
Hardware Accelerated Volume Visualization on
PC Clusters

Von der Fakultät Informatik, Elektrotechnik und

Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Marcelo Eduardo Magallón Gherardelli

aus Santiago

Hauptberichter: Prof. Dr. T. Ertl
Mitberichter: Prof. Dr. H. Ruder

Tag der mündlichen Prüfung: 5.3.2004

Institut für Visualisierung und Interaktive Systeme

der Universität Stuttgart

2004



“He’s in love,” said Gaspode. “It’s very tricky.”
— Terry Pratchett, Moving Pictures

Für Katrin.



Acknowledgements

This work would not have come to existence without the support of a lot of people. First and
foremost my adviser, Thomas Ertl, who always provided me the confidence to try and explore
new ideas, and who gave the word “Doktorvater” a meaning beyond “thesis supervisor”. To
Hans Ruder, who in many occasions provided me with the support to make this work real. I
am grateful to all the people I had the pleasure to work and share a life with during my four-
year stay in Germany. To Matthias Hopf — one of the first people I met at the Visualization and
Interactive Systems section at the University of Stuttgart — we shared many hours of fruitful and
not-so-fruitful discussion, which directly influenced many of the ideas expressed in this work. To
Peter Leinen at the University of Tübingen, who always had patience and comprehension, even
if at times I seemed to be set on distracting him from his already busy work schedule. To my
colleagues Klaus Engel, Stefan Röttger, Martin Kraus and Manfred Weiler, who always provided
valuable advise, discussion and criticism, and who taught me more than they probably think they
did. To Milan Ikits from the Computer Department at the University of Utah, whom I have
never met in “real life”, a fact that has never prevented us from successfully working together.
I am greatly indebted to two professors at the University of Costa Rica, who in different ways
provided the motivation, resources and support for me to come to Germany in the first place:
Jorge E. Páez, who motivated me to submit my application for a scholarship, and who has always
shown patience and support, and who is eager to listen and discuss ideas; Roberto Magaña, who
many years ago taught me about new avenues to explore, which eventually led to starting this
work.

I wish to express many thanks to all my office mates at the VIS section, I know some of them
had to put up with my bad moods more often than not. In chronological order: Sabine Iserhardt-
Bauer, Matthias Ressel, Stefan Röttger, Dirc Rose (twice), Guido Reina, Joachim Diepstraten
and Katrin Bidmon. The people at the VIS section gave me not only a workplace but also
became a second family for me in Germany. From them I learned not only about computers and
visualization, but also about the german way of life, culture and sense of humor. I am specially
grateful to Katrin Bidmon, Dirc Rose, Guido Reina and Ulrike Ritzmann, friends who did not
only teach me about themselves but also many things about me and my own life. I wish to thank
Miguel Ángel, who always posed “difficult” questions; Ramón and Susana, who, without really
knowing me, lend me a hand in a moment of need.

My sister Daniela and my parents Florencio and Isabel have always supported me during all
of my life. During my stay in Germany, they always were there for me when I missed them the
most, even if several thousand kilometers stood between us. This work would have never come

3



4

to existence without them.
This work was financed by a scholarship granted by the German Service for Academic Ex-

change (DAAD) and the project SFB 382 of the German Research Foundation (DFG). I wish to
express my gratitude towards Maria-Luise Nünning, my contact person at the DAAD, who was
always ready to help.



Abbreviations

2D two dimensional
3D three dimensional
API Application Program Interface
bpp bits per pixel
COTS commodity off the shelf
CPU Central Processing Unit
e.g. exempli gratia (for example)
et al. et alia (and others)
Gb gigabit (10243 bits)
GB gigabyte (10243 bytes)
i.e. id est (that is)
kB kilobyte (1024 bytes)
Mb megabit (10242 bits)
MB megabyte (10242 bytes)
MHz megahertz
MPI Message Passing Interface
NOW Network of workstations
OpenGL Open Graphics Library
pixel picture element
RGB red, green and blue
RGBA red, green, blue and alpha
SIMD Single Instruction Multiple Data
texel texture element
voxel volume element
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Abstract and chapter summaries

Chapter 1: Introduction

The primary goal of this chapter is to motivate the subject in this thesis. The parallelization pos-
sibilities on the visualization pipeline are explained, and how some of this possibilities have been
exploited. The evolution of commodity graphics hardware is also discussed, and serves as mo-
tivation for working on the parallelization of the last step of the visualization pipeline, namely
the rendering of images. A comparison between “high end” proprietary visualization systems
and commodity hardware is provided and serves as motivation for working on the parallelization
of the rendering using clusters of PCs equipped with commodity graphics hardware. The char-
acteristics of visualization applications are analyzed in the context of cluster-based computing,
paying special attention to the composition of partial results for its display on a single device.
The different approaches to this problem are discussed and it is argued that using general pur-
pose processors instead of special purpose hardware is a viable alternative, even if distributed
memory architectures have high inter-processor latencies and slow inter-connections. Finally a
short summary of the contributions of this work is provided.

Chapter 2: Direct volume visualization

This chapter provides a brief introduction to volume visualization in general and direct volume
visualization in particular. First a review of basic computer graphics concepts is provided, along
with an introduction to the OPENGL graphics API. In particular the OPENGL pipeline is dis-
cussed, paying special attention to the rasterization and per-fragment operations stages. This
provides the grounds for discussing the visualization of volumetric datasets using parallel ren-
dering algorithms. Existing work in three different areas is reviewed: software-based rendering,
hardware-accelerated rendering using dedicated hardware and hardware-accelerated rendering
using commodity hardware.

A derivation of the essential algorithm for direct volume rendering using texture mapping
hardware is provided, starting from physical concepts. After explaining the concepts of transfer
functions and classification, the hardware-accelerated volume rendering technique using texture
mapping is explained and its bottlenecks are discussed, and its parallelization is introduced. After
this, the current state of the art in hardware-accelerated volume rendering is reviewed.
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Chapter 3: Parallel visualization

This chapter introduces concepts common to all parallel visualization algorithms and then pro-
ceeds to make a review of the current state of the art in general purpose parallel visualization
algorithms. The parallelization of the volume rendering algorithm is presented, and special at-
tention is paid to the parallelization of the compositing stage: two well known algorithms for
parallel compositing, direct send and binary swap, are discussed and compared and a justifica-
tion for choosing one over the other is provided.

Chapter 4: Image compositing and volume rendering

This chapter discusses in more detail image composition in the context of parallel volume ren-
dering. In particular the requirement for storing the opacity information along with color infor-
mation is discussed. The manner in which the opacity information has to be computed in order to
fulfill the associativity requirement of the parallelization is discussed, and this serves to introduce
the concept of alpha pre-multiplication. Different pre-multiplication methods in the context of
OPENGL are discussed. It is also shown why performing the pre-multiplication in the transfer
function is not correct.

Chapter 5: Software inter-brick compositing

This chapter presents a software-based implementation for compositing partial results of the dis-
tributed volume rendering. First, a justification for not performing the composition in hardware
is given. Then some basic remarks regarding in-software compositing are made. After this,
assembler implementations of the compositing operation are given, one for the Intel’s x86 archi-
tecture, and one for AMD’s AMD64. The performance characteristics of this implementations
are discussed.

Chapter 6: System architecture

This chapter discusses in more detail the architecture of the system developed during this work.
First, a justification for the choice of MPI as a communication medium is provided, and the con-
sequences of this choice are examined. Then the performance characteristics of the underlying
network are discussed. Some low-level implementation details are discussed since the problems
faced, as well as the decisions and solutions taken are non-evident, in particular how to integrate
OPENGL applications into the cluster environment. Finally a discussion of the actual implemen-
tation as well as remotely accessing the facility is provided.
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Chapter 7: Application development with OpenGL

This chapter focuses on a topic that was always present during the course of this work: applica-
tion development using OPENGL, in particular debugging applications at the OPENGL level as
well as accessing non-standarized functionality.

Chapter 8: Remote access of visualization facilities

In this chapter remote access of generic visualization facilities is presented. First a review of
other solutions is provided, and then a detailed description of a generic method for remotely
accessing visualization applications is provided. The only assumption that is made is that the
application uses OPENGL and that it uses the X11 protocol for communication with the render-
ing hardware. After discussing the generic implementation, some optimizations specific to the
distributed volume visualization are presented.

Chapter 9: Results and future perspectives

This chapter presents the results of this work, and makes an attempt to look into the future with
respect to scalability of the developed solution. Attention is paid again to the compositing step of
the distributed visualization process, and how this might become less of an issue in the coming
years.
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Zusammenfassung und Kapitelüberblick

Kapitel 1: Einführung

Das primäre Ziel dieses Kapitels ist es, das Thema dieser Arbeit zu motivieren. Sowohl die Paral-
lelisierungsmöglichkeiten der Visualisierungspipeline als auch die Methoden, wie sie bisher aus-
genutzt worden sind, werden erläutert. Die zeitliche Entwicklung der gebräuchlichen Standard-
Graphikhardware wird besprochen und die Motivation für die Parallelisierung des letzten Schrit-
tes der Visualisierungspipeline wird eingeführt, nämlich das Erzeugen von Bilder (Rendering).
Ein Vergleich zwischen “hochleistenden” proprietären Visualisierungssystemen und gebräuchli-
cher Hardware wird dargestellt, und dient als Motivation, um mit der Parallelisierung des Ren-
derings auf mit Graphikhardware ausgestatteten PC-Clustern zu arbeiten. Die Merkmale von
Visualisierungsanwendungen im Kontext von Cluster-basierten Algorithmen mit Betonung auf
das Compositing (Zusammenfassung) von Zwischenergebnisse werden analysiert. Verschiede-
ne Ansätze für die Lösung dieses Problems werden erörtert und es wird argumentiert, dass es
eine praktikable Möglichkeit ist, handelsübliche Prozessoren anstatt dedizierter Hardware einzu-
setzen, obwohl distributed memory (verteilte Speicher) Architekturen größere Latenzzeiten und
langsamere Verbindungen zwischen Prozessoren haben. Schließlich wird eine kurze Zusammen-
fassung der Beiträge dieser Arbeit gegeben.

Kapitel 2: Direkte Volumenvisualisierung

Dieses Kapitel führt kurz in die allgemeine und direkte Volumenvisualisierung ein. Zuerst wird
ein Überblick über grundlegende Computergraphik-Konzepte gegeben, ebenso eine Einführung
in das OPENGL Graphik-API. Die OPENGL Pipeline wird dargestellt, wobei besonders auf
die Rasterisierung und die pro-Fragment Operationen eingegangen wird. Dies bildet die Grund-
lage, um über die Visualisierung von volumetrischen Datensätzen unter Verwendung paralle-
ler Rendering-Algorithmen zu diskutieren. Vorherige Arbeiten auf drei verschiedenen Gebieten
werden besprochen: Software-basiertes Rendern, hardware-unterstütztes Rendern mit dedizierter
Hardware und hardware-unterstütztes Rendern mit handelsüblicher Hardware.

Ausgehend von physikalischen Konzepten wird eine Herleitung des grundlegenden Algo-
rithmus zum direkten Volumenrendern mit Texture-mapping Hardware gegeben. Das Konzept
der Transferfunktionen und die Klassifierung wird erklärt, anschließend wird die Technik des
hardware-unterstützten Volumenrenderns mit Texture-mapping erläutert, dessen Grenzen darge-
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legt und in dessen Parallelisierung eingeführt. Schließlich wird der aktuelle Stand des hardware-
unterstützten Volumenrenderns dargelegt.

Kapitel 3: Parallele Visualisierung

Dieses Kapitel führt in Konzepte ein, die alle parallelen Visualisierungsalgorithmen gemeinsam
haben und gibt einen Überblick über die aktuellen allgemein üblichen Algorithmen zur paral-
lelen Visualisierung. Die Parallelisierung des Algorithmus zum Rendern von Volumina wird
vorgestellt. Besondere Beachtung findet dabei die Parallelisierung des Compositing: zwei all-
gemein bekannte Algorithmen zum parallelen Compositing, direct send und binary swap werden
besprochen und verglichen, und eine Begründung für die getroffene Wahl wird gegeben.

Kapitel 4: Bild-Compositing und Volumenrendern

In diesem Kapitel wird eine detalliertere Erörterung des Bild-Compositing im Kontext parallelen
Volumenrenderns gegeben. Insbesondere wird die Notwendigkeit die Opazität zusammen mit
der Farbinformation zu speichern, erläutert. Die Methode, um die Opazität so zu berechnen, dass
die notwendige Assoziativität der Parallelisierung gegeben ist, wird vorgestellt. Dies dient dazu,
das Konzept des vormultiplizierten Alphawertes einzuführen. Unterschiedliche Methoden zur
Vormultiplikation mit OPENGL werden erläutert. Ebenso wird gezeigt, warum es nicht korrekt
ist, die Werte in der Transferfunktion vorzumultiplizieren.

Kapitel 5: Software inter-brick compositing

Dieses Kapitel stellt eine software-basierte Implementierung zum Compositing von Zwischen-
ergebnissen des verteilten Volumenrenderns vor. Zuerst wird eine Begründung gegeben, warum
die Durchführung des Compositing nicht in Hardware stattfindet. Anschließend werden einige
grundsätzliche Bemerkungen bezüglich des Compositing in Software gemacht, und Assembler-
Implementierungen des Compositing vorgestellt: Eine für die Intel x86 Architektur und eine für
die AMD AMD64 Architektur. Die Performanzmerkmale dieser Implementierungen werden dis-
kutiert.

Kapitel 6: Systemarchitektur

Die Architektur des in dieser Arbeit entwickelten Systems wird in diesem Kapitel genauer be-
schrieben. Zuerst wird eine Begründung dafür gegeben, warum MPI als Kommunikationsschnitt-
stelle ausgewählt wurde, und die Konsequenzen dieser Wahl werden untersucht. Die Performanz-
merkmale des darunterliegenden Netzwerkes werden beschrieben. Einige Implementierungsde-
tails werden genauer erläutert, da sowohl die aufgeworfenen Probleme ebenso wie die getroffe-
nen Entscheidungen als auch deren Lösung nicht offensichtlich sind; inbesondere die Integration
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von OPENGL-Anwendungen in die Cluster-Umgebung. Schließlich folgt eine Erläuterung der
tatsächlichen Implementierung und des entfernten Zugangs zum Cluster.

Kapitel 7: Anwendungsentwicklung mit OPENGL

Dieses Kapitel hat als Schwerpunkt den Entwicklungsprozess von OPENGL-Anwendungen, in-
besonders das Debugging auf OPENGL-Ebene und den Zugriff auf nicht-standarisierte Funktio-
nalität.

Kapitel 8: Entfernter Zugang zu Visualisierungsmöglichkeiten

Dieses Kapitel stellt eine generische Methode für den entfernten Zugang zu Visualisierungsan-
wendungen vor. Zuerst wird ein Überblick über existierende Lösungen gegeben und anschließend
wird eine generische Methode genauer beschrieben, mit der auf Visualisierungsanwendungen
entfernt zugegriffen werden kann. Die einzige Annahme die gemacht wird ist, dass die Anwen-
dung auf OPENGL basiert und das X11-Protokoll für die Kommunikation mit der Hardware
verwendet wird. Anschließend werden Optimierungen, die speziell die verteilte Volumenvisuali-
sierung betreffen, vorgestellt.

Kapitel 9: Ergebnisse und Ausblick

In diesem Kapitel werden die Ergebnisse der Arbeit vorgestellt, und ein Ausblick im Hinblick
auf die Skalierbarkeit der entwickelten Lösung wird gegeben. Besonders wird auf den Composi-
ting-Schritt des Prozesses zur verteilten Visualisierung eingegangen, und darauf wie dies in den
nächsten Jahren weniger kritisch sein wird.
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Chapter 1

Introduction

1.1 Motivation

Researchers and engineers, that is, the end-users of visualization techniques, strive for better,
faster and easier ways of understanding their data. Visualization is not about “pretty pictures”, its
ultimate purpose is comprehension. Whether this comprehension arrives from simple diagrams
or complex interactive simulations is only an “implementation detail”, it is not a goal per se.
Thus, visualization specialists are faced with the problem that their users are producing, on a
daily basis, larger datasets which they wish to visualize. The visualization community’s answer
to that problem is interactive visualization, and the commonly accepted definition is that the
user is able to directly manipulate the subject under study, with the representation on the display
system being updated at a rate of at least 10 times a second. When the size of the datasets
exceeds the processing capabilities of the available hardware, one way of achieving this goal is
to employ multiple processing elements in parallel. Looking at the visualization pipeline (figure
1.1), one can recognize multiple points where parallelization might yield benefits: going from
raw data to “visualization data” is a filtering process which is at least directly proportional to
the size of the input data, and in general well paralellizable; the mapping of data structures
to visualization structures can also be subject to parallel processing, and this was the focus of
many research papers of the last decade, which dealt with reduction of the datasets in order to
make them more amenable to treatment with interactive computer graphics techniques. The last
step in the pipeline, the rendering of the data, has been also approached with parallelization in
mind. Textbook examples of this are raytracing and radiosity-based algorithms, with processors
working in unison in order to generate a single final image or working in an interleaved fashion
in order to generate different frames of a single animation. In this case scalability in two areas
is being sought after: scalability on the size of the input data and scalability on the update rates
of the rendering itself. An orthogonal approach is to distribute the rendering process across
processing groups, with each group generating images for a single display device, which when
observed all together make for a single coherent visualization of the data. Here scalability on
the final image resolution is being targeted. In this regard, hardware accelerated visualization
techniques are also a form of parallelization: by recognizing the implicitly parallel nature of the
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Figure 1.1: The visualization pipeline

rasterization process, hardware designers are able to improve on the design and performance of
the graphics chips, to the point where these have become highly-pipelined highly-specialized
SIMD processors.

Commodity graphics hardware is of particular interest. Its development has been pushed for-
ward over the last few years by the PC gaming industry. As a result, today’s commodity graphics
hardware has reached and in many aspects surpassed the capabilities of so-called high-end so-
lutions. The initial efforts were geared towards improving performance alone, with little or no
advance in the area of programmability of the hardware. During a long period of time, graphics
card makers concentrated themselves on providing hardware implementations of functions ex-
posed by the graphics APIs such as OPENGL, that is, they implemented a fixed-function pipeline
in hardware. NVIDIA was one of the first hardware vendors to develop and implement exten-
sions to the basic APIs which introduced small amounts of programmability into them. This
flexibility was welcomed by the programmer community, which started to use the features and
therefore implicitly or explicitly recommend certain hardware vendors over others, giving them
reason to research and develop even more extensions – proprietary in most cases – to the fixed-
function pipeline. This trend has continued until today, when almost fully programmable GPUs
are available on the market. Thanks to standardization efforts from several parties, these features
are now accessible in hardware- and platform-independent fashions. The evolving complexity
of these components reflects itself as an exponential increase in the number of on-chip transis-
tors. This exponential behaviour is dubbed Moore’s law in reference to a 1965 paper by Gordon
Moore [Moo65], in which he provided arguments as to why the reduced costs of integrated elec-
tronics would continue to provide advantages and thus fuel the development of larger and more
complex components. The wide-spread formulation of Moore’s law states that the number of
transistors on a CPU doubles every 18 months. As seen in figure 1.2, the development pace of
GPUs seems to be faster than that of CPUs.

The advantages brought by this kind of flexibility have not remained in the gaming realm.
By exploiting the capabilities of flexible graphics pipelines, researchers in different areas such as
volume rendering, photorealistic and non-photorealistic rendering have been able to improve not
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Figure 1.2: Number of transistors used in consumer-grade GPUs. The dashed curve is an expo-
nential fit N = 4.25×2

4
5 (t−1997), i.e. a duplication of the number of transistors every 10 months.

This fit does not take into account the introduction of products targeted towards lower-end mar-
kets, such as the NV34. R100, R200, R250, R300 and R350 are several generations of the
Radeon chip produced by ATI. Chips labeled with the letters NV are several generations of the
GeForce product line by NVIDIA, as well as the Riva 128 (R128) chip. P512 is the Parhelia-512
product from Matrox. VP900 is the Wildcat VP product from 3Dlabs. Source: Product press
releases from the respective vendors.
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only the performance but also the quality of the images they produce (some exemplary papers
are [EKE01], [SW01], [FMS02]).

Looking at the latest generation of consumer-oriented graphics hardware, it is remarkable that
it not only provides a much larger degree of programmability, but also better accuracy and more
on-board memory, making the comparison against “high-end” hardware hard to avoid. Looking
at the specifications of SGI’s InfiniteReality4 (IR4 for short), it is easy to spot two areas where
it still holds an advantage. The first of them is the amount of on-board memory that can be
dedicated to textures: the IR4 can manage up to 1 GB of RAM per pipe, whilst current offerings
from ATI and NVIDIA are still limited to 256 MB of on-board memory, with 64 and 128 MB
configurations being commonplace. The reason for this limitation is clear: adding more memory
would not only increase the power requirements of the board but also its street price and therefore
its visibly. There is also an architectural problem to consider: these boards are still designed with
Intel x86 class hardware in mind, where memory addresses are limited to 32 bits. Because of
the architecture design, the graphics memory is usually mapped into the normal 32 bit address
space1, thus limiting the amount of system memory usable by individual processes. The other
interesting aspect of the IR4 is that it can drive displays of up to 133 million pixels, in contrast
to PC hardware, which is still limited to resolutions one order of magnitude smaller. A question
poses itself naturally then: how can we take advantage of the much faster development pace and
much more flexible architecture of consumer grade graphic boards while keeping the desirable
characteristics of systems like the IR4?

SGI’s answer to that question is to integrate commodity graphics hardware into their own
systems, as seen in their “UltimateVision” product line. The problem is that SGI is limiting
consumers to comparatively small configurations, and the vendor lock-in effect is still present.
Faced with this, the most natural way of achieving the desired result is using small clusters of
PCs and install graphics adapters on each node. The idea of clustering commodity off the shelf
(COTS) components in order to achieve supercomputer-like performance took off after it was
initially demonstrated at the Center of Excellence in Space Data and Information Sciences at
NASA Goddard Space Flight Center and subsequently published by Becker et al [BSS+95]. At
that time, PC-class hardware had not only fallen down to prices that made the idea attractive,
but their performance had risen up to levels that balanced out the latency introduced by using
low speed networks as intercommunication medium. This configuration is known as a network
of workstations (NOW) or a Beowulf-like cluster (in reference to the name that Becker and his
team gave to their system). Nowadays PC clusters are widely accepted as a good alternative to
more expensive proprietary supercomputers2. Their application domains overlap, but scalability

1For example, on a x86 Linux system with NVIDIA hardware and the vendor supplied drivers, the graphics
card memory is mapped into the same region where shared memory segments and shared libraries reside. This
region starts at address 0x40000000 and ends somewhere below 0xbffff0000. This is the same region used
for allocating large chunks of contiguous memory. This means that, in effect, installing a graphics card with 1 GB
of on-board memory reduces the total system memory usable by a graphics application as data space by 1 GB.
Because of the design of the Linux kernel on this architecture, this leaves less than 2 GB usable for the application.
For practical purposes, this problem vanishes on 64-bit architectures.

2http://www.top500.org/ and http://clusters.top500.org/ contain performance and con-
figuration data for existing installations, the former including also supercomputers, the later being dedicated only to
clusters.



1.1. MOTIVATION 25

of cluster-based solutions is still an issue because of the limited communication bandwidth across
nodes. Nevertheless, systems with more than a thousand nodes have been demonstrated and are
in use. With the advent of 64-bit computing on the desktop, much more powerful systems are
being built around architectures like Intel’s Itanium and AMD’s Opteron. Even vendors like
SGI are shifting towards the use of commodity processors for their systems. Their Altix line
uses Itanium CPUs along with their proprietary Cray-bus for interconnection, which, being an
specialized solution, still offers better communication performance and scalability.

Visualization applications are unique in the context of cluster-based computing. First and
foremost, as argued before, visualization is an interactive task, it cannot be performed off-line,
in batch mode. It has as a rule higher I/O demands than numerical simulations, the typical appli-
cation domain of PC clusters. It also has different access patterns: while numerical simulations
tend to have a high degree of locality, visualization applications, by nature, need to access more
widespread data. Data partitioning is also in general of a different nature, since many of the
algorithms are view-dependent, a component not present in simulations. In general, a high CPU
load exists, because graphics primitives need to be recomputed on a frame-per-frame basis. Ex-
cept in a subset of cases, partial images need to be aggregated, which means the computational
cost is proportional to the image size, which is a factor that cannot be ignored, since effective
visualizations in this context call for millions of pixels per frame. On top of that lies the problem
of image transport: since it is often impractical or even impossible to perform the visualization
task at the installation place of the cluster, there is a need for transporting images over a distance,
whilst still keeping interactivity.

The problems deriving from the small amounts of texture memory available on COTS graph-
ics hardware can be overcome by developing techniques to perform adequate data partitioning
and distribution across processing elements. The implication of the data partitioning is, as sev-
eral authors [SFLS00, MHE01, HHN+02] have discussed, that rendering on PC clusters calls
for hybrid sort-first sort-last algorithms. In turn, the post rendering sorting calls for high per-
formance image compositing methods. Some groups, e.g. Heirich and Moll [HM99], Stoll et
al [SEP+01], have developed custom hardware solutions which address this necessity. The prob-
lem with this kind of solution is that it falls out of the category “commodity hardware”: these
are custom-made parts which are expensive and complex to produce and deploy, and generally
not found on the market. Every other component in this approach has become a commodity:
CPUs, in the broadest sense of the word, are mass-marketed and nowadays it is easy to find
“desktop” PCs that surpass the performance of the “high-end” workstations of the 90s for just a
fraction of the price. The last five years are witness to an explosive development in the area of
PC-based entertainment, taking some market-share even from the more mature gaming console
sector. This growth reflects itself as high-performance graphics processors becoming a commod-
ity, too. The third component which is also a commodity part is the interconnection network:
high-speed low-latency networks are still much more expensive than their low-end counterparts,
but the increasing demand for higher data transfer rates, particularly in the context of distributed
computing and data warehouse environments, has had a two-fold effect: On one hand, high-end
interconnection solutions such as Myrinet and Quadrics are becoming faster and at the same time
less expensive, and solutions based on Infiniband are gaining momentum, their performance is
getting comparable to that of proprietary technologies [Coh03] and they are likely to become
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more affordable; on the other hand, the low-cost alternatives, based around the Ethernet stan-
dard, are becoming faster, more widespread and more reliable. By using commodity parts for
these components, it is possible to take advantage of the mass market benefits: open competition
among vendors leads to faster, featureful and more reliable products; if a part goes bad, it is pos-
sible to replace it with a new one which is likely to be easy to find, thus minimizing downtime; it
is also possible to plan for piecewise upgrades, at a pace dictated by the consumer instead of the
producer of the hardware; reusing parts also becomes possible, once state-of-the-art components
in the visualization cluster can be relocated for other uses, which might not require high-end
hardware, but can benefit from it. With this in mind, a software-based approach to image com-
positing has been considered, namely using the available CPU power of the cluster to perform
this task. The advantage of a software approach is that it is more flexible and reduces the main-
tenance cost. The downside is the higher CPU and network utilization. As CPUs and network
technologies evolve, this problem diminishes.

1.2 Contributions of this work

Instead of trying to develop a general parallelization framework for visualization applications,
this work focuses on the parallelization of direct volume visualization on uniform meshes. Direct
volume visualization allows the user to have a global perception of the data while still being able
to focus on specific features. This is achieved by assigning opacity values to all data points.
It is a very versatile algorithm that allows for example for the extraction of isosurfaces from
the data, working with multimodal datasets, and interactive clipping and slicing of the data,
while maintaining constant or almost constant display framerates. Its major disadvantage is that
implementations that exploit hardware acceleration require large amounts of texture memory. It
also demands very high rasterization rates and high memory bandwidth, due to the complexity
of the algorithm being proportional to the number of data points. It has already been shown that
these effects can be counteracted by using multiple rasterizers on shared memory architectures
(e.g. Li et al [LWMT97]). The downside to this solution is that the cost of such hardware is at
least twenty times more expensive when compared to the price of a cluster of PCs with the same
aggregated computing power. In addition to the better price-to-performance ratio, using clusters
of PCs is also attractive because of a lower total cost of ownership, better technology tracking,
better modularity and flexibility and higher scalability as discussed before.

Moving from shared-memory architectures to PC clusters shifts the performance bottleneck
from the rendering itself to the compositing step. The “binary swap” algorithm as presented
by Ma et al [MPHK94] has been used traditionally for this purpose, even if it is theoretically
less efficient than the alternative “direct swap” algorithm presented by Neumann [Neu93]. The
reason for this is that the binary swap algorithm puts a lower load on network topologies that are
not fully switched. With fully-switched full-duplex networks the direct send algorithm can be
implemented in more efficient fashion. Orthogonally to this, by exploiting the SIMD operations
available on modern CPUs, this work shows how to achieve compositing rates that surpass those
imposed by the need for an interactive visualization system. Additionally, the problems arising
from partitioning the volume rendering operation across several nodes and then compositing the
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intermediate results are discussed.
During the course of this work, other problems were attacked. The first and foremost goal is

gaining remote access to high performance visualization facilities and eventually providing ac-
cess via web-based services. A second problem was dealing with the fact that high-performance
graphics programming APIs in general, and OPENGL in particular, are in a state of constant evo-
lution, which introduces problems related to writing truly portable applications based on them.
These problems and their solutions are described in the later chapters.
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Chapter 2

Direct volume visualization

Kaufman et al define [KHKS94] volume visualization as:

“[. . . ] a method of extracting meaningful information from volumetric data sets
through the use of interactive graphics and imaging. It addresses the representa-
tion, manipulation, and rendering of volumetric data sets, providing mechanisms for
peering into structures and understanding their complexity and dynamics. Typically,
the data set is represented as a 3D regular grid of volume elements (voxels) and
stored in a volume buffer (also called cubic framebuffer), which is a large 3D ar-
ray of voxels. However, data is often defined at scattered or irregular locations that
require using alternative representations and rendering algorithms.”

This definition encompasses all the important aspects of modern theory and practice in the field.
First and foremost, volume visualization practitioners continuously strive for higher interactiv-
ity. Over the years the working definition of “interative framerates” has evolved along with the
rendering algorithms.

Kraus argues regarding the acceptance of the algorithm [Kra03]:

“While volume graphics, i.e., the rendering of volumetric objects, has found its way
into movie and video game productions, volume visualization has only found some
niches, although it has been successfully applied in almost all sciences [. . . ]

However, volume visualization is by far less popular than one might expect from
the large range of potential applications. In particular, direct volume visualization
is frequently rejected for quantitative analyses because of the fuzzy nature of the
resulting images. In these cases, isosurfaces are often strongly preferred. Thus, the
visualization of medical scans, e.g., CT (computer tomography) or MR (magnetic
resonance) scans, is still by far the most important field of application of direct vol-
ume visualization.

There are many reasons for this limited popularity of volume visualization apart from
the mentioned “fuzziness”: the insufficient support by standard graphics hardware,
a lack of non-commercial (sic) tools, uncomfortable and inefficient interfaces of
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Figure 2.1: Basic 3D graphics pipeline.

Figure 2.2: From three-dimensional objects to pixels. An object is described in terms of vertices
and their connectivity which are then passed as primitives to the graphics API. These primitives
are then rasterized and placed on the framebuffer as images.

existing tools, the rare use of volume visualization for publications outside of the
visualization community, and the lack of education about volume visualization, to
name just a few. Unfortunately, some of these reasons reinforce each other.”

Nevertheless, volume visualization has proved itself as an effective technique for the exploration
of large and complex data sets, even if its main application domain is still medical visualization.

2.1 Visualization and computer graphics fundamentals

Working with “3D graphics” on a two-dimensional display means mapping three-dimensional
representations of objects to two-dimensional raster images. Looking at figure 2.1, one starts
with a digital representation of the world, which consists of objects made up of points, curves,
surfaces and volumes with associated material properties, which is then converted to a geo-
metrical representation more appropriate for the underlying graphics subsystem, e.g. using only
primitive objects such as points, lines and triangles, as illustrated in figure 2.2. Working with this
representation, the geometric subsystem applies geometric transformations and clips the results
to the visible image area in order to obtain primitives described in normalized device coordi-
nates. At this stage, vertices are assigned colors according to the illumination model in use.
These transformed and lighted primitives are then handed to the rasterization subsystem. Here
“fragments” are generated from the primitives, which are then shaded and later stored as pixels
of the final image.
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Figure 2.3: OPENGL pipeline. This is an overview of the OPENGL state machine as presented
in [Kil96].

2.1.1 OPENGL fundamentals

The OPENGL graphics system is a software interface to graphics hardware. The API and be-
haviour is defined by a standard, which is in turn regulated by a multi-vendor group of graphics
hardware manufacturers called the architecture review board (ARB). In this sense, the devel-
opment of OPENGL itself is open: vendors are free to research and develop new functionality,
integrate it into their hardware and propose modifications to the standard in order to support it,
which can then be adopted by other vendors. The OPENGL API provides access to 2D and 3D
operations, and has been implemented on a wide range of platforms and it is independent of the
underlying windowing system.

In the specific case of OPENGL the transformation and rasterization pipeline from figure 2.1
has the form depicted in figure 2.3. Of particular interest for hardware accelerated volume ren-
dering are the rasterization (figure 2.4) and per fragment operations (figure 2.5) stages.

In the rasterization stage is where texture application occurs. Texturing maps a portion of
one (single-texturing) or more (multi-texturing) images onto each primitive for which texturing
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Figure 2.4: Rasterization stage in OPENGL. This corresponds to figure 3.1
in [SA03], expanded with information from the NV_register_combiners [Kil02],
NV_texture_shader [Kil03] and ARB_fragment_program [Lip03] specifications.

Figure 2.5: Per-fragment operations in OPENGL. Corresponds to figure 4.1 in [SA03].
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is enabled. This mapping is accomplished by using the color of an image at the location indi-
cated by a fragment’s texture coordinates to modify the fragment’s primary RGBA color. These
coordinates are specified on a per-vertex basis and are interpolated for each fragment. The di-
mensionality of the images used for texturing is not directly constrained by the standard, but only
the one-, two- and three-dimensional cases are defined. Texture image data can be specified in a
variety of formats, which is then converted to RGBA data before application. The actual manner
in which textures are applied to fragments can be controlled via a fixed set of texture functions
indicated by the texture environment. For example, the fragment’s RGBA value can be replaced
by that of the texture, or it can be modulated by it. This is also used to specify the way in which
textures interact with each other for the multi-texturing case.

In the per-fragment processing stage (figure 2.5) is where several tests take place, all of which
can be enabled or disabled on an individual basis. If a fragment does not pass a given test, it is
discarded and the framebuffer’s and auxiliary buffers’ contents remain unchanged. For example,
a fragment can be discarded based on its depth, alpha or stencil values. This is also the stage
where blending of incoming data and framebuffer data is performed according to the current
blend equation and blend factors, selected out of a fixed set. The blend equation determines the
operations performed between the two operands, and the factors determine which components
are used and how.

OPENGL defines an extension mechanism which allows hardware manufacturers to support
functionality not foreseen at the time the specification was written. Extensions do not change the
default state of the state machine, that is, a program running on a platform that does not support
a specific extension will run the same on another platform that does support it. Programs need to
be modified in order to take advantage of the new functionality. In figure 2.4 some modifications
to the state machine introduced by extensions are depicted:

• The NV_register_combiners extension replaces part of the rasterization stage with
a more flexible – yet still predefined – set of operations carried at the fragment level by
so-called combiners. The operands are a set of registers which can be filled with incoming
color data, texture data or user-specified constants. The outputs can be the primary and
secondary colors, textures or spare registers to be used as input for the next combiner.
A related extension, NV_texture_shader, exposes twenty-one “shader” operations.
Depending on the operation, the mapping from texture coordinates to an RGBA color may
depend on the given texture unit’s state or the results of previous operations. This enables
dependent texture lookups, that is, using the result of a texture fetch operation as input for
a subsequent texture lookup.

• The ARB_fragment_program extension replaces part of the rasterization stage with a
fully programmable unit. For this purpose, an assembler-like language is used. It provides
vector operations (SIMD instructions operating on 4-component data), scalar operations,
texture-fetching operations and an operation to kill fragments. The maximum program
length is implementation-dependent, and the specification provides the minimum number
of instruction of different types that have to be supported by any implementation. The
programs can output RGBA and depth information.
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2.1.2 Data representation

Volumetric datasets associate a value with each point on a 3D mesh, that is, a scalar field is
defined on the volume. Multi-modal datasets contain data obtained using different acquisition
techniques, and therefore associated with different meshes in the general case. In time-dependent
datasets, all the points in the volume are defined for multiple points in time.

The most general classification for meshes is in two groups: structured and unstructured.
For structured meshes the connectivity is given implicitly, while for unstructured ones it needs
to be given explicitly. Structured meshes can be further classified into uniform, rectilinear and
curvilinear meshes. Uniform meshes have cells of uniform shape and size. For the case of
volume visualization, it is customary to use uniform meshes with orthogonal axes, that is, with
cubic cells. Rectilinear meshes are more general since the sizes of the cells might depend on
their relative position with respect to some arbitrary point, that is the coordinates (x,y,z) of the
vertices are a function of their indices (i, j,k) in the mesh, like (x(i),y( j),z(k)). For curvilinear
meshes the position of the vertices in the mesh is not restricted in the same way.

Since unstructured meshes have no predefined connectivity, this information needs to be
stored along with the values, therefore requiring larger data structures. Their advantage is a
greater flexibility and adaptability. Unstructured meshes can be used to discretize domains of
any shape and topology, and their resolution can be adapted locally. The shape of the cells in
unstructured meshes is not necessarily constrained, but one of the most important kinds are the
simplical meshes, i.e., meshes where cells are simplices (e.g. triangles in two dimensions, and
tetrahedra in three dimensions).

2.2 Volume visualization

Visualization of volumetric data is a challenging task since it is necessary to deal with occlusions
in order to deliver effective visualizations. One way of achieving this goal is the extraction of
a subset of the volume in order to minimize occlusions. The most simple example is the use of
slicing planes, that is, intersecting the volume with a plane and rendering only the intersected
voxels. Another possibility is to extract and render only one isosurface from the volume. The
disadvantage of these methods is that a large part of the volume is eliminated and the user is not
given enough contextual information to understand the displayed image.

Direct volume rendering is a different approach to this problem: a continuous trade-off be-
tween occlusion and data visibility is made, by assigning opacities to all data points. Points with
high opacities are more prominent in the final image but they occlude other points. Points with
low opacities are less prominent but at the same time less occluding. This provides the user with
enough context information to identify features on the image more easily. Another important
feature of the algorithm is that its performance is usually independent of the viewing parameters,
i.e. it is possible to deliver visualizations at constant or almost constant refresh rates.

There are many volume rendering algorithms, but they can be classified into two large groups:
image-order and object-order algorithms. Image-order algorithms build the final image on a pixel
by pixel basis, by casting rays through the volume and computing the contribution of the data
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along these rays. One of the earliest of this sort of algorithm was presented by Levoy [Lev88].
Object-order algorithms on the other hand process the data on a sample by sample basis, and
research has focused on efficient ways of computing the contribution of each of them to many
image pixels at once.

There are three main approaches to volume rendering: software-based rendering; hardware-
accelerated rendering using dedicated hardware; hardware-acceleration using commodity hard-
ware.

2.2.1 Software-based volume rendering

Early research on volume rendering focused on how to achieve interactive framerates without
visible image quality degradation. For this purpose massively parallel architectures were re-
searched and developed. For example, Elvins [Elv92] presented an implementation running on a
64-processor nCube machine. This implementation required 94 seconds to render a single frame
of a 200× 180× 91 dataset. Interprocessor communication represents the largest bottleneck in
this implementation. Elvins discussed several kinds of optimizations to reduce communication
requirements: tracking bounding boxes in the image plane, splitting the compositing task across
two processors and grouping slices in a single processor.

Wittenbrink and Harrington [WH94] presented a scalable architecture running on the Proteus
system (based on the i860 processor). This achieved rates of 2 seconds per frame running on 32
processors for a 2563 dataset and a 256× 256 image. Their implementation uses an explicit
partitioning of the input volume, a permutation warp of the data and a communication pattern
that avoids saturating the underlying communication network.

Wilhelms et al [WGTG96] presented a software multi-resolution renderer that works on ir-
regular grids. By working on a hierarchical representation of the data, a potentially visible set is
determined. The authors had a purely software-based renderer as a goal due to the wide avail-
ability of general purpose processors and the unavailable of dedicated graphics hardware. The
authors report a speed up of 3.25 when the algorithm runs on 4 processors.

Palmer et al [PTT97] presented a ray casting algorithm to take advantage of the deep memory
hierarchy on the Power Challenge Array. By exploiting the memory access characteristics of this
proprietary platform, from the processor cache to the interconnection network, they implemented
a logical global address space for volume blocks with caching. They demonstrated this renderer
using a 7.1 GB dataset rendered using 64 processors. They achieved refresh rates of 3-4 seconds
per frame.

2.2.2 Hardware-acceleration using dedicated hardware

Ray et al [RPSC99] provide a survey of five special purpose volume rendering architectures:
VOGUE, VIRIM, Array Based Ray Casting (VIZAR), EM-Cube, and VIZARD II.

The VOGUE architecture [Kni95] was developed at the University of Tübingen, Germany.
One rendering engine provides high-quality, volume-rendered images with multiple light sources
using four custom VLSI chips. The main goals of VOGUE are flexibility and compactness. It



36 CHAPTER 2. DIRECT VOLUME VISUALIZATION

operates in three different modes that offer a trade-off between performance and image quality.
Multiple boards can be connected to one another in order to increase interactivity.

The VIRIM architecture [GPR+95] has been developed and assembled at the University of
Mannheim. It aims at delivering high image quality. It consists of a geometry unit and a ray
casting unit. The geometry unit is responsible for interpolation and gradient calculation; the ray
casting unit is responsible for implementing the actual ray casting algorithm. It is possible to use
multiple modules in parallel, but the dataset needs to be replicated among them.

VIZAR [Dog95], developed at the University of New South Wales, is an object order ray
casting architecture. This architecture consists of two parallel pipelined arrays used to rotate
the dataset and to cast rays. These rotation arrays are connected between n memory modules
and 1.5 n rendering pipelines, where n is the resolution of the dataset. In the second array,
intersections with voxels are determined by using nearest neighbor or zero order interpolation.
Each rendering pipeline performs shading and composition for a given scanline. In addition,
the system is composed of a double-buffered input memory (it is possible to display one dataset
while loading another), memory swapping array, and a framebuffer.

The VIZARD II [MKS98] architecture, developed at the University of Tübingen, aims to-
wards interactive ray casting on desktop computers [33]. It is designed to interface to a standard
PC system using the PCI bus. The dataset is stored in four interleaved memory banks along with
a precomputed gradient index, segmentation index, and gradient magnitude for each voxel. The
combination of precomputed gradients, caching, and early ray termination reduces the bandwidth
requirements of the memory system.

EM-Cube is a commercial version of the Cube-4 architecture originally developed at the
State University of New York at Stony Brook. The EM-Cube architecture led to the VolumePro
board [PHK+99]. The last generation of the VolumePro boards have 2-4 GB of on board texture
memory in a dual board configuration, and support 8-, 16- and 32-bit voxels. It has hardware for
gradient estimation using central differences and classification via a 36-bit lookup table (24 bits
for RGB, 12 bit for A). It performs Phong illumination using a precomputed reflectance map for
the diffuse and specular terms.

2.2.3 Hardware-accelerated using commodity hardware

A cornerstone in volume visualization is the introduction by Cabral et al [CCF94], in 1994, of
an object-order technique which exploits texture-mapping hardware. This technique is the basis
for many hardware-accelerated volume rendering algorithms which are being successfully used
today. The basic idea is to render a number of volume slicing planes (slices for short) one after
the other in a consistent fashion: starting with the plane that is furthest away from the viewer and
proceeding towards the closest one, or the other way around. Upon rasterization of these slices,
the resulting fragments are shaded using a texture or group of textures which are derived from
the original volumetric data and then they are composited in a buffer with the data which results
of applying the same procedure to previous slices. For this purpose either 2D or 3D textures can
be used. In the first case three stacks of 2D textures are used, and the slicing of the volume is
done in an object aligned fashion, while in the second case a single 3D texture is required and
the slicing is performed in a viewport aligned fashion (figure 2.6).
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Figure 2.6: Alignment of texture slices for 3D texturing on the left, and 2D texturing on the right
(image from Rezk-Salama et al [RSEB+00]).

2.3 Physical basis of the algorithm

The physical model behind the volume rendering algorithm is based on the absorption and emis-
sion of radiation that happens inside a cloud of hot gas. Referring to figure 2.3, the change in
power dP that happens when a beam of radiation spanning a solid angle dΩ passes through an
infinitesimal length ds of material with area dA is given by:

dP = emission−absorption

= dI dAdΩ
= J(dAds)dΩ−K(I dAdΩ)ds, (2.1)

where dI dAdΩ is lost power, dAds is the volume of material through which the radiation passes,
I dAdΩ is the incident power, I is the intensity of the radiation in erg/(cm2 ·sterradian ·s), J is the
emissivity in erg/(cm3 · sterradian · s) and K is the extinction coefficient in cm−1 which accounts
for absorption and scattering effects. Dividing (2.1) by dAdΩds one obtains:

dI
ds

= J−KI. (2.2)

This differential equation is known as the radiative transfer equation. It can not be solved without
specifying the nature of J and K. A detailed discussion of its properties and solutions under
different conditions can be found in e.g. [GBR79]. In the rest of this section only the aspects
relevant to volume rendering will be discussed.

Before considering the formal solution of this equation, there are two special cases of interest:

Emission only: For the case of K = 0 there is no extinction, radiation is only emitted and (2.2)
has the solution:

I(s) = I(s0)+
∫ s

s0

J ds′ (2.3)

Absorption only: In the case of J = 0, (2.2) has the solution:

I(s) = I(s0)e
−
∫ s

s0
K ds′ (2.4)
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ds

dA
dΩI

Figure 2.7: Physical configuration for the general radiative transfer problem

The quantity τ defined by dτ ≡ Kds is commonly called optical depth. It is a measure of
how opaque a medium is to radiation passing through it. A medium is opaque (or optically thick)
if τ > 1 when integrated along a typical path. A medium is transparent (or optically thin) if
τ < 1. Considering a slab of material limited by two parallel planes, the optical depth is normally
measured as the normal distance to the surface, so that ds is replaced by dz and τ = τ(z). The
point s0 is arbitrary; it sets the zero point for the optical depth. Introducing this definition into
(2.2), it can be rewritten as:

dI
dτ

= S− I (2.5)

where S ≡ J
K is called the source function. (2.5) can be integrated to obtain:

I(τ) = I(0)e−τ +
∫ τ

0
S(τ ′)e−(τ−τ ′)dτ ′. (2.6)

The first term on the right-hand side describes the intensity emerging from the absorbing medium
corrected for absorption. The second is the integrated source, diminished by absorption.

Considering an ensemble of particles with a density distribution ρ(s), the extinction can be
written as κ0ρ(s) and the emissivity can be written as q0ρ(s). With these conditions, considering
a thin sheet of material, the last equation can be written as:

I(s) = I(s0)e
−τ(s0,s) +

∫ s

s0

q0ρ(s′)e−
∫ s

s′ κ0ρ(s′′)ds′′ds′

≈ I(s0)e
−τ(s0,s) +

q0

κ0

(

1− e−τ(s0,s)
)

= I(s0)(1−α(s0,s))+
q0

κ0
α(s0,s), (2.7)
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where α(s0,s) ≡ 1− e−τ(s0,s) is the opacity and the approximation is valid for regions where q0

and κ0 are approximately constant. This equation says that the intensity at s can be computed
from the intensity at s0, the background intensity, attenuated by a factor 1−α(s0,s) plus the local
contributions attenuated by α(s0,s). In computer graphics terms, this is a linear interpolation
between the values q0

κ0
and I(s0).

Equation (2.7) provides an iterative method for computing the intensity contribution to a
single image element. Looking at the definition of α(s0,s), it is possible to derive an expression
for computing the final opacity in an iterative fashion as well:

α(s0,s) = 1− e−τ(s0,s)

= 1− e−τ(s0,s′)e−τ(s′,s)

= 1− (1−α(s0,s
′))(1−α(s′,s))

= α(s′,s)+(1−α(s′,s))α(s0,s
′) (2.8)

This form can be interpreted as there being two contributing elements, the first spanning from
s0 to s′ and the second from s′ to s. The equation then says that the opacity at the foreground is
computed from the background opacity α(s0,s′) attenuated by a factor 1−α(s′,s) plus the local
contribution α(s′,s).

2.4 The transfer function

For visualization of a continuous scalar field expression (2.7) alone is not useful since the emis-
sion and absorption coefficients are not specified. For this reason, scalar values are mapped
to physical quantities describing the absorption and emission characteristics at that point. This
mapping is called classification and is performed using transfer functions which assign a color
emission and opacity value to each point in the data. In the most simple form, transfer functions
use just the scalar values for this mapping, but it is also possible to use the local derivatives
or depth information for this purpose. The specification and generation, in automatic or semi-
automatic fashion, of these functions are part of the set of unsolved problems in direct volume
visualization.

Since the scalar field is not available in a continuous representation, but only in a discrete
form, it is necessary to interpolate the available data at the sampled points. In the presence of
a transfer function, it is necessary to decide if this interpolation step is done before or after the
application of the transfer function. The former case is called pre-classification and the later post-
classification. Given N sample points with values ti, weight factors wi and a transfer function
F(s), the value ν produced by pre-classification is:

ν =
N

∑
i

wi F(ti) (2.9)
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and post-classification gives:

ν = F

(

N

∑
i

wi ti

)

(2.10)

If the function F(s) is linear, these expressions are equivalent. The second expression is “correct”
in the sense that values in the underlying continuous scalar field are being interpolated and then
classified.

2.5 Hardware-accelerated volume rendering

In order to compute the contributions across large volumes using (2.7), that expression is applied
in iterative fashion: the last expression is discretized and implemented by drawing the pixels in
front-to-back or back-to-front order, and compositing the slices in the framebuffer. The process
is accelerated by rendering all the rays “simultaneously” for each slice of the volume, thus creat-
ing the standard (implicitly parallel) texture-based volume rendering approach [CCF94, WE98].
This is achieved by rendering large polygons to the framebuffer, each of them textured with a
slice of the volume data.

In OPENGL terms, the compositing operation is expressed as

C′
d = kiCi + kdCd (2.11)

where C′
d is the new value to be stored in the destination buffer, Cs and Cd are the colors of the

incoming and destination fragments respectively, ki and kd are their associated weighting factors.
These factors can be constant or they can be derived from the fragment data itself. For the case
at hand, these factors are αi and 1−αi in correspondence with (2.7). This topic will be further
discussed in chapter 4.

There are two major factors that limit performance using this technique: the speed of the
pixel pipeline and the amount of available texture memory:

• For each frame several large polygons are rendered one after the other, with a different part
of a texture applied to each of them. This means the rasterization unit needs to access the
whole area of memory dedicated to store these textures in a frequent fashion. For individual
pixels, this can be accelerated using caching and prefetching, but once the rendering of a
particular polygon is done, already accessed parts of the texture memory will not be needed
again until the next frame. This means that in this case the speed of the pixel pipeline is
limited by the available memory bandwidth on the graphics card.

• The speed of the pipeline is only a soft limit, as the rendering time scales linearly with
the data set and image sizes. On the other hand, the available texture memory imposes
a hard limit: as soon as the data set does not fit completely in it, the texture allocator
starts to swap textures to system memory, nullifying the advantage of the higher available
memory bandwidth of the graphics card. Its impact on the attainable framerate is much
more noticeable than that of the limited pixel pipeline speed.
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Figure 2.8: Sorting of volume bricks.

Since these limits depend on the size of the data set being rendered, both of them can be
overcome using multiple renderers in parallel, where each of them works on a subset of the data.
It can be seen from (2.6) that this process is explicitly parallelizable: the integral on the right-
hand side can be broken up into several segments that can be added together at a later stage. As in
the serial case these segments have to be kept in a consistent order while they are being blended.

If a volume dataset does not fit into the available texture memory, it is still possible to render
it breaking the dataset into smaller chunks commonly called bricks, and then swapping textures
in and out the texture memory. When doing this it is necessary to consider two details: first,
the bricks need to be rendered in an order that is consistent with the rendering order of the
non-bricked dataset, i.e. front-to-back or back-to-front. It suffices to sort the distances from the
midpoint of the brick to the observer (figure 2.8). The second is the need for the bricks to share
information at the inner borders in order to be able to perform a correct interpolation.

2.6 State of the art in hardware-accelerated volume rendering

The method introduced by Cabral was expanded by Westermann and Ertl [WE98] in order to
store density values and the corresponding gradients in texture memory and exploit OPENGL
extensions for unshaded volume rendering, shaded isosurface rendering, and application of clip-
ping geometry.

Rezk-Salama et al [RSEB+00] presented a technique that significantly improved both per-
formance and image quality of the 2D-texture based approach by exploiting the multi-texturing
capabilities of consumer-grade graphics hardware. By exploiting the functionality exposed by
NVIDIA’s NV_register_combiners [Kil02] and NV_texture_shader [Kil03] exten-
sions, they also introduced methods that implement fast shaded isosurfaces, better interpolation
and volume shading.

Röttger et al [RKE00] introduced the idea of pre-integrated classification, which addresses
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the problem of visual artifacts introduced by the use of non-linear high-frequency transfer func-
tions. The idea is to avoid high sampling frequencies by reconstructing a piecewise linear, contin-
uous scalar function along the viewing ray, and evaluating the volume rendering integral between
each pair of successive samples of the scalar field by table lookups. This method was further ex-
panded by Engel et al [EKE01], providing high-quality images even for low-resolution volume
data by exploiting multi-texturing, advanced texture fetch and per-fragment shading operations
available on current programmable consumer graphics hardware.

Kniss et al [KKH01] presented an implementation that uses multi-dimensional (2D and 3D)
transfer functions based on scalar values along with their first and second derivatives in order
to extract specific material boundaries and convey surface details. Kniss et al [KPI+03] later
applied these ideas to multivariate data by restricting the type of transfer functions to those based
on a sum of gaussians. By doing this, the contributions along the ray segment can be evaluated
directly in hardware instead of having to store the transfer functions in large lookup tables. Kniss
et al [KPHE02] use a simplified radiation scattering model which captures volumetric light at-
tenuation effects to produce volumetric shadows and the qualitative appearance of translucency.

In order to tackle the problem of rendering volumetric datasets that do not fit into the texture
memory of the graphics adapter, a number of authors have proposed compression and level-
of-detail techniques. LaMar et al [LHJ99] presented a multiresolution technique for interactive
texture-based volume visualization of large data sets. This method uses an adaptive scheme that
renders the volume in a region-of-interest at a high resolution and the volume away from this
region at progressively lower resolutions. The algorithm is based on the segmentation of texture
space into an octree, where the leaves of the tree define the original data and the internal nodes
define lower-resolution versions. Weiler et al [WWH+00] present an adaptive approach to vol-
ume rendering via 3D textures at arbitrary levels of detail. This work is similar to that of LaMar
et al, with the difference that authors developed a bricking technique that guarantees consistent
interpolation between different resolution levels. The authors pay special attention to the fixing
of rendering artifacts that are introduced by non-corrected opacities at level transitions. Guthe
et al [GWGS02] presented a wavelet-based compression approach. They generate a hierarchical
wavelet representation in a preprocessing step, which is decompressed on the fly during render-
ing. The level of detail used for rendering is adapted to the local frequency spectrum of the data
and its position relative to the viewer.

All these efforts have something in common: they strive for better visual quality and they ex-
ploit the capabilities of the graphics hardware that was available at the time, sometimes working
around the limits imposed by it. Even if the original works make use of OPENGL extensions
available only on hardware from specific vendors, the same ideas can be implemented today in a
more portable fashion by using the ARB_fragment_program [Lip03] extension.



Chapter 3

Parallel visualization

3.1 State of the art in parallel rendering with PC clusters

Before discussing the parallelization of the volume rendering algorithm, it is necessary to intro-
duce some common concepts in the field of parallel rendering, as well as present a review of
some of the current research areas and developments.

Molnar et al [MCEF94] see the problem of parallely rendering images as a sorting problem,
and have developed a classification for parallel rendering algorithms based on the stage on the
rendering pipeline at which sorting is performed. “The essence of the rendering task is to cal-
culate the effect of each primitive on each pixel”, and sorting in this case means redistributing
data between processing units, in other words, redistributing the responsibility for primitives and
pixels. Starting from the assumption that geometry processing and rasterization rates are high
enough to be able to perform them in parallel, thus defining a fully parallel renderer, three sorting
strategies are defined: sort-first, sort-middle and sort-last.

Sort-first: the image is divided into disjoint regions, and each processing element is responsible
for rendering one of those regions. Geometrical primitives are partially transformed (e.g.,
by transforming only their bounding boxes) and redistributed to the processing elements
according to their on-screen location.

Sort-middle: primitives are fully transformed, lighted and readied for rasterization. The geom-
etry processors get arbitrary sets of primitives assigned to them whilst the rasterizers get
only those primitives which fall into their respective screen region.

Sort-last: rasterizers are assigned arbitrary sets of primitives, independently of their on-screen
location, and the result is passed on to compositors for visibility resolution.

There have been several approaches to parallel graphics over the last years. IRIS Per-
former [RH94] is based around a scene graph and is capable of using multiple renderers on a
single machine in order to load-balance the rendering task. It presents several “pipes” to the
application and requires the programmer to manage the parallelization explicitly. More recently,
the OpenSG library uses a data replication and synchronization approach in order to achieve the
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same effect on a network of workstations (NOW) [VBRR02], with focus on rendering to large
displays.

A second approach that has been used with success is building accelerators with a large de-
gree of internal parallelism. This is the case of SGI’s RealityEngine and its successors [Ake93].
The RealityEngine has multiple geometry and rasterization units which work in parallel. Here
the programmer does not have to be aware of the parallelization in the graphics hardware. Since
it operates in immediate mode, it is limited by the program’s ability to provide data at the inter-
face’s full speed. This is notoriously also the case for modern PC graphics hardware. Hardware
manufacturers, facing the demand of computer games for a higher geometrical complexity and a
higher level of detail in the texture data, are building PC accelerators with an increasing number
of geometry and fragment processing units, and just like with the RealityEngine architecture,
programmers are confronted to the problem of sending data to the hardware at the maximum
speed allowed by the interface.

More recently Eldridge at al have presented a proprietary system called Pomegranate [EIH00],
which is based on point-to-point communication and focuses on scalability at the input interface:
it allows multiple processes to submit commands to the graphics hardware simultaneously. It has
very high bandwidth requirements, which preclude its use in the context of a NOW.

Another approach that has been explored by different authors in recent years is employing
specialized compositing hardware along with a linear pipeline of commodity renderers. Exam-
ples of such systems are PixelFlow [MEP92], Sepia 2 [HM99] and Lighting-2 [SEP+01]. Here a
programmable compositor takes images from the application and another compositor, performs
a single predefined operation on all the pixels and sends the result to the next compositor down
the chain. In this fashion, a final composited image is generated and sent to the display. Modern
implementations such as Sepia and Lighting-2 take the 24-bit RGB output from the graphics
card’s DVI interface and interpret it in an application-specific manner. For example, in order
to be able to perform depth compositing, the application can set up a viewport which is twice
as high as the final image. On the top half, the color data is sent to the compositing hardware,
while the bottom half contains the depth information. All these systems are proprietary and not
available on the market. Just recently, a product called “DVG” which is based around this idea is
being commercialized by the company ORAD [Ora03].

Humphreys et al [HEB+01] presented a system called WireGL. This is a sort-first system,
built on top of the OPENGL API, which tries to be transparent for the application, and focuses
on large tiled displays. WireGL’s usage of multiple renderers is not intended to speed-up the
application, only to allow it to render larger images. Samanta et al focus on scalable rendering
rates by using a cost-based model for load-balancing across nodes in a cluster. Their algorithm
is a hybrid sort-first sort-last one, which is able to produce images for a single display. Later,
Humphreys et al [HHN+02] reworked the WireGL architecture to produce Chromium, a stream-
based processor for the OPENGL API. Chromium is based around the idea of stream filters. By
rearranging these filters it can operate in either sort-first or sort-last fashion.
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3.2 Parallel volume rendering on clusters of PCs

Figure 3.1 depicts the general pipeline used to parallelize the rendering process and figure 3.2
depicts its integration into the cluster environment. Since the aimed dataset size is 512 MB
and larger, a static partitioning in object space has been opted for. This alleviates the need for
constantly re-uploading the volumetric data to the graphics card. This kind of partitioning implies
a sort-last algorithm. As the first step of the process, a rendering configuration is created using
the number of nodes as the input parameter. Given nr rendering nodes, the volume is partitioned
in x× y× z bricks, where xyz = nr and each rendering node is assigned one of these bricks.
The factorization is selected in a way that matches the dimensions of the dataset to be rendered
as close as possible, that is, if the dataset is larger along one of the axes, the corresponding
factor is selected to be larger (figure 3.3). This avoids the problem of having bricks which are
excessively large in one dimension, that is, the variations on projected size of the brick because
of a change in the viewing direction are kept to a minimum. Using this data partitioning, care is
taken for neighboring nodes to receive bricks which overlap by one voxel on the corresponding
borders. Once the data has been transfered, the rendering loop is entered. For each frame, a
projection and modeling matrix is recomputed and transfered as required. The modeling matrix
for each node is corrected so that the brick is rendered at the correct screen position. Any other
required rendering parameter (e.g. a transfer function) is transferred as well. As soon as each
node receives the rendering parameters, it starts to render its brick to the framebuffer using a
preselected volume rendering algorithm as described in the previous chapter, and taking care
of performing the composition in the way described in chapter 4. Once a node has finished
rendering its own brick, it enters the compositing stage of the process.

3.3 Parallel compositing algorithm

Assuming partial RGBα image data computed in the fashion described in chapter 4 is available,
compositing takes place in the following way: given N different nodes, each of them having one
out of N images to be composited, each image is split into N subimages. Each node sends N−1 of
these images to its neighbors and receives N−1 from them. Image composition is then performed
in the CPU and the result is sent to a previously defined node. If t is the cost of transmitting one
image over the network and c the cost of compositing two full images together, this algorithm
has a total cost of (2t + c)(N −1)/N (assuming a full-duplex network). This algorithm requires
a total of N2 − 1 messages of size A

N , where A is the total image area in pixels. This is the
“direct send” algorithm by Neumann [Neu93]. Ma et al [MPHK94] compare this algorithm
with their “binary swap” algorithm. The binary swap algorithm has a higher communication
cost (≤ 2.43N1/3A), but its advantage is that it does not require sending messages to every other
processor as might be the case with the direct send algorithm in its original formulation by
Neumann. Instead of that, a total of N(log2N +1)−1 messages are sent. When comparing binary
swap and direct send in a PC cluster environment with a Myrinet interconnect, it is necessary to
remember that the sending and receiving operations can overlap and that resource contention can
be prevented by implementing the data exchange in a manner similar to:
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Split data

Transfer data

Load data

Transfer matrices
+ render params

Receive images
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Render

Send images

Generate render conf

Front end Rendering nodes

Figure 3.1: General program flow for the controlling and rendering processes.
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Figure 3.2: Integration of the volume renderers into a PC cluster environment. “COMM” is the
inter-process communication subroutine; “VR” is the volume rendering subroutine; “B” is the
compositing code.

Figure 3.3: Left: a volume dataset where one of the directions is significantly larger than the
other two. Right: the corresponding partitioning (2×2×8) using 32 nodes.
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1 for (i=1; i < size; ++i)
2 {
3 // fb contains the framebuffer data
4 // cb is the compositing buffer
5 dst = rank ^ i;
6 MPI_Isend(fb[dst], size, MPI_UNSIGNED,
7 dst, DATA, comm, &(req[0]));
8 MPI_Irecv(cb[dst], size, MPI_UNSIGNED,
9 dst, DATA, comm, &(req[1]));

10 MPI_Waitall(2, req, status);
11 }

Figure 3.4 shows the total time required for sending the image information over the network,
compositing the data and sending the result to a single node as a function of the image size A for
the 16 node case when using the direct send and the binary swap algorithms. It can be seen that
the direct send algorithm is slightly faster than binary swap. The advantage of the direct send
algorithm is that its implementation is straightforward.

Figure 3.5 shows the total time required for compositing N images using N nodes with the
direct send and binary swap algorithms. It can be seen that the direct send algorithm scales
slightly better than the binary swap algorithm.
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Figure 3.4: Total compositing time as a function of image size using 16 processing elements.
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Figure 3.5: Total compositing time as a function of the number of nodes participating in the
composition



Chapter 4

Image compositing and volume rendering

4.1 General image compositing

Foley et al define “image compositing” [FvDFH96] as “combining images to create new im-
ages”. The canonical work in this area is the paper “Compositing Digital Images” by Porter and
Duff [PD84]. In this work, the authors note that image compositing is a good way to produce
images in general, since it is easy to do and it helps saving time, since the regeneration of costly
imaginery can be avoided or reduced. In the paper, the authors define an algebra for image com-
positing. Given two images A and B, the result of compositing them can in general be expressed
as:

A op B ≡ wAA+wBB (4.1)

where wA and wB are per-pixel weighting factors assigned to A and B. Porter and Duff defined
operators such as A over B, A in B and A held out by B. In this context, a so-called α-value
is associated with each RGB triplet that defines the colors of the pixels in the image resulting in
an RGBα image. From here on, it will be assumed that the values of each component lie in the
range [0,1] as per the OPENGL specification ([SA03], §2.14). This α-value can be understood as
a measurement of the coverage of each pixel in the image. For example, considering a red pixel,
RGB triplet (1; 0; 0), with a coverage of 50 percent, its α value would be 0.5. A 50 percent
coverage means than only half of the pixel’s “surface” actually has a red color, which can be
approximated by pixel fully covered by the color (0.5; 0; 0) (figure 4.1). That is, the RGBα
value (R; G; B; α) represents the RGB value (αR; αG; αB).

Image composition of this sort has been supported in hardware since the early days of com-
puter graphics, even if at first it was limited to chroma keying, which is the process of assigning α
values to images based on the chromaticity of the pixels. Pixels with a preselected chromaticity
value are handled as fully translucent (α = 0) while the rest are fully opaque (α = 1). For this
application, if A is the image in the foreground and B the one in the background, it is enough
to set the weighting factors to wA = αA and wB = 1−αA. With these assignments, it is possi-
ble to superimpose images over arbitrary backgrounds, placing for example a given subject on
a location of choice. The only requisite is to capture the foreground subject in a location which
background results in a well defined chromaticity value which does not show up in the subject
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50% coverage RGB (0.5; 0.5; 0.5)

Figure 4.1: Opacity values interpreted as “coverage” information for a grey value of 0.5.

itself. This sort of compositing is used widely in the television and film industry.
Modern graphics accelerators support a wide range of composition operations. The OPENGL

API exposes this functionality as a set of blending equations and blending functions. The
OPENGL specification defines blending ([SA03], §4.1.8) as:

Blending combines the incoming source fragment’s R, G, B and A values with the
destination R, G, B, and A values stored in the framebuffer at the fragment’s (xw,yw)
location.

Source and destination values are combined according to the blend equation, quadru-
plets of source and destination weighting factors are determined by the blend func-
tions, and a constant blend color to obtain a new set of R, G, B, and A values, [. . . ]
The resulting four values are sent to the next operation.

In OPENGL terms, the blending equation corresponding to (4.1) is denoted by FUNC_ADD, and
is reexpressed as:

C = CsS +CdD (4.2)

Here Cs and Cd are the source and destination colors and S and D are quadruplets of weighting
factors determined by the blend functions. Some of the available blending functions are listed in
table 4.1.

4.2 The compositing problem in volume rendering

For volume rendering applications, the compositing operation for two fragments f i and fd with
color components Ci and Cd and alpha components αi and αd is given by:

Ci ~Cd ≡ αiCi +(1−αi)Cd

αi ~αd ≡ αi +(1−αi)αd
(4.3)

Ci ~Cd means “apply Ci on top of Cd”. This expression is congruent with (2.7) and with (2.8).
As it will be discussed later, it is not possible to implement this expression with some implemen-
tations of OPENGL. Usually this is not a problem, since back-to-front compositing in hardware
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Function RGB blend factors Alpha blend factor

ZERO (0,0,0) 0
ONE (1,1,1) 1
SRC_COLOR (Rs,Gs,Bs) As

ONE_MINUS_SRC_COLOR (1−Rs,1−Gs,1−Bs) 1−As

DST_COLOR (Rd,Gd,Bd) Ad

ONE_MINUS_DST_COLOR (1−Rd,1−Gd,1−Bd) 1−Ad

SRC_ALPHA (As,As,As) As

ONE_MINUS_SRC_ALPHA (1−As,1−As,1−As) 1−As

DST_ALPHA (Ad,Ad,Ad) Ad

ONE_MINUS_DST_ALPHA (1−Ad,1−Ad,1−Ad) 1−Ad

Table 4.1: Some of the blending functions available in OPENGL

1

2

3

Figure 4.2: Three slices to be composited together in associative fashion

accelerated volume rendering does not require the final opacity values to be stored in the frame-
buffer.

The operation defined by (4.3) is evidently non-commutative. As stated before, the paral-
lelization of the volume rendering algorithm is based on the fact that the integral along the ray
can be split into multiple integrals along segments of the ray. That means that the compositing
operation needs to be associative. Is the operation as quoted above associative? Considering
three slices, as in figure 4.2:

(C1 ~C2)~C3 = (α1 ~α2)(C1 ~C2)+(1− (α1 ~α2))C3 (4.4)

Expanding (4.4) using the definition (4.3), the following expression is obtained:

(C1 ~C2)~C3 = α2
1 α2(−C1 +C2)

+α2
1 (C1 −C2)+α1α2(C1 −2C2 +C3)

+α1(C2 −C3)+α2(C2 −C3)+C3

(4.5)
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Now, performing the compositing operation in a different order:

C1 ~ (C2 ~C3) = α1C1 +(1−α1)(C2 ~C3)

= α1α2(C3 −C2)+α1(C1 +C2 −C3)−α2C3 +C3
(4.6)

Comparing (4.5) and (4.6) these equations are different, therefore the operation defined by (4.3)
is not associative.

Considering the alternative definition:

Ci ⊕Cd ≡Ci +(1−αi)Cd

αi ⊕αd ≡ αi +(1−αi)αd
(4.7)

Performing the composition of 1 and 2 and then applying the result over 3:

(C1 ⊕C2)⊕C3 = (C1 ⊕C2)+(1− (α1 ⊕α2))C3

= C1 +(1−α1)C2 +(1− (α1 +(1−α1)α2))C3

= C1 +C2 +C3 −α1C2 −α1C3 −α2C3 +α1α2C3

(4.8)

On the other hand, performing the composition of 2 over 3, and then adding 1 on top:

C1 ⊕ (C2 ⊕C3) = C1 +(1−α1)(C2 ⊕C3)

= C1 +(1−α1)(C2 +(1−α2)C3)

= C1 +C2 +C3 −α1C2 −α1C3 −α2C3 +α1α2C3

(4.9)

Comparing (4.8) and (4.9) these equations are identical, therefore the operation defined in
this way is associative. The operation defined by (4.7) is what Porter and Duff call the over
operator. For completeness’ sake, it is worth nothing that this operation has an identity element
on the right:

A⊕ ir = A+(1−α)ir = A ⇔ ir = 0 (4.10)

and on the left:
il ⊕A = il +(1−αil)A = A ⇔ il = 0 (4.11)

That is, there is a single identity element: 0. Furthermore, assuming the addition of color
components is saturated, this operation is also closed. Thus the set of RGBα quadruplets
(r;g;b;α) ∀ r,g,b,α ∈ [0,1] together with this operation form a mononoid. It fails to be a group
because there does not exist an inverse element for each member of the set.

4.3 Pre-multiplication

In order to be able to render volume elements in parallel, the definition (4.7) needs to be used
for the compositing operation instead of (4.3). Comparing both definitions, the difference is the
factor αi in front of the term Ci. In order to recover (4.3) for the composition of individual slices,
it suffices to change the color component of each voxel from Cv to αvCv, that is, the α-component
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of the voxel data needs to be pre-multiplied into the RGB components. To see this, consider again
figure 4.2. Without loss of generality, considering a black background and applying slice 3 over
it gives:

C3 ~0 = α3C3 (4.12)

Then 2 over this:
C2 ~C3 = α2C2 +(1−α2)α3C3 (4.13)

Then 1 over this:

C1 ~ (C2 ~C3) = α1C1 +(1−α1)(α2C2 +(1−α2)α3C3) (4.14)

Making the transformation αC →C′; α → α ′ on the right-hand side:

= C′
1 +(1−α ′

1)(C
′
2 +(1−α ′

2)C
′
3) (4.15)

which is exactly C′
1 ⊕C′

2 ⊕C′
3.

The composition of α-pre-multiplied images has been discussed by Blinn in detail [Bli94].
Besides the associative property already discussed, the technique is attractive because of its el-
egance: while the equation (4.3) is asymmetric between the color and α components, equation
(4.7) is symmetric. This makes many algorithms easier to implement and eliminates some of the
bookkeeping associated with the non-pre-multiplied version.

4.4 Pre-multiplication with OpenGL

There are several ways in which the pre-multiplication effect can be achieved in the context of
OPENGL:

• Perform the pre-multiplication in the data itself.

• Use the GL_EXT_blend_func_separate OPENGL extension.

• Use the GL_NV_register_combiners OPENGL extension, and perform the pre-
multiplication before the blending stage.

• Use the GL_ARB_fragment_program OPENGL extension, and perform the pre-mult-
iplication before the blending stage, like in the previous case.

4.4.1 Pre-multiplying in the transfer function

Before discussing the other options, it is convenient to look in more detail at the possibility of
performing the pre-multiplication during the application of the transfer function, that is, multi-
plying the α values defined in the transfer function with the corresponding color values.
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Considering the case of tri-linear interpolation for texture fetches, the fetched value ν is given
by:

ν = ∑
i, j,k=0,1

Λ(α; i)Λ(β ; j)Λ(γ;k)ti jk (4.16)

Λ(x; i) ≡ (1− i)(1− x)+ ix

where α,β ,γ are the interpolation terms for the lookup, and ti jk are the scalar values at texels i jk
selected as samples, as described in [SA03], §3.8.8. For the rest of this section the ranges for the
summation indices will be omitted for clarity of presentation, they always run between 0 and 1.

For pre-classification with a transfer function F c(x), this becomes:

νc
pre = ∑

i, j,k

Λ(α; i)Λ(β ; j)Λ(γ;k)Fc(ti jk) (4.17)

For post-classification on the other hand:

νc
post = ∑

l

Λ(α ′; l)Fc
l (ν) (4.18)

Where Fl denotes the l-th sample in the transfer function. The additional linear interpolation
comes from the fact that post-classification is implemented as a texture lookup. If the α multipli-
cation gets done in the transfer function, defining F̃c(x) ≡ Fα(x)Fc(x), these equations become:

ν̃c
pre = ∑

i, j,k

Λ(α; i)Λ(β ; j)Λ(γ;k)F̃c(ti jk) (4.19)

and

ν̃c
post = ∑

l

Λ(α ′; l)F̃c
l (ν) (4.20)

On the other hand, if the multiplication is done at the blending stage, one obtains:

να
preνc

pre = ∑
i, j,k,l,m,n

Λ(α; i)Λ(β ; j)Λ(γ;k)Λ(α; l)Λ(β ;m)Λ(γ;n)F α(ti jk)F
c(tlmn) (4.21)

and

να
postνc

post = ∑
l,m

Λ(α ′; l)Λ(α ′;m)Fα
l (ν)Fc

m(ν) (4.22)

In order for these equations to be pairwise equivalent (4.19 and 4.21; 4.20 and 4.22), the terms
Fα(ti jk)Fc(tlmn) and Fα

l (ν)Fc
m(ν) need to reduce to F̃c(ti jk) and F̃c

l (ν) respectively. This means
that Λ(α; i)Λ(α; j) needs to be 0 for i 6= j and Λ(α; i) for i = j, which is in general not the case.
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Furthermore, it is necessary to point out what happens in the case of pre-classification at the
blending stage:

C′
dst = Csrc +(1−αsrc)Cdst

= ν̃c
pre +(1− ν̃α

pre)Cdst

= ∑
i, j,k

Λ(α; i)Λ(β ; j)Λ(γ;k)Fα(ti jk)F
c(ti jk)

+

(

1− ∑
i, j,k

Λ(α; i)Λ(β ; j)Λ(γ;k)Fα(ti jk)

)

Cdst

(4.23)

This means the opacity value that is being used in the first term is not the same opacity value
used in the second term. The same happens with post-classification schemes, which give:

C′
dst = Csrc +(1−αsrc)Cdst

= ν̃post +(1− ν̃α
post)Cdst

= ∑
l

Λ(α ′; l)Fα
l (ν)Fc

l (ν)+

(

1−∑
l

Λ(α ′; l)Fα
l (ν)

)

Cdst

(4.24)

By performing the multiplication after the application of the transfer function, it is assured
that the opacity value being used is consistent with the assumption that the underlying scalar
field is continuous, that is, the opacity is derived from the interpolated scalar value.

4.4.2 Pre-multiplying in the data itself

This method follows the suggestion of Blinn and other authors of working in α-pre-multiplied
space and is the most straightforward. The pre-multiplication is a preprocessing step and does
not have to be constantly repeated. The disadvantage is that the result has to be stored as RGBα
quadruples in the graphics card, therefore increasing the required texture memory. It also has a
lower precision, as Wittenbrink et al [WMG98] argue. The method precludes the use of post-
classification of the scalar field, since the transfer function needs to be applied before the interpo-
lation takes place. It also requires that the texture data be uploaded anew every time the transfer
function is modified.

4.4.3 GL_EXT_blend_func_separate

In standard OPENGL and up to version 1.3, it is only possible to specify a single blending
function which is used for RGB- and α-components, that is, the same function has to be used
for both factors. It is necessary to notice in table 4.1, that there is no single blend function
that specifies the blending factors as (As,As,As,1). This OPENGL extension allows to specify
separate blending functions for the RGB- and α-components. This option has the advantage that
the pre-multiplication is performed after the fragment has been shaded (figures 2.4 and 2.5) and
inside the dedicated blending unit on the graphics card, which is likely to be able to perform this
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Figure 4.3: Register combiner setup for multiplying the alpha component into the color compo-
nents before the blending stage

operation without loss of precission since it is a dedicated unit. The disadvantage is that this
extension is rarely supported by consumer grade graphics hardware (for example, only recent
versions of the Radeon chip from ATI support the functionality). This functionality has been
incorporated into the core API starting with OPENGL 1.4 ([SA03], §G.9) so a wider support for
it is likely to be seen in the future.

4.4.4 GL_NV_register_combiners

Here the idea is to multiply the α component of the voxel into its RGB values after performing
per-fragment shading operations but just before passing the data to the blending stage (figure
2.4). The combiner arrangement in figure 4.3 is setup by the following code:

1 /* A[r,g,b] = T[0][a] */
2 glCombinerInputNV(
3 GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_A_NV,
4 GL_TEXTURE0, GL_UNSIGNED_IDENTITY_NV, GL_ALPHA);
5
6 /* A[a] = (1-0)[a] */
7 glCombinerInputNV(
8 GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_A_NV,
9 GL_ZERO, GL_UNSIGNED_INVERT_NV, GL_ALPHA);

10
11 /* B[r,g,b] = T[0][r,g,b] */
12 glCombinerInputNV(
13 GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_B_NV,
14 GL_TEXTURE0, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
15
16 /* B[a] = T[0][a] */
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17 glCombinerInputNV(
18 GL_COMBINER0_NV, GL_ALPHA, GL_VARIABLE_B_NV,
19 GL_TEXTURE0, GL_UNSIGNED_IDENTITY_NV, GL_ALPHA);
20
21 /* T[0][r,g,b] = A[r,g,b] * B[r,g,b] == T[0][a] * T[0][r,g,b] */
22 glCombinerOutputNV(
23 GL_COMBINER0_NV, GL_RGB, GL_TEXTURE0,
24 GL_DISCARD_NV, GL_DISCARD_NV,
25 GL_NONE, GL_NONE,
26 GL_FALSE, GL_FALSE, GL_FALSE);
27
28 /* A[r,g,b] = (1, 1, 1) */
29 glFinalCombinerInputNV(
30 GL_VARIABLE_A_NV, GL_ZERO, GL_UNSIGNED_INVERT_NV, GL_RGB);
31
32 /* B[r,g,b] = T[0][r,g,b] */
33 glFinalCombinerInputNV(
34 GL_VARIABLE_B_NV, GL_TEXTURE0, GL_UNSIGNED_IDENTITY_NV, GL_RGB);

The advantage of this option is that it is supported by a wide range of hardware which is
commonly available. The disadvantage is that this extension is complex to work with, the oper-
ations have very limited precision (commonly 10-bits) and it is NVIDIA proprietary. No other
company has shown interest in implementing this extension into their hardware, and given the
current move towards flexible fragment programmability, it is unlikely that this will happen in
the future. The differences in the final image introduced by this method are shown in figure 4.4.

4.4.5 GL_ARB_fragment_program

This is the same idea as before: multiply the α-value of each fragment into the color components
just before passing to the blending stage. This option has the advantage that fragment operations
are carried at a high precision on current implementations. The disadvantage is that it is limited
to very recent hardware which has not been widely deployed, and imposes a performance hit
when compared to the traditional method. It is very simple to implement:

1 !!ARBfp1.0
2 TEMP coord, color;
3 TEX coord, fragment.texcoord[0], texture[0], 3D;
4 TEX color, coord, texture[1], 2D;
5 MUL result.color, color, color.a;
6 MOV result.color.a, color.a;
7 END

The availability problem will likely disappear in the future, since this extension is officially
sanctioned by the OPENGL Architecture Review Board and is expected to be incorporated into
a future revision of the OPENGL standard.
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Figure 4.4: Comparison between the usual non-pre-multiplied blending operations (left) and
the α-multiplication performed using register combiners (middle). On the right the difference
between the two of them is presented using a paletted image. The insets correspond to the region
of maximum difference. (See figure A.1 on the color plates section).



Chapter 5

Software inter-brick compositing

5.1 Motivation

It is technically possible to perform the compositing operation of the several subvolumes in the
graphics hardware. To achieve this, the images have to be read from the framebuffer, saved in a
temporary location and then written back to the framebuffer. If the temporary location is in main
memory, as it must be the case when the renderers are installed on physically different computers,
the easiest and most natural way of doing this is to use the functions glReadPixels and
glWritePixels. This would exploit the implicit parallelization in the graphics hardware,
but there is an overhead associated with this operation, and on current graphics hardware, this
is not to be neglected, as table 5.1 shows. Compositing in hardware would amount to reading
back the data in the framebuffer, which can and does happen in parallel, and then sequentially
uploading the images to a single display adapter, and eventually reading back the data again. As
an example, for a 16 node configuration, this would mean 19+16 ·16+19 = 294 ms per frame
(reading, writing 16 images, reading back), and this does not take into account the time it takes to
collect the images from the different renderers. If all the compositors take part in this operation
and ignoring any overhead, the time could be reduced to 19 + 16 · 16

16 + 19
16 = 36 ms (reading,

writing 1
16 of an image 16 times, reading 1

16 of an image).

The quoted numbers impose an upper limit of about 2-3 Hz on the refresh rate at which the
application could run if performing the compositing in a sequential fashion, which is still too
far away from any definition of interactive rendering. Performing the compositing in a parallel
fashion puts an upper limit of 27 Hz on the refresh rate which is acceptable, but this is ignoring
the transfer times and overhead.

As an alternative, instead of using the glDrawPixels function, it is possible to upload the
data to a texture and then render a large polygon to the framebuffer to perform the compositing
operation. The texture upload path is likely to be more optimized than the glDrawPixels
one, since the former is an operation more commonly used by computer games, but this is not
necessarily the case, as table 5.2 shows.

Because of this, an alternative CPU-based approach has been explored.

61
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color buffer
rgb rgba bgra abgr

draw? 18 17 16 17
read? 21 20 19 20
draw∗ 49 33 22 31
read∗ 34 37 27 29
draw† 19 19 16 18
read† 22 22 21 22
draw‡ 39 31 20 25
read‡ 30 30 25 24

Table 5.1: Read and write times for color and depth buffers without blending or depth test
enabled. The quoted number is time required to read or write a 1024 × 768 region (in
ms). The GPU, chipset, CPU and OS kernel specifications follow: ?GeForce Ti 4600/AMD-
MP 760/Athlon MP 2000+/Linux 2.4.19; ∗GeForce/Intel 440BX/PIII 500 MHz/Linux 2.4.1;
†GeForce2/VIA Apollo KT133/Athlon 900 MHz/Linux 2.4.1; ‡GeForce2/Intel 440BX/PIII 650
MHz/Linux 2.2.16.

Operation Texture DrawPixels

Clear � 1 � 1
Texture upload 36
Texture upload 36
Render quad � 1
Render quad � 1
DrawPixels 16
DrawPixels 18
ReadPixels 42 41
Total 114 75

Table 5.2: Comparison between two alternative paths for performing image composition in hard-
ware (the final images are identical). The path using the glDrawPixels function is 34% faster
for this particular configuration. The images are 1024× 1024 pixels in size and contain RGBA
data. Both measurements were performed on the same configuration: GeForce3 Ti 500/VIA
KT133/Athlon XP 1600+/Linux 2.6.0-test10. All measurements have a standard deviation of
less than 2% of the indicated value and the operations have been performed in the sequence
shown to avoid masking the effect of state changes and pipeline stalls. It is interesting to note
that the second call to glDrawPixels is consistently slower than the first even if the same
amount of data is being transfered. Along the same line, the glReadPixels operation in
the texture path is consistently slower than the same operation in the drawpixels path, but the
difference is not statistically significant.
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5.2 Compositing images in software

Given two pixels A and B, when working with colors represented with 8 bits per channel, the
operation

Ac +(1−Aα)Bc

translates to

Ac +
(255−Aα)Bc

255
(5.1)

where the subscript c denotes the color component of the pixel. If x is a 16 bit value, the operation
x

255 can be computed as:

x
255

=
x

256
·

256
255

=
x

256
·

255+1
255

=
x+ x/255

256

=
x+ x/256+ x/(255 ·256)

256

(5.2)

The term x/(255 · 256) can be neglected since it is zero for any value x ∈ [0,65025] when per-
forming integer division. To account for rounding up, 128 needs to be added to the numerator,
thus:

x
255

=
x+(x+128)/256+128

256
(5.3)

This expression only needs 16-bit operands to be computed, and yields correct results for any x in
[0,65025] when compared to the same operation performed in floating point and then truncated
to 8 bits. This is straightforward to implement as C code. As seen in figure 5.1 this introduces
no visual artifacts.

5.3 Compositing images in assembly

Modern processors are able to carry out this sort of operations in a SIMD fashion. The following
code exploits Intel’s MMX extension to the 386 instruction set in order to perform alpha com-
positing of two images on the CPU. There is some room for improvement with regard to data
prefetching and processor-specific optimizations (see for example [Adv02]). Nevertheless, this
code composites in excess of 56 1024× 1024 image pairs per second (117 megapixels per sec-
ond, less than 18 ms per image pair) on an Athlon MP 2000+ CPU, which is equivalent to circa
28 CPU cycles per pixel in the final image. Returning to the example computation in section 5.1,
this means 19+15∗18 = 289 ms for that case (read back, blend in software 16 images). It also
compares favorably with respect to the numbers quoted in table 5.2. Under ideal conditions, this
can scale linearly with the number of CPUs.

In the following listing, %1 contains A, %2 contains B and %0 is the destination address.
AT&T syntax is used for the operands.
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Figure 5.1: Comparison of images composited in hardware using the traditional single-brick path
(left) and in software using multiple bricks (right). (See figure A in the color plates)

1 pxor %mm2, %mm2 /* clear mm2 */
2
3 mov $128, %eax
4 movd %eax, %mm4
5 pshufw $0, %mm4, %mm4 /* copy 128 to all words */
6
7 movd (%1), %mm0 /* copy a to mm0 */
8
9 movd (%2), %mm3 /* copy b to mm3 */

10 punpcklbw %mm2, %mm3 /* 16-bit expand b */
11
12 pcmpeqb %mm1, %mm1 /* fill mm1 with 1’s */
13 pxor %mm0, %mm1 /* 1 - aalpha */
14 punpcklbw %mm2, %mm1 /* 16-bit expand 1-aa */
15 pshufw $0, %mm1, %mm1 /* copy 1-aa to all words */
16
17 pmullw %mm1, %mm3 /* x = (1-aalpha)*b */
18 paddusw %mm4, %mm3 /* x += 128 */
19 movq %mm3, %mm1 /* y = x */
20 psrlw $8, %mm1 /* y /= 256 */
21 paddusw %mm3, %mm1 /* y = y + x */
22 psrlw $8, %mm1 /* y /= 256 */
23
24 packuswb %mm1, %mm1 /* pack result */
25
26 paddusb %mm1, %mm0 /* add a and (1-aalpha)b */
27 movd %mm0, (%0) /* copy result to memory */
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The AMD64 architecture extends Intel’s x86 architecture to use a 64-bit address size and
some register extensions, including the so called 128-bit media instructions, which use 128-bit
XMM registers and is a combination of the SSE and SSE2 instruction sets ([Adv03a], [Adv03b]).
In order to take advantage of these the code presented previously needs to be modified as follows:

1 rex64 movd (%1), %xmm0 /* x0 = aa’ */
2 rex64 movd (%2), %xmm1 /* x1 = bb’ */
3
4 mov $0x00800080, %rax
5 movd %rax, %xmm2
6 pshufd $0, %xmm2, %xmm2 /* x2 = 00 80 x 8 */
7
8 pxor %xmm3, %xmm3 /* clear xmm3 */
9 pxor %xmm4, %xmm4 /* clear xmm4 */

10
11 punpcklbw %xmm3, %xmm0 /* put a pixels in place */
12 punpcklbw %xmm3, %xmm1 /* put b pixels in place */
13
14 pcmpeqd %xmm3, %xmm3 /* fill xmm3 with 1’s */
15 punpcklbw %xmm4, %xmm3 /* construct 16-bit 255 */
16 pxor %xmm0, %xmm3 /* xmm3 = 1 - alpha */
17 pshufhw $0, %xmm3, %xmm3 /* put 1 - alpha on all */
18 pshuflw $0, %xmm3, %xmm3 /* words */
19
20 pmullw %xmm3, %xmm1 /* x1 = (1-a)*b */
21 paddusw %xmm2, %xmm1 /* x1 += 128 */
22 movdqa %xmm1, %xmm2 /* x2 = x1 */
23 psrlw $8, %xmm2 /* x2 /= 256 */
24 paddusw %xmm2, %xmm1 /* x1 += x1/256 */
25 psrlw $8, %xmm1 /* x1 /= 256 */
26 packuswb %xmm1, %xmm1 /* saturate & pack result */
27 $
28 packuswb %xmm0, %xmm0 /* XXX: pack a again */
29
30 paddusb %xmm1, %xmm0 /* x0 += x1 */
31 rex64 movd %xmm0, (%0) /* copy result to memory */

This version is able to composite images at a rate of 115 image pairs per second when running
on an Opteron system clocked at 1.8 GHz. This gives, for the example case 19+15∗9 = 154 ms.
Figure 5.2 shows a comparison between both implementations running on different hardware.

If multiple CPUs are available on a single system, it is possible to perform the compositing
operation in parallel across them. There is some overhead associated with thread management
as well as memory-bandwidth contention. Nevertheless, a dual Athlon MP system running at
1.7 GHz composites 91 image pairs per second, and a dual Opteron system running at 1.8 GHz
composites 193 image pairs per second giving 96 ms total time for the example case.
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Figure 5.2: Performance comparison for software blending across different systems. The num-
bers represent image pairs per second, for images with size 1024× 1024 pixels. The “double
LUT” data is included for reference; this is a look-up table implementation that is filled with
256× 256× 256 values computed using double precision floating point arithmetic. “int” is a C
implementation of the algorithm as discussed in the text. “mmx” is either of the implementations
quoted in the text. It is interesting to note that the LUT-based method is faster than the MMX
code on the Pentium 4, which is probably due to the higher memory bandwidth available on that
architecture.
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5.4 Discussion

Since reading images from the framebuffer takes of the order of 20 ms, any software path which
is able to composite images faster than that, that is, any path compositing more than 50 pairs
per second, turns the process of obtaining the data from the framebuffer into the application’s
bottleneck. As shown in figure 5.2 this is already the case for CPUs which have been available
on the market for almost two years. Recently available CPUs, like AMD’s Opteron, are capable
of rates well in excess of that. The bottleneck here is the connection between the host’s main
memory and the graphics card. Uploading data to the card is a very common operation and both
drivers and hardware are heavily optimized for it. On the other hand, reading data back from
the graphics card into the host’s memory is not so common and vendors usually do not invest
much time optimizing this path. Until recently, it was not usual to see a performance increase by
just upgrading drivers. A very immature implementation of NVIDIA’s video drivers for Linux
achieved less than 60 MB/s for this operation, while a later release used on the same hardware
reached over 120 MB/s. Nevertheless, it is not realistic to hope for significant improvements
without moving from AGP connections to a different architecture, for example PCI Express
parts, which should theoretically be able to achieve transfer rates from the graphics card, at a rate
of 1 GB/s. Until such a change happens, in-CPU compositing should still be an attractive option.
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Chapter 6

System architecture

6.1 Message-Passing Interface

The Message-Passing Interface (MPI) is the de-facto API for message-passing software used for
developing high-performance portable parallel applications [GLS94]. It is defined by a stan-
dard [SOHL+98] and implementations for specific hardware platforms are provided by the re-
spective vendors. It is not tied to a particular operating system (implementations are available
for several UNIX variants as well as the Microsoft Windows family of operating systems) nor
hardware architectures (e.g., Cray’s C90 and T3E, SGI’s Origin and Onyx, IBM’s SP1 and SP2,
Intel’s Paragon) nor shared memory models (besides the architectures already mentioned, mul-
tiple implementations are available for NOWs with several kinds of interconnects). Particularly
notorious is the MPICH implementation, developed by Argonne National Laboratory and Mis-
sissippi State University [GLSD96]. This implementation is the basis for many of the implemen-
tations by the previously mentioned vendors, which has earned its reputation for good portability
across platforms and its good message passing performance. These two reasons are the main
motivation for choosing MPI as the communication layer on which the rest of the parallelization
framework rests.

6.2 Network performance

MPICH uses a layered software architecture, as shown in figure 6.1. This architecture allows
vendors to implement different low-level devices without having to worry about the high-level
MPI implementation. For example, Myricom1, producers of the Myrinet PC-interconnection
hardware, distribute their own MPI implementation, MPICH-GM, which uses the GM Myrinet
drivers for the low-level device communication. The PC Cluster Consortium2 (and previously
the “Real World Computing Partership”) provides the SCore Cluster System Software, “a high-
performance parallel programming environment” for networks of workstations. SCore includes

1http://www.myri.com/
2http://www.pccluster.org/
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Figure 6.1: MPICH layered architecture.

low-level Myrinet drivers (PM) as well as an MPICH-based MPI implementation working on top
of these drivers. An interesting aspect of SCore is that it makes several communication devices
available to the applications. The shared memory device is automatically used for communi-
cation across tasks running on the same physical node. For the communication across tasks
running on different physical nodes there are two devices available: ch_score (the default)
and ch_score2. The later makes optimizations that are much more agressive, but early im-
plementations of SCore had stability problems when using it. In recent versions of SCore the
ch_score device has incorporated many of these optimizations and ch_score2 has been
discontinued. The effect of switching between devices can be seen in figure 6.2. For large mes-
sages, the optimized device can achieve data-transmission rates in excess of 150 MB/s.

MPICH uses different communication protocols according to the size of the message be-
ing transmitted across nodes. The boundaries between the regions where each protocol is used
are determined based on the system’s limitations (communication media, buffering space) and
average-case optimization criteria. Generally these protocols are: short, eager (long messages)
and rendezvous (very long messages). The effect of crossing the boundaries across protocols can
be clearly seen in figure 6.3 as sharp discontinuities in the transfer speed. In this case the ren-
dezvous protocol achieves circa 100 MB/s. The performance measurement was done by having
the test program exchange messages of the given size across two nodes in a concurrent fash-
ion (using MPI_Sendrecv), which reproduces the actual conditions under which the parallel
rendering code works.
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Figure 6.2: Measured network bandwidth as a function of the message size for two different
devices. In both cases the same full duplex Myrinet network is used for the physical data trans-
mission. In order to measure performance, the test program sends messages of the give size from
one node to another and then back.
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Figure 6.3: Transfer speed across four different nodes as a function of image (message) size. The
measurement was done using four PCs interconnected via a full duplex Myrinet network.
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6.3 Multithreading support

As mentioned before, the actual implementation of the system is more convoluted than desired,
one of the reasons being the fact that the MPI implementation used at the main testing site does
not allow the application to use multiple execution threads. It is common for MPICH-based
implementations to lack support for threads in the program and SCore is no exception. This is
due in part because the original MPICH implementation does not support it (since there is no
platform-independent threading API, or in general a portable method for threaded programming)
and in part because it is a difficult aspect to implement (the MPI standard leaves some room
for implementation-specific behaviour). Protopopov and Skjellum [PS01] provide an in-depth
discussion of the difficulties involved in the design and implementation of a multithreaded MPI
architecture as well as the reasons for the deficiencies in the MPICH design.

With respect to multithreading support, the MPI standard (p. 8) has the following to say:

MPI does not specify the excecution model for each process. A process can be
sequential, or can be multi-threaded, with threads possibly excecuting concurrently.
Care has been taken to make MPI “thread-safe”, by avoiding the use of implicit state.
The desired interaction of MPI with threads is that concurrent threads be all allowed
to excecute MPI call, and calls be reentrant; a blocking MPI call blocks only the
invoking thread, allowing the scheduling of another thread.

The MPI 2 standard expands this language to read ([HL97], p. 193):

[...] This section lists minimal requirements for thread compliant MPI implemen-
tations and defines functions that can be used for initializing the thread environment.
MPI may be implemented in environments where threads are not supported or per-
form poorly. Therefore, it is not required that all MPI implementations fulfill all the
requirements specified in this section.

A distinction is made between a thread compliant implementation and an application program
using threads. This means that even if the MPI implementation is not thread-safe, an MPI pro-
gram could use threads, as long as the communication is restricted to one single thread. This
programming model is what the MPI 2 standard calls funneled:

MPI_THREAD_FUNNELED The process may be multi-threaded, but only the
main thread will make MPI calls (all MPI calls are “funneled” to the main thread).

This would allow the program to overlap communication and computation in a simple way. Un-
fortunately, due to an implementation issue, SCore does not allow even this programming model.
Since Myrinet hardware is capable of asynchronous communication and the drivers support it,
the problem is somewhat alleviated, but the use of multiple CPUs per node to speed up some
operations is precluded. This could be worked around by spawning N tasks per node (where N
is the number of CPUs per node, 2 for the particular case of the testing facility), but this could
introduce some unnecessary and measurable overhead because of the extra memory copy oper-
ations that would be needed. Yet this alone is no reason for disregarding this implementation
alternative completely.
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6.4 OpenGL integration

The “implementation issue” in SCore that prevents programs from using the “funneled” thread-
ing model also prevents the direct use of the OpenGL API in MPI programs running on the
SCore environment. A design decision in SCore [Ish01] prevents programs from being dynam-
ically linked against libraries. On one hand, SCore favors statically linked programs for perfor-
mance reasons. It is generally agreed that programs making use of dynamically linked symbols
run measurably (albeit not significantly) slower and have (in the general case) a larger memory
footprint than their statically linked counterparts because of relocation overhead, but this is in
the general case amortized by the time the function spends doing useful work. A good discus-
sion about dynamic linking has been presented by Franz [Fra97]. On the other hand, in order to
implement a single system image model SCore provides its own versions of some functions in
the standard C library. These considerations taken together made the SCore developers ban the
use of shared libraries in the SCore environment. As a result it is not possible to use either the
POSIX threads library (libpthread) because it is usually tightly coupled to internal mecha-
nisms of the C library, nor the OpenGL library (libGL) because it is usually available only as
a dynamically shared object (in OpenGL’s case, relocation overhead is insignificant compared to
other factors which need to be taken into account into the design of a high-performance OpenGL
implementation [KBH95]).

The solution employed to work around this problem is to split each MPI task into two pro-
cesses: one of them in charge of the communication over the network and the other one in
charge of the actual rendering operations. The two processes communicate with each other over
two channels: synchronization messages (short) are sent over a socket or pipe and data messages
(large) are exchanged over a shared memory area (standard System V functionality).

This implementation has one deficiency which can not be easily avoided, namely, the latency
of the operations is determined by the latency of the slowest device. Assuming the implementa-
tion is fair in terms of polling devices, the average latency is equal to half the sum of the latencies
of the devices being polled, which is on the order of magnitude of the largest latency in the group.
The devices to be considered are the input devices in the system, the network devices and the
shared memory link across processes. Polling locally attached input devices for event availability
has a latency on the order of magnitude of 10−5 s and the same can be said of the shared memory
link. The Myrinet network device has, theoretically, a latency on the order of 10−6 s. For the
case of accessing the service from a remote location, in the manner described by Stegmaier at al
[SME02], the latency of the input devices increases to the order of 100 s ∼ 10−3 s.

6.5 Access to the hardware

One of the first issues to be resolved was granting access to the X server. Under the usual X11
model, access is granted to the user sitting at the console, that is, to the user directly interact-
ing with the X server. Since the environment precludes the existence of “an user sitting at the
console” at first access control was completely disabled. This means that any user logged on
the machine can get access to the X server by pointing the X client to the local display. In a
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Figure 6.4: Architecture of the interprocess communication.

controlled environment, this might be a non-issue, but since there is no control over the users of
the system, some form of access control was desired.

A custom PAM module was written for this purpose, which was attached to the login service.
PAM stands for “Pluggable Authentication Modules” and is a suite of shared libraries that enable
the local system administrator to choose how applications authenticate users. This is achieved
without having to modify the actual applications. This particular PAM module grants a lock (and
access along with it) if no other user is logged in at the moment. It uses the X Security Extension
API to ask the X server for a “MIT magic cookie” and installs it on the user’s .Xauthority
file. This enables the X clients to authenticate themselves with the X server. Once the user logs
out, the cookie is invalidated in the X server and the lock is removed. By using this method
exclusive resource allocation is ensured and other users are prevented from snooping the display.
It is worth nothing that using the NVIDIA drivers for Linux, it’s possible to read the contents of
the framebuffer by opening /dev/nvidiaN and mapping certain parts of it into the process’
address space.
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Chapter 7

Application development with OpenGL

7.1 Motivation

Working with OPENGL can at times annoying. It is sometimes difficult to understand why the
expected output does not show up or even worse, why nothing at all shows up on the display.
Over the years, every OPENGL programmer develops a toolbox of macros and functions to
deal with this situation. Even so, many programmers prefer OPENGL over the alternatives,
perhaps for two basic reasons: 1. It is platform independent, and there are good implementations
for a myriad of platforms; 2. The nature of its development process leaves plenty of room
for hardware manufacturers to experiment with new ideas in a way that allows programmers
to tinker with the hardware as soon as it becomes available thanks to the so called “OPENGL
extension mechanism”. There are nevertheless two issues that are a common cause of grief
among programmers:

• Using extensions can be cumbersome and hard to maintain from a software development
point of view.

• Debugging OPENGL applications can lead to time-consuming “printf debugging” cy-
cle.

Two answers to these problems will be described in the rest of this section.

7.2 Debugging OPENGL applications

The IRIX operating system ships a utility called ogldebug which allows the programmer to
place breakpoints at those places in the program where OPENGL calls are made. Reimplement-
ing this utility can be done easily: a customized OPENGL dynamic library is installed on the
system, and it is used instead of the native OPENGL library. In this customized version, the
OPENGL API entrypoints are exported to the application, but instead of performing their usual
tasks, they provide the desired tracing and breakpointing functionality. Taking for example the
case of the glBegin entrypoint, its new implementation might look like this:
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1 GLvoid glBegin(GLenum mode)
2 {
3 trace(GLBEGIN, mode);
4 break_if(GLBEGIN);
5 return;
6 }

In this hypotetical implementation, trace performs all the necessary tasks for tracing the
calls, including converting numeric constants back to their human-readable representations (the
consequences of this conversion will be discussed later). The problem with this implementation
is that the original functionality of the entrypoint has been lost. As explained in more detail in
chapter 8, the addresses of the entrypoints in the original library can be recovered easily. With
those at hand, the new implementation might look like:

1 GLvoid glBegin(GLenum mode)
2 {
3 trace(GLBEGIN, mode);
4 break_if(GLBEGIN, PRE_CALL);
5 real_glBegin(mode);
6 break_if(GLBEGIN, POST_CALL);
7 return;
8 }

Regarding the maintainability of this idea, the OPENGL Sample Implementation1 from SGI
includes a machine-readable description of the whole OPENGL API. This description is used
among other things to generate the header files for the C language and the dispatch tables for the
entrypoints that any OPENGL implementation has to provide. This means this description is an
ideal starting point for automatically generating the code required by a debugging facility similar
to ogldebug.

The actual implementation of this idea has been called spyGLass and is available for down-
load from http://spyglass.sf.net/. The command line version provides only tracing
facilities, for example:

$ spyglass ./spyglass_demo
glXChooseVisual(0x804a260, 0, attriblist);
glXCreateContext(0x804a260, 0x804be18, (nil), 1);
glXIsDirect(0x804a260, 0x804f790);
glXMakeCurrent(0x804a260, 23068673, 0x804f790);
glClearColor(0.5, 0.5, 0.5, 1);
glXMakeCurrent(0x804a260, 23068673, 0x804f790);
glViewport(0, 0, 400, 400);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

1http://oss.sgi.com/projects/ogl-sample/, visited 2/12/2004
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glOrtho(-1, 1, -1, 1, -1, 1);
glXMakeCurrent(0x804a260, 23068673, 0x804f790);
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POINTS);
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);
glVertex2d(-0.5, 0.5);
glEnd();
glEnable(GL_NO_ERROR);
Error: GL_INVALID_ENUM [ 0x8048a63 0x400a706d 0x400a72c5 ... ]
glGetError();
glXSwapBuffers(0x804a260, 23068673);
glXMakeCurrent(0x804a260, 23068673, 0x804f790);

Notice how the program calls glEnable with GL_NO_ERROR as parameter and the debug-
ger automatically reports the error. Looking at this more closely, it is necessary to notice
that the program is making a call equivalent to glEnable(GL_NO_ERROR). The enumer-
ant GL_NO_ERROR has the value 0x0, and so do the enumerants GL_FALSE, GL_POINTS,
GL_ZERO and GL_NONE. This means that when converting the value 0x0 back to a human-
readable representation, it is necessary to pick one out of at least five possibilities. spyGLass
is not, by design, a source code debugger, therefore it is not possible to refer to the source code
in order to find the actual line that is producing the error in question. For the large majority of
enumerants this is not a problem in practice since they have different values and new values are
assigned in such a way that they do not collide with existing ones. Only bitmasks need to be
handled in a special way.

The information reported after the error are addresses which can be used as input for, e.g.,
the addr2line(1) program (part of the GNU binutils package) to obtain the location in the
source code where the error is happening.

A graphical user interface is also available. This provides breakpointing and filtering facilities
(see figure 7.1).

7.3 Managing OPENGL extensions

7.3.1 Motivation

The other problem mentioned before was managing OPENGL extensions. As the name implies,
these are extensions to the core OPENGL functionality. Usually these are introduced by hard-
ware vendors as vendor specific extensions (e.g. GL_NV_vertex_program). In some cases,
if the developer base demonstrates enough interest, they are promoted to multi-vendor (denoted
by the string EXT in their name, e.g. GL_EXT_texture3D) or ARB-approved status (e.g.
GL_ARB_vertex_program). An extension specification consists of, among other informa-
tion, a name, one or more name strings, and a list of new procedures and functions and new



80 CHAPTER 7. APPLICATION DEVELOPMENT WITH OPENGL

Figure 7.1: Graphical user interface for spyGLass.
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tokens which are introduced by the extension. All this information is kept current in a central
location called “the OPENGL extension registry”2.

The problem is not actually coping with extensions, but the many misconceptions that have
found their way into the common knowledge during the years. For example, at the OPENGL
website3 the following text is found:

With the isExtensionSupported routine, you can check if the current OPENGL ren-
dering context supports a given OPENGL extension. To make sure that the EXT_bgra
extension is supported before using it, you can do the following:

/* At context initialization. */
int hasBGRA = isExtensionSupported("GL_EXT_bgra");

/* When trying to use EXT_bgra extension. */
#ifdef GL_EXT_bgra

if (hasBGRA) {
glDrawPixels(width, height,

GL_BGRA_EXT, GL_UNSIGNED_BYTE,
pixels);

} else
#endif

{
/* No EXT_bgra so bail (or implement
* software workaround). */

fprintf(stderr, "Needs EXT_bgra extension!\n");
exit(1);

}

Notice that if the EXT_bgra extension is lacking at either run-time or compile-
time, the code above will detect the lack of EXT_bgra support. Sure the code is a
bit messy, but the code above works. You can skip the compile-time check if you know
what development environment you are using and you do not expect to ever compile
with a <GL/gl.h> that does not support the extensions that your application uses.
But the run-time check really should be performed since who knows on what system
your program ends up getting run on. (emphasis by the author)

The problem with the proposed idiom is exactly the one explained by the text following it: the
extension has to be present at compile time in order to be able to use it. The original software
developer might have control over this, but once the software starts to be distributed in source

2http://oss.sgi.com/projects/ogl-sample/registry/, visited 2/12/2004
3http://opengl.org/developers/code/features/OGLextensions/OGLextensions.html,

visited 2/12/2004.
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code form, that control is lost. There is nothing that guarantees or even requires that the extension
definitions are present on a randomly selected development environment. With the code quoted
above, this means that compiling the source on different development environments produces
different programs.

The proposed idiom suffers from yet another problem, which is better illustrated by the fol-
lowing code fragment:

1 #ifdef GL_NV_register_combiners
2 if (hasRegisterCombiners)
3 {
4 glEnable(GL_REGISTER_COMBINERS_NV);
5 glCombinerParameteriNV(GL_NUM_GENERAL_COMBINERS_NV, 1);
6 // ...
7 glDisable(GL_REGISTER_COMBINERS_NV);
8 }
9 #endif

This code is conditionally compiled if the macro GL_NV_register_combiners is defined
(line 1), which guards against the extension tokens and entry-point declarations not being avail-
able at compile time. It tests for the extension being available at runtime (line 2) and then
proceeds to use the tokens and functions defined by the extension. The problem is that this code
requires the extension entry-points (glCombinerParameteriNV) to be available to the pro-
gram at startup time. This means that if the extension is not available at start up, the program
might fail to start up at all. To avoid that problem, OPENGL defines a mechanism to retrieve
pointers to entry-points at runtime. This mechanism is itself defined as an extension to the sev-
eral windowing system dependent bindings (e.g., AGL, GLX and WGL). The reasons for this
dependency are out of the scope of this discussion, but it suffices to say that it exists and hinders
portability. Obviously it is possible for the programmer to have an abstraction layer on top of the
different windowing systems in order to cope with this problem but this adds yet another piece of
code which has to be actively maintained. Most of the maintainance work would be associated
with the extension information itself. When using this mechanism, the previous listing might
look like:

1 struct opengl_extension_table glext;
2 // ...
3 #ifdef GL_NV_register_combiners
4 if (glext.hasRegisterCombiners)
5 {
6 glEnable(GL_REGISTER_COMBINERS_NV);
7 glext.CombinerParameteriNV(GL_NUM_GENERAL_COMBINERS_NV, 1);
8 // ...
9 glDisable(GL_REGISTER_COMBINERS_NV);

10 }
11 #endif

In this case, the opengl_extension_table structure would contain a list of flags indicating
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if a given extension is available or not, and pointers to the corresponding entry-points, if any.
Something akin to:

1 struct opengl_extension_table
2 {
3 int hasRegisterCombiners;
4
5 PFNCOMBINERINPUTNV CombinerInputNV;
6 PFNCOMBINEROUTPUTNV CombinerOutputNV;
7 PFNCOMBINERPARAMETERFNV CombinerParameterfNV;
8 PFNCOMBINERPARAMETERFVNV CombinerParameterfvNV;
9 PFNCOMBINERPARAMETERINV CombinerParameteriNV;

10 PFNCOMBINERPARAMETERIVNV CombinerParameterivNV;
11 PFNFINALCOMBINERINPUTNV FinalCombinerInputNV;
12 PFNGETCOMBINERINPUTPARAMETERFVNV GetCombinerInputParameterfvNV;
13 PFNGETCOMBINERINPUTPARAMETERIVNV GetCombinerInputParameterivNV;
14 PFNGETCOMBINEROUTPUTPARAMETERFVNV GetCombinerOutputParameterfvNV;
15 PFNGETCOMBINEROUTPUTPARAMETERIVNV GetCombinerOutputParameterivNV;
16 PFNGETFINALCOMBINERINPUTPARAMETERFVNV
17 GetFinalCombinerInputParameterfvNV;
18 PFNGETFINALCOMBINERINPUTPARAMETERIVNV
19 GetFinalCombinerInputParameterivNV;
20 };

The “has” flags are initialized using e.g. the isExtensionSupported function found at the
OPENGL website, and the function pointers are initialized by calls to the appropriate facility of
the windowing system. Maintaining this sort of code for a large number of extensions by hand is
error-prone and quickly becomes tedious.

7.3.2 GLEW: The OPENGL Extension Wrangler

Faced with these problems a solution was developed during this thesis. Milan Ikits developed
independently a similar solution. These two efforts were later joined in a library called GLEW.
The goals of this project are:

• To be simple to use

• To be portable

• To be simple to maintain

• To guarantee forwards binary-compatibility

Simplicity of use is achieved in two ways: on one hand, there is a single function that needs
to be called in order to initialize the library (glewInit()). After this, all the functionality is
readly available to the programmer. On the other hand, the API is such that the programmer
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only needs to read the desired extension’s specification to be able to use the corresponding func-
tionality via GLEW. The compile-time problem mentioned before does not exist anymore, since
GLEW itself provides the tokens for all the extensions it knows about. The run-time problem
does not exist either, since all the known entry-points are available to the program at link-time.
After a successful initialization of the library, variables of the form GLEW_extension_name
indicate the runtime availability of the extension (or lack thereof). This means the previous
example can be simplified and rewritten as:

1 glewInit();
2 // ...
3 if (GLEW_NV_register_combiners)
4 {
5 glEnable(GL_REGISTER_COMBINERS_NV);
6 glCombinerParameteriNV(GL_NUM_GENERAL_COMBINERS_NV, 1);
7 // ...
8 glDisable(GL_REGISTER_COMBINERS_NV);
9 }

Portability is achieved by abstracting the differences between systems in the library itself.
The only system-dependency that is exposed to the programmer is the one he already has to be
aware of: windowing system specific extensions. The library has been used sucessfully with sev-
eral OPENGL implementations on different operating systems, including Microsoft Windows,
several Linux distributions, Silicon Graphics’ IRIX (both old and new generation systems) and
Apple’s MacOS X.

The effort required to keep the library up to date is minimal, since the bulk of the code is
automatically generated from the extension specification files found at the OPENGL extension
registry. This is done in a two step process: first the text of the specifications is parsed, nor-
malized and stored in an intermediate database and then the normalized form is converted to C
source code for distribution. This allows the developers to manually add extensions for which no
specification is available in a suitable format. Using the information available from the OPENGL
Sample Implementation mentioned before could have been an option, but observational evidence
suggests this is not kept as up-to-date as the extension registry.

Because the dynamic nature of this library (the basic API changes little, but the list of sup-
ported extensions is always growing), guaranteeing forward binary compatibility was an impor-
tant design consideration. This means that a binary linked against an older version of the library
should work without problems with a newer version of the library. The two consequences of this
are:

• No extensions will be removed, even if they are deprecated by other extensions or incor-
porated into the core of OPENGL.

• Entry-points and flags are exported as freestanding variables instead of being packed inside
of a structure. This pollutes the global namespace, but is necessary to avoid (implicit)
dependencies on the size of the structures in question.
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Remote access of visualization facilities

8.1 Motivation

During the development of this work, the need to be able to access remote visualization facili-
ties in a generic fashion became obvious. The common generic approach for remote visualization
employs the OpenGL remote rendering facilities. In this approach the application is run remotely
while the local host does the actual rendering. This solution is application-independent and there-
fore very popular, but it does not benefit from special facilities or hardware features available at
the remote host. For this reason, the second most popular solution is to embed enough functional-
ity into the application for it to be able to shift some of the workload from the local system to the
remote one (e.g., Bethel [Bet00], Engel [EHT+00, ESE00, EE99], Ma [MC00], among others).
Being application-specific, this solution can exploit the knowledge about application behavior to
achieve a higher degree of interactivity or to better balance the workload between the client and
the server. The disadvantage of the solution lies also there: being application-specific (or in the
best case, toolkit-specific), applications need to be modified to take advantage of this. In the case
of toolkit-specific solutions, it might be possible to come up with an implementation that does
not require modifications at the application level, but special versions of the toolkit libraries are
nevertheless needed.

In the general case, a generic solution will perform worse than specific solutions for the same
problem, so why should one care about application independence? Rapid prototyping is one
reason. Just being able to test existing applications under different operating conditions is enough
reason to strive for application independence. Another reason is shifting applications from their
original operating environment to new ones, probably unforeseen in the original design. A good
example of this is being able to embed applications originally written to be run in a desktop or
workstation environment to a web-services type of platform. The disadvantage of the generic
solution is that, by nature, it has to be implemented at a very low level and has to work with low
level primitives. The simplest most generic approach involves letting the application render to
the framebuffer in the usual fashion and introduce some mechanism to copy the contents of the
framebuffer to a remote location. This means pixels are the primitives that the solution will be
working with, and the necessary modifications are to be introduced at the basic graphics API or
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windowing system level.
In this particular implementation of the idea the well known concept of dynamic linking[HO91]

and certain characteristics of the X Window System are exploited to achieve the desired result.
OpenGL rendering requests are redirected to the hardware where the program is running instead
of being sent to the hardware where the program is being displayed. Once the rendering is done,
the resulting image is read from the framebuffer and sent over the network to the display together
with all other GUI elements. Since all the OpenGL rendering happens on the remote display, it
is possible to use an existing OpenGL-based application without requiring the availability of
OpenGL-capable hardware locally, while taking advantage of advanced graphics features as well
as hardware acceleration by the remote hardware. By leveraging already existing remote-access
applications this solution also makes it possible to access remote visualization resources from
operating environments that do not provide implementations for the required protocols.

Some other solutions with varying degrees of genericity or flexibility are:

• Silicon Graphics, Inc. provides a commercial solution called OpenGL VizServer [Sil01],
that enables lightweight clients such as SGI O2 and PC workstations to access the rendering
capabilities of SGI Onyx servers. Because of design decisions, other architectures cannot
be used as servers for this application. The VizServer software relies on dynamically linked
executables in order to be able to implement its functionality without modifying the target
application.

• Ma and Camp [MC00] developed a solution for remote visualization of time-varying data
over wide area networks. It involves a dedicated display daemon and display interface. The
first receives data from a render process, compresses it and passes it to the second, which
in turn decompresses the data and presents it to the user. By using a custom transport
method, they are able to employ arbitrary compression techniques.

• Bethel [Bet00] presented Visapult, a prototype system developed at Lawrence Berkeley
National Laboratory that combines minimized data transfers and workstation-accelerated
rendering. Visapult also requires modifications of the application in order to make it “net-
work aware” and relies to some extent on the existence of hardware acceleration on the
local display.

• Engel and Ertl [EE99] developed a solution for remote collaborative volume visualization
which exploits the characteristics of the application domain to reduce latency as well as
required network bandwidth. Engel et al [EHT+00] further developed this approach and
implemented a hybrid rendering mechanism to obtain better framerates.

The rest of this chapter is an extended version of the ideas and discussion published in [SME02].

8.2 OpenGL Graphics with the X Window System

GLX[WL98] is an extension to the X protocol [Nye95] that allows clients to create a so-called
“GLX context” which can be used to issue OpenGL calls that can be executed using either a
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Figure 8.1: GLX architecture as presented by Kilgard [Kil96]

hardware-accelerated rendering engine or a software-based one. By sitting on top of X, network
transparency is obtained for free. A GLX context can operate in either direct or indirect mode. In
indirect mode, the client sends requests to the X server which propagates them to the hardware.
In direct mode, the X server only functions as a marshal making sure that the OpenGL state of
each client is kept consistent. Since the X protocol is bypassed in direct mode, OpenGL rendering
can achieve the maximum performance of the hardware [KBH95]. Direct rendering implies that
the process is running on the same machine as the X server and not over the network. In the case
of remote rendering, only indirect mode is possible, if at all. Figure 8.1 illustrates both cases.

8.3 Dynamic Linking

In modern systems, programmers have the choice of statically or dynamically linking programs
during compilation. In static linking, all the object references of a program are resolved during
the link phase of the compilation. In contrast, with dynamic linking, the executable file contains
references to, but not the actual code of the required library functions. In this case, symbol
resolution is carried out during load-time. The dynamic linker is in charge of finding these
references in the executable and resolving them using a list of shared object names (libraries)
that the executable contains. One of the advantages of load-time linking is that it facilitates
code reuse, it simplifies the task of fixing bugs and reduces the memory requirements imposed
on systems, since code pages can be shared among unrelated processes. By its very nature, it
also enables users to replace libraries with custom versions designed to modify the behavior
of a program. The only requirement in this case is to keep the application binary interfaces
unmodified. A typical dynamic linker implementation maps libraries into memory searching for
the symbols the application requires, and for every required symbol it uses the first definition
that it finds. This means the process of resolving symbols is dependent on the order the libraries
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are loaded into memory, and in general there is no way to ensure that any given order will be
used. In order to allow for the selective overwriting of symbols without forcing the user to
modify the application in any way, some operating systems offer a mechanism sometimes called
library preloading1. The user can specify an arbitrary list of shared objects that are loaded into
memory before the libraries required by the application. This means the dynamic linker will
use the symbols defined by these “preloaded libraries” for resolving the symbols required by the
application.

In addition to load-time linking, it is also possible to perform runtime linking, as first de-
scribed by Ho and Olsson [HO91] and later explained in the Linux/GCC case by Lu [Lu95]. In
this approach, additional objects can be opened at run-time and symbols can be selectively added
to the running program. The most widely used interface for this purpose is dlopen(3), avail-
able on systems such as IRIX, Linux, and Solaris, among others. This can be used in cooperation
with the preloading mechanism mentioned before to wrap code around the original library func-
tions: first the function is overridden using preloading, then its original code is recovered using
dynamic linking and it is used by the customized version of the function to provide the original
behavior if necessary. This sort of trickery is not that unusual: a good example is Joost Wit-
teven’s fakeroot package2, which is widely used to provide a fake “root environment” where
non-privileged users can manipulate filesystem attributes as if they were indeed the root user.

An implementation that takes advantage of facilities available on operating systems such as
Linux and Solaris might look like this:

1 for_each (symbol_name in symbols_to_be_loaded)
2 {
3 *(symbol_pointer) = dlsym(RTLD_NEXT, symbol_name);
4 if (dlerror() != NULL)
5 /* error handling */
6 }

A more general implementation would be:

1 void *handle;
2 handle = dlopen(library_name, RTLD_NOW | RTLD_LOCAL);
3 /* Error handling: handle should not be NULL */
4
5 for_each (symbol_name in symbols_to_be_loaded)
6 {
7 *(symbol_pointer) = dlsym(handle, symbol_name);
8 /* Error handling: the return value of dlerror()
9 should not be NULL at this point. */

10 }

1There is not a standardized term for this operation, but the term “preloading” is used at least on Linux’s and
Solaris’ documentation. IRIX does not really have such a facility, but its dynamic linker allows the user to over-
write the complete list of libraries to be used by the application, achieving the same effect, even if it is not really
“preloading” anything.

2http://fakeroot.alioth.debian.org/, visited 2/12/2004
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Figure 8.2: System architecture. (1) The application issues a GLX request which is sent to the
render server. (2) The application issues OpenGL calls, which are handled by the render device.
(3) The library reads the contents of the framebuffer and (4) sends it to the interaction server using
an XPutImage request. (5) XEvents are sent from the interaction server to the application.

Compare line 3 in the first listing with line 7 in the second. The parameter RTLD_NEXT
is an extension which allows the program to obtain the address of the “next” symbol named
symbol_name in the process’ symbol table. On the other hand, the more generally applicable
code addresses a specific library file via a previously obtained handle. The disadvantage of this
is that the names of the relevant libraries have to be made available in the code, i.e. a system
dependency has to be introduced.

8.4 Implementation

By taking advantage of the dynamic linking facilities explained above, it is possible to modify
the behavior of any given program for the X Window System without changing its source code
or that of the libraries it uses. In this implementation there are two X servers involved: one that
supports GLX and a second one, which takes care of the user interaction, and which does not
have to support GLX. In the following discussion, the first X server will be called render server
and the second one the interaction server. Display will be used in the same way the X Window
System defines it.

The application is started locally to the render server but its environment is configured to have
it displayed on the interaction server. It is loaded in such a way that a custom version of every
GLX function is used, whose job is to redirect GLX requests to the render server. Since the display
is part of the GLX context’s properties, OpenGL calls are automatically redirected to the render
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glXChooseVisual return a visual that matches the specified attributes
glXCreateContext create a new GLX rendering context
glXMakeCurrent attach a GLX context to a window or GLX pixmap
glXSwapBuffers exchange front and back buffers

Table 8.1: Modified GLX functions

server. In a sense, a new library is inserted between the application and the system’s OpenGL
library, as depicted in figure 8.2. Once the application requests a buffer swap, the contents of the
framebuffer is read and written to an XImage structure, which is sent to the interaction display
via a XPutImage request. User interaction works transparently since events are transported
between the interaction X server and the render server without modification.

For most GLX functions the only required change is redirecting the request from the interac-
tion server to the render server. Only a few functions, listed in table 8.1, have to be treated in a
special way. In this discussion, it is assumed that the client is using GLX 1.2. For later versions
a similar implementation applies.

glXChooseVisual is used to select a visual3 that matches the attribute set specified by the
application. The application is neither required to use the visual returned by glXChooseVisu-
al, nor is it prevented from calling it multiple times. The visual returned by glXChooseVisual
has to be valid on the interaction server, since it will be used to create a widget there. The cus-
tom version of the function matches visuals across the two X servers and returns the best visual
that is compatible with the given attribute set. In the general case this metric is not well defined:
consider for example the case of a rendering server running at a color depth of 24 bits per pixel,
and an interaction server running at 15 bpp. In this case it would be possible to present the
application with a visual with color components that have 32 bits per pixel (RGBA), a 24-bit
depth buffer and a 8-bit stencil buffer, which is impossible to obtain on a server running at 15
bpp. Depending on how the application is coded, it might or might not be able to cope with this.
The other problem at this point is that the application is not required to actually use the visual
returned by glXChooseVisual. It is also allowed to call the function multiple times or none
at all (glXChooseVisual is ultimately a just convenience function). For this reasons, the only
way to ensure the implementation will work with the largest number of applications is to make a
per-application configuration possible. Those details are beyond the scope of this discussion.

When the library creates a drawable for rendering, it tries to use in-hardware off-screen pre-
served buffers (called preserved PBuffers) and falls back to regular on-screen windows if the for-
mer are not available. PBuffers are preferred because they are not obscured by other windows.
The use of PBuffers has to be specified upon context creation using glXCreateContext
but the size of the PBuffer is specified later with a call to glXCreatePBuffer. This later
call might fail because of insufficient resources. Since the library cannot obtain the size of the
drawable preferred by the application until glXMakeCurrent is called, a situation is pos-
sible where a PBuffer context is created but is later unusable. This situation can be avoided

3A visual in X11 is an structure that describes the display attributes used by a given window, e.g. the color depth
and color masks
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by noticing that the value returned by glXCreateContext is a pointer to an opaque data
type. This allows the wrapper function to generate its own value when the application calls
glXCreateContext and defer the actual creation of the context to the moment when the
application calls glXMakeCurrent.

When the application calls glXSwapBuffers buffers are swapped, the rendered image is
read from the framebuffer and transmitted to the interaction server as an XImage. The normal
image transport method, XPutImage, incurs a high overhead because the data is read from
the client’s memory space and is copied to the X server memory space which hinders perfor-
mance significantly. If the MIT Shared Memory Extension is available, XShmPutImage is
used instead. The XShm extension cannot be used if shared memory is not available, as it is
the case when the client and the server run on different hosts. The case of clients not using
double-buffered visuals can be handled heuristically, for example by trapping calls to glFlush
(since the client wishes to ensure the OpenGL buffer is emptied and the screen is updated), with
a rate-limiting algorithm (clients that issue too many synchronization calls, at rates in excess of
hundreds per second, have been found). This brings another issue to attention: the implementa-
tion has to be very careful about spawning threads, installing signal handlers and manipulating
file descriptors and streams in general since applications have been coded against a well defined
standard, and the kind of side effects of the modified function calls might introduce have not
been considered into the design of these applications.

8.5 Discussion

Reading the rendered images from the framebuffer and sending them over the network are expen-
sive operations and reduce the maximum achievable framerates of the applications that use the
library. Reading the framebuffer can be considered an atomic operation that cannot be optimized,
therefore optimizations have to occur at the image transmission level.

The core X protocol does not include any form of image compression. This has been im-
plemented via an extension oriented towards low bandwidth environments called LBX [FK93].
By using LBX on a local area network reduced network traffic was observed but little per-
formance gains were obtained. Another way of obtaining stream compression on top of X is
VNC [RSFWH98]. VNC is a free multi-platform client-server application for displaying and in-
teracting with remote desktops. The protocol underlying VNC, the Remote Framebuffer Protocol
(RFB) is only capable of sending rectangular framebuffer updates to the client. VNC provides a
variety of custom tailored compression algorithms to increase the efficiency of image transmis-
sion. The Unix variant of the VNC server is based upon a standard X server (using a software
renderer) which has been extended to communicate with RFB clients. Figure 8.3 shows how
VNC can be integrated into this solution. Using this alternative, significant improvements in the
interactivity of the applications have been observed.
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Figure 8.3: System architecture when VNC is included

8.5.1 Results

The upper diagram in Figure 8.4 compares the library’s performance with Brian Paul’s GLX port
of gears (glxgears) over a Fast Ethernet connection. In the test configuration, this application
is mostly bounded by the speed at which the CPU can transfer commands to the graphics card.
The results are shown as a function of window dimensions (all windows had the same width and
height) for different transport mechanisms (X display redirection and VNC). The application’s
framerate in the local case is provided for comparison.

The lower diagram shows the results of the same measurements using a texture-based volume
renderer [RSEB+00] and a 256× 256× 128 volume data set of an aneurysm. Again the frame
rates are shown for different transport mechanisms and several window dimensions.

As can be seen framerates using our framework are quite acceptable for interface-bound
applications (since they are going to be able to render at the maximum speed that the network
connection can handle) but drop sharply when applied to applications that are bounded by the
speed of the hardware renderer. Reading the framebuffer is a blocking operation: the graphics
hardware can not start to work on the next frame until the reading operation is done, which means
the application can not issue commands to render the next frame before the framebuffer has been
duplicated in the host’s main memory. It should be possible to mask the cost of sending the data
to the display server by splitting this operation off to a second thread, but as mentioned before
the implementation in the general case would not be trivial.

The system as described can be used with any OPENGL application, but for the specific
case of volume rendering on PC clusters, there is an optimization opportunity. In figure 8.2,
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Figure 8.4: Measured framerates for “gears” (upper plot) and a volume renderer (lower one). The
render server that was used for all measurements was equipped with a 900 MHz AMD Athlon
CPU, 256 MB RAM and a GeForce 2 from NVIDIA. The interaction server was equipped with
a 1.2 GHz AMD Athlon CPU, but since the interaction server was rarely operated at more than
half capacity a much slower processor would also have sufficed. Both systems were running a
Linux 2.4.10 Kernel and were connected using 100 Mbps Fast Ethernet.
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steps 3 and 4 can be eliminated: there is no need to upload the final composited image to the
framebuffer to read it back immediately. Looking at the problem more closely, it is not necessary
to use OPENGL for the display at all. It suffices to create an XWindow and use XPutImage to
upload the data to the X server. For this purpose, it is enough to follow the scheme previously
described, and preload the call to glDrawPixels (and similar ones) to copy the data to a
pixmap instead of uploading it to the framebuffer. Alternatively, a dedicated viewer application,
based purely on Xlib, can be written, which allows for better event handling. Such an approach
has been used during the development of this work with success.



Chapter 9

Results and future perspectives

9.1 Implementation environment

For the implementation of this system, an existing volume renderer was used as a starting point.
It was modified only to conform to the requirements explained in chapter 4, namely calculating
the opacity contributions according to equation (4.7) using one of the possibilities outlined in
section 4.4. The test bed used for performance measurements was the already existing Kepler
cluster. This cluster is installed at the University of Tübingen, Germany, and it is used mainly for
astrophysical simulations. It consists of 128 SMP systems running Linux 2.4.19. 96 of the nodes
have Intel Pentium III processors running at 650 MHz and 1 GB of main memory each. The
other 32 nodes were added at a later point in time, and have AMD Athlon MP 2000+ processors
and 2 GB of main memory each. The interconnection is a full-duplex Myrinet 1.2 Gb/s network.
The high bandwidth, the fully switched nature and the low latency characteristics of the Myrinet
technology was a driving point for using this cluster as a visualization platform. The SCore suite,
discussed in chapter 6, provides the software and drivers for the communication layer.

When this work was started, four NVIDIA GeForce 2 cards were installed on the cluster in or-
der to assess the feasibility of the idea of using a PC cluster for distributed hardware-accelerated
volume rendering. The first problem that was encountered was actually getting the graphics cards
to work on the nodes. There were incompatibilities between the graphics cards, their drivers, the
Myrinet cards and the chipset used on the nodes. Since the original installation, the situation has
improved greatly, but the lesson learned was to stick to well known, widely available chipsets.
According to experience, chipsets from Intel, like the 440BX and its later siblings, represent a
good choice for this task, both in terms of stability, support and performance. The newer nodes
using Athlon processors have an AMD-760 chipset and NVIDIA GeForce Ti4600 graphics cards.
After some initial trouble, these have shown to be stable. More recent chipsets from Intel, like
the E7205 and later models have a better feature set, with support for newer standard interfaces
like AGP 3.0; this chipset has been found to work reliably with NVIDIA GeForce Ti4600 parts,
too.

Most of the problems mentioned were solved by software reconfiguration or upgrades. This
highlights one of the downsides of using commodity parts for this purpose, namely, the final
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system has not been put together by a single company, as it would be the case with e.g. an
InfiniteReality 4, but it has been assembled “in place”. This means some of the parts are going
to be used in environments or configurations that the vendor has not tested. For example, when
installing a newly acquired set of Pentium 4 workstations (Intel E7205 chipset) with NVIDIA
Ti4200 cards it was found that they could not operate in AGP mode. After some investigation the
problem was traced to a bug in the AGP driver of the Linux 2.4 kernel. The bug was triggered
only on systems with 4 GB of main memory, a configuration that had probably not been tested
by the driver author because it was not available to him1.

Another aspect that causes some grief is the general support for the Linux kernel by hard-
ware vendors, and in particular by graphics hardware vendors. The lastest generation of graphics
hardware is not supported by drivers for which source code is freely available. The reason be-
hind this is that vendors are not willing to provide enough technical documentation about the
programming interfaces for their hardware in an open fashion. ATI provides partial documenta-
tion for their hardware up to the second generation of the Radeon chip under a non-disclosure
agreement that allows to freely release the resulting source, but this has met with limited suc-
cess. Both NVIDIA and ATI do release binary-only drivers that support their latest generation
hardware. NVIDIA has established, after some initial trouble, a good record of supporting the
Linux kernel this way, while the response from ATI still generates mixed reactions among users.
Even if this approach satisfies a large fraction of the user-base, it still takes away some of the
benefits associated with the otherwise normal development strategy of the Linux kernel and the
surrounding operating system. In particular, it makes it harder or impossible to fix even trivial
bugs and excludes altogether the possibility of porting the drivers to new architectures unless the
vendor itself has an interest on the task (in this regard NVIDIA does provide support for Linux
on the Intel x86, Intel Itanium and AMD64 architectures, as well as FreeBSD on the Intel x86
architecture).

Nevertheless, the advantages outlined in chapter 1 (better performance, faster development
cycle, easier to replace parts, easier upgrades) have been found to hold true. It is the opinion of
the author that these advantages still weight out the disadvantages mentioned above.

9.2 Performance measurements

The visible “female dataset”, part of the “visible human project”, was used for benchmarking the
application (figure A). The visible human project, carried out by the United States National Li-
brary of Medicine, has the goal of creating a complete, anatomically detailed, three-dimensional
representations of the normal male and female human bodies. Acquisition of transverse CT, MR
and cryosection images of representative male and female cadavers has been completed. The
male was sectioned at one millimeter intervals, the female at one-third of a millimeter intervals.
The dataset used consists of a volume 512× 512× 1734 in size, with 8-bit density data at each
voxel. This amounts to 443 MB of texture data. This has been split to 16 bricks, each with a

1Even if the nature and reasons why the bug existed in the first place are out of the scope of this discussion, it
is necessary to remark that is was possible to find and fix this bug because of the availability of source code for the
AGP driver.
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dimension of 256×256×512 for a 2×2×4 configuration. Each node is able to render its brick
in a buffer with 1024× 1024 pixels with a framerate of circa 10 Hz (100 ms per frame). At
this resolution, depending on the on-screen orientation of the volume, instead of having multiple
neighbouring voxels contribute to a single pixel, single voxels contribute to only a few pixels of
the final image, thus avoiding masking features because of aliasing effects. Reading the data out
of the framebuffer takes 19 ms. Compositing the 16 images takes circa 5 ms on average, with an
additional overhead of 15 ms for transmitting the data over the network, and another 15 ms for
collecting the composited data on a single node. On average the application updates the display
with a rate of circa 6 Hz. In this case the bottleneck is not network but the rendering of the data
itself. A single node can render this dataset with an update rate of circa 4 seconds per frame
(0.25 Hz), giving a speed up of 24 when compared to the parallel case. The super-linear speedup
comes from the fact that the serial application needs to update the textures 8 times for each frame
that is rendered while the parallel version does not perform texture updates at all.

A second dataset was used for performance measurements, the so-called “jet stream dataset”
(figure A). This is a time-dependent dataset which comes from a turbulent flow simulation. It
consists of 89 time steps, each of which corresponds to a volume of 256× 256× 256 voxels.
This was split in 128×128×64 bricks (1 MB of texture data), for a 2×2×4 configuration. In
this case each node renders its brick in about 37 ms, and the other times are similar to those of
the visible female dataset. The difference here is that textures are swapped in and out of texture
memory as time goes by in the visualization. Each time step can be uploaded to the graphics
card in 4 ms. When reproducing the animation at a rate of 1 time step per second, this means
there is an overhead of 4 ms once each second. This gives a mean refresh rate of 8 Hz. A single
node can render this dataset at a rate of circa 1 Hz.

Looking at table 9.1, it is easy to see why the speedup in the case of the jet stream dataset is
lower than in the visible female case: the compositing step starts to play a more significant role:
the rendering of the data amounts to only 31% of the total time, while compositing (reading back
data and then sending it over the network, blending and collecting it) amounts to 69 % of the
total time. Ignoring optimizations, the compositing stage runs in constant time of circa 80 ms,
which gives an upper limit for the framerate of 12 Hz.

Transporting the images to the user has not been taken into account in this discussion. The
most simple solution is connecting a display device to one of the nodes in the cluster, and work
in situ. As explained in chapter 8, this poses practicability problems. Nevertheless, there are
scenarios where this is desirable, for example, when using this kind of application to drive display
walls. As discussed in the same chapter, it is possible to leverage commodity software such as
VNC for this purpose and provide access over public networks using infrastructure such as the
world wide web. In that case the refresh rates for user interaction are decoupled from the refresh
rates the application can deliver.

9.3 Conclusions

During the development of this work, many technologies evolved driven by mass market dy-
namics: as the rasterization performance of graphics cards increases, it becomes more efficient
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Operation Visible female Jet stream

Render 100 37
Readback 19 14
Transport 15 15
Blend 5 5
Collect 15 15
Total 154 86

Table 9.1: Time to render a single frame of the visible female and jet stream datasets. The differ-
ences in rendering time are due to the size of the bricks rendered on each node. The differences
in the readback times are due to the fact that only drawn portions of the image are read. This
data does not take into account the synchronization overhead, which adds circa 10 ms to the total
times.

to allocate larger bricks as workload for each node on the cluster reducing the number of nodes
that have to participate in the rendering of a single dataset in order to achieve a predetermined
framerate. Second, as the on-board memory on the graphics cards increases, it becomes possible
to render larger datasets using the same number of nodes. Third, as the available CPU power
increases, the compositing bottleneck lessens. As new network technologies emerge and become
more widespread, this bottleneck is further reduced. As discussed above, the network perfor-
mance is at this moment one of the limiting factors in this approach, yet this is the component
that most slowly evolves. The reason for that is clear: data warehouses are the largest customers
of high-bandwidth networks. Because of the hardware volume managed at these installations
and the high cost of downtime, they have a slow hardware upgrade cycle, which in turn makes
the market less profitable when compared to general purpose processors and to a lesser extent
to dedicated graphics processors. A second factor is that this customers have traditionally fa-
vored the use of proprietary hardware architectures, precisely because of the availability of better
inter-processor technologies. As the price/performance gap between proprietary supercomputers
and COTS clusters widens, the need for higher bandwidth networks for the later becomes more
pressing. The effect of this is the appearance in recent years of technologies such as InfiniBand,
which currently delivers point-to-point transfer rates of 10 Gb/s, and promises the availability of
30 Gb/s general purpose networks in the near future. These represent an eight-fold and 25-fold
performance increases with respect to current 1.2+1.2 Gb/s Myrinet technologies, and still com-
pare favorably with respect to dual 4+4 Gb/s Myrinet technologies. The development of these
technologies is in part slowed down by the fact that the fastest buses widely available are not able
to cope with much higher transfer speeds. For example, 64-bit 133 MHz PCI-X delivers 8.5 Gb/s
of bandwidth. PCI-X 266 could extend this to 17 Gb/s, and PCI-X 533 could deliver another
two-fold increase. A different approach is PCI Express, which uses a serial interface instead
of the traditional parallel one. This enables the existence of high-performance point-to-point
connections between devices, which in turn provides deterministic low-latency.

The topic of hardware-accelerated direct volume rendering techniques is vast and active. In
this work only a basic introduction is provided in chapter 2, and the focus of the work lies at
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direct volume rendering in uniform meshes. The ideas presented later on are nevertheless not
constrained in any way to any specific technique. For example, the results are extensible to non-
uniform meshes by fitting the non-uniform mesh into a larger uniform mesh and performing a
remeshing along the borders of the subvolumes. As explained in chapter 4 the only requirement
is to satisfy the associativity of the operation by using the appropriate blending equation, which is
in turn guaranteed by using α-premultiplication. In the same chapter several alternatives are pre-
sented in order to implement this operation with old and new generations of commodity graphics
hardware. In chapter 5, it has been shown that the option of performing the compositing of partial
results of the subvolumes using the graphics hardware for the task does not yield a performance
gain on modern architectures. Even if the compositing operation itself can be executed faster
on the graphics card, uploading and downloading the data is a slow process. In this case the
bus between the CPU and the dedicated graphics memory represents a bottleneck. Again, newer
technologies such as PCI Express might change this situation. In order for this path to be faster
than a software-based one, the interconnection bus needs to offer a bandwidth in excess of 5.3
Gb/s. This is within the peak bandwidth offered by AGP 4x, but actual measurements do not
support this statement. In order to achieve interactive refresh rates, the compositing of the partial
results of the rendering process has been optimized using assembler code. As shown in chapter 5
this implementation delivers compositing rates that make the interactive visualization possible.

In this work solutions for another three different problems were developed:

• Remote accessing of visualization facilities. This has been implemented using a big-server
thin-client model and is application independent. This allows to have minimal or no extra
requirements on the client side (e.g. a VNC client or an X11 server) and access these
facilities even from devices with comparatively small CPUs like PDAs.

• Debugging of OPENGL applications and management of OPENGL extensions. These
have been developed in such a manner that it is easy to keep them up to date with current
standards.
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Figure A.1: Color version of figure 4.4 on page 60

Figure A.2: Color version of figure 5.1 on page 64
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Figure A.3: Subset of the visible female dataset
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Figure A.4: Jet stream dataset
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