
Volumetric Methods for
the Real-Time Display of

Natural Gaseous Phenomena

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Stefan Roettger

aus Erlangen

Hauptberichter: Prof. Dr. T. Ertl
Mitberichter: Prof. Dr. M. Stamminger

Prof. Dr. W. Heidrich

Tag der mündlichen Prüfung: 2. Juni 2004

Institut für Visualisierung und Interaktive Systeme
der Universität Stuttgart

2004

2

Contents

1 Motivation and Outline 8

2 The OpenGL Rendering Pipeline 11
2.1 Basic Layout of the Rendering Pipeline 11
2.2 Rendering Example . 13
2.3 Lighting and Texturing . 15

2.3.1 Direct Lighting . 16
2.3.2 Texture Mapping . 19

2.4 Programmable Graphics Hardware 21
2.4.1 Vertex Shaders . 22
2.4.2 Pixel Shaders and Fragment Programs 23

3 A Brief History of Terrain Rendering 26
3.1 Data Representation . 26
3.2 TINs . 26
3.3 S-LOD . 28
3.4 Progressive Meshes . 28
3.5 C-LOD Algorithms . 29

3.5.1 Lindstrom’s Algorithm 30
3.5.2 Duchaineau’s Algorithm 33
3.5.3 Roettger’s Algorithm . 35

3.6 Future Development . 39

4 The Terrain Rendering Pipeline 40
4.1 Landscape Data Generation . 41
4.2 Real Time Display of the Terrain 41
4.3 Terrain Material . 42
4.4 Terrain Illumination . 42
4.5 Organic Features . 43
4.6 Global Volumetric Effects . 43
4.7 Volumetric Effects in Practice 44

3

4 CONTENTS

5 Natural Gaseous Phenomena 46
5.1 Sky Dome . 47
5.2 OpenGL Fog . 47
5.3 Layered Fog . 50
5.4 Bounded Layered Fog . 51
5.5 Billboards . 51
5.6 Metaball Methods . 52
5.7 Impostor Based Methods . 53

6 Volume Rendering: The Basics 57
6.1 Basic Principles . 57
6.2 The Rendering Equation . 57
6.3 The Ray Integral . 59
6.4 Light Scattering in Participating Media 60
6.5 Rendering Solutions for Participating Media 61

7 Direct Volume Rendering 63
7.1 Transfer Functions . 63
7.2 Grid Types . 64
7.3 Ray Casting . 64
7.4 Slicing via 3D Textures . 66

8 Pre-Integrated Cell-Projection 68
8.1 Visibility Sorting . 68
8.2 The Original PT Algorithm . 69
8.3 Drawbacks of the Original PT Algorithm 70
8.4 PT with Accurate Opacity and Color 71
8.5 A New Approximation for PT 74
8.6 Prior Work about Isosurfaces . 75
8.7 Hardware-Accelerated Marching Cells 76
8.8 Flat-Shaded Isosurfaces . 77
8.9 Smoothly Shaded Isosurfaces . 79
8.10 Colored and Multiple Isosurfaces 80
8.11 Mixing Isosurfaces with Projected Volumes 81
8.12 Performance Comparison . 83
8.13 Heaviside Excursion . 84
8.14 Pre- vs. Post-Classification . 85

9 Unstructured Volume Rendering on the PC 88
9.1 High Resolution Ray Integral . 88

9.1.1 Opacity Reconstruction 88

CONTENTS 5

9.1.2 Chromaticity Reconstruction 90
9.2 Hardware Accelerated Pre-Integration 91
9.3 Performance Measurements . 95

10 Ground Fog Rendering 98
10.1 Theoretical Performance . 99
10.2 Practical Performance Analysis 99
10.3 Projected Convex Polyhedra Algorithm (PCP) 100
10.4 Applications of the PCP Method 102

11 Cloud Rendering 106
11.1 View-Dependent Rendering . 106
11.2 C-LOD Rendering . 107
11.3 Generating Continuous Levels of Detail 107

11.3.1 Hierarchical Volume Representation 107
11.3.2 View-Dependent Mesh Simplification 107
11.3.3 Building a Conforming Mesh 109
11.3.4 Hierarchical Error Propagation 109

11.4 Volumetric Morphing . 110
11.5 Cell Projection . 112
11.6 Non-Photorealistic Cloud Rendering 113

11.6.1 Modified PT Algorithm 114
11.6.2 Non-Photorealistic Lighting 114

11.7 Performance Measurements . 115
11.8 Discussion . 116

12 Summary 118
12.1 Decision Chart . 120
12.2 Availability and Licensing . 121

13 Zusammenfassung 140

Acknowledgements

...I’ll just lie back and think pleasant thoughts. Chicken
pot pie... Chocolate covered RAIsins... EEGlazed
Hammmmm... They think I’m crazy... But I know

better... It is not I who am crazy... It is I who am MAD!...
Didn’t you hear ’em? Didn’t you see the crowds?!! Oh

my beloved ice cream bar... How I love to lick your
creamy center... eeyaaarghruch... eeyaarghrunch...
eeyaarghrunch... And your oh-so-nutty chocolate

covering... You’re not like the others... You like the same
things I do... Wax paper... Boiled football leather... Dog
breath... WE’RE NOT HITCHHIKING ANYMORE...

WE’RE RIDING...

Ren Höek’s insane ravings in “Space Madness”

First of all I would like to thank Martin Kraus of VIS, Stefan Guthe of WSI/GRIS,
and Ingo Frick of Massive Development for the great teamwork and all others
from the computer graphics labs in Erlangen, Tübingen, and Stuttgart for their
support. They all have been a great help in writing this thesis.

On 7th February of 2002 I was lucky to become the father of my daughter Leonie.
I have to say the warmest thanks to my girl friend who so much cared about her
while I was busy writing, so this thesis is dedicated to my dear Leonie and Petra!

Stuttgart / Erlangen, 9th September 2004

Stefan Röttger

6

Abstract
Blaise Pascal: The last thing one knows

in constructing a work
is what to put first.

Compared to the nineties where fast 3D graphics was the domain of expensive
workstations, in the last few years the development of ever faster 3D graphics
hardware was mainly driven by the gaming industry. The upcoming of pro-
grammable PC graphics hardware has opened the field for new graphics algo-
rithms which allow unprecedented realism in real time applications. Nevertheless,
one area of application is persistently resisting most efforts to achieve sufficient
rendering performance: This is the area of volume rendering. Because of the huge
amounts of data that have to be processed to obtain a three-dimensional visualiza-
tion, it is very challenging to achieve real time performance for large volumetric
data sets.

In this thesis we try to tackle this problem in one specific application field.
We devise algorithms that are suitable for the real time display of natural gaseous
phenomena. In particular our goal is to render clouds and fog in real time. In
principle, the problem reduces to solving the so called ray integral. A common
technique for solving this ray integral is ray casting which collects the incoming
light on each viewing ray by sampling the volume. On the one hand ray casting
achieves very good rendering quality, but on the other hand it becomes very slow
at high screen resolutions. Many improvements have been presented to accelerate
the original approach, but despite all efforts ray casting is still only beginning to be
an option for high-quality real-time rendering. Very recent advances in graphics
hardware have lead to the implementation of hardware-accelerated ray casters, but
this approach still suffers from a variety of limitations of the graphics hardware.

The main technique developed in this thesis is the so called pre-integrated cell-
projection method which offloads as much computation of the ray integral as pos-
sible into a preprocessing step. This is the first step toward real-time rendering of
natural gaseous phenomena. In a second step we develop a hierarchical approx-
imation scheme which decimates the huge amount of data in a view-dependent
way. For this purpose we borrow ideas from the area of terrain rendering and apply
the so-called continuous level of detail method to the three-dimensional case, that
is fog and cloud volumes. In combination with the pre-integrated cell-projection
method this permits real-time flights through natural looking clouds and ground
fog. In comparison to previous methods image quality is also improved signifi-
cantly.

7

Chapter 1

Motivation and Outline

Three-dimensional computer graphics plays an important role in computational
science and engineering. The interactive visualization of simulation data and mea-
surements allows to explore experimental results in an very intuitive way. While
interactive 3D graphics has been the domain of expensive graphics workstations
in the past, the influence of the computer gaming industry is growing with the
demand for much more realistic and ever faster 3D graphics in interactive enter-
tainment. As a result, the graphics hardware developed for 3D computer games
has become increasingly powerful and cheap and thus has been made available for
a broad class of consumers.

The good price performance ratio of consumer graphics cards also opens new
fields of application both for scientific visualization and computer games. In this
thesis we exploit the feature set of modern PC graphics cards in the specific area of
volume rendering. We develop algorithms that are able to display natural gaseous
phenomena, which are inherently volumetric, with the focus on real-time ren-
dering. Our decision to focus on real-time algorithms was influenced by a close
cooperation with the 3D gaming industry where speed is the one and only im-
perative. During a cooperation with Massive Development [65] we included our
previously developed terrain renderer [89] into their Krass game engine.

In the process of this cooperation we noticed that truly volumetric effects ac-
tually are used very rarely in computer games. What is more, most of the applied
volumetric effects like explosions and smoke are just fake in a scientific sense.
Natural gaseous phenomena like true clouds or fog are missing almost completely
due to the inherent complexity of these volumetric effects. In the case that these
effects show up in computer games they are mostly implemented using very much
simplified physical models which do not match the complex situation in the real
world. Another approach encountered frequently in computer games is to use a
cloud photo painted on the sky hemisphere. But in this case the possible view
points are restricted to a small centric area. The consequence is that one cannot
fly through the clouds, for example.

In this thesis we provide solutions for the mentioned problems. We devise
algorithms that are suitable for the real-time display of arbitrary natural look-
ing clouds and fog. For this purpose we apply, modify, and extend techniques

8

9

known from scientific terrain and volume visualization. In particular we extend
the C-LOD algorithm known from terrain rendering to work with scalar volumes
and develop the so-called pre-integration technique which allows superior volume
rendering quality.

The C-LOD algorithm (acronym for continuous level of detail) takes advan-
tage of the fact that a terrain has a large extent. Thus, for a typical point of view,
very far and very near details are viewed at the same time. Since the geometric
representation of the terrain consists of triangles, the perspective projection will
render some of these triangles very small and some very large. Rather than dis-
playing all triangles in every frame, the C-LOD algorithm repeatedly disposes the
smallest triangles until the reduced number of triangles can be handled at real-
time. The higher the target frame rate the smaller is the generated number of
triangles and the larger the size of the triangles. Since the decimation scheme de-
pends on the view point, roaming over the terrain results in a constantly changing
triangulation. This leads to the so-called popping effect, that is a detail suddenly
pops up when approaching it. However, if the C-LOD algorithm keeps the trian-
gles popping up below a projected size of one pixel then the popping effect does
not become observable.

The C-LOD approximation scheme is not only valid for terrain data, but it can
also be applied to other data types. We show that since cloudy skies have a large
extent, we can also apply the C-LOD decimation scheme to a volume representing
the clouds. In this thesis we describe the necessary adjustments to adapt the C-
LOD algorithm to the volumetric case and give examples for rendering clouds and
ground fog.

In contrast to terrain data which consists of triangles, the volume needs to be
decomposed into tetrahedra. This has a major implication: Other than for trian-
gles, there is no built-in rendering support for tetrahedra as a drawing primitive.
In order to render a tetrahedron the so-called projected tetrahedra algorithm has to
be applied. It projects the tetrahedra into the viewing plane and transforms each
tetrahedron into a set of triangles with associated color and opacity.

In principle, the ray integral has to be solved for every viewing ray intersecting
a tetrahedron. The colors and opacities associated with each triangle of the tetra-
hedral decomposition are only a very rough approximation of this ray integral. For
this reason we develop a much more accurate method called pre-integrated cell-
projection which exploits the feature set of modern PC graphics hardware. With
this solution the appearance of clouds can be modeled much more realistically.

The outline of this thesis is described as follows: As an introduction into in-
teractive computer graphics, we first give an overview of the OpenGL rendering
pipeline (Chapter 2). We continue with a chronological survey of the existing
terrain rendering algorithms which are the key component of all outdoor engines.
Then we proceed with a brief summary of the current state of the art in outdoor

10 CHAPTER 1. MOTIVATION AND OUTLINE

game engine design. This is supposed to illustrate the special demands that are
posed on outdoor game engines. To give an actual example of a modern game
engine, we describe the graphics engine of the computer game AquaNox [87]
(Chapter 4). The terrain renderer of this engine was developed in cooperation
with Massive Development at the University of Erlangen in 1998. In the follow-
ing chapters this terrain rendering engine serves as the framework for rendering
realistic clouds and ground fog. The engine also demonstrates the use of sim-
ple volumetric effects that are already widespread in computer games (see Fig-
ure 4.1). The previous work on visualization of natural gaseous phenomena is
presented in Chapter 5. In summary this chapter reveals that efficient volume ren-
dering methods have not yet been applied to display volumetric clouds and fog in
real-time. In Chapters 6 and 8 the physical foundation for the desired volumetric
effects is developed and basic volume rendering algorithms are introduced (see
also [90, 35, 84]). Finally, the fundamental algorithms are put in context, that is
they are applied to rendering real fog and clouds in Chapters 10 and 11 using the
described C-LOD and pre-integration techniques (see also [86, 85].

Chapter 2

The OpenGL Rendering Pipeline

In recent years, graphics hardware has become a standard equipment of every
consumer PC. This development was mainly driven by the gaming industry which
has grown to a multi-billion dollar market in only a few years. Due to the tough
competition for ever faster graphics hardware the graphics accelerators nowadays
include features that not long ago were available only on extremely expensive
graphics workstations. Consumer graphics hardware has undergone a huge per-
formance leap but the fundamental operating principle has not changed since the
early days when Silicon Graphics dominated the market. This chapter describes
the layout of graphics hardware which is designed to accelerate the perspective
display of three-dimensional objects and scenes. In comparison to software ap-
proaches they achieve speed-ups of several magnitudes and thus are the basic re-
quirement for all types of interactive computer graphics. As a fundamental prop-
erty the graphics accelerators exploit the enormous potential for parallelization
and pipelining of 3D graphics. As a result, the basic processing structure is the
so-called rendering pipeline. In the following we describe the main stages of this
pipeline and their purpose.

2.1 Basic Layout of the Rendering Pipeline

In general, a three-dimensional scene description has to be converted into a set
of graphics primitives before it can be displayed. This process is called tessela-
tion. Typically, graphics accelerators support triangles or convex planar polygons
such as quadrilaterals as rendering primitive. Each primitive is defined by a fixed
number of 3D vertices and connectivity information together with appearance at-
tributes such as color and texture coordinates. These vertices are passed down
the pipeline and processed in the following stages of the pipeline until finally a
two-dimensional raster image is computed:

1. Geometry Processing transforms the incoming vertices in the 3D spatial
domain. Operations like scaling, translation, rotation are performed. Lo-
cal shading information is computed which is derived from surface normals
and a fixed number of light sources. After that the vertices from the stream

11

12 CHAPTER 2. THE OPENGL RENDERING PIPELINE

are joined together according to their order to form geometric primitives
(points, lines, triangles, etc.). Finally the vertices are projected perspec-
tively.

2. Rasterization converts the geometric primitives into fragments. Each frag-
ment corresponds to a pixel on the screen. It holds information about depth,
color, transparency, and textures of the corresponding pixel.

3. Fragment Operations subsequently modify the fragments attributes (e.g.
blending). Several tests decide whether a fragment is discarded or displayed
on the screen. The Z-test, for example, discards hidden fragments. The final
color is written into the frame buffer.

Figure 2.1: The OpenGL 1.1 rendering pipeline.

OpenGL [80, 123] is an open standard which implements all features of the ren-
dering pipeline. It is a software interface with about 200 distinct commands which
serve as an abstraction layer between applications and the hardware specific im-
plementation of the pipeline. Since its introduction in 1992, OpenGL has become
the industry’s most widely used and supported 3D graphics API. The specification
of the OpenGL standard is guided by an independent consortium, the OpenGL
Architecture Review Board. The review board ensures the conformity of the spec-
ification for all licensed implementations and language bindings. Just like any

2.2. RENDERING EXAMPLE 13

software the current version 1.5 has undergone a lot of improvements since its ini-
tial version 1.0. The development is pushed by the OpenGL extension mechanism
which allows every hardware developer to introduce new technological innova-
tions. Many of these extensions have become a standard in the subsequent release
of OpenGL. In contrast to the open structure of OpenGL, Direct3D is a propri-
etary 3D graphics standard which is only supported on the Windows platform. It
is mostly used in the gaming community and for developing multimedia applica-
tions. In Figure 2.1 the logical layout of the OpenGL 1.1 rendering pipeline is
shown. The blocks dealing with vertices, primitives, and fragments are grouped
together.

2.2 Rendering Example

OpenGL is organized as a state engine. Each OpenGL command begins with a
”gl” prefix and changes the content of a state variable or sends vertex data to the
graphics processor. A state attribute such as color or texture remains the same
until a command is issued that changes it again. So the typical procedure to send
triangles down the pipeline is as follows:

• Set global state
glMatrixMode(GL PROJECTION); // modify projection matrix
gluPerspective(30,1,1,10); // initialize perspective projection
glEnable(GL DEPTH TEST); // enable Z-test

• Set attributes
glColor3f(1.0f,1.0f,1.0f); // change vertex color to white

• Issue vertices organized as triangles
glBegin(GL TRIANGLES); // start primitives
glVertex3f(0.0f,1.0f,-5.0f); // vertex v0
glVertex3f(-1.0f,0.0f,-5.0f); // vertex v1
glVertex3f(1.0f,-1.0f,-10.0f); // vertex v2
glColor3f(1.0f,0.0f,0.0f); // change color to red
glVertex3f(1.0f,1.0f,-7.0f); // vertex v0
glColor3f(0.0f,1.0f,0.0f); // change color to green
glVertex3f(-1.0f,-1.0f,-7.0f); // vertex v1
glColor3f(0.0f,0.0f,1.0f); // change color to blue
glVertex3f(1.0f,-1.0f,-7.0f); // vertex v2
glEnd(); // end primitives

14 CHAPTER 2. THE OPENGL RENDERING PIPELINE

This small example renders a small white triangle in front of the viewer, which
per default setting is located in the origin and looks downward the negative z-axis.
It also renders a smoothly colored triangle which intersects the white triangle (see
Figure 2.2). To reconstruct the correct hidden relationship of the two triangles the
Z-test must be turned on. Note that the color is specified before the vertices are
issued, so that the first three subsequent vertices have the same color, for example.

Figure 2.2: An OpenGL rendering example with two triangles that intersect and
occlude each other.

The geometric primitives supported by OpenGL are depicted in Figure 2.3, that
is mainly points, lines, triangles, quads, triangles strips, quad strips, triangle fans,
and planar polygons. Theoretically, current consumer graphics cards are able to
process several million to tenth of millions of triangles per second. Since the prim-
itives must be passed to the graphics hardware over a dedicated bus, the practical
performance, however, is much less. For this reason, one tries to minimize the
number of necessary graphics primitives by a technique called triangle or quad
stripping. Typically triangles are part of a mesh. For a regular mesh the vertices
of each quadrilateral must be passed four times down the pipeline. By organizing
the quadrilaterals in stripes each two new vertices in the vertex stream define a
new quadrilateral (compare center case at bottom of Figure 2.3). As a result each
vertex must be passed down the pipeline only twice to render the complete mesh.

Vertex arrays are another means of approaching the theoretical performance
of graphics accelerators. Vertex arrays are indexed lists of graphics primitives
that are stored in dedicated graphics memory, so that the primitives do not need
to be transferred through the bottleneck of the bus. If a 3D object entirely fits
into graphics memory, vertex arrays are the fastest rendering mode available. The
limited amount of dedicated memory usually slows down rendering performance,
since data chunks have to be reloaded into graphics memory when needed.

2.3. LIGHTING AND TEXTURING 15

Figure 2.3: The OpenGL rendering primitives (from [123]).

2.3 Lighting and Texturing

Besides the rendering performance the realistic appearance of a three-dimensional
object is another prime goal. In the rendering example we have only considered
the primary color of an object, but in reality the objects texture and illumination
also plays an important role. To demonstrate this Figure 2.4 contrasts the three
main contributions to an image: geometry, illumination and texture. The figure
shows a famous Mars mountain which is commonly known as the “Face of Mars”.
The leftmost image simply depicts the geometry of the mountain by displaying the
wire frame of the triangle mesh. At this point the method by which the triangle
mesh is created is not relevant. This is explained in full detail in Chapter 3. The
next image in the middle shows the mountain as if it were lit by the sun from a
near-zenith position. With illumination the basic shape of the mountain is exposed
but small details are not yet visible. These are added in the rightmost image where
a photograph captured by one of the Mars Viking Orbiters is used as a texture. By
adding the texture it becomes clear why the mountain has become famous as the
“Face of Mars”. Without the texture it is just a mountain like many others. This
fact underlines the importance of texturing in computer graphics.

16 CHAPTER 2. THE OPENGL RENDERING PIPELINE

Figure 2.4: Lighting and texturing example. From left to right: Wire frame, lit,
and textured view of a famous Mars mountain that is commonly known as the
“Face of Mars”.

2.3.1 Direct Lighting

In the real world the appearance of a scene is the result of an inconceivable amount
of photons being reflected from surfaces again and again until they finally reach
the observer’s eyes. The exact real-time simulation of this process is of course
infeasible. While the shear amount of encountered photons prevents the exact re-
production of the illumination, the light reflection properties of surfaces are well
known and comparatively easy to reconstruct. The amount of light that is reflected
at a given point on a surface is described by the so-called BRDF , the bidirectional
reflection distribution function. The BRDF fr(x, ~ωi, ~ωo) is defined as the radiance
leaving a point x in direction ωo divided by the irradiance arriving from direction
~ωi. In other words it is the directional “brightness” of a surface patch in relation
to its “illumination”. Although the BRDF is a flexible means of describing light
interacting with surfaces it has to be noted that it cannot model all physical ef-
fects. Phosporence and fluorescence are not taken into account for example. For
simplicity we also neglect the dependence on the wave length and the orientation
of the surface patch (thus we assume isotropic reflection).

Then the BRDF can be measured easily in an experiment by examining the
radiance and irradiance for a variety of incoming and outgoing angles. However,
it is much more convenient to split the BRDF into its diffuse and specular com-
ponents and examine these components separately. Most surfaces encountered in
practice have diffuse (or Lambertian) reflection properties, which means that the
BRDF does neither depend on the incoming nor the outgoing angle. A typical ex-
ample is a painted wall. On the other hand the specular component of the BRDF
is characterized by the fact that most if not all incident light is emitted in the direc-
tion of the reflection vector r = 2(n · l)n− l (see Figure 2.5). A mirror is an ideal

2.3. LIGHTING AND TEXTURING 17

nr
l

v
α

γ γ

Figure 2.5: Light reflection.

specular surface, that is all light is reflected in the direction of r. Glossy materials
like plastic do not have such an articulated reflection, but rather a distribution that
is smeared around the reflection angle (see Figure 2.6).

In OpenGL one cannot specify the BRDF of a surface directly, but the reflec-
tion behavior can be described as a combination of ambient, diffuse and specular
reflection properties. So the brightness under which a surface patch appears to the
viewer is the sum of the ambient, diffuse and specular illuminations of the light
sources multiplied with the respective ambient, diffuse and specular reflection
terms.

The ambient reflection term is not physically valid by any means, but it is of-
ten used as a simple approximation of the indirect illumination of a scene. It is
assumed that the distribution of the observed light is uniform, so that the ambient
rteflection term is constant. The diffuse reflection term corresponds to the amount
of light reflected off a surface in Lambertian manner meaning a uniform distri-
bution in all directions. Since the brightness of a diffuse surface depends on the
viewing angle α, the diffuse reflection term depends on the cosine of the viewing
angle. The specular reflection term accounts for the specularity of a surface. The
reflecivity is maximal in the reflection direction r and decreases with increasing
reflection angle γ.

Let θa, θd and θs be the ambient, diffuse and specular reflection coefficients
and let La, Ld and Ls be the respective illuminations. Then OpenGL calculates the
brightness of a surface patch by the following formula:

B(l,v) = θaLa +θdLdcosα+θsLscosγβ (2.1)

18 CHAPTER 2. THE OPENGL RENDERING PIPELINE

The specular reflection exponent β describes the idealness of the specular reflec-
tion. An ideal mirror has a specular exponent of ∞ while plastic has a specular
exponent in the range of 10-100.

Figure 2.6: Examples of bidirectional reflection distribution functions (BRDF).
Left: Measurement of the BRDF of two different mirrors. Right: BRDF of an
ideal mirror and several BRDFs with different specular exponent. The green dot-
ted BRDF is typical for plastic.

The above equation can be computed very efficiently by modern graphics
hardware, so the hardware effectively carries out the simulation of a single bounce
of a photon. This simplified illumination scheme is known as direct lighting or
local illumination. The reflection coefficients must be determined in an experi-
ment to fit the idealized curves with the reflection measurements. To account for
anisotropic materials (velvet, brushed metal etc.) the BRDF also depends on the
rotation angle of the surface material. Accordingly, the measurements are much
more expensive. A variety of competing reflection models have been introduced
for the description of anisotropic BRDFs, but this topic is beyond the scope of
this brief introduction. The reader is referred to the PhD thesis of Wolfgang Hei-
drich [122] for an excellent overview on high-quality shading.

The real-time calculation of more than one bounce is currently not supported
by the streaming architecture of actual graphics hardware. In order to achieve a
more realistic appearance of illuminated scenes the surface colors need to be pre-
calculated. This task is known as global illumination and can be extremely time
consuming especially if refraction, diffraction or wave length dependent effects
also need to be considered. Since the focus of this thesis is on real-time rendering
we further restrict ourselves to the local lighting.

2.3. LIGHTING AND TEXTURING 19

2.3.2 Texture Mapping

In order to achieve a realistic appearance of virtual scenes, we have seen that
high-quality lighting plays an important role. Homogeneous materials like plastic
can be modeled very realistically by choosing an appropriate BRDF . But other
common real-world materials like rock, wood or carpet require additional efforts
because these materials also have a specific texture. The reproduction of such ma-
terials is performed by taking a representative photo of the corresponding surface.
Then this texture is ”painted” onto the surface. In computer graphics this pro-
cess is known as texture mapping. The basic procedure is that the texture is first
defined as a raster image and uploaded into the dedicated texture memory of the
graphics hardware. Whenever a pixel is rasterized the hardware can now lookup
the color of the pixel in the texture memory. For that purpose a mapping from
world to texture coordinates is specified which uniquely defines a correspondence
between each rendered triangle and the texture image.

To be more specific, each triangle vertex has a set of texture coordinates (s, t)
which define the position of the vertex in texture space. These texture coordi-
nates can be specified explicitely or implicitly by using the vertex position as
texture coordinate. Afterwards the mapping is applied by multiplying the texture
coordinates with a 4 by 4 matrix. Whenever a triangle is rendered the texture
coordinates of each rasterized pixel are interpolated from the mapped texture co-
ordinates of the three triangle vertices (by means of scan line interpolation). With
these interpolated texture coordinates the hardware performs a lookup at the cor-
responding position in texture space and retrieves a color from the raster image
(see also Figure 2.7). The result of this lookup determines the final color of the
pixel. Optionally, the texture color can be multiplied with the shaded primary
color (Equation 2.1).

(0,0)

(0,1)

(1,0)

(1,1)

Texture space

Object space

(s1,t1)

(s3,t3)

(s2,t2)

Raster imageTexture coordinates

Figure 2.7: 2D texture mapping. Texture coordinates are denoted by (s, t).

20 CHAPTER 2. THE OPENGL RENDERING PIPELINE

The mapping from world coordinates to texture space is not an isometric pro-
jection. This means that more than one texel (that is a pixel in the texture image)
can map to a single pixel on the screen. This is commonly the case when the ren-
dered triangles are far away from the view point. In such a case the texture lookup
will result in a quasi random selection of one of the texels in the footprint of the
pixel. This is like shooting a bag of rice. The random colors leads to severe Moiré
artifacts if the view point is moved slightly.

The Moiré artifacts can be avoided with the MIP-mapping technique (MIP is
short for the Latin “Multum in parvo” which means many things in a small place).
This technique pre-filters the texture and produces a series of shrinked images.
Each shrinked image has half the size of the original one. The texture lookup now
is performed in the pre-filtered image which best fits the resolution of the screen
(see Figure 2.8). This is the solution for texture minification. For magnification,
which means that one texel maps to several pixels on the screen, the solution is
simply to bilinearly interpolate the fragment color from the four adjacent texels.

Figure 2.8: MIP-mapping. Top left: Without mip-mapping the Moiré pattern is
clearly visible at the top of the image. Top right: With mip-mapping the Moiré
pattern has disappeared. Bottom: Series of shrinked mip-map images.

Aside from pre-filtered raster images which are often also referred to as 2D
mipmaps or 2D textures, the same texture mapping procedure can be also applied
to three-dimensional texture data or 3D textures. In the latter case the data effec-
tively represents a volume. This volume is addressed with a texture coordinate
triple (s, t,r).

2.4. PROGRAMMABLE GRAPHICS HARDWARE 21

3D texture mapping is a very powerful technique that has various obvious and
not so obvious application areas. One of the most obvious is the definition of
a texture volume that represents the three-dimensional structure of a material. In
Figure 2.9 a 3D marble texture is depicted. This marble texture has been applied to
the famous Utah Teapot by also using the positions of each vertex as a 3D texture
coordinate. Rather like painting an image on the surface as with 2D texturing, 3D
texturing is more like sculpting an object out of a solid block of material. One
of the not so obvious applications of 3D texturing, for example, is pre-integrated
cell-projection as explained in Chapter 8.

Figure 2.9: 3D-Texturing. Left: The real Utah Teapot of Melitta on exhibition in
the Computer History Museum in Mountain View, CA. Top Right: Solid marble
texture. Bottom Right: Marble texture applied to teapot.

2.4 Programmable Graphics Hardware

In this section we address the ongoing evolution of the graphics hardware. Basi-
cally, hardware accelerated rendering started with the SGI graphics workstations
and Evans and Sutherland flight simulators. These graphics workstations and sim-
ulators were very expensive gadgets that were taylored to very specific visualiza-
tion tasks. It was unthinkable to have one of those at home.

22 CHAPTER 2. THE OPENGL RENDERING PIPELINE

But in the late 90’s the computer gaming industry discovered the third dimen-
sion as the key element for realistic computer games. This was a tremendous push
for graphics hardware manufacturers. With the Sony Playstation launch in 1994
three-dimensional graphics for the first time was becoming cheap enough to be
affordable for the broad mass.

In the subsequent years cheap powerful graphics accelerators were also be-
coming available for the PC platform. Here, to mention only a few, the 3dfx
Voodoo and the NVIDIA TNT and GeForce products were the dominating ac-
celerators. Only recently ATI with its Radeon products has been increasingly
successful in that market and currently offers the best price performance ratio.

Before the upcoming of three-dimensional computer games, graphics hard-
ware was organized inherently static. The graphics pipeline was a fixed function
pipeline fulfilling a specific operation at each stage. For example, the perspective
transformation was hardwired as the multiplication of a 4 by 4 matrix with the
incoming position vector of the vertices followed by the homogeneous normal-
ization of the vector. Lighting is performed similarly by transforming the normal
vector with another matrix.

Back in the early days of computer graphics this transformation scheme was
sufficient to shade the polygonal models. But current sophisticated lighting tech-
niques do not fit as easy into the simple hardwired scheme of the original graphics
pipeline. For the efficient implementation of advanced lighting and rendering
techniques the pipeline had to be redesigned to be much more flexible. This was
achieved by making the main stages of the pipeline customizable. In particular
the vertex projection and the fragment texturing stages of the pipeline have been
replaced by special purpose processing units that are customizable via low-level
assembly language.

2.4.1 Vertex Shaders

The vertex shader is the customizable counterpart of the perspective transforma-
tion and the lighting operation. It uses a SIMD processing model with efficient
instructions for vector multiplication, summation, dot product, and normalization.
It also features control structures which direct the flow of the vector computations.
In the language of the vertex shader the perspective transformation, for example,
can be reformulated as four subsequent dot products and one division summing
up to a total of five vertex program instructions.

The vertex program code is compiled at runtime and uploaded to the graph-
ics hardware, which after that executes the code for each incoming vertex. The
maximum program length is between 128 and 256 operations depending on the
actual graphics hardware. With this restriction already quite complicated vertex
programs can be written. It is expected that the maximum program length will

2.4. PROGRAMMABLE GRAPHICS HARDWARE 23

increase even further in the future giving way for stunning new graphics effects
computed at real-time.

2.4.2 Pixel Shaders and Fragment Programs

Pixel shaders are for fragment processing what vertex shaders are for vertex pro-
cessing. In comparison to a vertex program the pixel shader instructions are less
powerful and program length is much more limited. Conditional jumps are only
implemented in the latest graphics hardware generation, and lead to a signifi-
cant slowdown of fragment processing if used too frequently. But the principle
is the same as with vertex programs. This means that for each incoming frag-
ment a pixel shader micro-program is executed which determines the final color
of the fragment. The pixel shader can read various input registers, such as primary
color, sampled textures, Z-values and so on to accomplish complex texturing and
shading operations.

Figure 2.10: Register combiners on NVIDIA GeForce 2.

The first step towards the complex pixel shaders were the so called register
combiners. They became necessary, since modern graphics accelerators allowed
to define not only a single texture per fragment but up to eight textures or even
more. The result of the lookup for each of the multiple textures had to be com-
bined into one single color value which becomes the final color of the fragment.
For that purpose a register combiner allows to map an input register set to an

24 CHAPTER 2. THE OPENGL RENDERING PIPELINE

output register set via a fixed set of simple predefined operations. By adjoining
several combiner stages the range of computable functions is enlarged. The initial
implementation of the register combiners in the NVIDIA GeForce offered only 2
such stages, but the GeForce3 already offered 4 stages (see Figure 2.10) and more
powerful operations. The logical consequence in the development of the fragment
processing unit was not just to add more and more register combiner stages but
to introduce a fully programmable unit, which is now known as the fragment
program in OpenGL notation or the pixel shader in DirectX notation.

To give an example of a fragment program the following code samples a tex-
ture in the same fashion as the original uncustomizable pipeline, that is the follow-
ing program shows how to perform a simple modulation between the interpolated
primary color and a single texture lookup as done by the default texture environ-
ment of OpenGL:

!!ARBfp1.0

ATTRIB tex = fragment.texcoord; # texture coordinates
ATTRIB col = fragment.color.primary; # interpolated color
OUTPUT outColor = result.color;
TEMP tmp;

TXP tmp, tex, texture, 2D; # sample the texture
MUL outColor, tmp, col; # perform the modulation

END

For completeness the DirectX version (without modulation) is given below which
differs mainly in the declaration syntax but otherwise the pixel shader offers al-
most the same instruction set and functionality as a fragment program:

ps_2_0

; Declare the s0 register to be the sampler for stage 0.
dcl_2d s0
; Declare t0 to have 2D texture coordinates from stage 0.
dcl t0.xy

; Sample the texture at stage 0 into register r1.
texld r1, t0, s0
; Move r1 to the output register.
mov oC0, r1

After the final color of a fragment has been computed, the last step is to blend
the color of the fragment with the color in the frame buffer. This is necessary

2.4. PROGRAMMABLE GRAPHICS HARDWARE 25

to implement transparency. As opposed to vertex and fragment processing, the
blending stage of the pipeline has remained comparatively unchanged since the
early days of computer graphics. The blending stage offers a fixed set of opera-
tions to mix the incoming color with the color in the frame buffer. In our opinion
it is only a matter of time when this stage also becomes freely programmable (e.g.
by means of a blending combiner).

Chapter 3

A Brief History of Terrain
Rendering

The first prerequisite in enriching outdoor scenes with natural volumetric effects
is to have basic knowledge about the fundamental principles of outdoor rendering
and in particular the key component, the terrain renderer. In this chapter we there-
fore give a brief chronological survey of existing terrain rendering algorithms and
try to predict the influence of future graphics hardware development.

3.1 Data Representation

Traditionally, terrain data is available mostly as contour map. During the last
century geographers have been collecting contour maps for nearly every point
on earth. Nowadays data acquisition via remote sensing, that is via airborne or
satellite based scanners, plays a more and more important role. In this context,
topographic information is represented by a so-called height field, that is a regu-
lar height matrix. The matrix is often given as a grey-scale or color-coded image
where the brightness or color of each pixel correlates to its elevation (for an ex-
ample see middle image in Figure 3.1). The actual size of a height field can range
from 1000 by 1000 grid points to any arbitrarily large number. The whole earth
at a resolution of 1km, for example, corresponds to roughly 1

2 billion data points.
Due to the huge amount of data and the large size of the corresponding triangle
mesh, height fields usually cannot be rendered exactly. Instead, a simplified mesh
is produced and displayed. As we will see in Chapters 10 and 11, the same simpli-
fication strategy is suitable for volume rendering of natural gaseous phenomena.

3.2 TINs

The so-called triangular irregular networks (commonly abbreviated by the term
TIN [30]) were the first algorithmic attempts to implement a terrain simplification
strategy (Military flight simulators have been using simplification schemes since
the seventies but little is known about their algorithmic strategy). The regular

26

3.2. TINS 27

height field is converted into a irregular triangle mesh which contains less triangles
in regions that are smooth and more triangles in regions which have high surface
curvature. Due to the irregular structure the achieved compression ratios are high.
A complete mountain ridge or a flat riverbed, for instance, can be represented with
just a few appropriately shaped triangles (compare Figure 3.1).

Figure 3.1: Example view of a Triangular Irregular Network (TIN). First a contour
map (left) is converted into a height field (middle). The brightness of each grid
point corresponds to its elevation. Then the height field is tessellated in such a
way that low surface curvature leads to larger triangles (right) as can be seen at
the river beds.

There exist a variety of different algorithms which try to squeeze the size of
the irregular mesh while preserving the structure of the original data (including
wavelet based encodings [33]). However, the basic principle is the same for all
these algorithms, so we do not give a detailed analysis here. It is more important
to point out that these approaches have one fundamental disadvantage: Depending
on the compression ratio small details of the landscape are smoothed out during
simplification. If the viewer is far away from these details, one might not notice
their absence, but in the near vicinity the absence becomes observable. For this
reason, TINs are not suitable for a variety of application areas such as low level
flight simulations or proximity warning for civil aviation. In the next sections we
outline view-dependent terrain rendering algorithms which circumvent the men-
tioned disadvantage.

28 CHAPTER 3. A BRIEF HISTORY OF TERRAIN RENDERING

3.3 S-LOD

As mentioned in the previous section, the huge amount of data prevents the terrain
model from being displayed in full detail. Put in another way, the large extent of
a terrain leads to a projective size of much less than one pixel for distant details
(compare Figure 3.2). While it would be overkill to draw all such detail, it still
must show up if the viewer is close enough. This kind of view-dependency was
the main problem which had to be dealt with in the early days of terrain rendering.

One of the first solutions to this problem was the so-called static level of detail
(S-LOD [50, 107]) technique. Here the terrain is divided into tiles each of which is
represented by a set of TINs with varying resolutions. Depending on the distance
to the viewer for each tile a TIN with appropriate projective triangle size is chosen
from the set. If regularly coarsened meshes are used instead of TINs the method is
called geo-mipmapping [15]. The appropriate resolution of each tile is chosen in
such a way that the projected screen space error of each individual tile is just below
a predefined error threshold of one or several pixels. If the error is below one pixel
the simplified terrain is indistinguishable from the original mesh. Special care has
to be taken to close the gaps that may arise in between the tiles.

In practice, much higher errors than one pixel have to be admitted to achieve
sufficient frame rates. Since the estimation of n of the screen space error of an
entire block is very conservative a lot of small redundant triangles are generated if
the block contains only just a few small details. So a block-based triangulation is
only a very rough approximation to the optimal triangulation. As a consequence,
far more triangles are rendered than necessary and the frame rates achieved for an
error threshold of one pixel are just not sufficient. Therefore higher thresholds are
usually allowed, but then the transition of one level of detail to another becomes
visible. This temporal artifact is known as the popping effect. As the human
eye is very sensitive to sudden temporal changes these artifacts lead to serious
distraction of the observer and should be avoided whenever possible. Another
problem that arises from tiles with different resolutions is the issue of building
a conforming mesh. In order to avoid gaps between adjacent tiles of different
resolution, additional triangles are needed to connect the tiles properly.

3.4 Progressive Meshes

A special case of the S-LOD technique are progressive meshes as proposed by
Hoppe [42]. While the progressive meshes technique was originally designed for
the incremental simplification and transmission of three-dimensional objects the
technique can also be applied to terrain rendering. Each tile of the terrain is rep-
resented by a set of meshes which are derived from the original mesh by the well

3.5. C-LOD ALGORITHMS 29

Figure 3.2: Static LOD as proposed by Koller et al. (Images taken from [50]):
On the left side the original mesh is shown, whereas on the right side the tiled
representation is depicted. For each tile a set of meshes with increasing coarseness
is built. Depending on the distance to the viewer, the mesh is selected which has a
projective screen space error that does not exceed a certain predefined limit. This
limit is usually set to one or several pixels. If the limit is below one pixel the
simplified mesh is indistinguishable from the original mesh.

known split and merge operations of progressive meshes (see [40, 41] for detailed
information). The connectivity of the tiles is ensured by a full grid at the borders.
Figure 3.3 shows an example in which different tiles are depicted by alternating
colors. The advantage of this approach is the good approximation quality but on
the downside the memory requirements are huge and complex data structures have
to be maintained. In summary, progressive meshes are a good choice for the sim-
plification of arbitrary 3D geometry but for the special case of height fields there
exist specialized algorithms which are much more straightforward and easier to
implement as we will see in the following.

3.5 C-LOD Algorithms

The most elaborate terrain rendering technique known today is the continuous
level of detail technique (C-LOD). It improves the sub-optimal approximation

30 CHAPTER 3. A BRIEF HISTORY OF TERRAIN RENDERING

Figure 3.3: Progressive meshes as proposed by Hoppe (Images taken from [42]).
Different tiles are depicted by alternating colors.

quality of the S-LOD algorithms in a sense that the triangulation is altered on a
per triangle and not on a per tile basis. This allows much better approximations
which adapt optimally both to the viewing distance and to surface roughness. If,
for example, a tile has a single small peak, the S-LOD algorithm needs to choose
a high resolution mesh for the entire tile (compare dark tile at the bottom left of
Figure 3.2). The C-LOD method does not exhibit this restriction, since the triangle
count can be increased for the small peak only. In the following sections the three
main C-LOD algorithms by Lindstrom [59], Duchaineau [19], and Roettger [89]
are discussed in chronological order.

3.5.1 Lindstrom’s Algorithm

The first published C-LOD algorithm which achieved consistent interactive
frames rates and high image quality is the approach of Lindstrom et al. [59]. It
applies a two-step simplification scheme, that is a block- and a vertex-based sim-
plification step. Both steps are driven by the screen space approximation error of
the mesh. A coarse level of simplification is performed to select discrete levels of
detail for blocks of the surface mesh, followed by further simplification through
repolygonalization in which individual mesh vertices are considered for removal.
These steps compute the appropriate level of detail dynamically in real time, min-
imizing the number of rendered polygons and allowing for smooth changes of
resolution across areas of the surface (see Figure 3.4).

The conditions under which a triangle pair can be combined into a single tri-
angle are primarily described by the amount of change in slope between the two
triangles. The maximum vertical distance between the two configurations induced
by the omission of one vertex is referred to as the delta value δ of each vertex. As
the delta value increases, the chance of triangle fusion decreases. By project-

3.5. C-LOD ALGORITHMS 31

Figure 3.4: C-LOD algorithm as proposed by Lindstrom et al. The wire frame
view shows a triangulation with approximately 40,000 polygons (Images taken
from [59]).

ing the delta segment onto the projection plane, one can determine the maximum
perceived geometric error between the merged triangle and its corresponding sub-
triangles. If this error is smaller than a given threshold τ, the triangles may be
fused to reduce the complexity of the surface mesh. If the resulting triangle has
a co-triangle with error smaller than the threshold, this pair is also considered for
simplification. This process is applied recursively until no further simplification
of the mesh can be made.

Let~e be the view point and let~v be the position of each vertex. Furthermore,
let d be the distance from~e to the projection plane and define λ to be the number
of pixels per world coordinate unit in the screen coordinate system. With these
definitions, the length of the projected delta segment as shown in Figure 3.5 is
approximated by the following equation:

δscreen =
dλδ

√

1−
(

~ez−~vz
||~e−~v||

)2

||~e−~v|| (3.1)

The square root term equals the sine of the viewing angle and accounts for the
vanishing error at nadir viewing angles (that is looking down from straight above).
The denominator accounts for decreasing error related to increasing distance.

In principle, the length of the projected delta segment needs to be computed
for every triangle pair in order to check whether it is fused or not. But complex

32 CHAPTER 3. A BRIEF HISTORY OF TERRAIN RENDERING

NADIR
POSITION

Figure 3.5: The projection of a delta segment onto the viewing plane. The delta
segment and its respective projection are depicted by bold lines. For nadir view
positions the projected length vanishes. For larger distances of the segment to the
view position the projected length also becomes smaller and smaller.

datasets may consist of millions of polygons, and it is clearly too computationally
expensive to run the described simplification process on all polygon vertices for
each individual frame. By obtaining a conservative estimate of whether certain
groups of vertices can be eliminated in a block, the mesh can be decimated with
little computational cost. If it is known that the maximum delta projection of all
lowest level vertices in a block falls within τ, those vertices can immediately be
discarded, and the block can be replaced with a lower resolution block, which in
turn is considered for further simplification. Accordingly, a large fraction of the
costly delta projections can be avoided.

To efficiently render the mesh, a graphics primitive such as the tri-stripping
primitive supported by OpenGL may be used. For each specified vertex v, the
previous two vertices and v form the next triangle in the mesh. At certain points,
the previous two vertices must be swapped via an additional glVertex() call,
but basically a complete block can be rendered with a single graphics primitive.

The most prominent advantage of the described C-LOD algorithm is the pos-
sibility to maintain a desired quality of the triangulation via the screen space error
threshold τ. Due to the view-dependent triangulation small distant details need
not be represented with the same number of triangles than those which are nearby.
This leads to a tremendous reduction of the number of rendered polygons. On
the down side the triangulation has to be updated for each frame, which leads to
heavy CPU utilization. Especially the block switches are very costly and may
cause frame drops on slower platforms. Since the triangulation is different for
almost every frame, vertex arrays and other related performance optimizations are
difficult to apply. In many application scenarios it is desired to guarantee a maxi-

3.5. C-LOD ALGORITHMS 33

mum triangle count. Although the number of generated triangles correlates tightly
with the error threshold it is not possible to guarantee a maximum triangle count
directly. Negative feedback must be used to steer the triangle count by smoothly
adapting the error threshold.

3.5.2 Duchaineau’s Algorithm

Following the Lindstrom paper, a major improvement of the C-LOD technique
was achieved by Duchaineau et al. [19] (see also Figure 3.6). They presented an
algorithm with optimized error metrices and guaranteed error bounds that achieves
specified triangle counts directly and uses frame-to-frame coherence to operate
at high frame rates. The method was dubbed Real Time Optimally Adapting
Meshes (ROAM). It uses two priority queues to drive split and merge operations
that maintain continuous triangulations built from preprocessed bintree triangles.
ROAM execution time is directly proportional to the number of triangle changes
per frame, hence performance is almost insensitive to the resolution and the ex-
tent of the input terrain. Just as the square-shaped quadtree has a triangle-quadtree
counterpart, the familiar rectangle shaped bintree [94] has a little-known triangle-
shaped counterpart. The children of the root are defined by splitting the root along
an edge formed from its apex vertex to the midpoint of its base edge. The rest of
the bintree is defined by recursively repeating this splitting process. A key fact
about bintree triangulations is that neighbors are either from the same bintree level
or from the next finer level for left and right neighbors, or from the next coarser
level for base neighbors. A simple split operation and its inverse are depicted in
Figure 3.7 for a triangulation containing a so-called diamond.

Figure 3.6: C-LOD as proposed by Duchaineau et al. (Images taken from [19]):
Example of ROAM terrain.

An important fact about the split and merge operations is that any triangulation
may be obtained from any other triangulation by a sequence of splits and merges.

34 CHAPTER 3. A BRIEF HISTORY OF TERRAIN RENDERING

Figure 3.7: Split and merge operation on a diamond (from [19]).

The split and merge operations provide a flexible framework for making fine-
grained updates to a triangulation. No special efforts are needed to avoid cracks or
T-vertices. The idea of a greedy algorithm that drives the split and merge process
is simple: keep priorities for every triangle in the triangulation, and repeatedly
do a forced split of the highest-priority triangle. This process creates a sequence
of triangulations that minimize the maximum priority. The only requirement to
ensure this optimality is that priorities are monotonic, meaning that a child’s pri-
ority is not larger that its parent’s. This is a valid assumption, since the priorities
typically correlate to a monotonic error bound. Adding a second priority queue
for mergable diamonds allows the greedy algorithm to start from a previous op-
timal triangulation when the priorities have changed, and thus take advantage of
frame-to-frame coherence.

The basic error metric of ROAM is the distance between where each surface
point should be in screen space and where the triangulation places the point. Over
the whole image the maximum of these pointwise distortions is measured. In this
sense Duchaineau’s approach is very similar to Lindstrom’s. Besides this basic
error metric the priority-driven mesh generation allows further advanced error
metrices:

• Back-face detail reduction: Priorities can be set to a minimum for triangles
whose subtree of triangles are all back-facing.

• Normal distortion: Priorities should be increased at vertices with large
normal distortion to reduce specular high-lighting artifacts.

• Texture coordinate distortion: Priorities should also correlate to texture
distortion.

• Silhouette edges: Specific emphasis can be placed on triangles whose nor-
mal bounds indicate potential back-face to front-face transitions.

3.5. C-LOD ALGORITHMS 35

• View frustum: Priorities outside the viewing frustum can be set to a mini-
mum.

• Atmospheric obscurance: Where fog reduces visibility, priorities can be
reduced.

• Object positioning: To correctly position objects on a terrain, the priorities
of triangles under each object can be artificially increased.

The screen-distortion priorities of the triangles change as the viewing position
changes, typically in a slow and smooth manner. Recalculating priorities of all
triangles for every frame is too costly, especially for some of the advanced error
metrices. Instead, priorities are recomputed only when they potentially affect a
split/merge decision. Recomputation of a triangle can safely be deferred until its
priority bound overlaps the crossover priority. A deferral list is kept for each of
the next few dozen frames. Only the triangles on the current frame’s deferral list
must have priorities recomputed. If time allows, additional triangles may be re-
computed in subsequent deferral lists. The total memory requirements of ROAM
range from 8 to 20 bytes per vertex depending on the specific implementation. To
give a practical example, the memory footprint for a 2000 by 2000 height field
ranges from 31 to 76 MB.

The main advantages of ROAM are its flexibility with respect to applicable
error metrices and the guaranteed triangle count which can be achieved with low
computational overhead. But even the implementation of only a subset of the pro-
posed additional error metrics is a very complicated task. For a specific type of
application one needs to know in advance whether the described sophisticated fea-
tures are demanded or if a much simpler approach is sufficient. For example, the
excessive use of linked data structures, such as the deferral lists, is not preferable
in interactive entertainment, since main memory can become heavily fragmented
after long periods of game play. Here a much simpler approach can lead to a much
more stable algorithm which is also much easier to implement and verify.

3.5.3 Roettger’s Algorithm

Albert Einstein: Everything should be as simple as it is,
but not simpler!

In the last section we have described the development of terrain rendering al-
gorithms over the years. While these algorithms are already quite mature, the
demands of interactive entertainment are quite different from those encountered
in the academic arena: Simplicity, stability, and time-to-market are often much

36 CHAPTER 3. A BRIEF HISTORY OF TERRAIN RENDERING

underrated. An example of an algorithm that meets the requirements of interac-
tive entertainment is the simple yet efficient C-LOD algorithm presented in [89].
We have been developing this algorithm in cooperation with Massive Develop-
ment in 1997/98. It is included in the Krass game engine which is the graph-
ics core of the multi-award winning computer game AquaNox and its successor
AquaNox:Revelation. The terrain renderer features low memory consumption and
efficient geomorphing. As we will see these features are very important for out-
door game engines.

Figure 3.8: C-LOD as proposed by Roettger et al.: Wire frame view of the Gala-
pagos Islands.

The algorithm is based on a quadtree representation of the height field, which
is stored as a compact quadtree matrix. Besides the elevation data only this matrix
needs to be stored in main memory. This results in a memory footprint of either 3
or 5 bytes per heixel (as an analogue to a pixel a heixel is a height field element)
for 16 bit or floating point height values, respectively. In Figure 3.8 an example
triangulation of the Galapagos Islands is shown. The corresponding schematic
view of the quadtree is given in Figure 3.9.

Each node of the quadtree corresponds to a maximum of 8 triangles organized
as a triangle fan around the node’s midpoint as shown in Figure 3.9 (also compare
left middle case in Figure 2.3). A conforming mesh is obtained simply by skipping
those vertices of a triangle fan which are a T-vertex. In Figure 3.9 the skipped
vertices are depicted by crosses. The triangulation for a specific point of view is
calculated by evaluating a decision criterion for each quadtree node in a top-down
fashion. Being more specific, the criterion is first evaluated for the root node. If
the criterion is true for the root node its four children are checked using depth-

3.5. C-LOD ALGORITHMS 37

Figure 3.9: Left: Sample triangulation of a 9 by 9 height field. Parent-child rela-
tions of the quadtree are indicated by arrows. Right: The same triangulated height
field decomposed into triangle fans (depicted by circular arrows). A conforming
mesh is built by simply skipping those vertices that are marked with crosses.

first traversal. This process is continued recursively until a specific node does not
fulfill the criterion which means that this node is a leave node of the quadtree.
Whether a quadtree node is refined or not is calculated by the following rather
simple criterion:

f =
l

d ·C ·max(c ·d2,1)
, subdivide if f < 1 (3.2)

Here, l denotes the distance of the viewer to the midpoint, d denotes the edge
length, and d2 defines the local surface roughness of each node. As a result,
the level of mesh refinement is determined by the distance to the viewer and the
local surface curvature as defined by the precomputed d2-values. The constants c
and C determine the global and minimum resolution of the resulting triangulation.
The total number of generated triangles is closely coupled to the global resolution
parameter c, so that on fast machines this parameter can be chosen to be larger
than on slow machines to obtain a finer triangulation of the terrain.

The given formula computes an approximation of the projection error of each
node. The criterion is a reformulation of Lindstrom’s delta segment error (see
Figure 3.5). For simplicity the square root term in Lindstrom’s formula has been
neglected. This means that the refinement does not depend on the viewing angle,
since this would introduce significant computational overhead as illustrated by
Lindstrom’s approach. If one only considers geometric aberration, then angular
dependency makes sense, but if one also considers the influence of texturing and
lighting then angular dependency makes less sense. This statement is illustrated

38 CHAPTER 3. A BRIEF HISTORY OF TERRAIN RENDERING

in the following example: Consider looking onto a flat plane with a small peak in
birds eye view. Then the geometric error induced by the peak is very small since
the viewing angle is nearly 90 degrees. So the triangles of the peak probably will
be fused and the peak will be flattened out. Now, if you take per-vertex lighting
into account the peak should still be visible because of the change of the surface
normal. But since the peak is flattened out we also loose the surface normals
which means that the peak is not shaded correctly. Due to perspective distortion
it also makes a difference whether we render a textured peak or a flat surface with
the same texture. In summary, angular dependency is not compatible with per-
vertex lighting and texturing. For this reason we decided not to include angular
dependency in our approach. This keeps the decision criterion simple which in
turn also results in a very fast, robust, and simple algorithm consuming only a
minimum of extra memory per grid point.

Since C-LOD approaches generate view-dependent triangulations, the so-
called popping effect leads to a serious distraction of the observer. When ap-
proaching a surface detail from the far distance the surface detail will suddenly
pop up at a specific point. If the screen space error is below one pixel this popping
effect is not visible but in many situations one cannot afford the resulting high
triangle count. In these cases a technique called geomorphing eliminates the pop-
ping effect: Instead of letting the surface detail pop up suddenly, it is blended in
smoothly. For this purpose the elevations of the vertices of a quadtree node which
is marked for refinement are smoothly interpolated between the corresponding
two quadtree levels. In contrast to a sudden pop, a smooth interpolation is hardly
noticable by a human viewer.

Our terrain rendering algorithm is especially tailored to efficient geomorph-
ing. The interpolation of the vertices is not carried out in a fixed time interval.
Instead, the speed of morphing is coupled to the screen space error which yields
a much better suppression of the popping effect. This geomorphing scheme re-
liably prevents the popping effect up to an screen space error of approximately
10 pixels. On a Linux PC equipped with an AMD Athlon with 1.2 GHz and an
NVIDIA GeForce3 we achieve about 105,000 geomorphed, textured, and lit tri-
angles per frame at a target frame rate of 30 Hertz. This corresponds to about 3
million vertices per second.

Back in 1996, when the C-LOD algorithm was presented, a threshold of τ = 3
resulted in a frame rate of approximately 30-50 frames per second. But then
the popping effect was already observable. Nowadays the graphics performance
has increased significantly, and it is no longer a problem to maintain a screen
space error of less than one pixel at frame rates above 50 Hertz. As explained in
Chapter 4 the situation is different in interactive entertainment, where many tasks
are carried out concurrently and there is less time available for terrain rendering.
In such a setting geomorphing is still required.

3.6. FUTURE DEVELOPMENT 39

3.6 Future Development

With respect to the future development of terrain rendering algorithms, one can
foresee a main development branch. Due to increasing programmability the
graphics hardware is taking over many tasks that previously had to be carried
out by the CPU. With respect to terrain rendering, for example, the Matrox Parhe-
lia is able to interpret a 2D texture map as a height field. It generates the surface
triangles on chip to minimize bus traffic. This procedure has the drawback that
the size of a height field is limited as it has to reside in texture memory. Larger
terrains require a hierarchy similar to the S-LOD technique. For this reason the
S-LOD technique will celebrate its come back in the near future as indicated by
recent publications [8], but the problem of maintaining a conforming mesh is yet
to be solved on the graphics hardware side. Aside from any uncertainties of future
development one thing is almost certain: More and more hardware-accelerated
alternatives to traditional terrain rendering algorithms will emerge.

Chapter 4

The Terrain Rendering Pipeline

Figure 4.1: An example screen shot of the computer game AquaNox showing
volumetric effects like fog and a jet-wash.

With the upcoming of advanced terrain rendering algorithms (see Chapter 3) the
complexity of the outdoor scenes displayed in interactive entertainment has in-
creased significantly over the past years. By today’s standards the most efficient
method to display a terrain is the continuous level of detail technique (C-LOD; see
Section 3.5). Despite its advantages these techniques are nowadays just beginning
to migrate into the design of modern 3D graphics engines. With the demand for
more and more complex outdoor scenes this situation will clearly change in the
future.

With the C-LOD algorithm being the key component for the real time display
of large outdoor scenes, there exist a variety of other aspects that have to be con-
sidered to achieve the desired look and feel of an organic landscape. From a game
developers point of view, terrain rendering is a data driven process, which not only
involves the real time display of a given terrain but also the design of the artificial
landscapes and the realistic texturing and lighting thereof. The entire story can

40

4.1. LANDSCAPE DATA GENERATION 41

be described as what is called the terrain rendering pipeline. Following the data
flow from the beginning to the end of the pipeline, in this chapter we describe the
terrain renderer as implemented by the Krass game engine of Massive Develop-
ment. For the modeling of the surface properties we introduce the three functional
groups illumination, material, and global effects. On the one hand, this separation
offers high flexibility with respect to the visual appearance of the surface. On the
other hand, each functional group results in the application of one or more sur-
face textures which can be rendered efficiently using multi-texturing. In addition,
the rendering process can be easily divided into several distinct passes, which
makes it possible to customize the entire pipeline for different graphics hardware.
This approach has been successfully demonstrated in the DX8 computer game
AquaNox [87].

The terrain rendering pipeline consists of 6 main stages which are described
in the following (see also Figure 4.2):

4.1 Landscape Data Generation

The generation of terrain data is a complex task, which is often underestimated.
The terrain data has to satisfy several requirements. Obviously, the visual appear-
ance is of prime importance. Furthermore, the topology of the terrain is one of the
key elements for the subsequent mission design process. Last but not least, the
data generation process should be cheap in terms of time and money. As a first
step, real world terrain data is collected. This data source guarantees the natural
appearance and authenticity. For the purpose of mission design, the level designer
uses common image editing tools. These tools are utilized to manually generate
displacement maps, containing the features which are relevant for the game play.
In a final step, the height field is filtered in various ways (noise, edge enhance-
ment, etc.). To avoid quantization artifacts the entire process is carried out with at
least 16 bits of accuracy.

4.2 Real Time Display of the Terrain

Once the terrain is defined by a two-dimensional cartesian height field, sophisti-
cated algorithms are needed to display the landscape in real time. The size of a
height field easily exceeds 1024x1024 grid points, which in turn corresponds to
more than 2 million triangles that have to be rendered in each individual frame.
Since the exact display is not feasible, the Krass game engine applies the current
state of the art in this area, that is the C-LOD technique [89] as described in the
previous chapter.

42 CHAPTER 4. THE TERRAIN RENDERING PIPELINE

In interactive entertainment, however, terrain rendering is only one task among
many others that have to be carried out for each frame. Therefore the afford-
able screen space error targeted by the terrain renderer is usually well above one
pixel. Larger screen space errors manifest themselves in the popping effect. As
a solution to this problem, the geomorphing technique smoothly interpolates be-
tween the different levels of detail effectively rendering the popping effect invis-
ible [12, 89]. This allows smooth immersive terrain visualizations even on low
end graphics hardware. Since the morphing operation needs to be carried out at
least every 100 milliseconds to keep the illusion of a static triangulation, frame to
frame coherence is difficult to exploit. In order to speed up terrain rendering, the
view frustum is predicted for the next 100 milliseconds. Then the triangulation
is computed for the predicted and enlarged visible area. Until the next update of
the triangulation the generated triangles are cached. In this way smooth visualiza-
tions of a terrain are generated at real time and with a low average CPU load. This
concept is called semi-dynamic terrain generation.

4.3 Terrain Material

The terrain material is assembled from three textures, a coarse color texture, a finer
material texture, and an even finer detail texture. It is important to differentiate
between color and structure. The coarse color map is used to generate the large
scale coloring of the entire terrain. The material map represents the structure of a
material at a mid-frequency level, whereas the detail map contains only intensities
at a high-frequency level. The latter map is used to represent small details close
to the viewer.

4.4 Terrain Illumination

The illumination is constructed by summing up the emission of all static and dy-
namic light sources. The static light map covers the entire terrain and is generated
in a preprocessing step, which gathers the ambient and diffuse contributions of
all static light sources. Since a simple ray casting strategy is used to calculate
the incoming intensity for each texel of the light map, static shadows are already
included at this point. As the terrain geometry is generated by a C-LOD system, it
only makes sense to perform the dynamic lighting calculation on a per-pixel basis.
For this purpose, a dynamic light map is generated, which only covers the view
frustum in order to ensure a sufficient texture resolution. Using the light map as
a render target, the incoming light is accumulated for each dynamic light source.
The light intensity is calculated by applying a dot product between the normal

4.5. ORGANIC FEATURES 43

map of the terrain and a radial light field which is specific for each light source.
At this point, dynamic shadows are also taken into account. A bounding sphere
approximation of each dynamic object is projected onto the terrain to maintain a
shadow buffer in the alpha channel of the render target. The alpha channel repre-
sents the height of the object. When rendering each dynamic light source, we have
to determine whether each texel is shadowed or not. This is achieved by compar-
ing the height of the light source with the height coded in the alpha channel. This
concept is applied to all dynamic lights including caustics and the sun light. A
total of more than 500 light sources can be treated in real time using this texture
based lighting approach.

4.5 Organic Features

In the next step organic features are added to the scene. We distinguish between
local and global phenomena. As an example for local phenomena a large scale
plant rendering system is used. The plants are categorized into several groups.
For each group a density distribution is painted by the level designer. According
to this distribution, the plants are placed in a pseudo-random fashion. The plant
seeding is performed on the fly for the visible part of the terrain only. In order
to maximize the geometry throughput, the plants are cached based on a tiling
scheme. As an example for a global phenomenon a particle system is used for
the display of floating plankton. This particle system has been designed to run
entirely in the vertex shader of DX 8 graphics hardware.

4.6 Global Volumetric Effects

The last stage of the pipeline handles volumetric effects such as fog or water tur-
bidity. In general, the visualization of volumetric effects requires the solution of
the light transport equation. The Krass game engine uses a special type of volu-
metric fog which is defined to occur below a specific base height. In this restricted
case, the light transport equation simplifies to a two dimensional ray integral for
a constant height of the viewer. The solution of this integral is pre-calculated and
stored in a standard 2D texture which is mapped over the entire scene [57, 39] (see
also Section 5.3). This method avoids the appearance of popping artifacts, since
the fog attenuation and emission is calculated on a per-pixel basis. Interestingly
enough this feature is not only a visual effect but also offers game play relevant
elements such as hiding in misty valleys.

In summary the stages of the terrain rendering pipeline are depicted in Figure 4.2.

44 CHAPTER 4. THE TERRAIN RENDERING PIPELINE

4.7 Volumetric Effects in Practice

The question is now the following: What volumetric effects are used in prac-
tice apart from the mentioned simple fog model? The answer reduces to a mere
two words: Not many! Billboard techniques (see Section 5.5) are utilized for the
display of explosions, jet-washs, and smoke for instance. The latter are utilized
mainly because they have low algorithmic complexity and do not require a large
rendering overhead. Since there is no need for disproportionate realism in com-
puter games a lot of eye-candy can be realized even with such a simple strategy.
On the other hand more flexible fog models would offer more degrees of freedom
with respect to level design.

Another volumetric effect which is often encountered in computer games is the
so called sky dome (also see Section 5.1). The sky dome is a hemisphere which
is textured with the photograph of a real sky. While this allows a nice looking sky
at merely no cost one cannot use this approach in a flight simulator, for example,
since it is not allowed to fly into the clouds.

The direction of future development clearly is to allow arbitrary view points,
and in particular view points in the cloud layer. This can only be achieved with
truly volumetric fog and cloud representations.

4.7. VOLUMETRIC EFFECTS IN PRACTICE 45

Figure 4.2: The main stages of the terrain rendering pipeline in the AquaNox
game engine.

Chapter 5

Natural Gaseous Phenomena

Mr. Horse: ... No Sir, I don’t like it!

In general, the display of volumetric gaseous phenomena is a non-trivial task.
Without going into detail here, solutions to this problems exist for a variety of
cases where additional assumptions reduce the complexity of the problem. The
general problem, however, is closely related to volume rendering which is still a
very active research area. The inherent complexity of volume data makes it very
hard to design an algorithm that displays large volume data sets in a reasonable
time or even worse at real time. Medium sized data sets, that fit into the dedi-
cated texture memory of consumer graphics hardware, can be displayed using the
slicing method (compare [26]). But for large volumes current volume rendering
approaches achieve interactivity only by massive parallelization [53] or the uti-
lization of special purpose graphics hardware [83, 72]. A general introduction
into the topic of volume rendering is given in Chapter 6. For the purpose of the
real time display of gaseous phenomena specially taylored algorithms are pre-
sented in Chapter 10 and 11. For now, we resort to those special cases which can
be handled easily due to additional constraints on the volume data.

If the medium through which a light ray travels is assumed to have a constant
density, the absorption along each ray of light can be expressed in terms of a
simple formula. In each small step the light travels a certain fraction of its intensity
is absorbed by the medium. This means that the absorbed light is transfered into
thermal energy. The energy may not be absorbed completely, but usually a certain
amount is also scattered and sent out again into other ray directions. The back and
forth scattering of the light is one of the main reasons why volume rendering is
computationally very expensive. Thus many approaches try to neglect scattering
which leads to the formulation of the ray integral as described in Chapter 6.

If the direction of the scattered light is evenly distributed, one speaks of
isotropic scattering. Otherwise one speaks of anisotropic scattering. The scat-
tered light may be of the same wave length, but this is no necessity. For example,
the effect known as Rayleigh scattering means that the intensity distribution of
the scattered light depends on the frequency of the light. This effect is responsi-
ble for the blue sky and for a reddish sunset. Short wave lengths, that is the blue

46

5.1. SKY DOME 47

spectrum, are more likely to be scattered perpendicular to the incoming direction
of the light. The opposite holds for long wave lengths, that is the red spectrum.
As a consequence, the zenith of the sky is more bluish than the horizon (compare
Figure 5.1). For the same reason the sunlight traveling a long way through the at-
mosphere at sunset, appears to be orange. Since the blue spectrum is more likely
to be scattered away from the viewing ray, the red component of the light is more
likely to remain.

In Section 4.7 we have outlined the volumetric effects which are currently used
in the actual game title AquaNox. Now we cover the volumetric algorithms which
are known in general and judge them by suitability for real time rendering. We
must keep in mind that all the algorithms presented in the following have been de-
veloped with the main directive to maximize rendering speed. Since realism is no
strict aim in interactive entertainment it is often much easier to fake certain volu-
metric effects such as explosions and smoke. But with the increasing speed of the
graphics accelerators and the CPU, there will be a growing demand for advanced
rendering techniques. Right now some of the best-selling game titles like “Grand
Theft Auto II”, whose successor is expected to yield earnings of more than 200
million dollars, are approaching the average budget of a major Hollywood film
production and thus a certain realism of the renderings is expected. If this de-
velopment is continuing, there will be great needs in the near future with respect
to interactive realism. Right now, however, the collection of applied volumetric
algorithms comprises mostly the following methods:

5.1 Sky Dome

The easiest approach to rendering clouds is the so-called sky dome. It is used
if a cloudy sky has to be displayed with minimum rendering overhead. For that
purpose a tessellated hemisphere is textured with a photograph of a real sky which
is resampled in the polar coordinates of the hemisphere (see Figure 5.1). If the
radius of movement of the viewer inside the dome is small compared to the size
of the hemisphere then the perspective distortion of the sky dome remains small,
so a sky dome is an effective way to fake a real sky. It is also easy to animate the
clouds. The major drawback, however, is that one cannot move into the clouds,
which for example is necessary in flight simulations.

5.2 OpenGL Fog

If the viewer is allowed to maneuver inside clouds or fog, then a sky dome is
not adequate. Assuming constant gas density, the absorption of light on its way

48 CHAPTER 5. NATURAL GASEOUS PHENOMENA

Figure 5.1: The triangle mesh of the sky dome hemisphere and two example sky
dome textures resampled in polar coordinates. The zenith of the hemisphere cor-
responds to the upper edge and the horizon to the lower edge of the sky dome
textures. The left sky dome is a stitched photograph while the right one is a syn-
thetic texture. The latter mimics the effect that the sky usually is more bluish
at the zenith due to wave length dependent scattering of the sun light (Rayleigh
scattering).

through a medium leads to an exponential attenuation of the light intensity with
respect to the traveled distance. Assuming constant in-scattering from the sun, the
attenuated light intensity is increased again at each point on the viewing ray. Both
effects together determine the appearance of fog. The longer the traveled distance
through the medium the darker the background but the brighter the fraction of
scattered light from the sun (see Figure 5.2).
This observation is the motivation for the so-called OpenGL fog [80], which is
the simplest solution of the ray integral. For each rendered pixel the attenuation
of the light intensity I of a surface patch is calculated by means of the following
formula

I′ = Ie−τz (5.1)

where z is the distance to the eye (the z-coordinate of each fragment) and τ is the
optical density of the medium. For air the optical density is about 0.001 to 0.00001
depending on the actual weather conditions and other factors like humidity.

As mentioned above, absorption and emission occur together in nature. Ab-
sorption alone would render distant objects completely black. But since there is
also atmospheric in-scattering, we need an additional term to express the tendency
of the horizon to fade into white (see Figure 5.3 for an example of a simple foggy
scene). In first approximation, the sun light scattered in from the atmosphere can
be expressed as an ambient light, since it is mostly isotropic. This means that the
absorbed light along a viewing ray is replaced by the light scattered uniformly

5.2. OPENGL FOG 49

Figure 5.2: Absorption and scattering in an optical medium (from [37]).

from the sun into the direction of the ray. With this interpretation the RGB color
components each fogged pixel are calculated as follows:

I′r/g/b = 1− (1− Ir/g/b)e
−zτ (5.2)

This formula can be evaluated efficiently by the graphics hardware. In
fact, OpenGL-fog is implemented in all actual consumer graphics accelerators.
OpenGL also supports other fog functions such as a linear attenuation. These
additional functions are depicted on the right of Figure 5.3.

Figure 5.3: Plain OpenGL fog. Left: Fog illustrated by a depth ramp of the
famous Utah teapot. Right: Fog functions as supported by OpenGL (from [80]).

50 CHAPTER 5. NATURAL GASEOUS PHENOMENA

5.3 Layered Fog

As seen above, the ray integral reduces to a mere exponential term for the case of
a uniform gas density. For the general case, however, no analytic formulation is
known and a numerical integration is required. But in some cases the integration
or at least a large fraction of the work can be offloaded into a preprocessing step
which is called pre-integration.

For the case that the gas distribution varies in a single dimension an explicit
solution is known. If the density of the gas varies in the vertical dimension (see
Figure 5.4), which means that it depends on elevation only, the ray integral de-
pends on a total of three parameters: the height of the viewer, the height of each
surface fragment and its distance in screen coordinates. Now the colors and opac-
ities of the ray integral are defined by a three-dimensional function which can be
pre-computed and stored in a 3D table, hence the table is said to be pre-integrated.

For each frame the slice of the 3D table that corresponds to the actual height
of the viewer is put into a 2D texture, transfered to graphics memory, and used as
a texture for all surface patches with the texture coordinates (s,t) of each vertex
being set to its elevation and the distance in screen coordinates. So the problem
is effectively reduced from 3D to 2D. The method is dubbed layered fog [57, 39]
and is easily implemented as an additional 2D texturing pass in any game engine.
The approach is per-pixel exact at the expense of not being able to define the gas
distribution freely.

Figure 5.4: Layered fog as utilized in the sequel of AquaNox. The optical density
of the fog depends on elevation only, such that mist is visible only in the lowlands
of the landscape (left) or as multiple cloud layers (right).

5.4. BOUNDED LAYERED FOG 51

5.4 Bounded Layered Fog

As opposed to the use of OpenGL and layered fog which require only one inex-
pensive operation per pixel, more sophisticated volume rendering methods usu-
ally lead to multi-pass rendering algorithms. One of those multi-pass algorithms
is bounded layered fog as proposed by Mech [70]. Bounded layered fog, which
sometimes is also called patchy fog, is defined as a volume with a sharp bound-
ary and a constant gas density inside the boundary. The outer hull of the volume
is defined by a triangle mesh. This mesh is rendered twice per frame in the fol-
lowing fashion: First the back facing triangles are rendered into the frame buffer
with additive blending enabled and the color of each vertex set to its distance to
the viewing plane. Then the same procedure is repeated for the front facing trian-
gles with subtractive blending enabled. This effectively computes the intersection
lengths of each viewing ray with the volume.

In the third and last pass the intersection lengths stored in the frame buffer are
transformed into attenuation factors using pixel textures [112]. Since the intersec-
tion length can grow arbitrarily large a high resolution frame buffer is mandatory
to prevent Mach bands. In Section 10 we present an extension to Mech’s method
which does not show this restriction and is more flexible with respect to defining
the fog boundary.

With the upcoming of programmable PC graphics hardware the accuracy of
the method can be increased by using a floating point render target to compute
the intersection lengths. Then ping-pong filtering [74] can be applied to map the
intersection lengths to the attenuation factors. For this purpose, a 1D dependent
texture is used which contains the exponential attenuation function according to
Equation 5.1.

Even though Mech’s method is a multi-pass algorithm it is reasonable fast if
the hull of the fog volume is not too complex. Otherwise the majority of the pixels
tend to be rendered multiple times, thus the overdraw is considerable. Only sharp
boundaries and a constant fog density are possible. This does not correlate with
reality where the density of a cloud usually varies. In addition, the method does
only feature approximate lighting, hence the appearance of bounded layered fog
is quite artificial (compare Figure 5.5). Nevertheless its performance makes it a
good choice for interactive entertainment.

5.5 Billboards

As mentioned in Chapter 4 a common method to render “fuzzy” volumetric effects
is to use billboards. Billboards are just quadrilaterals which are aligned to face
towards the viewer. They are textured with custom made images of mostly trees,

52 CHAPTER 5. NATURAL GASEOUS PHENOMENA

Figure 5.5: Example and schematic view of bounded layered fog.

explosions, or smoke. Explosions, for example, are usually made up of several
evolving blast elements that are blended over each other. Despite the simplicity
of this approach the effects can be quite stunning. If the billboard textures are
designed by an experienced graphics artist explosions can look very impressive.
Unless the view point is very close to the center of the explosion the billboards is
not unveiled. The billboard method is fast and simple but it is not suited very well
for the display of natural gaseous phenomena as we will see in the following.

5.6 Metaball Methods

A sibling of the billboard technique is the metaball method for the display of
clouds. Instead of billboards it uses spheres which are textured with a projection of
the volume each metaball is associated with. The first approach to incorporate this
technique was presented by Gardner [31] as early as in 1985. In fact, this method
was the first that achieved interactive frame rates while maintaining reasonable
quality. On the one hand, the metaballs can be cached efficiently using vertex
arrays, but in comparison to billboards more triangles are needed per graphics
primitive. On the other hand, more detailed clouds can be constructed easily by

5.7. IMPOSTOR BASED METHODS 53

clustering several metaballs (see Figure 5.6). More recently, Elinas et al. [25]
managed to render highly detailed natural clouds, but as they note in their paper
the metaball technique is not suitable for a fly-through, since the metaballs clearly
become observable in the vicinity of a cloud.

Figure 5.6: A cumulus cloud defined by a cluster of metaballs (from [31]).

5.7 Impostor Based Methods

In order to compensate for the disadvantages of the metaball method impostors
are utilized frequently. They were first introduced by Schaufler et al. [95, 97] to
speed up the display of objects with complex geometry. Impostors can be thought
to be dynamic billboards. An impostor is essentially a billboard with an associated
polygonal object which is used to generate the billboard texture for a specific point
of view. So the texture of an impostor adapts to the actual point of view. If the
deviation of the cached texture from the projection of the underlying geometry
exceeds a specific error threshold, the impostor texture is recomputed from the
original polygonal data. The deviation is calculated by taking the maximum of the
projective shifts of each polygon on the impostor plane induced by the movement
of the viewer. Speaking non-technically, the deviation of the impostor texture is
the projected distance between where each polygon is placed and where the viewer
observes it on the impostor texture. The probability of an update of the impostor
texture is proportional to the movement of the viewer since the last capture. The
update probability is also inversely proportional to the viewing distance.

54 CHAPTER 5. NATURAL GASEOUS PHENOMENA

The impostor technique converts complex polygonal objects into an image
based representation. The speed up is due to the fact that the billboard can be ren-
dered much faster than the object itself which may consist of thousands or even
millions of polygons. However, the impostor texture has to be recomputed when-
ever the perspective distortion grows too large. In this case the polygonal object
has to be rendered and transformed into a texture. So no speed up is achieved for
the frame in which the impostor is updated. In subsequent frames the cached im-
postor texture can be reused to obtain a significant speed up until the impostor has
to be updated again. Hence, updates need not occur too frequently to keep a high
performance level. More precisely, the impostor method achieves a significant
speed up compared to polygonal rendering if the following criteria are met:

• The triangle count of the cached polygonal geometry is large compared to
the geometry of the billboard frame which consists of two triangles (one
quadrilateral).

• The cached textures completely fit into texture memory.

• The mean update frequency of the impostors is significantly less than once
per frame.

• The visible impostors in the scene need not be updated simultaneously.

The impostor method has been successfully applied to speeding up the rendering
of large polygonal models and afterwards to speeding up cloud rendering. Here,
each impostor represents a small cloud. Its appearance is computed by light scat-
tering methods (see Chapter 6 for more details). For a crowd of cumulus clouds,
for example, the scene can be represented with only a few impostors (see Fig-
ure 5.7). In this case the performance is quite impressive. However, the update
rate of the impostors increases with the proximity to a cloud. Nearby or inside a
cloud the impostor texture has to be recomputed almost every frame, so that the
speedup is nearly zero. Furthermore, the update of an impostor manifests itself in
a temporal aliasing artifact. These drawbacks can be avoided only by switching
to a real volumetric representation of the clouds.

Nevertheless, the impostor method is used widely for cloud rendering due to
the realistic appearance of the clouds. The most notable papers here are those of
Dobashi et al. [16] and of Harris et al. [37]. Dobashi achieves very high image
quality including the depiction of soft shadows and shafts of light, but render-
ing times are in the range of several seconds (the rendering time of the image in
Figure 5.8 was about 20 seconds).

Harris’ method performs significantly better with true real time performance if
the number of impostors is kept reasonable small. Neither soft shadows nor shafts

5.7. IMPOSTOR BASED METHODS 55

Figure 5.7: A crowd of cumulus clouds represented by impostors (image
from [37]).

of light are included (see Figure 5.9). More detailed scenes like entire cloud layers
require a larger number of impostors, hence result in lower frame rates.

In summary, the impostor method can be utilized not only to speed up the
display of large polygonal models but also to accelerate cloud rendering. Instead
of diving into the algorithmic details of both Dobashi’s and Harris’ method, the
methods are very well suited for their specific application area (see also Chap-
ter 12), but have one major drawback which is discussed in the following.

As the main drawback, the impostor method works well in the case of what
we call good weather conditions, that is a crowd of small cumulus clouds. But
if large cirrus clouds, overcast sky, or huge layers of mist have to be dealt with
impostors there arise a variety of problems. Large clouds require large impostors
which exhibit large projective distortion. Therefore the update rate is high, so that
the speedup is dissatisfying. But if we try to make up larger clouds from several
smaller impostors, rendering artifacts occur whenever the impostors overlap each
other. In summary, large cloud formations are difficult to deal with impostors.
Impostor methods work well for good weather conditions but they are not suited
for the visualization of arbitrarily shaped clouds and in particular for the visual-
ization of weather simulation data. Here real volumetric algorithms are needed. In
order to come up with a solution for the mentioned problems we take an excursion
into volume visualization in the next chapter to see what can be learnt from this
research area.

56 CHAPTER 5. NATURAL GASEOUS PHENOMENA

Figure 5.8: Dobashi’s cloud rendering method (image from [16]).

Figure 5.9: Harris’ cloud rendering method (image from [37]). Note that the
distant cirrus clouds are rendered using a sky dome.

Chapter 6

Volume Rendering: The Basics

In this chapter we describe the foundations of volume rendering. Our special in-
terest lies on revealing possible improvements for the real time display of clouds.

6.1 Basic Principles

The principle of volume rendering is based on the physical model of an optical
medium, which typically is a gas or a liquid. The density of the medium is defined
as a three-dimensional scalar function. Light traveling through the so-defined
volume is scattered and absorbed as single photons hit the atoms of the medium.
The probability of hitting an atom is proportional to the gas density. In case of a
hit the energy of the photon is either absorbed and transferred into thermal energy
or the photon is sent out again in a more or less random direction. In the latter case
the wave length of the photon may also shift. The appearance of natural gaseous
phenomena is thus the result of a vast number of photons being scattered back
and forth multiple times until they finally reach the observer. Due to the complex
paths of scattered photons the exact solution of the observed light properties is
rather time consuming.

Hence it is no surprise that for traditional rendering, the presence of an opti-
cal medium is usually neglected. Thus, scattering is assumed to appear only at
the surface of an object. Even though this is a strong simplification, the correct
simulation of the physical phenomena, that is of light scattering off various types
of surfaces, remains a challenging task. As there is a large number of solutions
to the traditional rendering challenge we only introduce the basic concept of the
rendering equation in this chapter.

6.2 The Rendering Equation

The rendering equation of Kajiya [44] subsumes a wide variety of rendering algo-
rithms and provides a unified context for viewing them as more or less accurate
approximations to the solution of a single equation.

57

58 CHAPTER 6. VOLUME RENDERING: THE BASICS

It has to be mentioned that the idea behind the rendering equation originates
from the area of material sciences. A description of the phenomenon simulated
by this equation has been well studied in the radiative heat transfer literature for
years [102].

The rendering equation is

I(x,ω) = Ie(x,ω)+

Z

Ω+

I(y(x,ω′),−ω′) fr(ω′,x,ω)cosθ′dω′. (6.1)

where:

I(x,ω) is related to the intensity of light passing
from point x into direction ω

y(x,ω′) denotes the point y that is visible
from x in direction ω′

Ie(x,ω) is related to the intensity of emitted light
from point x in direction ω

fr(ω′,x,ω) is related to the fraction of light scattered
from ω′ into direction ω by a patch of surface at x

θ is the angle between the surface normal at point x
and the direction ω′

The equation is very much in the spirit of the radiosity equation, simply balancing
the energy flows from one point of a surface to another. The equations state that
the transport intensity of light from one surface point to another is simply the sum
of the emitted light and the total light intensity which is scattered toward x from
all other surface points. The equation differs from the radiosity equation because,
unlike the latter, no assumptions are made about reflectance characteristics of the
surfaces involved. As opposed to this, the radiosity equation presumes a solely
diffuse reflectance behavior.

As an approximation to Maxwell’s equation for electromagnetics the render-
ing equation does not attempt to model all interesting optical phenomena. It is
essentially a geometrical optics approximation. It only models time averaged
transport intensity, thus no account is taken of phase in this equation – ruling
out any treatment of diffraction. In addition, no wavelength or polarization de-
pendence is mentioned explicitly in the rendering equation. Finally, it is assumed
that the media between surfaces is of homogeneous refractive index and does not
itself participate in the scattering light. Treatments of participatory media and
of phase and diffraction can be handled with path integral techniques. For in-
stance, an integro-differential equation is necessary for participating propagation
media [45].

6.3. THE RAY INTEGRAL 59

6.3 The Ray Integral

As mentioned in the last section the rendering equation of Kajiya does not include
the effects of participating media. In the following we account for the change
of the light transmitted through the participating medium from point y to x. The
formula, which describes the absorption, the scattering, and the emission of light
on its the way through the medium is called the ray integral.

Let I(x,ω) be the intensity at position x in direction ω, and let kt(x) be the
extinction coefficient of the participating medium. This is the total opacity (ab-
sorption plus scattering) per unit length so kt(x)I(x,ω)ds is the intensity removed
along an infinitesimal ray segment ds at x. Let the albedo a be the fraction
of the removed intensity scattered into other directions, and let the phase func-
tion fp(ω,ω′) be the directional distribution function for this scattered intensity,
so that

R

B fp(ω,ω′)dω is the fraction of the scattered intensity from direction ω′

that ends up in solid angle B. Then

akt(x)ds
Z

4π
I(x,ω′) fp(ω′,ω)dω′ (6.2)

is the intensity scattered into the direction ω along the ray segment ds from other
directions ω′ in the 4π unit sphere. This is the source function (compare [102])
in the absence of volume emission. The integro-differential equation for I(x,ω)
including emission is thus

dI(x,ω)

ds
= −kt(x)I(x,ω)+akt(x)

Z

4π
I(x,ω′) fp(ω,ω′)dω′+ Ie(x,ω) (6.3)

Using an integrating factor (see [102, 119, 92], this can be integrated along a
path x′(s) = x+ sω from x = x′(0) to y = x′(s0) at the edge of the medium, to give
the ray integral:

I(x,ω) = I(y,ω)exp

(

−
Z s0

0
kt(x

′(s))ds

)

+

Z s0

0

(

Ie(x,ω)exp

(

−
Z s

0
kt(x

′(t))dt

))

ds+

a
Z s0

0

(

kt(x
′(s))exp

(

−
Z s

0
kt(x

′(t))dt

)
Z

4π
I(x′(s),ω′) fp(ω′,ω)dω′

)

ds

(6.4)

60 CHAPTER 6. VOLUME RENDERING: THE BASICS

Substituting the ray integral for I(y(x,ω′),−ω′) in the rendering equation yields
the complete equation that both takes scattering at surfaces and inside a partic-
ipating medium into account. For volume rendering alone the interaction with
surfaces is not necessary, so a solution of the ray integral suffices.

6.4 Light Scattering in Participating Media

Now that the fundamental properties of light transport and scattering have been
laid out the question surely is how to render images efficiently? To recall the
complexity of the entire problem, for each ray the integrated intensity consists of
the energy scattered in the direction of the ray. All these scattered energies along
the ray again consist of scattered energy originating from other paths. All these
energies must be collected properly to yield a natural looking cloud, for example.
In particular, it is not sufficient to collect only the light scattered directly from
the sun into the direction of the viewing ray. This precondition is illustrated in
Figure 6.1 where both single and multiple scattering are compared against each
other. If the energy collection process is performed only a single time (hence
single scattering) the clouds clearly look unacceptable in comparison to multiple
scattering.

The phase function fp(ω,ω′) for scattering in air is not isotropic, that is the
energy scattered back is smaller than the energy scattered forward. Figure 6.2
shows the difference between anisotropic and isotropic multiple scattering. Using
an isotropic approximation of the real scattering conditions in nature allows to
precompute the light intensities, since isotropic scattering is view-independent. In
contrast, anisotropic scattering is view-dependent, so the light scattered into the
viewing direction has to be recalculated for every frame.

In our opinion isotropic scattering is sufficient in many cases. The differ-
ence mainly becomes observable when the sun is visible directly behind a cloud
or beneath the edge of a cumulus cloud. For thick cloud layers the distinction
between isotropic and anisotropic scattering is not so important. For each appli-
cation scenario it has to be decided whether or not anisotropic scattering is worth
the additional effort.

Nevertheless, for atmospheric rendering and skylight exact solutions of the
ray integral, hence anisotropic scattering models are necessary. Due to wave-
length dependent Rayleigh scattering the sky color is shifted either to red or blue
tones [17].

6.5. RENDERING SOLUTIONS FOR PARTICIPATING MEDIA 61

Figure 6.1: Top: Single scattering, Bottom: Multiple scattering (images
from [37]).

6.5 Rendering Solutions for Participating Media

Holly Rushmeier [93, 92] applied two techniques to solve the general problem
of volume rendering with participating (i.e. absorbing, emitting, and scattering)
media. One is the Monte Carlo method, where a random collection of photons
or flux packets are traced through the volume, undergoing random scattering and
absorption. This method can accurately model all the physics of scattering, but
may take an impractical number of random trials to converge to a useful solution.

The other one is the zonal method [93] for isotropic scattering, which divides
the volume into a number of finite elements which are assumed to have constant
radiosity. This requires the calculation of a form factor between every pair of
elements. With the assumption of the Galerkin finite element scheme and an in-
teractive method for solving the resulting matrix equation the total computational
cost is O(n7) for a cube of n3 elements.

Although the two mentioned methods accurately compute the solutions of the
general ray integral the restriction to isotropic scattering and in particular the slow
runtime behavior disqualifies the methods for real time applications.

62 CHAPTER 6. VOLUME RENDERING: THE BASICS

Figure 6.2: Top: Isotropic scattering, Bottom: Anisotropic scattering (images
from [37]).

In contrast to the previous methods, the discrete ordinates method in radiation
transfer (see [102]) achieves a large speed up with regular cubical grids. Since the
method makes essential use of the homogeneity of the grid, it will not work on
more general finite element meshes. One also has to point out that this method
produces the so called ray effects (a type of aliasing artifacts), because it is equiv-
alent to shooting the energy from an element in narrow beams along the discrete
directions, missing the regions between them. Max [67] presented an approxima-
tion to the discrete ordinates method, which reduces the ray effect by shooting
radiosity into the whole solid angle (see also [43]). This approach has been im-
proved continuously (compare [78]), however the basic idea remained the same
over time.

As a concluding remark we emphasize that due to the inherent complexity
of the scattering process a visual simulation of clouds is restricted to application
scenarios which only require a local solution of the ray integral. At present the
real time simulation of a global system seems impractical. For the simulation of
such a global system we need to further simplify the ray integral equations, which
leads to a volume visualization technique known as direct volume rendering.

Chapter 7

Direct Volume Rendering

For volume visualization purposes scattering is usually neglected, since it is com-
putationally expensive. In other words, the albedo a in Equation 6.4 is assumed
to be zero. Additionally it is assumed that only a volume describing the density
of the optical medium is present in a scene, so that there is no back scattering of
surfaces. Then Equation 6.4 is reduced to the integration of a single light ray:

I(x,ω) =

Z ∞

0

(

Ie(x,ω)exp

(

−
Z s

0
kt(x

′(t))dt

))

ds (7.1)

The evaluation of the above line integral is characteristic for all direct volume
rendering techniques [18]. In comparison to indirect volume rendering methods
like isosurface extraction no intermediate representations are generated.

One of the classic direct volume rendering scenarios is the medical visualiza-
tion of computer tomography data. Here the interactive and intuitive examination
of the scanned organs and not the photorealistic appearance thereof is of prime im-
portance. This makes direct volume rendering the method of choice for medical
visualization.

On the other hand, it has to be mentioned that, of course, the true appearance
of clouds cannot be reproduced with direct volume rendering techniques. But in
Section 11 we will see that the seemingly restrictive physical model, in fact, can
be extended to mimic the natural appearance of clouds. Thus the advantages of
fast rendering and realistic display can be combined.

7.1 Transfer Functions

The density of the optical medium is usually described by a three-dimensional
scalar function f (x,y,z). In order to assign a specific appearance to the scalar
values a so-called transfer function is used. The emission and the optical den-
sity of the medium are given by the transfer functions denoted by κ(f (x,y,z))
and ρ(f (x,y,z)), respectively.

Regarding the physical nature of light transport, both absorption and emis-
sion are related to the density of the medium, that is the more dense the medium
the more light is being emitted and absorbed. If the medium is fully transparent

63

64 CHAPTER 7. DIRECT VOLUME RENDERING

neither absorption nor emission are being perceived. In order to reflect this physi-
cal relationship, the emission κ is often implicitly pre-multiplied with the density
function ρ. In this case one speaks of a pre-multiplied transfer function.

7.2 Grid Types

Since in the majority of cases the volume cannot be represented as a continuous
function, the domain of the scalar function is usually discretized. We categorize
these discretized representations into three main classes: Regular, curvilinear and
unstructured grids. In the first case the domain is a three-dimensional matrix
which is sampled uniformly in all three principal axis. If the sampling is not
uniform one speaks of a rectilinear grid. Semi-regular grids like octrees or multi-
grid meshes are special cases of a regular grid. In the second case the domain
is still a regular matrix in computational space, but in object space it may have
any shape. To give a example, a regularly meshed cylinder is a curvilinear grid.
The remaining grid types are covered with the last case of unstructured grids. In
contrast to surface meshes which are constructed from convex polygons (triangles,
quadrilaterals, etc.) unstructured grids are built from convex polyhedra, such as
hexahedra, prisms, pyramids, or as the most common case, tetrahedra. To name
only a few typical application areas regular grids are generated by CT or MR
scanners, while unstructured grids are mostly encountered as the mesh type of
numerical finite element simulations.

7.3 Ray Casting

The neglection of scattering has the advantage of a fast solution of the ray integral
as described in the following: By shooting a viewing ray through every pixel in
image space into the volume the light intensity of each pixel is simply equivalent
to the incoming light collected on the corresponding light ray. So the task of direct
volume rendering is to calculate the line integral as given above for each pixel in
image space. In general, even this seemingly simple line integral cannot be solved
analytically. Instead, a numerical integration is required, that is the line integral
is approximated by a Riemann sum. This means that the volume is sampled at
equally spaced points on the light ray. This basic procedure is called ray casting
(see Figure 7.1 for a schematic view).

The emissions associated with each sample point are attenuated on the way to
the viewer due to the absorption of the medium. From one sample point to another
the attenuation can be expressed in terms of the mean optical density τ between the
two respective sample points. Let d be the distance between the sample points xi

7.3. RAY CASTING 65

Figure 7.1: Basic principle of ray casting.

and xi+1, then the mean optical density is given by τi =
1
2(ρ(f (xi))+ρ(f (xi+1))).

Hence, the (approximated) opacity αi of the corresponding ray segment is 1−
exp(−τid). Similarly the average emission of the ray segment is given by Ei =
d 1

2(κ(f (xi))+ κ(f (xi+1))). By processing the samples on the light ray in a back
to front fashion the final color C of each pixel is reconstructed by summing up the
emissions using the following blending formula:

Ci+1 = (1−αi)Ci +Ei

For a decreasing ray segment length d this approximation converges to the ex-
act solution of the continuous formulation of the line integral. In practice, the
scalar density function f is band limited in almost any case. Thus, the sampling
distance d can be chosen so that it corresponds to half the wave length of the
highest frequency in the frequency domain representation of the scalar function
(often referred to as the Nyquist frequency). For instance, the minimum required
sampling distance for a regular grid is the edge length of the voxels, so that each
contributing cell is touched at least once on the viewing rays. For unstructured
grids with highly varying cell sizes the sampling distance is usually not set to a
constant value, but rather adapted to the length of the intersections of the viewing
rays with each cell.

Recently, hardware-accelerated implementations have been presented both
for structured [88] and unstructured [110] volume data exploiting programmable
graphics hardware. The achieved speed-ups are quite remarkable in comparison
to a pure software approach, but there are still some limitations such as texture
memory size, which currently restrict the application of hardware-accelerated ray
casting. But with the upcoming of future improved consumer graphics hardware
those approaches clearly will become a very interesting alternative to the tradi-
tional methods which are described in the next sections.

66 CHAPTER 7. DIRECT VOLUME RENDERING

7.4 Slicing via 3D Textures

For regular grids there exist a variety of acceleration techniques which improve
the performance of the basic ray casting approach. These are mainly early-ray
termination, space leaping, the shear-warp algorithm [54], 3D slicing or textur-
ing [1, 7, 113, 26], and splatting [115, 14]. Early ray termination means that rays
shot into the volume may stop in case of reaching full opacity, since the remaining
ray is occluded entirely. Likewise, entirely transparent areas can be skipped over
very quickly, which is called space leaping. The shear-warp is a pure software ap-
proach, which takes advantage of the fact that an orthogonal projection of a regular
volume can be decomposed into two consecutive shear operations in image space,
so that resampling and interpolation of the grid can be performed efficiently by 2D
operations. As opposed to this pure software approach the hardware-accelerated
techniques try to offload the computationally expensive resampling of the volume
onto the graphics hardware. For this purpose a regular volume is packed into a 3D
texture. Then view-plane aligned slices are drawn from back to front as illustrated
in Figure 7.2. For each slice the graphics hardware is setup to interpolate the cor-
rect colors and opacities from the 3D texture. In this way the entire set of viewing
rays is treated simultaneously, resulting in a tremendous speedup due to the high
rasterization performance of the graphics accelerator.

Figure 7.2: Hardware-accelerated volume rendering via 3D textures.

While this method efficiently utilize the graphics hardware, it usually has prob-
lems coping with large datasets, since the 3D texture has to reside in dedicated
texture memory. Data sets that do not fit entirely into texture memory need to
be “bricked”, that is they are broken down into several smaller blocks that are
rendered subsequently. However this method suffers from a slow transfer speed
between the main and the graphics memory, because each brick has to be up-
loaded in each single frame. Hierarchical methods [55, 111, 4, 36] for volume
compression are also known as a solution for insufficient texture memory, how-

7.4. SLICING VIA 3D TEXTURES 67

ever these techniques will not be discussed in detail in this thesis, since these
approaches have problems with maintaining a conforming view-dependent mesh.
Recently, advanced lighting and pre-integration techniques [71, 48, 49] have been
introduced which improve image quality but do not solve the problem of restricted
texture memory size, so these approaches are also not discussed in this thesis.

As the last basic acceleration technique splatting should be mentioned here.
In contrast to the previous methods splatting is not an image but an object space
technique which approximates the footprint of each voxel with a splat kernel. The
splatting algorithm processes all voxels in visibility sorted order and accumulates
the splats on the image plane (or sheet buffer). The main drawback of the splatting
algorithm is that the splat kernel is only a more or less coarse approximation of
the true footprint of a voxel. As a result, the generated images look smoother in
comparison to the results of a ray caster.

In general, the achieved frame rates of classic volume rendering techniques do
not meet the real time demands of cloud visualization. To achieve higher frame
rates we aim to exploit the inherent view-dependent nature of the cloud rendering
problem. Our final goal is to develop a hierarchical view-dependent rendering
algorithm that displays the clouds nearby with high detail and distant clouds with
less detail. For this purpose we first have to dive into the topic of unstructured
volume rendering.

Although a variety of hardware-accelerated methods are known for regular
volumes, unstructured grids did not yet profit as much from the upcoming of pro-
grammable graphics hardware. In the two chapters we develop a technique based
on hardware-accelerated cell-projection that closes this apparent gap.

Chapter 8

Pre-Integrated Cell-Projection

More than ten years ago direct volume rendering of unstructured tetrahedral
meshes was dramatically accelerated by the Projected Tetrahedra (PT) algorithm
by Shirley and Tuchman [101], which is summarized in Section 8.2. Although
there are numerous competing approaches to direct volume rendering of unstruc-
tured meshes, e.g. ray casting [103, 110], slicing [127], or sweep-plane algo-
rithms [112], several aspects of the PT algorithm are still subject of current re-
search, e.g. the visibility sorting of tetrahedral cells (see [13, 28] and references
therein). Our extensions of the PT algorithm are restricted to the rendering of
projected tetrahedra.

8.1 Visibility Sorting

For this work it is assumed that the visibility ordering of an unstructured mesh
has already been computed. A visibility (or depth) ordering of a set of polyhedral
cells is an ordering such that a cell A precedes a cell B if B occludes A. This
results in a back to front ordering of the cells. For semi-regular grids like octrees
the visibility sorting is trivial (see Section 11.5), but for unstructured meshes the
depth ordering has to be computed explicitely. This can be achieved in O(n) time
for convex simplicial grids by using the MPVO algorithm of Williams et al. [118].
It starts with an arbitrary cell and sorts its adjacent cells by inserting them either
at the beginning or the end of a queue depending on whether the neighbors are
attached to either a front or a back face. By recursively repeating this procedure
for all inserted cells a depth ordering is constructed. Non-convex or disconnected
grids are sorted only partially by this method. In order to obtain a correct ordering,
occlusion relations between the boundary faces have to be established. The so-
called BSP-XMPVO algorithm [13] computes these relations by searching them
in a BSP (binary space partition) tree. It is commonly assumed that the cells do
not overlap in a cyclic way, otherwise the dependency graph cannot be sorted in a
unambiguous way. Fortunately most data sets encountered in practice do not have
cycles, but in the case one encounters a cycle the algorithm of Kraus et al. [51]
renders a cyclic group consisting of n tetrahedra in O(n2) time.

68

8.2. THE ORIGINAL PT ALGORITHM 69

8.2 The Original PT Algorithm

The PT algorithm visualizes a scalar function f (x,y,z) defined over a region of
three-dimensional space by rendering partially transparent polygons, which can
be processed very quickly by specialized graphics hardware. The PT algorithm
can be summarized as follows (see also [101]):

1. Decompose the volume into tetrahedral cells. For example, a prism is de-
composed into three tetrahedra. Scalar values are defined at each vertex of
the mesh. Inside each tetrahedral cell, f (x,y,z) is assumed to be a linear
combination of the vertex values.

2. Sort the cells according to their visibility.

3. Classify each tetrahedron according to its projected profile and decompose
it into smaller triangles (see Figure 8.1).

4. Find color and opacity values for the triangle vertices using ray integration.

5. Render the triangles.

Class 1a Class 1b Class 2

Figure 8.1: Classification of non-degenerate projected tetrahedra (top row) and
the corresponding decompositions (bottom row) according to [101].

70 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

8.3 Drawbacks of the Original PT Algorithm

The original PT algorithm approximates the opacity and color between vertices
linearly resulting in Mach bands as reported by Max et al. in [66]. Stein et al.
presented a solution for the correct interpolation of opacities utilizing 2D texture
mapping in [106], which is also discussed in Section 8.2. However, this method
is restricted to linear transfer functions for the opacity and still interpolates color
components linearly ignoring the transfer functions for them inside the tetrahedra.

Our first improvement of the PT algorithm allows us to render both, opacity
and color, accurately by exploiting 3D texture mapping. In particular this method
allows us to employ arbitrary transfer functions. The method and its application
to a volume density optical model is described in Section 8.4. In Section 8.5 we
derive an approximate rendering method based on 2D texture mapping, which is
supported by considerably more graphics systems and requires less texture mem-
ory. A second extension allows us to include the rendering of isosurfaces in the
PT algorithm using 2D texture mapping without extracting a polygonal represen-
tation of the isosurfaces. There are numerous algorithms to display isosurfaces
efficiently. We will mention a selection in Section 8.6. However, none of these
algorithms takes any particular advantage of the PT algorithm. Therefore, the
costs of displaying an isosurface were not reduced by a combination with the PT
algorithm in the past.

Our approach, however, reuses the visibility ordering and the decomposition
of the tetrahedral cells, which are an essential part of every variant of the PT al-
gorithm. The visibility ordering algorithms described in Section 8.1 all appear
to be compatible with our rendering extensions. By reusing the ordering and de-
composition of tetrahedra our method is capable of rendering isosurfaces without
constructing a polygonal representation. As it is conceptually similar to the first
pass of the multi-pass algorithm for smoothly shaded isosurfaces by Westermann
and Ertl [113], we present a variant of this first pass in Section 8.7. We employ
this idea in the context of the PT algorithm and present a specialized single-pass
algorithm for flat-shaded isosurfaces using 2D texture mapping in Section 8.8.
Moreover, a two-pass algorithm for smoothly shaded isosurfaces is described in
Section 8.9.

Extensions for colored and multiple isosurfaces are discussed in Section 8.10,
while Section 8.11 presents two methods for mixing isosurfaces with projected
volume cells, either approximately but smoothly using appropriate blending and
texture mapping or more accurately by modifying the texture maps.

We emphasize that the worst-case time complexities of all our methods,
i.e. volume rendering with arbitrary transfer functions, rendering of multiple and
smoothly shaded isosurfaces, and mixing of isosurfaces with projected volume
cells, are linear in the number of tetrahedra and neither depend on the transfer

8.4. PT WITH ACCURATE OPACITY AND COLOR 71

functions nor on the number of isosurfaces. In the reminder of this section and
in Sections 8.4 and 8.5 we will only discuss methods to improve the last two
points: ray integration and rendering of the decomposed triangles with emphasis
on hardware-accelerated rendering.

8.4 PT with Accurate Opacity and Color

The original PT algorithm interpolates color and opacity linearly between the tri-
angle vertices. This, however, is an approximation which leads to rendering arti-
facts as demonstrated in [66, 106].

In order to avoid these artifacts Stein et al. suggested in [106] to use a 2D
texture map with the texture coordinates being the averaged extinction coefficient
τ and the thickness l of the projected cell, while the texture map contains an α-
component which is set to α = 1− exp(−τl). In between the vertices of each
triangle the texture coordinates and, therefore, τ and l are interpolated linearly;
thus, this approach is restricted to a linearly varying extinction coefficient τ, i.e.
a linear transfer function τ = τ(f (x,y,z)). Moreover, the color is still linearly
interpolated between vertices. Williams et al. extended these ideas to piecewise
linear transfer functions in [120].

In this section a generalization of the method of Stein is presented which works
for color and opacity, and places no restrictions on the transfer functions. We
achieve these benefits by employing 3D texture mapping.

Let us start by investigating the situation depicted in Figure 8.2.

Sf Sb

l

Figure 8.2: Intersecting a tetrahedral cell with a viewing ray. s f and sb are the
scalar values on the entry (front) and exit (back) face respectively; l denotes the
thickness of the cell for this ray.

As texture coordinates are interpolated linearly, we should only use variables, the
values of which vary linearly with screen coordinates. We will restrict our con-

72 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

siderations to orthographic projections. In this case l varies linearly for geometric
reasons; s f and sb vary linearly because they are interpolated linearly between
vertices as mentioned above. Therefore, s f , sb, and l should be the three texture
coordinates. Fortunately, all other values, e.g. color, opacity, etc., can be calcu-
lated from l, s f , and sb. Thus, we can set up a 3D texture map which contains the
color and opacity characterizing the intersection of a ray and a cell in dependency
of l, s f , and sb.

For many applications the calculation of the texture map is a preprocessing
step and, therefore, not time-critical. Usually it includes a numerical integration
of a ray for each texel in the 3D texture map as outlined in Section 7.3. We
sketch the procedure for the volume density optical model proposed by Williams
and Max [68, 119, 120] with a chromaticity vector κ = κ(f (x,y,z)) and a scalar
optical density ρ = ρ(f (x,y,z)), which are the transfer functions of this model.

Assuming cells are processed back to front, the addition of the projection of a
cell changes an existing pixel color I to a new pixel color I ′ by the formula

I′ =
Z l

0
exp

(

−
Z t

0
ρ(sl(u))du

)

κ(sl(t))ρ(sl(t))dt
︸ ︷︷ ︸

RGBt3D

+ exp

(

−
Z l

0
ρ(sl(t))dt

)

︸ ︷︷ ︸

1−αt3D

×I

(8.1)
with the abbreviation

sl(x) = s f +
x
l
(sb − s f).

RGBt3D denotes the color components (note that κ is a vector), and αt3D the
opacity of an entry in the 3D texture map. RGBt3D and αt3D depend on the texture
coordinates l, s f , sb, and the transfer functions κ and ρ. Thus, the texture map has
to be updated whenever the transfer functions are modified.

It is an intrinsic limitation of our method that κ and ρ have to depend on the
same scalar field. However, we are not limited to this optical model; for example
the model of Wilhelms and Van Gelder [68, 116, 120] could be implemented by
simply replacing κ(sl(t))ρ(sl(t)) by a differential color vector E(sl(t)) (or g(sl(t))
in the notation of [68, 120]).

After the calculation of the texture map in a preprocessing step, all tetrahedra
are projected from back to front. Before rendering the triangles of one projected
tetrahedron, the three texture coordinates are set for each vertex of the triangles.
Then they are blended appropriately into the frame buffer.

8.4. PT WITH ACCURATE OPACITY AND COLOR 73

The blending operation corresponds to

I′ = RGBt3D +(1−αt3D)× I,

and is done very efficiently by today’s graphics hardware. We give a synthetic
example of this rendering method in Figure 8.3. The scalar values at the vertices
of the visualized tetrahedral mesh are determined by the distance of each vertex
to the surface of a sphere. The transfer function of the opacity is 0 except for a
small interval, which results in the two partially opaque rings in Figure 8.3.

In summary our method allows us to exploit hardware-supported 3D texture
mapping in order to render projected tetrahedra without the need to do any time
consuming calculations for each pixel. Our approach is not as accurate as ray-
casting algorithms or the high accuracy (HIAC) volume rendering system de-
scribed in [120] because of limited texture memory and non-linear transforma-
tions in the case of perspective projections. Especially limited texture memory
will limit the size of the 3D texture map resulting in a less accurate resampling
of the transfer functions. Within this limited accuracy, however, arbitrary transfer
functions may be used without affecting the rendering times, whereas the perfor-
mance of the HIAC system depends crucially on the chosen transfer functions.
In particular, thin peaks are possible within our approach resulting in unshaded
isosurfaces as demonstrated in Section 8.13.

Figure 8.3: Visualization of a synthetic
data set with non-linear transfer func-
tions implemented with a 3D texture
map of dimensions 64×64×64 (1 MB).

Figure 8.4: Same data set as in Fig-
ure 8.3 but rendered using a 2D texture
map of dimensions 256×256 (256 KB).
(See Section 8.5.)

74 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

8.5 A New Approximation for PT

As hardware-supported 3D texture mapping is not available on every graphics
workstation, and the 3D texture maps that are employed in Section 8.4 need rather
much texture memory, we will describe a new approximation to the rendering
of projected tetrahedra using 2D texture mapping, which interpolates the opac-
ity linearly. However, this method allows us to use arbitrary transfer functions,
while existing hardware-accelerated solutions are limited to linear transfer func-
tions within each cell (e.g. [106]).

The basic idea is to approximate the dependencies of the integrals in Equation
(8.1) on l by linear terms, and to implement these terms by a modulation of the
vertex colors. The remaining integrals depend only on s f and sb, and can thus be
tabulated in a 2D texture map.

The dependencies on l in Equation (8.1) become more explicit with the vari-
able substitutions t ′ = t/l and u′ = u/l:

I′ = l
Z 1

0
exp

(

−l
Z t ′

0
ρ(s1(u

′))du′
)

×κ(s1(t
′))ρ(s1(t

′))dt ′

+ exp

(

−l
Z 1

0
ρ(s1(t

′))dt ′
)

× I.

For l = 0 this equation reduces to I ′ = I. For given ρ, κ, s f and sb we evaluate
the integrals for another value l = l = const. and extrapolate linearly in l. The
optimal choice of l depends on the particular application but setting l equal to the
average cell thickness has proven to be a good approximation. The 2D texture
map is defined by

RGBt2D = l
Z 1

0
exp

(

−l
Z t ′

0
ρ(s1(u

′))du′
)

×κ(s1(t
′))ρ(s1(t

′))dt ′,

αt2D = 1− exp

(

−l
Z 1

0
ρ(s1(t

′))dt ′
)

(8.2)

and is modulated by colors at the vertices with the RGBα components set equal to
(l/l, l/l, l/l, l/l). In practice we are scaling these colors by the maximum opacity
value in the texture map in order to avoid clamping for values l > l. This scaling
is compensated by multiplying the entries in the texture map with the reciprocal
value. The combined effect of texturing and blending with appropriate blending
coefficients is

I′ =
l

l
×RGBt2D +

(

1− l

l
×αt2D

)

× I,

8.6. PRIOR WORK ABOUT ISOSURFACES 75

which is our new approximation of Equation (8.1). Accordingly, we use GL ONE
for the source blend factor and GL ONE MINUS SRC ALPHA for the destination
blend factor in OpenGL.

On the one hand, this approximation results in artifacts because of the linear
interpolation (see [106]), on the other hand, the use of 2D texture mapping enables
us to utilize larger texture maps compared with the 3D texture maps employed in
Section 8.4 resulting in an improved resampling of the transfer functions.

Figure 8.4 shows the synthetic example from Figure 8.3 using 2D instead of
3D texture mapping. The linear approximation results in slightly smaller opaci-
ties resulting in lighter colors, while the improved resampling results in sharper
edges of the structures generated by the transfer functions. The middle image in
Figure 8.12 represents an example of a 2D texture map generated by Equation
(8.2).

The following sections discuss an independent extension of the PT algorithm
capable of displaying smoothly shaded isosurfaces without vertex interpolations.
Additionally, two methods are presented to combine projected tetrahedra with
opaque isosurfaces.

8.6 Prior Work about Isosurfaces

For an in-depth introduction into current research about isosurfaces the reader
is referred to [5]. Isosurfaces are an indispensable tool in volume visualization,
although direct volume rendering includes much more information in one picture.
However, isosurfaces are preferred for many applications as they are usually more
comprehensible. Thus, direct volume rendering techniques are often extended
with isosurfaces in order to combine the advantages of both techniques.

In their description of the PT algorithm [101] Shirley and Tuchman suggested
to calculate isosurfaces based on a marching tetrahedra algorithm similar to the
marching cubes algorithm [62, 63, 125]. The combination of these algorithms
makes it possible to render isosurfaces with any degree of transparency as noted
in [101].

However, research on marching cells algorithms concentrated on reducing the
number of cells tested for intersections with the isosurface [6, 9, 10, 61, 100, 99,
117] and on simplifying the polygonal mesh representing the isosurface [27, 60,
76, 79, 98]. Instead of reducing the number of polygons point-based algorithms
for the extraction of isosurfaces [20, 58, 81, 108] do not produce any polygons.
Westermann’s multi-pass algorithm for shaded isosurfaces [113] also does not
construct a polygonal representation of the isosurface. As our algorithm is based
on the same idea, we present the common concept in Section 8.7 before discussing
our algorithm in Section 8.8.

76 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

8.7 Hardware-Accelerated Marching Cells

This section discusses a variant of the first pass of Westermann’s algorithm for
shaded isosurfaces in unstructured grids [113]. The algorithm presented here sets
all pixels of the silhouette of an intersection of an isosurface with a tetrahedral
cell. Figure 8.5a shows the resulting silhouette, while Figures 8.5b and 8.5c show
intermediate steps of the algorithm.

0.1

0.6

0.8

0.4

0.1

0.6

0.8

0.4

0.1

0.6

0.8

0.4

(a) (b) (c)

= XOR

Figure 8.5: The polygon of an isosurface (isovalue 0.5) within a tetrahedral cell
(a) can be obtained by an XOR combination of the two pictures (b) and (c). (b)
shows the parts of the back faces of the cell with scalar value less than 0.5. (c) is
the analogue to (b) for the front faces.

The first step is to render those parts of the back faces of the cell where the
interpolated scalar value is less than the isovalue (see Figure 8.5b). Utilizing
OpenGL this can be achieved by setting the α-components of the vertices’ color
to the scalar values and activating an appropriate α-test. Then the front faces
are rendered in exactly the same way, i.e. again only those parts are rendered
where the interpolated scalar value is less than the isovalue (see Figure 8.5c). By
combining both pictures with an exclusive-OR (XOR) operation the correct set
of pixels is obtained. Using OpenGL an XOR operation can be realized with the
help of a 1-bit stencil buffer by inverting its contents whenever a pixel passes the
α-test.

Note that the result is not sensitive to the order of the polygon rendering,
i.e. the back and front faces could be rendered in any order. The result is also
the same if the α-test is inverted for all faces, i.e. if those parts of the polygons are
rendered where the interpolated scalar value is greater than the isovalue. West-
ermann’s original algorithm differs in so far as the α-test is inverted for the back
faces only and the pictures are combined with an AND-operation. However, this
requires additional passes in order to generate both faces of the isosurface.

In summary this algorithm requires the rendering of all front and back faces in
order to set the stencil buffer and to render either the front or the back faces once

8.8. FLAT-SHADED ISOSURFACES 77

more for flat-shaded isosurfaces. Thus, for a tetrahedral cell five to seven triangles
have to be rendered, while a polygonal representation of the isosurface in a tetra-
hedron needs only one or two triangles. Therefore, the advantage of interpolating
the scalar data with the help of OpenGL hardware is more than compensated by
the need to render additional polygons.

The situation is, however, fundamentally different in the context of the PT
algorithm as will be discussed in the following section.

8.8 Flat-Shaded Isosurfaces

As mentioned in Section 8.2 the PT algorithm [101] triangulates the projection of
tetrahedra as shown in Figure 8.1. However, instead of referring to a triangulation
of the projected silhouette into triangles, we can as well think of a decomposition
of the original tetrahedron into smaller tetrahedra, which are projected after the
decomposition. The projections of these smaller tetrahedra are all of the same
kind: Two faces are degenerate and the other two faces are projected onto the same
(non-degenerate) triangle. This observation enables us to reduce the algorithm
presented in Section 8.7 to a single-pass algorithm for these tetrahedra using 2D
texture mapping.

As explained in Section 8.7 pixels are set if and only if the interpolated scalar
value of either the back or the front face is less than the isovalue. As noted the
back and front face are projected onto the same triangle. Therefore, it is sufficient
to render this triangle using a checkerboard-like, two-dimensional texture map as
shown in the right-hand column of Figure 8.6 with the two texture coordinates cor-
responding to the interpolated scalar value of the back and front face, respectively.
(See Section 8.13 for an alternative derivation of this 2D texture map.)

The first texture coordinate corresponds to the scalar value on the front face
and the second texture coordinate to the scalar value on the back face. As the
scalar data are interpolated linearly, the texture coordinates should also be inter-
polated linearly. Perspective corrections of texture coordinates should, therefore,
be disabled. Actual values of texture coordinates have to be specified at the ver-
tices of the triangle and are determined by the scalar data defined at the vertices of
the projected tetrahedron. (See the left-hand column in Figure 8.6 for the scalar
data defined at the vertices of the tetrahedron and the middle column for the re-
sulting pairs of texture coordinates at the vertices of the projected triangle.) If the
scalar data are not in the appropriate range for texture coordinates, the values have
to be scaled accordingly. However, this can be done in a preprocessing step. The
texture itself has to determine the α-component, i.e. the opacity, which has to be 1
for opaque isosurfaces whenever either the first or the second texture coordinate is
less than the isovalue, and 0 otherwise (see the right-hand column of Figure 8.6).

78 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

0.7 0.

0.4
0.9

0.3

(0.,0.7)

(0.4,0.4) (0.9,0.9) 0 0.5 1
0

0.5

1
0.3

0.3

0.7 0.

0.4
0.9

0.5

(0.,0.7)

(0.4,0.4) (0.9,0.9) 0 0.5 1
0

0.5

1
0.5

0.5

0.7 0.

0.4
0.9

0.75

(0.,0.7)

(0.4,0.4) (0.9,0.9) 0 0.5 1
0

0.5

1
0.75

0.75

Figure 8.6: Projected tetrahedra (middle column) with flat-shaded isosurfaces for
isovalues 0.75 (top row), 0.5 (middle row), and 0.3 (bottom row). The left-hand
column shows the same tetrahedra slightly rotated with scalar data at the vertices.
These values define the texture coordinates included in the pictures of the actual
projections in the middle column. The right-hand column shows the correspond-
ing texture maps including the triangles in the space of texture coordinates.

As this pass does not allow any kind of smooth shading, we employ flat shading,
i.e. the RGB-components of the color of the triangle are constant.

Unfortunately, edges of isosurface patches within triangles (see the middle
column of Figure 8.6 for some examples) will cause rendering artifacts as there is
no mechanism which aligns them exactly to the corresponding edges in the pro-
jected tetrahedra in front or behind. We can avoid gaps by slightly modifying the
texture map, effectively “thickening” the isosurface. This eliminates artifacts for
opaque isosurfaces; for partially transparent isosurfaces, however, this will visu-
ally enhance edges of the tetrahedral mesh by rendering pixels twice. Removing
these artifacts for partially transparent isosurfaces is an open problem and requires
additional efforts in the future.

8.9. SMOOTHLY SHADED ISOSURFACES 79

8.9 Smoothly Shaded Isosurfaces

Our algorithm for smoothly shaded isosurfaces is again a variant of the corre-
sponding passes of Westermann’s algorithm for shaded isosurfaces in unstructured
grids [113]; however, there are several crucial differences. For each triangle the
steps of our algorithm are:

1. Render the shaded back face triangle restricted to the isosurface silhouette
as discussed in Section 8.8.

2. Repeat the preceding step for the front face triangle.

3. Form the weighted sum of the two pictures to get shading for intermediate
positions of the isosurface.

The weights differ for each pixel as they depend on the relative distances of the
isosurface to the front and back face, respectively (see Figure 8.7). For reasons
which will become clear in the next paragraph, let α denote the weight of a pixel
of the front triangle. According to Figure 8.7 the weight α is

α =
siso − sb

s f − sb
for s f < siso < sb or s f > siso > sb

with the isovalue siso; s f and sb were defined in Section 8.4. The weight of a
corresponding pixel on the back face triangle is 1 − α. While weights for all
pixels were calculated in software in [113], we are calculating the weighted sum
completely in hardware.

We still use the 2D texture map of Section 8.8 for the back face triangle but
employ a modified version of this texture map for the front face triangle. This new
texture map (see Figure 8.8 for an example) is modulated with the weights α. As
the original texture map contains only opacity values 0 and 1, this modulated map
in fact stores the weights α = siso−sb

s f−sb
for the front face triangle. (Remember that

s f and sb are the texture coordinates and that the texture map already depends on
siso.) Thus, the weights α in fact specify opacities. Using this texture map when
rendering the front face triangle and blending it appropriately onto the opaque
back face triangle generates, therefore, the correct weighted sum of both triangles.

Thus, our algorithm for smoothly shaded isosurfaces can be reformulated in
two passes for each tetrahedron:

1. Render the shaded back face triangle restricted to the isosurface silhouette.
(See Section 8.8.)

2. Blend the shaded front face triangle modulated with a texture map contain-
ing the correct weights onto the back face triangle.

80 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

s f sb

siso

Figure 8.7: Rendering smoothly shaded isosurfaces by shading the back and front
face triangle, and forming the weighted sum. Weights are symbolized by gray
scales and are determined by the relative distances of the front and back faces to
the isosurface given by (siso− sb)/(s f − sb) and (siso − s f)/(sb− s f) respectively.

Special care has to be taken with vertices from the decomposition of projected
tetrahedra, because they can result in artifacts similar to those induced by hang-
ing nodes. Therefore, the color of a vertex inserted between two vertices of the
mesh has to be equal to the color generated by the graphics hardware interpolating
between these vertices.

The algorithm was used in Figure 8.10 to render several isosurfaces of differ-
ent colors as explained in the following section.

8.10 Colored and Multiple Isosurfaces

The techniques presented in Sections 8.8 and 8.9 can be extended to colored and
multiple isosurfaces. Coloring can be achieved by setting the vertex colors to
white and modulating them with colored RGBα texture maps. The two faces of
an isosurface can be colored independently by choosing different colors for texels
with s f > sb and s f < sb respectively.

An example of a texture map for multiple isosurfaces is given in Figure 8.9,
which shows the combination of the (colored) texture maps from Figure 8.6. The
“visibility ordering” is easy to understand: For s f < sb we view along the gradient
of the scalar field, thus isosurfaces for smaller isovalues occlude those for greater
isovalues, and vice versa for s f > sb.

Assuming that all cells are rendered, the number of isosurfaces n in the texture
map does not affect the rendering time. For opaque isosurfaces our method shares
this feature with Westermann’s algorithm for multiple isosurfaces [114], while

8.11. MIXING ISOSURFACES WITH PROJECTED VOLUMES 81

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.3

0.3

sb

sf

Figure 8.8: A 2D texture map used for
a front face triangle; black corresponds
to opacity 1 (opaque), white to opacity
0 (transparent). It is a modulation of the
lower texture map in Figure 8.6 with the
weights α = siso−sb

s f −sb
and siso = 0.3.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.3 0.5 0.75

0.3

0.5

0.75

sb

sf

Figure 8.9: The correct combination of
the texture maps from Figure 8.6 into a
single texture map for multiple isosur-
faces. (See Section 8.10.)

ray-casting approaches depend at least logarithmically on n. For partially trans-
parent isosurfaces our method does still not depend on n while the dependency of
ray-casting approaches changes to n.

8.11 Mixing Isosurfaces with Projected Volumes

It was claimed that rendering mixtures of opaque polygons and volumetric data
is straightforward, e.g. in [52]. This claim, however, does not apply to any cell
projecting approach including the PT algorithm, since special attention has to be
paid to partially occluded cells. In [120] Williams et al. suggest to slice each
cell at user-specified isovalues. The time complexity of this method, however,
depends linearly on the number of isosurfaces. As we noted in Section 8.10 the
time complexity of our algorithm does not depend on the number of isosurfaces;
therefore, we propose two alternative methods of mixing isosurfaces and volumes,
which are more appropriate in this context.

The algorithm presented in Section 8.9 allows us to smoothly include pro-
jected tetrahedra by rendering them after the corresponding back face triangle and
before the front face triangle. This order ensures that the projected volume is
completely occluded where the front face triangle is opaque, i.e. where the isosur-

82 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

Figure 8.10: Several isosurfaces ex-
tracted from the data set shown in Fig-
ures 8.3 and 8.4.

Figure 8.11: Smooth combination of
Figures 8.4 and 8.10. (See Sec-
tion 8.11.)

face is in front of the volume at the front face, and that the volume is not affected
where the front face is transparent, i.e. where the isosurface is behind the volume
at the back face. Figure 8.7 illustrates this correlation: The relative thickness of
the occluded part of the tetrahedron (white) corresponds to the weight of the front
face (left gray scale).

An example employing this method is given in Figure 8.11, which mixes the
isosurfaces of Figure 8.10 with the projected tetrahedra of Figure 8.4. More realis-
tic examples are presented in Figures 8.13, 8.14, and 8.15. Figure 8.12 comprises
the three 2D texture maps required to render the NASA Bluntfin data set (Fig-
ure 8.13).

Although our approach avoids discontinuities, it is not completely accurate
with respect to correct ray integration. Therefore, we developed a more rigorous
method. For opaque isosurfaces the ray integration in Equation (8.2), respectively
Equation (8.1) if 3D texture mapping is employed, has to be stopped as soon as
one of the isovalues is reached, i.e. for sl(t) = siso (see Figure 8.7). By rendering
the isosurfaces for each triangle first (either in one pass for flat-shaded isosurfaces
or two passes for smoothly shaded isosurfaces), followed by the projected volume
with the modified 2D or 3D texture map, we are able to generate an accurate
picture.

An example of a 2D texture map generated this way is shown in the middle
image of Figure 8.12. The isosurfaces manifest themselves in transparent vertical
stripes which correspond to a scalar value s f on the front face of a tetrahedron

8.12. PERFORMANCE COMPARISON 83

slightly greater than one of the isovalues. Both methods presented in this section
can be generalized to partially transparent isosurfaces.

8.12 Performance Comparison

With hardware-accelerated texture mapping the direct volume rendering methods
presented in Sections 8.4 and 8.5 are essentially as fast as existing implementa-
tions of the PT algorithm. We emphasize that the rendering times for our methods
are not affected by the particular transfer functions employed.

Our extensions of the PT algorithm are hard to compare with “non-PT” algo-
rithms for direct volume rendering, e.g. approaches based on slicing, because the
most time critical step of the PT algorithm is the sorting of the tetrahedra, which
is not affected by the extensions presented in this chapter.

The algorithms for the rendering of isosurfaces described in Sections 8.8 and
8.9 depend on the correct sorting and decomposition of the tetrahedral cells, while
most of the algorithms mentioned in Section 8.6 do not require any sorting or
decomposition of tetrahedra. Moreover, we did not attempt to reduce the number
of cells tested for intersections with the isosurface. Thus, most of the algorithms
mentioned in Section 8.6 will usually be faster than our current implementation if
used to render only a single isosurface. However, as our worst-case rendering time
does not depend on the number of isosurfaces, our method will outrun most of the
other algorithms if the number of isosurfaces is large enough (see also Table 8.1).

Moreover, our rendering algorithms greatly benefit from a combination with
projected volume cells as described in Section 8.11 because the sorting and de-
composition of tetrahedra can be reused in this scenario. Thus, the inclusion of
isosurfaces in a visualization application based on the PT algorithm is almost for
free. As the rendering in our methods includes extraction and triangulation of
the isosurface, the rendering time (without sorting and decomposition of tetrahe-
dra) should be compared to the sum of the extraction, triangulation, and rendering
times of other algorithms. Additional efforts required by other algorithms for
partially transparent isosurfaces and mixing with volume cells should also be con-
sidered in a fair comparison.

The rendering times in Table 8.1 were obtained on an Octane MXE with a
MIPS R10K 250 MHz CPU. The isosurfaces were extracted from the NASA
Bluntfin data set, which was converted into 187,395 tetrahedra. An image with
three isosurfaces is depicted in Figure 8.13 and the corresponding pre-integrated
texture maps are visualized in Figure 8.12. Clearly the rendering times for flat-
shaded isosurface depend on the number of intersected tetrahedra (no double-
counting) instead of the number of isosurfaces. Smoothly shaded isosurfaces
require about twice as much time because the back and front faces have to be

84 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

no. isosurfaces no. cells flat-shaded smoothly shaded
1 14,729 0.09 sec. 0.22 sec.
2 25,361 0.20 sec. 0.41 sec.

10 25,361 0.20 sec. 0.41 sec.

Table 8.1: Rendering times (including “extraction” and “triangulation”) for isosur-
faces from the NASA Bluntfin data set. The number of cells refers to the number
of tetrahedra intersected by at least one isosurface. Timings for the sorting and
decomposition of tetrahedra are not included as these steps are already done by
the original PT algorithm without our extensions.

rendered separately. For a single, smoothly shaded isosurface our rendering time
is close to the 0.2 seconds reported by Westermann in [113]. The rendering per-
formance is comparable to the results of Wittenbrink in [121].

8.13 Heaviside Excursion

This section demonstrates the extraction of unshaded isosurfaces with the tech-
nique presented in Section 8.4 by choosing an appropriate transfer function ρ. As
a side effect the 2D texture maps of Section 8.8 reveal themselves as special cases
of the 3D texture map of Section 8.4. In order to extract the isosurface for an
isovalue siso we have to set ρ(s) = 0 for s 6= siso and ρ(siso) = ∞. Formally, we set
ρ(s) = Cδ(s− siso) with a large constant C and Dirac’s delta function δ(x); multi-
ple isosurfaces correspond to a sum of delta functions. As κ(siso) is constant, we
are only interested in the value of α as defined in Equation (8.1):

1−α = exp

(

−
Z l

0
ρ(sl(t))dt

)

= exp

(

−
Z l

0
Cδ(s f +

t
l
(sb − s f)− siso)dt

)

= exp

(

−
Z l

0
C

∣
∣
∣
∣

l
sb − s f

∣
∣
∣
∣
δ
(

t − l
siso − s f

sb − s f

)

dt

)

= exp

(

−C′H
(

siso − s f

sb − s f

)

H

(
siso − sb

s f − sb

))

Let C′ = C
∣
∣
∣

l
sb−s f

∣
∣
∣ and let H(x) be the Heaviside step function (see [21]). Thus,

for C → ∞ we obtain

α = H

(
siso − s f

sb − s f

)

H

(
siso− sb

s f − sb

)

,

8.14. PRE- VS. POST-CLASSIFICATION 85

which is independent of l. The dependency on s f and sb is already visualized
in the texture maps shown in Figure 8.6. Obviously, the 2D texture maps used in
Section 8.8 are in fact special cases of the 3D texture map of Section 8.4. However,
the derivation presented in Sections 8.7 and 8.8 appears to be more intuitive and
comprehensible.

Figure 8.12: These 2D texture maps of dimensions 256×256 were used to render
the Bluntfin data set depicted in Figure 8.13. The left and right textures were em-
ployed to render the back and front face triangles, whereas the projected volume
was generated by the middle texture with pre-integration stopped at the isovalues.
The texels on the diagonal of this texture represent the transfer functions. Black
pixels in these images correspond to completely transparent texels.

8.14 Pre- vs. Post-Classification

The original approach of Shirley and Tuchman is often called pre-classification,
because the transfer functions are applied to the scalar values of each cell be-
fore rendering. In contrast to this, our cell projection approach is called post-
classification, since emission and opacities are derived after cell projection. Post-
classification is able to reproduce the ray integral accurately, which means that the
influence of the transfer function can be reproduced accurately inside the tetrahe-
dra. Pre-classification simply neglects the non-linear contributions of the transfer
function. This becomes especially visible if the transfer function contains a dis-
continuity. This is best illustrated by a direct comparison of the methods as shown
in Figure 8.16.

86 CHAPTER 8. PRE-INTEGRATED CELL-PROJECTION

Figure 8.13: Visualization of the Bluntfin data set with three isosurfaces mixed
with projected tetrahedra.

Figure 8.14: A visualization of an MRI
head scan. The orange isosurface de-
picts soft tissue located in the cheeks
and behind the eye balls.

Figure 8.15: A CT scan of a bonsai:
Leaves are visualized by direct vol-
ume rendering, while the trunk and the
branches are shown by the brown iso-
surface.

8.14. PRE- VS. POST-CLASSIFICATION 87

Figure 8.16: Pre- vs. post-classification: The example data set shows the elec-
tron density of a hydrogen atom. Top row: pre-classification (left) and post-
classification (right) with a transfer function that cuts away low electron densities.
Whereas the sharp cut is smoothed out on the left, on the right the cut is repro-
duced correctly inside the tetrahedra. Center: wire-frame view. Bottom row:
post-classification with color ramp as transfer function, and the extraction of three
unshaded isosurfaces by setting the transfer function to thin differently colored
peaks.

Chapter 9

Unstructured Volume Rendering on
the PC

The presented cell projections method significantly enhances the quality of un-
structured volume rendering, but not yet fully exploits the capabilities of current
PC graphics accelerators. Due to the increasing flexibility of commodity graphics
hardware the pre-integration technique has become widely available for the visu-
alization of volume data on regular grids. The previous approach for unstructured
meshes employed a 3D texture to effectively apply pre-integration. Although the
resulting images are of high quality, there are several restrictions due to the lim-
ited amount of available texture memory. Transfer functions with high gradients
require a high resolution pre-integration table, which does not fit easily into the
dedicated texture memory. Modern PC graphics hardware, for instance the ATI
Radeon 8500 and the NVIDIA GeForce4, allow more sophisticated approaches
using dependent textures, multi-texturing, per-pixel shading, and hardware accel-
erated pre-integration. This enables us to overcome the limited size of the three-
dimensional pre-integration table. To circumvent this restriction we propose to
implicitly store the 3D texture by means of multiple 2D textures. Then the colors
and opacities of the three-dimensional pre-integration table can be reconstructed
accurately with the high internal precision of the pixel shader.

9.1 High Resolution Ray Integral

Since high resolution 3D textures require huge amounts of texture memory, we
separate the three-dimensional function of the volume density optical model. Un-
fortunately, only the opacity can be separated easily. The chromaticity needs to
be approximated by means of a linear combination of two-dimensional functions.

9.1.1 Opacity Reconstruction

Since the opacity depends on the average density along the viewing ray and the
length l of the ray segment, it can be separated as follows:

88

9.1. HIGH RESOLUTION RAY INTEGRAL 89

linear α

linear α

wire frame

exponential α

Figure 9.1: Comparison between linear approximation and correct exponential α.
The corresponding transfer function which is split into normalized emission and
opacity can be seen below each image.

ρ̂(s f ,sb) =
Z 1

0
ρ(s f + t(sb− s f))dt (9.1)

α1D(x) = 1− e−x (9.2)

For each rendered pixel we derive the average density ρ̂ from a 2D texture map
(Equation 9.1) and compute the final opacity α1D by means of a 1D dependent
texture lookup (Equation 9.2).

In order to further increase the accuracy of the reconstructed α values, the
dependent texture is extended to hold the higher 8 bits of a 16 bit α value in the
alpha channel A and the lower 8 bits in the additional luminance channel L. In
order to map the maximum 16 bit α value to 1, it is scaled by the factor 256

257 . Since
the resulting equation α1D = 256A

257 + L
257 is linear, the texture interpolation delivers

a true 16 bit α lookup.

90 CHAPTER 9. UNSTRUCTURED VOLUME RENDERING ON THE PC

unit coordinates RGB A
0 s f , sb Ĉ0(s f ,sb) ρ(s f ,sb)
1 s f , sb ∆C1(s f ,sb) -
2 lρ(s f ,sb) - α1D(lρ(s f ,sb))

Table 9.1: Texture setup for dependent texture mapping.

Compared to the linear approximation of the opacity using the 2D texturing ap-
proach as outlined in Section 8.5 the resulting images are significantly improved,
as illustrated in Figure 9.1.

9.1.2 Chromaticity Reconstruction

In order to achieve a high-quality approximation of the chromaticity, we pre-
integrate the normalized chromaticities Ĉl = Cl

αl
for l → 0 and l = lmax with lmax

being the maximum length of the ray segments. The normalized emission Ĉ0 and
the difference ∆C1 of the normalized emissions Ĉ0 and Ĉlmax are stored in two high
resolution 2D textures. The latter emissions are defined as follows:

Ĉ0(s f ,sb) =

R 1
0 κ(S1(t))ρ(S1(t))

R 1
0 ρ(S1(t))

Ĉlmax(s f ,sb) =
C(s f ,sb, lmax)

α(s f ,sb, lmax)

∆C1(s f ,sb) = Ĉlmax(s f ,sb)−Ĉ0(s f ,sb)

Using the texture setup of Table 9.1, we implement the following approxi-
mation of the volume optical density model by utilizing dependent textures and
the pixel shader on the NVIDIA GeForce4 [128] and the ATI Radeon 8500 [74]
graphics adapter:

C(s f ,sb, l) ≈ Ĉlin(s f ,sb, l)α(s f ,sb, l)

Ĉlin(s f ,sb, l) = Ĉ0(s f ,sb)+
l

lmax
∆C1(s f ,sb)

α(s f ,sb, l) = α1D(lρ(s f ,sb))

This is a linear approximation in l for every pair of s f and sb. As seen in Fig-
ure 9.2, the linear approximation is not accurate for transfer functions that contain
high gradients. For an improved reconstruction we approximate the chromaticity

9.2. HARDWARE ACCELERATED PRE-INTEGRATION 91

by a polynomial of degree n > 1 in l with the coefficients C̃i, i = 0 . . .n. This
is similar to the polynomial texture mapping approach of Malzbender et al. [64],
which reconstructs the colors of a surface by a biquadratic polynomial. In our
case the approximated chromaticity is given by the polynomial

C(s f ,sb, l) ≈ α(s f ,sb, l)
n

∑
i=0

li

li
max

C̃i(s f ,sb).

To compute the polynomial coefficients C̃i we pre-integrate the chromaticity
at l = i

lmax
for i = 0 . . .n and construct a polynomial through each of these points

for every pair of s f and sb. This corresponds to the computation of n + 1 slices
with l = const of the pre-integration table.

Since the number of texture units is limited, we can only use a polynomial
approximation with a degree of up to 2 on the GeForce4 and of up to 4 on the
Radeon 8500. In the latter case the rasterization performance drops by almost
50%, but the quality of the approximation is only improved slightly. Therefore a
polynomial degree of 2 should be preferred (see Figure 9.2). The corresponding
texture setups are depicted in Table 9.2. The polynomial coefficients are scaled
to the maximum possible texel range [−1 . . .1] to improve the precision of the ap-
proximation. Additionally, the α values are reconstructed with 16 bits of accuracy.

unit coordinates RGB A
0 s f , sb C̃0(s f ,sb) ρ(s f ,sb)
1 s f , sb C̃1(s f ,sb) -
...
n s f , sb C̃n(s f ,sb) -

n+1 lρ(s f ,sb) - α1D(lρ(s f ,sb))

Table 9.2: Texture setup for polynomial color approximation of the three-
dimensional ray integral (with a maximum polynomial degree of n = 2 on the
GeForce4 and of n = 4 on the Radeon 8500).

9.2 Hardware Accelerated Pre-Integration on the
ATI Radeon 8500

In order to visualize volume data comfortably one needs to change the trans-
fer function interactively. Whenever the transfer function is modified the pre-
integration table has to be recomputed. For a resolution of 5122 and a polynomial

92 CHAPTER 9. UNSTRUCTURED VOLUME RENDERING ON THE PC

linear chromaticity

linear chromaticity

wire frame

quadratic chromaticity

Figure 9.2: Comparison between linear and quadratic color approximation com-
bined with 16 bit α, for the transfer function seen below each image.

degree of 4, for instance, this requires approximately 11 seconds on a Pentium 4
running at 2 GHz which is far too slow for interactive updates of the transfer func-
tion. In order to speed up the calculation of the pre-integration table we utilize
graphics hardware for the purpose of numerical integration. We maintain a high
level of accuracy by using the high internal precision of the pixel shader.

The numerical integration of the ray segments is performed by sampling the
integral m times. At each sampling step, the integrated chromaticity κ and the
integrated opacity α are blended with the corresponding entries of the transfer
function.

As described by Engel et al.[26] the integrated opacity can be calculated
quickly by the difference of two definite integrals. If self-attenuation is assumed to
be negligible the same approach can be used to efficiently calculate the integrated
chromaticities. This assumption is valid for volume slicing, since the ray segment

9.2. HARDWARE ACCELERATED PRE-INTEGRATION 93

lengths l are usually small. In the case of unstructured volume rendering, how-
ever, this assumption does not hold, thus self-attenuation cannot be neglected. As
a consequence, the numerical integration of the chromaticities is not fast enough
to achieve interactive updates of the transfer function. However, the chromatici-
ties of one slice of the pre-integration table can be integrated in parallel by using a
hardware-accelerated approach. For each slice with a constant ray segment length
l this is accomplished by blending m quadrilaterals containing the sampled trans-
fer function for every pair of s f and sb into the frame buffer. The sampled transfer
function is reconstructed from a 1D texture (see Table 9.3). For this purpose, the
texture coordinate s of each vertex of the quadrilaterals is assigned as shown in
Figure 9.3.

Figure 9.3: Hardware-accelerated pre-integration: First, the transfer function is
stored in a 1D texture map. Then n rectangles are drawn and blended with the
texture coordinate s assigned in the depicted fashion.

As the 8 bit frame buffer depth of current PC graphics hardware limits the ac-
curacy of the numerical integration, we integrate the chromaticity with the higher
internal accuracy of the pixel shader. Combining two channels of the frame buffer
for each integrated color component of the chromaticity, a total accuracy of 16
bit can be achieved. In practice however, a bit depth of 12 has turned out to be
sufficient.

94 CHAPTER 9. UNSTRUCTURED VOLUME RENDERING ON THE PC

We store the chromaticity and opacity of the transfer function for a given
length l and the number of integration steps m in a 1D texture as defined in Ta-
ble 9.3. To effectively represent high gradients in the transfer function, we con-
struct the 1D texture with the highest possible resolution instead of using a linear
interpolation of the 1D texture.

channel meaning value
red high 8 bit (chromaticity) κ(s)

green low 4 bit (chromaticity) κ(s)

blue high 8 bit (opacity) 1− e−
l
m ρ(s)

alpha low 4 bit (opacity) 1− e−
l
m ρ(s)

Table 9.3: 1D texture used for hardware-accelerated pre-integration.

On the Radeon 8500 the numerical integration is implemented using a method
called ping-pong filtering [74]. For each blending step an RGBA texture contains
the previously integrated chromaticity in the red (high 8 bits) and alpha channel
(low 4 bits). First, the original 12 bit chromaticity is reconstructed in the pixel
shader by multiplying the low bits with 1

256 and adding the result to the high bits.
Note that a texture entry of 255 in the high bits already represents a value of
1.0. Next, the chromaticity and opacity of the transfer function are reconstructed
from the 1D texture in the same fashion. Then the chromaticity is multiplied by
the opacity, the result of the previous iteration is multiplied by one minus the
opacity, and the sum of both yields the new integrated chromaticity. Finally, the
integrated chromaticity is split into 8 high and 4 low bits and is written back into
the corresponding ping pong texture.

The Radeon 8500 masks out all bits representing values higher than 1.0 or
lower than 1

256 . Therefore the high 8 bits are extracted automatically, whereas the
low 4 bits are extracted by simply multiplying the 12 bit chromaticity with 256. In
contrast to this, the GeForce4 always uses saturation logic instead of bit masking.
Therefore the low 4 bits can only be extracted on the Radeon 8500. It should be
noted that the described approach for high-accuracy blending is not necessary on
the latest generation of PC graphics accelerators such as the ATI Radeon 9800
which allow floating point render targets.

A speedup of nearly 100% is achieved by performing four subsequent inte-
gration steps at once in the pixel shader. Since each RGB color component has
to be computed separately, the hardware-accelerated pre-integration needs to be
performed three times for every required slice of the pre-integration table. Each
component of a pre-integrated slice is transferred back into main memory and re-
combined with the other color channels. This results in 9 pre-integration cycles
for a polynomial approximation of a degree of 2, for example.

9.3. PERFORMANCE MEASUREMENTS 95

In contrast to software numerical integration, this hardware-accelerated ap-
proach allows to update the pre-integration table interactively. With respect to in-
tegration accuracy the hardware-accelerated method exhibits a higher integration
error which is due to the 12 bit quantization. An example of these quantization
artifacts is given in Figure 9.4.

Figure 9.4: Comparison between hardware (left) and software (middle) pre-
integration, including the error (right, scaled by a factor of 8 and inverted) for
m = 128 sampling steps.

9.3 Performance Measurements

In the previous chapters we have demonstrated that the multi-texturing capabili-
ties of modern PC graphics accelerators can be utilized to bring high-quality pre-
integrated volume rendering of unstructured grids to the PC platform. Because
of the reduced memory requirements of the employed 2D textures, our method
is capable of applying high resolution transfer functions. A comparison of the
visual quality of the proposed methods is given in Figure 9.5 together with visual-
izations of the Blunt Fin and the Bucky Ball data sets. The best approximation of
the pre-integration table is achieved by using 16 bits for the representation of the
opacities and a polynomial of degree 4 for the reconstruction of the chromaticities.
A polynomial of degree 2 is only slightly less accurate, but performs significantly
faster due to reduced rasterization requirements. Because of the high internal pre-
cision of the pixel shader and the representation of the opacities with 16 bits the
results are even better than those obtained with a 3D texturing setup. Using our
hardware-accelerated pre-integration approach we are able to maintain high up-
date rates of the pre-integration table. In comparison to software integration the
achieved speedup is about 700% on a PC equipped with a Pentium 4 running at 2
GHz and an ATI Radeon 8500 (compare Table 9.4).

96 CHAPTER 9. UNSTRUCTURED VOLUME RENDERING ON THE PC

software setup of textures
linear color (n = 1) 4.4s
polynomial n = 2 6.6s
polynomial n = 4 11.0s

Radeon 8500 setup of textures
linear color (n = 1) 0.6s
polynomial n = 2 1.0s
polynomial n = 4 1.7s

Table 9.4: Preprocessing times for 2D multi-texturing with a texture resolution of
5122 texels.

The total rendering time is almost independent of the chosen reconstruction
method (except for n = 4). It depends mainly on the sorting algorithm [118, 104,
121] and the transfer speed between the CPU and the graphics adapter (see Ta-
ble 9.5). For comparison purposes the experimental results are given for a poly-
nomial degree of 2. We achieve up to 600,000 tetrahedra per second depending on
the sorting algorithm. Approximately half of the time is spent by sorting, while
the other half is spent by rendering. The lower performance for rendering the
Bucky Ball data set is due to a larger variation of the scalar values which lead to a
reduced texture cache coherence.

GeForce4 #tetra numeric MPVO XMPVO
Blunt Fin 187k 3.18 fps 2.64 fps 2.35 fps
Bucky Ball 177k 2.46 fps 2.19 fps 2.05 fps

Radeon 8500 #tetra numeric MPVO XMPVO
Blunt Fin 187k 2.51 fps 2.20 fps 1.99 fps
Bucky Ball 177k 2.09 fps 1.98 fps 1.87 fps

Table 9.5: Display times including visibility sorting on a Pentium 4 running at 2
GHz using a polynomial approximation of degree 2 and a 1280× 960 view port.
The applied sorting algorithms are numerical sorting [121], MPVO [118], and
XMPVO [104].

9.3. PERFORMANCE MEASUREMENTS 97

linear
approximation of α

exponential
interpolation of α

linear color
reconstruction

quadratic color
reconstruction

Figure 9.5: Comparison between different approximations of the ray integral. The
applied transfer functions are depicted below each image.

Figure 9.6: Bucky Ball with per-vertex lighting of original data set and part of the
Christmas Tree data set [46], both with quadratic polynomial approximation of
chromaticity and accurate 16 bit α.

Figure 9.7: Blunt Fin dataset using quadratic polynomial approximation of chro-
maticity and 16 bit α. Due to the high reconstruction quality of the pre-integration
table, the undersampling within the original data set can easily be seen.

Chapter 10

Ground Fog Rendering

Albert Einstein: As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,
they do not refer to reality.

In contrast to Chapters 8 and 9, where the pre-integration technique was developed
to enhance the quality of unstructured volume rendering, in this chapter we try to
improve the performance by posing several restrictions on the optical model. The
performance of the resulting algorithm is demonstrated by rendering ground fog
in real time.

Actual implementations of the PT algorithm achieve a peak performance of
250,000 [121] to 600,000 [35] tetrahedra per second including times for sorting.
Due to the growing complexity and amount of the data sets frame rates of less than
one frame per second are still quite common for typical unstructured data sets.

Recently, hardware-accelerated methods have been proposed to speed up the
PT algorithm, but with actual graphics hardware still no more than approximately
480,000 [109] respectively 490,000 [124] tetrahedra are possible. In fact, the
hardware-accelerated methods are slower than a well tuned software implementa-
tion. This observation may be astonishing in the first place, but with an in depth
analysis of the bottlenecks this becomes clear. There are four limiting operations
which determine the performance of the PT algorithm: visibility sorting, tetrahe-
dral projection, transfer of vertex data, and finally rasterization. Using a fast CPU
like the Pentium 4 3.0 GHz, the ordering and the projection of the tetrahedra is
performed faster than the GPU can be fed over the AGP bus. With the increas-
ing speed of the GPUs the vertex processing performance is almost balanced with
the performance of the CPU, but rasterization still is a limiting factor. In conclu-
sion, performing the cell-projection on the GPU will only slow down the entire
pipeline, since the graphics processor is already near its limit. There also exist
hardware concepts to overcome the speed limitations, but it is uncertain when
these concepts will find its way into graphics accelerators [47].

Since recent efforts to significantly speed up the PT algorithm have not led
to satisfactory results, we pursue a different strategy: First we evaluate the the-
oretical speed limit on the number of polyhedra that can be rendered on actual

98

10.1. THEORETICAL PERFORMANCE 99

graphics hardware. Based on these results we propose a reasonable modification
of the optical model to approach the theoretical limit.

10.1 Theoretical Performance

In principle, all the faces of an unstructured data set have to be treated to recon-
struct the ray integral exactly. For the case of hexahedral cells, this results in 6
faces with 4 vertices each. Assuming that the volumetric grid can be rendered
with triangle stripping, 8 vertices have to be passed down the graphics pipeline
per hexahedron. Actual graphics adaptors like the NVIDIA GeForce3 reach a
peak performance of about 12 million vertices per second using triangle strips (in
practical experience). Thus, the maximum theoretical performance of a GeForce3
is 1.5 million hexahedra per second.

In order to verify the theoretical result, we first applied maximum intensity
projection (MIP) [38]. The advantage of MIP is that a volumetric grid can be
visualized just by rendering all the faces of the cells in an unsorted order. Without
great loss of accuracy the scalar values can be assumed to vary linearly inside
each hexahedron. Then the maximum projected scalar value of each ray segment
is either the value at the intersection point on the front or on the back face. Using
this approach we achieved a performance of 643,000 hexahedra or 5.1 million
triangles per second. Assuming that a hexahedron needs to be decomposed into at
least 5 tetrahedra to be rendered with the PT algorithm the experimental result of
643,000 hexahedra per second corresponds to 3.2 million tetrahedra per second.
This is still far away from the theoretical maximum, but it is almost a magnitude
faster than the best known PT implementation.

10.2 Practical Performance Analysis

The performance for such a simple optical model like MIP is already consider-
ably lower than the theoretical limit. This is mainly due to the large rasterization
overhead. Hence, it is no surprise that the performance is even worse in the case
of the standard volume density optical model [119]. This is due to the require-
ment of visibility sorting. Conceptually, the tetrahedra must be read, written, and
read back from main memory for sorting (compare Wittenbrink et. al [121]).
With increasing rendering speed of the graphics accelerator the memory band-
width consumed by visibility sorting and data transfer over the AGP bus becomes
the limiting factor. This behavior starts at approximately 1.5 million tetrahedra
per second on actual PC hardware. Since the total performance is currently only
around 600,000 tetrahedra per second the main limiting factor is still the graphics

100 CHAPTER 10. GROUND FOG RENDERING

accelerator. We suspect that a significant performance bump beyond the men-
tioned 1.5 million tetrahedra per second limit is possible only with a structural
paradigm shift of graphics accelerators or special purpose hardware.

Because of the limiting behavior of visibility sorting, we devise an efficient
algorithm for an emissive optical model[68] which does not require sorting. In
our opinion this optical model can be considered to be a good tradeoff between
speed and quality. The emissive optical model neglects absorption so that the
ray integral is simply the sum of all emissions along each ray. As a welcome
side effect sorting is not required, since the blend function is commutative. In
comparison to the standard optical model the emissive model gives less visual
clues but as we will see the implementation is extremely simple so that it can
serve as a fast preview and prototyping option.

Recently, Mech[70] proposed a method to render bounded layered fog using
an emissive optical model. The bounded fog is defined within a triangular surface
mesh which allows for easy hardware-accelerated computation of the ray integral
(see Section 5.4). While this approach is simple yet very fast, it assumes a con-
stant fog density and requires a 12 bit visual to eliminate Mach bands. In the
following we extend this algorithm to project arbitrary cell types, such as tetrahe-
dra, hexahedra, or prisms, without the restriction to a 12 bit frame buffer and with
linearly interpolated densities within each cell.

10.3 Projected Convex Polyhedra Algorithm (PCP)

Our so-called Projected Convex Polyhedra (PCP) algorithm requires three passes
per cell. In the first two passes the length of the ray segments is calculated in
the alpha channel of the frame buffer. For this purpose, the distance d to the
near plane is computed for each vertex of the cell. Let dmax denote the maxi-
mum distance, let dmin denote the minimum distance, and let ∆d = dmax − dmin

be the difference of both (see also Figure 10.1). Then the back faces of a cell are
rendered into the alpha channel of the frame buffer with the alpha component of
each vertex set to α = (d − dmin)/∆d. In the same fashion, the front faces of the
cell are rendered into the alpha channel with subtractive blending enabled. As a
result, the normalized ray segment lengths are now available in the alpha chan-
nel of the frame buffer. In the last pass all faces of the cell are rendered into the
color channel of the frame buffer. Let κ(S) denote the transfer function of the
emissive optical model depending on the scalar value S. Then the color I of each
vertex is set to I = 1

2κ(S)∆d. The following blend function is applied as described
in OpenGL notation: glBlendFunc(GL DST ALPHA,GL ONE). This effec-
tively multiplies the average emission along each ray segment with the segment
length already stored in the alpha channel.

10.3. PROJECTED CONVEX POLYHEDRA ALGORITHM (PCP) 101

In contrast to Mech’s method we do not require a 12 bit visual, since we use
normalized ray segment lengths for each cell. A solution to suppress the Mach
bands, if we would apply Mech’s method, would be to use the floating point ren-
der target of actual PC graphics accelerators such as the ATI Radeon 9700 or
NVIDIA NV30. However, since the algorithm is mainly rasterization bound the
increased bandwidth for the floating point render target would significantly slow
down rendering. Additionally, Mech’s algorithm is not as flexible as ours. Us-
ing our method, almost any desired volumetric object or effect can be constructed
from convex polyhedra, such as tetrahedra, prisms, and hexahedra in a very com-
pact way.

∆d
min d

near plane

Figure 10.1: Projection of polyhedral cells.

In principle, all types of cells used for FEM such as tetrahedra, hexahedra,
prisms, pyramids etc. are compatible with our approach. For the common case
of projected hexahedra Schussman et al. [96] report about 80,000 hexahedra per
second. We achieve about 212,000 hexahedra per second, which is a performance
increase of 265%. Compared to the 643,000 hexahedra per second of the MIP
method, the performance drop is mainly due to the increased number of rendering
passes.

In Figure 10.2 and 10.3 example data sets are shown that have been visualized
with the PCP algorithm. The corresponding timings are given in Table 10.4. To
speed up projection hexahedra with zero emission were discarded.

102 CHAPTER 10. GROUND FOG RENDERING

Figure 10.2: Blunt Fin and Bucky Ball data set rendered with the PCP method.

10.4 Application of the PCP Method to Ground Fog
Rendering

Ren Höek: Back off man!!!...
Don’t make me use this...
One step closer, I’m warning ya...
Don’t make me use it!
Now you’ve done it!
You... forced me to use it!!!...

Eventually, we come to the first application example of the proposed unstruc-
tured volume rendering methods in the area of natural gaseous phenomena. Be-
sides the application area of scientific volume visualization as demonstrated in
Figure 10.2 the performance and flexibility of the proposed cell projection algo-
rithm in Section 10.3 paves the way for other fields of application. As an example,
we demonstrate the real time display of ground fog. In principle, all effects related
to light emitting gas can be modeled. In particular, the display of ground fog in
terrain rendering scenarios benefits from our algorithm, as shown in the following.

In a terrain rendering scenario the landscape is commonly given as a height
field (see Chapter 3). Here, the basic idea to display ground fog is to use a second
height field (the ground fog map) which defines the height of the fog layer above
the ground. Each triangle of the surface mesh is treated as a base triangle onto
which a vertically aligned prism is stacked. The height of the prisms, that is the
heights of the three vertical edges of each prism, are derived from the ground fog
map (see Figure 10.5).

At the top left of Figure 10.6 an example height field of Yukon Territory,
Canada, is depicted. The shown ground fog has been generated with 2D Per-
lin noise [82]. In order to reduce the number of displayed triangles and stacked

10.4. APPLICATIONS OF THE PCP METHOD 103

Figure 10.3: Synthetic data sets: A search light with quadratic intensity attenua-
tion, a laser cone, and a campfire generated with 3D Perlin noise.

prisms, we used a C-LOD approach (see Chapter 3), that is our C-LOD imple-
mentation of [89]. The triangulation algorithm of this C-LOD implementation is
driven by a subdivision criterion which depends on viewing distance and local cur-
vature. In case of ground fog rendering the local curvature of both the height field
and the ground fog map has to be considered. Since the projection of a prism takes
more time than rendering the base triangle, the local curvatures are not considered
equally important. In our approach the maximum of the weighted local curvatures
is taken as subdivision criterion. The C-LOD algorithm also implements geomor-
phing so that the popping effect is suppressed efficiently. This allows the viewer
to fly through the ground fog without experiencing any temporal aliasing artifacts.

Figure 10.4: Timings for hexahedral projection.

Data set dimension #hexahedra frames per sec.

BluntFin 32×32×40 37,479 8.5
Bucky Ball 32×32×32 29,791 15.9
Search Light 16×4×32 1,395 115.8
Camp Fire 16×16×16 3375 51.3

104 CHAPTER 10. GROUND FOG RENDERING

triangulated surface

stacked prism

base triangle

edge height
is derived from
ground fog map

Figure 10.5: Stacking prisms onto a triangulated surface.

We achieved an average frame rate of approximately 25 Hertz for a window size
of 512×384.

Inside the fog, we have to take care of prisms that intersect the near clip-
ping plane. In such a case the ray segment lengths are partially invalid, since the
corresponding back faces are not rendered completely. To circumvent this prob-
lem, we also render the intersection of each prism with the near clipping plane
with α = (dnear −dmin)/∆d after the second pass. The same strategy is necessary
for the third pass.

The ground fog in the valley as shown at the top right of Figure 10.6 is dis-
played with maximum intensity projection. The corresponding height field has
been painted by hand with a standard image manipulation application. Since the
MIP method requires only one pass in comparison to the three passes of the PCP
algorithm the rasterization bottleneck is reduced significantly. This leads to more
than twice the frame rate (> 50 Hz) as in the previous example.

Despite the seemingly unsuitable optical model we have found a reasonable
setup for the MIP method: The fog’s optical density is set to zero at the bottom
of the prisms. At the top of the prisms the density correlates to the height of the
fog layer. Despite the fact that this setting does not reproduce the fog physically
correct it is well suited for the real time display of foggy areas in computer games
where fog can be used as a game play relevant element.

Another application area of the described ground fog renderer is the display
of the Aurea Borealis (polar light). We simply set up a height field that corre-
sponds to the penetration depth of the particles into the earth’s ionosphere (see
Figure 10.6).

10.4. APPLICATIONS OF THE PCP METHOD 105

Figure 10.6: Ground fog generated with 2D Perlin noise. Top left: Emissive
optical model. Top right: Maximum Intensity Projection (MIP). Centre: Aurea
Borealis (polar light). Bottom: Ground fog in combination with a cloud layer,
which is defined by two height fields.

Chapter 11

Cloud Rendering

The PCP algorithm employs an emissive optical model or MIP, which results in
unprecedented performance but is not realistic in a physical sense. Due to its
flexibility, it is also suited for the display of volumetric effects in interactive en-
tertainment. We have demonstrated this by rendering fire and ground fog in real
time. In this chapter we apply the pre-integration methods developed in Chap-
ters 8 and 9 to achieve a higher quality. In particular, we demonstrate real time
cloud rendering. In order to achieve real time performance we also develop a
view-dependent mesh simplification scheme which reduces the number of ren-
dered tetrahedra for large cloud data sets. This is the analogue procedure as using
the C-LOD algorithm for the display of ground fog.

11.1 View-Dependent Rendering

In general, the strategy to simplify a mesh in a view-dependent fashion is suited
well for the real time display of large scenes [126]. This has been exemplified
by the C-LOD algorithms in the area of terrain rendering as shown in Chapter 3.
The C-LOD technique achieves high frame rates by generating an approximate
view-dependent triangulation of the terrain. In order to minimize the total screen
space error of the approximation, small distant details are represented with fewer
triangles than those which are nearby.

Despite the widespread use and the maturity of the C-LOD technique it has
not yet been applied to the more general case of volume rendering: A multi-
resolution analysis for the display of polygonal meshes has been introduced
by Rossignac et al. [91], and has been the subject of intense studies later on
(see Xia et al. [126] as a starting point). General multi-resolution analysis of
volumetric meshes has been given by Eck et al. [24] and more recently by
Cignoni et al. [11]. Variants for the hierarchical visualization of regular vol-
ume data have been discussed by Laur et al. [56], Zhou et al. [129], and Schuss-
man et al. [96]. And finally a view-dependent simplification method for irregular
grids has been proposed by Meredith et al. [73]. But the efficient view-dependent
simplification of regular volume data is still an active research field.

106

11.2. C-LOD RENDERING 107

11.2 C-LOD Rendering

In the following we present a general purpose volume rendering algorithm which
is based on the continuous level of detail idea. It maintains an octree to construct
a view-dependent representation of regular volume data. After decomposing each
leave node of the octree into tetrahedra these can be rendered efficiently using the
projected tetrahedra algorithm of Shirley and Tuchman [101].

A common property of view-dependent algorithms is the occurrence of the
so-called popping artifacts: Small distant details will suddenly pop up when ap-
proaching nearby. In the case of a C-LOD terrain renderer the total screen space
error of the approximation can be pushed easily below the one pixel boundary, so
that the popping effect becomes invisible. In the volumetric case, however, this
approach is infeasible. As a solution to this problem, the mesh hierarchy has to
be interpolated smoothly. In consideration of this fact, we present a fast mesh
interpolation method, which we refer to as volumetric morphing throughout this
chapter.

11.3 Generating Continuous Levels of Detail

In this section we describe how to adapt the C-LOD technique previously known
from terrain rendering [59, 19, 89] to the volumetric case.

11.3.1 Hierarchical Volume Representation

Given a three-dimensional scalar field, which is defined by an array with 2n + 1
(n > 0) grid points in each dimension, a hierarchical volumetric mesh is con-
structed by building an octree in a bottom-up fashion. Grids with a size other
than 2n + 1 have to be padded or resampled. Each leave node of the octree is
decomposed into five tetrahedra. Since there exist two topologically different de-
compositions, adjacent nodes of the same level of detail have to be decomposed in
an alternating fashion to ensure a conforming mesh. In Figure 11.1 the orientation
of the tetrahedra is depicted for a coarse example hierarchy with a total of three
different levels of detail.

11.3.2 View-Dependent Mesh Simplification

The key idea of a volumetric C-LOD algorithm can be described as follows: In
order to perform a view-dependent simplification the octree has to be updated for
each frame. During a top-down traversal of the octree our approach calculates an

108 CHAPTER 11. CLOUD RENDERING

Figure 11.1: Hierarchical volume representation using an octree: The example
hierarchy consists of the root node with 8 children (bright/orange), one of which
has been refined into another 8 children (dark/blue). Each leave node of the octree
is decomposed into five tetrahedra in an alternating fashion.

upper limit on the local screen space error of each node. If the local error exceeds
a predefined threshold the corresponding node is split into eight children.

The error metric used to estimate the local screen space error is designed to
meet the following criteria: A node should be refined if the local simplification
error is large. Also, small distant nodes should be refined less likely than those
which are nearby. Let s be the edge length of each node, let d denote the euclidean
distance of the eye to the center of the node, and let ∆ be the local simplification
error of the node in object space. With the previous definitions, we introduce the
absolute error E, the base error b, and the normalized error e = E/b as follows:

e =
sC max(c∆,1)

d
(11.1)

If the normalized error e is greater than one (meaning that the actual error is
greater than the base error b), the node is refined, else the refinement of the oc-
tree is stopped. The base error is set indirectly by choosing appropriate values
for the two constants c and C. Typically, C is chosen to be constant, so that by
tuning c in the range from [1,∞[the resolution of the mesh can be adapted conve-
niently. Higher values of c result in a finer mesh, whereas the constant C defines
the minimum possible resolution.

11.3. GENERATING CONTINUOUS LEVELS OF DETAIL 109

In a preprocessing step the local error ∆ is computed. It is defined to be the
average of the scalar deviations ∆i at the center of the node and the midpoints of
the edges and faces. The scalar deviations ∆i are equal to the difference of the
scalar value of each vertex and the interpolated scalar value derived from the next
coarser level of detail. For instance, the deviation of the midpoint of an edge is
equal to the absolute scalar difference of that vertex and the average of the two
adjacent corner vertices (also compare Figure 11.2 where ∆midle f t = |1

2(Stople f t +
Sbottomle f t)−Smidle f t |).

11.3.3 Building a Conforming Mesh

For adjacent nodes, which do not belong to the same level of detail (depicted
by the orange and blue colors in Figure 11.1), the interpolated scalar values at a
T-vertex of the boundary face do not match. One solution to ensure a conform-
ing mesh is to insert irregular tetrahedra into the coarser node. This technique is
known as the red-green or regular-irregular refinement method [2, 34]. But if we
want to morph between two of the large number of irregular configurations, the
situation is getting inscrutable complex. Furthermore, adjacent nodes must not
differ by more than one level for this method to work. In order to circumvent
these problems, we employ a different approach: Rather than inserting irregular
tetrahedra into the coarser node, we manipulate the scalar values of the refined
node. To build a conforming mesh the scalar value at a T-vertex is simply sub-
stituted by the interpolated value from the coarser mesh of the adjacent neighbor
node. A detailed example is given in Section 11.4.

11.3.4 Hierarchical Error Propagation

Since we use a top-down simplification approach, at each node only the local
simplification error is known. However, in order to minimize the total screen
space error of the generated mesh, we also need to know the local simplification
error of all children in advance. This can be accomplished by propagating the
local error from the children up to the parents of the octree. In principle, the error
propagation has to ensure that a node is refined, if at least one child already fulfills
the refinement condition. In mathematical terms this can be written as:

echild > 1 → e > 1 or e > echild (11.2)

Substituting Equation 11.1 into Equation 11.2 yields

∆ > K∆child with K =
d

2dchild
. (11.3)

110 CHAPTER 11. CLOUD RENDERING

Now we determine an upper bound for K. Since we introduced a minimum
accuracy C which always guarantees refinement for d < sC we just have to con-
sider the case d ≥ sC. On the one hand, the minimum possible value of K is 1

2
for an infinite distant viewer. On the other hand, the maximum possible value
of K occurs for the minimum distance d = sC. Then the minimum distance to the
center of one of its children is dchild = sC− 1

4

√
3s. Resubstituting these distances

into Equation 11.3 yields the following upper bound for K:

Kmax =
C

2C− 1
2

√
3

(C >
√

3) (11.4)

As a consequence, Formula 11.5 can be used to propagate the local error ∆
from all eight children up to the parent nodes. Starting with the leave nodes, all
nodes which belong to the same level of detail are processed in a row. For each
node the final propagated ∆-values are stored at the center vertex of each node
using a linear mapping with 16 bits of accuracy.

∆ := max(∆,Kmax ·∆child) (11.5)

In summary, the update of the view-dependent hierarchy is performed by re-
fining the octree, if and only if the normalized error defined in Equation 11.1 is
greater than one. The simplicity of this approach is the basis for the real time
performance of our algorithm. Another important advantage is that volumetric
morphing can be implemented very efficiently as shown in Section 11.4.

11.4 Volumetric Morphing

Arthur C. Clarke: Any smoothly functioning technology
will have the appearance of magic.

In this section we describe a new fast method to morph the view-dependent hier-
archy. Volumetric morphing is mandatory, because otherwise the transition from
one level of detail to another could be observed easily.

For each frame, first the hierarchy is updated using the view-dependent ap-
proach described in Section 11.3. During the update the error metric e is mapped
to the range [0,1] according to Equation 11.6 and stored at the center vertex of
each node with 8 bits of accuracy.

e′ = min(max(e−1,0),1) (11.6)

In a second octree traversal, the normalized error metric e′ is interpreted in the
following way: A value of zero (e ≤ 1) means that the corresponding node has

11.4. VOLUMETRIC MORPHING 111

not yet been refined, thus it can be decomposed into 5 tetrahedra and rendered as
described in Section 11.5. A value greater than zero and less than one (e ∈ (1,2))
means that the node has been refined but still none of its children. A value of one
(e ≥ 2) means that the node and at least one of its children have been refined. As
a consequence, the time between the two subsequent refinement events for e′ = 0
and e′ = 1 can be used to blend the scalar values of the corresponding node as
smooth as possible. Thus, the parameter e′ just serves as an interpolation factor to
morph recursively between the actual node and its children.

In contrast to a fixed blending time interval [42], the speed of the interpola-
tion is coupled to the error metric. This is a much better strategy for volumetric
morphing, since distant details can be morphed much slower than those which
are nearby. In practice, we have found that the maximum instead of the average
of the deviations ∆i suppresses the popping effect more reliably. This is due to
the fact that the subjective observability of the interpolation is determined by the
maximum and not by the average change of all vertices.

In the context of the described interpolation scheme a conforming mesh can
be guaranteed simply by using the minimum interpolation factor of all adjacent
nodes which share the interpolated vertex. If one of the adjacent nodes has not
been refined, the corresponding interpolation factor is assumed to be zero.

In the following we illustrate the described interpolation scheme using a two-
dimensional example, which is depicted in Figure 11.2. In general, only the scalar
values of the non-corner vertices of a node have to be interpolated using the nor-
malized error metric e′ as the interpolation factor. In the two-dimensional case,
the non-corner vertices of a node are the midpoints of the four edges (black dots)
and the center vertex (white dot). For each of those vertices the interpolation is
performed between the average scalar value of the two adjacent corner vertices
(small black crosses) and the actual scalar value of the vertex. For the midpoint of
the left edge of the grey node in Figure 11.2, for example, the interpolated scalar
value S′midle f t is calculated as follows:

w = min(e′,e′n) (11.7)

S′midle f t = w
1
2
(Stople f t +Sbottomle f t)+(1−w)Smidle f t (11.8)

In the three-dimensional case, the non-corner vertices of a node are the centroid,
the midpoints of the six faces, and the midpoints of the eight edges. The scalar
values of these vertices are interpolated in analogy to the two-dimensional exam-
ple. The midpoints of the edges are shared among the actual node and a maximum
of three adjacent nodes of the same level of detail. Thus, the minimum interpo-
lation factor of these vertices has to be calculated from the interpolation factors
of the actual and the three adjacent nodes. The midpoints of the faces are shared
among two nodes. Here, additional care must be given to the calculation of the

112 CHAPTER 11. CLOUD RENDERING

Figure 11.2: Two-dimensional morphing example.

average scalar value of the corner vertices, since adjacent nodes are decomposed
in an alternating fashion. The average scalar value is therefore computed from the
appropriate two corner vertices of the tetrahedral decomposition of the adjacent
neighbor node. The centroid of a node is located inside the center tetrahedron of
the decomposition. In this case the average scalar value is computed from the four
vertices of the center tetrahedron. Again, special care must be given to the calcu-
lation of the average scalar value, since the orientation of the center tetrahedron
alters.

11.5 Cell Projection

Now that we have performed a view-dependent simplification of a regular vol-
ume, the generated tetrahedra have to be composed in a back to front fashion.
We apply the cell-projection technique, that is the PT algorithm of Shirley and
Tuchman [101, 106, 116, 120]. The original PT algorithm only supports linear
transfer functions which are not appropriate for the display of gaseous phenom-
ena as demonstrated in Section 11.6. Therefore we also apply the pre-integration
method introduced in Chapter 8 (compare also [90, 69, 26]) which allows the use
of arbitrary transfer functions by storing the ray integral in a three-dimensional
pre-integration table. Visibility sorting [118, 13] is performed by reordering the
traversal of the octree in a back to front fashion. For this purpose the children of
each node are traversed back to front. This ensures that at each level of detail the
nodes are depth sorted, which is equivalent to a total ordering of the octree.

In order to speed up the PT algorithm we discard transparent tetrahedra by
applying the so-called Zero Opacity Test (ZOT). While this test is obvious for

11.6. NON-PHOTOREALISTIC CLOUD RENDERING 113

linear transfer functions, it is not as obvious for arbitrary transfer functions. For-
tunately, the three-dimensional pre-integration table contains all necessary infor-
mation to apply this test. First, the minimum and maximum scalar values (de-
noted by Smin and Smax) of the tested tetrahedra are computed. If the entry at
position (b(n− 1)Sminc,d(n− 1)Smaxe,m− 1) of the pre-integration table (with
size n×n×m) is zero, then we can discard the tested tetrahedra. By applying the
ZOT to each visited node of the octree, we can discard all transparent tetrahedra
with virtually no computational overhead.

Another common way to speed up rendering is view frustum culling. During
the rendering traversal of the octree each node is tested against intersection with
the view frustum. If a node does not overlap with the view frustum, it is invisible
and can be discarded.

Since we want to allow the viewer to navigate freely inside the volume, we
face the following problem: If a tetrahedron intersects the near clipping plane, the
clipped two-dimensional projection is not identical with the clipped volume of the
tetrahedron. In order to display the tetrahedron correctly, it has to be be clipped
in a truly volumetric fashion. We distinguish two different cases: Either the tetra-
hedron is cut into one tetrahedron and one prism or it is cut into two prisms.
Therefore, the visible part of the clipped tetrahedron is either a tetrahedron or a
prism. In the latter case the total number of rendered tetrahedra is increased, since
the prism has to be decomposed into three tetrahedra. However, in comparison to
the total number of rendered tetrahedra, the number of clipped tetrahedra is fairly
low. Therefore the number of additionally generated tetrahedra is uncritical.

11.6 Non-Photorealistic Cloud Rendering

In the previous sections we have described a general purpose volume rendering
algorithm which is based on a view-dependent simplification. In this section we
demonstrate the abilities of this approach by rendering volumetric clouds.

In general, we can think of a cloud as a three-dimensional scalar function f =
f (x,y,z). The scalar values correspond to the optical density of the medium. Due
to the complex anisotropic light scattering [3, 31, 23, 67, 105, 78, 43] inside a
cloud the photorealistic display is a time consuming task. Impostors [95, 97] are
currently the dominating technique here [16, 25, 37] (see also Chapters 5 and 6).

However, if we restrict ourselves to isotropic light scattering the cloud inten-
sities can be precomputed and we can apply the described view-dependent sim-
plification algorithm. As a result, the clouds are modeled by two scalar fields,
the scalar density f (x,y,z) and the scalar isotropic light intensity γ(x,y,z). The
mesh simplification is driven by the maximum deviation of both scalar fields.
This approach has the following advantages: Since we use a truly volumetric rep-

114 CHAPTER 11. CLOUD RENDERING

resentation there are no restrictions with respect to cloud shape and appearance.
As opposed to the impostor method, the clouds are displayed without temporal
aliasing or perspective artifacts, even for view points inside the clouds. This is
guaranteed by the application of volumetric morphing and clipping.

11.6.1 Modified PT Algorithm

The volume density optical model [119] used for pre-integrated volume rendering
presumes the transfer functions κ (the chromaticity vector) and ρ (the scalar op-
tical density) to depend both on the scalar density function f (x,y,z). But, since
we want the optical density to depend on the density function f (x,y,z) and the
chromaticity vector to depend on the precomputed light intensities γ(x,y,z), we
circumvent this restriction of the optical model by slightly modifying the PT al-
gorithm. For this purpose, we assume that ρ(f) = f . Then we apply the pre-
integration to the chromaticity vector κ = κ(γ(x,y,z)) and the maximum opti-
cal density ρmax = fmax. To introduce the dependency on f (x,y,z) we modulate
the effective length l of each tetrahedral ray segment by the scalar optical den-
sity ρ = f (x,y,z) according to the following equation:

l′ = l
f (x,y,z)

fmax
(11.9)

11.6.2 Non-Photorealistic Lighting

The previous approach requires an isotropic light scattering simulation [67, 78,
43] to calculate the light intensity function γ(x,y,z). Instead of determining
physical simulation parameters we propose a non-photorealistic approach which
achieves the desired look and feel of the clouds by a direct manipulation of the
transfer functions.

For this purpose, the chromaticity vector κ = κ(f (x,y,z)) is defined to be an
inverse color ramp and the optical density ρ = ρ(f (x,y,z)) is defined to be a linear
function except for very small densities where it is set to zero. This allows to speed
up rasterization by discarding nearly transparent areas with the ZOT. The light
intensities γ are calculated by standard ambient and diffuse lighting and are used
to modulate the effective ray segment length as described before. With respect
to the direction of the diffuse light this leads to high opacities at the front and
to low opacities at the back of the clouds. As a consequence, the dark inside
of each cloud shines through the translucent back, but at the front bright colors
still dominate the appearance of the clouds. This approach effectively mimics the
natural look and feel of clouds without requiring a physical lighting simulation.

11.7. PERFORMANCE MEASUREMENTS 115

11.7 Performance Measurements

Using the described non-photorealistic cloud and ground fog rendering algo-
rithms, Figures 11.3 and 12.4 show the city center of Stuttgart with some cumulus
clouds and ground fog in the valleys. The scene was rendered in real time with
approximately 26 frames per second on a PC equipped with a 1.2 GHz AMD
Athlon and an NVIDIA GeForce3 graphics adaptor. About 25% of the total ren-
dering time was spent on terrain rendering [89], 20% was spent for the display
of the ground fog and the remainder of 55% for the display of the clouds. The
latter were generated with 3D Perlin noise [82, 22]. The applied transfer func-
tions κ and ρ are depicted on the left side of Figure 11.3. The ease of changing
the appearance of the clouds by choosing different transfer functions is illustrated
in Figure 11.4 showing the Big Island of Hawaii during daytime and sunset.

Figure 11.3: The city center of Stuttgart with clouds and ground fog in the valleys.
The applied transfer functions κ and ρ are depicted on the left.

The size of the height field and the ground fog map is 2049× 2049, whereas
the cumulus clouds are represented by an 8 bit density field with a base size
of 513× 513 and a height of 65 grid points. For the density field one byte is
consumed per grid point plus 16 bits for the deviations ∆ and one byte for the
interpolation parameter e′ summing up to a total of 48 MB in our example. The
size of the pre-integrated 3D texture is 64×64×128 which corresponds to 2 MB
of graphics memory. Since only the 3D texture has to be kept in graphics memory,
the maximum cloud size is limited by main memory only. For the display of the
clouds the number of rendered tetrahedra was reduced from a total of 83 million to

116 CHAPTER 11. CLOUD RENDERING

Figure 11.4: The impact of different transfer functions on the appearance of the
Big Island of Hawaii. From top left to bottom right: Perlin noise clouds with
pre-integration and lighting, linear transfer function without lighting, sunset-like
transfer function, and simulated bad weather.

less than 10 thousand tetrahedra on the average. This corresponds to a reduction
of four orders of magnitude.

An analysis of the experimental results reveals two bottlenecks. The main
bottleneck is the projection of the tetrahedra. This is due to the fact that for each
single node of the octree 5 tetrahedra have to be decomposed into an average
number of 17.5 triangles. If the view point is entirely inside a cloud, the algorithm
is mostly fill-rate bound and the performance drops to approximately 15 frames
per second for a window size of 512×384 pixels.

11.8 Discussion

In comparison to the impostor technique, our approach offers the following ad-
vantages: Most important, a flight through the clouds does not introduce temporal
aliasing or perspective artifacts, since we use volumetric morphing and clipping.

11.8. DISCUSSION 117

Furthermore, our general purpose volume rendering algorithm is able to render
arbitrary weather conditions including overcast sky and thunder storm clouds (see
Figure 12.2). Besides the shown 3D Perlin noise example more sophisticated
cloud simulation algorithms [77, 75, 29] are compatible with our approach, which
makes the algorithm well suited for the purpose of weather visualization.

In Figure 11.5 we have tried to match the virtual view of the city cen-
ter of Stuttgart with the actual real view as seen from the vista point called
“Birkenkopf”. Of course, one can clearly see the difference between the real
and the virtual image, since it is very difficult to reproduce the vegetation on the
ground. It is even more difficult to model the captured real weather situation.
This would require a deep understanding of weather simulation which is not the
aim of this thesis. Nevertheless, in principal, the most important natural volu-
metric phenomena such as clouds and ground fog can be displayed at real time.
Using more sophisticated simulation methods and real input data would lead to
greatly improved realism. This has been shown by Thomas Gerstner et al. [32]
who displayed real weather radar data by means of an hierarchical cell-projection
approach. Unfortunately, weather radar data captures only the precipitation distri-
bution and not the detailed shape of the rain clouds.

Figure 11.5: Real and virtual panorama of Stuttgart.

Chapter 12

Summary

In this thesis our aim was to develop algorithms for the real time display of natural
gaseous phenomena, that is particularly ground fog and clouds. We analyzed
the existing methods in this research area and came to the conclusion that truly
volumetric methods were lacking. We developed unstructured volume rendering
techniques that were mainly aimed at scientific volume rendering in the first place.
But we have demonstrated that unstructured volume rendering methods are also
suitable for reaching our goal of displaying natural phenomena at real time.

To be more precise, we developed two real time volume rendering methods in
this thesis. The first one is the PCP method, and the second one is pre-integrated
cell-projection.

Right now, the first one, the PCP technique, can be used in interactive en-
tertainment to model volumetric effects with greater realism. Typical application
areas are the display of fire, search lights and the like (see Figure 10.3). The use of
a non-photorealistic rendering model somewhat limits the area of application, but
in many cases the real time performance outweighs this restriction. In interactive
entertainment the layered fog technique [57, 39] is used commonly (i.e. in the
DX8 game AquaNox [87]), but has the disadvantage that the vertical fog bound-
aries are fixed. With the ground fog rendering algorithm described in Chapter 10
we overcome this restriction by explicitly defining the height of the fog layer. In
order to reduce the geometric complexity we not only apply the C-LOD approach
to the terrain but also to the ground fog layer. The resulting view-dependent rep-
resentation allows to minimize the otherwise inherently large volume rendering
overhead. This is the first time an approach has been presented which does not
restrict the ground fog model in a geometrical sense. An example is shown in
Figure 12.1.

The second method for visualizing volumetric effects at real time is pre-
integrated cell-projection. It allows to reconstruct the ray integral with per-
pixel exactness. Previous unstructured volume rendering approaches were ei-
ther strongly limited in accuracy or in rendering speed. Pre-integrated cell-
projection achieves both high quality and high performance. We combined this
approach with a three-dimensional version of the well-known continuous level of
detail technique, which approximates a three-dimensional scalar field in a view-

118

119

Figure 12.1: Wire frame view of ground fog which shows the view-dependent
representation: Far details are represented with fewer volumetric primitives than
those which are nearby.

dependent fashion. The necessity to suppress the popping effect has been ad-
dressed by a fast algorithm for volumetric morphing. We have demonstrated the
performance of our algorithm by displaying non-photorealistic clouds in real time
(see Chapter 11 and Figure 12.4). Because of the truly volumetric representation
of the clouds, the algorithm is suited for real time weather visualization and the
display of high quality volumetric effects in computer games. In order to include
an application example in the area of weather visualization, Figure 12.2 depicts
the simulated rising of a thunder storm cloud (data set included in the Vis5D vi-
sualization package, data courtesy of Bob Schlesinger).

Figure 12.2: Volume visualization of a thunder storm cloud: Eight differently
colored semi-transparent isosurfaces are used to visualize the shape of the storm.

120 CHAPTER 12. SUMMARY

12.1 Decision Chart

In order to put the existing and the new real time volume rendering algorithms
in context we have included a decision chart in Figure 12.3. The chart has to be
read in the following way: From top to bottom and from left to right we diversify
the algorithms by means of the two criteria “quality vs. performance” and “scene
complexity”, thus the appropriate algorithm for a specific rendering task can be
determined quickly by considering these two criteria.

Volumetric FX

Volumetric Objects Environmental FX

Billboards

Layered Fog

Pre-Integrated
 Clouds

PCP for Ground Fog

Impostors

PCP for Objects

Pre-Integrated
Cell-Projection

Traditional Volume
Rendering (Slicing)

OpenGL Fog

Bounded Layered Fog

 Scene
Complexity

Quality
 vs.
 Speed

 Hierarchical
Volume Rendering

Metaball
Methods

Figure 12.3: Decision chart for volumetric real time methods.

As a first decision step we take a look at the scene complexity of volumetric real
time effects. We distinguish between volumetric objects like puffs of smoke and
global environmental effects like fog. Naturally the scene complexity of envi-

12.2. AVAILABILITY AND LICENSING 121

ronmental effects is larger since the entire scene is affected. As a second step
we consider the quality requirements. If a simple optical model can be used one
can choose the PCP method for example. If this is not sufficient one would vote
for pre-integration. The traditional volume rendering methods and the metaball
method fall somewhere in between the two main categories. Because of the large
rasterization overhead it is difficult to apply them to the entire scene. In that
sense hierarchical volume rendering methods perform much better, but problems
like temporal aliasing and limited texture memory make smooth rendering very
difficult. The highest quality is achieved by pre-integration and impostor based
methods. If scattering effects are required impostor methods are the best choice,
but if arbitrary cloud models have to be visualized this can only be achieved with
a truly volumetric method like pre-integrated cloud rendering.

In conclusion, the newly introduced unstructured volume rendering methods
widen the spectrum of application areas on both the side of quality and perfor-
mance. The best example for this are the new ground fog and cloud rendering
methods. My hope is that some of the presented algorithms provide clues for
implementing advanced volumetric FX in scientific visualization and interactive
entertainment, as well. In the future this goal might be reached by establishing
the tetrahedron as a basic volume rendering primitive in the API of core graphics
libraries.

12.2 Availability and Licensing

The terrain and ground fog renderer referenced in Chapter 10 is avail-
able freely on the home page of the author (www9.informatik.uni-
erlangen.de/Persons/Roettger/). It is licensed under the terms of the LGPL
and is also part of the vtp terrain rendering package (www.vterrain.org).

122 CHAPTER 12. SUMMARY

Figure 12.4: Scenes from a flight above Stuttgart showing volumetric clouds and
ground fog in real time.

Bibliography

[1] AKELEY, K. RealityEngine Graphics. Computer Graphics (SIGGRAPH
’93 Proceedings) 27 (1993), 109–116.

[2] BANK, R., SHERMAN, A., AND WEISER, A. Refinement Algorithm and
Data Structures for Regular Local Mesh Refinement. Scientific Computing
44 (1983), 3–17.

[3] BLINN, J. F. Light Reflection Functions for Simulation of Clouds and
Dusty Surfaces. Computer Graphics 16, 3 (1982), 21–29.

[4] BOADA, I., NAVAZO, I., AND SCOPIGNO, R. Multiresolution Volume
Visualization with a Texture-Based Octree. The Visual Computer (2001),
185–197.

[5] C. L. BAJAJ (ED.). Data Visualization Techniques. John Wiley & Sons,
1999.

[6] C. L. BAJAJ, V. PASCUCCI, AND D. R. SCHIKORE. Fast Isocontouring for
Improved Interactivity. In Proc. IEEE Symposium on Volume Visualization
’96 (1996), pp. 39–46.

[7] CABRAL, B., CAM, N., AND FORAN, J. Accelerated Volume Rendering
and Tomographic Reconstruction Using Texture Mapping Hardware. In
Proc. Symposium on Volume Visualization ’94 (1994), ACM SIGGRAPH,
pp. 91–98.

[8] CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., AND PON-
CHIO, F. Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM). In
Proc. Visualization ’03 (2003), IEEE, pp. 147–155.

[9] CIGNONI, P., MARINO, P., MONTANI, C., PUPPO, E., AND SCOPIGNO,
R. Speeding Up Isosurface Extraction Using Interval Trees. IEEE Trans-
actions on Visualization and Computer Graphics 3, 2 (1997), 158–170.

123

124 BIBLIOGRAPHY

[10] CIGNONI, P., MONTANI, C., PUPPO, E., AND SCOPIGNO, R. Optimal
Isosurface Extraction from Irregular Volume Data. In Proc. IEEE Sympo-
sium on Volume Visualization ’96 (1996), pp. 31–38.

[11] CIGNONI, P. AND COSTANZA, C. AND MONTANI, C. AND ROCCHINI, C.
AND SCOPIGNO, R. Simplification of Tetrahedral Meshes with Accurate
Error Evaluation. In Proc. Visualization ’00 (2000), IEEE, pp. 85–92.

[12] COHEN-OR, D., AND LEVANONI, Y. Temporal Continuity of Levels of
Detail in Delaunay Triangulated Terrain. In Proc. Visualization ’96 (1996),
IEEE Computer Society Press, pp. 37–42.

[13] COMBA, J., KLOSOWSKI, J. T., MAX, N. L., MITCHELL, J. S. B.,
SILVA, C. T., AND WILLIAMS, P. L. Fast Polyhedral Cell Sorting for
Interactive Rendering of Unstructured Grids. Computer Graphics Forum
(Proc. Eurographics ’99) 18, 3 (1999), 369–376.

[14] CRAWFIS, R., AND MAX, N. Texture splats for 3D scalar and vector field
visualization. In Proc. Visualization ’93 (1993), IEEE Computer Society,
pp. 261–266.

[15] DE BOER, W. H. Fast Terrain Rendering Using Geometrical Mipmapping.
E-mersion Project (2000).

[16] DOBASHI, Y., KANEDA, K., YAMASHITA, H., OKITA, T., AND NISHITA,
T. A Simple, Efficient Method for Realistic Animation of Clouds. In Proc.
SIGGRAPH ’00 (2000), ACM, pp. 19–28.

[17] DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. Interactive Render-
ing of Atmospheric Scattering Effects Using Graphics Hardware. In Proc.
EG/SIGGRAPH Graphics Hardware Workshop ’02 (2002), pp. 99–108.

[18] DREBIN, R. A., CARPENTER, L., AND HANRAHAN, P. Volume Render-
ing. Computer Graphics 22, 4 (1988), 65–74.

[19] DUCHAINEAU, M., WOLINSKY, M., SIGETI, D. E., MILLER, M. C.,
ALDRICH, C., AND MINEEV-WEINSTEIN, M. B. ROAMing Terrain:
Real-Time Optimally Adapting Meshes. In Proc. Visualization ’97 (1997),
IEEE, pp. 81–88.

[20] DURKIN, J. W., AND HUGHES, J. F. Nonpolygonal Isosurface Render-
ing for Large Volume Datasets. In Proc. IEEE Visualization ’94 (1994),
pp. 293–300.

BIBLIOGRAPHY 125

[21] E. W. WEISSTEIN. Eric Weisstein’s World Of Mathematics.
http://mathworld.wolfram.com/, 2004.

[22] EBERT, D., MUSGRAVE, K., PEACHEY, D., PERLIN, K., AND WORLEY,
S. Texturing & Modeling, A Procedural Approach, second edition, isbn
0-12-228730-4 ed. AP Professional, 1998.

[23] EBERT, D., AND PARENT, R. Rendering and Animation of Gaseous Phe-
nomena by Combining Fast Volume and Scanline A-Buffer Techniques.
Computer Graphics (Proc. SIGGRAPH ’90) 24, 4 (1990), 357–366.

[24] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M.,
AND STUETZLE, W. Multiresolution Analysis of Arbitrary Meshes. In
Proc. SIGGRAPH ’95 (1995), ACM, pp. 173–182.

[25] ELINAS, P., AND STUERZLINGER, W. Real-time Rendering of 3D Clouds.
Journal of Graphics Tools 5, 4 (2000), 33–45.

[26] ENGEL, K., KRAUS, M., AND ERTL, T. High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel Shading. In Euro-
graphics Workshop on Graphics Hardware ’01 (2001), ACM SIGGRAPH,
pp. 9–16.

[27] ENGEL, K., WESTERMANN, R., AND ERTL, T. Isosurface Extraction
Techniques for Web-Based Volume Visualization. In Proc. IEEE Visual-
ization ’99 (1999), pp. 139–146.

[28] FARIAS, R., MITCHELL, J., AND SILVA, C. An Efficient and Exact Pro-
jection Algorithm for Unstructured Volume Rendering. In Proc. IEEE Sym-
posium on Volume Visualization ’00 (2000), ACM Press, pp. 91–99.

[29] FEDKIW, R., STAM, J., AND JENSEN, H. W. Visual Simulation of Smoke.
In Proc. SIGGRAPH ’01 (2001), ACM, pp. 15–22.

[30] FOWLER, R. J., AND LITTLE, J. J. Automatic Extraction of Irregular
Network Digital Terrain Models. Computer Graphics 13, 2 (1979), 199–
207.

[31] GARDNER, G. Y. Visual Simulation of Clouds. In Proc. SIGGRAPH ’85
(1985), ACM, pp. 297–303.

[32] GERSTNER, T. AND MEETSCHEN, D. AND CREWELL, S. AND GRIEBEL,
M. AND SIMMER, C. A Case Study on Multiresolution Visualization of
Local Rainfall from Weather Radar Measurements. In Proc. IEEE Visual-
ization ’02 (2002), pp. 533–536.

126 BIBLIOGRAPHY

[33] GROSS, M. H., GATTI, R., AND STAADT, O. Fast Multiresolution Surface
Meshing. In Proc. Visualization ’95 (1995), IEEE Computer Society Press,
pp. 135–142.

[34] GROSSO, R., LÜRIG, C., AND ERTL, T. The Multilevel Finite Ele-
ment Method for Adaptive Mesh Optimization and Visualization of Volume
Data. In Proc. Visualization ’97 (1997), IEEE, pp. 387–394.

[35] GUTHE, S., ROETTGER, S., SCHIEBER, A., STRASSER, W., AND ERTL,
T. High-Quality Unstructured Volume Rendering on the PC Platform. In
Proc. EG/SIGGRAPH Graphics Hardware Workshop ’02 (2002), pp. 119–
125.

[36] GUTHE, S., WAND, M., GONSER, J., AND STRASSER, W. Interactive
Rendering of Large Volume Data Sets. In Proc. Visualization ’02 (2002),
IEEE Computer Society Press, pp. 53–60.

[37] HARRIS, M. J., AND LASTRA, A. Real-Time Cloud Rendering. Computer
Graphics Forum (Proc. Eurographics ’01) 20, 3 (2001), 76–84.

[38] HEIDRICH, W., MCCOOL, M., AND STEVENS, J. Interactive Maximum
Projection Volume Rendering. In Proc. Visualization ’95 (1995), IEEE,
pp. 11–18.

[39] HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. Ap-
plications of Pixel Textures in Visualization and Realistic Image Synthesis.
In Proc. ACM Symposium on Interactive 3D Graphics (1999), pp. 127–134.

[40] HOPPE, H. Progressive meshes. In Computer Graphics (Proceedings SIG-
GRAPH ’96) (1996), pp. 99–108.

[41] HOPPE, H. View-dependent refinement of progressive meshes. In Com-
puter Graphics (Proceedings SIGGRAPH ’97) (1997), pp. 189–198.

[42] HOPPE, H. Smooth View-Dependant Level-of-Detail Control and its Ap-
plication to Terrain Rendering. In Proc. Visualization ’98 (1998), IEEE,
pp. 35–42.

[43] JENSEN, H. W., AND CHRISTENSEN, P. H. Efficient Simulation of Light
Transport in Scenes with Participating Media Using Photon Maps. In Proc.
SIGGRAPH ’98 (1998), ACM, pp. 311–320.

[44] KAJIYA, J. T. The Rendering Equation. Computer Graphics (ACM SIG-
GRAPH ’86 Proceedings) 20 (1986), 143–150.

BIBLIOGRAPHY 127

[45] KAJIYA, J. T., AND VON HERZEN, B. P. Ray Tracing Volume Densi-
ties. Computer Graphics (ACM SIGGRAPH ’84 Proceedings) 18, 3 (1984),
165–174.

[46] KANITSAR, A., THEUSSL, T., MROZ, L., SRAMEK, M., VILANOVA, A.,
CSEBFALVI, B., HLADUVKA, J., FLEISCHMANN, D., KNAPP, M., WE-
GENKITTL, R., FELKEL, P., ROETTGER, S., GUTHE, S., PURGATHOFER,
W., AND E., G. Christmas Tree Case Study: Computed Tomography as
a Tool for Mastering Complex Real World Objects with Applications in
Computer Graphics. In Proc. Visualization ’02 (2002), IEEE Computer
Society Press, pp. 489–492.

[47] KING, D., WITTENBRINK, C., AND WOLTERS, H. An Architecture For
Interactive Tetrahedral Volume Rendering. Proc. International Workshop
on Volume Graphics ’01 (2001), 101–112.

[48] KNISS, J., PREMOZE, S., HANSEN, C., SHIRLEY, P., AND MCPHER-
SON, A. A Model for Volume Lighting and Modeling. In Transactions on
Visualization and Computer Graphics 2003 (2003), pp. 150–162.

[49] KNISS, J., PREMOZE, S., IKITS, M., LEFOHN, A., HANSEN, C., AND

PRAUN, E. Gaussian Transfer Functions for Multi-Field Volume Visual-
ization. In Proc. Visualization ’03 (2003), pp. 497–504.

[50] KOLLER, D., LINDSTROM, P., RIBARSKY, W., HODGES, L. F., FAUST,
N., AND TURNER, G. Virtual GIS: A real-time 3D geographic information
system. In Proc. Visualization ’95 (1996), IEEE Computer Society Press,
pp. 94–100.

[51] KRAUS, M., AND ERTL, T. Cell-Projection of Cyclic Meshes. In Proc.
IEEE Visualization ’01 (2001), pp. 215–222.

[52] KREEGER, K., AND KAUFMAN, A. Mixing Translucent Polygons with
Volumes. In Proc. IEEE Visualization ’99 (1999), pp. 191–198.

[53] LACROUTE, P. Real-Time Volume Rendering on Shared Memory Multi-
processors Using the Shear-Warp Factorization. In Proc. Parallel Render-
ing Symposium ’95 (1995), pp. 15–22.

[54] LACROUTE, P., AND LEVOY, M. Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation. Computer Graphics
(Proceedings SIGGRAPH ’94) 28, 4 (1994), 451–457.

128 BIBLIOGRAPHY

[55] LAMAR, E. C., HAMANN, B., AND JOY, K. I. Multiresolution Tech-
niques for Interactive Texture-Based Volume Visualization. In Proc. Visu-
alization ’99 (1999), IEEE, pp. 355–362.

[56] LAUR, D., AND HANRAHAN, P. Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering. In Proc. SIGGRAPH ’91
(1991), pp. 285–288.

[57] LEGAKIS, J. Fast Multi-Layer Fog. In ACM SIGGRAPH ’98 Conference
Abstracts and Applications (1998), p. 266.

[58] LIN, C.-C., AND CHING, Y.-T. An Efficient Volume-Rendering Algo-
rithm with an Analytic Approach. The Visual Computer 12, 10 (1996),
515–526.

[59] LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L. F., FAUST,
N., AND TURNER, G. Real-Time, Continuous Level of Detail Rendering
of Height Fields. In Proc. SIGGRAPH ’96 (1996), ACM, pp. 109–118.

[60] LIVNAT, Y., AND HANSEN, C. View Dependent Isosurface Extraction. In
Proc. IEEE Visualization ’98 (1998), pp. 175–180.

[61] LIVNAT, Y., SHEN, H.-W., AND JOHNSON, C. R. A Near Optimal Iso-
surface Extraction Algorithm Using Span Space. IEEE Transactions on
Visualization and Computer Graphics 2, 1 (1996), 73–84.

[62] LORENSEN, W. E., AND CLINE, H. E. Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm. ACM Computer Graphics (Proc.
SIGGRAPH ’87) 21, 4 (1987), 163–169.

[63] M. LEVOY. Display of Surfaces from Volume Data. Computer Graphics
and Applications 8, 3 (1988), 29–37.

[64] MALZBENDER, T., GELB, D., AND WOLTERS, H. Polynomial Texture
Maps. In SIGGRAPH 2001, Computer Graphics Proceedings (2001), An-
nual Conference Series, pp. 519–528.

[65] MASSIVE DEVELOPMENT. Krass Game Engine.
http://www.massive.de/english/technology eng.html (2000).

[66] MAX, N., BECKER, B., AND CRAWFIS, R. Flow Volumes for Interac-
tive Vector Field Visualization. In Proc. Visualization ’93 (1993), IEEE
Computer Society Press, pp. 19–24.

BIBLIOGRAPHY 129

[67] MAX, N. L. Efficient Light Propagation for Multiple Anisotropic Volume
Scattering. In 5th Workshop on Rendering (1994), Eurographics, pp. 87–
104.

[68] MAX, N. L. Optical Models for Direct Volume Rendering. IEEE Transac-
tions on Visualization and Computer Graphics 1, 2 (1995), 99–108.

[69] MAX, N. L., HANRAHAN, P., AND CRAWFIS, R. Area and Volume
Coherence for Efficient Visualization of 3D Scalar Functions. Computer
Graphics (San Diego Workshop on Volume Visualization) 24, 5 (1990), 27–
33.

[70] MECH, R. Hardware-Accelerated Real-Time Rendering of Gaseous Phe-
nomena. Journal of Graphics Tools 6, 3 (2001), 1–16.

[71] MEISSNER, M., GUTHE, S., AND STRASSER, W. Interactive Lighting
Models and Pre-Integration for Volume Rendering on PC Graphics Accel-
erators. In Proc. Graphics Interface ’02 (2002), pp. 209–218.

[72] MEISSNER, M., KANUS, U., WETEKAM, G., HIRCHE, J., EHLERT,
A., STRASSER, W., DOGGETT, M., FORTHMANN, P., AND PROKSA,
R. VIZARDII: A Reconfigurable Interactive Volume Rendering System.
In Proc. Eurographics/SIGGRAPH Workshop on Graphics Hardware ’02
(2002), pp. 137–146.

[73] MEREDITH, J., AND MA, K. Multi-Resolution View-Dependent Splat
Based Volume Rendering of Large Irregular Data. In Proc. Symposium on
Large-Data Visualization and Graphics ’01 (2001), pp. 93–99.

[74] MITCHELL, J. L. 1.4 Pixel Shaders. Meltdown (2001).

[75] MIYAZAKI, R., YOSHIDA, S., DOBASHI, Y., AND NISHITA, T. A Method
for Modeling Clouds Based on Atmospheric Fluid Dynamics. In Proc.
Pacific Graphics ’01 (2001), pp. 363–372.

[76] MONTANI, C., SCATENI, R., AND SCOPIGNO, R. Discretized Marching
Cubes. In Proc. IEEE Visualization ’94 (1994), pp. 281–287.

[77] NEYRET, F. Qualitative Simulation of Cloud Formation and Evolution. In
8th Workshop on Computer Animation and Simulation (EGCAS ’97) (Wien,
1997), Eurographics, Springer, pp. 113–124.

[78] NISHITA, T., DOBASHI, Y., AND NAKAMAE, E. Display of Clouds Tak-
ing into Account Multiple Anisotropic Scattering and Sky Light. In Proc.
SIGGRAPH ’96 (1996), ACM, pp. 379–386.

130 BIBLIOGRAPHY

[79] OH, K.-M., AND PARK, K. H. A Type-Merging Algorithm for Extracting
an Isosurface from Volumetric Data. The Visual Computer 12, 8 (1996),
406–419.

[80] OPENGL ARCHITECTURE REVIEW BOARD. OpenGL Reference Manual.
Addison-Wesley, 1992.

[81] PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., , AND SLOAN,
P.-P. Interactive Ray Tracing for Isosurface Rendering. In Proc. IEEE
Visualization ’98 (1998), pp. 233–238.

[82] PERLIN, K. An Image Synthesizer. Computer Graphics (Proc. SIGGRAPH
’85) 19, 3 (1985), 287–296.

[83] PFISTER, H., HARDENBERGH, J., KNITTEL, J., LAUER, H., AND

SEILER, L. The VolumePro Real-Time Ray-Casting System. In Proc.
SIGGRAPH ’99 (1999), pp. 251–260.

[84] ROETTGER, S., AND ERTL, T. A Two-Step Approach for Interactive Pre-
Integrated Volume Rendering of Unstructured Grids. In Proc. IEEE Sym-
posium on Volume Visualization ’02 (2002), ACM Press, pp. 23–28.

[85] ROETTGER, S., AND ERTL, T. Cell Projection of Convex Polyhedra. In
Proc. Volume Graphics ’03 (2003), pp. 103–107.

[86] ROETTGER, S., AND ERTL, T. Fast Volumetric Display of Natural
Gaseous Phenonema. In Proc. Computer Graphics International ’03
(2003), pp. 74–81.

[87] ROETTGER, S., AND FRICK, I. The Terrain Rendering Pipeline. In Proc.
EWV ’02 (2002), OCG Schriftenreihe, R. Oldenburg, Vienna, pp. 195–199.

[88] ROETTGER, S., GUTHE, S., WEISKOPF, D., AND ERTL, T. Smart
Hardware-Accelerated Volume Rendering. In Proc. Visualization Sympo-
sium ’03 (2003), IEEE Computer Society Press, pp. 231–238.

[89] ROETTGER, S., HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P.
Real-Time Generation of Continuous Levels of Detail for Height Fields. In
Proc. WSCG ’98 (1998), EG/IFIP, pp. 315–322.

[90] ROETTGER, S., KRAUS, M., AND ERTL, T. Hardware-Accelerated Vol-
ume and Isosurface Rendering Based on Cell-Projection. In Proc. Visual-
ization ’00 (2000), IEEE, pp. 109–116.

BIBLIOGRAPHY 131

[91] ROSSIGNAC, J., AND BORREL, P. Multi-Resolution 3D Approximations
for Rendering. Springer Verlag, 1993, pp. 455–465.

[92] RUSHMEIER, H. Realistic Image Synthesis for Scenes with Radiatively
participating Media. Cornell University, 1988.

[93] RUSHMEIER, H., AND TORRANCE, K. The Zonal Method for Calculating
Light Intensities in the Presence of Participating Media. Computer Graph-
ics 21, 4 (1987), 293–302.

[94] SAMET, H. Applications of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

[95] SCHAUFLER, G. Per-Object Image Warping with Layered Impostors. In
Proc. 9th Workshop on Rendering ’98 (1998), Eurographics, pp. 145–156.

[96] SCHUSSMAN, G., AND MAX, N. L. Hierarchical Perspective Volume
Rendering Using Triangle Fans. In Proc. TCVG Eurographics Workshop
(VolumeGraphics ’01) (2001), IEEE/EG, pp. 309–320.

[97] SHADE, J., GORTLER, S., HE, L., AND SZELISKI, R. Layered Depth
Images. In Proc. SIGGRAPH ’98 (1998), ACM, pp. 231–242.

[98] SHEKHAR, R., FAYYAD, E., YAGEL, R., AND CORNHILL, J. F. Octree-
Based Decimation of Marching Cubes Surfaces. In Proc. IEEE Visualiza-
tion ’96 (1996), pp. 335–342.

[99] SHEN, H.-W., HANSEN, C. D., LIVNAT, Y., AND JOHNSON, C. R. Iso-
surfacing in Span Space with Utmost Efficiency (ISSUE). In Proc. IEEE
Visualization ’96 (1996), pp. 287–294.

[100] SHEN, H.-W., AND JOHNSON, C. R. Sweeping Simplices: A Fast Iso-
Surface Extraction Algorithm for Unstructured Grids. In Proc. IEEE Visu-
alization ’95 (1995), pp. 143–150.

[101] SHIRLEY, P., AND TUCHMAN, A. A Polygonal Approximation to Direct
Scalar Volume Rendering. ACM Computer Graphics (San Diego Workshop
on Volume Visualization) 24, 5 (1990), 63–70.

[102] SIEGEL, R., AND HOWELL, J. Thermal Radiation Heat Transfer. McGraw
Hill, New York, 1981.

[103] SILVA, C. T., AND MITCHELL, J. S. B. The Lazy Sweep Ray Casting Al-
gorithm for Rendering Irregular Grids. IEEE Transactions on Visualization
and Computer Graphics 3, 2 (1997), 142–157.

132 BIBLIOGRAPHY

[104] SILVA, C. T., MITCHELL, J. S. B., AND WILLIAMS, P. L. An Exact Inter-
active Time Visibility Ordering Algorithm for Polyhedral Cell Complexes.
In Proc. IEEE Symposium on Volume Visualization ’98 (1998), ACM Press,
pp. 87–94.

[105] STAM, J., AND FIUME, E. Depicting Fire and Other Gaseous Phenom-
ena Using Diffusion Processes. In Proc. SIGGRAPH ’95 (1995), ACM,
pp. 129–136.

[106] STEIN, C. M., BECKER, B. G., AND MAX, N. L. Sorting and Hardware
Assisted Rendering for Volume Visualization. In Proc. IEEE Symposium
on Volume Visualization ’94 (1994), pp. 83–89.

[107] SUTER, M., AND NÜESCH, D. Automated generation of visual simulation
databases using remote sensing and GIS. In Proc. Visualization ’95 (1995),
IEEE Computer Society Press, pp. 135–142.

[108] ŠRÁMEK, M. Fast Surface Rendering from Raster Data by Voxel Traver-
sal Using Chessboard Distance. In Proc. IEEE Visualization ’94 (1994),
pp. 188–195.

[109] WEILER, M., AND ERTL, T. Hardware-Based View-Independent Cell Pro-
jection. In Proc. IEEE Symposium on Volume Visualization ’02 (2002),
ACM Press, pp. 13–22.

[110] WEILER, M., KRAUS, M., MERZ, M., AND ERTL, T. Hardware-Based
Ray Casting for Tetrahedral Meshes. In Proc. Visualization ’03 (2003),
IEEE, pp. 333–340.

[111] WEILER, M., WESTERMANN, R., HANSEN, C., ZIMMERMAN, K., AND

ERTL, T. Level-Of-Detail Volume Rendering via 3D Textures. In Volume
Visualization and Graphics Sympsium ’00 (2000), IEEE, pp. 7–13.

[112] WESTERMANN, R., AND ERTL, T. The VSBUFFER: Visibility Ordering
of Unstructured Volume Primitives by Polygon Drawing. In Proc. Visual-
ization ’97 (1997), IEEE, pp. 35–42.

[113] WESTERMANN, R., AND ERTL, T. Efficiently Using Graphics Hardware
in Volume Rendering Applications. In Computer Graphics (1998), Annual
Conference Series, ACM, pp. 169–177.

[114] WESTERMANN, R., JOHNSON, C. R., AND ERTL, T. A Level-Set Method
for Flow Visualization. In Proc. IEEE Visualization ’00 (2000), pp. 147–
154.

BIBLIOGRAPHY 133

[115] WESTOVER, L. Interactive Volume Rendering. In Proc. Chapel Hill Work-
shop on Volume Visualization (1989), pp. 9–16.

[116] WILHELMS, J., AND VAN GELDER, A. A Coherent Projection Approach
for Direct Volume Rendering. Computer Graphics 25, 4 (1991), 275–284.

[117] WILHELMS, J., AND VAN GELDER, A. Octrees for Faster Isosurface Gen-
eration. ACM Transactions on Graphics 11, 2 (1992), 201–227.

[118] WILLIAMS, P. L. Visibility Ordering Meshed Polyhedra. ACM Transac-
tions on Graphics 11, 2 (1992), 103–126.

[119] WILLIAMS, P. L., AND MAX, N. L. A Volume Density Optical Model. In
Computer Graphics (Workshop on Volume Visualization ’92) (1992), ACM,
pp. 61–68.

[120] WILLIAMS, P. L., MAX, N. L., AND STEIN, C. M. A High Accuracy
Volume Renderer for Unstructured Data. Transactions on Visualization
and Computer Graphics 4, 1 (1998), 37–54.

[121] WITTENBRINK, C. M. CellFast: Interactive Unstructured Volume Render-
ing. In IEEE Visualization ’99 Late Breaking Hot Topics (1999), pp. 21–24.

[122] WOLFGANG HEIDRICH. High-quality Shading and Lighting for
Hardware-accelerated Rendering. PhD thesis, University of Erlangen-
Nuremberg, 1999.

[123] WOO, M., NEIDER, J., DAVIS, T., AND SHREINER, D. OpenGL Pro-
gramming Guide: The Official Guide to Learning OpenGL, Version 1.2,
3rd ed. Addison-Wesley, 1999.

[124] WYLIE, B., MORELAND, K., FISK, L. A., AND CROSSNO, P. Tetrahedral
Projection using Vertex Shaders. In Proc. IEEE Symposium on Volume
Visualization ’02 (2002), ACM Press, pp. 7–12.

[125] WYVILL, B., WYVILL, G., AND MCPHEETERS, C. Data Structures for
Soft Objects. The Visual Computer 2 (1986), 227–234.

[126] XIA, J. C., EL-SANA, J., AND VARSHNEY, A. Adaptive Real-Time Level-
of-Detail Based Rendering for Polygonal Models. Trans. on Visualization
and Computer Graphics 3, 2 (1997), 171–183.

[127] YAGEL, R., REED, D. M., LAW, A., SHIH, P., AND SHAREEF, N. Hard-
ware Assisted Volume Rendering of Unstructured Grids by Incremental
Slicing. In Proc. IEEE Symposium on Volume Visualization ’96 (1996),
pp. 55–62.

134 BIBLIOGRAPHY

[128] ZHANG, H. Vertex Program 1.1 and Texture Shader 3. Game Developers
Conference (2002).

[129] ZHOU, Y., CHEN, B., AND KAUFMAN, A. Multiresolution Tetrahedral
Framework for Visualizing Regular Volume Data. In Proc. Visualization
’97 (1997), IEEE, pp. 135–142.

List of Figures

List of Figures 5

2.1 The OpenGL rendering pipeline 12
2.2 An OpenGL rendering example 14
2.3 The OpenGL rendering primitives 15
2.4 Lighting and texturing . 16
2.5 Light reflection . 17
2.6 BRDF . 18
2.7 Texture mapping . 19
2.8 MIP-mapping . 20
2.9 3D-Texturing . 21
2.10 Register combiners . 23

3.1 Triangular irregular network . 27
3.2 Static LOD as proposed by Koller et al. 29
3.3 Progressive meshes . 30
3.4 C-LOD algorithm as proposed by Lindstrom et al. 31
3.5 Projection of a delta segment . 32
3.6 Example of ROAM terrain . 33
3.7 Split and merge operation . 34
3.8 C-LOD as proposed by Roettger et al. 36
3.9 Terrain quadtree . 37

4.1 Example screen shot of AquaNox 40
4.2 The main stages of the terrain rendering pipeline 45

5.1 Sky dome . 48
5.2 Absorption and scattering . 49
5.3 OpenGL fog . 49
5.4 Layered fog . 50
5.5 Bounded layered fog . 52
5.6 Metaball clouds . 53

135

136 LIST OF FIGURES

5.7 Impostor clouds . 55
5.8 Dobashi’s method . 56
5.9 Harris’ method . 56

6.1 Multiple scattering . 61
6.2 Anisotropic scattering . 62

7.1 Basic principle of ray casting . 65
7.2 Hardware-accelerated volume rendering 66

8.1 Classification of tetrahedra according to PT algorithm 69
8.2 Viewing ray intersecting a tetrahedron 71
8.3 3D pre-integration table . 73
8.4 2D pre-integration table . 73
8.5 Isosurface rendering . 76
8.6 Isosurface classification . 78
8.7 Weighting coefficients for gradient interpolation 80
8.8 Front face texture map . 81
8.9 Back face texture map . 81
8.10 Example of multiple isosurfaces 82
8.11 Mixing isosurfaces with projected volumes 82
8.12 Example 2D pre-integration textures 85
8.13 Bluntfin data set with multiple isosurfaces 86
8.14 MRI head scan . 86
8.15 CT bonsai scan . 86
8.16 Pre- vs. post-classification . 87

9.1 Comparison between linear α and exponential approximation. . . 89
9.2 Comparison between linear and quadratic color approximation . . 92
9.3 Hardware-accelerated pre-integration 93
9.4 Comparison between hardware and software pre-integration . . . 95
9.5 Comparison between different approximations of the ray integral . 97
9.6 Bucky Ball with per-vertex lighting 97
9.7 Blunt Fin dataset using quadratic polynomial approximation . . . 97

10.1 Projection of polyhedral cells . 101
10.2 Blunt Fin and Bucky Ball data set 102
10.3 Synthetic data sets . 103
10.4 Timings for hexahedral projection 103
10.5 Stacking prisms onto a triangulated surface 104
10.6 Ground fog generated with 2D Perlin noise 105

LIST OF FIGURES 137

11.1 Hierarchical volume representation using an octree 108
11.2 Two-dimensional morphing example 112
11.3 The city center of Stuttgart . 115
11.4 The impact of different transfer functions 116
11.5 Real and virtual panorama of Stuttgart 117

12.1 Wire frame view of ground fog 119
12.2 Volume visualization of a thunder storm cloud 119
12.3 Decision chart . 120
12.4 Scenes from a flight above Stuttgart 122

138 LIST OF FIGURES

List of Tables

List of Tables 5

8.1 Rendering times for isosurfaces 84

9.1 Texture setup for dependent texture mapping 90
9.2 Texture setup for polynomial color approximation 91
9.3 1D texture used for hardware-accelerated pre-integration 94
9.4 Preprocessing times for 2D multi-texturing 96
9.5 Display times on a Pentium 4 (2 GHz) 96

139

Chapter 13

Zusammenfassung

Das Ziel dieser Dissertation ist die Entwicklung von volumetrischen Methoden
zur Darstellung von natürlichen Phänomenen wie zum Beispiel Wolken und Bo-
dennebel. Dies ist besonders in Computerspielen wichtig, in denen die stetige
Weiterentwicklung der in Personalcomputern eingesetzten Graphikkarten die rea-
listische und gleichzeitig echtzeitfähige Darstellung von dreidimensionalen Sze-
nen ermöglicht haben.

Nach einer kurzen Motivation und Einführung in dreidimensionale Visualisie-
rungstechniken folgt in Kapitel 3 ein Überblick über die Arbeitsweise der Gra-
phikhardware. In Kapitel 4 werden Methoden zur Darstellung von Landschaften
behandelt, welche die Basis für jede Outdoor-Game-Engine darstellen. Im Ver-
lauf der Dissertation werden wir mehrere Visualisierungsalgorithmen vorstellen,
die auf diesen Darstellungsmethoden aufbauen. Insbesondere die so genannten C-
LOD Algorithmen werden ausführlich behandelt und miteinander verglichen, da
sie zur Zeit die am weitesten fortgeschrittene Technik darstellen.

Die Notwendigkeit, fortgeschrittene Algorithmen zur Landschaftsvisualisie-
rung zu verwenden, liegt in der schieren Größe der Daten begründet. Eine Land-
schaft wird im Allgemeinen durch ein so genanntes Höhenfeld beschrieben.
Dies ist eine zwei-dimensionale Matrix, welche die Höhenwerte enthält. Die
durchschnittliche Größe dieses Höhenfeldes liegt heutzutage bei 2000x2000 bis
4000x4000 Gitterpunkten. Aktuelle kommerziell genutzte Satelliten liefern aber
bereits eine Auflösung von unter 10 Metern. Militärsatelliten erreichen jedoch
schon seit geraumer Zeit eine Auflösung von deutlich unter einem Meter. So
erhält man für eine Auflösung von nur einem Kilometer bereits eine Datenmenge
von rund 500 Millionen Gitterpunkten für die gesamte Erde. Für eine Auflösung
von 10 Metern erhöht sich die Datenmenge entsprechend auf 5 Billionen Gitter-
punkte. Das entspricht einer unkomprimierten Datenmenge von rund 10 Terabyte.
Dies verdeutlicht, welche Datenmenge bei der Landschaftsvisualisierung theore-
tisch pro Bild verarbeitet werden muss. Selbst bei der erwähnten durchschnittli-
chen Größe von 2000x2000 Punkten besteht die Landschaft noch aus 4 Millionen
Dreiecken. Unter der Annahme, dass aktuelle Graphikkarten circa 30 Millionen
Dreiecke pro Sekunde verarbeiten können, ergibt sich eine Bildwiederholrate von
ca. 7 Bildern pro Sekunde. Für interaktive Anwendungen ist dies bei weitem nicht

140

141

schnell genug. Man verwendet daher Algorithmen die nicht die gesamte Menge
an Dreiecken zeichnen, sondern nur diejenigen, die für den korrekten visuellen
Eindruck notwendig sind. So kann man sich zum Beispiel vorstellen, dass eine
kleine Erhebung auf ansonsten glatter Oberfläche in weiter Entfernung kleiner als
ein Pixel dargestellt werden würde. Dieses Detail kann problemlos vernachlässigt
werden, ohne den Gesamteindruck zu verfälschen. Genau dies ist das Prinzip,
welches den C-LOD Algorithmen zugrunde liegt.

In den darauf folgenden Kapiteln 5 und 6 erfolgt eine Bestandsaufnahme, wel-
che volumetrischen Techniken aktuell in Computerspielen eingesetzt werden. Da-
zu wird die Rendering-Engine des aktuellen Computerspiels AquaNox von Massi-
ve Development unter die Lupe genommen, da sie dem aktuellen Stand der Tech-
nik entspricht. Durch die Zusammenarbeit mit Massive Development hatten wir
außerdem die Gelegenheit die Interna der Game-Engine sehr gut kennen zulernen.

Der Teil der Game-Engine, der sich mit der Darstellung von virtuellen Land-
schaften beschäftigt, kann anhand der so genannten “Terrain Rendering Pipeline”
beschrieben werden. D.h., während der Darstellung der synthetischen Landschaft
durchläuft diese mehrere Phasen, in denen sie schrittweise ihr endgültiges Ausse-
hen erhält. Diese Phasen sind insbesondere: Generierung der Geometrie, Textu-
rierung, Beleuchtung, Platzierung von organischen Objekten und schließlich die
Anwendung volumetrischer Effekte. Letzteres zu verbessern, ist das Hauptziel
dieser Dissertation.

Um volumetrische Effekte zu erzielen, werden in der letzten Stufe der Pipe-
line hauptsächlich nur Billboard- und Layered-Fog-Techniken eingesetzt. Aber
auch andere Computerspiele gehen kaum über diesen Quasi-Standard hinaus. Der
Grund dafür liegt hauptsächlich darin, dass alle visuellen Effekte in der kurzle-
bigen Spielebranche innerhalb kürzester Zeit realisiert werden müssen. Obwohl
die erwähnten Techniken nicht unbedingt realitätsgetreu zu nennen sind, sind sie
wegen der einfachen Implementierbarkeit sehr beliebt. Abschließend kann man
sagen, dass die volumetrischen Effekte in der Spielebranche sehr unterentwickelt
sind im direkten Vergleich mit dem wissenschaftlichen Status Quo. Unser Ziel
ist es nun, bekannte Volumenvisualisierungsmethoden aufzuzeigen bzw. existie-
rende Methoden so abzuwandeln und zu verbessern, dass sie für Computerspiele
geeignet sind. Als Nebeneffekt davon tragen die in der Dissertation entwickel-
ten Methoden auch zur qualitativ besseren Darstellung in der wissenschaftlichen
Volumenvisualisierung bei.

In Kapitel 6 werden nun die existierenden volumetrischen Methoden beschrie-
ben, die generell für Computerspiele geeignet sind. Da eine Hauptvoraussetzung
die interaktive Geschwindigkeit ist, schränkt das die Auswahl an Algorithmen
deutlich ein. Diejenigen Methoden, die diese Voraussetzung erfüllen, sind ins-
besondere Sky Domes, OpenGL Fog, Layered Fog, Bounded Layered Fog, Bill-
boards, und Impostors. Die Vor- und Nachteile jeder unterschiedlichen Methode

142 KAPITEL 13. ZUSAMMENFASSUNG

werden entsprechend beleuchtet. Nach dieser Bestandsaufnahme kommt man un-
weigerlich zu der Schlussfolgerung, dass die vorgestellten Methoden die eigent-
liche Aufgabe, nämlich das Strahlintegral zu berechnen, mit mehr oder weniger
Geschick und Erfolg versuchen zu umgehen. Dies ist nicht verwunderlich, denn
für jeden Sehstrahl, der ein Volumen durchdringt, müsste man die Abschwächung
der Lichtintensität mit Hilfe dieses Strahlintegrals berechnen. Prinzip bedingt ist
dies nur durch Abtastung und numerische Integration eines jeden Sehstrahls zu
bewerkstelligen. Für volumetrische Effekte in Computerspielen wird nun einer-
seits entweder die Lösung des Strahlintegrals durch unrealistische Annahmen so-
weit vereinfacht, dass die Integration analytisch berechnet werden kann, oder es
wird gar nicht erst versucht das Strahlintegral zu lösen. Anstelle dessen werden
volumetrische Effekte häufig nur vorgetäuscht. Insgesamt kann man sagen, dass
die bekannten Algorithmen aus den genannten Gründen entweder unrealistische
Bilder erzeugen oder bezüglich der darstellbaren Effekte sehr eingeschränkt sind.

Um diesen Misstand zu beseitigen, versuchen wir bekannte Volumenvisuali-
sierungsmethoden soweit zu verbessern, dass sie auch für den Einsatz in Compu-
terspielen schnell genug sind. Eine Methode, die hier besonders viel versprechen-
de Ergebnisse erwarten lässt, ist die Visualisierung von Volumendaten basierend
auf so genannten unstrukturierten Gittern. Diese werden hauptsächlich in Finite-
Elemente-Simulationen eingesetzt, da dadurch komplizierte Simulationsgeome-
trien mit vergleichsweise wenigen Gitterelementen beschrieben werden können.
Die Haupteinsatzbereiche sind hierbei, um nur einige Beispiele zu nennen, die
Strömungssimulation in der Luftfahrt- und Automobilindustrie, oder der Wärme-
transport in komplexen technischen Baugruppen. Je weniger Elemente das Si-
mulationsgitter aufweist, desto schneller ist auch die Simulation und letztendlich
auch die Visualisierung. Die Herangehensweise mittels unstrukturierter Gitter ist
auch für Computerspiele vorteilhaft, da ein Großteil der volumetrischen Effekte
effizient auf unstrukturierte Gitter abgebildet werden kann.

Ein erster Einblick in die Volumenvisualisierung von unstrukturierten Gittern
wird in den Kapiteln 7 bis 10 gegeben. Kapitel 7 und 8 behandeln generell die
Grundlagen der Volumenvisualisierung speziell im Hinblick auf die Darstellung
von natürlichen Phänomenen wie z.B. Wolken. Es werden hauptsächlich die phy-
sikalischen Mechanismen des Strahlungstransports in gasförmigen Medien behan-
delt, was physikalische Effekte wie Emission, Abschwächung und Streuung mit
einschließt.

Kapitel 9 beschreibt, wie man das Strahlintegral exakt und effizient lösen kann,
wenn man die Standardmethode zur Visualisierung unstrukturierter Gitter, den
PT-Algorithmus, verwendet. Der PT-Algorithmus, der besser unter dem Begriff
Zellprojektion bekannt ist, projiziert einen Tetraeder in die Bildebene, so dass
der Tetraeder mit Graphikprimitiven, wie sie jede aktuelle Graphikkarte bietet,
dargestellt werden kann. Aufgrund der hardwarebeschleunigten Darstellungswei-

143

se ist das Verfahren sehr effizient. Da es ein Objektraumverfahren ist, hängt die
Performanz hauptsächlich von der Anzahl der Tetraeder ab und nicht wie beim
Ray-Tracing oder Ray-Casting von der Anzahl der Bildpunkte.

Ein Nachteil des ursprünglichen PT-Algorithmus war, dass bis dato nur Prä-
Klassifikation möglich war, was sich darin manifestierte, dass die Transferfunkti-
on innerhalb eines Tetraeders nicht korrekt wiedergegeben werden konnte. Da im
allgemeinen Volumendaten in Form von Skalarwerten gegeben sind, muss jedem
Skalarwert eindeutig eine optische Dichte zugewiesen werden. Dies geschieht mit
einer Transferfunktion. Außerdem legt die Transferfunktion auch die Eigenemis-
sion des gasförmigen Mediums fest. Unter Zuhilfenahme der Fähigkeiten mo-
derner Graphikhardware konnten wir zeigen, dass mittels der so genannten Prä-
Integrationsmethode eine per-Pixel exakte Darstellung der Tetraeder für beliebige
Transferfunktionen erzielt werden kann. Dies hat eine deutliche Qualitätssteige-
rung zur Folge und stellt einen fundamentalen Fortschritt im Vergleich mit den
bisher bekannten Methoden dar (vergleiche Abbildung 8.16).

Dies wurde durch eine geschickte Parametrisierung des Strahlintegrals er-
reicht. Jedes Segment eines Sichtstrahls durch einen Tetraeder kann durch drei
Parameter eindeutig beschrieben werden: Den Skalarwert am Eintritts- und Aus-
trittspunkt des Sichtstrahls und die Länge des Strahlsegments. Dadurch ist auch
das zum Strahlsegment gehörige Strahlintegral eindeutig definiert. Indem man nun
das Strahlintegral für jede Kombination der drei Parameter numerisch vorberech-
net und in einer drei-dimensionalen Tabelle speichert, ist das exakte Strahlintegral
während des Zeichnens eines Tetraeders schnell verfügbar. Man kann sogar soweit
gehen und die Prä-Integrationstabelle als 3D-Textur auf der Graphikkarte ablegen.
Durch die Zuweisung von Texturkoordinaten, die den jeweiligen drei Integrations-
parametern entsprechen, erledigt die Graphikhardware die komplette Darstellung
eines Tetraeders. Das vorgestellte Verfahren ist also nicht nur per-Pixel exakt son-
dern auch wegen der Hardwarebeschleunigung entsprechend effizient.

Durch die zunehmende Flexibilität der letzten Graphikhardwaregeneration
ist es weiterhin gelungen auch den Texturspeicherverbrauch, der mit der Prä-
Integrations-Methode verbunden ist, zu reduzieren. Die hierfür verwendeten Tech-
niken werden in Kapitel 10 beschrieben. Zum einen wird die drei-dimensionale
Prä-Integrationstabelle, die sehr viel Texturspeicher belegen kann, durch Polyno-
me approximiert. Schon Polynome vierter Ordnung erzielen eine hervorragende
Genauigkeit. Dadurch kann die Tabelle von drei auf zwei Dimensionen reduziert
werden. Die Rekonstruktion der Prä-Integrationstabelle erfolgt dann simultan aus
den Polynomkoeffizienten im Pixel-Shader. Dies hat zusätzlich den Vorteil höher-
er interner Genauigkeit. Da die eigentliche Prä-Integration aber nach wie vor ei-
ne sehr hohe Anzahl numerischer Integrations-Schritte erfordert, treten bei einer
Änderung der Transferfunktion hohe Wartezeiten auf. Auch dieses Problem lässt
sich lösen, indem man die Graphikhardware geschickt einsetzt. Durch Verlage-

144 KAPITEL 13. ZUSAMMENFASSUNG

rung der Prä-Integration auf die Graphikhardware lassen sich Geschwindigkeits-
steigerungen von bis zu 700% erreichen. Aus nahe liegenden Gründen wird diese
Methode daher als hardwarebeschleunigte Prä-Integration bezeichnet.

In den Kapiteln 11 und 12 werden schließlich die beschriebenen Verfahren
angewendet, um natürliche volumetrische Effekte darzustellen. Kapitel 11 wid-
met sich dem so genannten Bodennebel. Das ist eine Form von Nebel die durch
die maximale Höhe der Nebelschicht über der Erdoberfläche beschrieben werden
kann. Obwohl dies keine universelle Darstellungsform von Nebel ist, eignet sie
sich nichtsdestotrotz hervorragend für Computerspiele, die Bodennebel als spiel-
bestimmendes Element einsetzen.

Bodennebel wird wie folgt visualisiert: Aufbauend auf dem Dreiecksgitter,
das der Terrain Renderer erzeugt hat, wird für jedes Basisdreieck ein Prisma ge-
neriert, das auf das Dreieck aufgesetzt wird. Die Höhe des Prismas ergibt sich aus
der Höhe des Bodennebels an jener Stelle. Auf diese Weise ergibt die Menge der
so generierten Prismen eine Nebelschicht. Jedes der Prismen wird in drei Tetra-
eder zerlegt, die wiederum mittels Zellprojektion gerendert werden. Da hierdurch
schnell eine nicht zu vernachlässigende Anzahl von Tetraedern entsteht, kann man
davon ausgehen, dass der Aufwand für die Darstellung des Bodennebels um eini-
ges größer ist als der für die Darstellung des Terrains. Um diesen Nachteil auszu-
gleichen, wählen wir ein einfaches optisches Modell. Für ein rein emissives Mo-
dell kann zur Darstellung der Prismen die PCP-Methode verwendet werden. Diese
ist deutlich effizienter, hat aber den Nachteil der nicht-photorealistischen Darstel-
lung des Nebels. Für Computerspiele ist dieser Nachteil aber sicherlich von zweit-
rangiger Bedeutung, da die Performanz hier Vorrang hat. Für die Zell-Projektion
eines jeden Tetraeders sind eine Reihe von geometrischen Operationen notwen-
dig, die in Ihrer Summe die Geschwindigkeit limitieren. Der PCP-Algorithmus
hingegen berechnet die Projektion nicht direkt, sondern nutzt das vereinfachte
optische Modell aus, um die Länge eines jeden Strahlsegments mit Hilfe der Gra-
phikhardware zu berechnen. Dies geschieht in einem Multi-Pass-Verfahren, wel-
ches zuerst den Abstand der rückwärtigen Begrenzungsflächen eines Tetraeders
zum Augpunkt bestimmt und im Bildschirmspeicher ablegt. Wiederholt man nun
diese Prozedur für die Vorderseiten des Tetraeders und subtrahiert die beiden Ab-
standswerte voneinander, so erhält man die Länge eines jeden Strahlsegments.
Die Strahlsegmentlänge wird nun mit dem Durchschnittswert der Eigenemission
multipliziert, wodurch effektiv das Strahlintegral für das vereinfachte rein emissi-
ve optische Modell berechnet wird. Dadurch läuft der PCP-Algorithmus komplett
auf der Graphikhardware.

In Kaptitel 12 schließlich wird die effiziente volumetrische Darstellung von
Wolken behandelt. Im Prinzip beinhaltet dies auch die Darstellung von Bodenne-
bel. Im Fall von Bodennebel ergeben sich aber aufgrund der Einfachheit der Pro-
blemstellung die beschriebenen Optimierungsansätze, weshalb Bodennebel expli-

145

zit behandelt wurde. Grundsätzlich können Wolken durch ihre optische Dichte,
d.h. durch ein drei-dimensionales reguläres Skalarfeld definiert werden. Würde
man nun jeden Voxel des regulären Gitters in Tetraeder zerlegen und diese mittels
Zellprojektion zeichnen, so erhielte man schnell eine Menge an Tetraedern die
sich in keinster Weise mehr interaktiv verarbeiten lässt. Man ist also bei einem
Zellprojektionsansatz darauf angewiesen, den Datensatz entsprechend zu verein-
fachen. Aufgrund der großen Ausdehnung der verwendeten Wolkendaten ist ein
augpunktabhängiges Verfahren eine gute Wahl:

Analog dazu, wie der C-LOD Ansatz benutzt wird, um die Anzahl der Drei-
ecke eines Terrains zu verringern, kann dieser Ansatz ebenso die Anzahl der Tetra-
eder eines Volumens reduzieren. In Kapitel 12 werden daher die notwendigen Vor-
aussetzungen und Algorithmen diskutiert, um den C-LOD Ansatz an die Visua-
lisierung von drei-dimensionalen Skalarfeldern anzupassen. Obwohl der C-LOD
Ansatz schon seit Jahren für die Landschaftsvisualisierung eingesetzt wird und
dementsprechend weit verbreitet ist, wurde bisher interessanterweise eine analo-
ge Formulierung für 3D Skalarfelder nicht vorgeschlagen. Nichtsdestotrotz zeigen
unsere Ergebnisse, dass sich dieser Ansatz letztlich auch für die effiziente Visua-
lisierung von Wolken eignet (siehe Abbildung 12.4).

Das Vorgehen ist hier wie folgt: Der reguläre Volumendatensatz wird als
Octree repräsentiert. Für jeden Knoten des Octrees entscheidet eine Verfeine-
rungskriterium ob der Datensatz schon mit hinreichender Genauigkeit abgebildet
wird. Ist der Fehler im Bildraum größer als eine vordefinierte Schranke, wird der
betrachtete Knoten in acht kleinere Knoten zerlegt, die den Datensatz entspre-
chend genauer approximieren. Diese Prozedur wird solange rekursiv wiederholt
bis keine Verfeinerung des Octrees mehr notwendig ist. Aufgrund des blickpunk-
tabhängigen Verfeinerungskriteriums werden kleine und entfernte Details mit ge-
ringerer Priorität behandelt als solche die entsprechend nah sind. Dadurch ist eine
optimale Darstellungsqualität bezogen auf die jeweilige Fehlerschranke gewähr-
leistet.

Jeder Knoten des erzeugten Octrees wird nun in 5 Tetraeder zerlegt, die mit-
tels Zellprojektion gezeichnet werden. Eine Beschleunigung mit Hilfe der PCP-
Methode ist hier nicht möglich, da ein emissives Modell die Lichtverhältnisse
innerhalb der Wolken zu stark vereinfachen würde. Bei augpunktabhängigen Ver-
fahren hat man prinzipbedingt mit dem sogenannten “Popping Effect” zu kämp-
fen. Dies bedeutet, dass ein entferntes Objekt, das zunächst zu klein ist, um darge-
stellt zu werden, ab einer bestimmten Distanz plötzlich auftaucht. Da das mensch-
liche Auge auf temporäre Änderungen besonders empfindlich reagiert, muss die-
ser Effekt auf jeden Fall unterdrückt werden. Könnte man den Fehler im Bildraum
auf unter einen Pixel drücken, so wäre der Effekt nicht wahrnehmbar. Die Ge-
schwindigkeit aktueller Graphikhardware ist jedoch für dieses Anwendungsge-
biet noch nicht schnell genug. Man erreicht daher bestenfalls eine Fehlerschranke

146 KAPITEL 13. ZUSAMMENFASSUNG

von etwa 10 Bildpunkten. Ein Ansatz zur Lösung des Problems ist, die einzel-
nen Detailstufen langsam ineinander übergehen zu lassen, d.h. diese zu interpo-
lieren. Dadurch erscheint ein kleines Detail nicht mehr plötzlich sondern vielmehr
langsam und fließend. Da für die Interpolation der Detailstufen eine Vielzahl an
zusätzlichen Fliesskommaoperationen notwendig sind, ist der in der Dissertation
vorgestellte Algorithmus speziell daraufhin optimiert.

Abschließend werden die in der Dissertation entwickelten Verfahren den be-
reits bekannten Algorithmen gegenübergestellt. Es werden Entscheidungskriteri-
en vorgestellt, welche die Auswahl der jeweils passenden Methode für ein spezi-
elles Anwendungsgebiet erleichtern. Insgesamt betrachtet wurden in der Disser-
tation zwei fundamental neue Volumenvisualisierungstechniken vorgestellt: Zum
einen die PCP-Methode und zum anderen die prä-integrierte Zellprojektion.
Diese Methoden erweitern das Einsatzspektrum von unstrukturierten Volumenvi-
sualisierungsmethoden sowohl in Hinsicht auf Bildqualität als auch in Hinsicht
auf Darstellungsgeschwindigkeit. Das beste Beispiel dafür sind die neuen Algo-
rithmen zur Darstellung von Bodennebel und volumetrischen Wolken.

