive linear signature hashing, and inverted files. His work does
not discuss the relationship of the set containment join to relational division.

Ramasamy also discusses set containment join algorithms [Ram02]. In this work, the al-
gorithm partitioning set join is discussed in great detail. We will present this algorithm in Sec-
tion 4.2.4. He does not discuss algorithms for the unnested internal table layout because it “repli-
cates the rest of attributes for each set element, thereby consuming a large amount of storage.
Second, this replication leads to update anomalies.” The first argument is valid but in reality,
almost all databases store sets in an unnested internal format because they comply to the first
normal form (1NF). We believe that it is necessary and interesting to investigate also algorithms
that do not require to nest and unnest data on the fly but that can perform containment tests on
data in 1NF. The second argument is not clear. Can the supplier-parts database in Figure 2.4 lead
to update anomalies? No, but it may lead to anomalies if we had stored the part color informa-
tion not in p but in the sp relation. It depends on the database design if an update can lead to an
anomaly.

In a recent study, Mamoulis [Mam03] reviewed several approaches for joins on set-valued
attributes, including set containment and set overlap. He suggested a new algorithm called block
nested-loop using an inverted file that outperformed the partitioning set join. However, this work
did not cover the more sophisticated algorithms by Melnik [MGM03], which are claimed to
outperform partitioning set join as well.

4.2.1 Signature-Based Set Containment Join Algorithms

The idea of this approach is to reduce the expensive set comparison costs by using bitmap op-
erations. Given a bitmap of length l and a hash function h that maps a set element value to an
index of the bitmap between 1 and l, a signature sig(S) of a set S is computed as follows: For
each set element value v, set the bit at position h(v) to 1. We test for two sets S1 and S2 whether
S1 ⊆ S2 by first evaluating the expression sig(S1)∧¬sig(S2) �= 0, where ∧ and ¬ are bitwise
AND and NOT operators. If this expression is true, we can safely skip this value pair because
there is at least one element v ∈ S1 that is not contained in S2, leading to sig(h(v)) = 1 for S1 but
sig(h(v)) = 0 for S2.1 Otherwise, we remove false positives by checking if really S1 ⊆ S2. The
advantage of this approach is that all negatives are efficiently found.

Figure 4.4 shows an example signature-based set containment join based on Figure 4.2 with

1Here, we have applied the sig function to a single index position of the bitmap instead of an entire set of values.
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s# p#set sig(p#set) ¬sig(p#set)
S1 {P1, P4} 010 101
S2 {P1, P2, P3, P4} 111 000
S3 {P1, P3, P4} 011 100
S4 {P3, P4} 011 100

(a) sp

p#set color sig(p#set)
{P1, P2, P4} red 110
{P1, P3} blue 011

(b) p

¬sig(sp.p#set) Need to False po- In re-
s# sp.p#set p.p#set color ∧sig(p.p#set) verify? sitive? sult?

Row

S1 {P1, P4} {P1, P2, P4} red 100 N − N 1
S1 {P1, P4} {P1, P3} blue 001 N − N 2
S2 {P1, P2, P3, P4} {P1, P2, P4} red 000 Y N Y 3
S2 {P1, P2, P3, P4} {P1, P3} blue 000 Y N Y 4
S3 {P1, P3, P4} {P1, P2, P4} red 100 N − N 5
S3 {P1, P3, P4} {P1, P3} blue 000 Y N Y 6
S4 {P3, P4} {P1, P2, P4} red 100 N − N 7
S4 {P3, P4} {P1, P3} blue 000 Y Y N 8

(c) sp ��p#set⊇p#set p

Figure 4.4: An example set containment join using signatures

one additional supplier in the sp table, namely S4 supplying parts P3 and P4. Suppose that the
length of a bitmap l is 3 and that the hash functions are defined as the integer value of the last
character of p# modulo l. Hence, h(P1) mod 3 = 1, h(P2) mod 3 = 2, h(P3) mod 3 = 0, and
h(P4) mod 3 = 1. When we compute the bitmap expression ¬sig(sp.p#set)∧ sig(p.p#set), we
find that the rows number 1, 2, 5, and 7 cannot qualify for the result because the resulting bitmap
is unequal to zero. Only the remaining rows have to be checked, where we find that three of the
four rows belong to the result table, namely rows 3, 4, and 6, and that row 8 turns out to be a false
positive. Instead of comparing the sets in all eight combinations, the use of signatures reduces
the comparison overhead to 4

8 = 50%.

4.2.2 The S-Tree

The S-tree, introduced by Deppisch [Dep86], is a height-balanced multi-way tree that is similar
to a B-tree [BM72]. In contrast to a B-tree, the inner nodes of an S-tree store the signatures
(bitmaps) and the leaf nodes store pairs of an object or object identifier together with its signature.
Each edge from an inner node to a child node is associated with a signature that is the result of a
logical OR-operation over all signatures stored in the child node.

Figure 4.6 illustrates an S-tree for table sp in Figure 4.5(a). This S-tree is of type (K,k,h) =
(3,1,3), where K denotes the maximum degree of a node and k is the minimum degree of a node
except for the root, which is allowed to have at least two children. Parameter h is the height of
the tree. Although the illustrated S-tree only consists of nodes with at least two children, during
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s# p#set sig(p#set)
S1 {P1, P2, P4, P5, P8} 11011
S2 {P2, P3, P4, P5} 01111
S3 {P2, P3, P4} 01110
S4 {P1, P2, P6} 11000
S5 {P1, P4, P7} 10010
S6 {P1, P3} 10100
S7 {P3, P4} 00110
S8 {P2, P3} 01100
S9 {P2, P6} 01000
S10 {P4, P5} 00011
S11 {P8} 10000
S12 {P3} 00100

(a) sp

p#set color sig(p#set)
{P8} blue 10000
{P6} green 00000
{P1, P2, P5, P6} red 11001
{P5, P8} yellow 10001

(b) p

Figure 4.5: An example supplier-parts database

the construction of the S-tree, it happened that a node had only a single entry. The signatures
defined for the sets in table sp have been computed using several hash functions but this fact is
not important for this example.2

The retrieval of supersets by traversing the S-tree is straightforward. Suppose, we wanted
to find the sets containing the “blue” parts (part P8). Using our hash function, which we do not
discuss at this moment, the set {P8} has the signature 10000. We begin at the root and test all
signatures s in the node if 10000∧¬s = 00000. We find that this is true for both signatures in
the root. We recursively test the associated children in the same way. Hence, the paths that lead
from the root to the candidate sets are:

• 11100→ 10100→ 10000→ S11,

• 11100→ 10100→ 10100→ S6,

• 11111→ 10011→ 10010→ S5,

• 11111→ 11011→ 11000→ S4, and

• 11111→ 11011→ 11011→ S1.

All of the five qualifying sets have to be checked, where we find that the resulting quotient is
{S1,S11}, i.e., there are three false positives.

The insertion and deletion of a set is more challenging and several variations have been
studied. In particular, the split criterion offers room for optimization: How do we distribute
the signatures into two nodes when there is a node overflow? A similar problem is how to

2The signatures are the same as the concatenation of bit values used in Figure 4.7(a) for the adaptive pick-and-
sweep join algorithm that we will discuss in Section 4.2.5.
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11100
11111

01100
10100

01111
10011
11011

00100
01000
01100

10000
10100

00110
01110
01111

00011
10010

11000
11011

S12 S9 S8 S11 S6 S7 S3 S2 S10 S5 S4 S1

Figure 4.6: An example S-tree for table sp in Figure 4.5(a)

collapse empty or almost empty nodes into fewer nodes? In the original work on S-trees [Dep86],
Deppisch suggests the measure signature weight γ, which is the number of ones in the signature.
When a node needs to be inserted, one traverses the tree recursively, starting at the root, and
compares the node signatures contained in the node with the given signature in order to find
the path to the leaf where the insertion will take place. One approach to measure the similarity
between two signatures s and s′ is to use the Hamming distance metric δ(s,s′) = γ(s∨ s′)− γ(s∧
s′), i.e., the number of bits in the signatures with different values. Since a node should be split
such that the signature weight of the two new nodes are low, a different measure is suggested by
Deppisch, called weight increase distance ε = γ(¬s∧ s′). Instead of computing the expression
γ(s∨ s′) in the Hamming distance metric, one should use the expression γ(s)+ ε(s,s′). We do
not discuss further criteria in this thesis but refer to the extensive literature on this topic, e.g.,
[NM02, TBM02].

4.2.3 Partition-Based Set Containment Join Algorithms

Using signatures can improve the cost of set comparisons. Nevertheless, the number of signature
comparisons between a dividend table r1 and a divisor table r2 remains |r1||r2|. Partitioning can
help to reduce this number. The idea of partitioning is to decompose the input tables r1 and
r2 into k subsets r1

1, . . . ,r
k
1 and r1

2, . . . ,r
k
2 such that r1 �� r2 =

⋃k
i=1 ri

1 �� ri
2. In our case, the join

operator is a set containment join ��⊇.
In the following, we use the terminology introduced in [MGM03]. A partitioning func-

tion π assigns set elements in a table r1 and r2 to one or more partitions r1
1, . . . ,r

k
1 and r1

2 . . . ,rk
2,

respectively. Two special values characterize the quality of a partition-based algorithm. The
comparison factor c is the quotient of the number of comparisons using partitioning and the
number of those without partitioning. In an implementation of such an algorithm in an RDBMS,
the signatures will be stored in files together with the row identifiers, not the columns of the row.
The other value, called replication factor r, evaluates the fact that some of the signatures occur
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in more than one partition, i.e., that some data is replicated.

EXAMPLE 4: Consider the dividend table sp and divisor table p in Figure 4.5. Suppose π is
defined such that

• π(P6) = π(P7) = π(P8) = {1},
• π(P1) = π(P2) = π(P3) = π(P4) = {2},
• π(P5) = {1,3}.

Hence, r1 is partitioned into

• r1
1 = {S1,S2,S4,S5,S9,S10,S11},

• r2
1 = {S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S12}, and

• r3
1 = {S1,S2,S10}.

The partitions of r2 are

• r1
2 = {blue,green, red,yellow},

• r2
2 = {red}, and

• r3
2 = {red,yellow}.

The number of comparisons for computing
⋃3

i=1 ri
1 ��⊇ ri

2 is ∑3
i=1 |ri

1||ri
2|= 7 ·4+11 ·1+3 ·2 =

45, while the number of comparisons for the original expression r1 ��⊇ r2 is 12 · 4 = 48. The
saving is 3

48 = 1
16 . Hence, the comparison factor is c = 45

48 = 15
16 = 0.9375.

In our example, the number of (signature, row identifier)-pairs that are stored in a file is
∑3

i=1 |ri
1|+ |ri

2|= (7+2)+(11+1)+(3+2) = 28. In the original tables, the number of signatures
that belong to r1 and r2 is 12+4 = 16. This results in a replication factor r of 28

16 = 7
4 = 1.75.

�

The aim of any partition-based algorithm is to reduce the comparison factor c and the repli-
cation factor r as much as possible, i.e., the optimal values are c = 0 and r = 1. Of course, there
is a trade-off between these two factors and the challenge is to define the function π appropri-
ately. The following two algorithms, partitioning set join and adaptive pick-and-sweep join, aim
at optimizing these factors.

4.2.4 Partitioning Set Join

The partitioning set join (PSJ), suggested in [RPNK00], takes as input a user-defined number of
partitions k. For each set in the dividend r1, we assign it to all those partitions ri

1 where there
is an element e in the set such that (v(e) mod k)+ 1 = i. Each set in the divisor r2 is assigned
to a single partition. We randomly select an element e from a set. Let the integer value of this
element be v(e). We compute (v(e) mod k)+1 = i and assign the set to partition ri

2.
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Symbol Description in terms of set containment join (set containment division)

r1 Dividend table, i.e., table of supersets w.r.t. r2

r2 Divisor table, i.e., table of subsets w.r.t. r1

|r1| Table cardinality of r1

|r2| Table cardinality of r2

θ1 Average set cardinality of sets in r1 (average number of rows in a dividend group)
θ2 Average set cardinality of sets in r2 (average number of rows in a divisor group)

ρ Ratio of table cardinalities, ρ = |r1|
|r2|

λ Ratio of set cardinalities, λ = θ1
θ2

k Number of partitions
l Number of hash functions used in APSJ, l = k−1

Table 4.2: Parameters used for analyzing the algorithms

According to [MGM02b], the comparison factor of PSJ is

cPSJ = 1−
(

1− 1
k

)θ1

,

and the replication factor is

rPSJ =
1

ρ+1
+

ρ
ρ+1

k

(
1−

(
1− 1

k

)θ1
)

,

where θ1 is the average number of set elements in r1 and ρ is the quotient of the table cardi-
nalities of r1 and r2. These and other parameters that describe the characteristics of datsets and
algorithms are summarized in Table 4.2.

The assumptions made for deriving the two formulas are [MGM02b]:

• Each set in r2 contains a fixed number of elements θ2 and each set in r1 contains θ1 ele-
ments, where 0 < θ2 ≤ θ1.

• The set elements of r1 and r2 are drawn from an integer domain D using a uniform proba-
bility distribution. Furthermore, |D| � k, |D| � θ1, and |D| � θ2.

• Joining each pair of partitions ri
1 and ri

2 requires |ri
1||ri

2| signature comparisons, no clever
join strategy is employed but merely a simple strategy like nested-loop join.

EXAMPLE 5: As in the example of the previous section, we consider the supplier-parts database
in Figure 4.5. Suppose that the number of partitions is k = 3 and that v, the function that maps an
element to an integer value, is defined as the part number without the prefix “P,” e.g., v(P8) = 8.
Since, e.g., (v(P8) mod 3)+1 = 2+1 = 3, the dividend sets with s# values S1 and S11, that both
contain P8, are assigned to partition r3

1. The partitioning function can be specified as follows:
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• π(P3) = π(P6) = {1},

• π(P1) = π(P4) = π(P7) = {2}, and

• π(P2) = π(P5) = π(P8) = {3}.

The dividend table r1 consists of the partitions

• r1
1 = {S2,S3,S4,S6,S7,S8,S9,S12},

• r2
1 = {S1,S2,S3,S4,S5,S6,S7,S10}, and

• r3
1 = {S1,S2,S3,S4,S8,S9,S10,S11}.

For the sets in the divisor r2, suppose that we randomly picked element P2 from the “red”
set. Hence, r2 is partitioned as follows:

• r1
2 = {green}, and

• r2
2 = {}, and

• r3
2 = {blue, red,yellow}.

The number of comparisons for computing
⋃3

i=1 ri
1 ��⊇ ri

2 is ∑3
i=1 |ri

1||ri
2|= 8 ·1+8 ·0+8 ·3 =

32, leading to a comparison factor of c = 32
48 = 2

3 = 0.6. The number of signatures to be stored
in a file is ∑3

i=1 |ri
1|+ |ri

2| = (8 + 1) + (8 + 0) + (8 + 3) = 28. Hence, the replication factor is
r = 28

16 = 7
4 = 1.75. The comparison factor value is closer to the optimum than in Example 4,

whose partitioning function was constructed arbitrarily. However, the partitioning factor value is
the same.

Suppose, the data of the dividend and divisor had the properties stated in the assumptions
for the theoretical values for c and r, given above. In our example, we have |r1| = 12, |r2| = 4,
|D| = 8, k = 3, θ1 = 30

12 = 5
2 , θ2 = 7

4 , and ρ = 12
4 = 3. Hence, we would have a theoretical

comparison factor of

cPSJ = 1−
(

1− 1
k

)θ1

= 1−
(

1− 1
3

) 5
2

≈ 0.637,

and a replication factor of

rPSJ =
1

ρ+1
+

ρ
ρ+1

kcPSJ =
1
4

+
9
4

cPSJ ≈ 1.684.

In this example, the values that we computed manually differ from the theoretical values by
c−cPSJ

cPSJ
= 5% for the comparison factor and by r−rPSJ

rPSJ
= 4% for the replication factor.

�
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s# h1 h2 h3 h4 h5

S1 1 1 0 1 1
S2 0 1 1 1 1
S3 0 1 1 1 0
S4 1 1 0 0 0
S5 1 0 0 1 0
S6 1 0 1 0 0
S7 0 0 1 1 0
S8 0 1 1 0 0
S9 0 1 0 0 0
S10 0 0 0 1 1
S11 1 0 0 0 0
S12 0 0 1 0 0

(a) sp

color h1 h2 h3 h4 h5

blue 1 0 0 0 0
green 0 0 0 0 0
red 1∗ 1 0 0 1
yellow 1 0 0 0 1∗

(b) p

Figure 4.7: Example hash functions for adaptive pick-and-sweep join

4.2.5 Adaptive Pick-and-Sweep Join

The idea of partitioning set join has been generalized by a more sophisticated definition for the
partitioning function. The new approach, called adaptive pick-and-sweep join (APSJ), was sug-
gested by Melnik et al. [MGM03]. The authors claim that APSJ outperforms PSJ “most of the
time” for large set cardinalities (greater than ten). They show how to “adaptively” construct parti-
tioning functions that are optimal w.r.t. the input data characteristics, namely the table cardinality
and the average set cardinality.

In the following, we use the terminology of Melnik et al. [MGM02b]. The APSJ algorithm
partitions r1 and r2 into k partitions as follows. Suppose, there exist k−1 boolean hash functions
h1, . . . ,hk−1, where each function takes a set V of integer values as input and returns 0 (false) or 1
(true). An example hash function is hi(V ) = 1⇔∃e ∈V : e mod 7 = i. The tables in Figure 4.7
show which hash functions fire (return the value 1) for a given element value for the tables in
Figure 4.5. In this figure, we assume that we ignore the prefix “P” of the (text string) p# value to
create the integer value for a set element, as described in Example 5 on page 62.

For each set V ∈ r1, V is added to all partitions, whose hash function fire. In addition, V is
assigned to the default partition r0

1. Hence, e.g., the set S8 is assigned to r0
1, r2

1, and r3
1.

For each set V ∈ r2, the indexes of hash functions that fire are given by I = {i | hi(V ) = 1}.
One randomly picks one of these values j ∈ I and assigns V to r j

2. If there is no index, i.e., I = /0,
V is assigned to the default partition r0

2. In the table p in Figure 4.7(b), representing the dividend
r2, we have indicated by an asterisk the randomly chosen index for those sets that have more than
one index. For example the “red” set is assigned to partition r1

2.
The partitioning function can be described as

• π(P1) = π(P8) = {1},
• π(P2) = {2},



4.2 Set Containment Join Algorithms 65

• π(P3) = {3},
• π(P4) = {4}, and

• π(P5) = {5}.
Please notice that the function is not defined for the values P6 and P7, i.e., in this example, π is
a partial function.

Together with the default partition, APSJ uses k partitions for each input table. Because of
the default partitions, APSJ can handle empty sets in the input tables, unlike PSJ.3

It is possible to derive optimal values for c and r, depending on the dataset characteristics—
the same as those for PSJ—and in addition on the firing probabilities p of the hash functions. If
hash functions fire for many values in the integer domain D, then each partition ri

1 will contain
many signatures of r1, leading to expensive joins. On the other hand, if the hash functions fire for
only few elements, then the default partition r0

2 will contain many elements of r2, which leads to
an expensive join r0

1 ��⊇ r0
2 that may be almost as expensive as the original join problem r1 ��⊇ r2.

For the following statements we consider two parameters that characterize the overall input
data characteristics: ρ = |r1|

|r2| , the ratio of table cardinalities, and λ = θ1
θ2

, the ratio of set cardi-
nalities, indicated in the parameter overview of Table 4.2. Regarding the theoretical value for
the comparison factor, Melnik and Garcia-Molina make the following theorem in Section 3.1
of [MGM03]:

THEOREM 4: The optimal comparison factor of APSJ, given by

copt
APSJ = 1− k−1

λ+ k−1

(
λ

λ+ k−1

) λ
k−1

is achieved when the firing probability is

p =
(

θ1

θ2l +θ1

) 1
θ2l

.

No proof of this theorem was given by them. We show in Appendix A on page 159 how to arrive
at this formula. The proof of the following theorem is also given in Appendix A.

THEOREM 5: The optimal replication factor of APSJ is

ropt
APSJ =

1
ρ+1

+
ρ

ρ+1

(
k− (k−1)

(
λ

λ+ k−1

) λ
k−1
)

.

Note that the comparison and replication factors of PSJ depend on the absolute value θ1,
while those for APSJ depend on the relative sizes λ and ρ.

3In this thesis, we do not deal with the case of empty sets in the description of the algorithms since it would
complicate the presentation. See the brief discussion on a special case of this issue (when one of the divisor sets is
empty) in Section 2.3.4.
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EXAMPLE 6: For the hash functions defined in Figure 4.7, we can derive the following partitions
of the dividend:

• r0
1 = {S1, . . . ,S12},

• r1
1 = {S1,S4,S5,S6,S11},

• r2
1 = {S1,S2,S3,S4,S8,S9},

• r3
1 = {S2,S3,S6,S7,S8,S12},

• r4
1 = {S1,S2,S3,S5,S7,S10}, and

• r5
1 = {S1,S2,S10}.

The partitions of the divisor are

• r0
2 = {green},

• r1
2 = {blue, red},

• r2
2 = {},

• r3
2 = {},

• r4
2 = {}, and

• r5
2 = {yellow}.

The factors c and r can now be derived as follows. The total number of comparisons is
∑5

i=0 |ri
1||ri

2| = 12 · 1 + 5 · 2 + 6 · 0 + 6 · 0 + 6 · 0 + 3 · 1 = 25, hence, c = 25
48 = 0.52083. The

total number of signatures to be written into (and to be read from) a file is ∑5
i=0 |ri

1|+ |ri
2| =

(12 + 1) + (5 + 2) + (6 + 0) + (6 + 0) + (6 + 0) + (3 + 1) = 42. The replication factor is thus
r = 42

16 = 21
8 = 2.625.

Note that in order to be more illustrative, we employ in this example arbitrarily defined hash
functions and a different number of partitions compared to Example 5 for PSJ. Hence, it is not
correct to compare the comparison and replication factors directly. Here, the comparison factor
value is better than that in the PSJ example (25

48 vs. 2
3 = 32

48). However, the replication factor value
is worse than that for PSJ (21

8 vs. 7
4 = 14

8 ).
Suppose, the data of the dividend and divisor had the properties stated in the assumptions for

the theoretical values for c and r, given above. In our example, we have k = 6, ρ = 12
4 = 3, and

λ = 5/2
2 = 5

4 . Hence, we would have a comparison factor of

copt
APSJ = 1− 6−1

5
4 +6−1

(
5
4

5
4 +6−1

) 5
4

6−1

= 1− 4
5

(
1
5

) 1
4

≈ 0.327
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and a replication factor of

ropt
APSJ =

1
3+1

+
3

3+1


6− (6−1)

(
5
4

5
4 +6−1

) 5
4

6−1


=

1
4

+
3
4

(
6−5

(
1
5

) 1
4
)

≈ 2.656.

In this example, the values that we computed manually differ from the theoretical values by
c−copt

APSJ

copt
APSJ

= 59% for the comparison factor and by
r−ropt

APSJ

ropt
APSJ

= −1% for the replication factor. The

reason for the difference of the replication factor values is that the sets are not uniformly dis-
tributed accross the partitions due to the relatively small number of partitions and the relatively
small datasets. A slight skew in the partitioning distribution caused a big difference. For ex-
ample, it happended that for the green parts no hash function fires. Hence, they are assigned to
the default partition r0

2, leading to a summand 12 · 1 in the numerator of the replication factor
quotient.

�

4.3 Set Containment Division Algorithms

We present several physical set containment division operators and discuss their performance
characteristics. When we discuss the computational complexities of an algorithm, we use the
parameters given in Table 4.2 on page 62.

The performance of an algorithm is influenced by the characteristics of the input data. Let
r denote either the dividend or the divisor table. The size of r, denoted by |r| is defined by two
factors: the number of groups (sets) n and the average size of a group (set) θ, i.e., |r|= nθ.

4.3.1 An Algorithm Template

Remember from Section 2.3.2 on page 9 that the logical set containment division operator has
the dividend r1 and divisor r2 as input with the relation schemas R1(A∪ B) and R1(C ∪D),
respectively. The attribute sets A and D play the role of a set identifier and the C and D attribute
sets represent element values. One way to realize set containment division is to map the algebraic
definition 8 of set containment division on page 11, namely

r1÷∗ r2 =
⋃

t∈πC(r2)

(r1÷πB (σC=t (r2)))× (t)

directly to an algorithm, whose Java-style pseudo code is given in Algorithm 1. The idea is to
divide the entire dividend table r1 iteratively by a group of rows from the divisor table r2 which
have the same value for the columns C.
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Cursor oldResult = null;
Cursor newResult = null;
Cursor projection = new Distinct(new Projection("D", new Cursor("r2")));

while (projection.hasNext()) {
Row cValue = projection.next();
Cursor cTable = new SingleRowTable(cValue);
Cursor quotient = new Division(

new Cursor("r1"),
new Projection(
"B",
new Selection(
new Predicate(new RowComparator("C", cValue)),
new Cursor("r2");

)
)

);
newResult = new Union(

oldResult,
new CartesianProduct(quotient, cTable)

);
oldResult = newResult;
projection.next();

}

return newResult;

Algorithm 1: Set containment division pseudo code of the algorithm template

The pseudo code of the algorithm leaves open the question how the operators (division, pro-
jection, union, selection) are realized. Hence, it is only an algorithm template. Ideally, a query
optimizer of an RDBMS picks an implementation that allows an optimal execution, depending on
the actual optimization criteria like response time, throughput, or memory consumption. Many
of the algorithms realizing the classical division operator have been discussed in Chapter 3.

The algorithm template for set containment division looks very inefficient at first sight. One
may argue that if the dividend is larger than the main memory available, we cause considerable
I/O for scanning the dividend for each divisor group. This is true if there is no index defined on
the B columns of r1. If we are lucky and there is such an index, the I/O could be significantly
lower, especially if the access pattern is “local,” i.e., if the dividend rows belonging to the B
values we are searching for are stored consecutively on disk (clustered index) and we access the
rows in the same order as they are stored on disk. In this case, the chances are that the desired
rows are still in the buffer, assuming the typical least recently used (LRU) buffer replacement
strategy is enabled. It is not unusual that an index is defined on r1.B. Consider a typical data ware-
house fact table like lineitem(order#, line#,part#,supplier#,date,quantity, . . .) from the TPC-H
benchmark [Tra02], which is a detailed form of the transaction table tv(t#, i#) used for the fre-
quent itemset discovery problem, described in Chapter 5. If we consider the lineitem table as the
transaction table tv then the column order# is equivalent to the transaction column t# and part#
corresponds to the item column i#, or briefly, lineitem(order#,part#) ≡ tv(t#, i#). The lineitem
table has indexes defined on all columns that refer to dimension tables. Here, we will have an
index defined on each column part#, supplier#, and date.

Another problem occurs if the divisor is larger than main memory and we do not know about
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its row ordering. In this case, it may become expensive to process the Distinct operator to find
the duplicate-free collection of D values in r2. Again, if we have an index on D or if we know that
the data is grouped on D, then the optimizer may arrive at a much more efficient execution plan
than the algorithm template suggests. For example, if the divisor is grouped on D, the optimizer
might choose an “identity operator” as an implementation for Distinct that simply hands over
each row from input to output without reordering it.

In summary, the idea of the algorithm template for set containment division is to use algo-
rithms that can process data that is produced by algorithms called inside the algorithms. For
example, one could choose algorithms that make no assumption on the ordering of input data:
Projection would be implemented by an algorithm that removes duplicates. Division could be
realized by hash-division. However, if Projection uses sorting to remove duplicates (instead of
hashing) then one could use the merge-phase of sort-merge division for the division operator.

4.3.2 Merge-Sort Set Containment Division

This variation of set containment division, an “instance” of the template in Algorithm 1, requires
the dividend r1 be first grouped on A and second sorted on B and that the divisor r2 is first
sorted on D and second on C. Given this setting, the time complexity of Algorithm 1 becomes
O(|r2|+ |r2|

θ2
|r1|), because we read the rows of the divisor table r2 exactly once and for each of

the |r2|
θ2

divisors, we scan the dividend r1 once.

4.3.3 Hash-Based Set Containment Division

Analogous to merge-sort set containment division, we can replace the generic division operation
in the pseudo code template in Algorithm 1 by the hash-division algorithm.4 The advantage
of this approach is that we do not require the rows of a group to be sorted. Remember from
Section 3.3.2.4 that hash-division maintains two hash tables, one for storing the rows of the
divisor and the other for the quotient candidates. First, the divisor is scanned once to build the
divisor hash table and then the dividend is scanned once to populate the quotient hash table and
to set bits in the quotient hash tables’ bitmaps. This causes a worst case memory complexity of
O(|r1||r′2|), where r′2 is a classical divisor table, not a table of more than one divisor group.

The time complexity of Algorithm 1, when division is replaced by hash-division, is the same
as for merge-sort set containment division.

An optimization of this approach is possible if a large main-memory is available. We can
build several divisor hash tables in memory by scanning over more than one divisor group con-
secutively. Then, we build and update the quotient hash tables of each separate division operation
in parallel while scanning the dividend once, i.e., the best-case time complexity is O(|r1|+ |r2|).
If only a subset of the |r2|

θ2
division operations can be executed in parallel during a single scan

4Alternatively, transposed hash-division (Section 3.3.2.5), an algorithm that also does not make any assumption
on the sortedness of the inputs, can be employed instead of hash-division. Refer to Table 3.3 on page 48 for a
complete list of optional algorithms.
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…

r1 r2

r2.1

r2.2

r2.n

∪

thread1 threadn÷* ÷* ÷*

Figure 4.8: Parallel threads executing set containment division

of r1, we need more than one scan, say k iterations, yielding a computational complexity of
O(k|r1|+ |r2|).

4.4 Parallel Execution of Set Containment Division

The naı̈ve approach specified in Algorithm 1 executes the division operations sequentially. To
improve the response time, we could execute some or all division operations in parallel and then
merge the quotients asynchronously. The RDBMS can decide on an optimal degree of parallelism
to distribute the work to threads of execution.

The parallelization of a query execution plan typically requires that the tables are partitioned
into several smaller tables. In this section, we only consider horizontal partitioning, where entire
rows of a table are stored in a partition.5 The idea of partitioning is illustrated in Figure 4.8,
where each thread of execution (e.g., a process or thread of an operating system) processes some
part of the set containment division. Here, only the divisor r2 is divided into several disjoint
partitions and the entire dividend is the input of each thread. The top union operator merges the
disjoint quotient rows into the result table.

There are several options for partitioning the dividend and divisor. Table 4.3 gives an overview
of partitioning classes. A plus sign indicates that the respective table is partitioned on the given
set of columns, a minus sign indicates that no partitioning was made on the column set. A sub-
script number indicates on which columns the table was partitioned first and second (similar to
the grouping column ordering in Table 3.1 on page 34). An asterisk in columns r1.B and r2.C

5Vertical partitioning, rarely used in practice, stores the table columns in different partitions. For example,
consider a table citizen that stores the name, address, passport photo, and fingerprint scan images of a person in a
table. If some I/O critical queries need access to the personal record data only, it may be beneficial to store these
columns separately from the image data. However, queries affecting both types of columns require to join the rows
of the partitions, which may be expensive.
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Dividend r1 Divisor r2Class
A B B C

Description

1 − − − +
2 − − + −
3 − − +2 +1 Divisor first partitioned on C, second on B
6 − +∗ +∗ − Dividend and divisor partitioned using the same function
7 − +∗ +∗2 +1 Divisor first partitioned on C, second on B, and dividend and divi-

sor partitioned using the same function for B
8 + − − −
9 + − − +
14 +1 +∗2 +∗ − Dividend first partitioned on A, second on B, and dividend and

divisor partitioned using the same function for B
15 +1 +∗2 +∗2 +1 Dividend and divisor first partitioned on A and C, respectively, and

second on B using the same partitioning function for B

Table 4.3: Partitioning classes enabling a parallelization of set containment division

shows that the same partitioning function is used for both columns. For example, the tables r1

and r2 in Figure 4.9(a) and (b) may be partitioned into two partitions where one partition holds
all rows with odd values and the other with even values of column b and c, respectively.

A partitioning class number is the value that we get when we interpret the sequence of minus
and plus signs as a binary number, where minus and plus correspond to digit 0 and 1, respectively.
For example (A,B,C,D) = (−,+,+,−) corresponds to class 01102 = 610.

No horizontal partitioning options other than the ones shown in Table 4.3 enable a paral-
lelization strategy for set containment division. Table 4.4 shows the remaining classes that are
possible but that do not contribute to a parallelization strategy for set containment division. For
example, partitioning class 4 does not help since we partition only on the B columns of the div-
idend. This means that we compare a subset of a quotient candidate of r1 against all values of a
divisor group, which is incorrect. The reason is that there is only one law involving a partitioning
of the dividend (Law 2 on page 17), which requires a partitioning on the A columns, but not on
the B columns alone.

Consider, e.g., partitioning class 1, where r2 is partitioned on C and no other partitioning is
given. Let us investigate how we can exploit this partitioning. One can distinguish between two
types of execution strategies, a static one and a dynamic one. The static strategy assigns a fixed
partition of r2 to each thread of execution. All partitions are disjoint and span a set (or range)
of B values of r2. In the dynamic execution strategy, we use a partitioning operator that returns
an entire group, i.e., a sequence of rows having the same B value. Each call to the partitioning
operator returns a different (the “next”) group. This approach guarantees that none of the threads
becomes idle and hence allows a good response time.6

6The dynamic approach is good on the average but not necessarily optimal. Suppose, the degree of parallelism
is two and r2 consists of a sequence of four groups of rows (g1,g2,g3,g4), where g1 and g3 take 2 time units to finish
the division and g2 and g4 take 3 units. The dynamic assignment leads to the sequence (g1, g3) for thread 1 and (g2,
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Dividend r1 Divisor r2Class
A B B C

Description

0 − − − −
4 − + − −
5 − + − +
10 + − + −
11 + − +2 +1 Dividend partitioned on A, and divisor first partitioned on D, sec-

ond on C
12 +1 +2 − − Dividend first partitioned on A, second on B
13 +1 +2 − + Dividend first partitioned on A, second on B, and divisor parti-

tioned on C

Table 4.4: Partitioning classes disabling a parallelization of set containment division

a b

1 1
1 3
2 1
2 2
2 3
2 4
3 1
3 2

(a) r1

b c

1 1
2 1
3 1
3 2
1 3
3 3
2 4

(b) r2

b c

1 1
2 1
3 1
3 2

(c) r2.1 = σc≤2(r2)

b c

1 3
3 3
2 4

(d) r2.2 = σc>2(r2)

b c

1 1
2 1

(e) r′2.1 = σb≤2(r2.1)

b c

3 1
3 2

(f) r′′2.1 = σb>2(r2.1)

b c

1 3

(g) r′2.2 = σb≤2(r2.2)

b c

3 3
2 4

(h) r′′2.2 = σb>2(r2.2)

Figure 4.9: Example partitions of partitioning classes 1 and 3

Not only can the set containment division be parallelized by partitioning r2 according to
the C columns, thus defining separate divisor groups and executing each division in parallel to
other divisions. Also the division operation itself can be parallelized by partitioning r2 on the C
columns, i.e., on the elements that we test whether they are contained in a group of r1 defined
by A. This option was described by Law 1 on page 16, represented by partitioning class 3 in
Table 4.3.

To illustrate the idea of employing both parallelization approaches, let us assume the dividend
and divisor tables in Figures 4.9(a) and (b). First, let us consider partitioning class 1, where the

g4) for thread 2. The total execution time is hence max{2+2,3+3}= 6 units. An optimal assignment would have
been (g1, g2) and (g3, g4), respectively, leading to a total of max{2+3,2+3}= 5 units.
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Figure 4.10: Query execution plan of a parallel set containment division based on partitioning
class 1

divisor is partitioned on column c, i.e., the divisor groups are distributed into separate tables. In
our example, we partition the values of c into the two intervals (−∞,2] and (2,∞), as illustrated
in Figures 4.9(c) and (d). Assuming a degree of parallelism of two, the query execution plan has
the structure shown in Figure 4.10. This degree of parallelism is reflected by the binary union
(operator 17). The plan contains a correlated version of a Cartesian product (operators 8 and 16),
which evaluates for each row of the right input the left sub-plan. It uses a variable t that is bound
to the c value of a partition of r2.

The second, more fine-grained parallelization approach based on partitioning class 3 em-
ploys pipelining during the execution of a each separate division. In addition to the partition-
ing on column c, we partition the divisor also on b, i.e., we partition r2 on the value pairs
(c,b). Using an interval notation, we partition r2 into four partitions according to the interval
pairs ((−∞,2],(−∞,2]), ((−∞,2],(2,∞)), ((2,∞),(−∞,2]), and ((2,∞), [2,∞)), as illustrated in
Figures 4.9(e)–(h). Given these partitions, the query execution plan becomes more complex,
as shown in Figure 4.11. The difference between the two plans is the application of Law 1:
We replace r1 ÷ (r′2.1∪ r′′2.1) by (r1 � (r1÷ r′2.1))÷ r′′2.1 and, analogously, r1 ÷ (r′2.2∪ r′′2.2) by
(r1 � (r1÷ r′2.2))÷ r′′2.2.

To make the processing more intuitive, Figure 4.12 shows some of the intermediate results
during the execution of the plan in Figure 4.11. For the operators that are contained in the left
sub-plan of the correlated Cartesian product (operators 14 and 28), we give the results after each
iteration of the correlation variable t that picks a single row of the right input. For example, the
first row value of t in operator 14 is (1). This value is taken as input for the selection predicate
of operator 6, which leads to two result rows produced by operator 8, namely rows (2) and (3).
The final result of the execution is the table produced by operator 29, given in Figure 4.12(i). It
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Figure 4.11: Query execution plan of a parallel set containment division based on partitioning
class 3

is the same result as that of operator 17 in the plan in Figure 4.10 and, of course, it is equal to
r1÷∗ r2.

4.5 Set Containment Division Using a Subset Index

In this section, we define a model to represent the fact that some sets are subsets of other sets,
given a collection of sets. This model is the basis for an in-memory data structure to improve the
cost of containment tests for set containment division algorithms.

4.5.1 The Subset Graph

Let r be a relation with the schema R(A∪ B), where A and B are disjoint nonempty sets of
attributes. In the following, we assume that A represents the set identifying attributes and B the
element identifying attributes like r1 in the definition of set containment join in Section 2.3.2 on
page 9. We first formally describe the fact that there are groups (subsets of tuples) in r, each
having a different value of the attributes A. This is achieved by the group operator GγF , listed
in the operator overview in Table 2.3 on page 7. Here, G = {A} and no aggregate functions are
applied, i.e., F = /0. If r �= /0 then we can partition r into n≥ 1 groups g1, . . . ,gn, where
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Figure 4.12: Intermediate results of the query execution plan in Figure 4.11 based on partitioning
class 3

1. ∀i ∈ {1, . . . ,n} : gi �= /0 ,

2.
⋃n

i=1 gi = r ,

3. ∀i ∈ {1, . . . ,n} ∀ j ∈ {1, . . . ,n} : (i �= j)→ (gi∩g j = /0) , and

4. ∀t1, t2 ∈ r ∃i ∈ {1, . . . ,n} ∃ j ∈ {1, . . . ,n} : (t1 ∈ gi∧ t2 ∈ g j∧ t1.A = t2.A)→ (i = j).

Conditions 1–3 state that r is partitioned into disjoint nonempty sets and condition 4 requires that
each group contains only tuples with the same value of attributes A and no pair of groups has the
same value of A.

We now define a directed acyclic graph (DAG) on r, called subset graph of r, where each
group gi ∈ r defined by A is a vertex and there is an edge from vertex v1 to v2 if and only if the
values of the attribute set B of the group representing v1 are a proper subset of those of v2. A
subset graph G⊂(r) = (V,E), where V is a set of vertices and E is a set of edges, is defined as
follows:

V = {g1, ...,gn}, as defined above, and

E = {(gi,g j) ∈V ×V | ∃i ∈ {1, . . . ,n} ∃ j ∈ {1, . . . ,n} :

πB(gi)⊂ πB(g j)∧�k ∈ {1, . . . ,n} : gk ∈V ∧ (gi,gk) ∈ E ∧ (gk,g j) ∈ E}.
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In other words, there is an edge gi→ g j between two groups of r if and only if πB(gi)⊂ πB(g j)
and if there is no other group gk such that πB(gi)⊂ πB(gk)⊂ πB(g j), i.e., transitive containments
are not represented by an edge, only direct containments.7 In Figure 4.13, we sketch a set
containment division example. The set identifying columns in r1 and r2 are the sets A = {a} and
D = {c}, respectively. Hence, the remaining column set B = {b} identifies the elements of a set.
Figure 4.14 shows a subset graph for the divisor table in Figure 4.13(b).

The benefit of the subset graph can be summarized as follows. On the one hand, if we know
that the B values of certain group g defined by a value A of the dividend are contained in the set
of B values of a group g′ of the divisor’s subset graph, then we know that all subsets of g.B are
also contained in g′.B. On the other hand, we can employ a special case of the Apriori property,
introduced for frequent itemset discovery and further discussed in Section 5.6, saying that if a set
g′.B of the divisor is not contained in g.B then no superset of g′.B is contained in g.B neither. The
Apriori property states that a k-itemset can only be frequent if all (k− 1)-subsets are frequent,
too. One can consider our idea as applying the Apriori property to sets in general and setting the
minimum support threshold to 1.

4.5.2 Compression

The representation of the set elements in the set containment graph is straightforward because
all element values are listed. A more compact representation is possible. Instead of keeping
all elements in a vertex, we store only the elements that are not already stored in any subset
vertex. Hence, the vertices that have no subset store all elements like in the uncompressed subset
graph. The same idea has been suggested for other data structures, like the frequent pattern
tree [HPY00] for the frequent itemset discovery. However, although our subset graph bears some
resemblance to the frequent pattern tree, the subset graph is not always a tree and, therefore, the
compression is slightly different. Compressing the representation of sets allows us to build an
index for a larger table than with an uncompressed representation while still fitting into main
memory.

Consider for example vertices 4 and 9 in Figure 4.14. It suffices to store the common elements
in the subset vertex and the remainder in the superset vertex yielding the sets {1} and {2,6}, as
illustrated in Figure 4.15. Looking at vertex 12, we find that all its direct supersets do not need to
store the subset {3}, therefore it is eliminated in the compressed subset graph. Similarly, vertex
3 does not need to store any element because all of them are contained in one ore more of its
direct subsets. In general, a vertex represents the set of elements that we get when we merge its
own elements recursively with all elements of its subset vertices.

We have implemented an uncompressed and a compressed version of the subset index, which
is based on the subset graph. This data structure will be discussed in the following section.

7The subset graph is equal to a Hasse diagram [PS03], where the relation is the proper subset operator (⊂).
Given a graph, a Hasse diagram eliminates all self loops and all edges that are implied by transitivity. In contrast to
our subset graph, the edges in a Hasse diagram are undirected.



4.5 Set Containment Division Using a Subset Index 77

a b

1 1
1 2
1 4
1 5
1 8
2 2
2 3
2 4
2 5
3 2
3 3
3 4
5 1
5 4
5 7
4 1
4 2
4 6

10 4
10 5
7 3
7 4
9 2
9 6
8 2
8 3
6 1
6 3

11 8
12 3

(a) r1

b c card

1 1 5
2 1 5
4 1 5
5 1 5
8 1 5
2 2 4
3 2 4
4 2 4
5 2 4
2 3 3
3 3 3
4 3 3
1 5 3
4 5 3
7 5 3
1 4 3
2 4 3
6 4 3
4 10 2
5 10 2
3 7 2
4 7 2
2 9 2
6 9 2
2 8 2
3 8 2
1 6 2
3 6 2
8 11 1
3 12 1

(b) r2

a c

1 1
1 10
1 11
2 2
2 3
2 8
2 7
2 12
3 3
3 8
3 7
3 12
5 5
4 4
4 9

10 10
7 7
7 12
9 9
8 8
8 12
6 6
6 12

11 11
12 12

(c) r3 = r1÷∗ πb,c(r2)

Figure 4.13: Example tables for set containment division

4.5.3 The Subset Index

It is straightforward to realize the subset graph as a lookup data structure that allows finding all
subsets and supersets of a given set. The motivation for this index is the situation where either
the dividend or the divisor is much larger than main memory and the other table fits into memory.
We want to build an in-memory data structure for the smaller table and probe it while scanning
the larger, disk-resident table once.

Given a dividend table r1 and divisor relation r2 with schemas R1(A∪B) and R2(B∪C), re-
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6: {1, 3} 8: {2, 3} 7: {3, 4}

2: {2, 3, 4, 5}

12: {3}

10: {4, 5}

1: {1, 2, 4, 5, 8}

9: {2, 6}

4: {1, 2, 6}5: {1, 4, 7}

11: {8}

3: {2, 3, 4}

Figure 4.14: Uncompressed subset graph G⊂(r2) built for divisor table r2 in Figure 4.13(b)

6: {1} 8: {2} 7: {4}

2: {}

12: {3}

10: {4, 5}

1: {1, 2}

9: {2, 6}

4: {1}5: {1, 4, 7}

11: {8}

3: {}

Figure 4.15: Compressed subset graph that is equivalent to that in Figure 4.14

spectively, where A = {a1, . . . ,am}, B = {b1, . . . ,bn}, and C = {c1, . . . ,co} are nonempty column
sets. In the following, we assume that the table r1 has more rows than the r2 table and that r2

can fit into main memory. If r2 had more rows than r1 and if r1 could fit into main memory, we
would build a subset index on r1, as we will discuss in Section 4.5.6.

The following descriptions refer to the pseudo code samples of Algorithms 20 and 21 in Ap-
pendix B on pages 177–178. We define a data structure called subset index as follows: A subset
index I⊂(r2) is a subset graph for a table r2(B∪C), where C is the list of columns representing the
set identifier and B is the list of columns representing the element identifiers. In the subset index,
a vertex of the subset graph is called a node. A node has a flag called isMarked, whose value
can be set to true to indicate that the node has been visited before when traversing the index. A
similar flag called isInResult is used to indicate that the elements of a node belong to a quotient
and should not be added more than once to a set. This flag is only needed when the subset index
is compressed. A node is represented by an object of the class SubsetIndexNode, as specified
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6: {1, 3} 8: {2, 3} 7: {3, 4}

2: {2, 3, 4, 5}

12: {3}

10: {4, 5}

1: {1, 2, 4, 5, 8}

9: {2, 6}

4: {1, 2, 6} 5: {1, 4, 7}

11: {8}

3: {2, 3, 4}

highBorder

lowBorder

5
4
3
2
1

cardinalitySiblings

Figure 4.16: Uncompressed subset index I⊂(r2) built for divisor table r2 in Figure 4.13

in the Java-style pseudo code in Algorithm 20 in Appendix B on page 177. The set attribute
is the D value of a divisor group in r2. The subsets attribute represents the collection of edges
in the subset graph from a superset to a direct subset according to the Hasse diagram definition
mentioned before, i.e., not all possible subsets have an edge to a superset. The elements attribute
is a collection of rows, each row representing a C value of a row in r2.

The subset index superimposes the subset graph by further data structures that we call car-
dinalitySiblings, lowBorder, highBorder, and markedNodes. The object cardinalitySiblings is an
array of sorted lists. The ith list contains all nodes of cardinality i. The array is used to restrict
the number of nodes that have to be visited when a new node is added to the index: When a node
n of cardinality c is added to the index, we first check all nodes of size c + 1 if they contain n.
If yes, we establish an edge from n to each of these superset nodes. When we test a node, we
mark it and all its subset nodes as “visited.” Thereby, we avoid establishing an additional edge
between n and a subset of a node, which would violate the subset graph property that there is an
edge only between “direct” subsets. Then, we check all nodes of size c + 2, c + 3, and so on,
until we have checked all nodes of a cardinality that is higher than that of n. The subset index’s
data structures as well as the logic of adding a node is shown in the pseudo code in Algorithm 21
in Appendix B on page 178.

Another data structure, lowBorder, is a list of all nodes that have no subsets. Analogously, the
data structure highBorder comprises all nodes that have no supersets. In Figure 4.16, lowBorder
consists of the nodes 12, 11, 9, 10, and 5, while highBorder contains nodes 6, 4, 5, 2, and 1.
Node 5 is contained in both lists because it stores a singleton set, i.e., it has neither a subset nor a
superset. The arrows connecting the lowBorder/highBorder nodes start and end in the bottom/top
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of a node box, respectively.
During the index creation and index probing phase, we mark index nodes to remember if they

have been visited before. This is needed because, as mentioned before, the subset index is not
necessarily a tree, i.e., we can reach a node via different paths. For example, in Figure 4.16, node
3 can be reached from node 12 either via node 7 or node 8. When we add a new node during
index creation or when we probe the index against a node, we first need to unmark the nodes that
have been marked previously. By maintaining a list of marked nodes called markedNodes while
traversing the graph, we avoid scanning the entire index for marked nodes when we want to reset
all nodes to unmarked.

4.5.4 Index Creation

We make the following assumptions on the structure of the divisor table r2:

• Its table schema is R2(B∪C∪{card}), i.e., the divisor has an additional column, card,
that indicates the number of rows, belonging to a group defined by the columns D, i.e.,
the group cardinality. This column could be a derived column that was created by an
aggregation operator below the subset containment operator in the query execution plan.

• It is first sorted on card in descending order, second grouped on C, and third, sorted on B
in ascending order.

The card column is merely used to sort r2 such that the largest groups occur with decreasing
size when we fetch rows from the table. Figure 4.13(b) illustrates such a table with the required
properties.

In the following, we ignore the case that duplicate divisor groups are contained in r2. A dupli-
cate group occurs in r2 if there are two values c1 �= c2 such that πB(σC=c1(r2)) = πB(σC=c2(r2))
�= /0. However, it is straightforward to deal with this case as well by extending the data structure
and index population logic slightly. Furthermore, we ignore the case of duplicate rows in r2.

The subset index is built by first calling the constructor of the SubsetIndex class and then
fetching the rows of r2, transforming a group into a node and then adding the node to the index,
as shown in Algorithm 2 on page 81.

All these descriptions are illustrated by Figure 4.16, which represents the result of a subset
index creation for the divisor table r2 in Figure 4.13(b). The first group that is processed has
group value c = 1 and b values 1, 2, 4, 5, and 8. Since no other node is contained in the index, we
can simply add it by linking it to cardinalitySiblings[5]. The second group (c = 2, b∈ {2,3,4,5})
is added to the index like the first node. The third node (c = 3, c ∈ {2,3,4}) is more interesting.
We first add it to the empty cardinalitySiblings[3]. Then, we check all nodes in I⊂(r2) that have a
higher cardinality, i.e., nodes 1 and 2, if they are a superset of node 3. We start with cardinality 4,
where we find node 2. We find out that node 3 is a subset of node 2 and therefore, we mark node 2
as well as all its supersets (in this case none), and we add node 3 to the list of children of node 2.
The subset test between nodes 3 and 1 yields false, hence we are done with node 3.



4.5 Set Containment Division Using a Subset Index 81

Table cursor1 = new Table("r2");
SubsetIndex subsetIndex = new SubsetIndex(10);

if (cursor1.hasNext()) {
boolean isNextGroup = false;
Row row = (Row) cursor1.next();
SubsetIndexNode node = null;

// Process divisor table group-by-group.
do {

Row firstRow = row; // The first row of a group.
node = new SubsetIndexNode((Row) firstRow.getObject("C"));
node.addElement((Row) firstRow.getObject("B"));
isNextGroup = false;

// Process group row-by-row.
while (cursor1.hasNext() && !isNextGroup) {
row = (HashCodeArrayTuple) cursor1.next();
// Check if this row still belongs to the same group as
// the first row of the group.
isNextGroup = (((Row) row.getObject("C")) !=

((Row) firstRow.getObject("C"));
if (isNextGroup)
// Finally, we add the node to the index.
subsetIndex.add(node);

else
node.addElement((Integer) row.getObject("B"));

}

// Do not forget to add the last group of the table.
if (!cursor1.hasNext())
subsetIndex.add(node);

} while (isNextGroup);
}

Algorithm 2: Creation of a subset index on the divisor table in pseudo code

The advantage of processing top-down from the largest to the smallest sets helps during the
insertion of a node because, given a node n, we have to check only which subsets of n exist in
I⊂(r2) and not also for supersets of it.

The data structure cardinalitySiblings is merely used for an efficient insertion of divisor sets
into the subset index, it is no longer needed for probing. However, the lowBorder data structure
is important for the probing phase.

4.5.5 Index Probing

Having created the subset index I⊂(r2) on the divisor table, we probe each group of the dividend
table against the index in order to find the quotients. To make the processing easier, we assume
that the dividend r1 is grouped on A. For example, the dividend table r1 in Figure 4.13(a) has
the same contents as the divisor table r2 except that is has no card column. It is grouped on the
set-identifying column a like the divisor is grouped on the set-identifying column c. In contrast
to the index creation phase, we do without the card column because the probing phase does not
require the input table be ordered by group cardinality. Therefore, the ordering of the groups in
r1 in Figure 4.13(a) is arbitrary.
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We compute the quotient table r3 as follows. We scan r1 group by group. For each group, we
build a node n in the same way as for a divisor group. We start by checking each index node in
the lowBorder list. When an index node i is tested against n, i first checks if it has been visited
before. If yes, nothing needs to be done. Otherwise, i marks itself as “visited,” checks if its
elements are contained in n, and recursively tests its superset nodes. If i finds that its elements
are contained in n, it returns its set attribute value. The value pair (n.set, i.set), which corresponds
to (r1.a,r2.c), is then transformed into a row and added to the quotient table.

Figure 4.13(c) illustrates an example quotient table that was produced by probing the index
for each group defined by r1.a. Since the dividend and divisor have the same content (except for
the card column), the quotient describes the transitive closure of G⊂(r2). The transitive closure
is the collection of vertex pairs (v1,v2) such that v1 can be reached from v2 along the directed
edges in G⊂(r2). Here, v1 and v2 correspond to a and d, respectively. For example, since there
is a path in the subset graph from vertex 12 to 2 via the vertices 7 (or 8) and 3, we find row
(2,12) in the quotient table. In addition, for each vertex v of G⊂(r2), there is a row (v,v) in r3,
since each group v occurs in both input tables of the set containment division and set equality is
a special case of set containment.

4.5.6 Implementation Details

The lowBorder and highBorder data structures are so-called TreeSets, provided by the Java class
library. A TreeSet is an ordered set of elements and guarantees a log(n) time for the add, remove
and containment test operations, where n is the number of elements. This is helpful when we
probe the index. We define the natural ordering of nodes in a TreeSet first by cardinality and for
equal cardinality nodes by element values, starting with the first element. This ordering can be
seen in Figure 4.16: lowBorder has node 12 as the smallest and node 5 as the largest element. We
assume the elements of a set are sorted. Hence, given a dividend node n, we can stop searching
for index nodes in the lowBorder object as soon as we find an index node i > n.

In this section, we have described the case, where the divisor has fewer rows than the div-
idend and the divisor (as an index I⊂(r2)) fits into main memory. Of course, our approach can
equally be applied for the symmetric case, where the dividend is smaller than the divisor and
the dividend’s subset index I⊂(r1) fits into main memory. In this case, we build the subset index
in the same way as we would do for the divisor. However, the index probing phase starts with
nodes in the highBorder object and recursively checks which index node is a superset of the
given divisor node.

4.5.7 Complexities

In this section we discuss the time and space complexities of subset index set containment divi-
sion. In the following, we assume that we have created a subset index on the divisor table r2 and
that it is probed with the dividend table r1. Let s1 = |r1|

θ1
and s2 = |r2|

θ2
be the number of sets in

r1 and r2, respectively. Remember from Table 4.2 on page 62 that θ1 and θ2 are the average set
cardinalities in r1 and r2, respectively.



4.5 Set Containment Division Using a Subset Index 83

1: {1, 2, 3, 4, 5}

2: {1, 2, 3, 4} 3: {1, 2, 3, 5} 4: {1, 2, 4, 5} 5: {1, 3, 4, 5} 6: {2, 3, 4, 5}

7: {1, 2, 3} 8: {1, 2, 4} 9: {1, 2, 5} 10: {1, 3, 4} 11: {1, 3, 5} 12: {1, 4, 5} 13: {2, 3, 4} 14: {2, 3, 5} 15: {2, 4, 5} 16: {3, 4, 5}

27: {1} 28: {2} 29: {3} 30: {4} 31: {5}

21: {2, 3} 22: {2, 4} 23: {2, 5} 24: {3, 4}17: {1, 2} 18: {1, 3} 19: {1, 4} 20: {1, 5} 25: {3, 5} 26: {4, 5}

Figure 4.17: Subset graph for the powerset of {1,2,3,4,5}, excluding the empty set

Let us first consider an uncompressed subset index. The build and probe time complexity is
the time complexity of the build and probe phase, respectively. The best best case is when all sets
have a different cardinality and the sets have no overlap like in {{5},{2,7},{1,3,4,6}}. In this
case, at most one set is stored in each entry of the cardinalitySiblings array (some entries may
remain empty). Thus, when the index is probed with a single dividend set, only one set compar-
ison is required, yielding a total probe time complexity of O(s1) and a build time complexity of
O(s2). The space complexity is O(s2).

The worst case is more complex. It occurs when the sets represent the powerset of the largest
set, excluding the empty set. It has s2 = 2n− 1 nodes, where n = log(s2 + 1) is the size of
the largest set. For example, consider the powerset of {1,2,3,4,5} without the empty set. The
corresponding subset graph is illustrated in Figure 4.17. Here, the largest set is {1,2,3,4,5} and
n = 5. To avoid overloading the figure, we show the subset graph instead the subset index with
its auxiliary data structures and we omit arrowheads.

Our second assumption for the worst case is that all sets of the dividend r1 are a superset of
the largest set of the divisor r2. A probe of the subset index on r2 with a single set of r1 works
as follows. First, we try to find a match in the lowBorder data structure, which is O(log(n))
because we use a TreeSet for the implementation, which has a logarithmic search complexity,
and the number of elements in lowBorder is n. Then, we have to visit all superset nodes of the
current node. The number of these nodes is the number of nodes in the original graph minus the
size of the subset graph for the powerset of the set that is reduced by the current element, i.e.,
(2n−1)− (2n−1−1) = 2n−1. In Figure 4.17, the straight-lined boxes comprise the supersets of
set {1}. Here, the number of nodes to be visited is 24 = 16.

A node can be visited only from unmarked child nodes. How many times is each node
visited? A node of cardinality c is visited c− 1 times, once from each child. This is equal to
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the number of straight-lined edges from a superset to a subset node in Figure 4.17. There are(n
c

)−(n−1
c

)
=
(n−1

c−1

)
different nodes that are visited for each cardinality. For example, the number

of nodes with cardinality 3 that are visited starting from node 27 is
(5−1

3−1

)
=
(4

2

)
= 6 (nodes 7 to

12). Thus, the total number of visits v is v(n) = ∑n
c=1(c−1)

(n−1
c−1

)
= ∑n−1

c=0 c
(n−1

c

)
. Let us give an

upper bound for v:

v(n) =
n−1

∑
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Since ∑∞
c=0

1
c! = e, one can derive an upper bound for v when n→ ∞:

v(n)→ e(n−1)!.

Let us find a lower bound of v(n):

v(n) =
n−1

∑
c=0

c(n−1)!
c!(n−1− c)!

= (n−1)!

(
0

0!(n−1)!
+

1
1!(n−2)!

+ · · ·+
⌊

n
2

⌋⌊
n
2

⌋
!
(
n−⌊n

2

⌋)
!
+ · · ·+ n−1

(n−1)!0!

)

≥ (n−1)!

⌊
n
2

⌋⌊
n
2

⌋
!
(
n−⌊n

2

⌋)
!

≈ (n−1)!
n
2

n
2!2

=
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2!2

In other words, for large values of n, the total number of visits approaches a complexitiy function
that lies between O( n!

n
2 !2 ) and O(n!). Assuming the upper bound for O, namely O(n!), the effort

to probe the index with a single set of r1 is proportional to n! = log(s2 + 1)!. In summary, the
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s1 * log(s2)!
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(b) Space complexity

Figure 4.18: Worst case time and space complexities for subset index probing

worst-case computational complexity of probing an uncompressed subset index on r2 having s2

sets with a table r1 having s1 sets is in O(s1 log(s2)!). The plot of this function is illustrated in
Figure 4.18(a).

The space complexity can be computed as follows. The lowBorder data structure contains n
nodes and the highBorder has one node, the largest set. The number of edges in the cardinali-
tySiblings data structure is 2n. However, the number dominating the total number of edges is the
number of subset edges between the nodes: ∑n−1

c=1

(n
c

)
c. We have just seen that for large values of

n, this expression is proportional to n!. Hence, the worst case space complexity is O(log(s2)!).

During the build phase, the sets of r2 are inserted in decreasing order of cardinality, as de-
scribed in Section 4.5.4. At level c, we insert a node into cardinalitySiblings[c]. We have seen
that when cardinalitySiblings[c] is filled, it contains m =

(n
c

)
sets. Inserting each of the m nodes

causes an effort of ∑m
k=1

log(k)
m . It is easy to see that this expression does not dominate the overall

complexity. We test the set to be inserted whether it is a subset of any set that has a greater
cardinality. The number of visits for a graph for the powerset of a set that a largest cardinality of
n is v(n), as we have seen before. In the case of index creation, we make this test repeatedly for
growing sizes of n. The total number of visits V is

V (n) =
n

∑
c=1

m

∑
k=1

v(k) =
n

∑
c=1

(n
c)

∑
k=1

v(k).

Let us find an upper bound for this expression. The value of
(n

c

)
is maximized for c =

⌊
n
2

⌋
. The
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value of
(2l

l

)
= (2l)!

(l!)2 is called the lth central binomial coefficient. Here, l =
⌊

n
2

⌋
. Hence,

V (n)≤ n

( n" n
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Using the upper bound of v(n) = e(n−1)!, we find that for large values of n,

V (n)→ n
(2n)!
"n#!2 e(n−1)! =

en!(2n)!
"n#!2 ≤ (2n)!

In summary, the worst case computational complexity of the build phase of the subset index on
table r2 is O((2logs2)!).

When we analyze the compressed version of the subset index, the best case space complexity
occurs when all sets overlap such that only one element per set has to be stored. We assume that
there are no duplicate sets in r2. For example, consider the sets {{1},{1,2},{1,2,3}}. Only the
sets {{1},{2},{3}} need to be stored. The best case space complexity is thus O(s2). The worst
case space complexity is similar to that for an uncompressed index. The only difference is that
we may not require as much memory to store the elements due to overlapping items. However,
the number of edges does not decrease.

We leave as future work an exact computation of the worst case time complexity for a com-
pressed subset index. It is obvious that the complexity is worse than that of the uncompressed
subset index.

4.6 Disk-Resident Indexes

We can use a index structures to access the elements in the sub- or supersets efficiently. Many
different index structures come into consideration. For example, the universal B-tree (UB-
tree) [Bay96] is a multi-dimensional index that allows to efficiently access the rows in a table
in the sort order of any index attribute combination. For example, for the dividend table r1 with
schema R1(a1, . . .am,b1, . . . ,bn), the UB-tree allows to access the rows ordered by (a1), . . . ,(bn),
(a1,a2), . . . , (bn,bn−1), . . . , (a1, . . . ,am,b1, . . . ,bn), . . . , (bn, . . . ,b1,am, . . . ,a1). For example,
this includes the combination (b7,a3,b5).

Bayer notes that division can be efficiently processed using the UB-cache algorithm [Bay97]
when the divisor fits into memory and at least one of the attributes in A is contained in the set of
attributes used to index the dividend table. The intention is to use a merge-sort division algorithm
(Section 3.3.2.2), where the dividend, which is typically larger than the divisor, is indexed by a
UB-tree and the divisor is sorted on-the-fly and held in memory since it is relatively small. The
technique used to read the rows of a table indexed by a UB-tree in a sorted order is called the
Tetris algorithm [MZB99].
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4.7 Summary

This section gave an overview of algorithms realizing set containment tests between two col-
lections of sets. In case of set containment join algorithms, the test is a join between (a single)
set-valued column in each of the input tables. In case of set containment division, the matching is
defined on one or more columns in each input. First, we highlighted several physical storage rep-
resentations for sets in an RDBMS. For example, the representation required for set containment
division is unnested internal. Then, we discussed two important techniques for set containment
join algorithms: signatures to improve the cost of each set comparison and partitioning to re-
duce the number of comparisons. We went on by studying two set containment join algorithms
that employ these techniques, namely partitioning set join and adaptive pick-and-sweep join.
For the latter algorithm, we were able to prove the optimality of two qualifiers that characterize
efficiency: The comparison factor indicates the relative number of signatures compared to the
product of the input table cardinalities and the replication factor is the relative number of sig-
natures that are temporarily stored into partitions compared to the number of original sets. We
presented a generic execution template of set containment division as well as two instances of
it: merge sort set containment division and hash-based set containment division. Then, several
strategies for parallelizing set containment division algorithms were investigated, which rely on
a horizontal partitioning of the dividend and divisor. We proposed a new approach for set con-
tainment division that relies on an in-memory data structure called subset index. This approach
does not employ signatures.

Several of the algorithms discussed in this chapter have been implemented in Java and were
subject to performance experiments that we will present in in Chapter 6. Before that, we look at
an interesting application area for set containment tests in the following chapter.
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“We have fast, scalable algorithms for the
[data mining] operations and we can paral-
lelize them. The part still missing is a nice
algebra for composing the operations. We
should also be able to combine data mining
operations with traditional database opera-
tions.”

R. Agrawal [Win03b] 5
A New Approach to

Frequent Itemset
Discovery with SQL

In this chapter, we analyze and compare SQL-based algorithms to compute frequent itemsets,
including a new approach, whose relational algebra representation exploits the set containment
division operator.

5.1 Introduction

The discovery of frequent itemsets is a computationally expensive preprocessing step for associ-
ation rule discovery [AIS93], which finds rules in large transactional datasets. Frequent itemsets
are combinations of items that appear frequently together in a given set of transactions. Associa-
tion rules characterize, e.g., a purchase pattern of retail customers or the click pattern of web site
visitors. Such information can be used to improve marketing campaigns, retailer store layouts,
or the design of a web site’s contents and hyperlink structure.

Most commercial data mining systems and research prototypes employ algorithms that run
on data stored in flat files. However, database vendors begin to act against the general lack
of mining functionality to support business intelligence and integrate new “primitives” into their
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systems [CDH+99]. Companies employing data mining tools for their business [HGG01] realize
the need for integrating data mining algorithms with DBMS.

Some authors in research as well as in industry have suggested special data mining languages
like MSQL [IV99], DMQL [HFKZ96] or a variant of DMQL [HIL00], and ATLaS [WZ02].
Others have enriched query languages with mining functionality, like the MINE RULE opera-
tor [MPC96] or OLE DB for Data Mining [NCFB01]. However, the query processing power
offered by modern database systems for mining purposes has been widely neglected in the past.
Some research results show that algorithms for frequent itemset discovery based on SQL are less
efficient than those based on sophisticated in-memory data structures [STA98]. Others claim
that “even SQL as is is adequate even for complex data mining queries and algorithms” [Zan02].
Nevertheless, it becomes ever more important for database system vendors to offer novel analytic
functionalities to support business intelligence applications.

In this chapter, we analyze several approaches to compute frequent itemsets using SQL. We
also propose a new SQL-based approach and compare it to the other approaches.

The remainder of this chapter is organized as follows. In Section 5.2, we briefly highlight
general pros and cons of data mining using an RDBMS. Section 5.3 introduces the problem of
frequent itemset discovery. Then, in Section 5.4, we argue why our new algorithm is not just “yet
another” SQL-based approach for frequent itemset mining. In Section 5.5, we discuss alternative
ways to store and process data in tables of a relational database system. Section 5.6 highlights
important known approaches using SQL-92 before we introduce our approach that makes use of
a vertical table layout in Section 5.7. Section 5.8 summarizes this chapter.

5.2 Database Mining

In business intelligence applications, several data mining and OLAP techniques are employed
to extract novel and useful information from huge corporate datasets. Typically, the datasets
are managed by a data warehouse that is based on relational database technology. Although the
terms data mining and, even more so, knowledge discovery in databases (KDD) suggest that the
algorithms explore databases, most commercial tools merely process flat files. If they do access
a database system, then database tables are used as a container to read and write data, similar to
a file system. The query optimization and processing facilities of current database systems are
hardly ever exploited by current data mining tools. The reasons for this certainly include:

• Portability: A data mining application that does not rely on a query language can be de-
ployed more easily because no assumptions on the language’s functionality have to be
made.

• Performance: A highly tuned black-box algorithm with in-memory data structures will
always be able to outperform any query processor that employs a combination of generic
algorithms.

• Secrecy: A data mining tool vendor does not want to reveal application logic. By employ-
ing SQL-based algorithms, the database administrator will be able to see these queries.
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Despite these arguments against SQL-based data mining algorithms, exploiting the query
language power for expressing data mining (sub)problems can solve several important problems:

• Data currency: The latest updates applied to the data warehouse are reflected in the query
result. No replications, i.e. copies of the original dataset, have to be maintained such that
they reflect the freshest database content.

• Scalability: If extremely large datasets are to be mined, it is much easier to design a scal-
able SQL-based algorithm than designing an algorithm that has to manage data in external
files. The storage management is one of the key strengths of a database system.

• Adaptability to data: A database optimizer tries to find the best possible execution strategy
based on the current data characteristics for a given query. Of course, in some situations
this will not help. Similar to choosing a different proprietary algorithm for certain data
characteristics, we may get higher performance gains when we employ different data min-
ing queries.

The latter three arguments motivated our research on SQL-based algorithms for frequent itemset
discovery.

5.3 The Problem of Frequent Itemset Discovery

We briefly introduce the widely established terminology relevant for frequent itemset discovery
originating from [AIS93]. An item is an object of analytic interest like a product of a shop or
a URL of a document on a web site. An itemset is a set of items and a k-itemset contains k
items. A transaction is an itemset representing a fact like a purchase of products or a collection
of documents requested by a user during a web site visit.

Given a set of transactions T , the frequent itemset discovery problem is to find itemsets within
T that appear at least as frequently as a given threshold smin, called minimum support. An itemset
i is frequent if

|{t ∈ T | i⊆ t}|
|T | ≥ smin.

For example, a user can define that an itemset is frequent if it appears in at least 2% of all
transactions.

Almost all itemset discovery algorithms consist of a sequence of steps that proceed in a
bottom-up manner. The result of the kth step is the set of frequent k-itemsets, denoted as Fk. The
first step computes the set of frequent items (1-itemsets). Each following step k ≥ 2 consists of
two phases:

1. The candidate generation phase computes a set of potential frequent k-itemsets from Fk−1.
The new set is called Ck, the set of candidate k-itemsets. It is a superset of Fk.
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2. The support counting phase filters out those itemsets from Ck that appear more frequently
in the given set of transactions than the minimum support and adds them to Fk, the set of
frequent k-itemsets.

All known SQL-based algorithms follow this “classical” two-phase approach. There are other,
non-SQL-based approaches, like frequent-pattern growth, which do not require a candidate gen-
eration phase [HK01]. The frequent-pattern growth algorithm, however, employs a (relatively
complex) main-memory data structure, called frequent-pattern tree, which disqualifies it for a
straightforward comparison with SQL-based algorithms.

5.4 Motivation for a New SQL-Based Approach

The key problem in frequent itemset discovery is: “How many transactions contain a certain
given itemset?” This question can be answered in relational algebra using the division operator
that we discussed in Section 2.3.1. Suppose that we have a relation t(t#, i#) containing a set
of transactions, where t# is a transaction number or identifier and i# is an item number, and a
relation i(i#) containing a single itemset, i.e., each tuple contains one item. We want to collect
those t# values in a result relation r(t#), where for all tuples in i, there is a corresponding tuple
in t that has a matching i# value together with that t#. In relational algebra, this problem can be
stated as t(t#, i#)÷ i(i#) = r(t#).

Unfortunately, frequent itemset discovery typically poses the additional problem that we have
to check many (candidate) itemsets for sufficient frequency, i.e., we do not have a constant divisor
relation but we need to divide t by several divisors. This is exactly the functionality of the set
containment divisor operator that we introduced in Section 2.3.2. Instead of a relation i that holds
only a single divisor (a single candidate itemset), we use a candidate itemsets relation c(s#, i#),
where s# is an itemset number or identifier and i# is an item belonging to an itemset. Using
set containment division, we can formulate the itemset containment test as t÷∗ c = r. Now, each
tuple of the result relation r(t#, s#) characterizes which itemset is contained in which transaction.
The frequent itemsets are those values of s# that occur in more tuples of r than specified by the
minimum support. In summary, we can find the relation of frequent itemsets f (i#,support) as
follows:

f = σsupport/|T |≥smin

(
s#γcount(t#)→support (t÷∗ c)

)
. (5.1)

Note that |T | denotes the number of transactions in relation t, not the number of tuples. Figure 5.1
illustrates the support counting approach using set containment division with an example.1 The
candidate itemsets relation c contains 4 itemsets of different size. We assume a minimum support
smin of 75%. Two of the four itemsets in s are frequent, C and CD, because |T |= 4, their support
count is 3, and hence the condition support/|T | ≥ smin is fulfilled.

Based on the idea of using set containment division to specify the itemset containment prob-
lem, we devised a complete algorithm in SQL using a vertical table layout and universal quan-

1We use letters instead of numbers for the i# values in the examples throughout the chapter for easier compre-
hension.
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t# i#

1 C
1 D
2 A
2 B
2 C
2 D
3 A
3 D
4 B
4 C
4 D

(a) t

i# s#

C 1
C 2
D 2
B 3
C 3
D 3
A 4
B 4
C 4
D 4

(b) c

t# s#

1 1
1 2
2 1
2 2
2 3
2 4
4 1
4 2
4 3

(c) r1 = t÷∗ c

s# support

1 3
2 3
3 2
4 1

(d) r2 = s#γcount(t#)→support (r1)

s# support

1 3
2 3

(e) f = σsupport/|T |≥smin
(r2)

Figure 5.1: An example showing the relationship between frequent itemset discovery and the
set containment division operator

tifications. We use the term “universal quantification” instead of “division” because we will first
specify the queries of our approach using tuple relational calculus, which includes the mathe-
matical universal quantifier (∀). In addition, we will present relational algebra expressions—we
have just shown the algebra expression for the support counting phase—as well as SQL queries
that are equivalent to the calculus expressions.

Although there are two main approaches to express universal quantification in SQL, as men-
tioned in Section 2.3.1, one based on counting, the other based on value comparisons, we focused
on the latter approach. The reason is that the counting approach puts extra restrictions to the
quantification problem and it is less intuitive. To see why, suppose we want to test if an itemset
i is contained in a transaction t. The counting approach compares the number of items in i with
those in t. This comparison makes sense only if we require that t contains only items that are
contained in i. In other words, we have to remove those items from t in a preprocessing step that
are not contained in i. After that, we count the number of items in i and t and find that i⊆ t if the
numbers are equal. The SQL statements based on value comparisons that will be explained later
in this chapter are a more intuitive formulation of the quantification problem.

5.5 Table Layout

Before data can be mined with SQL, it has to be made available as relational tables. Typically,
the data is stored in tables within that database system or, if the data has to be kept outside of
the database system, it has to be made accessible to the database system by using wrappers that
provide a relational view on the data.
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Layout Transactions Itemsets

horizontal/
single-row

t# i#1 i#2 i#3

1 B C D
2 C D NULL

s# i#1 i#2

1 B C
2 B D

vertical/
multi-row

t# i#

1 B
1 C
1 D
2 C
2 D

s# pos i#

1 1 B
1 2 C
2 1 B
2 2 D

Table 5.1: Table layout alternatives for storing the items of transactions and itemsets

5.5.1 Layout Types

Two types of data objects are relevant for frequent itemset discovery: transactions and itemsets.
For each type, there are basically two main layouts (schemas) for representing these objects in
a table. In particular, the items of an object can be stored either in a single row, which we call
horizontal layout, or in several rows, which we call vertical layout, illustrated in Table 5.1. Note
that the vertical layout for itemsets has a position attribute pos associated with each item. This is
necessary because most algorithms assume a lexicographic order of items within an itemset and
they need to access an item at a specific position.

Almost all known SQL-based approaches assume that transactions are stored in a vertical
layout. To the best of our knowledge, only the approach proposed by Rajamani et al. [RCIC99]
assumes a horizontal layout. In that approach, the horizontal/vertical layout for transactions is
called multi-column/single-column data model, respectively. No layout alternatives for itemsets
are discussed in that paper because the focus is on input data (i.e., only the transactions) for as-
sociation rule discovery algorithms, not on intermediate or result data (itemsets) representations,
as in this chapter.

Analogous to transactions, there are two different table layouts for itemsets. All known
approaches for frequent itemset discovery based on SQL-92 assume a horizontal itemset table
layout.

A third, hybrid way of storing items is possible, combining the vertical and horizontal ap-
proaches. It may happen that the size of itemsets or, more likely, the size of some transactions
is larger than the number of item attributes that have been defined for the tables of a horizontal
layout. For example, if 99% of all transactions to be stored in a database have up to ten items
but only 1% has ten items or more then a database designer may decide that a horizontal layout
with ten item attributes is reasonable. For the few long transactions, however, the remaining
items can be stored in additional rows. For example, if the transaction table layout has ten item
attributes and we want to store an itemset of size 33, then at least four rows are required to store
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the entire transaction. Of course, all rows belonging to the same transaction/itemset must have a
common t#/s# value, as with the vertical approach. We will not further discuss this approach in
this chapter.

Further, rather exotic approaches have been proposed to represent transaction data. For ex-
ample, the decomposed data structure described in [HKMT95] is a non-relational data layout,
called decomposed storage structure, used in the database system Monet where the transactions
are stored as follows. Let I denote the number of distinct items in the transactions. The trans-
actions are stored in I columns where each column contains the set of t# values that contain the
item. Hence, the frequent 1-itemsets are simply the columns that contain a sufficient number of
t# values. Other layouts are used by SQL-based algorithms with object-relational features like
user-defined functions, as defined in SQL:1999. These layouts have a column with a container
data type (like BLOB or VARCHAR) to store lists of objects. One example approach, called Ver-
tical [STA98], uses a transaction table layout t(t#, i#set), where i#set contains the list of items of
a transaction. A similar approach, called Horizontal [STA98], uses the layout t(i#, t#set), similar
to the decomposed structure described above. For each distinct item, there is a list of all t# values
that contain the item. However, the Horizontal approach uses a row instead of a column for each
item, as in the decomposed layout. In this chapter, we restrict our discussion to approaches based
on SQL-92, i.e., we focus on the vertical and horizontal layout.

5.5.2 Vertical vs. Horizontal Layout

In the following, we will use the term object to denote itemsets and transactions alike. The
vertical approach differs from the horizontal approach in several ways, like the maximum object
size and the number of tables and indexes used for the objects.

5.5.2.1 Object Size

The size of an object does not need to be specified in the vertical layout. If we want to store
very large objects using a horizontal layout, it could happen that the maximum number of table
columns allowed in the database system is lower than the desired object size.2 Not only the
storage of objects may be restricted in a horizontal layout but also the processing of queries may
cause problems. The number of attributes allowed in a SELECT clause of SQL may also be
lower than required by an SQL-based algorithm. Therefore, we have to take care of the fact
that we should also avoid very long attribute lists in projections, i.e., the SQL-based approach
should not produce an intermediate result that has a horizontal layout inside the queries even if
the outcome of a query is in a vertical layout.

5.5.2.2 Number of Tables

Objects of different size can be stored in the same table if a vertical layout is used. We could even
store all objects in a single table. In this case, we only need to make sure that the data types of the

2For example, IBM DB2 Universal Database 7.2 allows up to 1 012 columns per table, Microsoft SQL Server
2000 a maximum of 1 024 columns per table, and Oracle 8i a maximum of 1 000 columns per table.
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columns i# and t# are compatible, that their values are unique, and that the position attribute val-
ues are set according to the lexicographical ordering of transaction items. In a vertical approach,
the support counters of frequent itemsets can be kept in a separate support table s(s#,support),
where the s# value corresponds to the itemset number of the respective frequent itemsets table
f (s#, pos, i#). In this case, it is reasonable to define a foreign key f.s# referencing table s. In a
horizontal layout, the support counter can also be added as an additional attribute to the f table:
(s#, i#1, . . . , i#n,support). It has been reported that the horizontal layout for transactions seems
to allow faster algorithms [RCIC99]. However, the vertical layout is much more common for
market basket analysis, the most popular field of application for association rule discovery.

5.5.2.3 Number of Indexes

Fewer indexes come into consideration and are required to improve performance in the vertical
layout. An itemset table in a vertical layout has three attributes. Hence, only 15 column com-
binations for indexes are possible.3 The larger number of potential indexes for the horizontal
layout requires a more thorough analysis on which subset of indexes could actually be exploited
by the queries given the current characteristics of data to be mined. On the other hand, one may
argue that the most expensive phases in frequent itemset discovery are the first three and hence
this discussion is more of theoretical than of practical relevance.

5.6 Overview of SQL-Based Algorithms

There is a multitude of algorithms for frequent itemset discovery. Most approaches do not con-
sider the query functionality of a database system but merely its storage capability. Implementa-
tions of these approaches, including commercial mining systems, use a database system like a file
system for retrieving input transaction data and in rare cases also for storing intermediate and re-
sult itemsets. The focus of most research on new algorithms lies on main-memory data structures
that allow an efficient candidate generation and support counting phase. Such algorithms have to
provide scalability in addition to the core functionality itself. In contrast, SQL-based approaches
can rely on the query execution engine to handle a scalable processing of the queries [RS99].
However, they often lack the efficiency of main-memory-based approaches.

Even the subclass of algorithms that use SQL queries is large. A couple of approaches employ
queries containing user-defined functions, which are processed by an object-relational database
system. Furthermore, several approaches do not employ any user-defined procedural code at all.
Such algorithms use only queries that conform to the SQL-92 standard. In this chapter, we focus
on approaches based on SQL-92.

The SETM algorithm is the first SQL-based approach [HS95] for frequent itemset discovery
described in the literature. Several researchers have suggested improvements of SETM. For ex-
ample, in [YPK00] the use of views is suggested instead of some of the tables employed, as well

3There are n!∑n−1
k=0

1
k! combinations for n attributes. This is at least exponential, since 2n−1 ≤ n!∑n−1

k=0
1
k! < en!.

Here, we do not take into account the types of indexes, like clustered, secondary, bitmap, etc., but we focus on the
attribute combinations only.
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s# i#1 i#2 i#3

1 A B C
2 A B D
3 A B E
4 A C D
5 B C D

(a) F3

s# i#1 i#2 i#3 i#4

1 A B C D

(b) C4

Figure 5.2: An example candidate itemset generation

as a reformulation using sub-queries. The performance of SETM on a parallel DBMS has been
studied further [PSTK99]. The results have shown that SETM does not perform well on large
datasets and new approaches have been devised like K-Way-Join, Three-Way-Join, Subquery, and
Two-Group-Bys [STA98]. These new algorithms differ only in the statements used for support
counting. They use the same SQL statement for generating Ck, as shown in Algorithm 3 for
the example value k = 4. The statement creates a new candidate k-itemset by exploiting the
fact that all of its k subsets of size k− 1 have to be frequent. This condition is called Apriori
property. It was originally introduced in the Apriori algorithm [AS94, MTV94]. Two frequent
subsets are picked to construct a new candidate. These itemsets must have the same items from
position 1 up to k−1. The new candidate is further constructed by adding the kth items of both
itemsets in a lexicographically ascending order. In addition, the statement checks if the k− 2
remaining subsets of the new candidates are frequent as well. We show an SQL statement in
Algorithm 4 that is equivalent to the flat query in Algorithm 3. Unlike the flat query, it makes the
Apriori checks more visible through the use of sub-queries. For example, suppose we are given
the table of frequent 3-itemsets in Figure 5.2(a). Let us further suppose that the current state of
query processing binds the tuple variable a1 to the first row (itemset ABC) and a2 to the second
(itemset ABD). These variables together represent a potential candidate ABCD in the SELECT
clause. The WHERE clause of the query in Algorithm 4 checks whether the itemset ABCD is a
candidate. The first predicate of the WHERE clause ensures that we do not create duplicates. In
our example, without this predicate we would generate ABCD a second time when a1 is bound to
the second row and a2 to the first. The first Apriori predicate tests if BCD is contained in F3. We
construct BCD by skipping the first item in ABCD. The second predicate tests if ACD is a fre-
quent 3-itemset and the third one searches for itemset ABD. There are four subsets of size three
for itemset ABCD. We do not need to test the existence of the fourth subset ABC in the WHERE
clause because ABC is guaranteed to exist in F3 since we have picked it in the FROM clause for
variable a1. Since all four subsets of ABCD exist in F3, we add ABCD to C4 (Figure 5.2(b)). In
this example, there is no further candidate 4-itemset. Although ABD and ABE have a common
prefix (AB) which would yield candidate ABDE, the remaining subsets ADE and BDE are absent
in F3. We will come back to the Apriori property in Section 5.7.1.1 when we discuss the Quiver
approach.

The algorithms presented in [STA98] perform differently depending on the data characteris-
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INSERT
INTO c4 (s#, i#1, i#2, i#3, i#4)
SELECT newid(), i#1, i#2, i#3, i#4
FROM (
SELECT a1.i#1, a1.i#2, a1.i#3, a2.i#3
FROM f3 AS a1, f3 AS a2, f3 AS a3, f3 AS a4
WHERE -- Common prefix:

a1.i#1 = a2.i#1 AND
a1.i#2 = a2.i#2 AND
-- Avoid duplicates:
a1.i#3 < a2.i#3 AND
-- Test Apriori property:
-- Skip first item.
a3.i#1 = a1.i#2 AND
a3.i#2 = a1.i#3 AND
a3.i#3 = a2.i#3 AND
-- Skip second item.
a4.i#1 = a1.i#1 AND
a4.i#2 = a1.i#3 AND
a4.i#3 = a2.i#3) AS temporary;

Algorithm 3: Candidate generation phase for horizontal approaches as a flat SQL query

INSERT
INTO c4 (s#, i#1, i#2, i#3, i#4)
SELECT newid(), i#1, i#2, i#3, i#4
FROM (
SELECT a1.i#1, a1.i#2, a1.i#3, a2.i#3
FROM f3 AS a1, f3 AS a2
WHERE -- Avoid duplicates:

a1.i#3 < a2.i#3 AND
-- Test Apriori property:
-- Skip first item.
(a1.i#2, a1.i#3, a2.i#3) IN (
SELECT i#1, i#2, i#3 FROM f3) AND

-- Skip second item.
(a1.i#1, a1.i#3, a2.i#3) IN (
SELECT i#1, i#2, i#3 FROM f3) AND

-- Skip third item.
(a1.i#1, a1.i#2, a2.i#3) IN (
SELECT i#1, i#2, i#3 FROM f3)

Algorithm 4: Horizontal K-Way-Join candidate generation phase with sub-queries

tics. The Subquery algorithm is reported to be the best algorithm overall compared to the other
approaches based on SQL-92. The reason is that it exploits common prefixes between candidate
k-itemsets when counting the support. We illustrate the generation of frequent k-itemsets in Al-
gorithm 5 for the example value k = 4 instead of giving a generic definition of qk as in [STA98]
or [Mis02].

Another approach presented in [STA98], called K-Way-Join, uses k instances of the trans-
action table and joins it k times with itself and with a single instance of Ck. Algorithm 10 on
page 107 illustrates an example SQL statement of this approach. In contrast, Algorithm 11 on
page 107 shows an equivalent approach using a vertical layout. We will further discuss this
approach in Section 5.7.2.

More recently, an approach called Set-oriented Apriori has been proposed [TC99]. The au-
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INSERT
INTO f4 (i#1, i#2, i#3, i#4, support)
SELECT i#1, i#2, i#3, i#4, COUNT(t#) AS support
FROM (
SELECT i#1, i#2, i#3, i#4, t#
FROM t, (SELECT DISTINCT i#1, i#2, i#3, i#4 FROM c4) AS c, (

SELECT i#1, i#2, i#3, t#
FROM t, (SELECT DISTINCT i#1, i#2, i#3 FROM c4) AS c, (
SELECT i#1, i#2, t#
FROM t, (SELECT DISTINCT i#1, i#2 FROM c4) AS c, (
SELECT i#1, t#
FROM t, (SELECT DISTINCT i#1 FROM c4) AS c
WHERE t.i# = c.i#1

) AS q1
WHERE q1.i#1 = c.i#1 AND

t.i# = c.i#2 AND
t.t# = q1.t#

) AS q2
WHERE q2.i#1 = c.i#1 AND

q2.i#2 = c.i#2 AND
t.i# = c.i#3 AND
t.t# = q2.t#

) AS q3
WHERE q3.i#1 = c.i#1 AND

q3.i#2 = c.i#2 AND
q3.i#3 = c.i#3 AND
t.i# = c.i#4 AND
t.t# = q3.t#
) AS q4

GROUP BY i#1, i#2, i#3, i#4
HAVING COUNT(t#) >= @minimum_support;

Algorithm 5: Subquery support counting phase

thors argue that too much redundant computation is involved in each support counting phase.
They claim that it is beneficial to save the information about which item combinations are con-
tained in which transaction, i.e., in kth iteration, Set-oriented Apriori generates an additional
table tk(t#, i#1, . . . , i#k). They also write that the size of the transaction table t is a major factor in
the cost of joins with t. Therefore, they suggest to use a modified transaction table t f that is a sub-
set of the transaction table containing only frequent items (frequent 1-itemsets), i.e., t f = t � f1.
The algorithm derives the frequent itemsets by grouping on the k items of tk and it generates
tk+1 using tk. Algorithm 6 shows the SQL statements used to derive the frequent itemsets of
size k = 4. Their performance results have shown that Set-oriented Apriori performs better than
Subquery, especially for high values of k.

A recent study by Mishra [Mis02] compared the performance of some of the above described
algorithms for two commercial RDBMS, namely IBM DB2 7.2 and Oracle 8i. The K-Way-Join
algorithm was attributed the best algorithm of those based on SQL-92 that they compared (K-
Way-Join, Two-Group-By, Subquery). Algorithms based on object-relational features have been
studied, too, and were published separately [MC03].

In this section, we have presented the SQL statements only for the algorithms K-Way-Join,
Subquery, and Set-oriented Apriori because they are subject to performance tests discussed in
Chapter 6. In particular, we chose Subquery and Set-oriented Apriori because they are considered
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INSERT
INTO t4 (t#, i#1, i#2, i#3, i#4)
SELECT t3.t#, t3.i#1, t3.i#2, t3.i#3, tf.i#
FROM c4, t3, tf
WHERE t3.i#1 = c4.i#1 AND

t3.i#2 = c4.i#2 AND
t3.i#3 = c4.i#3 AND
tf.i# = c4.i#4 AND
tf.t# = t3.t#;

INSERT
INTO f4 (i#1, i#2, i#3, i#4, support)
SELECT i#1, i#2, i#3, i#4, COUNT(t#) AS support
FROM t4
GROUP BY i#1, i#2, i#3, i#4
HAVING COUNT(t#) >= @minimum_support;

Algorithm 6: Set-oriented Apriori support counting phase

the “fastest” algorithms based on SQL-92 according to the literature. In addition, we chose K-
Way-Join because of its structural similarity to our new approach, discussed next.

5.7 Quiver

In this section, we suggest a new approach called Quiver (quantified itemset discovery using a
vertical table layout) for computing frequent itemsets using SQL [Ran02]. It requires a vertical
table layout for computing candidate and frequent itemsets, as defined in Section 5.5. In addition,
it employs universal and existential quantifications of tuple variables. In the following, we will
discuss the two phases of frequent itemset discovery according to Quiver, candidate generation
and support counting.

5.7.1 Candidate Generation Phase

Before we show how to accomplish the entire candidate generation in SQL, we explain the key
ideas of the Quiver approach using the tuple relational calculus notation used in [RG00]. We
do this because the calculus is more concise than SQL and the universal quantification used in
Quiver becomes apparent.

5.7.1.1 Tuple Relational Calculus

The generation of candidate k-itemsets can be expressed in a single calculus expression. How-
ever, we have decomposed it into several sub-expressions for a clearer presentation.

In the following, we assume that we have computed Fk−1, the set of (k−1)-itemsets for some
k ≥ 2 during the previous support counting phase. The sub-expressions use the tuple variables
a1, a2, a3, b1, b2, and c referring to the same relation Fk−1. All candidate k-itemsets have to fulfill
the calculus query Ck shown in Algorithm 7. Note that the expressions are actually templates of
expressions because they are parameterized. For example, the template a(k, p), explained below,
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Ck = {c | candidate(c,k)}
candidate(c,k) = ∃a1 ∈ Fk−1 ∃a2 ∈ Fk−1 (

[c.s# = unique()]∧
[((c.pos = a1.pos)∧ (1≤ a1.pos≤ k−1)∧ (c.i# = a1.i#))∨
((c.pos = k)∧ (a2.pos = k−1)∧ (c.i# = a2.i#))]∧
prefix-pair (a1,a2,k))

prefix-pair(a1,a2,k) = ∀b1 ∈ Fk−1 ∀b2 ∈ Fk−1 (
[(b1.s# = a1.s#)∧ (b2.s# = a2.s#)∧
(b1.pos < k−1)∧ (b1.pos = b2.pos)]→ (b1.i# = b2.i#))∧
∃b1 ∈ Fk−1 ∃b2 ∈ Fk−1 (
[(b1.s# = a1.s#)∧ (b2.s# = a2.s#)∧
(b1.pos = k−1)∧ (b1.pos = b2.pos)]→ (b1.i# < b2.i#))∧

apriori(a1,a2,k)

apriori(a1,a2,k) =
k−2∧
p=1

a(a1,a2, p,k)

a(a1,a2, p,k) = ∃a3 ∈ Fk−1 ∀b1 ∈ Fk−1 ∀b2 ∈ Fk−1 (
[((b1.s# = a1.s#)∧ (b2.s# = a3.s#)∧
(b2.pos < p)∧ (b1.pos = b2.pos))→ (b1.i# = b2.i#)]∧
[((b1.s# = a1.s#)∧ (b2.s# = a3.s#)∧
(p = b2.pos < k−1)∧ (b1.pos = b2.pos+1))→
(b1.i# = b2.i#)]∧
[((b1.s# = a2.s#)∧ (b2.s# = a3.s#)∧
(b2.pos = k−1)∧ (b1.pos = b2.pos))→ (b1.i# = b2.i#)])

Algorithm 7: Quiver candidate generation phase in tuple relational calculus (see Figure 5.4 for
an example)

has as input parameters k, the size of the candidate itemsets to be created, as well as p, the item
position within an itemset. However, in the rest of the chapter we will use term “expression”
instead of “expression templates” for simplicity.

The candidate expression relies on two sub-expressions, unique and prefix-pair. The unique
expression can be regarded as a function that creates a new s# value that must be distinct from
all existing values and that is guaranteed to be different from any value that is returned for a
different input value pair. When we use SQL for generating such a unique identifier, we could
simply use the current timestamp.



102 A New Approach to Frequent Itemset Discovery with SQL

The second sub-expression of candidate, called prefix-pair, finds s# value pairs (a1,a2) of
frequent (k− 1)-itemsets that have a common prefix of size k− 2. Such an itemset pair has the
same i# value at each position from 1 to k− 2, and the i# value of the first itemset at position
k−1 is lexicographically ordered before that of the second itemset. For example, we will create
a new itemset ABCD for C4 if we find the itemsets ABC and ABD in F3, which have the common
prefix AB.

The prefix-pair calculus expression contains universal quantifications and logical implica-
tions. An implication of the form f → g expresses the fact that if f holds then g must hold,
too. For example, we can phrase the for-all expression in prefix-pair as follows: “For all item
combinations (b1.i#,b2.i#) of itemsets a1 and a2, if we look at the same position of any but the
last item of both itemsets, then they must have the same i# value at this position.” The existential
expression that follows the universal expression can be phrased as: “At position k− 1, the item
value i# of the first itemset that we aim to find has to be lexicographically less than that of the
second itemset.”

The Quiver approach tries to reduce the number of candidates by ignoring all itemsets that
do not fulfill the Apriori property, like in the K-Way-Join algorithm, described in Section 5.6.
Thus, prefix-pair contains another expression called apriori(k), which has to hold as well. This
expression checks if, apart from a1 and a2, which we know are frequent, all other subsets of
size k− 1 are frequent, too. For example, for the potential candidate ABCD, apriori(4) checks
if the subsets ACD and BCD are contained in F3. We already know that ABC and ABD have
to be frequent because we used them for the construction of the potential candidate. Hence,
we can ignore these checks in apriori(4). In general, apriori(k) tests the existence in Fk−1
of those (k− 1)-itemsets that we get when skipping a single item at the positions 1 to k− 2
from a potential candidate k-itemset. For candidate itemset ABCD, e.g., we skip position 1 to
get BCD and position 2 to get ACD. This Apriori check is represented by a conjunction of k
similar expressions a(k, p), each having a different value of the position parameter p, where
1 ≤ p ≤ k− 2, i.e., apriori(k) = a(k,1)∧ a(k,2)∧ . . .∧ a(k,k− 2). Each expression a(k, p)
checks if such a (k−1)-itemset is frequent that we get when we skip the item at position p of the
potential candidate k-itemset.

5.7.1.2 Relational Algebra

In the following, we describe step-by-step how to compute Ck+1 using relational algebra. First,
we find pairs of itemset values (s#1,s#2) that have a common prefix of size k− 1. This can be
achieved by a set containment division between Fk and Fk, where the itemset values represent the
group attributes and we match the values of (i#,pos) with each other, resulting in the intermediate
relation r1. Second, we use a new unique itemset value for potential candidate itemsets that will
be used instead of the itemset values of the frequent itemset prefix pair of r1. We achieve this
by assuming a function unique() that assigns a unique value for every tuple in r1 to the new
attribute name s#, resulting in r2. The extended version of the projection operator, as described
in [GMUW02], allows such an assignment. Third, we construct a vertical representation of
potential (k + 1)-candidates by merging the first k tuples of the first prefix partner with the last
tuple of the second, making sure that the position value (k) of the latter is incremented by one.
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r1(s#1,s#2) = σs#1<s#2

(
πs#→s#1,pos,i# (Fk)÷∗σpos�=k

(
πs#→s#2,pos,i# (Fk)

))
r2(s#,s#1,s#2) = πunique()→s#,s#1,s#2 (r1)

r3(s#, i#,pos) = πs#,i#,pos
(
πs#→s#1,pos,i# (Fk) �� r2

)∪
πs#,i#,pos→pos+1

(
σpos=k

(
πs#→s#2,pos,i# (Fk) �� r2

))
r4(s#, i#,pos) =

k⋃
p=1

(
πs#,i#

(
σpos�=p (r3)

))×ρtemporary(pos) ((p))

r5(s#1,s#2,pos) = πs#→s#1,i# (Fk)÷∗ πs#→s#2,pos,i# (r4)

r6(s#) = πs# (r3)−πs#
(
πs#,pos (r3)�πs#2→s#,pos (r5)

)
Ck+1 (s#, i#,pos) = r3 � r6

Algorithm 8: Quiver candidate generation phase in relational algebra (see Figure 5.3 for an
example)

Fourth, we generate for each potential (k + 1)-candidate all subsets of size k in r4. Fifth, we
collect combinations of itemset values of Fk and of those potential candidates that are equivalent
(contain the same items) in r5. Sixth, we keep only those s# values of potential candidates in r3

where all subsets of size k are contained in Fk. We achieve this by finding all position values pos
of potential candidates in r3 that have no join partner in r5 using anti-semi-join. Those s# values
that have a join partner for all k positions are the real candidates. We obtain them by removing
the itemset values that have a join partner. Finally, we extract the tuples (items) of the remaining,
true candidates.

The relational algebra expressions shown in Algorithm 8 realize the ideas just described.
Refer to Table 2.3 on page 7 for details on the operators used. To illustrate these complex
definitions, we give an example in Figure 5.3 for k = 3 and a given set of frequent itemsets Fk =
{ABC,ABD,ABE,ACD,BCD}. Only one candidate can be constructed from this set: Ck+1 =
{ABCD}.

5.7.1.3 SQL

We can easily derive SQL statements from the tuple relational calculus expressions specified
before. For example, an implication can be replaced by a disjunction, i.e., we transform f →
g≡ ¬ f ∨g into “NOT f OR g.” Unfortunately, there is no universal quantifier available in SQL.
Therefore, we translate (∀x ∈ T : f (x)) ≡ (¬∃x ∈ T : ¬ f (x)) into “NOT EXISTS (SELECT *
FROM T AS x WHERE NOT f (x)).” In addition, we can use De Morgan’s rule for pushing a
negation into a conjunction or a disjunction, for example ¬( f ∧g) = ¬ f ∨¬g.

Algorithm 9 shows the SQL-92 statements of the candidate generation phase in Quiver that
are equivalent to the tuple relational calculus given above. While the calculus expressions to
compute Ck are generic, the SQL statements are shown for the example value k = 3.
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s# i# pos

1 A 1
1 B 2
1 C 3
2 A 1
2 B 2
2 D 3
3 A 1
3 B 2
3 E 3
4 A 1
4 C 2
4 D 3
5 B 1
5 C 2
5 D 3

(a) F3

s#1 s#2

1 2
1 3
2 3

(b) r1

s# s#1 s#2

6 1 2
7 1 3
8 2 3

(c) r2

s# i# pos

6 A 1
6 B 2
6 C 3
6 D 4
7 A 1
7 B 2
7 C 3
7 E 4
8 A 1
8 B 2
8 D 3
8 E 4

(d) r3

s# i# pos

6 B 1
6 C 1
6 D 1
7 B 1
7 C 1
7 E 1
8 B 1
8 D 1
8 E 1
6 A 2
6 C 2
6 D 2
7 A 2
7 C 2
7 E 2
8 A 2
8 D 2
8 E 2
6 A 3
6 B 3
6 D 3
7 A 3
7 B 3
7 E 3
8 A 3
8 B 3
8 E 3
6 A 4
6 B 4
6 C 4
7 A 4
7 B 4
7 C 4
8 A 4
8 B 4
8 D 4

(e) r4

s#1 s#2 pos

1 6 4
2 6 3
4 6 2
5 6 1
1 7 4
3 7 3
2 8 4
3 8 3

(f) r5

s#

6

(g) r6

s# i# pos

6 A 1
6 B 2
6 C 3
6 D 4

(h) C4

Figure 5.3: An example computation of candidate 4-itemsets in Quiver using relational algebra

The first INSERT statement populates the prefix-pair table p(s#, s#1, s#2), where s# is a newly
created unique identifier and the other attributes belong to the value pair of frequent (k− 1)-
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SET @k = 3;
INSERT
INTO P (s#new, s#old1, s#old2)
SELECT newid(), s#1, s#2
FROM (
SELECT DISTINCT a1.s# AS s#1, a2.s# AS s#2
FROM F2 AS a1, F2 AS a2
WHERE NOT EXISTS (

SELECT * FROM F2 AS b1, F2 AS b2
WHERE ((b1.s# = a1.s#) AND (b2.s# = a2.s#) AND

(b1.pos < @k-1) AND (b1.pos = b2.pos)) AND NOT (b2.i# = b1.i#)
) AND
EXISTS (

SELECT b1.i#, b2.i#
FROM F2 AS b1, F2 AS b2
WHERE (b1.s# = a1.s#) AND (b2.s# = a2.s#) AND

(b1.pos = @k-1) AND (b1.pos = b2.pos) AND (b1.i# < b2.i#)
)
AND
-- In the following, we skip the item at position p of
-- itemset a1.
-- The following EXIST clause has to be added for each
-- value of p, where 1 <= p <= k-2.

-- Skip item at position p = 1.
EXISTS (

SELECT a3.s#
FROM F3 AS a3
WHERE NOT EXISTS (
SELECT b1.i#, b2.i#
FROM F3 AS b1, F3 AS b2
WHERE NOT (

-- Condition 1: 1 <= i < p
( NOT (

(b1.s# = a1.s#) AND (b2.s# = a3.s#) AND
(1 <= b2.pos) AND (b2.pos < 1) AND (b1.pos = b2.pos)

) OR
(b1.i# = b2.i#)

) AND
-- Condition 2: p <= i < k-1
( NOT (

(b1.s# = a1.s#) AND (b2.s# = a3.s#) AND
(1 <= b2.pos) AND
(b2.pos < @k-1) AND (b1.pos = b2.pos + 1)

) OR
(b1.i# = b2.i#)

) AND
-- Condition 3: i = k-1
( NOT (

(b1.s# = a2.s#) AND (b2.s# = a3.s#) AND
(b2.pos = @k-1) AND (b1.pos = b2.pos)

) OR
(b1.i# = b2.i#)

)
)

)
)

) AS temporary;

INSERT
INTO C3 (s#, pos, i#)
SELECT p.s#new, f.pos, f.i#
FROM F2 AS f, P AS p
WHERE f.s# = p.s#old1
UNION
SELECT p.s#new, @k, f.i#
FROM F2 AS f, P AS p
WHERE f.s# = p.s#old2 AND

f.pos = @k-1;

Algorithm 9: Quiver candidate generation phase in SQL (see Figure 5.4 for an example)

itemsets with a common (k− 2)-prefix. In this query, we have merged the identifier generation
with the computation of prefix pairs, i.e., the calculus expression Unique is translated into the
newid() function returning a unique identifier (included in Microsoft SQL Server 2000, for ex-
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s# i# pos

1 A 1
1 B 2
1 C 3
2 A 1
2 B 2
2 D 3
3 A 1
3 B 2
3 E 3
4 A 1
4 C 2
4 D 3
5 B 1
5 C 2
5 D 3

(a) F3

s# s#1 s#2

6 1 2

(b) p

s# i# pos

6 A 1
6 B 2
6 C 3
6 D 4

(c) C4

Figure 5.4: An example computation of candidate 4-itemsets in Quiver using tuple relational
calculus and SQL

ample).
The second statement derives the candidate k-itemsets. For each row in the table p, we copy

each i# value and its corresponding pos value belonging to s#1 into the target table ck(s#,pos, i#),
together with the newly created s# value. In addition, we add another row (s#,k, i#) to ck, where
the i# value of s#2 is taken from position k− 1. This procedure is similar to the algebraic ap-
proach. However, the SQL approach employs the Apriori test before the prefix-pair table gener-
ation, which has the same schema as relation r2 in Figure 5.3(c), while the algebraic approach
tests the Apriori property after building r2. We can see the difference between p and r2 in Fig-
ures 5.3(c) and 5.4(b): The relation r2 in Figures 5.3(c) contains three tuples, where two of them
will turn out to specify no candidates. In contrast, the prefix-pair table p in Figure 5.4(b) consists
of only a single row, referencing the two itemsets used to construct the real (not merely potential)
candidate itemset ABCD.

5.7.2 Support Counting Phase

We have seen how universal quantification is used to generate Ck in the Quiver approach. These
candidates now have to be checked if they appear frequently enough in the transactions to qualify
for Fk. We propose a new approach for support counting that uses universal quantification as well.

Before we discuss the new approach, we show a vertical version for support counting that
is equivalent to the original, horizontal approach K-Way-Join, described in Section 5.6. Algo-
rithm 10 illustrates the horizontal K-Way-Join, which joins the candidate k-itemsets in table ck



5.7 Quiver 107

INSERT
INTO s3 (s#, support)
SELECT c.s#, COUNT(*)
FROM c3 AS c, t AS t1, t AS t2, t AS t3
WHERE c.i#1 = t1.i# AND

c.i#2 = t2.i# AND
c.i#3 = t3.i# AND
t1.t# = t2.t# AND
t1.t# = t3.t#

GROUP BY c.s#
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO f3 (s#, i#1, i#2, i#3)
SELECT c.s#, c.i#1, c.i#2, c.i#3
FROM c3 AS c, s3 AS s
WHERE c.s# = s.s#;

Algorithm 10: Horizontal K-Way-Join support counting phase

INSERT
INTO s3 (s#, support)
SELECT a1.s#, COUNT(*)
FROM c3 AS c1, c3 AS c2, c3 AS c3, t AS t1, t AS t2, t AS t3
WHERE c1.s# = c2.s# AND

c1.s# = c3.s# AND
t1.t# = t2.t# AND
t1.t# = t3.t# AND
c1.i# = t1.i# AND
c2.i# = t2.i# AND
c3.i# = t3.i# AND
c1.pos = 1 AND
c2.pos = 2 AND
c3.pos = 3

GROUP BY c1.s#
HAVING COUNT(*) >= @minimum_support;

INSERT
INTO f3 (s#, pos, i#)
SELECT c.s#, c.pos, c.i#
FROM c3 AS c, s3 AS s
WHERE c.s# = s.s#;

Algorithm 11: Vertical K-Way-Join support counting phase

with k tuple variables of table t, where each join condition matches a different column i# j of the
same itemset with the item value of a different row belonging to the same transaction t j. In the
vertical version of K-Way-Join, shown in Algorithm 11, both transactions and candidate item-
sets have a vertical table layout. Therefore, we replace the joins with different columns i# j of
the same itemset in the horizontal approach by joins with the item value of different rows (tuple
variables) of the same itemset. Both algorithms are shown for the example value k = 3.

Algorithms 10 and 11 show how to compute the intermediate result table sk containing only
the support count information for each frequent itemset. The final result table fk is derived by
joining ck with sk. If we were not interested in storing the support counters into a separate table,
then the statement for deriving sk could be merged with the second query, which computes fk,
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query = {(c1, t1) | c1 ∈C∧ t1 ∈ T ∧ contains}
contains = ∀c2 ∈C ∃t2 ∈ T (c2.s# = c1.s#)→ ((t2.t# = t1.t#)∧ (t2.i# = c2.i#))

Algorithm 12: Quiver support counting phase in tuple relational calculus

by replacing the reference to base table sk in the FROM clause with the query defining sk.
We compared the horizontal and vertical approach of K-Way-Join because Quiver’s support

counting phase is similar to the vertical version of K-Way-Join: We replace the explicit check of
an item value at each of the k positions (pos values 1, 2, and 3 in Algorithm 11) with a universal
quantification that checks all positions of a candidate k-itemset, independent of the parameter k.

5.7.2.1 Tuple Relational Calculus

The Quiver approach for support counting is defined in tuple relational calculus as sketched in
Algorithm 12. The expression contains derives combinations of transactions and candidates.
It has two free tuple variables c1 and t1, where c1 represents a candidate itemset and t1 is a
transaction that contains the itemset. The quantified (bound) tuple variables c2 and t2 represent
the items corresponding to c1 and t1, respectively. The universal quantification is reflected by
the condition that for each item c2.i# belonging to itemset c1.s#, there must be an item t2.i#
belonging to transaction t1.t# that matches with c2.

A combination of values (c1, t1) in the query result indicates that the itemset c1.s# is contained
in the transaction t1.t#. We can find the support of each candidate by counting the number of
distinct values t1.t# that appear in a combination c1.s#. We do not show the actual counting
because the basic tuple relational calculus does not include aggregate functions.

5.7.2.2 Relational Algebra

During the motivation of our approach in Section 5.4, we have already shown the relational
algebra expression for the support counting phase in Equation 5.1 on page 92.

5.7.2.3 SQL

The calculus query can be translated into SQL in the same manner as explained in Section 5.7.1.3
for the candidate generation phase. The resulting SQL statements are shown in Algorithm 13.
It is important to note that the aggregation is applied to the set of distinct t# values because
duplicates can occur as a result of the query processing.

In addition to the direct translation of the calculus expressions, we show how to formulate the
same idea using set containment division in Algorithm 14, assuming the hypothetical SQL syn-
tax for this operator, introduced in Section 2.5.2. Since the ordering of items within an itemset is
irrelevant for the set containment division operator, we have to eliminate the pos column of can-
didate itemsets table c when we use it as a divisor input of the GREAT DIVIDE. No DISTINCT
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INSERT
INTO s (s#, support)
SELECT s#, COUNT(DISTINCT t#) AS support
FROM (
SELECT c1.s#, t1.t#
FROM c AS c1, t AS t1
WHERE NOT EXISTS (

SELECT *
FROM c AS c2
WHERE NOT EXISTS (
SELECT *
FROM t AS t2
WHERE NOT (c1.s# = c2.s#) OR

(t2.t# = t1.t# AND
t2.i# = c2.i#)))

) AS contains
GROUP BY s#
HAVING COUNT(DISTINCT t#) >= @minimum_support;

INSERT
INTO f (s#, pos, i#)
SELECT c.s#, c.pos, c.i#
FROM c, s
WHERE c.s# = s.s#;

Algorithm 13: Quiver support counting phase in SQL using NOT EXISTS

INSERT
INTO s (s#, support)
SELECT s#, COUNT(t#) AS support
FROM t

GREAT DIVIDE BY (
SELECT i#, s#
FROM c

) AS c1
ON (t.i# = c1.i#)

GROUP BY s#
HAVING COUNT(t#) >= @minimum_support;

INSERT
INTO f (s#, pos, i#)
SELECT c.s#, c.pos, c.i#
FROM c, s
WHERE c.s# = s.s#;

Algorithm 14: Quiver support counting phase in SQL using GREAT DIVIDE

keyword is needed for the aggregation because we require that any physical set containment
division operator produces a duplicate-free quotient table.

In both Algorithm 13 and 14, the parameter k for the candidate table Ck is omitted, i.e., the
two statements are the same for every iteration of the Quiver algorithm because in Quiver we use
a vertical layout for itemset tables, whose schema is independent of the value k.
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5.8 Summary

In this chapter, we have investigated the problem of frequent itemset discovery and compared
several solutions based on SQL-92. The discovery of frequent itemsets is generally composed of
two phases: candidate generation and support counting. Support counting can be regarded as a
typical set containment test problem, and, in particular, as a set containment division problem.

There are two main approaches to represent transactions and itemsets in SQL-92: a horizontal
table layout, where all items of an object are stored in a single row, and a vertical table layout,
where an object spans as many rows as its number of items. We have presented a new approach
called Quiver that employs a vertical table layout for both transactions and itemsets by specifying
its idea using tuple relational calculus, relational algebra, as well as SQL. All known algorithms
based on SQL-92 use a horizontal table layout for itemsets. Because of the vertical table layout,
the queries for both phases of frequent itemset discovery can employ universal quantification, as
shown in our Quiver approach. The reason why we investigated such an approach using for-all
quantifiers is because it allows a natural formulation of the frequent itemset discovery problem—
counting the number of transactions that contain all elements of a given itemset.

We believe that approaches similar to Quiver that are based on a natural representation of
the mining problem in SQL will narrow the gap between data mining algorithms and database
systems.

The performance of the SQL-based frequent itemset discovery algorithms, in particular Quiver,
as well as the performance of set containment division algorithms in general will be studied in
the following chapter.



“I don’t count instructions any more. I do
count I/Os, but maybe the day is coming when
I stop counting I/Os.”

J. Gray [Win03a]

6
Performance Evaluation

In this chapter, we report on performance experiments in the two main directions of our investi-
gations. First, we examine set containment division and set containment join algorithms. These
experiments have been conducted with a prototype of a query execution engine implemented in
Java. Second, we compare the performance of SQL-based algorithms for the frequent itemset
discovery problem using two commercial RDBMSs. We also show how to improve the perfor-
mance of such queries when a set containment division operator is employed in the query exe-
cution strategy. The experimental results are supplemented by a description of implementation
details.

6.1 Implementation of a Java Query Execution Engine

In this section, we give an overview of the implementation of our query execution engine proto-
type.

6.1.1 Overview of Physical Operators

We have implemented several algorithms for the operators

• division, namely

– merge-sort division (Section 3.3.2.2) and

– hash-division (Section 3.3.2.4),
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• set containment division, namely

– merge-sort set containment division (Section 4.3.2),

– hash-based set containment division (Section 4.3.3), and

– subset index set containment division with and without compression (Section 4.5), as
well as

• set containment join, namely

– adaptive pick-and-sweep join (Section 4.2.5).

The above algorithms were implemented in the Java programming language. They make use of
the Java class library XXL (eXtensible and fleXible Library for data processing), under develop-
ment of the database research group at the University of Marburg [BBD+01, CHK+03]. XXL
offers a variety of classes for building query processors. To give an idea of the XXL library, we
just name a few exemplary classes: BTree, Buffer, HashGrouper, NestedLoopsJoin, and Predi-
cate. Interestingly, XXL already provides a class called SortBasedDivision that implements the
sort-merge division algorithm, discussed in Section 3.3.2.2. We have used version 0.99 Build
2002-08-05 of XXL.1

The division algorithms have been implemented so they can be used as an internal agorithm
for the set containment join algorithms. We do not present performance experiments for classical
division algorithms. We have not realized set containment join approaches other than adaptive
pick-and-sweep join because they are considered inferior [MGM03].

6.1.2 Set-Valued Attributes

For the implementation of the adaptive pick-and-sweep join algorithm, we had to devise a data
structure for set-valued attributes because XXL offers only atomic data types. Instead of realizing
a straightforward approach, we actually implemented nested tables, mentioned in Section 4.1,
i.e., an attribute can be a multi-set of rows, where each row may have one or more columns. We
decided that the main-memory representation of a nested table in our prototype is a Vector of
rows. In our scenario of adaptive pick-and-sweep join, a set element consists of a single value,
hence each row has a single column. Of course, a row can be composed of multiple columns but
this was not needed for our experiments.

In all experiments, an unnested table has two columns: one column representing the set
identifier and the other column the set element value. In a nested layout, a row also consists of
two columns, one for the set identifier and the other for the Vector of one-column rows for the
set elements.

The idea of using a row of size one instead of a set value alone causes a memory overhead
because we store in each row the number of colums, which is always equal to one, in addition
to the value, as we will explain in the next section. We consider this as negligible. In our

1XXL is free software, running under GNU Public License. Hence, everyone is allowed to modify the software.
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implementation, both the row size information and the set value are integer numbers and thus the
memory occupied is merely doubled.

6.1.3 Table Storage

The input data of the query execution engine is stored in files. The synthetic data generation tool,
like the original tool by IBM [AS94], produces text data. Text data is also the format that is used
for many real-life datasets that are publicly available.2 The dataset BMS3 is also provided in a
text format [ZKM01].

Our prototype was built to simulate the query execution engine of a real RDBMSs. Hence
our system does not process base tables that are stored as a text file. In fact, it could do so. In
contrast, as with any RDBMS, the base tables are stored in a proprietary, binary format. In the
following, we briefly explain the text and binary formats for the input tables required by our
prototype. While text files are only used to import datasets, binary files are used throughout all
query processing. In Section 6.1.4, we will describe the transformation of text data into binary
data in more detail.

6.1.3.1 Text Format

We have used the XXL operator FileMetaDataCursor to read a text file from disk. Each line of
the text represents a row where the column values are separated by whitespace and the first two
lines specify the attribute names and data types. For example, the following excerpt represents
the normalized table r1 in Figure 2.1(a) on page 10.

a b
Integer Integer
1 1
1 4
2 1
2 2
2 3
2 4
3 1
3 3
3 4

An equivalent nested representation of this table, shown in Figure 2.3(a) on page 10, is rep-
resented in an input text file as follows:

a b1
Integer Array
1 [1,4]
2 [1,2,3,4]
3 [1,3,4]

2For example, the datasets of the UCI KDD archive [HB99] of the University of California, Irvine, offers a large
collection of real-life datasets for data mining experiments. However, most datasets are used for classifications. Only
few and small transaction datasets are available.
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We have adapted the class FileMetaDataCursor such that also data in a nested layout can be
imported from a text file.

6.1.3.2 Binary Format

We had to devise a serialized representation of tables having a nested or unnested layout to store
them on disk. Since the tables for our performance tests consist of integer numbers only, we
decided to use the Java methods java.io.DataOutputInteger.writeInt() and java.io.DataInputIn-
teger.readInt() to store and retrieve an integer value, respectively. An integer consumes 4 bytes
on disk. All of the values described in the following are integers.

In our implementation of an unnested table layout, we represent a two-column transaction
row (t#, i#) as follows:

1. number of columns c (4 bytes, c = 2),

2. t# value (4 bytes), and

3. i# value (4 bytes).

The rows are concatenated and stored in a file. Hence, an unnested table with a total of i rows
(or items), occupies 4(3i) = 12i bytes on disk.

In our implementation of a nested table layout, we represent a two-column transaction row
(t#, i#set) as follows:

1. number of columns c (4 bytes, c = 2),

2. t# value (4 bytes),

3. number of elements in i#set (4 bytes), and

4. sequence of items. An item is a “row” itself. Therefore, we store it as follows:

(a) number of columns c′ (4 bytes, c′ = 1) and

(b) sequence of item values (4c′ bytes = 4 bytes).

The rows are concatenated and stored in a file. Hence, a nested table with t transactions and a
total of i items (rows) occupies 4(3t +2i) = 12t +8i bytes on disk.

EXAMPLE 7: Consider the dividend relation r1 in Figure 2.2 on page 10 that has the schema
R1(a,b), where a is the set identifier and b is a set element, i.e., the table has an unnested layout.
Our prototype would store this table as the following sequence of integers into a file:

• 2, 1, 1,

• 2, 1, 4,

• 2, 2, 1,
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• 2, 2, 2,

• 2, 2, 3,

• 2, 2, 4,

• 2, 3, 1,

• 2, 3, 3,

• 2, 3, 4.

The size of this file would be 4(3 ·9) = 108 bytes.
Suppose, the table contents would be stored in a nested layout, as shown in Figure 2.3 on

page 10. Here, the table r1 has the schema R1(a,b), where a is the set identifier and b contains
the set elements. In our implementation, this table is stored as the following sequence of integers
into a file:

• 2, 1, 2, 1, 1, 1, 4,

• 2, 2, 4, 1, 1, 1, 2, 1, 3, 1, 4,

• 2, 3, 3, 1, 1, 1, 3, 1, 4.

The table has t = 3 transactions and i = 9 rows. Hence, the file size for this table would be
4(3 ·3+2 ·9) = 108 bytes. It is only by chance that the file size for storing the table is the same
for both layouts.

�

6.1.4 Buffer Management

The behavior of the buffer manager is specified by three parameters: the size of a single block that
is transferred between disk and memory, the number of buffers occupied by the buffer manager
with each buffer holding a block, and the replacement strategy for buffers. We have decided to
employ the popular least-recently used (LRU) strategy for our implementation.

XXL does not provide a ready-to-use disk-based buffer manager. We implemented a class
called BufferedFileMetaDataCursor that extends the functionality of the FileMetaDataCursor,
mentioned in Section 6.1.3.1. Using this new operator, a text file is taken as input and a binary,
typically more memory-efficient file is created. It is optional to use a binary file as input. If the
buffer is large enough to hold the entire input table, no binary data is written to disk. Otherwise,
depending on the replacement strategy, some data are materialized. This transformation from the
text format to the binary format is done by the constructor of the class. The first fetch operation
from the cursor will access only the binary representation of data. Hence, all I/O operations that
we measured were accesses to tables in a binary format, except for B-trees, which have a special
internal data representation. If a row is still loaded into the buffer, no disk access is required.
Otherwise, a block is read from the binary file on disk and the row is extracted from the block in
the buffer.
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The binary format is usually a more compact representation of the data. For example, the
text representation of the XXL input type Number is transformed into a Java BigDecimal object
and then serialized and written to disk. For all datasets of our experiments, we used an integer
text representation, which is mapped to a Java Integer object. A nested data type, indicated
by the new data type Array, is first transformed into a Java Vector of rows (new XXL class
HashCodeArrayTuple) and then written to disk by serializing the atomic column values of each
row, as explained in Section 6.1.3.2.

After a buffer has been constructed for a base table, the buffer is “warm,” i.e., the rows that
have been consumed least recently from the text input file are still contained in the buffer slots.
If an objects needs to access the first row of a table and the table does not fit into the buffer, then
the buffer manager will access the binary file on disk because only the rows that have been least
recently read are still in the buffer, which are the last rows.

6.1.5 System Characteristics

The test environment for the Java query processor prototype was a 4-CPU Intel Pentium-III Xeon
PC with 900 MHz, 4 GB main memory, and Windows 2000 Server with a local SCSI disk.

The read and write access to a table is buffered by a buffer manager, described in the previous
section. Each input table has its own buffer to make the I/O behavior of the algorithms easier
to understand. The block size was set to 8 KB (8192 bytes). In order to study the I/O behavior
of a real RDBMS for large datasets, we have decided to set the number of buffer slots to 128
for each input buffer. The entire buffer for an input table is thus 1 MB. This number is low, but
we consider it as realistic when we put the base table sizes in relation to the size of tables in a
real-life database.

Let us briefly explain the intention of our decision. The largest input table used in our exper-
iments occupies (in an unnested layout) 116.8 MB on disk, as shown in Figure 6.2. Hence, an
input buffer of 1 MB is two orders of magnitude smaller than the materialized data. The main
memory size of a typical database server (approximately 10 GB) is about 1–2 orders of magni-
tude smaller than the size of a typical data warehouse (circa 1 TB). For example, according to
the TPC-H benchmark specification [Tra02], a TPC-H database with a scaling factor of 1 occu-
pies around 956 MB of storage, while the data warehouse fact table lineitem alone has a size of
641 MB. Hence, the fact table, which is likely to be subject to a typical containment query, has
a share of 67% of the total database size, i.e., it has the same order of magnitude as the entire
database. Therefore, the size of a base table compared to the main memory size differs by two
orders of magnitude. The same difference is between the buffer size and the base table size in
our test environment. The buffer settings are summarized in Table 6.1.

6.1.6 Synthetic Datasets

The synthetic datasets that we created comprise datasets that were primarily used for the divi-
dend, called original datasets, as well as datasets for the divisor, called query datasets.
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Category Parameter Value

Block size 8 192 bytesTable buffer
Blocks 128
Block size 8 192 bytes
Blocks total 128

Sort buffer Blocks final 44
Fan-in 43 690
Fan-in final 15 018

Table 6.1: System parameters of the Java query processor

6.1.6.1 Original Datasets

We have created three transaction datasets with a vertical, unnested layout that were used as the
basis from which we picked transactions to create smaller datasets. A row of a dataset consists
of two integer numbers, the transaction identifier t# and the item identifier i#. A row occupies
12 bytes on disk in our implementation, as mentioned in Section 6.1.3.2. Each dataset has a
different order of magnitude for the average transaction size of approximately 10, 100, and 1 000
items.

The datasets used for the experiments have been produced using a Java reimplementation of
the well-known IBM data generation tool mentioned in [AS94]. To realize our synthetic trans-
action generation tool, we used some source code of the SDSU Java Library [SDS02].3 Similar
datasets have been used in numerous publications for association rule discovery algorithms. We
suggest the following naming convention for a dataset: We indicate the size of a transaction (T)
and the number of transactions (D) by “xEy,” where x≥ 0 is the factor (a real number) and y≥ 0
the exponent (an integer number) of the expression x · 10y. For each dataset, we have created
another dataset that represents a manipulated collection of subsets of transactions from the orig-
inal dataset. This extraction procedure will be described in the following section. The original
dataset and the derived dataset are abbreviated by the suffix “D” for “data” and “Q” for “query,”
respectively. For example, the original dataset T1E1.D1E6.D has 1 · 106 = 1 000 000 transac-
tions, where each transaction has 1 ·101 = 10 items on the average. The datasets’ characteristics
are summarized in Table 6.2, where we give the average, minimum, and maximum size of a
transaction, as well as its standard deviation σ.

One of the input parameters of the transaction data generator is the number of distinct items.
For the datasets T1E1.D1E6 and T1E2.D1E5, this parameter was set to 1 000, while for dataset
T1E3.D1E4, it was set to 10 000. However, the real values are 771, 859, and 5 461, respectively,
because the data generation procedure is quite complex. The transactions reflect an inherent
pattern, the frequent itemsets. Each itemset, which is the basis for a transaction, is picked from a
pool of itemsets, where the number of itemsets in the pool is user-specified, and the probability

3The library was developed at the San Diego State University and distributed under GNU General Public License
(GNU GPL).



118 Performance Evaluation

Trans- Transaction size DiskDataset
actions

Rows Items
avg. min. max. σ (MB)

T1E3.D1E4.D 10 000 9 959 457 5 461 995.9 869 1 128 33.4 114.0
T1E2.D1E5.D 100 000 9 886 943 859 98.9 54 149 11.2 113.1
T1E1.D1E6.D 1 000 000 10 208 647 771 10.2 1 35 3.9 116.8
T1E3.D1E4.Q 9 546 1 020 893 5 440 106.9 1 1 112 304.1 11.7
T1E2.D1E5.Q 95 353 1 254 606 858 13.2 1 144 29.6 14.4
T1E1.D1E6.Q 989 981 5 612 509 771 5.7 1 30 3.1 64.1

Table 6.2: Overview of datasets for set containment test algorithms

Transactions Frequent itemsetsDataset
number avg. size number avg. size

Items

T1E3.D1E4.D 10 000 1 000 1 000 20 10 000
T1E2.D1E5.D 100 000 100 1 000 10 1 000
T1E1.D1E6.D 1 000 000 10 1 000 5 1 000

Table 6.3: Input parameters for generating original datasets

function for picking a certain itemset has a certain user-specified distribution. Furthermore, there
are user-specified correlation and corruption factors that influence the probability if an item of
a previous transaction is repeated in the next transaction to be generated or if an item from an
itemset is dropped in the current transaction. The numeric input parameters for the synthetic data
generation procedure are summarized in Table 6.3.

During a performance experiment, we measure the execution time of a query execution plan
for input tables that are samples of different size for each type of dataset. The sampling procedure
scanned the entire table and selected a fraction p ∈ [0,1] of all rows from the table. The ith row
was selected if "pi# �= "p(i +1)#. For example, suppose we have a table with ten rows with the
rows numbered from 0 to 9, and p = 0.7. In this case, the rows number 1, 2, 4, 5, 7, 8, and 9
are selected. We decided to create samples that are a fraction of an original dataset for the values
0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001. We used the XXL Selection operator for
the implementation of this procedure.

The original synthetic dataset generator by IBM, mentioned in [AS94], has some default
settings that we left unchanged for the dataset generation with our own tool. Let us briefly sum-
marize these settings. The probability function of the transaction size has a Poisson distribution
with a mean of the average transaction size minus one. The probability function of the frequent
itemset size has a Poisson distribution with a mean of the average frequent itemset size minus
one. The probability function of item distribution has an exponential distribution with a mean of
1. The correlation has an exponential distribution with a mean of 0.5. The corruption probability
function has a distribution that is based on a normal distribution.
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Transaction probability Item probabilityDataset
drop (p1) modify (p2) drop (p3) add (p4)

T1E1.D1E6.Q 0 0.9 0.500 0
T1E2.D1E5.Q 0 0.9 0.970 0
T1E3.D1E4.Q 0 0.9 0.997 0

Table 6.4: Input parameters for generating query datasets

6.1.6.2 Query Datasets

The dividend tables have been generated according to the data generation procedure described in
Section 6.3. In order to obtain a certain amount of quotients, we decided to create a manipulated
version of each dividend dataset that still bears some resemblance to the dividend’s data charac-
teristics. Our generic manipulation procedure can be described as follows. It has four probability
threshold values p1, p2, p3 and p4 as input. The corresponding probability funtions are all uni-
formly distributed. The probability p1 is the transaction drop probability, p2 is the transaction
modify probability, p3 is the item drop probability, and p3 is the item add probability. For each
original transaction, the manipulation procedure does the following:

• Drop the transaction with probability p1.

• Otherwise, manipulate the transaction with probability p2 as follows:

– For each original item, drop the item with probability p3.

– Otherwise, for as many times as there are items in the original transaction, add a new
random item to the transaction with probability p4.

• Otherwise, retain the transaction.

The parameter setting for the query dataset generation is summarized in Table 6.4. Ta-
bles C.1–C.3 in Appendix C on pages 179–180 give a detailed overview of the dataset sizes
for both original and query datasets. The reason for setting the paramters as indicated in the ta-
ble is that we wanted to create several but not too many true subsets of original transactions. With
this setting, we did not drop a transaction as is (p1 = 0). However, a transaction was dropped if it
happened that all items were dropped. About p2 = 90% of the transactions were subject to tests
whether to drop an item or not (p3). No items were added (p4 = 0).

The number of quotient rows for a varying divisor table cardinality is illustrated in Fig-
ures 6.1(a)–(c) for the synthetic datasets. Note that when the dividend is small, we see erratic
movements of the plot for an increasing dividend size. Since we deal with relatively small divi-
sors, a slight increase in the dividend size can produce a drastically different quotient table. This
is a natural effect since when we compare two small divisor datasets, we may find that one of
them contains much more subsets of some dividend sets than the other because of the randomized
query table generation method. This effect is much weaker for large divisors.
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(a) T1E1.D1E6
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(b) T1E2.D1E5
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(c) T1E3.D1E4
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(d) BMS3

Figure 6.1: Number of quotients

We have made a few experiments with divisors of a scale factor larger than 0.01. Unfortu-
nately, all algorithms required several days to finish the execution. It is reasonable to focus on
the number of quotients produced for large dividends with a scale factor of at least 0.05. As
we can see from the graphs, an increase in the quotient number is proportional to the size of the
dividend, as we expect intuitively.

6.1.7 Real-Life Datasets

We supplemented our collection of synthetic datasets by a real-life dataset that we call BMS3,4

which is provided by Blue Martini Software. It was introduced and compared to other transaction
datasets in [ZKM01]. BMS3 consists of several years of point-of-sale transactions of an elec-
tronics retailer. The items are product categories. A transaction represents the set of categories
from which products have been purchased at one time. While Table 6.5 on page 139 summarizes
the data characteristics of BMS3, Table C.4 in Appendix C on page 181 gives an overview of
the dataset sizes we extracted from BMS3 by the same sampling method that was used for the
synthetic datasets, described in the previous section.

4BMS3 is originally called BMS-POS in [ZKM01]. We have used two further datasets of Blue Martini Software
for the experiments with frequent itemset discovery algorithms. See Section 6.3 for details.
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We did not create query datasets from BMS3 but we used the datasets for both dividend and
divisor. The reason for this is that we wanted to retain the fact that the dataset is real-life and we
refrained from artificially distorting the point-of-sales transactions in any way.

The number of quotient rows for the synthetic dataset BMS3 is shown in Figure 6.1(d). The
same comments that we made on the plotted graphs of the synthetic datasets apply to the real-life
dataset.

6.2 Overview of Experiments

We have conducted several experiments with the physical operators realizing set containment
division and set containment join. The experiments investigate the following scenarios:

• Nesting vs. unnesting

– Time to scan data

– Time to switch the table layout on-the-fly

• Sort-based set containment division

– Time to sort input data

– Time to execute operator with and without previous sorting

• Hash-based set containment division

– Time to execute operator (based on unsorted data)

• Subset index set containment division

– Memory savings by compression

– Time to execute operator with a subset index on the dividend or divisor

– Time to execute operator with a compressed or uncompressed subset index on the
divisor

• Adaptive pick-and-sweep join

– Time to execute operator for a varying number of partitions

– Values of the replication and comparison factors for a varying number of partitions

All experiments cover some or all types of datasets described in Sections 6.1.6 and 6.1.7. We
omit the results for some type of dataset when we believe that they duplicate the characteristics
found for the other datasets.

Apart from an analysis of each algorithm itself, we compared their performance. However,
this comparison does not allow immediate implications on which algorithm is the absolute best
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Figure 6.2: Time to scan unnested and nested datasets

one. To make such a statement, we would have to vary too many system and algorithm parame-
ters. Although our experiments cover a wide range of test settings, we cannot conclude general
statements from our results. Hence, the reader should focus on the results of each algorithm itself
to understand its behavior, not on the comparison results only.
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Figure 6.3: Time to unnest and nest datasets

6.2.1 Nesting and Unnesting

We have made several experiments that measure the execution time to scan unnested and nested
datasets as well as the cost for nesting and unnesting previously unnested and nested data, re-
spectively. Our motivation for the experiments is that set containment join and set containment
division algorithms require input data of a different layout. The same type of dataset occupies a
different amout of size on disk for the two layouts. Hence, when we compare these algorithms,
we have to take into account that different I/O is incurred.

As described in Section 6.1.5, the tables are buffered, so not every table access causes I/O.



124 Performance Evaluation

For very small datasets, no I/O was caused at all. Figure 6.2 summarizes the results. For a clearer
presentation, we only show the results for the original datasets and omit the results for the scan
times of the query datasets. We found similar results for the query datasets.

Since the synthetic datasets occupy almost the same size on disk, the pure scan time of
unnested data is almost the same. The scan time for the real-life dataset BMS3 is considerably
lower due to a smaller disk size.

We found slight differences in execution time for the scan of nested tables: The larger the
average transaction size, the longer the CPU time to build a row in a nested layout. Figure 6.2(d)
shows that dataset T1E3.D1E4.D, which has 995.9 transactions on the average (the largest of all
datasets) requires more time per element than dataset BMS3, which has an average transaction
size of 6.5 (the smallest of all datasets).

The difference in the scan time for unnested and nested data is illustrated in Figure 6.2(e).
The graphs visualize the quotient

tscan nested− tscan unnested

tscan unnested

for different dataset sizes. For large datasets, the scan time for BMS3 is 8% slower when the data
is nested compared to unnested. On the other hand, for dataset T1E3.D1E4.D, the scan time is
14% slower when the data are nested.

There is a second aspect to this comparison whose results are sketched in Figure 6.2(f). The
quotient does not reflect the fact that the unnested and nested data require a different amount of
I/O due to their different sizes on disk. Hence, we also computed the quotient

tscan nested/snested− tscan unnested/sunnested

tscan unnested/sunnested
,

where sunnested and snested are the dataset disk sizes for the unnested and nested layout, respec-
tively. The exact dataset sizes are given in Appendix C on page 179. We see that for large
datasets, the relative cost of scanning nested data is between 27% and 51% higher than for scan-
ning unnested data. By “relative” we mean that we compare the execution times per byte.

We have also studied the performance for nesting and unnesting data that was previously
unnested and nested, respectively. The results are illustrated in Figure 6.3.

Similar to the scan experiments, we measured the factor by which the nest operator is more
or less efficient than the unnest operator. Again, we analyzed two different aspects of this factor.
The first aspect, illustrated in Figure 6.3(e), is the total time difference, irrespective of the fact that
the unnested and nested datasets require a different amount of I/O. For this aspect, we compute
the quotient

tnest− tunnest

tunnest
.

Taken all datasets together, the effort for nesting was between 9% and 32% higher than for
unnesting.
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Figure 6.4: Time to sort datasets

The second aspect compares the execution times while eliminating the difference in dataset
size of the two layouts. Hence, we computed the quotient

tnest/snested− tunnest/sunnested

tunnest/sunnested
.

The results are shown in in Figure 6.3(f). One can see that for large datasets, nesting is between
29% and 94% more expensive than unnesting data. Hence, we learn that, due to our implemen-
tation of a binary nested and unnested table layout, the CPU cost for reading a nested table is
higher than for an unnested table since each element is transformed into a separate row object.
Creating a new row incurs the cost of allocating meta data for it, like the column name (which is a
single character by default in our implementation) and the column type (which is always integer).
Of course, this time is low compared to the I/O time to read data from disk. However, we could
measure the effect of the CPU-intensive task of reading nested data. The CPU cost for reading
the same unit of storage of nested data with long transactions (T1E3.D1E4.D) is higher than for
short transactions (T1E1.D1E6.D) although the same number of rows have to be created for the
elements. However, fewer row objects for transactions are created for datasets with long trans-
actions. For example, for scale factor 1, the total number of row objects is 10 000 + 9 959 457
for dataset T1E3.D1E4.D compared to 1 000 000+10 208 647 for T1E1.D1E6.D, according to
Table 6.2. Hence, approximately 12.4% more row objects are created for dataset T1E1.D1E6.D
than for T1E3.D1E4.D, which caused the difference in CPU cost in Figure 6.3(f) between these
datasets.

6.2.2 Sort-Based Set Containment Division

Sort-based set containment division is an algorithm that requires its input tables be first grouped
on the transaction column t# and second sorted on the item column i#. We measured the per-
formance of this algorithm with base tables that had the required data properties. In practice,
it may happen that the inputs are already structured this way either because it was stored with
this structure physically on disk, or an index is defined on (t#, i#), or the input tables have been
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Figure 6.5: Sort-based set containment division for sorted data

produced by sort and/or group operators.
In addition to measuring the merge-style processing of sort-based set containment division,

we have measured the time to sort the input tables on (t#, i#), both in ascending order, based
on a table that was sorted on i# in ascending order, i.e., the input for this sort operation was
considerably unsorted. Its execution times are illustrated in Figure 6.4 for all datasets. We used
an external merge-sort algorithm that is provided by the XXL class MergeSorter and which is
based on Graefe’s description of external sorting [Gra93]. It creates sorted runs and merges them
recursively. According to the XXL javadoc documentation, the “open-phase” of this algorithm
uses replacement selection to create sorted runs, which are on average twice as large as the
memory available. Then, the runs are merged until finalFanIn intermediate runs are left. This
internal parameter of the MergeSorter class is derived from several tuning knobs of the algorithm.
In the “next-phase” or “fetch-phase” the remaining runs are merged on demand, i.e., no complete
sorted run has to be stored temporarily. Except for the sort buffer size, we have left the default
settings of XXL unchanged. They are summarized in Table 6.1 on page 117.

The graphs in Figure 6.4 do not appear to expose the typical sort complexity of O(n log(n))
for a dataset of cardinality n. However, we could verify this behavivor for the large scale factors
between 0.1 and 1. The performance behavior for the smaller datasets do not show the classical
sort complexity function but they are more expensive. Please note that the theoretical complexity
and the real behavior come close to each other only for large datasets. We consider this a normal



6.2 Overview of Experiments 127

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1

tim
e 

(s
)

scale factor of dividend

scale factor of divisor
0.0001
0.0005
0.0010
0.0050
0.0100

(a) T1E1.D1E6

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1

tim
e 

(s
)

scale factor of dividend

scale factor of divisor
0.0001
0.0005
0.0010
0.0050
0.0100

(b) T1E2.D1E5

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1

tim
e 

(s
)

scale factor of dividend

scale factor of divisor
0.0001
0.0005
0.0010
0.0050
0.0100

(c) T1E3.D1E4

 0.1

 1

 10

 100

 0.001  0.01  0.1

tim
e 

(s
)

scale factor of dividend

scale factor of divisor
0.0001
0.0005
0.0010
0.0050
0.0100

(d) BMS3

Figure 6.6: Sort-based set containment division: preprocessing time for unsorted data

system behavior since the effect of other performance factors like skewed data distribution, and
disk I/O have a dominant effect on the experiments with relatively small datasets.

The execution times of sort-based set containment division are shown in Figure 6.5 for each
type of dataset, i.e., when the datasets are already sorted. One can clearly see that the execution
time is linear with the dividend size for a constant divisor size.

When both input tables are unsorted, we have to sort them first and then apply the sort-based
set containment division algorithm. The accumulated time for these two phases are shown in
Figure 6.7. These results have been generated by summing up the times to sort the respective
original and query dataset shown in Figure 6.4 and the time for the mere division processing in

Figure 6.5. For large datasets, the complexity of the set containment division of O
(
|r2|+ |r2|

θ2
|r1|

)
dominates the preprocessing sort effort of O(|r1| log(|r1|)+ |r2| log(|r2|)).

6.2.3 Hash-Based Set Containment Division

Hash-based set containment division makes no assumption on the ordering of rows in any input
table. The algorithm uses the hash-division algorithm internally. Hence, two hash tables are held
in memory during each execution of a hash-division operation: the quotient hash table, which
stores the quotient candidates, and the divisor hash table, which stores the rows of a single divisor
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Figure 6.7: Sort-based set containment division for unsorted data

group.
How many buckets should we assign to these hash tables? The number of quotient candidates

that are stored in the quotient hash table is equal to the number of transactions in the dividend.
Let this number be n1. Furthermore, let p(n) be a function that returns the smallest prime that
is greater than or equal to n. A good estimation for the quotient hash table capacity is p(n1),
provided that the hash-function is good, i.e., it distributes the rows equally across all buckets.
For the divisor hash table, a good capacity estimation is p(n2), where n2 is the size of the current
divisor group. For our performance tests, we decided to keep the hash table capacities constant
for all datasets and to use the same capacity for the quotient and divisor hash tables. The largest
number of transactions of all datasets is 1 million and occurs in dataset T1E1.D1E6.D, as indi-
cated in Table 6.2. The number of transactions in the real-life dataset BMS3 is only 515 597,
as shown in Table 6.5 on page 139. The number of buckets in all hash tables was thus set to
p(1 000 000) = 1 000 003.

The experimental results are shown in Figure 6.8. At first sight, they look very similar to the
results of sort-based set containment division in Figure 6.7.

We have compared the performance of hash-based set containment division and sort-based
set containment division for unsorted datasets, i.e., we have included the time for sorting the
datasets first for the sort-based approach. The results are given in Figure 6.9. They reveal, e.g.,
that for dataset T1E1.D1E6, hash-based set containment division outperforms sort-based set con-
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Figure 6.8: Hash-based set containment division

tainment division for medium size dividends, where the scale factor lies between 0.01 and 0.05.
It performs worse for very small and very large dividends. A someway similar behavior can be
seen for dataset BMS3. Except for the dividend with scale factor 0.005, the hash-based approach
never outperforms the sort-based one. However, the difference between the two approaches is
smallest for a medium size dividend with a scale factor around 0.05. In theory, one would expect
that for very large datasets, any sort-based operator should be able to outperform a hash-based
operator because beyond a certain dataset size, the buckets of a hash table will no longer fit
into memory and the system performance will degrade due to thrashing. In our implementation
of the hash-division (and thus also hash-based set containment division), we did not realize an
upper bound of main memory available to the hash tables. Hence, since the test environment
offers enough main memory for all datasets, hash-based set containment division did not reveal
a degrading performance.

6.2.4 Subset Index Set Containment Division

The table on which we create the subset index has to be first sorted on the group cardinality
in descending order, second grouped on the set column, third sorted on the element column, as
explained in Section 4.5.4.

Intuitively, it is reasonable to build an index on the larger of two input tables and to probe the
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Figure 6.9: Improvement factor of hash-based set containment division compared to sort-based
set containment division
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Figure 6.10: Influence of subset index options for dataset T1E3.D1E4 on execution time

index with the smaller table. This was confirmed by our experiments with the subset index. For
example, in Figure 6.10(a), the execution time of a subset index set containment join is illustrated
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Figure 6.11: Subset index size

for dataset T1E3.D1E4 for a subset index on the dividend as well as on the divisor. The xy-
plane represents combinations of dataset sizes for the dividend and the divisor, indicated by the
respective scale factors. One can clearly see that a subset index on the dividend is beneficial
when the dividend is relatively small and the divisor is relatively large. Whenever the dividend
is large and/or the divisor is small, it is better to create the subset index on the dividend.

The performance can be significantly different when we employ an uncompressed or a com-
pressed subset index. For example, consider a divisor subset index on dataset T1E3.D1E4.Q.
This scenario is sketched in Figure 6.10(b). We find that compression creates an overhead of
about an order of magnitude for a wide range of combinations.

The absolute amount of memory saving for compressed nodes in the subset index is illus-
trated in Figure 6.11. We observe that the smaller the average transaction size, the “earlier” can
we save memory by using a compressed subset index for the divisor table, i.e., memory savings
come into effect for small datasets.

It is due to the peculiar nature of dataset T1E1.D1E6.Q.P5E-2 that we see a decline in the
number of nodes. For large, purely randomly distributed datasets, we would expect a strictly
monotonic increasing function, given the size of a randomly generated sample of a randomly
generated dataset. The memory saving graphs for the other two datasets do not exhibit such a
behavior.

Figure 6.12(a) shows the relative size of the compressed index compared to the uncom-
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Figure 6.12: Memory savings by compression

pressed version, which is assumed to be 100%. One can see that for a small average transaction
size (T1E1.D1E6.Q), one can achieve memory savings even for small datasets as compared to
datasets with long transactions (T1E3.D1E4.Q). To see the rate at which one can achieve memory
savings per transaction, Figure 6.12(b) clearly shows that there are maxima of memory saving
per transaction. This figure can be considered the first derivation of the functions plotted in
Figure 6.12(a).

Figure 6.13 illustrates the execution times when an uncompressed and compresses subset
index on the divisor table is used.

The time to create a subset index on the divisor is sketched in Figure 6.14 for all types of
dataset. We can see that the time for building a compressed index can be up to two orders of
magnitude higher than for an uncompressed one.

6.2.5 Set Containment Join

The set containment join algorithm has several parameters that have to be set carefully. We have
set the signature length to 160 bits. The buffer slot size is 8192 bytes, which the same as for
the other experiments. The input data is a buffered nested table in a binary representation with
M = 128 buffer slots and a block size of 8 KB. We have decided to use four different settings for
the number of partitions: k = 4i, where 1 ≤ i ≤ 4. The total number of buffer slots assigned to
the partitions is max{1, 2M

k }. It depends on k, the number of partitions as well as on M, the total
number of buffer slots assigned to a single input table, i.e., dividend or divisor. In our setting,
each of the 4, 16, 64, and 256 parititions had 64, 16, 4, and 1 buffer slots available, respectively.

Figures 6.15 and 6.16 show the result of experiments with the synthetical dataset T1E1.D1E6
and the real-life dataset BMS3 for a varying number of partitions. The total execution times are
sketched in Figures 6.15(a) and 6.16(a). They show that if both the dividend and divisor have
few rows, the best performance is achieved with the fewest number of partitions (4). The longest
execution time is produced for the largest number of partitions (256). This effect is reversed if
both tables are large. Note that the x- and y-axes in Figures 6.15(d) and 6.16(d) are switched
compared to the other coordinate systems to show clearly how the replication factor increases
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Figure 6.13: Execution time of set containment division with subset index on the divisor table

when the dividend size |r1| increases and/or the divisor size |r2| decreases.
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Figure 6.14: Execution time of set containment division with subset index on the divisor table
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Figure 6.15: Set containment join with dataset T1E1.D1E6
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Figure 6.16: Set containment join with dataset BMS3
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6.3 Datasets for Frequent Itemset Discovery

In this section, we discuss the characteristics of the datasets used for the performance tests for
frequent itemset discovery and explain why we chose them.

We used the same synthetic data generation tool that we used for the experiments with set
containment test operators. By convention, i.e., as is done in the literature on association rule
discovery, the datasets thus produced are denoted by the average size of a transaction (T), the
average size of an itemset pattern used to produce the data (I), and the number of transactions
(D). For example, the dataset T5.I5.D100k consists of 100 000 (or 100 kilo) transactions, each
containing 5.4459 (roughly 5) items on the average, resulting in 544 590 rows. In this case, the
largest transaction produced by the tool has 12 items. The synthetic transaction datasets as well
as the real-life datasets discussed next are summarized in Table 6.5.

The datasets occupy 4 bytes for an integer value on disk, i.e., 8 bytes per row. For example,
the total space required to store dataset T5.I5.D100k is 8 · 544 590 bytes = 4 356 720 bytes ≈
4.2 MB. This number is the raw size in the binary export file of the data generator. The data are
then imported by an RDBMS, which will store the data in data containers that have a larger size
than the binary files.

Besides the synthetical datasets, we have used several real-life transaction datasets provided
by Blue Martini Software [ZKM01] that we call BMS1 and BMS2.5 BMS1 and BMS2 represent
click-stream data of two e-commerce web sites. We used these datasets because the transaction
size distribution is different from the synthetic datasets, as illustrated in Figure 6.17 (note the
logarithmic scale of the y-axis). The synthetic data has a Poisson distribution of the transaction
size with a mean of λ, i.e., there are relatively few transactions of size 1 ≤ k < λ, relatively
many transactions of size k ≈ λ, and relatively few transactions of size k > λ. The number of
transactions for the real-life datasets, in contrast, is strictly monotonic decreasing with the trans-
actions size. This fact results in different frequent itemset discovery algorithms being optimal
for real-life and synthetic datasets, as discussed in [ZKM01].

We have chosen the minimum support threshold for each dataset separately. For the synthetic
T5.I5.D10k dataset, we set the minimum support to 1% (100 transactions), for T5.I5.D100k
to 0.1% (100 transactions). For the real-life dataset BMS2, we picked a minimum support of
0.2% (155 transactions). The reason why we picked these values is that we wanted to study the
performance of the frequent k-itemset generation for very small (k = 1,2,3) as well as relatively
large itemset sizes (k ≥ 4). To characterize the effect of these parameter settings, Figure 6.18
shows the number of candidate itemsets in Ck and the number of frequent itemsets Fk produced
in each iteration k. These numbers are independent of an algorithm. Note the logarithmic scale
of the y-axes.

5BMS1 and BMS2 are called BMS-WebView-1 and BMS-WebView-2 in [ZKM01], respectively. Another dataset,
called BMS3 (or BMS-POS in the original source), which is similar to BMS1 and BMS2 w.r.t. to the item distribution,
was used for the performance experiments with set containment test algorithms. It was mentioned in Section 6.1.7.
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(d) T5.I5.D100k

 1

 10

 100

 1000

 10000

 100000

 0  20  40  60  80  100  120  140  160  180

#t
ra

ns
ac

tio
ns

k

(e) BMS3

 1

 10

 100

 1000

 10000

 100000

 2  4  6  8  10  12  14  16  18

#t
ra

ns
ac

tio
ns

k

(f) T10.I5.D100k

Figure 6.17: Transaction size distribution
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Trans- Transaction size Disk
Dataset

actions
Rows Items

avg. max. (MB)

BMS1 59 602 149 639 497 2.5 267 1.1
BMS2 77 512 358 278 3 340 4.6 161 2.7
BMS3 515 597 3 367 020 1 657 6.5 164 25.7
T5.I5.D5k 5 000 30 268 86 6.1 18 0.2
T5.I5.D10k 10 000 58 964 86 5.9 17 0.5
T5.I5.D100k 100 000 544 590 839 5.4 12 4.2
T10.I5.D100k 100 000 1 002 226 850 10.0 18 7.6

Table 6.5: Overview of datasets for frequent itemset discovery
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(b) T5.I5.D100k, smin = 0.1%
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Figure 6.18: Itemset size distribution

6.4 Frequent Itemset Discovery with a Commercial RDBMS

We compared the performance of the following SQL-based algorithms on two commercial RDBMS:

• K-Way-Join,

• Subquery,
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K-Way-Join ch
1, s1, f h

1
Subquery

ch
2, s2, f h

2 ch
3, s3, f h

3 . . . ch
k , sk, f h

k

Set-oriented Apriori
ch

1, qh
1, s1, f h

1 tv
f , ch

2, s2, f h
2 ch

3, th
3 , s3, f h

3 . . . ch
k , th

k , sk, f h
k

Quiver
Vertical K-Way-Join

cv
1, s1, f v

1 p, cv
2, s2, f v

2 p, cv
3, s3, f v

3 . . . p, cv
k , sk, f v

k

Table 6.6: Sequence of tables populated by SQL-based algorithms

• Set-oriented Apriori (all discussed in Section 5.6),

• Quiver (introduced in Section 5.7), as well as

• a vertical version of K-Way-Join (proposed in Section 5.7.2).

Remember that Quiver and Vertical K-Way-Join use a vertical table layout for the itemsets, while
the other approaches use a horizontal layout.

The first test environment, which we call MSS, was Microsoft SQL Server 2000 Standard
Edition running on a 4-CPU Intel Pentium-III Xeon PC with 900 MHz, 4 GB main memory, and
Windows 2000 Server. It is the same environment that was used for the experiments with the
Java query execution engine prototype mentioned in Section 6.1.5. The second one, which we
call DB2, was IBM DB2 Universal Database V7.2 Enterprise Edition running on a 2-CPU Sun
UltraSPARC-III server with 750 MHz, 4 GB main memory, and Sun Solaris Version 8.

For a clearer presentation, we mark tables storing items having a horizontal or vertical layout
by the superscript letter h and v, respectively. These tables are the transactions table t, the can-
didate itemsets table c, the frequent itemsets table f, as well as some other tables used only for
certain algorithms, namely qh

1, tv
f , and tv

f .
An algorithm consists of a sequence of SQL INSERT statements. For each algorithm, the

first statement populates the table of candidate 1-itemsets. Table 6.6 shows for each algorithm
the tables that are affected by the sequence of INSERT statements. For example, let us consider
K-Way-Join. The first INSERT statement populates table ch

1(s#, i#1). Next, the support table
s(s#, support) is filled with the support counts for each s# value in ch

1. Only the itemsets with
sufficient support are added to the support table s1 and subsequently to the frequent 1-itemset
table f h

1 . The second iteration begins with an INSERT statement that populates ch
2, and so on. As

with every bottom-up frequent itemset discovery algorithm, the sequence of INSERT statements
stops as soon as Ci = /0 for some i≥ 1 or when a user-defined maximum value of k is reached.

The optimization of sequences of SQL statements, and in particular the global optimization
of INSERT statement sequences has been a focus of our work [KSRM03]. However, we believe
that it goes beyond the work covered in this thesis and therefore we do not discuss it here.

Note that Set-oriented Apriori uses a vertical table tv
f , a subset of t, as mentioned in Sec-

tion 5.6. However, the tables for storing items, ch
i , f h

i , and qh
1, have a horizontal layout.

To allow for more query optimization by the RDBMS, several indexes have been created on
the intermediate and result tables of the algorithms, as summarized in Table 6.7. Although it is
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Layout PI: Primary/clustered index
w.r.t. items

Table
SI: Secondary indexes

PI: (t#, i#1, . . . , i#k)th
k (t#, i#1, . . . , i#k) SI: (t#),(i#1), . . . ,(i#k)

PI: (t#, i#1)qh
1 (t#, i#1) SI: (t#),(i#1)horizontal

PI: (s#)
ch

k (s#, i#1, . . . , i#k) SI: (i#1), . . . ,(i#k)
PI: (s#)

f h
k (s#, i#1, . . . , i#k) SI: (i#1), . . . ,(i#k)

PI: (t#, i#)
tv (t#, i#)

SI: (t#),(i#),(i#, t#)
PI: (t#, i#)

tv
f (t#, i#)

SI: (t#),(i#),(i#, t#)
vertical

PI: (s#, i#)
cv

k (s#,pos, i#)
SI: (s#),(i#),(pos)
PI: (s#, i#)

f v
k (s#,pos, i#)

SI: (s#),(i#),(pos)
PI: (s#)

sk (s#,support)
SI: (support)−
PI: (s#)

p (s#,s#1,s#2) SI: (s#1),(s#2)

Table 6.7: Overview of indexes created on tables used by SQL-based algorithms

possible to experiment with all attribute combinations for indexing tables of the vertical layout,6

it requires much effort to do so for large values of k for horizontal tables like ch
k . For the Quiver

and Vertical K-Way-Join approaches, the tables cv
i , f v

i , and p have only three columns, as can be
seen in Table 6.7. Hence, it would be feasible to experiment with all 15 attribute combinations
as indexes. On the other hand, horizontal tables in the ith iteration have i + 1 columns and thus
many more attribute combinations for indexes are possible for high values of i, as discussed in
Section 5.5. Even for the tables with a vertical layout, simply using all possible indexes might not
always be a good idea since index maintenance requires a considerable time and storage space
overhead. Hence, our index choice is one out of many possible, but we have made a careful
analysis on what indexes to offer to the optimizer. Modern RDBMSs offer an “index advisor”
tool that suggest which indexes to create for a given query workload. We have not used such
a tool. Note that the performance results reported in [STA98] on algorithms based on SQL-92,
mentioned in Section 5.6, are very detailed but they do not cover the entire number of indexes
neither. Hence, we must leave as future work a comprehensive study on selecting the most
effective indexes for the algorithms.

6see footnote 3 on page 96
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Figure 6.19: Execution times of candidate generation phases

After each INSERT statement on a table, we let the RDBMS recompute the statistics of that
table as well as all indexes created on it to enable the optimizer to produce a good query execution
plan for each INSERT statement that follows. Of course, the statistics creation consumes some
amount of the total execution time for the statement batch but we observed that in all reasonable
cases this overhead was negligible compared to the total execution time.

6.4.1 Candidate Generation

All horizontal approaches use the same SQL INSERT statement for the generation of candidate
itemsets. The same holds for all vertical approaches. Figure 6.19 shows the execution times of
the candidate generation phase in each iteration of the algorithms. One can see that the candidate
generation phase based on a vertical table layout (Quiver and Vertical K-Way-Join) is slower than
for the horizontal approach (K-Way-Join, Subquery, Set-oriented Apriori). For the iterations 8–9
using dataset T5.I5.D10k (Figure 6.19(a)) and for the iterations 3–6 using dataset T5.I5.D100k
(Figure 6.19(b)), the response time differed by more than two orders of magnitude. This differ-
ence is mainly caused by an expensive processing of the numerous correlated (NOT) EXISTS
sub-queries that compute the prefix-pair table p, shown in Algorithm 9 on page 105. This query
has a growing complexity for increasing itemset cardinalities.
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Figure 6.20: Execution times of support counting phases

6.4.2 Support Counting

Our results for the support counting phase are illustrated in Figure 6.20. They reveal that for
dataset T5.I5.D10k, Figure 6.20(a), K-Way-Join is superior to all approaches in all but the last
iteration of the support counting phase. Except for Quiver, the algorithms had a performance
that stayed within a corridor of at most an order of magnitude from each other. We had to stop
the execution for the experiments with Quiver for datasets T5.I5.D100k and BMS2, therefore the
graphs are incomplete (BMS2) or are missing (T5.I5.D100k) in this figure. The reason for this is
that during the computation of the prefix-pairs table p, the apriori tests are extremely expensive
to execute and caused a lot of I/O for writing temporary data.

The experiment with dataset T5.I5.D100k, Figure 6.20(b), confirms the claim in [TC99] that
Set-oriented Apriori performs better than Subquery for late passes of the algorithm, i.e., for high
values of k.

6.4.3 Query Execution Plans

In this section, we discuss the query execution plans for several SQL statements produced by a
commercial RDBMS for the SQL-based frequent itemset discovery algorithms K-Way-Join and
Quiver. In addition, we show how the Quiver query for support counting can be realized using a
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Operator Name Description

Sort Sort Sorts the input rows in ascending or descending order of the column
values.

RowCount Row count Returns the number of rows in the input.

AIScanS Index scan Retrieves input rows using an index on column list A. The specification
S describes the index access more closely, e.g., “clustered.”

AISeekS
C Index lookup Retrieves those input rows using an index on column list L that ful-

fill condition C. The specification S describes the index access more
closely.

Top1 First row Retrieves the first row and skips the rest of the input.

A× Correlated
Cartesian
product

A is a list of assignments, each assigning an expression based on the
columns of the left input to a variable. These variables can be used
in the conditions of an operator used in the right expression. Exam-
ple: r1a+b→x×σc=x(r2) for some relations r1 and r2 with the schemas
R1(a,b) and R2(c), respectively. For each tuple in r1, the expression
builds the Cartesian product only with those tuples in r2 that fulfill the
condition r1.a+ r1.b = r2.c. This is similar to a theta-join but it allows
to push the join condition deeper into the left expression.

��I
C Theta-join I is the implementation and C the condition.
÷∗I Set contain-

ment division
I is the implementation.

L�I
C Left anti-semi-

join
I is the implementation and C the condition. The letter “L” denotes left
anti-semi-join. For each row l of the left input, the operator evaluates
the right input. If no row is produced in the right input, it outputs l.
The values of l act as “outer references” for the right, “inner” input.

GγI
A Grouping I is the implementation, G is a list of grouping columns and A is a list

of aggregations.

Table 6.8: Overview of the physical operators of the relational algebra used in this thesis

set containment division operator. For an overview of the operators used in the plan, we refer to
Table 6.8.

We compare Quiver to K-Way-Join because of their structural similarity. We are aware of
the fact that K-Way-Join is not the best algorithm based on SQL-92 overall. In the following,
we discuss the query execution strategy chosen by the optimizer in the MSS environment for
the INSERT INTO s4 statement. The statement is similar to that in Algorithm 10 on page 107,
which shows the statement for k = 3. The transaction table is based on the dataset T5.I5.D5k
and the candidate table ch

4 was produced for a minimum support value of 2% (100 transactions).
Figure 6.21 shows the query execution plan for this SQL statement. The plan contains four
hash-joins to realize the Apriori condition: it joins the candidate table ch

4 four times with the
transaction table tv.

Figure 6.22 shows the query execution plan for the INSERT statement into s4 for the Quiver
algorithm using NOT EXISTS, illustrated in Algorithm 13 on page 109. The plan employs anti-
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(15) c4.s#γhash
count(∗)

(14) ��hash
t4.t#=t1.t#∧c4.i#1=t1.i#

(11) ��hash
t3.t#=t4.t#∧t3.i#=c4.i#3

(2) t#IScan

(1) ρt3(t
v)

✦✦✦✦✦ ❛❛❛❛❛
(10) ��hash

c4.i#4=t4.i#∧c4.i#2=t2.i#

(4) s#, i#1, i#2, i#3, i#4IScanclustered

(3) ρc4(c
h
4)

✑
✑✑ ◗

◗◗
(9) ��hash

t2.t#=t4.t#

(6) i#, t#IScan

(5) ρt2(t
v)

�
� ❅

❅
(8) i#, t#IScan

(7) ρt4(t
v)

✦✦✦✦✦ ❛❛❛❛❛
(13) i#, t#IScan

(12) ρt1(t
v)

Figure 6.21: Query execution plan of horizontal K-Way-Join with hash-joins

semi-joins. A left anti-semi-join returns all rows of the left input that have no matching rows in
the right input. The top left anti-semi-join, operator 20, checks for each combination of values
(c1.s#, t1.t#) on the left if at least one row can be retrieved from the right input. If not, this value
pair qualifies for the subsequent grouping and counting, otherwise the left row is skipped. A
similar processing is done for the left anti-semi-join, operator 18, with the outer reference c2.i#.
An interesting point to note is that the index scan, operator 10, of t2 on i#, t# is uncorrelated, i.e.,
no reference to the left input is used in the right sub-plan (operators 9–12). Every access to this
table is used to check if the transaction table is empty or not. For our problem of frequent itemset
discovery this table is nonempty by default. Hence, the row count always yields the value one.

6.5 Support Counting with a Java Query Execution Engine

To contrast the complex query execution plans that have been derived for real SQL queries using
a commercial RDBMS, we illustrate a plan for the version of the Quiver query that employs the
hypothetical GREAT DIVIDE syntax for the set containment division operator in Algorithm 14
on page 109. Figure 6.23 illustrates the plan, which is similar to the relational algebra represen-
tation of the support counting phase in Equation 5.1 on page 92.

We made several experiments to compare the performance of the three types of query exe-
cution plans using our Java query execution engine. We used subsets of the transaction datasets
and subsets of the candidate 4-itemsets to derive frequent 4-itemsets for certain minimum support
values. Figure 6.24 shows the results of our experiments. One can observe that the execution
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(22) c1.s#γstream
count(∗)

(21) c1.s#,t1.t#γstream
count(∗)

(20) c1.s#,t1.t#�
nested-loop
true

(6) Sortc1.s#,t1.t#

(5) ��nested-loop
t1.i#=c4.i#

(2) i#, t#IScan

(1) ρt1(t
v)

�
� ❅

❅
(4) s#IScan

(3) ρc1(c
v
4)

✏✏✏✏✏✏ ������
(19) RowCount

(18) c2.i#�
nested-loop
true

(13) �nested-loop
c1.s#�=c2.s#

(8) s#IScan

(7) ρc2(c
v
4)

�
� ❅

❅
(12) RowCount

(11) Top1

(10) i#, t#IScan

(9) ρt2(t
v)

✟✟✟✟ ❍❍❍❍
(17) RowCount

(16) Top1

(15) i#, t#ISeekordered, forward
t2.i#=c2.i#∧t2.t#=t1.t#

(14) ρt2(t
v)

Figure 6.22: Query execution plan of Quiver with nested-loop join and anti-semi-joins

plan using set containment division outperformed the other approaches for small numbers of
candidate sets. The plan chosen by the commercial RDBMS based on anti-semi-join was always
a bad solution for the given datasets. K-Way-Join outperforms the other approaches for larger
numbers of candidates. The query execution plan execution was not parallelized in any way.

6.6 Summary

In the first part of this chapter, we discussed several implementation details of the a query ex-
ecution engine that was implemented in Java with the help of the XXL class library. Several
experiments have been conducted with this prototype to assess the performance characteristics of
the algorithms for set containment division (sort-based, hash-based and based on a subset index)
and set containment join (adaptive pick-and-sweep join). The experiments demonstrated that
the universal quantification problem can be solved efficiently with the help of these algorithms.
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(5) c1.s#γhash
count(∗)

(4) ÷∗hash

(1) ρt1(t
v)
✡
✡ ❏

❏
(3) πs#,i#

(2) ρc1(c
v
4)

Figure 6.23: Query execution plan of Quiver with hash-based set containment division operator

It is impossible to make a fair comparison of the performance between the algorithms because
each one relies on several parameters that influence their behavior. For example, hash-based set
containment division is affected by the choice of the hash table sizes and the definition of the
hash function. Much more tuning knobs are offered by adaptive pick-and-sweep join. However,
let us briefly summarize our major findings from the experiments with the set containment test
operators:

• The effort for nesting unnested data is higher than for unnesting nested data.

• For unsorted data, hash-based set containment division had lower execution times than
merge-sort set containment division plus external sorting.

• For a large divisor and a small dividend, it is beneficial to create a subset index on the
dividend and otherwise on the divisor.

• Compression saves up to 90% of memory even for small real-life datasets as opposed to
an uncompressed subset index.

• Set containment division using a compressed subset index can be up to an order of magni-
tude slower than with an uncompressed one.

The second part of the chapter was dedicated to the evaluation of SQL-based frequent itemset
discovery algorithms. From the experiments with these approaches, we learned that

• the Quiver algorithm realized by NOT EXISTS predicates in SQL has an execution time
that can be several orders of magnitude higher than for other approaches based on SQL-92.

• Quiver, when implemented using set containment division, can be as efficient as other
approaches based on SQL-92.

We conclude that universal quantification is not well supported by modern commercial database
systems. An integration of set containment join or set containment division operators can im-
prove the performance of the support counting phase.
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(c) T5.I5.D5k, #candidates = 8
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Figure 6.24: Execution times of query execution plans running in a Java query execution engine
prototype



“Finally, in conclusion, let me say just this.”

P. Sellers (1925 – 1980)

7
Conclusion and Future

Work
Set containment tests are a practical problem in query processing. Many solutions to it have
been devised to solve it efficiently. We reviewed some of these approaches in greater detail, in
particular those that require that the sets are stored in an unnested table layout—the relational
division operators. We presented the myriad of definitions for this derived operator of the rela-
tional algebra in a coherent way. We attempted to classify physical division operators according
to whether and how the input tables are grouped on some of their columns and discussed their
complexities. This classification is valuable for an optimizer of an RDBMS when more than one
physical division operator is available.

We suggested a new operator called set containment division that generalizes the division
operator. The new operator allows the divisor table to store more than one set. Hence we gener-
alized the cardinality of the set containment test relationship between dividend sets and divisor
sets from many-to-one (for division) to many-to-many. We showed that set containment divi-
sion is equivalent to two other operators that have been proposed in the past—great divide and
generalized division—but that have neither been referenced widely nor investigated in any depth.

In order to improve the execution time of queries whose execution plans make use of a phys-
ical division operator, an optimizer needs to have rewrite rules for the operator. Several algebraic
laws involving division were introduced in this thesis for the first time.

We analyzed set containment join algorithms, which join tables on a set-valued column. They
typically rely on two techniques, signatures to reduce the cost of a comparison between two sets
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and partitioning to reduce the number of set comparisons. We discussed the latter technique for
set containment division algorithms as well. Thus, it is possible to parallelize the processing of
queries that involve set containment division operators.

A new main-memory data structure called subset index, which enables an efficient set con-
tainment division if at least one of the dividend or divisor is small enough to fit into memory,
was proposed. It is possible to compress the representation of sets in this index thus saving
an enormous amount of storage. However, the performance experiments have revealed that the
processing is significantly slower than without compression.

As a promising application area for set containment division and set containment join al-
gorithms, we studied SQL-based frequent itemset discovery algorithms. The set containment
problem is central to this data mining problem, where we ask for the number of transaction sets
that contain a given itemset. We devised a new algorithm called Quiver that represents itemsets
in a vertical table layout, like the transactions, in tuple relational calculus, relational algebra,
and SQL. The SQL formulation was subject to several performance experiments with two com-
mercial RDBMSs. Not surprisingly, the experiments revealed that the database systems do not
perform well when confronted with queries where the universal quantifications are expressed by
negated existential quantifications. By rewriting such Quiver SQL queries into queries that use a
(hypothetical) set containment division operator, an RDBMS would be able to find a more effi-
cient execution strategy, provided that the RDBMS has implemented a set containment division
or set containment join operator.

In addition to the experiments with frequent itemset discovery queries, we analyzed the per-
formance of several set containment division and set containment join algorithms. The algo-
rithms were implemented in Java and made use of a Java class library for building query proces-
sors, called XXL.

We see directions of future research in the following areas. XQuery [W3C03], the de-facto
standard query language for XML data, is subject to enormous research efforts, now and in the
near future. An interesting question is how to process universal quantifications in XQuery queries
efficiently. As mentionend in Section 2.5.1, XQuery provides an every expression to realize
universal quantification. Furthermore, the language allows to specify whether the query output
should preserve the ordering of tuples in the input documents. Therefore, algorithms that realize
universal quantification have to be combined with order-preserving algebra operators [MHM03].

Another possible topic of future work is in the area of data streams or continuous queries.
Given a large amount of queries that are registered in a query processor and several data sources
that produce new rows more or less continuously with data generation rates that are diverse. One
of the challenges is how to minimize the amount of processing needed to execute the poten-
tially large amount of queries that have to be processed when a matching input row is produced.
Suppose that many of the queries involve set containment division operators that have the same
divisor table, i.e., divisor data source, as input but that they work on different dividend tables.
Furthermore, assume that the divisor data source produces a new divisor group. How can we
compute new quotient rows for each query at the lowest total query processing cost? We could
process all dividend tables affected by the set containment division operator and produce new
quotient results. However, if many of the dividend tables are similar to each other, we might
save some work by analyzing the similarities first and then assigning an intelligent processing
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strategy that avoids the brute-force method of rescanning all dividend tables.
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A
Proofs

A.1 Lemmas

LEMMA 1: Let X, Y , and Z be sets. Then, X−Y = X−Z⇔ X ∩Y = X ∩Z.

PROOF (LEMMA 1): We prove the lemma by deriving implications for both directions of the
equivalence. First, we show that X−Y = X−Z⇒ X ∩Y = X ∩Z:

t ∈ (X ∩Y )⇔ t ∈ X ∧ t ∈ Y

⇔ (t ∈ X ∧ t /∈ X)∨ (t ∈ X ∧ t ∈ Y )
⇔ t ∈ X ∧ (t /∈ X ∨ t ∈ Y )
⇔ t ∈ X ∧¬(t ∈ X ∧ t /∈ Y )
⇔ t ∈ X ∧¬(t ∈ (X−Y ))
⇔ t ∈ X ∧¬(t ∈ (X−Z)) due to our assumption

⇔ t ∈ X ∧¬(t ∈ X ∧ t /∈ Z)
⇔ t ∈ X ∧ (t /∈ X ∨ t ∈ Z)
⇔ (t ∈ X ∧ t /∈ X)∨ (t ∈ X ∧ t ∈ Z)
⇔ t ∈ X ∧ t ∈ Z

⇔ t ∈ (X ∩Z)
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Next, we show that X ∩Y = X ∩Z⇒ X−Y = X−Z:

t ∈ (X−Y )⇔ t ∈ X ∧ t /∈ Y

⇔ (t ∈ X ∧ t /∈ Y )∨ (t ∈ X ∧ t /∈ X)
⇔ (t ∈ X ∨ (t ∈ X ∧ t ∈ X))∧ (t /∈ Y ∨ (t ∈ X ∧ t /∈ X))
⇔ t ∈ X ∧ (t /∈ Y ∨ (t ∈ X ∧ t /∈ X))
⇔ t ∈ X ∧ (t ∈ X ∨ t /∈ Y )∧ (t /∈ X ∨ t /∈ Y )
⇔ t ∈ X ∧ (t /∈ X ∨ t /∈ Y )
⇔ t ∈ X ∧¬(t ∈ X ∧ t ∈ Y )
⇔ t ∈ X ∧¬(t ∈ (X ∩Y ))
⇔ t ∈ X ∧¬(t ∈ (X ∩Z)) due to our assumption

⇔ t ∈ X ∧¬(t ∈ X ∧ t ∈ Z)
⇔ t ∈ X ∧ (t /∈ X ∨ t /∈ Z)
⇔ (t ∈ X ∧ t /∈ X)∨ (t ∈ X ∧ t /∈ Z)
⇔ t ∈ X ∧ t /∈ Z

⇔ t ∈ (X−Z)

�

LEMMA 2: Let X1, X2, Y1 and Y2 be sets. If X1 ∩X2 = /0 and Xi ⊇ Yi for i ∈ {1,2} then (X1−
Y1)∪ (X2−Y2) = (X1∪X2)− (Y1∪Y2).

PROOF (LEMMA 2):

t ∈ (X1−Y1)∪ (X2−Y2)⇔ (t ∈ X1∧ t /∈ Y1)∨ (t ∈ X2∧ t /∈ Y2)
⇔ (t ∈ X1∨ t ∈ X2)∧ (t ∈ X1∨ t /∈ Y2)∧

(t /∈ Y1∨ t ∈ X2)∧ (t /∈ Y1∨ t /∈ Y2)
⇔ (t ∈ X1∨ t ∈ X2)∧¬(t /∈ X1∧ t ∈ Y2)∧
¬(t ∈ Y1∧ t /∈ X2)∧¬(t ∈ Y1∧ t ∈ Y2)

⇔ t ∈ (X1∪X2)∧ t /∈ (Y2−X1)∧ t /∈ (Y1−X2)∧ t /∈ (Y1∩Y2)
⇔ t ∈ (X1∪X2)∧¬(t ∈ (Y2−X1)∨ t ∈ (Y1−X2)∨ t ∈ (Y1∩Y2))
⇔ t ∈ (X1∪X2)∧ t /∈ ((Y2−X1)∪ (Y1−X2)∪ (Y1∩Y2))

We find that

(Y2−X1) = Y2 since Y2 ⊆ X2 and X2∩X1 = /0 and that

(Y1−X2) = Y1 since Y1 ⊆ X1 and X1∩X2 = /0.
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Hence, we have

(Y2−X1)∪ (Y1−X2)∪ (Y1∩Y2) = Y2∪Y1∪ (Y1∩Y2)
= Y2∪Y1.

Thus, we finally find that

t ∈ (X1∪X2)∧ t /∈ ((Y2−X1)∪ (Y1−X2)∪ (Y1∩Y2))⇔ t ∈ (X1∪X2)∧ t /∈ (Y1∪Y2)
⇔ t ∈ (X1∪X2)− (Y1∪Y2).

�

LEMMA 3: Set containment division (÷∗1) and great divide (÷∗3) are equivalent operators.

PROOF (LEMMA 3): In the following, we will show the equivalence of the relational algebra
expressions of set containment division in Definition 8 and of great divide used in Definition 10.
Let r1 be a dividend relation and r2 a divisor relation with schemas R1(A∪B) and R2(B∪C),
respectively, as defined in Section 2.3.2. Let {C1, . . . ,Ck} be the set of (distinct) tuples in πC(r2).
If the divisor is non-empty then k ≥ 1. We use the following algebraic laws as propositions:

(P1) πA (r1∪ r2) = πA (πA (r1)∪πA (r2)) for any relations r1 and r2 with the same schema R(A∪
X), where A is a nonempty set of attributes and attribute set X may be empty or not.

Let us start with expression e, the definition of set containment division:

e = r1÷∗1 r2

=
⋃

t∈πC(r2)

(r1÷πB (σC=t (r2)))× (t)

We replace the division operator by Definition 3:

e =
⋃

t∈πC(r2)

(πA (r1)−πA ((πA (r1)×πB (σC=t (r2)))− r1))× (t)

=


 ⋃

t∈πC(r2)

πA (r1)× (t)


−


 ⋃

t∈πC(r2)

(πA ((πA (r1)×πB (σC=t (r2)))− r1))× (t)




= (πA (r1)×πC (r2))︸ ︷︷ ︸
e0

−

 ⋃

t∈πC(r2)

(πA ((πA (r1)×πB (σC=t (r2)))− r1))× (t)




= e0−
( ⋃

1≤i≤k

(πA ((πA (r1)×πB (σC=Ci (r2)))− r1))× (Ci)

)

= e0−πA∪C

( ⋃
1≤i≤k

πA∪C (((πA (r1)×πB (σC=Ci (r2)))× (Ci))− (r1× (Ci)))

)
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= e0−πA∪C

( ⋃
1≤i≤k

πA∪C ((πA (r1)×σC=Ci (r2))− (r1× (Ci)))

)

= e0−πA∪C


 ⋃

1≤i≤k

πA∪C


πA∪r2.B∪C (πA (r1)×σC=Ci (r2))︸ ︷︷ ︸

e1
i

−πA∪r1.B∪C (r1× (Ci))︸ ︷︷ ︸
e2

i






Next, let us take a look at expression ẽ representing Todd’s great divide:

ẽ = r1÷∗3 r2

= (πA (r1)×πC (r2))︸ ︷︷ ︸
ẽ0

−πA∪C ((πA (r1)× r2)− (r1 �� r2))

= ẽ0−πA∪C

((
πA (r1)×

⋃
1≤i≤k

σC=Ci (r2)

)
−πA∪r2.B∪C

(
r1 ��r1.B=r2.B

⋃
1≤i≤k

σC=Ci (r2)

))

= ẽ0−πA∪C

(( ⋃
1≤i≤k

πA (r1)×σC=Ci (r2)

)
−πA∪r2.B∪C

( ⋃
1≤i≤k

r1 ��r1.B=r2.B σC=Ci (r2)

))

Using Lemma 2 we get

ẽ = ẽ0−πA∪C

( ⋃
1≤i≤k

πA∪r2.B∪C (πA (r1)×σC=Ci (r2))−πA∪r2.B∪C (r1 ��r1.B=r2.B σC=Ci (r2))

)

Using proposition P1 we get

ẽ = ẽ0−πA∪C


 ⋃

1≤i≤k

πA∪C


πA∪r2.B∪C (πA (r1)×σC=Ci (r2))︸ ︷︷ ︸

ẽ1
i

−

πA∪r2.B∪C (r1 ��r1.B=r2.B σC=Ci (r2))︸ ︷︷ ︸
ẽ2

i






We see that expressions e and ẽ differ only in the subexpressions e2
i and ẽ2

i , respectively. We are
now going to show that e1

i −e2
i = ẽ1

i − ẽ2
i . Then we know that e = ẽ, i.e., set containment division

and great divide are equivalent.
Instead of showing that e1

i −e2
i = ẽ1

i − ẽ2
i , we prove the equivalent statement e1

i ∩e2
i = ẽ1

i ∩ ẽ2
i .

These statements are equivalent because of Lemma 1. Based on this lemma, we can derive the
following expressions:

ẽ1
i ∩ ẽ2

i = πA∪r2.B∪C (πA (r1)×σC=Ci (r2))∩πA∪r2.B∪C (r1 ��r1.B=r2.B σC=Ci (r2))
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= πA∪r2.B∪C (πA (r1)×σC=Ci (r2))∩πA∪r2.B∪C (σr1.B=r2.B (r1×σC=Ci (r2)))
= πA∪r2.B∪C (r1×σC=Ci (r2))∩πA∪r2.B∪C (σr1.B=r2.B (r1×σC=Ci (r2)))
= πA∪r2.B∪C (σr1.B=r2.B (r1×σC=Ci (r2)))
= πA∪r2.B∪C (r1 ��r1.B=r2.B σC=Ci (r2))
= πA∪r2.B∪C (σr1.B=r2.B (r1×σC=Ci (r2)))
= πA∪r2.B∪C ((r1×σC=Ci (r2))∩πA∪r1.B∪C (r1×σC=Ci (r2)))
= πA∪r2.B∪C (πA (r1)×σC=Ci (r2))∩πA∪r1.B∪C (r1×σC=Ci (r2))
= πA∪r2.B∪C (πA (r1)×σC=Ci (r2))∩πA∪r1.B∪C (r1× (Ci))

= e1
i ∩ e2

i

�

LEMMA 4: Great divide (÷∗3) and generalized division (÷∗2) are equivalent operators.

PROOF (LEMMA 4): In the following, we will show the equivalence of the relational algebra
expressions of great divide used in Definition 10 and of generalized division in Definition 9.
Let r1 be a dividend relation and r2 a divisor relation with schemas R1(A∪B) and R2(B∪C),
respectively, as defined in Section 2.3.2. Let us review expression e, the definition of great
divide:

e = r1÷∗3 r2

= (πA (r1)×πC (r2))−πA∪C


(πA (r1)× r2)︸ ︷︷ ︸

e1

−(r1 �� r2)︸ ︷︷ ︸
e2




Now, we compare expression e to expression ẽ, the definition of generalized division:

ẽ = r1÷∗2 r2

= (πA (r1)×πC (r2))−πA∪C


(πA (r1)× r2)︸ ︷︷ ︸

ẽ1

−(r1×πC (r2))︸ ︷︷ ︸
ẽ2




We find that e and ẽ differ only in the expression e2 and ẽ2, respectively. If we can show that
e1− e2 = ẽ1− ẽ2, we have proved that e = ẽ1. Because of Lemma 1, it suffices to show that
e1∩ e2 = ẽ1∩ ẽ2:

e1∩ e2 = (πA (r1)× r2)∩ (r1 �� r2)
= (πA (r1)× r2)∩πA∪r2.B∪C (σr1.B=r2.B (r1× r2))
= (πA (r1)×πB∪Cr2)∩πA∪r2.B∪C (σr1.B=r2.B (r1× r2))
= πA∪r2.B∪C (r1× r2)∩πA∪r2.B∪C (σr1.B=r2.B (r1× r2))
= πA∪r2.B∪C (σr1.B=r2.B (r1× r2)) since σr1.B=r2.B (r1× r2)⊆ (r1× r2)
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= πA∪r2.B∪C (r1× r2)∩πA∪r1.B∪C (r1× r2)
= (πA (r1)× r2)∩ (r1×πC (r2))
= ẽ1∩ ẽ2

�

A.2 Theorems

PROOF (THEOREM 1, page 12): Lemma 3 shows that set containment division (÷∗1) and great
divide (÷∗3) are equivalent, and Lemma 4 shows that great divide (÷∗3) and generalized division
(÷∗2) are equivalent. By transitivity we see that all three operators are equivalent.

�

PROOF (THEOREM 2, page 16): Let R1(A1), R1(A2), and R1(A3) be the schemas of relations r1,
r2, and r3 in the expression r1÷ r2 = r3. According to the definition of division, the divisor has
n attributes and the dividend has m+n attributes, where m > 0 and n > 0. Since m+n > n, it is
impossible to interchange r1 and r2, i.e., r2÷ r1 is an invalid expression.

�

PROOF (THEOREM 3, page 16): We show that division is non-associative even if we assume
that the relation schemas are valid. We prove the theorem by contradiction. Suppose, A1, A2,
and A3 are the attributes of the relations r1, r2, and r3, respectively. If the two expressions are
equivalent then the corresponding quotient relation schemas are the same. The relation schema
of r1÷ (r2÷ r3) is defined by expression e1 = A1− (A2−A3) and the schema of (r1÷ r2)÷ r3

is e2 = (A1−A2)−A3. We try to show that t ∈ e1↔ t ∈ e2 is a tautology, i.e., the expression is
true for any value of tuple t. Since t ∈ e1↔ t ∈ e2 = (t ∈ e1→ t ∈ e2)∧ (t ∈ e2→ t ∈ e1), we
can analyze each implication separately:

t ∈ e2→ t ∈ e1⇔ t �∈ e2∨ t ∈ e1

⇔ t �∈ ((A1−A2)−A3)∨ t ∈ (A1− (A2−A3))
⇔ (t �∈ (A1−A2)∨ t ∈ A3)∨ (t ∈ A1∧ t �∈ (A2−A3))
⇔ (t �∈ A1∨ t ∈ A2∨ t ∈ A3)∨ (t ∈ A1∧ (t �∈ A2∨ t ∈ A3))
⇔ (t �∈ A1∨ t ∈ A2∨ t ∈ A3∨ t ∈ A1)∧

(t �∈ A1∨ t ∈ A2∨ t ∈ A3∨ t �∈ A2∨ t ∈ A3)
⇔ true∧ true

⇔ true

Now, we analyze the opposite direction of the equivalence:

t ∈ e1→ t ∈ e2⇔ t �∈ e1∨ t ∈ e2

⇔ t �∈ (A1− (A2−A3))∨ t ∈ ((A1−A2)−A3)
⇔ t �∈ A1∨ t ∈ (A2−A3)∨ (t ∈ (A1−A2)∧ t �∈ A3)
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⇔ t �∈ A1∨ (t ∈ A2∧ t �∈ A3)∨ (t ∈ A1∧ t �∈ A2∧ t �∈ A3)
⇔ (t �∈ A1∨ (t ∈ A2∧ t �∈ A3)∨ t ∈ A1)∧

(t �∈ A1∨ (t ∈ A2∧ t �∈ A3)∨ t �∈ A2)∧
(t �∈ A1∨ (t ∈ A2∧ t �∈ A3)∨ t �∈ A3)

⇔ true∧ (t �∈ A1∨ (t ∈ A2∧ t �∈ A3)∨ t �∈ A2)∧ (t �∈ A1∨ t �∈ A3)
⇔ t �∈ A1∨ ((t ∈ A2∧ t �∈ A3)∨ t �∈ A2∨ t �∈ A3)
⇔ t �∈ A1∨ t �∈ A2∨ t �∈ A3

⇔ t �∈ A1∩A2∩A3

Since t ∈ e1↔ t ∈ e2 = t �∈ A1∩A2∩A3 �= true for any value of t (for a value t ∈ A1∩A2∩A3 it
is false), we have found a contradiction to our assumption that the expression is a tautology.

�

PROOF (THEOREM 4, page 65): According to [MGM03], the comparison factor cAPSJ of the
adaptive pick-and-sweep join algorithm is

cAPSJ (p) = 1− pθ1 + pθ2l+θ1.

The function c is minimized for some p = p0 when c′ (p0) = 0 and c′ (p0∓0) ≶ 0.

c′ (p0) = 0

−θ1 pθ1−1
0 +(θ2l +θ1) pθ2l+θ1−1

0 = 0

pθ1−1
0

(
(θ2l +θ1) pθ2l

0 −θ1

)
= 0

(θ2l +θ1) pθ2l
0 = θ1

p0 =
(

θ1

θ2l +θ1

) 1
θ2l

Now that we have determined p0, we check if c′ is minimal for this value. We have to see if and
how the sign changes of c′ (p0 +δ) for small values of δ:

c′ (p0 +δ) = (p0 +δ)θ1−1
(
(θ2l +θ1)(p0 +δ)θ2l−θ1

)
We see that limδ→0∓0 (p0 +δ)θ1−1 > 0. Hence, we only have to check if the sign switches from
negative to positive for the expression limδ→0∓0 (θ2l +θ1)(p0 +δ)θ2l − θ1. We replace δ by
some ε value such that p0 +δ = p0ε, i.e., ε = 1+ δ

p0
:

lim
δ→0∓0

(θ2l +θ1)(p0 +δ)θ2l−θ1 = lim
ε→1∓0

(θ2l +θ1)(p0ε)θ2l−θ1

= lim
ε→1∓0

(θ2l +θ1) pθ2l
0 εθ2l−θ1
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= lim
ε→1∓0

θ1

(
εθ2l−1

)
≶ 0

Thus, we have shown that c′ (p) turns from negative to positive for increasing values p ≈ p0.
Since there are no values other than p0 where c′ (p) becomes 0, we have proved that c has its
(absolute) minimum value for p0.

By replacing |r1|
|r2| by λ, we obtain

p0 =
(

λ
λ+ l

) 1
θ2l

.

The corresponding optimal comparison factor copt
APSJ = c(p0) is

copt
APSJ = 1− k−1

λ+ k−1

(
λ

λ+ k−1

) λ
k−1

.

�

PROOF (THEOREM 5, page 65): According to [MGM03], the replication factor rAPSJ of the
adaptive pick-and-sweep algorithm is

rAPSJ =
∑l

i=0 |ri
1|+ |ri

2|
|r1|+ |r2|

=
|r2|+ |r0

1|+∑l
i=1 |ri

1|
|r2|+ |r1|

=
|r2|+ |r1|+

(
1− pθ1

) |r1|
|r2|+ |r1|

=
|r2|

|r2|+ |r1| +
|r1|

|r1|+ |r2|
(

1+ l
(

1− pθ1

))
.

By replacing |r1|
|r2| by ρ, p by p0, and l by k−1 we get the replication factor

rAPSJ =
1

ρ+1
+

ρ
ρ+1

(
k− (k−1)

(
λ

λ+ k−1

) λ
k−1
)

.

How can the replication factor be minimized? We find that the first derivation of r (p) = 1
ρ+1 +

ρ
ρ+1

(
1+(k−1)

(
1− pθ1

))
is r′ (p) = (1− k)θ1 pθ1−1 �= 0 for k > 1. Hence, we only need to

check the interval boundaries of 0 ≤ p ≤ 1: r (0) = kρ+1
ρ+1 > 1 and r (1) = 1. The replication

factor is thus minimized for p = 1.
�
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PROOF (LAW 1, page 16): Let

e = r1 �
(
r1÷ r′2

)
= {t| t ∈ r1∧ t.A ∈ (r1÷ r′2

)}
= {t| t ∈ r1∧ t.A ∈ {u|∃u1 : u = u1.A∧u1 ∈ r1∧ r′2 ⊆ {y| (u,y) ∈ r1}}}
= {t| t ∈ r1∧∃u1 : t.A = u1.A∧u1 ∈ r1∧ r′2 ⊆ {y| (t.A,y) ∈ r1}}.

Since t ∈ r1 already implies ∃u1 : t.A = u1.A∧u1 ∈ r1, we have

e = {t| t ∈ r1∧ r′2 ⊆ {y| (t.A,y) ∈ r1}}.

Hence,(
r1 �

(
r1÷ r′2

))÷ r′′2 = {s|∃s1 : s = s1.A∧ s1 ∈ e∧ r′′2 ⊆ {z| (s,z) ∈ e}}
= {s|∃s1 : s = s1.A∧ s1 ∈ {t| t ∈ r1∧ r′2 ⊆ {y| (t.A,y) ∈ r1}}∧

r′′2 ⊆ {z| (s,z) ∈ {t| t ∈ r1∧ r′2 ⊆ {y| (t.A,y) ∈ r1}}}
= {s|∃s1 : s = s1.A∧ s1 ∈ r1∧ r′2 ⊆ {y| (s1.A,y) ∈ r1}}∧

r′′2 ⊆ {z| (s,z) ∈ r1∧ r′2 ⊆ {y| ((s,z) .A,y) ∈ r1}}}
= {s|∃s1 : s = s1.A∧ s1 ∈ r1∧ r′2 ⊆ {y| (s,y) ∈ r1}}∧

r′′2 ⊆ {z| (s,z) ∈ r1∧ r′2 ⊆ {y| (s,y) ∈ r1}}}
= {s|∃s1 : s = s1.A∧ s1 ∈ r1∧ r′2 ⊆ {y| (s,y) ∈ r1}}∧

r′′2 ⊆ {z| (s,z) ∈ r1}∧ r′′2 ⊆ {z|r′2 ⊆ {y| (s,y) ∈ r1}}}
= {s|∃s1 : s = s1.A∧ s1 ∈ r1∧ r′2 ⊆ {y| (s,y) ∈ r1}}∧

r′′2 ⊆ {z| (s,z) ∈ r1}}
= {s|∃s1 : s = s1.A∧ s1 ∈ r1∧

(
r′2∪ r′′2

)⊆ {y| (s,y) ∈ r1}}
= r1÷

(
r′2∪ r′′2

)
�

PROOF (LAW 2, page 17): We prove that if condition c1(r′1,r
′′
1) is true then (r′1∪ r′′1)÷ r2 =

(r′1÷ r2)∪ (r′′1 ÷ r2).
We use the following algebraic laws as propositions, where we assume that relations r1, r2,

s1, and s2 have the same schema:

(P1) σθ (r1∪ r2) = σθ (r1)∪σθ (r2) [GMUW02]

(P2) πA (r1∪ r2) = πA (r1)∪πA (r2), where A is any subset of r1’s and r2’s relation schemas.
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(
r′1∪ r′′1

)÷ r2 =
⋂

t∈r2

πA
(
σB=t

(
r′1∪ r′′1

))
(Definition 4)

=
⋂

t∈r2

πA
(
σB=t

(
r′1
)∪σB=t

(
r′′1
))

(P1)

=
⋂

t∈r2

πA
(
σB=t

(
r′1
))∪πA

(
σB=t

(
r′′1
))

(P2)

=
⋂

t∈r2

πA
(
σB=t

(
r′1
))∪ ⋂

t∈r2

πA
(
σB=t

(
r′′1
))

(see below)

=
(
r′1÷ r2

)∪ (r′′1 ÷ r2
)

(Definition 4)

To show the missing step in the above transformation, we restrict ourselves to the case where r2

contains two tuples, t1 and t2, only. This can easily be extended to the general case. Consider⋂
t∈{t1,t2}

πA
(
σB=t

(
r′1
))∪πA

(
σB=t

(
r′′1
))

=
(
πA
(
σB=t1

(
r′1
))∪πA

(
σB=t1

(
r′′1
)))∩ (πA

(
σB=t2

(
r′1
))∪πA

(
σB=t2

(
r′′1
)))

=
(
πA
(
σB=t1

(
r′1
))∩πA

(
σB=t2

(
r′1
)))︸ ︷︷ ︸

Sr′r′

∪(πA
(
σB=t1

(
r′′1
))∩πA

(
σB=t2

(
r′′1
)))︸ ︷︷ ︸

Sr′′r′′

∪

(
πA
(
σB=t1

(
r′1
))∩πA

(
σB=t2

(
r′′1
)))︸ ︷︷ ︸

Sr′r′′

∪(πA
(
σB=t1

(
r′′1
))∩πA

(
σB=t2

(
r′1
)))︸ ︷︷ ︸

Sr′′r′

.

To show that this is equal to⋂
t∈{t1,t2}

πA
(
σB=t

(
r′1
))∪ ⋂

t∈{t1,t2}
πA
(
σB=t

(
r′′1
))

,

we need to argue why Sr′r′′ and Sr′′r′ are subsets of Sr′r′ ∪ Sr′′r′′ . The basic idea is that Sr′r′′ and
Sr′′r′ are sufficiently restricted by precondition c1. In the following we will show with an indirect
proof that Sr′r′′ meets this requirement if precondition c1 is true. The proof for Sr′′r′ is analogous.

Assume that Sr′r′′ �⊆ Sr′r′ ∪ Sr′′r′′ . Remember that we are still in the case where r2 = {t1, t2}.
Hence,

∃t : t ∈ Sr′r′′ ∧ t �∈ Sr′r′ ∧ t �∈ Sr′′r′′ ⇔ ∃t : t ∈ πA
(
σB=t1

(
r′1
))∩πA

(
σB=t2

(
r′′1
))∧

t �∈ (πA
(
σB=t1

(
r′1
))∩πA

(
σB=t2

(
r′1
)))∧

t �∈ (πA
(
σB=t1

(
r′′1
))∩πA

(
σB=t2

(
r′′1
)))

⇔∃t : t.t1 ∈ r′1∧ t.t2 ∈ r′′1∧
¬(t.t1 ∈ r′1∧ t.t2 ∈ r′1

)∧
¬(t.t1 ∈ r′′1 ∧ t.t2 ∈ r′′1

)
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⇒∃t : r2 ⊆ πB
(
σA=t

(
r′1
)∪σA=t

(
r′′1
))∧

¬(r2 ⊆ πB
(
σA=t

(
r′1
)))∧

¬(r2 ⊆ πB
(
σA=t

(
r′′1
)))

⇔¬c1(r′1,r
′′
1) for a = t.

�

PROOF (LAW 3, page 17): We use the following algebraic laws given in [GMUW02] as propo-
sitions:

(P1) σθ(r1− r2) = σθ(r1)−σθ(r2),

(P2) πX(σθ(r)) = πX(σθ(πY (r))), where Y contains X and the attributes mentioned in condi-
tion θ, in particular, σp(A)(πA(r1)) = πA(σp(A)(πA(r1))) = πA(σp(A)(r1)), and

(P3) σθ(r1× r2) = σθ(r1)× r2 if θ restricts attributes of r1, only.

σp(A)(r1÷ r2) = σp(A) (πA (r1)−πA ((πA (r1)× r2)− r1)) (Definition 3)

= σp(A) (πA (r1))−σp(A) (πA ((πA (r1)× r2)− r1)) (P1)

= πA
(
σp(A) (r1)

)−πA
(
σp(A) (πA ((πA (r1)× r2)− r1))

)
(P2)

= πA
(
σp(A) (r1)

)−πA
(
σp(A)

(
πA ((πA (r1)× r2))−σp(A) (r1)

))
(P1)

= πA
(
σp(A) (r1)

)−πA
(
πA
(
σp(A) ((πA (r1)× r2))−σp(A) (r1)

))
(P2)

= πA
(
σp(A) (r1)

)−πA
(
πA
((

σp(A) (πA (r1))× r2
)−σp(A) (r1)

))
(P3)

= πA
(
σp(A) (r1)

)−πA
(
πA
((

πA
(
σp(A) (r1)

)× r2
)−σp(A) (r1)

))
(P2)

= σp(A)(r1)÷ r2 (Definition 3)

�

PROOF (LAW 4, page 17):

r1÷σp(B) (r2) = σp(B)∨¬p(B) (r1)÷σp(B) (r2)

=
(
σp(B) (r1)∪σ¬p(B) (r1)

)÷σp(B) (r2)

=
(
σp(B) (r1)÷σp(B) (r2)

)∪ (σ¬p(B) (r1)÷σp(B) (r2)
)

(Law 2)

=
(
σp(B) (r1)÷σp(B) (r2)

)∪ /0
= σp(B) (r1)÷σp(B) (r2)

We can apply Law 2 to the expression in line 2 because the law’s precondition c2(σp(B)(r1),σ¬p(B)(r1))
(and, of course, also c1) is obviously fulfilled. �
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PROOF (LAW 5, page 18): According to Codd’s definition of division in tuple relational calcu-
lus (Definition 1), we can derive the following equivalences:

(r′1÷ r2)∩ (r′′1 ÷ r2) =
{

t | t = t1.A∧ t1 ∈ r′1∧ r2 ⊆
{

y | (t,y) ∈ r′1
}}∩{

t | t = t1.A∧ t1 ∈ r′′1 ∧ r2 ⊆
{

y | (t,y) ∈ r′′1
}}

=
{

t | t = t1.A∧ t1 ∈ r′1∧ t1 ∈ r′′1 ∧ r2 ⊆
{

y | (t,y) ∈ r′1
}∧

r2 ⊆
{

y | (t,y) ∈ r′′1
}}

=
{

t | t = t1.A∧ t1 ∈ r′1∧ t1 ∈ r′′1∧
r2 ⊆

{
y | (t,y) ∈ r′1

}∩{y | (t,y) ∈ r′′1
}}

=
{

t | t = t1.A∧ t1 ∈ r′1∧ t1 ∈ r′′1 ∧ r2 ⊆
{

y | (t,y) ∈ r′1∧ (t,y) ∈ r′′1
}}

=
{

t | t = t1.A∧ t1inr′1∧ t1 ∈ r′′1 ∧ r2 ⊆
{

y | (t,y) ∈ r′1∩ r′′1
}}

= (r′1∩ r′′1)÷ r2

�

PROOF (LAW 6, page 18): Our assumption that πA (r′1) and πA (r′′1) are disjoint is equivalent to
πA (r′1)∩πA (r′′1) = /0. Hence, (r′1− r′′1)÷ r2 = r′1÷ r2. Therefore, we can show that(

r′1÷ r2
)− (r′′1 ÷ r2

)
=

⋂
t∈r2

πA
(
σB=t

(
r′1
))− ⋂

t∈r2

πA
(
σB=t

(
r′′1
))

(Definition 4)

=
⋂

t∈r2

πA
(
σB=t

(
r′1
))

since πA
(
r′1
)∩πA

(
r′′1
)

= /0

= r′1÷ r2

�

PROOF (LAW 7, page 18): We use the following algebraic laws as propositions:

(P1) σθ(r1× r2) = r1×σθ(r2) for relations r1 and r2 with schemas R1(A) and R2(B), respec-
tively, and θ contains only attributes in B.

(P2) πB∪C(r1×r2) = πB(r1)×πC(r2) for relations r1 and r2 with schemas R1(A∪B) and R2(C∪
D), respectively.

(P3) (r1× r2)∩ (r1× r3) = r1× (r2∩ r3) for relations r1, r2, and r3 with schemas R1(A), R2(B),
and R3(B), respectively.

(r∗1× r∗∗1 )÷ r2 =
⋂

t∈r2

πA1∪A2 (σB=t (r∗1× r∗∗1 )) (Definition 4)

=
⋂

t∈r2

πA1∪A2 (r∗1×σB=t (r∗∗1 )) (P1)
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=
⋂

t∈r2

πA1 (r∗1)×πA2 (σB=t (r∗∗1 )) (P2)

= πA1 (r∗1)×
⋂

t∈r2

πA2 (σB=t (r∗∗1 )) (P3)

= r∗1× (r∗∗1 ÷ r2) (Definition 4)

�

PROOF (LAW 8, page 19):

(r∗1× r∗∗1 )÷ r2 =
⋂

t∈r2

πA (σB=t (r∗1× r∗∗1 )) (Definition 4)

=
⋂

t∈r2

πA (σB1=t.B1∧B2=t.B2 (r∗1× r∗∗1 ))

=
⋂

t∈r2

πA (σB1=t.B1∧true (r∗1× r∗∗1 )) (since ∀t ′ ∈ r2 : t ′.B2 ∈ r∗∗1 )

=
⋂

t∈r2

πA (σB1=t.B1 (r∗1× r∗∗1 ))

=
⋂

t∈πB1(r2)

πA (σB1=t (r∗1× r∗∗1 ))

=
⋂

t∈πB1(r2)

πA (σB1=t (r∗1))

= r∗1÷πB1 (r2) (Definition 4)

�

PROOF (LAW 9, page 21):

(r1÷ r2)� r3 = πA ((r1÷ r2) �� r3) (Definition of semi-join)

= πA (σA=A ((r1÷ r2)× r3)) (Definition of natural join)

= πA

(⋃
t∈r3

σA=t.A ((r1÷ r2)× (t))

)
(Definition of Cartesian product)

=
⋃

t∈r3

σA=t.A (r1÷ r2) (Remove duplicate attribute set A)

=
⋃

t∈r3

(σA=t.A (r1)÷ r2) (Law 3)

=

(⋃
t∈r3

σA=t.A (r1)

)
÷ r2 (Law 2)

= (r1 � r3)÷ r2 (Definition of semi-join)

�



166 Proofs

PROOF (LAW 10, page 22): As defined in Section 2.3.1, the schema of r1 is R1(A∪B) and the
schema of r2 is R2(B). We will show the three cases separately.

Case 1: σc=0
(
γcount(B)→c (r2)

) �= /0, i.e., r2 = /0.

It follows from the definition that r1÷ r2 = r1.

Case 2: σc=1
(
γcount(B)→c (r2)

) �= /0, i.e., |r2|= 1.

Assume that, w.l.o.g., r2 = {t2}. We have to show the following:

r1÷ r2 = πA (r1 � r2)⋂
t∈r2

πA (σB=t (r1)) = πA (r1 � r2) (Definition 4)

πA (σB=t2 (r1)) = πA (r1 � r2) (with r2 = {t2})

Now, let us consider σB=t2 (r):

σB=t2 (r1) = {t ∈ r1| t.B = t2}
= {t ∈ r1| t.B ∈ r2}
= r1 � r2.

Hence, πA (σB=t2 (r1)) = πA (r1 � r2).

Case 3: σc>1
(
γcount(B)→c (r2)

) �= /0, i.e., |r2|> 1.

From the construction of r1 as r1 = Aγ f (X)→B(r0) we know that ∀t1, t2 ∈ r1 : t1.A �= t2.A.
From the precondition of Case 3 we also know that ∃t1, t2 ∈ r2 : t1 �= t2. With Definition 4
of the division operator the claim can be shown by a simple indirect proof. �

PROOF (LAW 11, page 22): Let e = πA (r1 � r2) = {ta|∃tb ∈ r2 : (ta, tb) ∈ r1}. We have to show
three cases:

Case 1: |e|> 1:

In this case there exist ta1, ta2 ∈ e with ta1 �= ta2 . Hence, there also exist tb1, tb2 ∈ r2 with
tb1 �= tb2 and (ta1 , tb1) ∈ r1 and (ta2, tb2) ∈ r1. Considering the precondition of the law
∀(ta1 , tb1) ,(ta2 , tb2) ∈ r1 : tb1 �= tb2 this implies that

(a) (ta1, tb2) /∈ r1 and

(b) ∀tai �= ta1 : (tai, tb1) /∈ r1.

Hence, there is no ta such that r2 ⊆ {y| (ta,y) ∈ r1}. It directly follows that r1÷ r2 =
{ta|∃tb ∈ r2 : (ta, tb) ∈ r1∧ r2 ⊆ {y| (ta,y) ∈ r1}}= /0.
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Case 2: |e|< 1:

Consider

r1÷ r2 = {ta|∃tb ∈ r2 : (ta, tb) ∈ r1∧ r2 ⊆ {y| (ta,y) ∈ r1}}
⊆ {ta|∃b ∈ r2 : (ta, tb) ∈ r1}
= πA (r1 � r2)
= /0

Case 3: |e|= 1:

Because of the precondition that the divisor attribute set r2.B is a foreign key referencing
r1 we have πB (r1)⊇ r2. This implies ∀tb ∈ r2 ∃ta : (ta, tb) ∈ r1.

With |e| = |{ta|∃tb ∈ r2 : (ta, tb) ∈ r1}| = 1 we conclude that ∃ta : ∀tb ∈ r2 (ta, tb) ∈ r1,
which implies that |r1÷ r2|= |{ta|∃tb ∈ r2 : (ta, tb) ∈ r1∧ r2 ⊆ {y| (ta,y) ∈ r1}}| ≥ 1.

In Case 2 we have shown that r1÷ r2 ⊆ πA (r1 � r2). From this it follows that r1÷ r2 =
πA (r1 � r2).

�

PROOF (LAW 12, page 24):

r1÷∗
(
r′2∪ r′′2

)
=

⋃
t∈πC(r′2∪r′′2)

(
r1÷πB

(
σC=t

(
r′2∪ r′′2

)))× (t) (Definition 8)

=


 ⋃

t∈πC(r′2)

(
r1÷πB

(
σC=t

(
r′2∪ r′′2

)))× (t)


∪


 ⋃

t∈πC(r′′2)

(
r1÷πB

(
σC=t

(
r′2∪ r′′2

)))× (t)




From our assumption πC (r′2)∩ πC (r′′2) = /0 it follows for all t ∈ πC (r′2) that σC=t (r′′2) = /0 and
hence σC=t (r′2∪ r′′2) = σC=t (r′2). Similarly,

πC
(
r′2
)∩πC

(
r′′2
)

= /0⇒∀t ∈ πC
(
r′′2
)

: σC=t
(
r′′2
)

= /0
⇔∀t ∈ πC

(
r′′2
)

: σC=t
(
r′2∪ r′′2

)
= σC=t

(
r′2
)
.

Hence, we have

r1÷∗
(
r′2∪ r′′2

)
=


 ⋃

t∈πC(r′2)

(
r1÷πB

(
σC=t

(
r′2
)))× (t)


∪
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
 ⋃

t∈πC(r′′2)

(
r1÷πB

(
σC=t

(
r′′2
)))× (t)




=
(
r1÷∗ r′2

)∪ (r1÷∗ r′′2
)
. (Definition 8)

�

PROOF (LAW 13, page 24):

σp(A) (r1÷∗ r2) = σp(A)


 ⋃

t∈πC(r2)

(r1÷πB (σC=t (r2)))× (t)


 (Definition 8)

=
⋃

t∈πC(r2)

σp(A) ((r1÷πB (σC=t (r2)))× (t))

=
⋃

t∈πC(r2)

(
σp(A) (r1)÷πB (σC=t (r2))

)× (t)

= σp(A) (r1)÷∗ r2 (Definition 8)

�

PROOF (LAW 14, page 24):

σp(C) (r1÷∗ r2) = σp(C)


 ⋃

t∈πC(r2)

(r1÷πB (σC=t (r2)))× (t)


 (Definition 8)

=
⋃

t∈σp(C)(πC(r2))

(r1÷πB (σC=t (r2)))× (t)

=
⋃

t∈σp(C)(πC(r2))

(
r1÷πB

(
σC=t

(
σp(C) (r2)

)))× (t)

=
⋃

t∈πC(σp(C)(r2))

(
r1÷πB

(
σC=t

(
σp(C) (r2)

)))× (t)

= r1÷∗σp(C) (r2) (Definition 8)

�

PROOF (LAW 15, page 24):

σp(B) (r1)÷∗σp(B) (r2) =
⋃

t∈πC(σp(B)(r2))

(
σp(B) (r1)÷πB

(
σC=t

(
σp(B) (r2)

)))× (t) (Def. 8)

=
⋃

t∈πC(σp(B)(r2))

(
σp(B) (r1)÷πB

(
σp(B) (σC=t (r2))

))× (t)
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=
⋃

t∈πC(σp(B)(r2))

(
σp(B) (r1)÷σp(B) (πB (σC=t (r2)))

)× (t)

=
⋃

t∈πC(σp(B)(r2))

(
r1÷σp(B) (πB (σC=t (r2)))

)× (t) (Law 4)

=
⋃

t∈πC(σp(B)(r2))

(
r1÷πB

(
σp(B) (σC=t (r2))

))× (t)

=
⋃

t∈πC(σp(B)(r2))

(
r1÷πB

(
σC=t

(
σp(B) (r2)

)))× (t)

= r1÷∗σp(B) (r2) (Definition 8)

�
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B
Pseudo Code

The following basic division algorithms (Algorithms 15–19) assume that the division’s input
consists of a dividend table r1 and a divisor table r2 with the schemas R1(a,b) and R2(b), re-
spectively, where a and b are attributes, and the data types of r1.b and r2.b are compatible. The
aim of these algorithms is to compute the rows in the quotient table r3 = r1÷ r2, which has the
schema R3(a).

Some of the algorithms employ hash table data structures, where dht and qht represent a
divisor hash table and a quotient hash table, respectively.
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//
// Preconditions:
// none
//
Table table11 = new Table ("r1");
Table table12 = new Table ("r1");
Table table2 = new Table ("r2");
while (table2.hasNext())
dht.insert(table2.next());

while (table11.hasNext()) {
Row row11 = table11.next();
if (!qht.contains(row11.a)) {
while (table12.hasNext()) {

Row row12 = table12.next();
if ((row11.a == row12.a) && (dht.contains(row12.b))
set bit of row12.b in dht to one;

}
if (no bit in dht is equal to zero)

output row (row11.a);
reset all bits in dht to zero;
qht.insert(row11.a);
table12.reset();

}
}

Algorithm 15: Nested-loop division
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//
// Preconditions:
// none
//
Table table1 = new Table ("r1");
Table table2 = new Table ("r2");
int divisorCount = 0;
// Build the divisor hash table dht
while (table2.hasNext()) {
Row row2 = table2.next();
row2.divisorNumber = divisorCount;
dht.insert(row2);
divisorCount++;

}
// Build the quotient hash table qht
while (table1.hasNext()) do
Row row1 = table1.next();
if (dht.contains(row1.b)) {
if (!qht.contains(row1.a)) {

Row q = new quotient candidate row created from quotient
attributes of dividend row row1 including a bitmap
initialized with zeroes;

qht.insert(q);
}
set bit in q’s bitmap corresponding t.divisorNumber;

}
// Find result in the quotient hash table qht
foreach bucket in qht do
foreach row q in bucket do
if (the associated bitmap of q contains no zero)

output row (q);

Algorithm 16: Classic hash-division
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//
// Preconditions:
// (1) The dividend table r1 is grouped on column a.
//
Table table1 = new Table ("r1");
Table table2 = new Table ("r2");
int divisorCount = 0;
while (table2.hasNext()) {
divisorCount++;
table2.next();

}
if (table1.hasNext()) {
// Dividend is not empty
Row row1 = table1.next();
currentQuotient = row1.a;

}
while (table1.hasNext()) {
quotientCount = 0;
// Look at current row without proceeding to the next one
Row row1 = table1.peek();
while (table1.hasNext() && (row1.a == currentQuotient)) {
quotientCount++;
row1 = table1.next();

}
if (quotientCount == divisorCount)
output row (currentQuotient);

if (table1.hasNext()) {
row1 = table1.next();
currentQuotient = row1.a;

}
}

Algorithm 17: Merge-count division
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//
// Preconditions:
// (1) The divisor table r2 is sorted in ascending order.
// (2) The dividend is grouped on column a.
// (3) For each dividend group, the dividend is sorted on column b in
// ascending order.
//
// It is straightforward to modify the algorithm for a descending sort
// order.
//
Table table1 = new Table ("r1");
Table table2 = new Table ("r2");
boolean isFirstRow = true;
Row row1 = null;
Row row2 = null;
while (table1.hasNext()) {
if (isFirstRow && table2.hasNext()) {
// This is the first time that we fetch a dividend row
row1 = table1.next();
row2 = table2.next();
isFirstRow = false;

}
currentQuotient = row1.a;
while (table1.hasNext() && (row1.a == currentQuotient) &&

table2.hasNext() && (row1.b <= row2.b)) {
while (table1.hasNext() && (row1.a == currentQuotient) &&

(row1.divisor < row2.divisor))
row1 = table1.next();

while (table1.hasNext() && (row1.a == currentQuotient) &&
table2.hasNext() && (row1.b == row2.b)) {

row1 = table1.next();
row2 = table2.next();

}
}
if (!table2.hasNext())
// All divisor values of the divisor table have been matched
output row (currentQuotient);

// Reopen the sorted divisor table
row2.reset();
if (table2.hasNext())
// Fetch the first divisor row
row2 = table2.next();

while (table1.hasNext() && (row1.a == currentQuotient))
row1 = table1.next();

}

Algorithm 18: Merge-sort division
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//
// Preconditions:
// none
//
Table table1 = new Table ("r1");
Table table2 = new Table ("r2");
// Build the divisor hash table dht
while (table2.hasNext()) {
Row row2 = table2.next();
// Insert row with a new bitmap initialized with zeroes
dht.insert(row2);

}
// Build the quotient hash table qht
int quotientCount = 0;
while (table1.hasNext()) {
Row row1 = table1.next();
int index;
if (!qht.contains(row1.a)) {
qht.insert(row1.a);
// Assign a new quotient number to the quotient candidate row1.a
index = qht.setQuotientNumber(row1.a, quotientCount);
quotientCount++;

}
else
index = qht.getQuotientNumber(row1.a);

Row d = dht.get(row1.a);
d.bitmap[index] = 1;

}
// Find result in the divisor hash table dht
if (!dht.isEmpty()) {
// Bitmap initialized with ones
Bitmap bitmap = new Bitmap();
foreach bucket in dht do
foreach row d in bucket do

// Bit-wise AND operation
bitmap = bitmap & d.bitmap;

int index;
foreach index value in bitmap with bit == 1 do {
// Quotient row in qht associated with index
Row q = qht.get(index);
output row (q);

}
}

Algorithm 19: Transposed hash-division
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public class SubsetIndexNode implements Comparable, Comparator {
private Integer set; // Set identifier.
private TreeSet elements; // Sorted list of (Integer) elements.
private TreeSet subsets; // Sorted list of nodes that are subsets of this node.
private TreeSet supersets; // Sorted list of nodes that are supersets of this node.
private boolean isMarked; // Has the node been visited before?
private boolean isInResult; // Is this part of the result of a subset search?
private SubsetIndex subsetIndex; // "Callback anchor" for resetting marked nodes.

SubsetIndexNode(SubsetIndex subsetIndex, Integer set) {...}
public Integer getSet() {...}
public TreeSet getElements() {...}
public int cardinality() {...}
public boolean isMarked() {...}
public boolean isInResult() {...}
public void addToResult() {...}
public void resetIsInResult() {...}
public void mark() {...}
public void unmark() {...}
public void markSupersetsSubtree() {...}
private void markSubsetsSubtree(boolean mark) {...}
public void addElement(Integer element) {...}
public void addSubset(SubsetIndexNode node) {...}
public void addSuperset(SubsetIndexNode node) {...}
public boolean equals(Object other) {...}
public boolean isSubsetOf(SubsetIndexNode other) {...}
public boolean isSupersetOf(SubsetIndexNode other) {
public int compareTo(Object other) {
public int compare(Object object1, Object object2) {
public void findSupersets(TreeSet resultNodes, SubsetIndexNode node) {...}
public void removeSupersetsTreeElement(TreeSet otherElements) {...}

// Add all index nodes that are a subset of the given node to the result set.
public void findSubsets(TreeSet resultNodes, SubsetIndexNode node) {

// We check a node only once.
if (!isMarked()) {

mark();
if (this.isSubsetOf(node)) {
resultNodes.add(this);
Iterator iterator = supersets.iterator();
while (iterator.hasNext()) {

SubsetIndexNode indexNode = (SubsetIndexNode) iterator.next();
indexNode.findSubsets(resultNodes, node);

}
}

}
}

// Add all index nodes that are a subset of the given node to the result set.
public void findCompressedSubsets(TreeSet resultNodes, SubsetIndexNode node) {

// We add a node only once to the result.
if (!isInResult) {

Iterator subsetsIterator = subsets.iterator();
boolean allSubsetsInResult = true;
while (allSubsetsInResult && subsetsIterator.hasNext())
allSubsetsInResult = ((SubsetIndexNode) subsetsIterator.next()).isInResult();

if (allSubsetsInResult && this.reconstruct().isSubsetOf(node.reconstruct())) {
addToResult();
resultNodes.add(this);
Iterator supersetsIterator = supersets.iterator();
while (supersetsIterator.hasNext()) {

SubsetIndexNode indexNode = (SubsetIndexNode) supersetsIterator.next();
indexNode.findCompressedSubsets(resultNodes, node);

}
}

}
}

}

Algorithm 20: The SubsetIndexNode class as a Java code sample
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public class SubsetIndex {
private boolean isCompressed; // Compressed index?
private static int MAX_CARDINALITY;
private TreeSet cardinalitySiblings[];
// Sorted list of nodes with same #elements.
private TreeSet lowBorder; // Sorted list of nodes that have no subsets.
private TreeSet highBorder; // Sorted list of nodes that have no supersets.
private TreeSet markedNodes; // For garbage collection.
private TreeSet resultNodes; // For garbage collection.

SubsetIndex(boolean isCompressed, int maxCardinality) {...}

// Add a node to the index.
// Precondition: We start adding nodes with nodes of highest cardinality
// in a given table and continue with nodes of same or decreasing cardinality.
public void add(SubsetIndexNode node) {

unmark();
lowBorder.add(node);
highBorder.add(node);
// Check the nodes of the index by growing cardinality.
// Start with supersets of size + 1.
for (int c = node.cardinality() + 1; c <= MAX_CARDINALITY; c++) {

Iterator iterator = cardinalitySiblings[c].iterator();
while (iterator.hasNext()) {
SubsetIndexNode indexNode = (SubsetIndexNode) iterator.next();
if (node.isSubsetOf(indexNode) && !indexNode.isMarked()) {

if (isCompressed)
// Remove all elements from index node that are already in node.
indexNode.getElements().removeAll(node.getElements());

// Link both nodes to each other.
indexNode.addSubset(node);
node.addSuperset(indexNode);
// Make sure that these nodes do not belong to the respectitve border.
lowBorder.remove(indexNode);
highBorder.remove(node);
// We want to avoid to visit the subsets again.
indexNode.markSupersetsSubtree();

}
}

}
cardinalitySiblings[node.cardinality()].add(node);

}

// Returns the nodes that are a subset of the given node.
public Iterator subsetIterator(SubsetIndexNode node) {

TreeSet resultNodes = new TreeSet();
// Initially, all nodes of the index are unmarked.
unmark();
// Add all matching rows to the result set starting with the smallest sets and then
// test bottom up.
Iterator iterator = lowBorder.iterator();
while (iterator.hasNext()) {

SubsetIndexNode indexNode = (SubsetIndexNode) iterator.next();
if (isCompressed)
indexNode.findCompressedSubsets(resultNodes, node);

else
indexNode.findSubsets(resultNodes, node);

}
return resultNodes.iterator();

}

public Iterator supersetIterator(SubsetIndexNode node) {...}
public void unmark() {...}
public void resetIsInResult() {...}
public boolean isCompressed() {...}
public void addMarkedNode(SubsetIndexNode node) {...}
public void addResultNode(SubsetIndexNode node) {...}

}

Algorithm 21: The SubsetIndex class as a Java code sample
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Sample Scale Unnested layout Nested layout
type factor Transactions Rows Disk (bytes) Rows Disk (bytes)

1.0000 1 000 000 10 208 647 122 503 764 1 000 000 93 669 176
0.5000 500 000 5 104 867 61 258 404 500 000 46 838 936
0.1000 100 000 1 021 623 12 259 476 100 000 9 372 984
0.0500 50 000 509 986 6 119 832 50 000 4 679 888

original 0.0100 10 000 102 466 1 229 592 10 000 939 728
0.0050 5 000 50 777 609 324 5 000 466 216
0.0010 1 000 10 116 121 392 1 000 92 928
0.0005 500 5 119 61 428 500 46 952
0.0001 100 1 105 13 260 100 10 040
1.0000 989 981 5 612 509 67 350 108 989 981 56 779 844
0.5000 494 976 2 807 910 33 694 920 494 976 28 402 992
0.1000 99 061 562 253 6 747 036 99 061 5 686 756
0.0500 49 489 279 909 3 358 908 49 489 2 833 140

query 0.0100 9 913 56 384 676 608 9 913 570 028
0.0050 4 945 27 941 335 292 4 945 282 868
0.0010 990 5 606 67 272 990 56 728
0.0005 495 2 844 34 128 495 28 692
0.0001 99 602 7 224 99 6 004

Table C.1: Sizes of samples from dataset T1E1.D1E6



180 Datasets

Sample Scale Unnested layout Nested layout
type factor Transactions Rows Disk (bytes) Rows Disk (bytes)

1.0000 100 000 9 886 943 118 643 316 100 000 80 295 544
0.5000 50 000 4 942 956 59 315 472 50 000 40 143 648
0.1000 10 000 989 278 11 871 336 10 000 8 034 224
0.0500 5 000 494 693 5 936 316 5 000 4 017 544

original 0.0100 1 000 99 270 1 191 240 1 000 806 160
0.0050 500 49 253 591 036 500 400 024
0.0010 100 9 835 118 020 100 79 880
0.0005 50 4 875 58 500 50 39 600
0.0001 10 955 11 460 10 7 760
1.0000 95 353 1 254 606 15 055 272 95 353 11 181 084
0.5000 47 657 625 226 7 502 712 47 657 5 573 692
0.1000 9 472 124 453 1 493 436 9 472 1 109 288
0.0500 4 788 64 544 774 528 4 788 573 808

query 0.0100 957 13 004 156 048 957 115 516
0.0050 479 6 084 73 008 479 54 420
0.0010 97 1 300 15 600 97 11 564
0.0005 47 544 6 528 47 4 916
0.0001 9 19 228 9 260

Table C.2: Sizes of samples from dataset T1E2.D1E5

Sample Scale Unnested layout Nested layout
type factor Transactions Rows Disk (bytes) Rows Disk (bytes)

1.0000 10 000 9 959 457 119 513 484 10 000 79 795 656
0.5000 5 000 4 979 807 59 757 684 5 000 39 898 456
0.1000 1 000 995 551 11 946 612 1 000 7 976 408
0.0500 500 497 999 5 975 988 500 3 989 992

original 0.0100 100 99 427 1 193 124 100 796 616
0.0050 50 49 584 595 008 50 397 272
0.0010 10 9 888 118 656 10 79 224
0.0005 5 5 000 60 000 5 40 060
0.0001 1 971 11 652 1 7 780
1.0000 9 546 1 020 893 12 250 716 9 546 8 281 696
0.5000 4 778 510 325 6 123 900 4 778 4 139 936
0.1000 948 87 402 1 048 824 948 710 592
0.0500 470 61 096 733 152 470 494 408

query 0.0100 95 7 197 86 364 95 58 716
0.0050 48 5 151 61 812 48 41 784
0.0010 9 34 408 9 380
0.0005 5 17 204 5 196
0.0001 1 1 12 1 20

Table C.3: Sizes of samples from dataset T1E3.D1E4
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Sample Scale Unnested layout Nested layout
type factor Transactions Rows Disk (bytes) Rows Disk (bytes)

1.0000 515 597 3 367 020 40 404 240 515 597 33 123 324
0.5000 257 798 1 681 224 20 174 688 257 798 16 543 368
0.1000 51 560 336 702 4 040 424 51 560 3 312 336
0.0500 25 780 169 259 2 031 108 25 780 1 663 432

original 0.0100 5 156 33 006 396 072 5 156 325 920
0.0050 2 578 16 798 201 576 2 578 165 320
0.0010 516 3 189 38 268 516 31 704
0.0005 258 1 804 21 648 258 17 528
0.0001 52 319 3 828 52 3 176

Table C.4: Sizes of samples from dataset BMS3
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hard Seeger. A Status Report on XXL—A Software Infrastructure for Efficient
Query Processing. BTCDE, 26(2):12–18, June 2003.

[CKMP97] Jens Claußen, Alfons Kemper, Guido Moerkotte, and Klaus Peithner. Optimizing
Queries with Universal Quantification in Object-Oriented and Object-Relational
Databases. In Proceedings VLDB, Athens, Greece, pages 286–295, August 1997.

[Cod70] Edgar Codd. A Relational Model for Large Shared Data Banks. CACM, 13(6):377–
387, June 1970.

[Cod72] Edgar Codd. Relational Completeness of Database Sub-Languages. In Randall
Rustin, editor, Courant Computer Science Symposium 6: Database Systems, pages
65–98. Prentice-Hall, 1972.

[Dat94] Chris Date. An Introduction to Database Systems. Addison-Wesley, sixth edition,
1994.

[Day83] Umeshwar Dayal. Queries with Quantifiers: A Horticultural Approach. In Pro-
ceedings PODS, Atlanta, Georgia, USA, pages 125–136, March 1983.

[Day87] Umeshwar Dayal. Of Nests and Trees: A Unified Approach to Processing Queries
that Contain Nested Subqueries, Aggregates, and Quantifiers. In Proceedings
VLDB, Brighton, England, pages 197–208, September 1987.

[DD92] Hugh Darwen and Chris Date. Into the Great Divide. In Chris Date and Hugh Dar-
wen, editors, Relational Database: Writings 1989–1991, pages 155–168. Addison-
Wesley, Reading, Massachusetts, USA, 1992.

[DD95] Hugh Darwen and Chris Date. The Third Manifesto. SIGMOD Record, 24(1):39–
49, March 1995.

[Dem82] Robert Demolombe. Generalized Division for Relational Algebraic Language. In-
formation Processing Letters, 14(4):174–178, 1982.



Bibliography 191

[Dep86] Uwe Deppisch. S-Tree: A Dynamic Balanced Signature Index for Office Retrieval.
In Proceedings SIGIR, Pisa, Italy, pages 77–87, September 1986.

[FT82] Patrick C. Fischer and Stan J. Thomas. Operators for Non-First-Normal-Form Re-
lations. In Proceedings COMPSAC, New York, USA, November 1982.

[GC95] Goetz Graefe and Richard Cole. Fast Algorithms for Universal Quantification in
Large Databases. TODS, 20(2):187–236, 1995.

[GK98] Timothy Griffin and Bharat Kumar. Algebraic Change Propagation for Semijoin
and Outerjoin Queries. SIGMOD Record, 27(3):22–27, March 1998.

[GMUW02] Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Database Systems—
The Complete Book. Prentice-Hall, 2002.

[GP99] Peter Gulutzan and Trudy Pelzer. SQL-99 Complete, Really: An Example-Based
Reference Manual of the New Standard. R&D Books, Lawrence, Kansas, USA,
1999.

[Gra89] Goetz Graefe. Relational Division: Four Algorithms and Their Performance. In
Proceedings ICDE, Los Angeles, California, USA, pages 94–101, February 1989.

[Gra93] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Computing
Surveys, 25(2):73–170, June 1993.

[Gra95] Goetz Graefe. The Cascades Framework for Query Optimization. BTCDE,
18(3):19–29, September 1995.

[HB99] Seth Hettich and Stephen Bay. The UCI KDD Archive, 1999.
http://kdd.ics.uci.edu.

[Hel00] Sven Helmer. Performance Enhancements for Advanced Database Management
Systems. PhD thesis, University of Mannheim, Germany, December 2000.

[HFKZ96] Jiawei Han, Yongjian Fu, Krzysztof Koperski, and Osmar Zaiane. DMQL: A Data
Mining Query Language for Relational Databases. In Proceedings DMKD, Mon-
treal, Canada, June 1996.

[HGG01] Jochen Hipp, Ulrich Günzer, and Udo Grimmer. Integrating Association Rule Min-
ing Algorithms with Relational Database Systems. In Proceedings ICEIS, Setubal,
Portugal, pages 130–137, July 2001.

[HIL00] Tok Wee Hyong, A. Indriyati, and Low Wai Lup. Towards Ad Hoc Mining of
Association Rules with Database Management Systems. Research Report, School
of Computing, National University of Singapore, October 2000.

[HK01] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Mor-
gan Kaufmann Publishers, 2001.



192 Bibliography

[HKMT95] Marcel Holsheimer, Martin Kersten, Heikki Mannila, and Hannu Toivonen. A Per-
spective on Databases and Data Mining. In Proceedings KDD, Montreal, Quebec,
Canada, pages 150–155, August 1995.

[HM97] Sven Helmer and Guido Moerkotte. Evaluation of Main Memory Join Algorithms
for Joins with Set Comparison Join Predicates. In Proceedings VLDB, Athens,
Greece, pages 386–395, August 1997.

[HM02] Sven Helmer and Guido Moerkotte. Compiling Away Set Containment and Inter-
section Joins. Technical Report, University of Mannheim, Germany, April 2002.

[HP95] Ping-Yu Hsu and D. Stott Parker. Improving SQL with Generalized Quantifiers. In
Proceedings ICDE, Taipei, Taiwan, pages 298–305, March 1995.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without Candidate
Generation. In Proceedings SIGMOD, Dallas, Texas, USA, pages 1–12, May 2000.

[HS95] Maurice Houtsma and Arun Swami. Set-oriented Data Mining in Relational
Databases. DKE, 17(3):245–262, December 1995.

[ISO02] ISO/IEC. Information Technology—Database Language—SQL—Part 2: Founda-
tion (SQL/Foundation), Working Draft 9075-2:2003, December 2002.

[IV99] Tomasz Imielinski and Aashu Virmani. MSQL: A Query Language for Database
Mining. DMKD, 3(4):373–408, December 1999.

[JK83] Matthias Jarke and Jürgen Koch. Range Nesting: A Fast Method to Evaluate Quan-
tified Queries. In Proceedings SIGMOD, San Jose, California, USA, pages 196–
206, May 1983.

[JK84] Matthias Jarke and Jürgen Koch. Query Optimization in Database Systems. ACM
Computing Surveys, 16(2):111–152, June 1984.

[JS82] G. Jaeschke and Hans-Jörg Schek. Remarks on the Algebra of Non First Normal
Form Relations. In Proceedings PODS, Los Angeles, California, USA, pages 124–
138, March 1982.

[KSRM03] Tobias Kraft, Holger Schwarz, Ralf Rantzau, and Bernhard Mitschang. Coarse-
Grained Optimization: Techniques for Rewriting SQL Statement Sequences. In
VLDB, Berlin, Germany, September 2003.

[Loh88] Guy M. Lohman. Grammar-like Functional Rules for Representing Query Opti-
mization Alternatives. In Proceedings SIGMOD, Chicago, Illinois, USA, pages
18–27, June 1988.

[Mai83] David Maier. The Theory of Relational Databases. Computer Science Press, 1983.



Bibliography 193

[Mak77] Akifumi Makinouchi. A Consideration on Normal Form of Not-Necessarily-
Normalized Relation in the Relational Data Model. In Proceedings VLDB, Tokyo,
Japan, pages 447–453, October 1977.

[Mam03] Nikos Mamoulis. Efficient Processing of Joins on Set-valued Attributes. In Pro-
ceedings SIGMOD, San Diego, California, USA, June 2003.

[MC03] Pratyush Mishra and Sharma Chakravarthy. Performance Evaluation of SQL-OR
Variants for Association Rule Mining. In Proceedings DaWaK, Prague, Czech
Republic, September 2003.

[MGM02a] Sergey Melnik and Hector Garcia-Molina. Divide-and-Conquer Algorithm for
Computing Set Containment Joins. In Proceedings EDBT, Prague, Czech Republic,
pages 427–444, March 2002.

[MGM02b] Sergey Melnik and Hector Garcia-Molina. Divide-and-Conquer Algorithm for
Computing Set Containment Joins. Extended Technical Report, Stanford Univer-
sity, California, USA, 2002.

[MGM03] Sergey Melnik and Hector Garcia-Molina. Adaptive Algorithms for Set Contain-
ment Joins. TODS, 28(1):56–99, March 2003.

[MHM03] Norman May, Sven Helmer, and Guido Moerkotte. Nested Queries and Quantifiers
in an Ordered Context. Technical Report, Fakultät für Mathematik und Informatik,
University of Mannheim, Germany, February 2003.

[Mis02] Pratyush Mishra. Performance Evaluation and Analysis of SQL Based Approaches
for Association Rule Mining. Master’s thesis, University of Texas at Arlington,
Texas, USA, December 2002.

[MPC96] Rosa Meo, Guiseppe Psaila, and Stefano Ceri. A New SQL-like Operator for Min-
ing Association Rules. In Proceedings VLDB, Bombay, India, pages 122–133,
September 1996.

[MTV94] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient Algorithms for
Discovering Association Rules. In AAAI Workshop on Knowledge and Discovery
in Databases, Seattle, Washington, USA, pages 181–192, July 1994.

[MZB99] Volker Markl, Martin Zirkel, and Rudolf Bayer. Processing Operations with Re-
strictions in RDBMS without External Sorting: The Tetris Algorithm. In Proceed-
ings ICDE, Sydney, Australia, pages 562–571, March 1999.

[NCFB01] Amir Netz, Surajit Chaudhuri, Usuma Fayyad, and J. Bernhardt. Integrating Data
Mining with SQL Databases: OLE DB for Data Mining. In Proceedings ICDE,
Heidelberg, Germany, pages 379–387, March 2001.



194 Bibliography

[NM02] Alexandros Nanopoulos and Yannis Manolopoulos. Efficient Similarity Search for
Market Basket Data. VLDB Journal, 11(2):138–152, 2002.

[NRM00] Clara Nippl, Ralf Rantzau, and Bernhard Mitschang. StreamJoin: A Generic
Database Approach to Support the Class of Stream-Oriented Applications. In Pro-
ceedings IDEAS, Yokohama, Japan, pages 83–91, September 2000.
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